FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Gaillou, E Post, JE Bassim, ND Zaitsev, AM Rose, T Fries, MD Stroud, RM Steele, A Butler, JE AF Gaillou, E. Post, J. E. Bassim, N. D. Zaitsev, A. M. Rose, T. Fries, M. D. Stroud, R. M. Steele, A. Butler, J. E. TI Spectroscopic and microscopic characterizations of color lamellae in natural pink diamonds SO DIAMOND AND RELATED MATERIALS LA English DT Article DE Natural pink diamond; Graining; Deformation twin; Plastic deformation; 405.5 nm center ID PLASTIC-DEFORMATION; RAMAN-SPECTROSCOPY; OPTICAL-CENTERS; CVD DIAMOND; CRYSTALS; GROWTH; PHOTOLUMINESCENCE; TEMPERATURE; PRESSURE; STRESS AB Nineteen natural, untreated, type laAB pink diamonds from various localities were studied. They display microscopic (similar to 1 mu m thick) pink lamellae along {111} in an otherwise colorless diamond. This coloration concentrated in lamellae is commonly referred to as "graining". The diamonds were examined using high spatial resolution spectroscopic methods and transmission electron microscopy. TEM revealed that a pink lamella consists of a cluster of paired microtwins created under stress by plastic deformation. Raman line shift and broadening associated with the twinned pink lamellae indicate the presence of residual stress. Ultraviolet-visible absorption spectra from each of the samples showed a broad absorption band centered at similar to 550 nm, the source of the pink color. Cathodoluminescence spectra of the pink lamellae are different from those of the bulk, colorless diamond matrix. Within the lamellae only, the H3 center is observed along with a less intense N3 center. In some samples, instead of the N3 center a new center with a zero phonon line at 405.5 nm is observed. This previously unreported 405.5 nm center has phonon sidebands qualitatively identical to the N3 center, and may be an N3 center modified by a specific environment. These results suggest that lattice vacancies were created during twinning resulting from plastic deformation, and that impurity centers (such as those containing nitrogen) trap some of the diffusing vacancies. Since the pink lamellae are still under residual stress, new or modified defect centers are created, e.g. H3 and N3. The color center(s) responsible for the pink color (550 nm absorption) was not identified, but likely is only present in diamonds that experienced plastic deformation. Reported annealing of plastically deformed brown diamonds, which results in a residual pink color, suggests that the pink color is stable under these high pressure, high temperature conditions. The reported observations that annealing plastically deformed brown diamonds results in a residual pink color and that the pink color does not anneal out under similar high pressure, high temperature conditions, suggests that the deformation inducing pink color occurs inside the Earth's mantle, whereas brown coloration might be induced during a more recent event such as the ascent of the diamond to the surface in a kimberlitic/lamproitic eruption. Published by Elsevier BM. C1 [Gaillou, E.; Post, J. E.; Rose, T.] Smithsonian Inst, Dept Mineral Sci, Washington, DC 20560 USA. [Gaillou, E.; Bassim, N. D.; Stroud, R. M.; Butler, J. E.] USN, Res Lab, Washington, DC 20375 USA. [Zaitsev, A. M.] CUNY Coll Staten Isl, Staten Isl, NY 10314 USA. [Fries, M. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Steele, A.] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. RP Gaillou, E (reprint author), Smithsonian Inst, Natl Museum Nat Hist, MRC 0119,Natl Hist Bldg W,Loading Dock 10th & Con, Washington, DC 20560 USA. EM gailloue@si.edu RI Butler, James/B-7965-2008; Gaillou, Eloise/D-1753-2009; Stroud, Rhonda/C-5503-2008 OI Butler, James/0000-0002-4794-7176; Gaillou, Eloise/0000-0002-7949-268X; Stroud, Rhonda/0000-0001-5242-8015 FU Apollo Diamond; JCK Industry Fund; Coralyn Whitney Endowment Fund (Smithsonian Institution) FX The authors wish to thank Alan Collins for constructive discussion of the some spectroscopic results, as well as Fischione and Yoosuff Piccard for assistance with the Nanomilling of the FIB sections. We gratefully acknowledge grants from Apollo Diamond, the JCK Industry Fund, and the Coralyn Whitney Endowment Fund (Smithsonian Institution). We also thank Dr. Benjamin Rondeau and the anonymous person who reviewed this paper, and who improved the quality of this manuscript. NR 60 TC 25 Z9 25 U1 2 U2 20 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-9635 J9 DIAM RELAT MATER JI Diam. Relat. Mat. PD OCT PY 2010 VL 19 IS 10 BP 1207 EP 1220 DI 10.1016/j.diamond.2010.06.015 PG 14 WC Materials Science, Multidisciplinary SC Materials Science GA 654XB UT WOS:000282203300014 ER PT J AU van Donkelaar, A Martin, R Verduzco, C Brauer, M Kahn, R Levy, R Villeneuve, P AF van Donkelaar, Aaron Martin, Randall Verduzco, Caroline Brauer, Mike Kahn, Ralph Levy, Robert Villeneuve, Paul TI A Hybrid Approach for Predicting PM2.5 Exposure Response SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Letter C1 [van Donkelaar, Aaron; Martin, Randall; Verduzco, Caroline] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada. [Brauer, Mike] Univ British Columbia, Sch Environm Hlth, Vancouver, BC V5Z 1M9, Canada. [Kahn, Ralph; Levy, Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Villeneuve, Paul] Hlth Canada, Populat Studies Div, Ottawa, ON K1A 0L2, Canada. RP van Donkelaar, A (reprint author), Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada. EM Aaron.van.Donkelaar@dal.ca NR 3 TC 3 Z9 3 U1 2 U2 10 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD OCT PY 2010 VL 118 IS 10 BP A426 EP A426 DI 10.1289/ehp.1002706R PG 1 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 656YL UT WOS:000282376900006 ER PT J AU Cook, BI Terando, A Steiner, A AF Cook, Benjamin I. Terando, Adam Steiner, Allison TI Ecological forecasting under climatic data uncertainty: a case study in phenological modeling SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE ecology; climate; forecasting ID GLOBAL VEGETATION MODELS; REANALYSIS; ENSEMBLES AB Forecasting ecological responses to climate change represents a challenge to the ecological community because models are often site-specific and climate data are lacking at appropriate spatial and temporal resolutions. We use a case study approach to demonstrate uncertainties in ecological predictions related to the driving climatic input data. We use observational records, derived observational datasets (e.g. interpolated observations from local weather stations and gridded data products) and output from general circulation models (GCM) in conjunction with site based phenology models to estimate the first flowering date (FFD) for three woody flowering species. Using derived observations over the modern time period, we find that cold biases and temperature trends lead to biased FFD simulations for all three species. Observational datasets resolved at the daily time step result in better FFD predictions compared to simulations using monthly resolution. Simulations using output from an ensemble of GCM and regional climate models over modern and future time periods have large intra-ensemble spreads and tend to underestimate observed FFD trends for the modern period. These results indicate that certain forcing datasets may be missing key features needed to generate accurate hindcasts at the local scale (e.g. trends, temporal resolution), and that standard modeling techniques (e.g. downscaling, ensemble mean, etc) may not necessarily improve the prediction of the ecological response. Studies attempting to simulate local ecological processes under modern and future climate forcing therefore need to quantify and propagate the climate data uncertainties in their simulations. C1 [Cook, Benjamin I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Cook, Benjamin I.] Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Terando, Adam] N Carolina State Univ, Biodivers & Spatial Informat Ctr, Raleigh, NC 27695 USA. [Steiner, Allison] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Cook, BI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM bc9z@ldeo.columbia.edu; ajterand@ncsu.edu; alsteiner@umich.edu RI Cook, Benjamin/H-2265-2012; Steiner, Allison/F-4942-2011; OI Terando, Adam/0000-0002-9280-043X FU National Science Foundation (NSF) [IOS-0639794]; US Department of Energy (DoE); National Oceanic and Atmospheric Administration (NOAA); US Environmental Protection Agency Office of Research and Development (EPA) FX The authors thank the editor and reviewers whose comments greatly improved the quality of this manuscript. This project resulted from work initiated at a USA National Phenology Network Research Coordination Network meeting held in October 2009 and supported by National Science Foundation Grant IOS-0639794. Special thanks to the Mohonk Preserve and the Smiley Family for providing climate and phenology data. We also wish to thank the North American Regional Climate Change Assessment Program (NARCCAP) for providing the data used in this paper. NARCCAP is funded by the National Science Foundation (NSF), the US Department of Energy (DoE), the National Oceanic and Atmospheric Administration (NOAA), and the US Environmental Protection Agency Office of Research and Development (EPA). Lamont contribution 7422. NR 25 TC 14 Z9 14 U1 0 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD OCT-DEC PY 2010 VL 5 IS 4 AR 044014 DI 10.1088/1748-9326/5/4/044014 PG 7 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 709EO UT WOS:000286420700016 ER PT J AU Abbasi, R Abdou, Y Abu-Zayyad, T Adams, J Aguilar, JA Ahlers, M Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Bay, R Alba, JLB Beattie, K Beatty, JJ Bechet, S Becker, JK Becker, KH Benabderrahmane, ML BenZvi, S Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bissok, M Blaufuss, E Boersma, DJ Bohm, C Boser, S Botner, O Bradley, L Braun, J Buitink, S Carson, M Chirkin, D Christy, B Clem, J Clevermann, F Cohen, S Colnard, C Cowen, DF D'Agostino, MV Danninger, M Davis, JC De Clercq, C Demirors, L Depaepe, O Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dierckxsens, M Dreyer, J Dumm, JP Duvoort, MR Ehrlich, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Feusels, T Filimonov, K Finley, C Foerster, MM Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Geisler, M Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Goodman, JA Grant, D Griesel, T Gross, A Grullon, S Gurtner, M Ha, C Hallgren, A Halzen, F Han, K Hanson, K Helbing, K Herquet, P Hickford, S Hill, GC Hoffman, KD Homeier, A Hoshina, K Hubert, D Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Joseph, JM Kampert, KH Karg, T Karle, A Kelley, JL Kemming, N Kenny, P Kiryluk, J Kislat, F Klein, SR Knops, S Kohne, JH Kohnen, G Kolanoski, H Kopke, L Koskinen, DJ Kowalski, M Kowarik, T Krasberg, M Krings, T Kroll, G Kuehn, K Kuwabara, T Labare, M Lafebre, S Laihem, K Landsman, H Lauer, R Lehmann, R Lennarz, D Lunemann, J Madsen, J Majumdar, P Marotta, A Maruyama, R Mase, K Matis, HS Matusik, M Meagher, K Merck, M Meszaros, P Meures, T Middell, E Milke, N Miller, J Montaruli, T Morse, R Movit, SM Nahnhauer, R Nam, JW Naumann, U Niessen, P Nygren, DR Odrowski, S Olivas, A Olivo, M O'Murchadha, A Ono, M Panknin, S Paul, L de los Heros, CP Petrovic, J Piegsa, A Pieloth, D Porrata, R Posselt, J Price, PB Prikockis, M Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Rizzo, A Rodrigues, JP Roth, P Rothmaier, F Rott, C Roucelle, C Ruhe, T Rutledge, D Ruzybayev, B Ryckbosch, D Sander, HG Santander, M Sarkar, S Schatto, K Schlenstedt, S Schmidt, T Schukraft, A Schultes, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Slipak, A Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stephens, G Stezelberger, T Stokstad, RG Stoyanov, S Strahler, EA Straszheim, T Sullivan, GW Swillens, Q Taavola, H Taboada, I Tamburro, A Tarasova, O Tepe, A Ter-Antonyan, S Tilav, S Toale, PA Toscano, S Tosi, D Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A van Santen, J Voge, M Voigt, B Walck, C Waldenmaier, T Wallraff, M Walter, M Weaver, C Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Wikstrom, G Williams, DR Wischnewski, R Wissing, H Wolf, M Woschnagg, K Xu, C Xu, XW Yodh, G Yoshida, S Zarzhitsky, P AF Abbasi, R. Abdou, Y. Abu-Zayyad, T. Adams, J. Aguilar, J. A. Ahlers, M. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Beatty, J. J. Bechet, S. Becker, J. K. Becker, K. -H. Benabderrahmane, M. L. BenZvi, S. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bissok, M. Blaufuss, E. Boersma, D. J. Bohm, C. Boeser, S. Botner, O. Bradley, L. Braun, J. Buitink, S. Carson, M. Chirkin, D. Christy, B. Clem, J. Clevermann, F. Cohen, S. Colnard, C. Cowen, D. F. D'Agostino, M. V. Danninger, M. Davis, J. C. De Clercq, C. Demiroers, L. Depaepe, O. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dierckxsens, M. Dreyer, J. Dumm, J. P. Duvoort, M. R. Ehrlich, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Feusels, T. Filimonov, K. Finley, C. Foerster, M. M. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Geisler, M. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Goodman, J. A. Grant, D. Griesel, T. Gross, A. Grullon, S. Gurtner, M. Ha, C. Hallgren, A. Halzen, F. Han, K. Hanson, K. Helbing, K. Herquet, P. Hickford, S. Hill, G. C. Hoffman, K. D. Homeier, A. Hoshina, K. Hubert, D. Huelsnitz, W. Huelss, J. -P. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Joseph, J. M. Kampert, K. -H. Karg, T. Karle, A. Kelley, J. L. Kemming, N. Kenny, P. Kiryluk, J. Kislat, F. Klein, S. R. Knops, S. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koepke, L. Koskinen, D. J. Kowalski, M. Kowarik, T. Krasberg, M. Krings, T. Kroll, G. Kuehn, K. Kuwabara, T. Labare, M. Lafebre, S. Laihem, K. Landsman, H. Lauer, R. Lehmann, R. Lennarz, D. Luenemann, J. Madsen, J. Majumdar, P. Marotta, A. Maruyama, R. Mase, K. Matis, H. S. Matusik, M. Meagher, K. Merck, M. Meszaros, P. Meures, T. Middell, E. Milke, N. Miller, J. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Nam, J. W. Naumann, U. Niessen, P. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. O'Murchadha, A. Ono, M. Panknin, S. Paul, L. de los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Porrata, R. Posselt, J. Price, P. B. Prikockis, M. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Rodrigues, J. P. Roth, P. Rothmaier, F. Rott, C. Roucelle, C. Ruhe, T. Rutledge, D. Ruzybayev, B. Ryckbosch, D. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Schlenstedt, S. Schmidt, T. Schukraft, A. Schultes, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Slipak, A. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stephens, G. Stezelberger, T. Stokstad, R. G. Stoyanov, S. Strahler, E. A. Straszheim, T. Sullivan, G. W. Swillens, Q. Taavola, H. Taboada, I. Tamburro, A. Tarasova, O. Tepe, A. Ter-Antonyan, S. Tilav, S. Toale, P. A. Toscano, S. Tosi, D. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. van Santen, J. Voge, M. Voigt, B. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Weaver, Ch. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Wikstrom, G. Williams, D. R. Wischnewski, R. Wissing, H. Wolf, M. Woschnagg, K. Xu, C. Xu, X. W. Yodh, G. Yoshida, S. Zarzhitsky, P. CA IceCube Collaboration TI Search for relativistic magnetic monopoles with the AMANDA-II neutrino telescope SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID HIGH-ENERGY NEUTRINOS; DETECTORS; SELECTION; LIMITS; FIELD; MODEL; DEEP; FLUX; ICE AB We present the search for Cherenkov signatures from relativistic magnetic monopoles in data taken with the AMANDA-II detector, a neutrino telescope deployed in the Antarctic ice cap at the Geographic South Pole. The non-observation of a monopole signal in data collected during the year 2000 improves present experimental limits on the flux of relativistic magnetic monopoles: Our flux limit varies between 3.8x10(-17) cm(-2) s(-1) sr(-1) (for monopoles moving at the vacuum speed of light) and 8.8x10(-16) cm(-2) s(-1) sr(-1) (for monopoles moving at a speed beta=v/c=0.76, just above the Cherenkov threshold in ice). These limits apply to monopoles that are energetic enough to penetrate the Earth and enter the detector from below the horizon. The limit obtained for monopoles reaching the detector from above the horizon is less stringent by roughly an order of magnitude, due to the much larger background from down-going atmospheric muons. This looser limit is however valid for a larger class of magnetic monopoles, since the monopoles are not required to pass through the Earth. C1 [Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; BenZvi, S.; Berghaus, P.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; O'Murchadha, A.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Abdou, Y.; Carson, M.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Abu-Zayyad, T.; Madsen, J.; Spiczak, G. M.; Tamburro, A.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Adams, J.; Gross, A.; Han, K.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Auffenberg, J.; Becker, K. -H.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Matusik, M.; Naumann, U.; Posselt, J.; Schultes, A.; Semburg, B.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Franke, R.; Kislat, F.; Lauer, R.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Schlenstedt, S.; Spiering, C.; Tarasova, O.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany. [Beattie, K.; Buitink, S.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Bechet, S.; Bertrand, D.; Dierckxsens, M.; Hanson, K.; Labare, M.; Marotta, A.; Petrovic, J.; Swillens, Q.] Univ Libre Bruxelles, Sci Fac CP230, B-1050 Brussels, Belgium. [Becker, J. K.; Dreyer, J.; Olivo, M.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; Sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Bissok, M.; Boersma, D. J.; Euler, S.; Geisler, M.; Gluesenkamp, T.; Huelss, J. -P.; Knops, S.; Krings, T.; Laihem, K.; Lennarz, D.; Meures, T.; Paul, L.; Schukraft, A.; Schunck, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wikstrom, G.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wikstrom, G.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Boeser, S.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Botner, O.; Engdegard, O.; Hallgren, A.; Miller, J.; Olivo, M.; de los Heros, C. Perez; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Bradley, L.; Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Ha, C.; Koskinen, D. J.; Lafebre, S.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Slipak, A.; Stephens, G.; Toale, P. A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Clevermann, F.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Cohen, S.; Demiroers, L.; Ribordy, M.] Ecole Polytech Fed Lausanne, Lab High Energy Phys, CH-1015 Lausanne, Switzerland. [Colnard, C.; Gross, A.; Odrowski, S.; Resconi, E.; Roucelle, C.; Schulz, O.; Sestayo, Y.; Voge, M.; Wolf, M.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [De Clercq, C.; Depaepe, O.; Hubert, D.; Rizzo, A.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Duvoort, M. R.] Utrecht Univ SRON, Dept Phys & Astron, NL-3584 CC Utrecht, Netherlands. [Fadiran, O.; Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Grant, D.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Griesel, T.; Koepke, L.; Kowarik, T.; Kroll, G.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Ishihara, A.; Mase, K.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Kemming, N.; Kolanoski, H.; Lehmann, R.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Montaruli, T.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Montaruli, T.] Sezione Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Seunarine, S.] Univ W Indies, Dept Phys, Bridgetown 11000, Barbados. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Taboada, I.; Tepe, A.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Taboada, I.; Tepe, A.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Williams, D. R.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. RP Abbasi, R (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM hwissing@icecube.umd.edu RI Botner, Olga/A-9110-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011; Beatty, James/D-9310-2011; Taavola, Henric/B-4497-2011; Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Tamburro, Alessio/A-5703-2013; Hallgren, Allan/A-8963-2013 OI Actis, Oxana/0000-0001-8851-3983; Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Sarkar, Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952; Taavola, Henric/0000-0002-2604-2810; Wiebusch, Christopher/0000-0002-6418-3008; FU US National Science Foundation-Office of Polar Programs; US National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; US Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council of Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG) [SFB-676]; Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; EU; Capes Foundation, Ministry of Education of Brazil FX We acknowledge the support from the following agencies: US National Science Foundation-Office of Polar Programs, US National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, US Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council of Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG) SFB-676, Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; A. Gross acknowledges support by the EU Marie Curie OIF Program; J.P. Rodrigues acknowledges support by the Capes Foundation, Ministry of Education of Brazil. NR 48 TC 18 Z9 18 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD OCT PY 2010 VL 69 IS 3-4 BP 361 EP 378 DI 10.1140/epjc/s10052-010-1411-6 PG 18 WC Physics, Particles & Fields SC Physics GA 669PD UT WOS:000283361800003 ER PT J AU Weikl, MC Tedder, SA Seeger, T Leipertz, A AF Weikl, M. C. Tedder, S. A. Seeger, T. Leipertz, A. TI Investigation of porous media combustion by coherent anti-Stokes Raman spectroscopy SO EXPERIMENTS IN FLUIDS LA English DT Article ID DUAL-PUMP CARS; SIMULTANEOUS TEMPERATURE; INERT MEDIA; SCATTERING; BURNERS AB High efficiency, marginal pollutant emissions and low fuel consumption are desirable standards for modern combustion devices. The porous burner technology is a modern type of energy conversion with a strong potential to achieve these standards. However, due to the solid ceramic framework investigation of the thermodynamic properties of combustion, for example temperature, is difficult. The combustion process inside the ceramic structure of a porous burner was experimentally investigated by coherent anti-Stokes Raman spectroscopy (CARS). In this work, we present measurements using dual-pump dual-broadband CARS (DP-DBB-CARS) of temperature and species concentrations inside the reaction and flue gas zone of a porous media burner. Improvements to the setup and data evaluation procedure in contrast to previous measurements are discussed in detail. The results at varied thermal power and stoichiometry are presented. In addition, measurements at a range of radial positions inside a pore are conducted and correlated with the solid structure of the porous foam, which was determined by X-ray computer tomography. C1 [Weikl, M. C.; Seeger, T.; Leipertz, A.] LTT, D-91058 Erlangen, Germany. [Tedder, S. A.] NASA, Adv Sensing & Opt Measurement Branch, Langley Res Ctr, Hampton, VA 23681 USA. RP Seeger, T (reprint author), LTT, Weichselgarten 8, D-91058 Erlangen, Germany. EM ts@ltt.uni-erlangen.de RI Seeger, Thomas/C-3951-2017; OI Seeger, Thomas/0000-0002-9145-5910; Weikl, Markus/0000-0002-8570-3842 FU German Science Foundation DFG; Erlangen Graduate School in Advanced Optical Technologies (SAOT) FX The authors gratefully acknowledge financial support for parts of the work by the German Science Foundation DFG and for funding the Erlangen Graduate School in Advanced Optical Technologies (SAOT) within the framework of the German Excellence Initiative. Also we gratefully acknowledge the supply of the burner by the Lehrstuhl fur Stromungsmechanik LSTM in Erlangen. Last but not least, the authors gratefully acknowledge support from M.Sc. M. Meyer and Prof. W. A. Kalender, Institute of Medical Physics (IMP) of the University of Erlangen-Nurnberg for acquisition of the computer tomography data of the porous foam. NR 20 TC 8 Z9 8 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0723-4864 J9 EXP FLUIDS JI Exp. Fluids PD OCT PY 2010 VL 49 IS 4 BP 775 EP 781 DI 10.1007/s00348-010-0903-3 PG 7 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA 655BE UT WOS:000282215500004 ER PT J AU Hurst, TP Laurel, BJ Ciannelli, L AF Hurst, Thomas P. Laurel, Benjamin J. Ciannelli, Lorenzo TI Ontogenetic patterns and temperature-dependent growth rates in early life stages of Pacific cod (Gadus macrocephalus) SO FISHERY BULLETIN LA English DT Article ID NORTHERN ROCK SOLE; PLAICE PLEURONECTES-PLATESSA; SOUTHEASTERN BERING-SEA; JUVENILE ATLANTIC COD; CLIMATE-CHANGE; LEPIDOPSETTA-POLYXYSTRA; THERAGRA-CHALCOGRAMMA; FISH POPULATIONS; LARVAE; MORHUA AB Pacific cod (Gadus macrocephalus) is an important component of fisheries and food webs in the North Pacific Ocean and Bering Sea. However, vital rates of early life stages of this species have yet to be described in detail. We determined the thermal sensitivity of growth rates of embryos, preflexion and postflexion larvae, and postsettlement juveniles. Growth rates (length and mass) at each ontogenetic stage were measured in three replicate tanks at four to five temperatures. Nonlinear regression was used to obtain parameters for independent stage-specific growth functions and a unified size- and temperature-dependent growth function. Specific growth rates increased with temperature at all stages and generally decreased with increases in body size. However, these analyses revealed a departure from a strict size-based allometry in growth patterns, as reduced growth rates were observed among preflexion larvae: the reduction in specific growth rate between embryos and free-swimming larvae was greater than expected based on body size differences. Growth reductions in the preflexion larvae appear to be associated with increased metabolic rates and the transition from endogenous to exogenous feeding. In future studies, experiments should be integrated across life transitions to more clearly define intrinsic ontogenetic and size-dependent growth patterns because these are critical for evaluations of spatial and temporal variation in habitat quality. C1 [Hurst, Thomas P.; Laurel, Benjamin J.] Oregon State Univ, Hatfield Marine Sci Ctr, NOAA, Natl Marine Fisheries Serv,Alaska Fisheries Sci C, Newport, OR 97365 USA. [Ciannelli, Lorenzo] Oregon State Univ, Coll Atmospher & Oceanog Sci, Corvallis, OR 97331 USA. RP Hurst, TP (reprint author), Oregon State Univ, Hatfield Marine Sci Ctr, NOAA, Natl Marine Fisheries Serv,Alaska Fisheries Sci C, Newport, OR 97365 USA. EM thomas.hurst@noaa.gov RI Hurst, Thomas/N-1401-2013 FU North Pacific Research Board [R0605] FX We thank T. Tripp, M. Spencer, and B. Knoth for assistance with fish collection and shipping. Staff and students in the Fisheries Behavioral Ecology Program, including L. Copeman, S. Haines, M. Ottmar, P. Iseri, A. Colton, L. Logers, E. Seale, and J. Scheingross assisted with various laboratory experiments. S. Munch, L. Tomaro, A. Stoner, and three anonymous reviewers provided helpful comments on earlier versions of this manuscript. This research was supported in part by a grant from the North Pacific Research Board (no. R0605). This is publication no. 248 of the North Pacific Research Board. NR 48 TC 22 Z9 23 U1 1 U2 7 PU NATL MARINE FISHERIES SERVICE SCIENTIFIC PUBL OFFICE PI SEATTLE PA 7600 SAND POINT WAY NE BIN C15700, SEATTLE, WA 98115 USA SN 0090-0656 J9 FISH B-NOAA JI Fish. Bull. PD OCT PY 2010 VL 108 IS 4 BP 382 EP 392 PG 11 WC Fisheries SC Fisheries GA 676XS UT WOS:000283953000002 ER PT J AU Hart, TD Clemons, JER Wakefield, WW Heppell, SS AF Hart, Ted D. Clemons, Julia E. R. Wakefield, W. Waldo Heppell, Selina S. TI Day and night abundance, distribution, and activity patterns of demersal fishes on Heceta Bank, Oregon SO FISHERY BULLETIN LA English DT Article ID REEF FISHES; HABITAT ASSOCIATIONS; PHOTIC ENVIRONMENT; CONTINENTAL-SHELF; DIEL VARIATION; SILVER HAKE; DEEP-REEF; SEBASTES; TRAWL; CATCHABILITY AB Most shallow-dwelling tropical marine fishes exhibit different activity patterns during the day and night but show similar transition behavior among habitat sites despite the dissimilar assemblages of the species. However, changes in species abundance, distribution, and activity patterns have only rarely been examined in temperate deepwater habitats during the day and night, where day-to-night differences in light intensity are extremely slight. Direct-observation surveys were conducted over several depths and habitat types on Heceta Bank, the largest rocky bank off the Oregon coast. Day and night fish community composition, relative density, and activity levels were compared by using videotape footage from a remotely operated vehicle (ROV) operated along paired transects. Habitat-specific abundance and activity were determined for 31 taxa or groups. General patterns observed were similar to shallow temperate day and night studies, with an overall increase in the abundance and activity of fishes during the day than at night, particularly in shallower cobble, boulder, and rock ridge habitats. Smaller schooling rockfishes (Sebastes spp.) were more abundant and active in day than in night transects, and sharp-chin (S. zacentrus) and harlequin (S. variegatus) rockfish were significantly more abundant in night transects. Most taxa, however, did not exhibit distinct diurnal or nocturnal activity patterns. Rosethorn rockfish (S. helvomaculatus) and hagfishes (Eptatretus spp.) showed the clearest diurnal and nocturnal activity patterns, respectively. Because day and night distributions and activity patterns in demersal fishes are likely to influence both catchability and observability in bottom trawl and direct-count in situ surveys, the patterns observed in the current study should be considered for survey design and interpretation. C1 [Clemons, Julia E. R.; Wakefield, W. Waldo] Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fishery Resource Anal & Monitoring Div, Newport, OR 97365 USA. [Hart, Ted D.; Heppell, Selina S.] Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA. RP Clemons, JER (reprint author), Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fishery Resource Anal & Monitoring Div, 2032 SE OSU Dr, Newport, OR 97365 USA. EM Julia.Clemons@noaa.gov RI Bizzarro, Joseph/A-2988-2012 FU West Coast and Polar Regions Undersea Research Center of the National Oceanographic and Atmospheric Administration (NOAA); Northwest and Southwest Fisheries Science Centers; NOAA's Pacific Marine Environmental Laboratory; Cooperative Institute for Marine Resources Studies at Oregon State University; Oregon Agricultural Experiment Station [ORE00102]; H. Richard Carlson Scholarship; Collaborative Marine Fisheries Fellowship; Oregon State University FX We would especially like to thank the following colleagues who contributed to this study: B. Barss, B. Embley, G. Hendler, M. Hixon, D. Markle, B. McCune, S. Merle, B. Tissot, M. Yoklavich, and K. York. A. Whitmire and T. Cowles generously contributed information on ambient light levels. L. Britt, C. Whitmire, and L. Ciannelli provided constructive reviews of the manuscript. This portion of the Heceta Bank project was funded by the West Coast and Polar Regions Undersea Research Center of the National Oceanographic and Atmospheric Administration's (NOAA) National Undersea Research Program, the Northwest and Southwest Fisheries Science Centers, NOAA's Pacific Marine Environmental Laboratory, and the Cooperative Institute for Marine Resources Studies at Oregon State University. We would like to thank the professional personnel who operated the ROV ROPOS and the NOAA RV Ronald Brown. T. Hart was supported through the Oregon Agricultural Experiment Station project ORE00102, the H. Richard Carlson Scholarship, the Collaborative Marine Fisheries Fellowship and the Bill Wick Award through Oregon State University. NR 41 TC 4 Z9 4 U1 2 U2 12 PU NATL MARINE FISHERIES SERVICE SCIENTIFIC PUBL OFFICE PI SEATTLE PA 7600 SAND POINT WAY NE BIN C15700, SEATTLE, WA 98115 USA SN 0090-0656 J9 FISH B-NOAA JI Fish. Bull. PD OCT PY 2010 VL 108 IS 4 BP 466 EP 477 PG 12 WC Fisheries SC Fisheries GA 676XS UT WOS:000283953000009 ER PT J AU He, JK Peltzer, G AF He, Jiankun Peltzer, Gilles TI Poroelastic triggering in the 9-22 January 2008 Nima-Gaize (Tibet) earthquake sequence SO GEOLOGY LA English DT Article ID 1992 LANDERS EARTHQUAKE; SAN-ANDREAS FAULT; PORE FLUID-FLOW; STRESS; PRESSURE; AFTERSHOCKS; CALIFORNIA; DEFORMATION; SHEAR AB A sequence of three earthquakes of Ms = 6.4, 5.9, and 5.4 occurred in southern central Tibet on 9, 16, and 22 January 2008. Interferometric satellite aperture radar (InSAR) observations indicate that the two largest events occurred on two northeast-trending, northwest-dipping normal faults, separated by similar to 9.5 km, with slip reaching 1.2 m on the main fault and 0.75 m on the second. We develop a three-dimensional finite element model to calculate the Coulomb stress change due to poroelastic deformation in the crust after the first event. Using a uniform permeability of 8 x 10(-15) m(2) for faults and the host rock leads to negligible temporal pore pressure change in the two weeks after the first event. However, assuming higher permeability along faults (10(-14) to 10(-11) m(2)), the second fault channels the flow of pore fluids upward from the deeper region where the pore pressure increase was the largest immediately after the first event. In this case, the poroelastic Coulomb stress on the second fault increased suddenly by similar to 1 x 10(5) Pa after the first earthquake and continued to increase by as much as 70% in the subsequent week. Furthermore, the distribution of Coulomb stress change on the second fault correlates precisely with the slip distribution inferred for the second event. These findings suggest that the first earthquake not only triggered the second event, but the Coulomb stress change it induced on the second fault plane controlled the extent of the second rupture. C1 [He, Jiankun] Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Continental Collis & Plateau Uplift, Beijing 100085, Peoples R China. [Peltzer, Gilles] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Peltzer, Gilles] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP He, JK (reprint author), Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Continental Collis & Plateau Uplift, Beijing 100085, Peoples R China. EM jkhe@itpcas.ac.cn FU National Science Foundation of China [40774050]; University of California-Los Angeles [4-403875-G2-69314]; National Aeronautics and Space Administration FX This work was supported by National Science Foundation of China grant NO. 40774050 to He, and University of California-Los Angeles grant 4-403875-G2-69314 to Peltzer. Part of Peltzer's contribution was done at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Envisat data were provided by the European Space Agency under Peltzer's Category-1 project (C1P.4424). We thank the anonymous reviewers for insightful comments that helped to improve the manuscript. The poroelastic modeling was developed in collaboration with Huashan Qian under contract with Beijing Supcompute Technology Co. Ltd. NR 29 TC 7 Z9 10 U1 2 U2 10 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0091-7613 J9 GEOLOGY JI Geology PD OCT PY 2010 VL 38 IS 10 BP 907 EP 910 DI 10.1130/G31104.1 PG 4 WC Geology SC Geology GA 656PL UT WOS:000282348600012 ER PT J AU Carvalhais, N Reichstein, M Ciais, P Collatz, GJ Mahecha, MD Montagnani, L Papale, D Rambal, S Seixas, J AF Carvalhais, Nuno Reichstein, Markus Ciais, Philippe Collatz, G. James Mahecha, Miguel D. Montagnani, Leonardo Papale, Dario Rambal, Serge Seixas, Julia TI Identification of vegetation and soil carbon pools out of equilibrium in a process model via eddy covariance and biometric constraints SO GLOBAL CHANGE BIOLOGY LA English DT Article DE carbon pools; CASA model; equifinality; model-data integration; multiple constraints; net ecosystem production; steady-state assumption ID NET ECOSYSTEM EXCHANGE; UNCERTAINTY ESTIMATION; PLANT RESPIRATION; DATA ASSIMILATION; ATMOSPHERIC CO2; USE EFFICIENCY; CLIMATE-CHANGE; LEAST-SQUARES; FOREST; INVERSION AB Assumptions of steady-state conditions in biogeochemical modelling are often invoked because knowledge on the development status of the modelling domain is generally unavailable. Here, we investigate the role of vegetation pool sizes on nonequilibrium conditions through model-data integration approaches for a set of sites using eddy covariance CO(2) flux data. The study is based on the Carnegie-Ames-Stanford Approach (CASA) model, modified (CASA(G)) in order to evaluate the sensitivity of simulated net ecosystem production (NEP) fluxes to vegetation pool sizes. The experimental design is based on the inverse model optimization of different parameter vectors performed at the measurement site level. Each parameter vector prescribes different simulation dynamics that embody different model structural assumptions concerning (non)steady-state conditions in vegetation and soil carbon pools. We further explore the potential of assimilating biometric constraints through the cost function for sites where in situ information on aboveground biomass or wood pools is available. The integration of biometric data yields marked improvements in the simulation of vegetation C pools compared to single constraints with eddy flux data. Overall, it is necessary to relax both vegetation and soil carbon pools for consistency with the observed data streams. Multiple constraints approaches also leads to variable model performance among the different experimental setups and model structures. We identify and assess the limitations of various model structures and the role of multiple constraints approaches for tackling issues of equifinality. These studies emphasize the need for establishing consistent data sets of fluxes and biometric data for successful model-data fusion. C1 [Carvalhais, Nuno; Seixas, Julia] Univ Nova Lisboa, FCT, DCEA, P-2829516 Caparica, Portugal. [Carvalhais, Nuno; Reichstein, Markus; Mahecha, Miguel D.] Max Planck Inst Biogeochem, D-07745 Jena, Germany. [Ciais, Philippe] CEA CNRS UVSQ, Lab Sci Climate & Environm, F-91191 Gif Sur Yvette, France. [Collatz, G. James] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Montagnani, Leonardo] Free Univ Bolzano Bozen, Fac Sci & Technol, I-39100 Bozen Bolzano, Italy. [Papale, Dario] Univ Tuscia, DISAFRI, I-01100 Viterbo, Italy. [Rambal, Serge] CNRS, UMR 5175, CEFE, DREAM, F-34293 Montpellier 5, France. RP Carvalhais, N (reprint author), Univ Nova Lisboa, FCT, DCEA, P-2829516 Caparica, Portugal. EM ncarvalhais@gmail.com RI Mahecha, Miguel/F-2443-2010; Reichstein, Markus/A-7494-2011; collatz, george/D-5381-2012; Seixas, Julia/K-9400-2013; Montagnani, Leonardo/F-1837-2016; OI Mahecha, Miguel/0000-0003-3031-613X; Reichstein, Markus/0000-0001-5736-1112; Seixas, Julia/0000-0003-0355-0465; Montagnani, Leonardo/0000-0003-2957-9071; rambal, serge/0000-0001-5869-8382; Carvalhais, Nuno/0000-0003-0465-1436; Papale, Dario/0000-0001-5170-8648 FU Portuguese Foundation for Science and Technology (FCT) [PTDC/AGR-CFL/69733/2006, FP7-ENV-2008-1-226701]; European Union [POCI 2010, SFRH/BD/6517/2001]; Max-Planck-Society; CARBOEUROPE-IP FX We are grateful to Marco Correia, Martin Jung, Gitta Lasslop, Mirco Migliavacca, Christopher Neigh, Wouter Peters and Enrico Tomelleri for very helpful comments on the manuscript. We are also very thankful to three anonymous reviewers for constructive comments that significantly helped improving the manuscript. This work was supported by the Portuguese Foundation for Science and Technology (FCT) under the MODNET project (contract no. PTDC/AGR-CFL/69733/2006) and also by the CARBO-Extreme project (FP7-ENV-2008-1-226701). NC acknowledges the support given by the Portuguese Foundation for Science and Technology (FCT), the European Union under Operational Program 'Science and Innovation' (POCI 2010), PhD grant ref. SFRH/BD/6517/2001. MR is grateful to the Max-Planck-Society for supporting the independent junior research group Biogeochemical Model-Data Integration. Research leading to flux data and scientific insight was supported by the CARBOEUROPE-IP project. NR 77 TC 39 Z9 40 U1 3 U2 38 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1354-1013 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD OCT PY 2010 VL 16 IS 10 BP 2813 EP 2829 DI 10.1111/j.1365-2486.2010.02173.x PG 17 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 648FV UT WOS:000281676700015 ER PT J AU Matsuyama, I Bills, BG AF Matsuyama, Isamu Bills, Bruce G. TI Global contraction of planetary bodies due to despinning: Application to Mercury and Iapetus SO ICARUS LA English DT Article DE Rotational dynamics; Planetary dynamics; Tectonics; Mercury; Iapetus ID GRAVITATIONAL MOMENTS; ICY SATELLITES; LOBATE SCARPS; TECTONICS; ROTATION; SURFACE; SHAPES; CORE AB We extend previous work on the global tectonic patterns generated by despinning with a self-consistent treatment of the isotropic despinning contraction that has been ignored. We provide simple analytic approximations that quantify the effect of the isotropic despinning contraction on the global shape and tectonic pattern. The isotropic despinning contraction of Mercury is similar to 93 m (T/1 day)(-2), where T is the initial rotation period. If we take into account both the isotropic contraction and the degree-2 deformations associated with despinning, the preponderance of compressional tectonic features on Mercury's surface requires an additional isotropic contraction >= 1 km (T/1 day)(-2), presumably due to cooling of the interior and growth of the solid inner core. The isotropic despinning contraction of Iapetus is similar to 9 m (T/ 16 h)(-2), and it is not sensitive to the presence of a core or the thickness of the elastic lithosphere. The tectonic pattern expected for despinning, including the isotropic contraction, does not explain Iapetus' ridge. Furthermore, the ridge remains unexplained with the addition of any isotropic compressional stresses, including those generating by cooling. (C) 2010 Elsevier Inc. All rights reserved. C1 [Matsuyama, Isamu] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Bills, Bruce G.] Jet Prop Lab, Pasadena, CA 90119 USA. RP Matsuyama, I (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM isa@berkeley.edu OI Matsuyama, Isamu/0000-0002-2917-8633 FU Miller Institute for Basic Research; NASA FX We thank Tim Van Hoolst and an anonymous referee for their constructive comments. We acknowledge support from the Miller Institute for Basic Research. Part of the research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 35 TC 1 Z9 1 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD OCT PY 2010 VL 209 IS 2 BP 271 EP 279 DI 10.1016/j.icarus.2010.05.011 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654VL UT WOS:000282199000001 ER PT J AU Williams, KE Mckay, CP Toon, OB Head, JW AF Williams, K. E. Mckay, Christopher P. Toon, O. B. Head, James W. TI Do ice caves exist on Mars? SO ICARUS LA English DT Article DE Mars, Surface; Mars, Atmosphere; Mars, Climate; Ices ID GENERAL-CIRCULATION MODEL; MIDLATITUDE SNOWPACKS; FROST FORMATION; LIQUID WATER; LAVA TUBES; FLOW; VOLCANISM; GLACIERS; SIMULATIONS; PARAMETERS AB We have developed a numerical model for assessing the lifetime of ice deposits in martian caves that are open to the atmosphere. Our model results and sensitivity tests indicate that cave ice would be stable over significant portions of the surface of Mars. Ice caves on Earth commonly occur in lava tubes, and Mars has been significantly resurfaced by volcanic activity during its history, including the two main volcanic provinces, the Tharsis and Elysium rises. These areas, known or suspected of having subsurface caves and related voids are among the most favorable regions for the occurrence of ice stability. The martian ice cave model predicts regions which, if caves occur, would potentially be areas of astrobiological importance as well as possible water sources for future human missions to Mars. (C) 2010 Elsevier Inc. All rights reserved. C1 [Williams, K. E.; Mckay, Christopher P.] NASA, Ames Res Ctr, Div Space Sci & Astrobiol, Moffett Field, CA 94035 USA. [Toon, O. B.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Toon, O. B.] Univ Colorado, Atmospher & Space Phys Lab, LASP UCB 392, Boulder, CO 80309 USA. [Head, James W.] Brown Univ, Dept Geol Sci, Providence, RI 02906 USA. RP Williams, KE (reprint author), NASA, Ames Res Ctr, Div Space Sci & Astrobiol, Mail Stop 245-3, Moffett Field, CA 94035 USA. EM kaj.williams@gmail.com FU NASA FX The authors would like to thank James Schaeffer for providing the MGCM data used in this study (AmesMGCM model run # 2009.003). K.E. Williams would like to thank Andrew Ingersoll for helpful discussions. This paper also benefited from the comments of two anonymous reviewers. J.W.H. gratefully acknowledges support from the NASA Mars Data Analysis Program (MDAP). Thanks are extended to James Dickson for data and image processing and presentation. K.E. Williams was funded by the NASA Postdoctoral Program. NR 56 TC 17 Z9 17 U1 2 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD OCT PY 2010 VL 209 IS 2 BP 358 EP 368 DI 10.1016/j.icarus.2010.03.039 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654VL UT WOS:000282199000007 ER PT J AU Busch, MW Kulkarni, SR Brisken, W Ostro, SJ Benner, LAM Giorgini, JD Nolan, MC AF Busch, Michael W. Kulkarni, Shrinivas R. Brisken, Walter Ostro, Steven J. Benner, Lance A. M. Giorgini, Jon D. Nolan, Michael C. TI Determining asteroid spin states using radar speckles SO ICARUS LA English DT Article DE Asteroids; Asteroids, Rotation; Asteroids, Dynamics; Radar observations ID SMALL BINARY ASTEROIDS; 1999 KW4; EARTH; YARKOVSKY; DYNAMICS AB Knowing the shapes and spin states of near-Earth asteroids is essential to understanding their dynamical evolution because of the Yarkovsky and YORP effects. Delay-Doppler radar imaging is the most powerful ground-based technique for imaging near-Earth asteroids and can obtain spatial resolution of <10 m, but frequently produces ambiguous pole direction solutions. A radar echo from an asteroid consists of a pattern of speckles caused by the interference of reflections from different parts of the surface. It is possible to determine an asteroid's pole direction by tracking the motion of the radar speckle pattern. Speckle tracking can potentially measure the poles of at least several radar targets each year, rapidly increasing the available sample of NEA pole directions. We observed the near-Earth asteroid 2008 EV5 with the Arecibo planetary radar and the Very Long Baseline Array in December 2008. By tracking the speckles moving from the Pie Town to Los Alamos VLBA stations, we have shown that EV5 rotates retrograde. This is the first speckle detection of a near-Earth asteroid. (C) 2010 Elsevier Inc. All rights reserved. C1 [Busch, Michael W.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Kulkarni, Shrinivas R.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Brisken, Walter] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Ostro, Steven J.; Benner, Lance A. M.; Giorgini, Jon D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Nolan, Michael C.] Arecibo Observ, Arecibo, PR 00612 USA. RP Busch, MW (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM busch@caltech.edu RI Nolan, Michael/H-4980-2012 OI Nolan, Michael/0000-0001-8316-0680 FU National Aeronautics and Space Administration (NASA); Hertz Foundation FX The NRAO Socorro & Green Bank, Goldstone Solar System Radar, and NAIC Arecibo staff helped to obtain the data presented here. A. Galad, B.W. Koehn, and M.D. Hicks observed EV5 optically and determined its rotation rate. J.-L. Margot and C. Magri provided very helpful reviews. A.T. Deller and R.C. Walker provided helpful technical comments. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The Arecibo Observatory is part of the National Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative agreement with the National Science Foundation. Some of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). This paper is based in part on work funded by NASA under the Science Mission Directorate Research and Analysis Programs. M.W. Busch was supported by the Hertz Foundation. NR 31 TC 6 Z9 7 U1 1 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD OCT PY 2010 VL 209 IS 2 BP 535 EP 541 DI 10.1016/j.icarus.2010.05.002 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654VL UT WOS:000282199000021 ER PT J AU Shestopalov, DI McFadden, LA Golubeva, LF Orujova, LO AF Shestopalov, D. I. McFadden, L. A. Golubeva, L. F. Orujova, L. O. TI About mineral composition of geologic units in the northern hemisphere of Vesta SO ICARUS LA English DT Article DE Asteroids; Spectrophotometry ID ASTEROID 4 VESTA; SPECTROSCOPIC SURVEY; BHOLGHATI HOWARDITE; SURFACE; SPECTRA; PYROXENE; MODEL AB In the present paper we seek to understand the geologic diversity of units in the northern hemisphere of Vesta using HST observations (Binzel et al., 1997). First, we compare colors R(0.673 mu m)/R(0.953 mu m) and R(0.673 mu m)/R(1.042 mu m) of Vesta's units with those of V-type asteroids (vestoids) as well as howardite, eucrite, and diogenite meteorites (HEDs). This comparative analysis showed that: (i) on the color-color plot, regions on Vesta are clustered whereas vestoids and HEDs cover a wide range in color: (ii) very few vestoids or HEDs fall into Vesta's color region. This implies that Vesta's units are more homogenous than most vestoids and HEDs examined here and material of the units are slightly different from that of vestoids and HEDs. Assuming reasonable choice of end-member materials, an optical model (Shkuratov et al., 1999) was used to simulate intimate mixtures of particles at the surface of Vesta's units. Simulation of albedo, colors, and four-point spectra of Vesta's units reveals that the rock-forming material is nearly equal for all units and has HED-like composition. Diversity of the units depends on the minor constituents such as chromite and a neutral phase. The western units contain more chromite and neutral phase than the eastern, consequently albedo of the western units is lower and their four-point spectra are flatter. Olivine and feldspar are also needed to give the best fit for the calculated and observed albedos and colors of Vesta's units, but being in minor amount in Vesta's rocks they play a secondary role in contributing to the optical properties of the units. Questions about the proportions of HED-like rock and the constituent called neutral phase remain open. Spectrophotometric studies of Vesta with both higher spatial and spectral resolution as expected from NASA's Dawn mission are needed for resolving these problems. (C) 2010 Elsevier Inc. All rights reserved. C1 [Shestopalov, D. I.; Golubeva, L. F.; Orujova, L. O.] Azerbaijan Acad Sci, Shemakha Astrophys Observ, AZ-3243 Shemakha, Azerbaijan. [McFadden, L. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Shestopalov, DI (reprint author), Azerbaijan Acad Sci, Shemakha Astrophys Observ, AZ-3243 Shemakha, Azerbaijan. EM shestopalov_d@mail.ru; lucy.mcfadden@nasa.gov; lara_golubeva@mail.ru; oleyli@yahoo.com RI McFadden, Lucy-Ann/I-4902-2013 OI McFadden, Lucy-Ann/0000-0002-0537-9975 FU National Science Foundation [0506716] FX This research utilizes spectra of meteorites and minerals acquired by R.P. Binzel, E.A. Cloutis, M.J. Gaffey, T. Hiroi, C.M. Pieters, J.T. Wasson with the NASA RELAB facility at Brown University. The authors thank T.H. Burbine for providing the dates and times for the asteroid spectral observations, which were needed to calculate phase angles. Part of the data utilized in this publication were obtained and made available by the MIT-UH-IRTF Joint Campaign for NEO Reconnaissance. The IRTF is operated by the University of Hawaii under Cooperative Agreement No. NCC 5-538 with the National Aeronautics and Space Administration, Office of Space Science, Planetary Astronomy Program. The MIT component of this work is supported by the National Science Foundation under Grant No. 0506716. We are very grateful to an anonymous reviewer for his valuable and well-wishing comments, which have helped to improve greatly our article. NR 31 TC 7 Z9 7 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD OCT PY 2010 VL 209 IS 2 BP 575 EP 585 DI 10.1016/j.icarus.2010.04.012 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654VL UT WOS:000282199000025 ER PT J AU De Luise, F Dotto, E Fornasier, S Barucci, MA Pinilla-Alonso, N Perna, D Marzari, F AF De Luise, F. Dotto, E. Fornasier, S. Barucci, M. A. Pinilla-Alonso, N. Perna, D. Marzari, F. TI A peculiar family of Jupiter Trojans: The Eurybates SO ICARUS LA English DT Article DE Trojan asteroids; Asteroids, surface; Asteroids, composition; Spectroscopy ID CHARGED-PARTICLE IRRADIATION; VISIBLE SPECTROSCOPIC SURVEY; SURFACE-COMPOSITION; DYNAMICAL FAMILIES; OPTICAL-CONSTANTS; ION IRRADIATION; PROPER ELEMENTS; SOLAR-SYSTEM; PHOTOMETRIC SURVEY; ASTEROIDS AB The Eurybates family is a compact core inside the Menelaus clan, located in the L(4) swarm of Jupiter Trojans. Fornasier et al. (Fornasier, S., Dotto, E., Hainaut, O., Marzari, F., Boehnhardt, H., De Luise, F., Barucci, M.A. [2007] Icarus 190, 622-642) found that this family exhibits a peculiar abundance of spectrally flat objects, similar to Chiron-like Centaurs and C-type main belt asteroids. On the basis of the visible spectra available in literature, Eurybates family's members seemed to be good candidates for having on their surfaces water/water ice or aqueous altered materials. To improve our knowledge of the surface composition of this peculiar family, we carried out an observational campaign at the Telescopio Nazionale Galileo (TNG), obtaining near-infrared spectra of 7 members. Our data show a surprisingly absence of any spectral feature referable to the presence of water, ices or aqueous altered materials on the surface of the observed objects. Models of the surface composition are attempted, evidencing that amorphous carbon seems to dominate the surface composition of the observed bodies and some amount of silicates (olivine) could be present. (C) 2010 Elsevier Inc. All rights reserved. C1 [De Luise, F.] INAF Osservatorio Astron Collurania Teramo, I-64100 Teramo, TE, Italy. [De Luise, F.; Dotto, E.; Perna, D.] INAF Osservatorio Astron Roma, I-00040 Rome, Italy. [Fornasier, S.; Barucci, M. A.; Perna, D.] Observ Paris, LESIA, F-92195 Meudon, France. [Fornasier, S.] Univ Paris 07, F-75013 Paris, France. [Pinilla-Alonso, N.] Fdn Galileo Galilei, Tenerife 38700, Spain. [Pinilla-Alonso, N.] Telescopio Nazl Galileo, Tenerife 38700, Spain. [Pinilla-Alonso, N.] Oak Ridge Associated Univ, NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Perna, D.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Marzari, F.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. RP De Luise, F (reprint author), INAF Osservatorio Astron Collurania Teramo, Via Mentore Maggini,Snc, I-64100 Teramo, TE, Italy. EM deluise@oa-teramo.inaf.it OI De Luise, Fiore/0000-0002-6570-8208; Dotto, Elisabetta/0000-0002-9335-1656 NR 44 TC 7 Z9 7 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD OCT PY 2010 VL 209 IS 2 BP 586 EP 590 DI 10.1016/j.icarus.2010.04.024 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654VL UT WOS:000282199000026 ER PT J AU Movshovitz, N Bodenheimer, P Podolak, M Lissauer, JJ AF Movshovitz, Naor Bodenheimer, Peter Podolak, Morris Lissauer, Jack J. TI Formation of Jupiter using opacities based on detailed grain physics SO ICARUS LA English DT Article DE Planetary formation; Jovian planets; Jupiter, Interior; Accretion ID GIANT PLANET FORMATION; SOLAR NEBULA; PROTOPLANETARY ATMOSPHERES; ACCRETION; CORE; EVOLUTION; MODELS; PLANETESIMALS; VELOCITIES; MIGRATION AB Numerical simulations, based on the core-nucleated accretion model, are presented for the formation of Jupiter at 5.2 AU in three primordial disks with three different assumed values of the surface density of solid particles. The grain opacities in the envelope of the protoplanet are computed using a detailed model that includes settling and coagulation of grains and that incorporates a recalculation of the grain size distribution at each point in time and space. We generally find lower opacities than the 2% of interstellar values used in previous calculations (Hubickyj, O., Bodenheimer, P., Lissauer, J.J.[2005]. Icarus 179, 415-431; Lissauer, J.J., Hubickyj, O., D'Angelo, G., Bodenheimer, P. [2009]. Icarus 199, 338-350). These lower opacities result in more rapid heat loss from and more rapid contraction of the protoplanetary envelope. For a given surface density of solids, the new calculations result in a substantial speedup in formation time as compared with those previous calculations. Formation times are calculated to be 1.0, 1.9, and 4.0 Myr, and solid core masses are found to be 16.8, 8.9, and 4.7 M(circle dot), for solid surface densities, sigma, of 10, 6, and 4 g cm(-2), respectively. For sigma = 10 and sigma = 6 g cm(-2), respectively, these formation times are reduced by more than 50% and more than 80% compared with those in a previously published calculation with the old approximation to the opacity. (C) 2010 Elsevier Inc. All rights reserved. C1 [Movshovitz, Naor] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Movshovitz, Naor; Podolak, Morris] Tel Aviv Univ, Dept Geophys & Planetary Sci, IL-69978 Ramat Aviv, Israel. [Bodenheimer, Peter] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Lissauer, Jack J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. RP Movshovitz, N (reprint author), Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. EM nmovshov@ucsc.edu OI Podolak, Morris/0000-0003-4801-8691 FU NASA [NNX08AH82G]; Israel Academy of Sciences FX This work was supported in part by NASA Origins Grant NNX08AH82G. M.P. acknowledges the support of the Israel Academy of Sciences. N.M. acknowledges assistance from the Sackler Institute of Astronomy. NR 33 TC 77 Z9 77 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD OCT PY 2010 VL 209 IS 2 BP 616 EP 624 DI 10.1016/j.icarus.2010.06.009 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654VL UT WOS:000282199000029 ER PT J AU Guerlet, S Fouchet, T Bezard, B Moses, JI Fletcher, LN Simon-Miller, AA Flasar, FM AF Guerlet, Sandrine Fouchet, Thierry Bezard, Bruno Moses, Julianne I. Fletcher, Leigh N. Simon-Miller, Amy A. Flasar, F. Michael TI Meridional distribution of CH3C2H and C4H2 in Saturn's stratosphere from CIRS/Cassini limb and nadir observations SO ICARUS LA English DT Article DE Saturn; Infrared observations; Atmospheres, Composition ID ROTOTRANSLATIONAL ABSORPTION-SPECTRA; POLAR ATMOSPHERE; SPECTROSCOPIC DATABASE; RING ATMOSPHERE; CLOUD STRUCTURE; HAZE FORMATION; OUTER PLANETS; GIANT PLANETS; CHEMISTRY; JUPITER AB Limb and nadir spectra acquired by Cassini/CIRS (Composite InfraRed Spectrometer) are analyzed in order to derive, for the first time, the meridional variations of diacetylene (C4H2) and methylacetylene (CH3C2H) mixing ratios in Saturn's stratosphere, from 5 hPa up to 0.05 hPa and 80 degrees S to 45 degrees N. We find that the C4H2 and CH3C2H meridional distributions mimic that of acetylene (C2H2), exhibiting small-scale variations that are not present in photochemical model predictions. The most striking feature of the meridional distribution of both molecules is an asymmetry between mid-southern and mid-northern latitudes. The mid-southern latitudes are found depleted in hydrocarbons relative to their northern counterparts. In contrast, photochemical models predict similar abundances at north and south mid-latitudes. We favor a dynamical explanation for this asymmetry, with upwelling in the south and downwelling in the north, the latter coinciding with the region undergoing ring shadowing. The depletion in hydrocarbons at mid-southern latitudes could also result from chemical reactions with oxygen-bearing molecules. Poleward of 60 degrees S, at 0.1 and 0.05 hPa, we find that the CH3C2H and C4H2 abundances increase dramatically. This behavior is in sharp contradiction with photochemical model predictions, which exhibit a strong decrease towards the south pole. Several processes could explain our observations, such as subsidence, a large vertical eddy diffusion coefficient at high altitudes, auroral chemistry that enhances CH3C2H and C4H2 production, or shielding from photolysis by aerosols or molecules produced from auroral chemistry. However, problems remain with all these hypotheses, including the lack of similar behavior at lower altitudes. Our derived mean mixing ratios at 0.5 hPa of (2.4 +/- 0.3) x 10(-10) for C4H2 and of (1.1 +/- 0.3) x 10(-9) for CH3C2H are compatible with the analysis of global-average ISO observations performed by Moses et al. (Moses, J.I., Bezard, B., Lellouch, E., Gladstone, G.R., Feuchtgruber, H., Allen, M. [2000a]. Icarus 143, 244-298). Finally, we provide values for the ratios [CH3C2H]/[C2H2] and [C4H2]/[C2H2] that can constrain the coupled chemistry of these hydrocarbons. (C) 2010 Elsevier Inc. All rights reserved. C1 [Guerlet, Sandrine; Fouchet, Thierry; Bezard, Bruno] Observ Paris, LESIA, F-92195 Meudon, France. [Fouchet, Thierry] Univ Paris 06, UMR 8109, F-75006 Paris, France. [Moses, Julianne I.] Space Sci Inst, Seabrook, TX 77586 USA. [Fletcher, Leigh N.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Simon-Miller, Amy A.; Flasar, F. Michael] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Guerlet, S (reprint author), Observ Paris, LESIA, 5 Pl Janssen, F-92195 Meudon, France. EM Sandrine.Guerlet@obspm.fr RI Fletcher, Leigh/D-6093-2011; Flasar, F Michael/C-8509-2012; Moses, Julianne/I-2151-2013; Simon, Amy/C-8020-2012; Fouchet, Thierry/C-6374-2017 OI Fletcher, Leigh/0000-0001-5834-9588; Moses, Julianne/0000-0002-8837-0035; Simon, Amy/0000-0003-4641-6186; Fouchet, Thierry/0000-0001-9040-8285 FU Centre National d'Etudes Spatiales (CNES); Programme National de Planetologie (PNP/INSU); NASA [NNX08AQ79G] FX We would like to thank the CIRS investigation team involved in planning the observational sequences and calibration of the data. This research was supported by the Centre National d'Etudes Spatiales (CNES) and the Programme National de Planetologie (PNP/INSU). Fletcher was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, under contract for the National Aeronautics and Space Administration (NASA), administered by Oak Ridge Associated Universities through a contract with NASA. Moses acknowledges support from the NASA Cassini Data Analysis Program, Grant Number NNX08AQ79G. We thank the two referees for their useful comments. NR 55 TC 17 Z9 17 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD OCT PY 2010 VL 209 IS 2 BP 682 EP 695 DI 10.1016/j.icarus.2010.03.033 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654VL UT WOS:000282199000035 ER PT J AU Cassidy, TA Johnson, RE AF Cassidy, T. A. Johnson, R. E. TI Collisional spreading of Enceladus' neutral cloud SO ICARUS LA English DT Article DE Enceladus; Saturn, Magnetosphere; Satellites, Atmospheres ID CROSS-SECTIONS; WATER-VAPOR; SATURN; MAGNETOSPHERE; ATMOSPHERE; HYDROGEN; TORI; IONIZATION; MORPHOLOGY; TRITON AB We describe a direct simulation Monte Carlo (DSMC) model of Enceladus' neutral cloud and compare its results to observations of OH and O orbiting Saturn. The OH and O are observed far from Enceladus (at 3.95 R(S)), as far out as 25 R(S) for O. Previous DSMC models attributed this breadth primarily to ion/neutral scattering (including charge exchange) and molecular dissociation. However, the newly reported O observations and a reinterpretation of the OH observations (Melin, H., Shemansky, D.E., Liu, X. [2009] Planet. Space Sci., 57, 1743-1753, PS&S) showed that the cloud is broader than previously thought. We conclude that the addition of neutral/neutral scattering (Farmer, A.J. [2009] Icarus, 202, 280-286), which was underestimated by previous models, brings the model results in line with the new observations. Neutral/neutral collisions primarily happen in the densest part of the cloud, near Enceladus' orbit, but contribute to the spreading by pumping up orbital eccentricity. Based on the cloud model presented here Enceladus maybe the ultimate source of oxygen for the upper atmospheres of Titan and Saturn. We also predict that large quantities of OH, O and H(2)O bombard Saturn's icy satellites. (C) 2010 Elsevier Inc. All rights reserved. RP Cassidy, TA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 183-601, Pasadena, CA 91109 USA. EM timothy.a.cassidy@jpl.nasa.gov NR 47 TC 59 Z9 59 U1 3 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD OCT PY 2010 VL 209 IS 2 BP 696 EP 703 DI 10.1016/j.icarus.2010.04.010 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654VL UT WOS:000282199000036 ER PT J AU Blackburn, DG Buratti, BJ Ulrich, R Mosher, JA AF Blackburn, David G. Buratti, Bonnie J. Ulrich, Richard Mosher, Joel A. TI Solar phase curves and phase integrals for the leading and trailing hemispheres of Iapetus from the Cassini Visual Infrared Mapping Spectrometer SO ICARUS LA English DT Article DE Iapetus; Photometry; Satellites, Surfaces ID VOYAGER PHOTOMETRY; SATURNS SATELLITES; DICHOTOMY; SURFACES; PHOEBE AB We performed photometry of Cassini Visual Infrared Mapping Spectrometer observations of Iapetus to produce the first phase integrals calculated directly from solar phase curves of Iapetus for the leading hemisphere and to estimate the phase integrals for the trailing hemisphere. We also explored the phase integral dependence on wavelength and geometric albedo. The extreme dichotomy of the brightness of the leading and trailing sides of Iapetus is reflected in their phase integrals. Our phase integrals, which are lower than the results of Morrison et al. (Morrison, D., Jones, T.J., Cruikshank, D.P., Murphy, R.E. [1975]. Icarus 24, 157-171) and Squyres et al. (Squyres, S.W., Buratti, B.J., Veverka, J., Sagan, C. [1984]. Icarus 59, 426-435), have profound implications on the energy balance and volatile transport on this icy satellite. (C) 2010 Elsevier Inc. All rights reserved. C1 [Blackburn, David G.; Ulrich, Richard] Univ Arkansas, Arkansas Ctr Space & Planetary Sci, Fayetteville, AR 72701 USA. [Buratti, Bonnie J.; Mosher, Joel A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Blackburn, DG (reprint author), Univ Arkansas, Arkansas Ctr Space & Planetary Sci, 202 Old Museum Bldg, Fayetteville, AR 72701 USA. EM dgblackb@uark.edu FU National Aeronautics and Space Administration; University of Arkansas; Arkansas Space Grant Consortium FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the National Aeronautics and Space Administration's Space Grant Program. We would like to thank the University of Arkansas and the Arkansas Space Grant Consortium for support, as well as helpful conversation with Mike Hicks, Ken Lawrence, Karly Pitman, and Sean Faulk. We would also like to thank the comments and suggestions from two anonymous reviewers who improved the quality of our manuscript. NR 19 TC 2 Z9 2 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD OCT PY 2010 VL 209 IS 2 BP 738 EP 744 DI 10.1016/j.icarus.2010.04.011 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654VL UT WOS:000282199000040 ER PT J AU Reach, WT AF Reach, William T. TI Structure of the Earth's circumsolar dust ring SO ICARUS LA English DT Article DE Interplanetary dust; Infrared observations; Resonances, Orbital ID BACKGROUND EXPERIMENT SEARCH; SPITZER-SPACE-TELESCOPE; RESONANT SIGNATURES; ZODIACAL CLOUD; DEBRIS DISKS; ORIGIN; IRAS; SATELLITE; EMISSION; MISSION AB Interplanetary dust particles from comets and asteroids pervade the Solar System and become temporarily trapped into orbital resonances with Earth, leading to a circumsolar dust ring. Using the unique vantage point of the Spitzer Space Telescope from its Earth-trailing solar orbit, we have measured for the first time the azimuthal structure of the Earth's resonant dust ring. There is a relative paucity of particles within 0.1 AU of the Earth, followed by an enhancement in a cloud that is centered 0.2 AU behind Earth with a width of 0.08 AU along the Earth's orbit. The North ecliptic pole is similar to 3% brighter at 8 pm wavelength when viewed from inside the enhancement. The presence of azimuthal asymmetries in debris disks around other stars is considered strong evidence for planets. By measuring the properties of the Earth's resonant ring, we can provide "ground truth" to models for interactions of planets and debris disks, possibly leading to improved predictions for detecrability of life-bearing planets. The low amplitude of the azimuthal asymmetry in the Earth's circumsolar ring suggests significant contributions to the zodiacal light from particles that are large (>30 mu m) or have large orbital eccentricity that makes capture into mean motion resonances inefficient. (C) 2010 Elsevier Inc. All rights reserved. C1 [Reach, William T.] NASA, Ames Res Ctr, Stratospher Observ Infrared Astron, Univ Space Res Assoc, Moffett Field, CA 94035 USA. [Reach, William T.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. RP Reach, WT (reprint author), NASA, Ames Res Ctr, Stratospher Observ Infrared Astron, Univ Space Res Assoc, Mail Stop 211-3, Moffett Field, CA 94035 USA. EM wreach@sofia.usra.edu OI Reach, William/0000-0001-8362-4094 NR 22 TC 9 Z9 9 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD OCT PY 2010 VL 209 IS 2 BP 848 EP 850 DI 10.1016/j.icarus.2010.06.034 PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654VL UT WOS:000282199000049 ER PT J AU Rubincam, DP Paddack, SJ AF Rubincam, David Parry Paddack, Stephen J. TI Zero secular torque on asteroids from impinging solar photons in the YORP effect: A simple proof SO ICARUS LA English DT Article DE Asteroids; Asteroids, Rotation; Asteroids, Dynamics; Rotational dynamics; Celestial mechanics ID RADIATION PRESSURE; EVOLUTION AB YORP torques, where "YORP" stands for "Yarokovsky-O'Keefe-Radzievskii-Paddack," arise mainly from sunlight reflected off a Solar System object and the infrared radiation emitted by it. We show here, through the most elementary demonstration that we can devise, that secular torques from impinging solar photons are generally negligible and thus cause little secular evolution of an asteroid's obliquity or spin rate. Published by Elsevier Inc. C1 [Rubincam, David Parry] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. [Paddack, Stephen J.] USN Acad, Dept Aerosp Engn, Annapolis, MD 21402 USA. RP Rubincam, DP (reprint author), NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. EM David.P.Rubincam@nasa.gov; Stephen.Paddack@verizon.net RI Rubincam, David/D-2918-2012 NR 12 TC 6 Z9 6 U1 2 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD OCT PY 2010 VL 209 IS 2 BP 863 EP 865 DI 10.1016/j.icarus.2010.05.015 PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654VL UT WOS:000282199000053 ER PT J AU Schmalzel, J Bracey, A Rawls, S Morris, J Turowski, M Franzl, R Figueroa, F AF Schmalzel, John Bracey, Andrew Rawls, Stephen Morris, Jon Turowski, Mark Franzl, Richard Figueroa, Fernando TI Smart Sensor Demonstration Payload SO IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE LA English DT Article C1 [Schmalzel, John] Rowan Univ, ECE Dept, Glassboro, NJ USA. [Schmalzel, John] NASA, John C Stennis Space Ctr, MS IPA, Washington, DC USA. RP Schmalzel, J (reprint author), Rowan Univ, ECE Dept, Glassboro, NJ USA. EM j.schmalzel@ieee.org FU NASA-SSC; NASA-HQ FX A year ago (as of this writing), the SiSP field team was swatting mosquitoes on Wallops Island during the final week of installation and checkout. The project could never have gotten to that point without the leadership of the NESC, the support of the NASA-SSC Innovative Partnerships Program, the NASA-HQ Technical Excellence Initiative Program, and the many contributing NASA centers. L. Langford and W. Mitchell provided continuing systems engineering and technical support. P. Mease (Rowan University) fabricated our abrasive water jet parts. All are gratefully acknowledged. NR 7 TC 2 Z9 2 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1094-6969 J9 IEEE INSTRU MEAS MAG JI IEEE Instrum. Meas. Mag. PD OCT PY 2010 VL 13 IS 5 BP 8 EP 15 PG 8 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 669NQ UT WOS:000283357900003 ER PT J AU Lopes, CG Satorius, EH Estabrook, P Sayed, AH AF Lopes, C. G. Satorius, E. H. Estabrook, P. Sayed, A. H. TI Adaptive Carrier Tracking for Mars to Earth Communications During Entry, Descent, and Landing SO IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS LA English DT Article ID CONVEX COMBINATION; MAXIMUM-LIKELIHOOD; FILTERS; FREQUENCY; PREDICTION; ALGORITHM AB We propose a robust and low complexity scheme to estimate and track carrier frequency from signals traveling under low signal-to-noise ratio (SNR) conditions in highly nonstationary channels. These scenarios arise in planetary exploration missions subject to high dynamics, such as the Mars exploration rover missions. The method comprises a bank of adaptive linear predictors (ALP) supervised by a convex combiner that dynamically aggregates the individual predictors. The adaptive combination is able to outperform the best individual estimator in the set, which leads to a universal scheme for frequency estimation and tracking. A simple technique for bias compensation considerably improves the ALP performance. It is also shown that retrieval of frequency content by a fast Fourier transform (FFT)-search method, instead of only inspecting the angle of a particular root of the error predictor filter, enhances performance, particularly at very low SNR levels. Simple techniques that enforce frequency continuity improve further the overall performance. In summary we illustrate by extensive simulations that adaptive linear prediction methods render a robust and competitive frequency tracking technique. C1 [Lopes, C. G.] Univ Sao Paulo, Escola Politecn, Dept Elect Syst, Sao Paulo, Brazil. [Satorius, E. H.; Estabrook, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Sayed, A. H.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RP Lopes, CG (reprint author), Univ Sao Paulo, Escola Politecn, Dept Elect Syst, Sao Paulo, Brazil. EM sayed@ee.ucla.edu RI Sayed, Ali/D-6251-2012 OI Sayed, Ali/0000-0002-5125-5519 FU Jet Propulsion Laboratory [1276256]; National Science Foundation [ECS-0601266]; CAPES, Brazil [1168/01-0] FX This material was supported by the Jet Propulsion Laboratory under Award 1276256 and by the National Science Foundation Award ECS-0601266.; The work of C. G. Lopes was also supported by a fellowship from CAPES, Brazil, under Award 1168/01-0. NR 22 TC 9 Z9 10 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9251 J9 IEEE T AERO ELEC SYS JI IEEE Trans. Aerosp. Electron. Syst. PD OCT PY 2010 VL 46 IS 4 BP 1865 EP 1879 DI 10.1109/TAES.2010.5595600 PG 15 WC Engineering, Aerospace; Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 701SE UT WOS:000285842800022 ER PT J AU Martin, RA AF Martin, Rodney A. TI A State-Space Approach to Optimal Level-Crossing Prediction for Linear Gaussian Processes SO IEEE TRANSACTIONS ON INFORMATION THEORY LA English DT Article DE Alarm systems; approximation methods; Kalman filtering; level-crossing problems; prediction methods ID FAILURE-DETECTION; ALGORITHMS; ALARM AB In this paper, approximations of an optimal level-crossing predictor for a zero-mean stationary linear dynamical system driven by Gaussian noise in state-space form are investigated. The study of this problem is motivated by the practical implications for design of an optimal alarm system, which will elicit the fewest false alarms for a fixed detection probability in this context. This work introduces the use of Kalman filtering in tandem with the optimal level-crossing prediction problem. It is shown that there is a negligible loss in overall accuracy when using approximations to the theoretically optimal predictor, at the advantage of greatly reduced computational complexity. C1 [Martin, Rodney A.] NASA, Intelligent Syst Div, Ames Res Ctr, Moffett Field, CA 94035 USA. [Martin, Rodney A.] NASA, Intelligent Data Understanding Grp, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Martin, RA (reprint author), NASA, Intelligent Syst Div, Ames Res Ctr, Moffett Field, CA 94035 USA. EM rodney.martin@nasa.gov FU NASA's Aeronautics Research Mission Directorate FX Manuscript received March 31, 2007; revised November 17, 2009. Date of current version September 15, 2010. This work was supported in part by the Integrated Vehicle Health Management (IVHM) project, funded by the Aviation Safety Program of NASA's Aeronautics Research Mission Directorate. NR 20 TC 4 Z9 4 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9448 J9 IEEE T INFORM THEORY JI IEEE Trans. Inf. Theory PD OCT PY 2010 VL 56 IS 10 BP 5083 EP 5096 DI 10.1109/TIT.2010.2059930 PG 14 WC Computer Science, Information Systems; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 668ID UT WOS:000283260900021 ER PT J AU Adell, PC Edmonds, L McPeak, R Scheick, L McClure, SS AF Adell, Philippe C. Edmonds, Larry McPeak, Richard Scheick, Leif McClure, Steve S. TI An Approach to Single Event Testing of SDRAMs SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Micro-displacement; SDRAMs; single event effects; stuck bits ID BULK DAMAGE AB A unique testing approach based on error-pattern identification with a graphical mapping and color-coding of the full SDRAM memory during single-event characterization is proposed. Results about unique SEFI modes and the role of temperature are discussed. C1 [Adell, Philippe C.; Edmonds, Larry; McPeak, Richard; Scheick, Leif; McClure, Steve S.] CALTECH, Jet Prop Lab, Pasadena, CA 91101 USA. RP Adell, PC (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91101 USA. EM philippe.c.adell@jpl.nasa.gov; rfmcpeak@gmail.com FU National Aeronautics and Space Administration FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 10 TC 4 Z9 4 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2010 VL 57 IS 5 BP 2923 EP 2928 DI 10.1109/TNS.2010.2059711 PN 3 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 670PS UT WOS:000283440400016 ER PT J AU Pellish, JA Xapsos, MA LaBel, KA Marshall, PW Heidel, DF Rodbell, KP Hakey, MC Dodd, PE Shaneyfelt, MR Schwank, JR Baumann, RC Deng, XW Marshall, A Sierawski, BD Black, JD Reed, RA Schrimpf, RD Kim, HS Berg, MD Campola, MJ Friendlich, MR Perez, CE Phan, AM Seidleck, CM AF Pellish, Jonathan A. Xapsos, Michael A. LaBel, Kenneth A. Marshall, Paul W. Heidel, David F. Rodbell, Kenneth P. Hakey, Mark C. Dodd, Paul E. Shaneyfelt, Marty R. Schwank, James R. Baumann, Robert C. Deng, Xiaowei Marshall, Andrew Sierawski, Brian D. Black, Jeffrey D. Reed, Robert A. Schrimpf, Ronald D. Kim, Hak S. Berg, Melanie D. Campola, Michael J. Friendlich, Mark R. Perez, Christopher E. Phan, Anthony M. Seidleck, Christina M. TI Heavy Ion Testing With Iron at 1 GeV/amu SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE FPGA; galactic cosmic ray; heavy ion testing; SRAM ID MODULAR REDUNDANCY CIRCUITS; SINGLE-EVENT-UPSETS; NM SOI SRAM; XILINX FPGAS; ANGLE AB A 1 GeV/amu (56)Fe ion beam allows for true 90 degrees tilt irradiations of various microelectronic components and reveals relevant upset trends at the GCR flux energy peak. Three SRAMs and an SRAM-based FPGA evaluated at the NASA Space Radiation Effects Laboratory demonstrate that a 90 degrees tilt irradiation yields a unique device response. These tilt angle effects need to be screened for, and if found, pursued with radiation transport simulations to quantify their impact on event rate calculations. C1 [Pellish, Jonathan A.; Xapsos, Michael A.; LaBel, Kenneth A.] NASA GSFC, Radiat Effects & Anal Grp, Greenbelt, MD 20771 USA. [Marshall, Paul W.] NASA, Brookneal, VA 24528 USA. [Heidel, David F.; Rodbell, Kenneth P.] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Hakey, Mark C.] IBM Syst & Technol Grp, Essex Jct, VT 05452 USA. [Dodd, Paul E.; Shaneyfelt, Marty R.; Schwank, James R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Sierawski, Brian D.; Black, Jeffrey D.; Reed, Robert A.; Schrimpf, Ronald D.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [Kim, Hak S.; Berg, Melanie D.; Campola, Michael J.; Friendlich, Mark R.; Perez, Christopher E.; Phan, Anthony M.; Seidleck, Christina M.] MEI Technol NASA GSFC, Greenbelt, MD USA. RP Pellish, JA (reprint author), NASA GSFC, Radiat Effects & Anal Grp, Code 561-4, Greenbelt, MD 20771 USA. EM jonathan.a.pellish@nasa.gov RI Schrimpf, Ronald/L-5549-2013 OI Schrimpf, Ronald/0000-0001-7419-2701 FU NASA; Defense Threat Reduction Agency [09-4587I, 09-4584I]; NASA/JSC; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported in part by the NASA Electronic Parts and Packaging program, the Space Radiation Element Human Research program at NASA/JSC, and the Defense Threat Reduction Agency Radiation Hardened Microelectronics Program under IACRO #09-4587I to NASA and #09-4584I to SNL. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 25 TC 5 Z9 5 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2010 VL 57 IS 5 BP 2948 EP 2954 DI 10.1109/TNS.2010.2066575 PN 3 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 670PS UT WOS:000283440400019 ER PT J AU Sparks, WB McGrath, M Hand, K Ford, HC Geissler, P Hough, JH Turner, EL Chyba, CF Carlson, R Turnbull, M AF Sparks, W. B. McGrath, M. Hand, K. Ford, H. C. Geissler, P. Hough, J. H. Turner, E. L. Chyba, C. F. Carlson, R. Turnbull, M. TI Hubble Space Telescope observations of Europa in and out of eclipse SO INTERNATIONAL JOURNAL OF ASTROBIOLOGY LA English DT Article; Proceedings Paper CT 4th Conference of the Astrobiology-Society-of-Britain CY APR 07-09, 2010 CL Egham, ENGLAND SP Astrobiol Soc Britain, STFC DE Europa; Hubble; satellites; spectroscopy ID H2O ICE; ATMOSPHERE; LUMINESCENCE; ULTRAVIOLET; SURFACE AB Europa is a prime target for astrobiology and has been prioritized as the next target for a National Aeronautics and Space Administration flagship mission. It is important, therefore, that we advance our understanding of Europa, its ocean and physical environment as much as possible. Here, we describe observations of Europa obtained during its orbital eclipse by Jupiter using the Hubble Space Telescope. We obtained Advanced Camera for Surveys Solar Blind Channel far ultraviolet low-resolution spectra that show oxygen line emission both in and out of eclipse. We also used the Wide-Field and Planetary Camera-2 and searched for broad-band optical emission from fluorescence of the surface material, arising from the very high level of incident energetic particle radiation on ices and potentially organic substances. The high-energy particle radiation at the surface of Europa is extremely intense and is responsible for the production of a tenuous oxygen atmosphere and associated FUV line emission. Approximately 50% of the oxygen emission lasts at least a few hours into the eclipse. We discuss the detection limits of the optical emission, which allow us to estimate the fraction of incident energy reradiated at optical wavelengths, through electron-excited emission, Cherenkov radiation in the ice and fluorescent processes. C1 [Sparks, W. B.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [McGrath, M.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Hand, K.; Carlson, R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ford, H. C.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Geissler, P.] US Geol Survey, Ctr Astrogeol, Flagstaff, AZ 86001 USA. [Hough, J. H.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Turner, E. L.; Chyba, C. F.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Turner, E. L.] Univ Tokyo, Tokyo 1138654, Japan. [Turnbull, M.] Global Sci Inst, Antigo, WI 54409 USA. RP Sparks, WB (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM sparks@stsci.edu RI Turner, Edwin/A-4295-2011 NR 19 TC 2 Z9 2 U1 1 U2 7 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1473-5504 J9 INT J ASTROBIOL JI Int. J. Astrobiol. PD OCT PY 2010 VL 9 IS 4 SI SI BP 265 EP 271 DI 10.1017/S1473550410000285 PG 7 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 674VU UT WOS:000283779200011 ER PT J AU Smith, RN Chao, Y Li, PP Caron, DA Jones, BH Sukhatme, GS AF Smith, Ryan N. Chao, Yi Li, Peggy P. Caron, David A. Jones, Burton H. Sukhatme, Gaurav S. TI Planning and Implementing Trajectories for Autonomous Underwater Vehicles to Track Evolving Ocean Processes Based on Predictions from a Regional Ocean Model SO INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH LA English DT Article DE Algal bloom; autonomous glider; autonomous underwater vehicles; feature tracking; ocean model predictions; path planning ID SOUTHERN CALIFORNIA BIGHT; SYSTEM; EXPLICIT; GLIDERS AB Path planning and trajectory design for autonomous underwater vehicles (AUVs) is of great importance to the oceanographic research community because automated data collection is becoming more prevalent. Intelligent planning is required to maneuver a vehicle to high-valued locations to perform data collection. In this paper, we present algorithms that determine paths for AUVs to track evolving features of interest in the ocean by considering the output of predictive ocean models. While traversing the computed path, the vehicle provides near-real-time, in situ measurements back to the model, with the intent to increase the skill of future predictions in the local region. The results presented here extend preliminary developments of the path planning portion of an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. This extension is the incorporation of multiple vehicles to track the centroid and the boundary of the extent of a feature of interest. Similar algorithms to those presented here are under development to consider additional locations for multiple types of features. The primary focus here is on algorithm development utilizing model predictions to assist in solving the motion planning problem of steering an AUV to high-valued locations, with respect to the data desired. We discuss the design technique to generate the paths, present simulation results and provide experimental data from field deployments for tracking dynamic features by use of an AUV in the Southern California coastal ocean. C1 [Smith, Ryan N.; Sukhatme, Gaurav S.] Univ So Calif, Robot Embedded Syst Lab, Los Angeles, CA 90089 USA. [Chao, Yi; Li, Peggy P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Caron, David A.; Jones, Burton H.] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA. RP Smith, RN (reprint author), Univ So Calif, Robot Embedded Syst Lab, Los Angeles, CA 90089 USA. EM ryannsmi@usc.edu FU NOAA [NA05NOS4781228]; NSF [CCR-0120778, N00014-09-1-1031, N00014-08-1-0693] FX This work was supported in part by the NOAA MERHAB program under grant NA05NOS4781228 and by NSF as part of the Center for Embedded Network Sensing (CENS) under grant CCR-0120778, by NSF grants CNS-0520305 and CNS-0540420, by the ONR MURI program (grants N00014-09-1-1031 and N00014-08-1-0693), by the ONR SoA program and by a gift from the Okawa Foundation. The ROMS ocean modeling research described in this paper was carried out by the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). NR 33 TC 56 Z9 57 U1 4 U2 34 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0278-3649 J9 INT J ROBOT RES JI Int. J. Robot. Res. PD OCT PY 2010 VL 29 IS 12 SI SI BP 1475 EP 1497 DI 10.1177/0278364910377243 PG 23 WC Robotics SC Robotics GA 659WE UT WOS:000282597000003 ER PT J AU Zuo, QH Disilvestro, D Richter, JD AF Zuo, Q. H. Disilvestro, D. Richter, J. D. TI A crack-mechanics based model for damage and plasticity of brittle materials under dynamic loading SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Article DE Continuum damage; Crack mechanics; Damage evolution; Brittle materials; Dynamic loading ID SILICON-CARBIDE; BORON-CARBIDE; INELASTIC DEFORMATION; CONSTITUTIVE MODEL; SHOCK RESPONSE; IMPACT; CONCRETE; BEHAVIOR; FRAGMENTATION; STRENGTH AB A rate-dependent model for damage and plastic deformation of brittle materials under dynamic loading is presented. The model improves upon a recently developed micromechanical damage model (Zuo et al., 2006) by incorporating plastic deformation of the material. The distribution of the microcracks in the material is assumed to remain isotropic, and the damage evolution is through the growth of the average crack size. Plasticity is considered through an additive decomposition of the total strain rate, and a rate-independent, von Mises model is used. The model was applied to simulate the response of a model material (SiC) under uniaxial strain loading. To further examine the behavior of the model, cyclic loading and large-strain compressive loading were considered. Numerical results of the model predictions are presented, and comparisons with those from a previous model are provided. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Zuo, Q. H.; Disilvestro, D.; Richter, J. D.] Univ Alabama, Dept Mech & Aerosp Engn, Huntsville, AL 35899 USA. [Richter, J. D.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Zuo, QH (reprint author), Univ Alabama, Dept Mech & Aerosp Engn, Huntsville, AL 35899 USA. EM zuo@eng.uah.edu RI Davidi, Gal/E-7089-2011 FU University Transportation Center for Alabama (UTCA) [09301]; National Science Foundation (NSF) [DBI-0923402]; University of Alabama in Huntsville FX The authors are grateful for technical discussions with F.L. Addessio, J.K. Dienes, J.A. Gilbert, R.M. Hackett, R.R. Little, Jeremy R. Rice and H.A. Toutanji, and for the contributions of M. Bailey to the work. The authors are also grateful to two anonymous reviewers for many constructive comments, including suggestion of the value for the yield stress for SiC used in the paper. The work was supported in part by University Transportation Center for Alabama (UTCA#: 09301), the National Science Foundation (NSF#: DBI-0923402), and a research startup fund from the University of Alabama in Huntsville. NR 47 TC 9 Z9 12 U1 1 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD OCT 1 PY 2010 VL 47 IS 20 BP 2790 EP 2798 DI 10.1016/j.ijsolstr.2010.06.009 PG 9 WC Mechanics SC Mechanics GA 642AT UT WOS:000281175800016 ER PT J AU Chamis, CC AF Chamis, Christos C. TI DYNAMIC BUCKLING AND POSTBUCKLING OF A COMPOSITE SHELL SO INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS LA English DT Article; Proceedings Paper CT 2nd International Conference on Bucking and Postbuckling Behaviour of Composite Laminated Shell Structures CY SEP 03-05, 2008 CL Braunschweig, GERMANY DE Finite element; updated Lagrangian; accelerations; velocities; displacements AB A computationally effective method for evaluating the dynamic buckling and postbuckling of thin composite shells is described. It is a judicious combination of available computer codes for finite element, composite mechanics and incremental structural analysis. The solution method is an incrementally updated Lagrangian. It is illustrated by applying it to a thin composite cylindrical shell subjected to dynamic loads. Buckling loads are evaluated to demonstrate the er effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different dynamic loading rates. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. They also show that the updated solution can be carried out in the postbuckling regime until the shell collapses completely. Comparisons with published literature indicate reasonable agreement. C1 NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Chamis, CC (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM Christos.C.Chamis@nasa.gov NR 11 TC 3 Z9 3 U1 0 U2 6 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0219-4554 J9 INT J STRUCT STAB DY JI Int. J. Struct. Stab. Dyn. PD OCT PY 2010 VL 10 IS 4 BP 791 EP 805 DI 10.1142/S0219455410003749 PG 15 WC Engineering, Civil; Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA 641CU UT WOS:000281103000013 ER PT J AU Zeng, XW He, CM Wilkinson, A AF Zeng, Xiangwu He, Chunmei Wilkinson, Allen TI Geotechnical Properties of NT-LHT-2M Lunar Highland Simulant SO JOURNAL OF AEROSPACE ENGINEERING LA English DT Article DE Exploration; Geotechnical; Lunar simulant ID SOIL; MECHANICS AB Future lunar explorations require a thorough understanding of the geotechnical properties of lunar soils. However, the small amount of lunar soil that was brought back to earth cannot satisfy the needs. A new lunar soil simulant, NU-LHT-2M, has been developed to simulate lunar regolith in the lunar highlands region. It is characterized to help the development of regolith-moving machines and vehicles that will be used in future missions to the moon. The simulant's particle size distribution, specific gravity, maximum and minimum densities, compaction characteristics, shear strength parameters and compressibility have been studied; and the results are compared with the information about lunar regolith provided in the Lunar Sourcebook. C1 [Zeng, Xiangwu; He, Chunmei] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Wilkinson, Allen] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Zeng, XW (reprint author), Case Western Reserve Univ, 10900 Euclid Ave, Cleveland, OH 44106 USA. EM xxz16@cwru.edu FU NASA [NNX07A078G] FX The work reported here was carried out with support from NASA Grant No. NNX07A078G. The writers would like to thank Steve Wilson and Doug Stoeser of USGS for providing the NU-LHT-2M sample used in this study. NR 19 TC 8 Z9 10 U1 1 U2 6 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0893-1321 EI 1943-5525 J9 J AEROSPACE ENG JI J. Aerosp. Eng. PD OCT PY 2010 VL 23 IS 4 BP 213 EP 218 DI 10.1061/(ASCE)AS.1943-5525.0000026 PG 6 WC Engineering, Aerospace; Engineering, Civil SC Engineering GA 650BY UT WOS:000281824000001 ER PT J AU Bender, LC Howden, SD Dodd, D Guinasso, NL AF Bender, L. C., III Howden, S. D. Dodd, D. Guinasso, N. L., Jr. TI Wave Heights during Hurricane Katrina: An Evaluation of PPP and PPK Measurements of the Vertical Displacement of the GPS Antenna SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID BUOY AB In August 2005 the eye of Hurricane Katrina passed 49 n mi to the west of a 3-m discus buoy operated by the Central Gulf of Mexico Ocean Observing System (CenGOOS). Buoy motions were measured with a strapped-down 6 degrees of freedom accelerometer, a three-axis magnetometer, and a survey-grade GPS receiver. The significant wave heights were computed from the buoy's accelerometer record and from the dual-frequency GPS measurements that were processed in two different ways. The first method was postprocessed kinematic (PPK) GPS, which requires another GPS receiver at a fixed known location, and the other was precise point positioning (PPP) GPS, which is another postprocessed positioning technique that yields absolute rather than differential positions. Unlike inertial measurement units, either GPS technique can be used to obtain both waves and water levels. The purpose of this note is to demonstrate the excellent reliability and accuracy of both methods for determining wave heights and periods from a GPS record. When the motion of the GPS antenna is properly understood as the motion of the buoy deck and not the true vertical motion of the sea surface, the GPS wave heights are as reliable as a strapped-down 1D accelerometer. C1 [Bender, L. C., III; Guinasso, N. L., Jr.] Texas A&M Univ, Geochem & Environm Res Grp, College Stn, TX 77845 USA. [Howden, S. D.; Dodd, D.] Univ So Mississippi, Stennis Space Ctr, Dept Marine Sci, Hattiesburg, MS 39406 USA. RP Bender, LC (reprint author), Texas A&M Univ, Geochem & Environm Res Grp, 833 Graham Rd, College Stn, TX 77845 USA. EM les@gerg.tamu.edu RI Guinasso, Norman/D-3567-2012 OI Guinasso, Norman/0000-0003-2271-8550 FU ONR [N00014-03-1-0546]; NOAA [NA05NOS4731077] FX The authors wish to thank the assistance of the NOAA National Data Buoy Center for calibration services, quality control, and quality assurance. The U.S. Coast Guard cutter Cypress deployed the buoy and the Canadian Coast Guard ship Sir William Alexander recovered the buoy for USM after Hurricane Katrina. We wish to thank the commanding officers and crews of these vessels for their exceptional work. This work was supported by the following contracts and grants: ONR N00014-03-1-0546 and NOAA NA05NOS4731077. NR 10 TC 5 Z9 5 U1 4 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD OCT PY 2010 VL 27 IS 10 BP 1760 EP 1768 DI 10.1175/2010JTECHO761.1 PG 9 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 665OB UT WOS:000283044100014 ER PT J AU Kennedy, AD Dong, XQ Xi, BK Minnis, P Del Genio, AD Wolf, AB Khaiyer, MM AF Kennedy, Aaron D. Dong, Xiquan Xi, Baike Minnis, Patrick Del Genio, Anthony D. Wolf, Audrey B. Khaiyer, Mandana M. TI Evaluation of the NASA GISS Single-Column Model Simulated Clouds Using Combined Surface and Satellite Observations SO JOURNAL OF CLIMATE LA English DT Article ID CLIMATE MODELS; PARAMETERIZATION; RADAR; SENSITIVITY; FRACTION; CERES AB Three years of surface and Geostationary Operational Environmental Satellite (GOES) data from the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are used to evaluate the NASA GISS Single Column Model (SCM) simulated clouds from January 1999 to December 2001. The GOES-derived total cloud fractions for both 0.58 degrees and 2.5 degrees grid boxes are in excellent agreement with surface observations, suggesting that ARM point observations can represent large areal observations. Low (< 2 km), middle (2-6 km), and high (> 6 km) levels of cloud fractions, however, have negative biases as compared to the ARM results due to multilayer cloud scenes that can either mask lower cloud layers or cause misidentifications of cloud tops. Compared to the ARM observations, the SCM simulated most midlevel clouds, overestimated low clouds (4%), and underestimated total and high clouds by 7% and 15%, respectively. To examine the dependence of the modeled high and low clouds on the large-scale synoptic patterns, variables such as relative humidity (RH) and vertical pressure velocity (omega) from North American Regional Reanalysis (NARR) data are included. The successfully modeled and missed high clouds are primarily associated with a trough and ridge upstream of the ARM SGP, respectively. The PDFs of observed high and low occurrence as a function of RH reveal that high clouds have a Gaussian-like distribution with mode RH values of similar to 40%-50%, whereas low clouds have a gammalike distribution with the highest cloud probability occurring at RH similar to 75%-85%. The PDFs of modeled low clouds are similar to those observed; however, for high clouds the PDFs are shifted toward higher values of RH. This results in a negative bias for the modeled high clouds because many of the observed clouds occur at RH values below the SCM-specified stratiform parameterization threshold RH of 60%. Despite many similarities between PDFs derived from the NARR and ARM forcing datasets for RH and omega, differences do exist. This warrants further investigation of the forcing and reanalysis datasets. C1 [Kennedy, Aaron D.; Dong, Xiquan; Xi, Baike] Univ N Dakota, Dept Atmospher Sci, Grand Forks, ND 58202 USA. [Minnis, Patrick] NASA Langley Res Ctr, Hampton, VA USA. [Del Genio, Anthony D.] NASA Goddard Inst Space Studies, New York, NY USA. [Wolf, Audrey B.] Columbia Univ, New York, NY USA. [Khaiyer, Mandana M.] Sci Syst & Applicat Inc, Hampton, VA USA. RP Kennedy, AD (reprint author), Univ N Dakota, Dept Atmospher Sci, Box 9006,4149 Campus Rd, Grand Forks, ND 58202 USA. EM aaron.kennedy@und.edu RI Del Genio, Anthony/D-4663-2012; Minnis, Patrick/G-1902-2010; OI Del Genio, Anthony/0000-0001-7450-1359; Minnis, Patrick/0000-0002-4733-6148; Dong, Xiquan/0000-0002-3359-6117 FU NASAMAP [NNG06GB59G]; University of North Dakota; North Dakota Space Grant Consortium; NASA [NNL04AA11G, NNX07AW05G]; NSF [ATM0649549] FX The authors thank a variety of individuals and organizations. Anonymous reviewers provided many helpful suggestions that led to a more concise and complete manuscript. The SGP continuous forcing dataset was kindly supplied by Shaocheng Xie and the ARM program. NARR reanalysis data were provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, from their Web site at (http://www.esrl.noaa.gov/psd/). This research was primarily supported by the NASAMAP project under Grant NNG06GB59G at the University of North Dakota. The first author was also supported by the North Dakota Space Grant Consortium fellowship. The University of North Dakota authors were also supported by the NASA CERES project under Grant NNL04AA11G, the NASA NEWS project under Grant NNX07AW05G, and NSF under Grant ATM0649549. NR 33 TC 20 Z9 21 U1 1 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD OCT PY 2010 VL 23 IS 19 BP 5175 EP 5192 DI 10.1175/2010JCLI3353.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 662RY UT WOS:000282830500008 ER PT J AU Romanou, A Tselioudis, G Zerefos, CS Clayson, CA Curry, JA Andersson, A AF Romanou, A. Tselioudis, G. Zerefos, C. S. Clayson, C. -A. Curry, J. A. Andersson, A. TI Evaporation-Precipitation Variability over the Mediterranean and the Black Seas from Satellite and Reanalysis Estimates SO JOURNAL OF CLIMATE LA English DT Article ID NORTH-ATLANTIC OSCILLATION; FRESH-WATER FLUX; CLIMATE-CHANGE; HEAT; PRODUCTS; PROJECT; BUDGET; TRENDS AB Satellite retrievals of surface evaporation and precipitation from the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS-3) dataset are used to document the distribution of evaporation, precipitation, and freshwater flux over the Mediterranean and Black Seas. An analysis is provided of the major scales of temporal and spatial variability of the freshwater budget and the atmospheric processes responsible for the water flux changes. The satellite evaporation fluxes are compared with fields from three different reanalysis datasets [40-yr ECMWF Re-Analysis (ERA-40), ERA-Interim, and NCEP]. The results show a water deficit in the Mediterranean region that averages to about 2.4 mm day(-1) but with a significant east-west asymmetry ranging from 3.5 mm day(-1) in the eastern part to about 1.1 mm day(-1) in the western part of the basin. The zonal asymmetry in the water deficit is driven by evaporation differences that are in turn determined by variability in the air-sea humidity difference in the different parts of the Mediterranean basin. The Black Sea freshwater deficit is 0.5 mm day(-1), with maxima off the northern coast (0.9 mm day(-1)) that are attributed to both evaporation maxima and precipitation minima there. The trend analysis of the freshwater budget shows that the freshwater deficit increases in the 1988-2005 period. The prominent increase in the eastern part of the basin is present in the satellite and all three reanalysis datasets. The water deficit is due to increases in evaporation driven by increasing sea surface temperature, while precipitation does not show any consistent trends in the period. Similarly, in the Black Sea, trends in the freshwater deficit are mainly due to evaporation, although year-to-year variability is due to precipitation patterns. C1 [Romanou, A.; Tselioudis, G.] Columbia Univ, Dept Appl Math & Appl Phys, New York, NY 10025 USA. [Romanou, A.; Tselioudis, G.] NASA GISS, New York, NY USA. [Romanou, A.; Tselioudis, G.] Acad Athens, Ctr Atmospher Phys & Climatol, Athens, Greece. [Zerefos, C. S.] Univ Athens, Dept Geol, Athens, Greece. [Zerefos, C. S.] Acad Athens, Ctr Atmospher Phys & Climatol, Athens, Greece. [Clayson, C. -A.] Florida State Univ, Dept Meteorol, Tallahassee, FL 32306 USA. [Curry, J. A.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Andersson, A.] Univ Hamburg, Inst Meteorol, D-2000 Hamburg, Germany. RP Romanou, A (reprint author), Columbia Univ, Dept Appl Math & Appl Phys, 2880 Broadway, New York, NY 10025 USA. EM ar2235@columbia.edu FU NASA [GIT G-35-C56-G1] FX The authors wish to thank the project groups at the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data Center, the European Centre for Medium-Range Weather Forecasts, and the NOAA National Center for Environmental Prediction for making their datasets readily available for this study, and Prof. D. A. Metaxas for useful discussions. NAO Index data were provided by the Climate Analysis Section, NCAR, Boulder, Colorado. A significant part of the work was carried out at the Centre of Atmospheric Physics and Climatology at the Academy of Athens in Greece. Funding was partially provided by the NASA Energy and Water Cycle Study program under NASA NEWS Grant GIT G-35-C56-G1. NCEP Reanalysis-derived data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, from their Web site (available online at http://www.esrl.noaa.gov/psd/). NR 29 TC 40 Z9 40 U1 0 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD OCT PY 2010 VL 23 IS 19 BP 5268 EP 5287 DI 10.1175/2010JCLI3525.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 662RY UT WOS:000282830500014 ER PT J AU Loeb, NG Su, WY AF Loeb, Norman G. Su, Wenying TI Direct Aerosol Radiative Forcing Uncertainty Based on a Radiative Perturbation Analysis SO JOURNAL OF CLIMATE LA English DT Article ID SKY RADIANCE MEASUREMENTS; OPTICAL-PROPERTIES; AERONET; CLOUDS; ASSESSMENTS; SCATTERING; RETRIEVAL; NETWORK; SUN AB To provide a lower bound for the uncertainty in measurement-based clear- and all-sky direct aerosol radiative forcing (DARF), a radiative perturbation analysis is performed for the ideal case in which the perturbations in global mean aerosol properties are given by published values of systematic uncertainty in Aerosol Robotic Network (AERONET) aerosol measurements. DARF calculations for base-state climatological cloud and aerosol properties over ocean and land are performed, and then repeated after perturbing individual aerosol optical properties (aerosol optical depth, single-scattering albedo, asymmetry parameter, scale height, and anthropogenic fraction) from their base values, keeping all other parameters fixed. The total DARF uncertainty from all aerosol parameters combined is 0.5-1.0 W m(-2), a factor of 2-4 greater than the value cited in the Intergovernmental Panel on Climate Change's (IPCC's) Fourth Assessment Report. Most of the total DARF uncertainty in this analysis is associated with single-scattering albedo uncertainty. Owing to the greater sensitivity to single-scattering albedo in cloudy columns, DARF uncertainty in all-sky conditions is greater than in clear- sky conditions, even though the global mean clear- sky DARF is more than twice as large as the all-sky DARF. C1 [Loeb, Norman G.] NASA Langley Res Ctr, Hampton, VA 23681 USA. [Su, Wenying] SSAI, Hampton, VA USA. RP Loeb, NG (reprint author), NASA Langley Res Ctr, Mail Stop 420, Hampton, VA 23681 USA. EM norman.g.loeb@nasa.gov FU NASA Research Opportunities in Space and Earth Sciences (ROSES) [NNH05ZDA001N-CCST] FX The work was supported by the NASA Research Opportunities in Space and Earth Sciences (ROSES) (NNH05ZDA001N-CCST). NR 30 TC 41 Z9 41 U1 2 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD OCT PY 2010 VL 23 IS 19 BP 5288 EP 5293 DI 10.1175/2010JCLI3543.1 PG 6 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 662RY UT WOS:000282830500015 ER PT J AU Butchart, N Cionni, I Eyring, V Shepherd, TG Waugh, DW Akiyoshi, H Austin, J Bruhl, C Chipperfield, MP Cordero, E Dameris, M Deckert, R Dhomse, S Frith, SM Garcia, RR Gettelman, A Giorgetta, MA Kinnison, DE Li, F Mancini, E McLandress, C Pawson, S Pitari, G Plummer, DA Rozanov, E Sassi, F Scinocca, JF Shibata, K Steil, B Tian, W AF Butchart, Neal Cionni, I. Eyring, V. Shepherd, T. G. Waugh, D. W. Akiyoshi, H. Austin, J. Bruehl, C. Chipperfield, M. P. Cordero, E. Dameris, M. Deckert, R. Dhomse, S. Frith, S. M. Garcia, R. R. Gettelman, A. Giorgetta, M. A. Kinnison, D. E. Li, F. Mancini, E. McLandress, C. Pawson, S. Pitari, G. Plummer, D. A. Rozanov, E. Sassi, F. Scinocca, J. F. Shibata, K. Steil, B. Tian, W. TI Chemistry-Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes SO JOURNAL OF CLIMATE LA English DT Article ID MIDDLE ATMOSPHERE MODEL; GRAVITY-WAVE DRAG; BREWER-DOBSON CIRCULATION; MIXED GREENHOUSE GASES; ANTARCTIC OZONE HOLE; METEOROLOGICAL ANALYSES; INTERACTIVE CHEMISTRY; TROPOSPHERE EXCHANGE; CLOUD FORMATION; WATER-VAPOR AB The response of stratospheric climate and circulation to increasing amounts of greenhouse gases (GHGs) and ozone recovery in the twenty-first century is analyzed in simulations of 11 chemistry-climate models using near-identical forcings and experimental setup. In addition to an overall global cooling of the stratosphere in the simulations (0.59 +/- 6 0.07 K decade(-1) at 10 hPa), ozone recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and, on average, changes from 0.8 to 0.48 K decade(-1) at 100 hPa as the rate of recovery declines from the first to the second half of the century. In the winter northern polar lower stratosphere the increased radiative cooling from the growing abundance of GHGs is, in most models, balanced by adiabatic warming from stronger polar downwelling. In the Antarctic lower stratosphere the models simulate an increase in low temperature extremes required for polar stratospheric cloud (PSC) formation, but the positive trend is decreasing over the twenty-first century in all models. In the Arctic, none of the models simulates a statistically significant increase in Arctic PSCs throughout the twenty-first century. The subtropical jets accelerate in response to climate change and the ozone recovery produces a westward acceleration of the lower-stratospheric wind over the Antarctic during summer, though this response is sensitive to the rate of recovery projected by the models. There is a strengthening of the Brewer-Dobson circulation throughout the depth of the stratosphere, which reduces the mean age of air nearly everywhere at a rate of about 0.05 yr decade(-1) in those models with this diagnostic. On average, the annual mean tropical upwelling in the lower stratosphere (similar to 70 hPa) increases by almost 2% decade(-1), with 59% of this trend forced by the parameterized orographic gravity wave drag in the models. This is a consequence of the eastward acceleration of the subtropical jets, which increases the upward flux of (parameterized) momentum reaching the lower stratosphere in these latitudes. C1 [Butchart, Neal] Hadley Ctr, Met Off, Exeter EX1 3PB, Devon, England. [Cionni, I.; Eyring, V.; Dameris, M.; Deckert, R.] Deutsch Zentrum Luft & Raumfahrt, Oberpfaffenhofen, Germany. [Shepherd, T. G.; McLandress, C.] Univ Toronto, Toronto, ON, Canada. [Waugh, D. W.] Johns Hopkins Univ, Baltimore, MD USA. [Akiyoshi, H.] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. [Austin, J.] Geophys Fluid Dynam Lab, Princeton, NJ USA. [Bruehl, C.; Steil, B.] Max Planck Inst Chem, D-55128 Mainz, Germany. [Chipperfield, M. P.; Dhomse, S.; Tian, W.] Univ Leeds, Leeds, W Yorkshire, England. [Cordero, E.] San Jose State Univ, San Jose, CA 95192 USA. [Frith, S. M.] Sci Syst & Applicat Inc, Lanham, MD USA. [Garcia, R. R.; Gettelman, A.; Kinnison, D. E.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Giorgetta, M. A.] Max Planck Inst Meteorol, Hamburg, Germany. [Li, F.] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. [Mancini, E.; Pitari, G.] Univ Aquila, I-67100 Laquila, Italy. [Pawson, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Plummer, D. A.] Environm Canada, Toronto, ON, Canada. [Rozanov, E.] World Radiat Ctr, Phys Meteorol Observ, Davos, Switzerland. [Rozanov, E.] Swiss Fed Inst Technol, Zurich, Switzerland. [Sassi, F.] USN, Res Lab, Washington, DC 20375 USA. [Scinocca, J. F.] Univ Victoria, Meteorol Serv Canada, Victoria, BC, Canada. [Shibata, K.] Meteorol Res Inst, Tsukuba, Ibaraki 305, Japan. RP Butchart, N (reprint author), Hadley Ctr, Met Off, FitzRoy Rd, Exeter EX1 3PB, Devon, England. EM neal.butchart@metoffice.gov.uk RI Dhomse, Sandip/C-8198-2011; Rozanov, Eugene/A-9857-2012; Li, Feng/H-2241-2012; Eyring, Veronika/O-9999-2016; Chipperfield, Martyn/H-6359-2013; Pawson, Steven/I-1865-2014; Waugh, Darryn/K-3688-2016; Pitari, Giovanni/O-7458-2016 OI Dhomse, Sandip/0000-0003-3854-5383; Rozanov, Eugene/0000-0003-0479-4488; Eyring, Veronika/0000-0002-6887-4885; Mancini, Eva/0000-0001-7071-0292; Sassi, Fabrizio/0000-0002-9492-7434; Chipperfield, Martyn/0000-0002-6803-4149; Pawson, Steven/0000-0003-0200-717X; Waugh, Darryn/0000-0001-7692-2798; Pitari, Giovanni/0000-0001-7051-9578 FU European Commission [505390-GOCE-CT-2004]; DECC [GA01101]; Defra [GA01101]; MoD [CBC/2B/0417_Annex C5]; SCOUT [O3]; Ministry of the Environment (MOE) of Japan [A-071]; Canadian Foundation for Climate and Atmospheric Sciences FX The authors acknowledge the Chemistry-Climate Model Validation Activity (CCMVal) of the WCRP's (World Climate Research Programme) SPARC (Stratospheric Processes and their Role in Climate) project for organizing and coordinating the model data analysis activity, and the British Atmospheric Data Centre (BADC) for collecting and archiving the CCMVal model output. The European groups acknowledge support of the EC Integrated Project SCOUT-O3 (505390-GOCE-CT-2004) funded by the European Commission. Dr. Butchart's research was supported by the Joint DECC, Defra, and MoD Integrated Climate Programme-DECC/Defra (GA01101), MoD (CBC/2B/0417_Annex C5), and SCOUT-O3. CCSR/NIES research was supported by the Global Environmental Research Fund (GERF) of the Ministry of the Environment (MOE) of Japan (A-071). The CMAM research was supported by the Canadian Foundation for Climate and Atmospheric Sciences through the C-SPARC project. GEOS CCM simulations were conducted on NASA's High-Performance computing resources at NASA Ames Research Center. The MRI simulation was made with the supercomputer at the National Institute for Environmental Studies, Japan. NR 81 TC 136 Z9 137 U1 4 U2 79 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD OCT PY 2010 VL 23 IS 20 BP 5349 EP 5374 DI 10.1175/2010JCLI3404.1 PG 26 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 681IW UT WOS:000284306200001 ER PT J AU Kalarus, M Schuh, H Kosek, W Akyilmaz, O Bizouard, C Gambis, D Gross, R Jovanovic, B Kumakshev, S Kutterer, H Cerveira, PJM Pasynok, S Zotov, L AF Kalarus, M. Schuh, H. Kosek, W. Akyilmaz, O. Bizouard, Ch. Gambis, D. Gross, R. Jovanovic, B. Kumakshev, S. Kutterer, H. Cerveira, P. J. Mendes Pasynok, S. Zotov, L. TI Achievements of the Earth orientation parameters prediction comparison campaign SO JOURNAL OF GEODESY LA English DT Article DE Earth orientation parameters; Predictions; Combined solution; Polar motion; UT1; Universal time AB Precise transformations between the international celestial and terrestrial reference frames are needed for many advanced geodetic and astronomical tasks including positioning and navigation on Earth and in space. To perform this transformation at the time of observation, that is for real-time applications, accurate predictions of the Earth orientation parameters (EOP) are needed. The Earth orientation parameters prediction comparison campaign (EOP PCC) that started in October 2005 was organized for the purpose of assessing the accuracy of EOP predictions. This paper summarizes the results of the EOP PCC after nearly two and a half years of operational activity. The ultra short-term (predictions to 10 days into the future), short-term (30 days), and medium-term (500 days) EOP predictions submitted by the participants were evaluated by the same statistical technique based on the mean absolute prediction error using the IERS EOP 05 C04 series as a reference. A combined series of EOP predictions computed as a weighted mean of all submissions available at a given prediction epoch was also evaluated. The combined series is shown to perform very well, as do some of the individual series, especially those using atmospheric angular momentum forecasts. A main conclusion of the EOP PCC is that no single prediction technique performs the best for all EOP components and all prediction intervals. C1 [Kalarus, M.; Kosek, W.] Polish Acad Sci, Space Res Ctr, PL-00716 Warsaw, Poland. [Schuh, H.; Cerveira, P. J. Mendes] Vienna Univ Technol, Inst Geodesy & Geophys, A-1040 Vienna, Austria. [Kosek, W.] Agr Univ Krakow, PL-30198 Krakow, Poland. [Akyilmaz, O.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Bizouard, Ch.; Gambis, D.] Observ Paris, F-75014 Paris, France. [Gross, R.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Jovanovic, B.] Astron Observ, Belgrade 11050, Serbia. [Kumakshev, S.] Russian Acad Sci, Inst Problems Mech, Moscow, Russia. [Kutterer, H.] Leibniz Univ Hannover, Hannover, Germany. [Pasynok, S.; Zotov, L.] Moscow MV Lomonosov State Univ, Moscow, Russia. RP Kalarus, M (reprint author), Polish Acad Sci, Space Res Ctr, Ul Bartycka 18A, PL-00716 Warsaw, Poland. EM kalma@cbk.waw.pl RI Kumakshev, Sergey/G-1736-2015; Kosek, Wieslaw/E-1962-2017 OI Kumakshev, Sergey/0000-0002-2395-4339; FU Advisory Board of the "Descartes-nutation project" FX Maciej Kalarus is grateful to the Advisory Board of the "Descartes-nutation project" for the financial support. The work of RG described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We are grateful to Editor-in-Chief for his comments on the manuscript. We also thank Jeff Freymeuller, Jim Ray, and one anonymous reviewer for helpful remarks which led to an improvement of the paper. NR 23 TC 22 Z9 38 U1 3 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-7714 J9 J GEODESY JI J. Geodesy PD OCT PY 2010 VL 84 IS 10 BP 587 EP 596 DI 10.1007/s00190-010-0387-1 PG 10 WC Geochemistry & Geophysics; Remote Sensing SC Geochemistry & Geophysics; Remote Sensing GA 652CZ UT WOS:000281980100001 ER PT J AU Eck, TF Holben, BN Sinyuk, A Pinker, RT Goloub, P Chen, H Chatenet, B Li, Z Singh, RP Tripathi, SN Reid, JS Giles, DM Dubovik, O O'Neill, NT Smirnov, A Wang, P Xia, X AF Eck, T. F. Holben, B. N. Sinyuk, A. Pinker, R. T. Goloub, P. Chen, H. Chatenet, B. Li, Z. Singh, R. P. Tripathi, S. N. Reid, J. S. Giles, D. M. Dubovik, O. O'Neill, N. T. Smirnov, A. Wang, P. Xia, X. TI Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SKY RADIANCE MEASUREMENTS; BLACK CARBON AEROSOLS; ACE-ASIA; LIGHT-ABSORPTION; WAVELENGTH DEPENDENCE; SIZE DISTRIBUTION; COLUMN CLOSURE; SOURCE REGIONS; DUST AEROSOLS; WATER-VAPOR AB Aerosol mixtures composed of coarse mode desert dust combined with fine mode combustion generated aerosols (from fossil fuel and biomass burning sources) were investigated at three locations that are in and/or downwind of major global aerosol emission source regions. Multiyear monitoring data at Aerosol Robotic Network sites in Beijing (central eastern China), Kanpur (Indo-Gangetic Plain, northern India), and Ilorin (Nigeria, Sudanian zone of West Africa) were utilized to study the climatological characteristics of aerosol optical properties. Multiyear climatological averages of spectral single scattering albedo (SSA) versus fine mode fraction (FMF) of aerosol optical depth at 675 nm at all three sites exhibited relatively linear trends up to similar to 50% FMF. This suggests the possibility that external linear mixing of both fine and coarse mode components (weighted by FMF) dominates the SSA variation, where the SSA of each component remains relatively constant for this range of FMF only. However, it is likely that a combination of other factors is also involved in determining the dynamics of SSA as a function of FMF, such as fine mode particles adhering to coarse mode dust. The spectral variation of the climatological averaged aerosol absorption optical depth (AAOD) was nearly linear in logarithmic coordinates over the wavelength range of 440-870 nm for both the Kanpur and Ilorin sites. However, at two sites in China (Beijing and Xianghe), a distinct nonlinearity in spectral AAOD in logarithmic space was observed, suggesting the possibility of anomalously strong absorption in coarse mode aerosols increasing the 870 nm AAOD. C1 [Eck, T. F.; Holben, B. N.; Sinyuk, A.; Giles, D. M.; Smirnov, A.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Eck, T. F.] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. [Sinyuk, A.; Giles, D. M.] Sigma Space Corp, Lanham, MD USA. [Pinker, R. T.; Li, Z.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Goloub, P.; Dubovik, O.] Univ Lille 1, Opt Atmospher Lab, F-59655 Villeneuve Dascq, France. [Chen, H.] Chinese Acad Sci, Div Middle Atmosphere & Remote Sensing, Beijing 100029, Peoples R China. [Chatenet, B.] Univ Paris Est Paris Diderot Paris 7, CNRS, LISA, F-94010 Creteil, France. [Singh, R. P.] Chapman Univ, Orange, CA 92866 USA. [Tripathi, S. N.] Indian Inst Technol, Dept Civil Engn, Kanpur 208016, Uttar Pradesh, India. [Reid, J. S.] USN, Res Lab, Marine Meteorol Div, Monterey, CA 93943 USA. [O'Neill, N. T.] Univ Sherbrooke, CARTEL, Sherbrooke, PQ J1K 2R1, Canada. [Wang, P.; Xia, X.] Chinese Acad Sci, Inst Atmospher Phys, LAGEO, Beijing 100029, Peoples R China. RP Eck, TF (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. EM thomas.f.eck@nasa.gov RI Pinker, Rachel/F-6565-2010; Smirnov, Alexander/C-2121-2009; ECK, THOMAS/D-7407-2012; Singh, Ramesh/G-7240-2012; Xia, Xiangao/G-5545-2011; Dubovik, Oleg/A-8235-2009; Reid, Jeffrey/B-7633-2014; Tripathi, Sachchida/J-4840-2016; Li, Zhanqing/F-4424-2010 OI Smirnov, Alexander/0000-0002-8208-1304; Xia, Xiangao/0000-0002-4187-6311; Dubovik, Oleg/0000-0003-3482-6460; Reid, Jeffrey/0000-0002-5147-7955; Li, Zhanqing/0000-0001-6737-382X FU NASA; Department of Science and Technology, ICRP; Indian Space Research Organisation; ISRO-GBP FX The AERONET project was supported by Michael D. King, retired in 2008 from the NASA EOS project office, and by Hal B. Maring, Radiation Sciences Program, NASA Headquarters. S. N. Tripathi acknowledges support from Department of Science and Technology, ICRP and Indian Space Research Organisation GBP programmes. S. N. Tripathi was also supported in part by appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. The authors are indebted to Harish Vishwakarma for his efforts in the operation of Kanpur AERONET instruments and to ISRO-GBP for financial support to R. P. Singh through a research project. NR 67 TC 153 Z9 154 U1 4 U2 35 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 1 PY 2010 VL 115 AR D19205 DI 10.1029/2010JD014002 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 658RQ UT WOS:000282507500011 ER PT J AU Reichle, RH Kumar, SV Mahanama, SPP Koster, RD Liu, Q AF Reichle, Rolf H. Kumar, Sujay V. Mahanama, Sarith P. P. Koster, Randal D. Liu, Q. TI Assimilation of Satellite-Derived Skin Temperature Observations into Land Surface Models SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID ENSEMBLE KALMAN FILTER; SOIL-MOISTURE; BRIGHTNESS TEMPERATURE; ENERGY BALANCE; SYSTEM; PERFORMANCE; EVAPORATION; ALGORITHM; RADIANCES; ERROR AB Land surface (or "skin'') temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. In this research LST retrievals from the International Satellite Cloud Climatology Project (ISCCP) are assimilated into the Noah land surface model and Catchment land surface model (CLSM) using an ensemble-based, offline land data assimilation system. LST is described very differently in the two models. A priori scaling and dynamic bias estimation approaches are applied because satellite and model LSTs typically exhibit different mean values and variabilities. Performance is measured against 27 months of in situ measurements from the Coordinated Energy and Water Cycle Observations Project at 48 stations. LST estimates from Noah and CLSM without data assimilation ("open loop'') are comparable to each other and superior to ISCCP retrievals. For LST, the RMSE values are 4.9 K (CLSM), 5.5 K(Noah), and 7.6 K(ISCCP), and the anomaly correlation coefficients (R) are 0.61 (CLSM), 0.63 (Noah), and 0.52 (ISCCP). Assimilation of ISCCP retrievals provides modest yet statistically significant improvements (over an open loop, as indicated by nonoverlapping 95% confidence intervals) of up to 0.7 K in RMSE and 0.05 in the anomaly R. The skill of the latent and sensible heat flux estimates from the assimilation integrations is essentially identical to the corresponding open loop skill. Noah assimilation estimates of ground heat flux, however, can be significantly worse than open loop estimates. Provided the assimilation system is properly adapted to each land model, the benefits from the assimilation of LST retrievals are comparable for both models. C1 [Reichle, Rolf H.; Mahanama, Sarith P. P.; Koster, Randal D.; Liu, Q.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Kumar, Sujay V.; Liu, Q.] Sci Applicat Int Corp, Beltsville, MD USA. [Kumar, Sujay V.] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA. [Mahanama, Sarith P. P.] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. RP Reichle, RH (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Mail Code 610-1,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM rolf.reichle@nasa.gov RI Reichle, Rolf/E-1419-2012; Koster, Randal/F-5881-2012; Kumar, Sujay/B-8142-2015 OI Koster, Randal/0000-0001-6418-6383; FU NASA [NNX08AH36G]; Air Force Weather Agency [F2BBBJ7080G001] FX Thanks to Michael Bosilovich, John Eylander, Peter Norris, and Christa Peters-Lidard for helpful comments. Partial support for this study was provided through NASA (NNX08AH36G) and the Air Force Weather Agency (F2BBBJ7080G001). We are grateful for access to the many datasets that supported this work, in particular the CEOP and ISCCP projects. Surface meteorological data were provided by H. Kato, J. Meng, and M. Rodell of the GLDAS project, with data contributions from the NOAA Earth System Research Laboratory. Computing was supported by the NASA High End Computing Program. NR 54 TC 54 Z9 55 U1 0 U2 13 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD OCT PY 2010 VL 11 IS 5 BP 1103 EP 1122 DI 10.1175/2010JHM1262.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 661DE UT WOS:000282702400003 ER PT J AU Bagge, L Epp, L Kaul, AR Kaul, AB AF Bagge, Leif Epp, Larry Kaul, Abdur R. Kaul, Anupama B. TI Modeling and In-Situ Observation of Mechanical Resonances in Single, Vertically-Oriented Carbon Nanofibers SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Article DE Mechanical Resonators; Carbon Nanostructures; Nanoelectronics; Nano-Electro-Mechanical-Systems (NEMS); 3D Electronics ID MEMS AB In this paper, we have analyzed mechanical resonances in carbon nanotubes (CNTs) based on single, vertically-oriented tubes for their potential application in high-frequency, high-Q, miniaturized resonators. The nano-electro-mechanical (NEM) resonators were modeled using a commercially available finite-element-simulator, where the electro-mechanical coupling of the CNT to an incoming AC signal on a probe in close proximity was examined. The modeling results confirmed that the mechanical resonance was maximized when the frequency of the input signal was equal to the first order harmonic of the CNT. An investigation of the resonance frequency was also performed for various geometrical parameters of our unique three-dimensional (3D) NEMS architecture. Finally, in-situ observations of mechanical resonance in single, vertically oriented tubes is also reported, where such measurements were conducted inside a scanning-electron-microscope. This work suggests that our vertically oriented tubes are potentially well-suited for resonator applications, such as filter banks in communication systems or for mass sensing applications. C1 [Bagge, Leif; Epp, Larry; Kaul, Abdur R.; Kaul, Anupama B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bagge, Leif] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA. [Kaul, Abdur R.] Univ So Calif, Keck Sch Med, Los Angeles, CA 90089 USA. RP Kaul, AB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU National Aeronautics and Space Administration FX We would like to thank Robert Kowalczyk for PECVD growth chamber support, and Bophan Chim for assistance with in-situ SEM measurements at the Kavli Nanoscience Institute, California Institute of Technology (Caltech). We would also like to acknowledge Krikor Megerian, Richard Baron, and Julia R. Greer and Andrew T. Jennings both of Caltech, for useful discussions. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and was funded through the internal Research and Technology Development (R&TD) program. NR 11 TC 1 Z9 1 U1 0 U2 3 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1533-4880 J9 J NANOSCI NANOTECHNO JI J. Nanosci. Nanotechnol. PD OCT PY 2010 VL 10 IS 10 BP 6388 EP 6394 DI 10.1166/jnn.2010.3134 PG 7 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 631QA UT WOS:000280361400015 PM 21137735 ER PT J AU Ray, CS Reis, ST Sen, S O'Dell, JS AF Ray, C. S. Reis, S. T. Sen, S. O'Dell, J. S. TI JSC-1A lunar soil simulant: Characterization, glass formation, and selected glass properties SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 12th International Conference on the Physics of Non-Crystalline Solids (PNCS12) CY SEP 06-09, 2009 CL Foz do Iguacu, BRAZIL DE Lunar soil simulant; Glass formation; XRD; DTA; Mossbauer AB The chemical composition of a volcanic ash deposited near Flagstaff, Arizona, USA closely resembles that of the soil from the Maria geological terrain of the Moon. After mining and processing, this volcanic ash was designated as JSC-1A lunar simulant, and made available by NASA to the scientific research community in support of its future exploration programs on the lunar surface. The present paper describes characterization of the JSC-1A lunar simulant using DTA, TGA, XRD, chemical analysis and Mossbauer spectroscopy and the feasibility of developing glass and ceramic materials using in-situ resources on the surface of the Moon. The overall chemical composition of the JSC-1A lunar simulant is close to that of the actual lunar soil collected by Apollo 17 mission, and the total iron content in the simulant and the lunar soil is nearly the same. The JSC-1A lunar simulant contains both Fe(2+) (similar to 76%) and Fe(3+) (similar to 24%) ions as opposed to the actual lunar soil which contains only Fe(2+) ions, as expected. The glass forming characteristics of the melt of this simulant as determined by measuring its critical cooling rate for glass formation suggests that the simulant easily forms glass when melted and cooled at nominal rates between 50 and 55 degrees C/min. The coefficient of thermal expansion of the glass measured by dilatometry is in close agreement with that of alumina or YSZ, which makes the glass suitable for use as a coating and sealing material on these ceramics. Potential applications envisaged up to this time of these glass/ceramics on the surface of the Moon are also discussed. (C) 2010 Elsevier B.V. All rights reserved. C1 [Ray, C. S.; Reis, S. T.] Missouri Univ Sci & Technol, Mat Res Ctr, Rolla, MO 65409 USA. [Sen, S.] NASA, BAE Syst, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [O'Dell, J. S.] Plasma Proc Inc, Huntsville, AL 35811 USA. RP Reis, ST (reprint author), Missouri Univ Sci & Technol, Mat Res Ctr, Rolla, MO 65409 USA. EM reis@mst.edu NR 16 TC 15 Z9 16 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD OCT 1 PY 2010 VL 356 IS 44-49 SI SI BP 2369 EP 2374 DI 10.1016/j.jnoncrysol.2010.04.049 PG 6 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 694GD UT WOS:000285282100017 ER PT J AU Volkov, DL Fu, LL AF Volkov, Denis L. Fu, Lee-Lueng TI On the Reasons for the Formation and Variability of the Azores Current SO JOURNAL OF PHYSICAL OCEANOGRAPHY LA English DT Article ID NORTH-ATLANTIC OCEAN; FRONT-CURRENT SYSTEM; EDDY KINETIC-ENERGY; SUBTROPICAL GYRE; MEDITERRANEAN OUTFLOW; CIRCULATION PATTERNS; SURFACE CIRCULATION; MEAN CIRCULATION; CANARY BASIN; GEOSAT DATA AB Recent studies have shown that the formation of the well-defined, zonally oriented Azores Current may be the result of water mass transformation associated with the Mediterranean outflow in the Gulf of Cadiz. As the denser Mediterranean water descends down the continental slope, it entrains overlying North Atlantic Central Water. It is believed that the Azores Current then forms as part of the horizontal recirculating gyre generated through the beta-plume mechanism. In this study, the authors further explore this hypothesis by performing a series of numerical experiments. These experiments are based on a high-resolution general circulation model that includes the Mediterranean Sea and that realistically simulates the water mass exchange through the Strait of Gibraltar and the transport and variability of the Azores Current. The authors show that the divergence of the relative vorticity flux and the planetary vorticity flux, associated with planetary waves, are the main factors determining the variability of the Azores Current. It is shown experimentally that the closure of the Strait of Gibraltar leads to a complete disappearance of the Azores Current. On the other hand, with the open Strait of Gibraltar, the Azores Current persists even when the wind forcing over the region is turned off. The atmospheric forcing is thus not responsible for the formation of the Azores Current, but it affects the variability of the current with a minor effect on its magnitude. Numerical experiments suggest that the strength and the variability of the Azores Current depend on the magnitude of the water mass exchange through the Strait of Gibraltar but not on its seasonal variability. C1 [Volkov, Denis L.; Fu, Lee-Lueng] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Volkov, Denis L.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. RP Volkov, DL (reprint author), CALTECH, Jet Prop Lab, MS 300-314,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM denis.volkov@jpl.nasa.gov RI Volkov, Denis/A-6079-2011 OI Volkov, Denis/0000-0002-9290-0502 FU National Aeronautics and Space Administration (NASA) FX This research was carried out at Jet Propulsion Laboratory, California Institute of Technology, within the framework of the ECCO2 project (available online at http://www.ecco2.org), sponsored by the National Aeronautics and Space Administration (NASA) Physical Oceanography program. We thank Michael Schodlok for helping with the model setup. The authors thank Lynne Talley and two anonymous reviewers for their constructive remarks that helped to improve the manuscript. NR 61 TC 17 Z9 17 U1 0 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-3670 EI 1520-0485 J9 J PHYS OCEANOGR JI J. Phys. Oceanogr. PD OCT PY 2010 VL 40 IS 10 BP 2197 EP 2220 DI 10.1175/2010JPO4326.1 PG 24 WC Oceanography SC Oceanography GA 665RO UT WOS:000283053400001 ER PT J AU Qu, TD Gao, S Fukumori, I Fine, RA Lindstrom, EJ AF Qu, Tangdong Gao, Shan Fukumori, Ichiro Fine, Rana A. Lindstrom, Eric J. TI The Obduction of Equatorial 13 degrees C Water in the Pacific Identified by a Simulated Passive Tracer SO JOURNAL OF PHYSICAL OCEANOGRAPHY LA English DT Article ID EASTERN TROPICAL PACIFIC; SEA-SURFACE TEMPERATURE; COSTA-RICA DOME; SUBSURFACE COUNTERCURRENTS; INDONESIAN THROUGHFLOW; TSUCHIYA JET; ANNUAL CYCLE; OCEAN; CIRCULATION; DYNAMICS AB The obduction of equatorial 13 degrees C Water in the Pacific is investigated using a simulated passive tracer of the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO). The result shows that the 13 degrees C Water initialized in the region 8 degrees N-8 degrees S, 130 degrees-90 degrees W enters the surface mixed layer in the eastern tropical Pacific, mainly through upwelling near the equator, in the Costa Rica Dome, and along the coast of Peru. Approximately two-thirds of this obduction occurs within 10 years after the 13 degrees C Water being initialized, with the upper portion of the water mass reaching the surface mixed layer in only about a month. The obduction of the 13 degrees C Water helps to maintain a cool sea surface temperature year-round, equivalent to a surface heat flux of about -6.0 W m(-2) averaged over the eastern tropical Pacific (15 degrees S-15 degrees N, 130 degrees W-eastern boundary) for the period of integration (1993-2006). During El Nino years, when the thermocline deepens as a consequence of the easterly wind weakening, the obduction of the 13 degrees C Water is suppressed, and the reduced vertical entrainment generates a warming anomaly of up to 10 W m(-2) in the eastern tropical Pacific and in particular along the coast of Peru, providing explanations for the warming of sea surface temperature that cannot be accounted for by local winds alone. The situation is reversed during La Nina years. C1 [Qu, Tangdong] Univ Hawaii Manoa, IPRC, SOEST, Honolulu, HI 96822 USA. [Gao, Shan] Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China. [Fukumori, Ichiro] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Fine, Rana A.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. [Lindstrom, Eric J.] NASA, Sci Miss Directorate, Washington, DC 20546 USA. RP Qu, TD (reprint author), Univ Hawaii Manoa, IPRC, SOEST, 1680 East West Rd, Honolulu, HI 96822 USA. EM tangdong@hawaii.edu RI Gao, Shan/H-7959-2013 OI Gao, Shan/0000-0003-4510-5028 FU National Science Foundation [OCE06-23533]; Japan Agency for Marine-Earth Science and Technology; National Aeronautics and Space Administration (NASA); National Ocean and Atmosphere Administration through their sponsorship of research activities at the International Pacific Research Center (IPRC); Chinese Academy of Sciences [KZCX3-SW-222]; National Science Foundation of China [40876011] FX This research was supported by the National Science Foundation through Grant OCE06-23533 and by the Japan Agency for Marine-Earth Science and Technology, the National Aeronautics and Space Administration (NASA), and the National Ocean and Atmosphere Administration through their sponsorship of research activities at the International Pacific Research Center (IPRC). S. Gao was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences through Grant KZCX3-SW-222 and the National Science Foundation of China through Grant 40876011. Work by I. Fukumori was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The authors are grateful to, R. Furue, Z. Yu, R. Lukas, and J. McCreary for useful discussions throughout the study; to W. S. Kessler and an anonymous reviewer for their thoughtful comments and constructive suggestions on an earlier version of this manuscript; and to Z. Xing, I.-L. Tang, O. Wang, and Y. Shen for their constant assistance in processing the ECCO outputs. NR 41 TC 2 Z9 2 U1 1 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-3670 J9 J PHYS OCEANOGR JI J. Phys. Oceanogr. PD OCT PY 2010 VL 40 IS 10 BP 2282 EP 2297 DI 10.1175/2010JPO4358.1 PG 16 WC Oceanography SC Oceanography GA 665RO UT WOS:000283053400005 ER PT J AU Parker, PA Vining, GG Wilson, SR Szarka, JL Johnson, NG AF Parker, Peter A. Vining, G. Geoffrey Wilson, Sara R. Szarka, John L., III Johnson, Nels G. TI The Prediction Properties of Classical and Inverse Regression for the Simple Linear Calibration Problem SO JOURNAL OF QUALITY TECHNOLOGY LA English DT Article DE Calibration Intervals; Mathematical Modeling; Measurement-Uncertainty Analysis; Response-Surface Methodology. AB The calibration of measurement systems is a fundamental but understudied problem within industrial statistics. In the classical context of this problem, standards produced by the National Institute of Standards and Technology (NIST) are used in chemical, mechanical, electrical, and materials-engineering analyses. Often, applications cast into this calibration framework do not provide "gold standards" such as the standards provided by NIST. This paper considers the classical calibration approach, in which the experiment treats the standards as the regressor and the observed values as the response to calibrate the instrument. The analyst then must invert the resulting regression model in order to use the instrument to make actual measurements in practice. This paper compares this classical approach to inverse regression, which treats the standards as the response and the observed measurements as the regressor in the calibration experiment. Such an approach is intuitively appealing because it is simple and easily implemented in most software. However, it violates some of the basic regression assumptions. In this paper, we study the properties of classical and inverse regression applied to calibration problems, compare their performance, and provide guidance to practitioners. C1 [Parker, Peter A.; Wilson, Sara R.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Vining, G. Geoffrey; Szarka, John L., III; Johnson, Nels G.] Virginia Tech, Dept Stat, Blacksburg, VA 24061 USA. [Vining, G. Geoffrey] ASQ, Blacksburg, VA 24061 USA. RP Parker, PA (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM peter.a.parker@nasa.gov; vining@vt.edu; sara.r.wilson@nasa.gov; szarkajl@vt.edu; nels@vt.edu FU NASA FX We appreciate the support of Mr. Ray Rhew, AirSTAR's project manager at NASA, for funding this research effort and providing guidance on its practical implications. In addition, we acknowledge our fruitful collaboration with Dr. Margaret Pippin and Dr. Mary Kleb of NASA Langley's Science Directorate in initially motivating this research with a satellite to ground measurement correlation study. Last, we appreciate the helpful suggestions and comments from the reviewers, which have greatly improved our paper. NR 17 TC 6 Z9 6 U1 0 U2 6 PU AMER SOC QUALITY CONTROL-ASQC PI MILWAUKEE PA 600 N PLANKINTON AVE, MILWAUKEE, WI 53203 USA SN 0022-4065 J9 J QUAL TECHNOL JI J. Qual. Technol. PD OCT PY 2010 VL 42 IS 4 BP 332 EP 347 PG 16 WC Engineering, Industrial; Operations Research & Management Science; Statistics & Probability SC Engineering; Operations Research & Management Science; Mathematics GA 656RN UT WOS:000282354400002 ER PT J AU Tennyson, J Bernath, PF Brown, LR Campargue, A Csaszar, AG Daumont, L Gamache, RR Hodges, JT Naumenko, OV Polyansky, OL Rothman, LS Toth, RA Vandaele, AC Zobov, NF Fally, S Fazliev, AZ Furtenbacher, T Gordon, IE Hu, SM Mikhailenko, SN Voronin, BA AF Tennyson, Jonathan Bernath, Peter F. Brown, Linda R. Campargue, Alain Csaszar, Attila G. Daumont, Ludovic Gamache, Robert R. Hodges, Joseph T. Naumenko, Olga V. Polyansky, Oleg L. Rothman, Laurence S. Toth, Robert A. Vandaele, Ann Carine Zobov, Nikolai F. Fally, Sophie Fazliev, Alexander Z. Furtenbacher, Tibor Gordon, Iouli E. Hu, Shui-Ming Mikhailenko, Semen N. Voronin, Boris A. TI IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part II Energy levels and transition wavenumbers for (HDO)-O-16, (HDO)-O-17, and (HDO)-O-18 SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Water vapor; Transition wavenumbers; Atmospheric physics; Energy levels; MARVEL; Information system; Database; W@DIS; Infrared spectra; Microwave spectra; (HDO)-O-16; (HDO)-O-17; (HDO)-O-18 ID FOURIER-TRANSFORM SPECTROSCOPY; LASER-ABSORPTION SPECTROSCOPY; BEAM-MASER SPECTROSCOPY; HETERODYNE FREQUENCY MEASUREMENTS; LORENTZ-BROADENING COEFFICIENTS; LINE-SHIFT COEFFICIENTS; HIGH-RESOLUTION; CM(-1) REGION; MU-M; HYPERFINE STRUCTURE AB This is the second of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, pressure dependences, and energy levels, with associated critically reviewed assignments and uncertainties, for all the main isotopologues of water. This article presents energy levels and line positions of the following singly deuterated isotopologues of water: (HDO)-O-16, (HDO)-O-17, and (HDO)-O-18. The MARVEL (measured active rotational-vibrational energy levels) procedure is used to determine the levels, the lines, and their self-consistent uncertainties for the spectral regions 0-22708, 0-1674, and 0-12 105 cm(-1) for (HDO)-O-16, (HDO)-O-17, and (HDO)-O-18, respectively. For (HDO)-O-16, 54 740 transitions were analyzed from 76 sources, the lines come from spectra recorded both at room temperature and from hot samples. These lines correspond to 36 690 distinct assignments and 8818 energy levels. For (HDO)-O-17, only 485 transitions could be analyzed from three sources; the lines correspond to 162 MARVEL energy levels. For (HDO)-O-18, 8729 transitions were analyzed from 11 sources and these lines correspond to 1864 energy levels. The energy levels are checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators. This comparison shows that the measured transitions account for about 86% of the anticipated absorbance of (HDO)-O-16 at 296 K and that the transitions predicted by the MARVEL energy levels account for essentially all the remaining absorbance. The extensive list of MARVEL lines and levels obtained are given in the Supplementary Material of this article, as well as in a distributed information system applied to water, W@DIS, where they can easily be retrieved. In addition, the transition and energy level information for (H2O)-O-17 and (H2O)-O-18, given in the first paper of this series [Tennyson, et al. J Quant Spectr Rad Transfer 2009;110:573-96], has been updated. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Tennyson, Jonathan; Polyansky, Oleg L.] Univ London Univ Coll, Dept Phys & Astron, London WC1E 6BT, England. [Bernath, Peter F.] Univ York, York YO10 5DD, N Yorkshire, England. [Brown, Linda R.; Toth, Robert A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Campargue, Alain] Univ Grenoble 1, Grenoble, France. [Csaszar, Attila G.; Furtenbacher, Tibor] Eotvos Lorand Univ, Budapest, Hungary. [Daumont, Ludovic] Univ Reims, Reims, France. [Gamache, Robert R.] Univ Massachusetts, Lowell, MA USA. [Hodges, Joseph T.] NIST, Gaithersburg, MD 20899 USA. [Naumenko, Olga V.; Fazliev, Alexander Z.; Mikhailenko, Semen N.; Voronin, Boris A.] Russian Acad Sci, VE Zuev Inst Atmospher Opt, Tomsk 634021, Russia. [Polyansky, Oleg L.; Zobov, Nikolai F.] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod, Russia. [Rothman, Laurence S.; Gordon, Iouli E.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Vandaele, Ann Carine] Inst Aeron Spatiale Belgique, B-1180 Brussels, Belgium. [Fally, Sophie] Univ Libre Bruxelles, Brussels, Belgium. [Hu, Shui-Ming] Univ Sci & Technol China, Lab Bond Select Chem, Hefei 230026, Peoples R China. RP Tennyson, J (reprint author), Univ London Univ Coll, Dept Phys & Astron, Gower St, London WC1E 6BT, England. EM j.tennyson@ucl.ac.UK RI Csaszar, Attila/A-5241-2009; Hu, Shuiming/C-4287-2008; Bernath, Peter/B-6567-2012; Tennyson, Jonathan/I-2222-2012; Voronin, Boris/A-3444-2014; OI Hu, Shuiming/0000-0002-1565-8468; Bernath, Peter/0000-0002-1255-396X; Tennyson, Jonathan/0000-0002-4994-5238; Voronin, Boris/0000-0002-8743-5554; Gordon, Iouli/0000-0003-4763-2841; Rothman, Laurence/0000-0002-3837-4847 FU International Union of Pure and Applied Chemistry [2004-035-1-100]; UK Natural Environment Research Council, the Royal Society [WWLC-008535-(reintegration) MCA FP6 EC]; Scientific Research Fund. of Hungary [OTKA K77825]; European Union; Russian Foundation for Basic Research; Belgian Federal Science Policy Office [EV/35/3A, SD/AT/01A, PRODEX 1514901NLSFe(IC)]; Communaute de Belgique (Action de Recherche Concertees); NASA [NNX08AD92G]; National Science Foundation [ATM-0803135]; CNRS (INSU) FX We all thank the International Union of Pure and Applied Chemistry for funding under project 2004-035-1-100 (A database of water transitions from experiment and theory). In addition, this work has received partial support from the UK Natural Environment Research Council, the Royal Society, Grant WWLC-008535-(reintegration) MCA FP6 EC, the Scientific Research Fund. of Hungary (Grant OTKA K77825), the European Union QUASAAR Marie Curie research training network, NATO, the Russian Foundation for Basic Research, the Belgian Federal Science Policy Office (contracts EV/35/3A, SD/AT/01A, PRODEX 1514901NLSFe(IC)), the Belgian National Fund for Scientific Research (FRFC contracts), the Communaute de Belgique (Action de Recherche Concertees), the NASA laboratory astrophysics program, NASA Earth Observing System (E0S), under Grant NNX08AD92G, the National Science Foundation, through Grant no. ATM-0803135, and the Programme National LEFE (CHAT) of CNRS (INSU). Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 150 TC 82 Z9 89 U1 8 U2 46 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD OCT PY 2010 VL 111 IS 15 SI SI BP 2160 EP 2184 DI 10.1016/j.jqsrt.2010.06.012 PG 25 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 643CE UT WOS:000281269800004 ER PT J AU Carpenter, MH Nordstrom, J Gottlieb, D AF Carpenter, Mark H. Nordstrom, Jan Gottlieb, David TI Revisiting and Extending Interface Penalties for Multi-domain Summation-by-Parts Operators SO JOURNAL OF SCIENTIFIC COMPUTING LA English DT Article DE Summation-by-parts (SBP); High-order finite difference; Finite element; DG; Numerical stability; Interface conditions; Conservation; Applied and numerical mathematics ID FINITE-DIFFERENCE APPROXIMATIONS; DISCONTINUOUS GALERKIN METHODS; NAVIER-STOKES EQUATIONS; BOUNDARY-VALUE-PROBLEMS; ELLIPTIC PROBLEMS; SPECTRAL METHODS; ORDER; DISSIPATION; ACCURACY; SYSTEMS AB A general interface procedure is presented for multi-domain collocation methods satisfying the summation-by-parts (SBP) spatial discretization convention. Unlike more traditional operators (e.g. FEM) applied to the advection-diffusion equation, the new procedure penalizes the solution and the first p derivatives across the interface. The combined interior/interface operators are proven to be pointwise stable, and conservative, although accuracy deteriorates for pa parts per thousand yen2. Penalties between two different sets of variables are compared (motivated by FEM primal and flux formulations), and are shown to be equivalent for certain choices of penalty parameters. Extensive validation studies are presented using two classes of high-order SBP operators: (1) central finite difference, and (2) Legendre spectral collocation. C1 [Carpenter, Mark H.] NASA, Langley Res Ctr, Computat Aerosci Branch, Hampton, VA 23681 USA. [Nordstrom, Jan] FOI, Computat Phys Dept, S-16490 Stockholm, Sweden. [Nordstrom, Jan] Dept Informat Technol, S-75105 Uppsala, Sweden. [Nordstrom, Jan] KTH Royal Inst Technol, Dept Aeronaut & Vehicle Engn, S-10044 Stockholm, Sweden. RP Carpenter, MH (reprint author), NASA, Langley Res Ctr, Computat Aerosci Branch, Hampton, VA 23681 USA. EM mark.h.carpenter@nasa.gov; Jan.Nordstrom@foi.se OI Nordstrom, Jan/0000-0002-7972-6183 NR 31 TC 28 Z9 28 U1 0 U2 3 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0885-7474 J9 J SCI COMPUT JI J. Sci. Comput. PD OCT PY 2010 VL 45 IS 1-3 BP 118 EP 150 DI 10.1007/s10915-009-9301-5 PG 33 WC Mathematics, Applied SC Mathematics GA 642WB UT WOS:000281250600007 ER PT J AU Schiller, NH Cabell, RH Fuller, CR AF Schiller, Noah H. Cabell, Randolph H. Fuller, Chris R. TI Decentralized control of sound radiation using iterative loop recovery SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID STRUCTURAL ACOUSTIC CONTROL; ACTIVE CONTROL; PANELS; NOISE AB A decentralized model-based control strategy is designed to reduce low-frequency sound radiation from periodically stiffened panels. While decentralized control systems tend to be scalable, performance can be limited due to modeling error introduced by the unmodeled interaction between neighboring control units. Since bounds on modeling error are not known in advance, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is evaluated numerically using a model of a stiffened aluminum panel that is representative of the sidewall of an aircraft. Simulations demonstrate that the iterative approach can achieve significant reductions in radiated sound power from the stiffened panel without destabilizing neighboring control units. (C) 2010 Acoustical Society of America. [DOI: 10.1121/1.3479541] C1 [Schiller, Noah H.; Cabell, Randolph H.] NASA, Langley Res Ctr, Struct Acoust Branch, Hampton, VA 23681 USA. [Fuller, Chris R.] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA. RP Schiller, NH (reprint author), NASA, Langley Res Ctr, Struct Acoust Branch, Mail Stop 463, Hampton, VA 23681 USA. EM noah.h.schiller@nasa.gov NR 24 TC 1 Z9 2 U1 1 U2 3 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD OCT PY 2010 VL 128 IS 4 BP 1729 EP 1737 DI 10.1121/1.3479541 PN 1 PG 9 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 669FA UT WOS:000283331100029 PM 20968346 ER PT J AU Tan, Y Longtin, JP Sampath, S Zhu, DM AF Tan, Yang Longtin, Jon P. Sampath, Sanjay Zhu, Dongming TI Temperature-Gradient Effects in Thermal Barrier Coatings: An Investigation Through Modeling, High Heat Flux Test, and Embedded Sensor SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID PLASMA-SPRAYED YSZ; STABILIZED CUBIC ZIRCONIA; REFRACTIVE-INDEX; CONDUCTIVITY; MICROSTRUCTURE; DELAMINATION; DIFFUSIVITY; YTTRIA AB The harsh thermal environment in gas turbines, including elevated temperatures and high heat fluxes, induces significant thermal gradients in ceramic thermal barrier coatings (TBCs), which are used to protect metallic components. However, the thermal conductivity of plasma-sprayed TBC increases with exposure at high temperatures mainly due to sintering phenomena and possible phase transformation, resulting in coating performance degradation and potential thermal runaway issues. An analytical thermal model and experimentally obtained coating thermal conductivity data are used to determine the coating through-thickness temperature profile and effective thermal conductivity under gradient conditions at high temperatures. High heat flux tests are then performed on TBCs to evaluate coating thermal behavior under temperature gradients close to service conditions. Coating internal temperature during the tests was also measured by thermally sprayed embedded thermocouples within the top coat. This combined approach provides a sintering map with a new model and allows for the assessment of temperature-gradient effects on the thermal performance of plasma-sprayed TBCs. C1 [Tan, Yang; Sampath, Sanjay] SUNY Stony Brook, Dept Mat Sci & Engn, Ctr Thermal Spray Res, Stony Brook, NY 11794 USA. [Tan, Yang; Longtin, Jon P.; Sampath, Sanjay] SUNY Stony Brook, Dept Mech Engn, Stony Brook, NY 11794 USA. [Zhu, Dongming] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Tan, Y (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Ctr Thermal Spray Res, Stony Brook, NY 11794 USA. EM yangtan@gmail.com FU U.S. National Science Foundation [DMI-0428708] FX This work was supported by the U.S. National Science Foundation under Award DMI-0428708. NR 33 TC 1 Z9 1 U1 3 U2 14 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD OCT PY 2010 VL 93 IS 10 BP 3418 EP 3426 DI 10.1111/j.1551-2916.2010.03889.x PG 9 WC Materials Science, Ceramics SC Materials Science GA 660JN UT WOS:000282637200096 ER PT J AU Jain, R Yeo, H Chopra, I AF Jain, Rohit Yeo, Hyeonsoo Chopra, Inderjit TI Computational Fluid Dynamics-Computational Structural Dynamics Analysis of Active Control of Helicopter Rotor for Performance Improvement SO JOURNAL OF THE AMERICAN HELICOPTER SOCIETY LA English DT Article; Proceedings Paper CT 65th Annual forum on American-Helicopter-Society CY MAY 27-29, 2009 CL Grapevine, TX SP Amer Helicopter Soc ID SMART STRUCTURES; PREDICTION; TECHNOLOGY; AIRLOADS; SYSTEMS AB Three morphing rotor concepts, namely trailing-edge deflection (TED), leading-edge deflection (LED), and active twist, are investigated to improve rotor performance. This is a simulation-based investigation using both computational fluid dynamics (CFD)-computational structural dynamics (CSD) coupling and lifting-line-based comprehensive analysis. Coupled aero-structural simulations are performed to account for blade structural response due to aerodynamic loading generated by rotor morphing and pilot control to maintain the rotor trim state. A full-scale UH-60A Blackhawk rotor at two key flight conditions high-speed forward flight and high-thrust forward flight is studied. Numerical experiments are conducted for harmonic and nonharmonic deployment strategies of the three morphing concepts. It is found that at high-speed forward flight TED and active twist are more effective than LED; the improvements in rotor lift-over-effective drag (L/D(e)) are about 8.4% and 7.3%, respectively. The improvements are due to the additional lift that is generated on the advancing side in the region of negative blade tip loading without any drag increase. They result from an increase in the blade angle of attack due to the pitch-up moments induced by the TED, and in the case of active twist direct change in blade pitch. At the high-thrust condition, LED performs better than the other two concepts the improvement in L/D(e) is about 18.2%. Retreating side stall alleviation is the main cause for this improvement. C1 [Jain, Rohit] HyPerComp Inc, Westlake Village, CA USA. [Chopra, Inderjit] Univ Maryland, Alfred Gessow Rotorcraft Ctr, College Pk, MD 20742 USA. [Yeo, Hyeonsoo] NASA, Ames Res Ctr, USA Res Dev & Engn Command, Aeroflightdynam Directorate AMRDEC, Moffett Field, CA 94035 USA. RP Jain, R (reprint author), HyPerComp Inc, Westlake Village, CA USA. EM rkj@hypercomp.net NR 35 TC 10 Z9 11 U1 1 U2 6 PU AMER HELICOPTER SOC INC PI ALEXANDRIA PA 217 N WASHINGTON ST, ALEXANDRIA, VA 22314 USA SN 0002-8711 J9 J AM HELICOPTER SOC JI J. Am. Helicopter Soc. PD OCT PY 2010 VL 55 IS 4 AR 042004 DI 10.4050/JAHS.55.042004 PG 14 WC Engineering, Aerospace SC Engineering GA 745TJ UT WOS:000289189100004 ER PT J AU Ameri, AA Rigby, DL Steinthorsson, E Heidmann, J Fabian, JC AF Ameri, Ali A. Rigby, David L. Steinthorsson, Erlendur Heidmann, James Fabian, John C. TI Unsteady Analysis of Blade and Tip Heat Transfer as Influenced by the Upstream Momentum and Thermal Wakes SO JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME LA English DT Article DE blades; cooling; engines; rotors; turbines; wakes ID TURBINE; EFFICIENCY; STAGE AB The effect of the upstream wake on the time averaged rotor blade heat transfer was numerically investigated. The geometry and flow conditions of the first stage turbine blade of GE's E(3) engine with a tip clearance equal to 2% of the span were utilized. The upstream wake had both a total pressure and temperature deficit. The rotor inlet conditions were determined from a steady analysis of the cooled upstream vane. Comparisons between the time average of the unsteady rotor blade heat transfer and the steady analysis, which used the average inlet conditions of unsteady cases, are made to illuminate the differences between the steady and unsteady calculations. To help in the understanding of the differences between steady and unsteady results on one hand and to evaluate the effect of the total temperature wake on the other, separate calculations were performed to obtain the rotor heat transfer and adiabatic wall temperatures. It was found that the Nusselt number distribution for the time average of unsteady heat transfer is invariant if normalized by the difference in the adiabatic and wall temperatures. It appeared though that near the endwalls the Nusselt number distribution did depend on the thermal wake strength. Differences between steady and time averaged unsteady heat transfer results of up to 20% were seen on the blade surface. Differences were less on the blade tip surface. [DOI: 10.1115/1.3213549] C1 [Ameri, Ali A.] Ohio State Univ, Dept Aerosp Engn, Columbus, OH 43210 USA. [Rigby, David L.] NASA, Glenn Res Ctr, ASRC Aerosp, Cleveland, OH 44135 USA. [Steinthorsson, Erlendur] A&E Consulting, Westlake, OH 44140 USA. RP Ameri, AA (reprint author), Ohio State Univ, Dept Aerosp Engn, Columbus, OH 43210 USA. NR 20 TC 1 Z9 1 U1 0 U2 0 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0889-504X J9 J TURBOMACH JI J. Turbomach.-Trans. ASME PD OCT PY 2010 VL 132 IS 4 AR 041007 DI 10.1115/1.3213549 PG 7 WC Engineering, Mechanical SC Engineering GA 594ZI UT WOS:000277580000007 ER PT J AU Kopasakis, G Connolly, JW Paxson, DE Ma, P AF Kopasakis, George Connolly, Joseph W. Paxson, Daniel E. Ma, Peter TI Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research SO JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME LA English DT Article DE aerospace components; aerospace propulsion; aircraft; compressors; elasticity; jet engines; vehicle dynamics AB Under the NASA Fundamental Aeronautics Program, the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long, slim body aircrafts with pronounced aeroservoelastic modes. These modes can potentially couple with propulsion system dynamics, leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena, an integrated model is needed that includes both airframe structural dynamics and the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle aeropropulsoservoelastic model and for propulsion efficiency studies. [DOI: 10.1115/1.3192148] C1 [Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Ma, Peter] Univ Florida, Gainesville, FL 32611 USA. RP Kopasakis, G (reprint author), NASA, Glenn Res Ctr, 21000 Brookpk Rd,Mail Stop 77-1, Cleveland, OH 44135 USA. EM gkopasakis@nasa.gov NR 8 TC 2 Z9 2 U1 0 U2 4 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0889-504X J9 J TURBOMACH JI J. Turbomach.-Trans. ASME PD OCT PY 2010 VL 132 IS 4 AR 041003 DI 10.1115/1.3192148 PG 8 WC Engineering, Mechanical SC Engineering GA 594ZI UT WOS:000277580000003 ER PT J AU Collinson, GA Kataria, DO AF Collinson, Glyn A. Kataria, Dhiren O. TI On variable geometric factor systems for top-hat electrostatic space plasma analyzers SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE variable geometric factor; space plasma analyzer; electrostatic analyzer; electron spectrometer ID MISSION; SPECTROMETER; CLUSTER AB Even in the relatively small region of space that is the Earth's magnetosphere, ion and electron fluxes can vary by several orders of magnitude. Top-hat electrostatic analyzers currently do not possess the dynamic range required to sample plasma under all conditions. The purpose of this study was to compare, through computer simulation, three new electrostatic methods that would allow the sensitivity of a sensor to be varied through control of its geometric factor (GF) (much like an aperture on a camera). The methods studied were inner filter plates, split hemispherical analyzer (SHA) and top-cap electrode. This is the first discussion of the filter plate concept and also the first study where all three systems are studied within a common analyzer design, so that their relative merits could be fairly compared. Filter plates were found to have the important advantage that they facilitate the reduction in instrument sensitivity whilst keeping all other instrument parameters constant. However, it was discovered that filter plates have numerous disadvantages that make such a system impracticable for a top-hat electrostatic analyzer. It was found that both the top-cap electrode and SHA are promising variable geometric factor system (VGFS) concepts for implementation into a top-hat electrostatic analyzer, each with distinct advantages over the other. C1 [Collinson, Glyn A.; Kataria, Dhiren O.] Mullard Space Sci Lab, Holmbury, England. [Collinson, Glyn A.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. RP Collinson, GA (reprint author), Mullard Space Sci Lab, Holmbury, England. EM gac@mssl.ucl.ac.uk RI Collinson, Glyn/D-5700-2012 FU UK Science and Technology Facilities Council FX This work was supported by UK Science and Technology Facilities Council studentship funding. The authors wish to thank Rudy Frahm for assistance in preparing the manuscript, and Robert Beddington for his input on optimizing our simulation method. NR 22 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD OCT PY 2010 VL 21 IS 10 AR 105903 DI 10.1088/0957-0233/21/10/105903 PG 16 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 649QG UT WOS:000281787100059 ER PT J AU Radcliffe, E Naguib, A Humphreys, WM AF Radcliffe, E. Naguib, A. Humphreys, W. M., Jr. TI A novel design of a feedback-controlled optical microphone for aeroacoustics research SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE aeroacoustics and atmospheric sound; acoustical measurements and instrumentation; control systems; fibre-optic instruments ID DISPLACEMENT DETECTION AB This study constitutes a proof of concept of a new feedback-controlled optical microphone for potential use in phased 'beam-forming' arrays utilized in aeroacoustics research. In the new microphone design, a fiber-optic lever sensor is employed as a means for measuring the center displacement of a stretched thin membrane caused by incident acoustic pressure. The membrane is constructed from polyvinylidene-fluoride which exhibits piezoelectric properties allowing actuation of the membrane in a feedback system to nullify the optically detected deflection. The feedback provision was used to actively modify sensor parameters, most notably membrane stiffness, resonant frequency and damping. Testing of a prototype microphone was performed using a plane wave tube calibrator. Using feedback control, the fundamental resonant frequency of the prototype capsule was increased from 3.61 to 5.1 kHz, a 41% increase. Also, feedback was used for dc attenuation, equivalent to 'stiffening' of the microphone membrane. The results demonstrate that feedback control is an effective method for improving the microphone's transient response, as well as for 'self-tuning' and matching of microphone parameters in sensing arrays. C1 [Radcliffe, E.; Naguib, A.] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA. [Humphreys, W. M., Jr.] NASA, Adv Sensing & Opt Measurement Branch, Langley Res Ctr, Hampton, VA 23681 USA. RP Radcliffe, E (reprint author), Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA. EM radcli14@msu.edu; naguib@egr.msu.edu; william.m.humphreys@nasa.gov FU NASA [NNX08AO07H] FX This work was generously supported by the NASA GSRP fellowship, grant no NNX08AO07H. Additionally, gratitude is extended toward Dr Allan Zuckerwar at NASA Langley Research Center for his shared expertise in fiber-optic sensing and microphone design. NR 28 TC 2 Z9 2 U1 2 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD OCT PY 2010 VL 21 IS 10 AR 105208 DI 10.1088/0957-0233/21/10/105208 PG 11 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 649QG UT WOS:000281787100017 ER PT J AU Atli, KC Karaman, I Noebe, RD Garg, A Chumlyakov, YI Kireeva, IV AF Atli, K. C. Karaman, I. Noebe, R. D. Garg, A. Chumlyakov, Y. I. Kireeva, I. V. TI Improvement in the Shape Memory Response of Ti50.5Ni24.5Pd25 High-Temperature Shape Memory Alloy with Scandium Microalloying SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID THERMOELASTIC MARTENSITIC TRANSFORMATIONS; TI-PD; THERMODYNAMIC ANALYSIS; SITE PREFERENCE; NITI ALLOY; ADDITIONS; BEHAVIOR; CU; MICROSTRUCTURE; HYSTERESIS AB A Ti50.5Ni24.5Pd25 high-temperature shape memory alloy (HTSMA) is microalloyed with 0.5 at. pct scandium (Sc) to enhance its shape-memory characteristics, in particular, dimensional stability under repeated thermomechanical cycles. For both Ti50.5Ni24.5Pd25 and the Sc-alloyed material, differential scanning calorimetry is conducted for multiple cycles to characterize cyclic stability of the transformation temperatures. The microstructure is evaluated using electron microscopy, X-ray diffractometry, and wavelength dispersive spectroscopy. Isobaric thermal cycling experiments are used to determine transformation temperatures, dimensional stability, and work output as a function of stress. The Sc-doped alloy displays more stable shape memory response with smaller irrecoverable strain and narrower thermal hysteresis than the baseline ternary alloy. This improvement in performance is attributed to the solid solution hardening effect of Sc. C1 [Atli, K. C.; Karaman, I.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Noebe, R. D.; Garg, A.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Chumlyakov, Y. I.; Kireeva, I. V.] Siberian Phy Tech Inst, Tomsk 634050, Russia. RP Atli, KC (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. EM ikaraman@tamu.edu RI Karaman, Ibrahim/E-7450-2010; yuriy, chumlyakov/C-6033-2009; Atli, Kadri/D-6978-2013; Kireeva, Irina/E-1817-2014; Chumlyakov, Yuriy/R-6496-2016 OI Karaman, Ibrahim/0000-0001-6461-4958; Atli, Kadri/0000-0002-4807-2113; FU NASA [NNX07AB56A] FX This study has been supported by the NASA Fundamental Aeronautics Program, Subsonic Fixed Wing Project, through Cooperative Agreement No. NNX07AB56A. The authors thank Dr. Ray Guillemette, Texas A&M University Geology & Geophysics Department, for the microprobe analyses and the Shape Memory Alloy and Active Structures Group, NASA Glenn Research Center, for insightful discussions. NR 41 TC 29 Z9 32 U1 6 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD OCT PY 2010 VL 41A IS 10 BP 2485 EP 2497 DI 10.1007/s11661-010-0245-z PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 643UD UT WOS:000281323900008 ER PT J AU Jenniskens, P Shaddad, MH AF Jenniskens, P. Shaddad, M. H. TI 2008 TC3: The small asteroid with an impact SO METEORITICS & PLANETARY SCIENCE LA English DT Editorial Material C1 [Jenniskens, P.] NASA Ames Res Ctr, Washington, DC USA. [Shaddad, M. H.] Univ Khartoum, Dept Phys, Khartoum, Sudan. NR 0 TC 6 Z9 6 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT-NOV PY 2010 VL 45 IS 10-11 BP 1553 EP 1556 DI 10.1111/j.1945-5100.2010.01156.x PG 4 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 700QP UT WOS:000285759700001 ER PT J AU Shaddad, MH Jenniskens, P Numan, D Kudoda, AM Elsir, S Riyad, IF Ali, AE Alameen, M Alameen, NM Eid, O Osman, AT AbuBaker, MI Yousif, M Chesley, SR Chodas, PW Albers, J Edwards, WN Brown, PG Kuiper, J Friedrich, JM AF Shaddad, Muawia H. Jenniskens, Peter Numan, Diyaa Kudoda, Ayman M. Elsir, Saadia Riyad, Ihab F. Ali, Awad Elkareem Alameen, Mohammed Alameen, Nada M. Eid, Omer Osman, Ahmed T. AbuBaker, Mohamed I. Yousif, Mohamed Chesley, Steven R. Chodas, Paul W. Albers, Jim Edwards, Wayne N. Brown, Peter G. Kuiper, Jacob Friedrich, Jon M. TI The recovery of asteroid 2008 TC3 SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID TAGISH LAKE METEORITE; FALL; DYNAMICS; ORBIT AB On October 7, 2008, asteroid 2008 TC3 impacted Earth and fragmented at 37 km altitude above the Nubian Desert in northern Sudan. The area surrounding the asteroid's approach path was searched, resulting in the first recovery of meteorites from an asteroid observed in space. This was also the first recovery of remains from a fragile "cometary" PE = IIIa/b type fireball. In subsequent searches, over 600 mostly small 0.2-379 g meteorites (named "Almahata Sitta") with a total mass 10.7 kg were recovered from a 30 x 7 km area. Meteorites fell along the track at 1.3 kg km-1, nearly independent of mass between 1 and 400 g, with a total fallen mass of 39 +/- 6 kg. The strewn field was shifted nearly 1.8 km south from the calculated approach path. The influence of winds on the distribution of the meteorites, and on the motion of the dust train, is investigated. The majority of meteorites are ureilites with densities around 2.8 g cm-3, some of an anomalous (porous, high in carbon) polymict ureilite variety with densities as low as 1.5 g cm-3. In addition, an estimated 20-30% (in mass) of recovered meteorites were ordinary, enstatite, and carbonaceous chondrites. Their fresh look and matching distribution of fragments in the strewn field imply that they were part of 2008 TC3. For that reason, they are all referred to as "Almahata Sitta." No ureilite meteorites were found that still held foreign clasts, suggesting that the asteroid's clasts were only loosely bound. C1 [Jenniskens, Peter; Albers, Jim] Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA. [Shaddad, Muawia H.; Numan, Diyaa; Kudoda, Ayman M.; Riyad, Ihab F.; Alameen, Mohammed; Alameen, Nada M.; Eid, Omer; Osman, Ahmed T.; AbuBaker, Mohamed I.; Yousif, Mohamed] Univ Khartoum, Dept Phys, Khartoum 11115, Sudan. [Elsir, Saadia] Juba Univ, Dept Phys, Khartoum 11115, Juba, Sudan. [Ali, Awad Elkareem] Univ Khartoum, Dept Chem, Khartoum 11115, Sudan. [Chesley, Steven R.; Chodas, Paul W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Edwards, Wayne N.; Brown, Peter G.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Edwards, Wayne N.] Nat Resources Canada, Canadian Hazards Informat Serv, Ottawa, ON K1A 0Y3, Canada. [Kuiper, Jacob] Royal Netherlands Meteorol Inst, NL-3732 GK De Bilt, Netherlands. [Friedrich, Jon M.] Fordham Univ, Dept Chem, Bronx, NY 10458 USA. [Friedrich, Jon M.] Amer Museum Nat Hist, Dept Earth & Planetary Sci, New York, NY 10025 USA. RP Jenniskens, P (reprint author), Carl Sagan Ctr, SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. EM petrus.m.jenniskens@nasa.gov FU University of Khartoum, Department of Physics; National Science Foundation-Earth Sciences [EAR-0622171]; Department of Energy-Geosciences [DE-FG02-94ER14466]; State of Illinois; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NASA [NNX09AD92, NNX08AO64G]; Faculty of Sciences FX We thank the many students and staff of the University of Khartoum for their support in recovering the meteorites. The University of Khartoum, Department of Physics and the Faculty of Sciences sponsored the search efforts. Portions of this work were performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), of Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences (EAR-0622171), Department of Energy-Geosciences (DE-FG02-94ER14466) and the State of Illinois. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors would like to thank the British Atmospheric Data Centre (BADC) for the UKMO meteorological data. J.M.F. is supported by NASA under the Planetary Geology and Geophysics program through grant NNX09AD92. P.J. is supported by NASA under the Planetary Astronomy program through grant NNX08AO64G. NR 22 TC 23 Z9 23 U1 0 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT-NOV PY 2010 VL 45 IS 10-11 BP 1557 EP 1589 DI 10.1111/j.1945-5100.2010.01116.x PG 33 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 700QP UT WOS:000285759700002 ER PT J AU Jenniskens, P Vaubaillon, J Binzel, RP DeMeo, FE Nesvorny, D Bottke, WF Fitzsimmons, A Hiroi, T Marchis, F Bishop, JL Vernazza, P Zolensky, ME Herrin, JS Welten, KC Meier, MMM Shaddad, MH AF Jenniskens, Peter Vaubaillon, Jeremie Binzel, Richard P. DeMeo, Francesca E. Nesvorny, David Bottke, William F. Fitzsimmons, Alan Hiroi, Takahiro Marchis, Franck Bishop, Janice L. Vernazza, Pierre Zolensky, Michael E. Herrin, Jason S. Welten, Kees C. Meier, Matthias M. M. Shaddad, Muawia H. TI Almahata Sitta (=asteroid 2008 TC3) and the search for the ureilite parent body SO METEORITICS & PLANETARY SCIENCE LA English DT Review ID NEAR-EARTH ASTEROIDS; DIGITAL SKY SURVEY; SOLAR-SYSTEM; MAIN-BELT; VISIBLE SPECTROSCOPY; ANTARCTIC UREILITES; TERRESTRIAL PLANETS; BASALTIC ASTEROIDS; THERMAL EVOLUTION; 3200 PHAETHON AB This article explores what the recovery of 2008 TC3 in the form of the Almahata Sitta meteorites may tell us about the source region of ureilites in the main asteroid belt. An investigation is made into what is known about asteroids with roughly the same spectroscopic signature as 2008 TC3. A population of low-inclination near-Earth asteroids is identified with spectra similar to 2008 TC3. Five asteroid families in the Main Belt, as well as a population of ungrouped asteroids scattered in the inner and central belts, are identified as possible source regions for this near-Earth population and 2008 TC3. Three of the families are ruled out on dynamical and spectroscopic grounds. New near-infrared spectra of 142 Polana and 1726 Hoffmeister, lead objects in the two other families, also show a poor match to Almahata Sitta. Thus, there are no Main Belt spectral analogs to Almahata Sitta currently known. Space weathering effects on ureilitic materials have not been investigated, so that it is unclear how the spectrum of the Main Belt progenitor may look different from the spectra of 2008 TC3 and the Almahata Sitta meteorites. Dynamical arguments are discussed, as well as ureilite petrogenesis and parent body evolution models, but these considerations do not conclusively point to a source region either, other than that 2008 TC3 probably originated in the inner asteroid belt. C1 [Jenniskens, Peter; Marchis, Franck; Bishop, Janice L.] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Vaubaillon, Jeremie] IMCCE, Observ Paris, FR-75014 Paris, France. [Binzel, Richard P.; DeMeo, Francesca E.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [DeMeo, Francesca E.] LESIA, Observ Paris, FR-92195 Meudon, France. [Nesvorny, David; Bottke, William F.] SW Res Inst, Dept Space Studies, Boulder, CO 80302 USA. [Fitzsimmons, Alan] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Hiroi, Takahiro] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Vernazza, Pierre] ESTEC, ESA, NL-2200 AG Noordwijk, Netherlands. [Zolensky, Michael E.; Herrin, Jason S.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Welten, Kees C.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Meier, Matthias M. M.] ETH, Dept Earth Sci, CH-8092 Zurich, Switzerland. [Shaddad, Muawia H.] Univ Khartoum, Dept Phys & Astron, Khartoum 11115, Sudan. RP Jenniskens, P (reprint author), SETI Inst, Carl Sagan Ctr, 189 Bernardo Ave, Mountain View, CA 94043 USA. EM pjenniskens@mail.arc.nasa.gov RI Marchis, Franck/H-3971-2012; OI Herrin, Jason/0000-0002-2452-244X; Meier, Matthias/0000-0002-7179-4173 FU National Science Foundation [0506716]; Hayabusa program; NASA FX This article was improved greatly from comments by referees Alberto Cellino, Edward Scott, David W. Mittlefehldt, and associate editor Cyrena Goodrich. We also thank Lucy McFadden for helpful discussions, and Beth E. Clark and Schelte J. Bus for sharing published data. We thank the many students and staff of the University of Khartoum for their support in recovering the meteorites. The near-IR spectra discussed in this article were measured at the IRTF telescope at Manua Kea, Hawaii in October and November of 2009, as part of the MIT-UH-IRTF Joint Campaign for NEO Spectral Reconnaissance. All of the data utilized in this publication (unless so specified) were obtained and made available by the MIT-UH-IRTF Joint Campaign for NEO Reconnaissance. The IRTF is operated by the University of Hawaii under Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration, Office of Space Science, Planetary Astronomy Program. The MIT component of this work is supported by the National Science Foundation under Grant No. 0506716. M. E. Z. acknowledges support from the Hayabusa program. P. J. is supported by a grant from the NASA Planetary Astronomy Program. NR 138 TC 24 Z9 24 U1 0 U2 9 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT-NOV PY 2010 VL 45 IS 10-11 BP 1590 EP 1617 DI 10.1111/j.1945-5100.2010.01153.x PG 28 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 700QP UT WOS:000285759700003 ER PT J AU Zolensky, M Herrin, J Mikouchi, T Ohsumi, K Friedrich, J Steele, A Rumble, D Fries, M Sandford, S Milam, S Hagiya, K Takeda, H Satake, W Kurihara, T Colbert, M Hanna, R Maisano, J Ketcham, R Goodrich, C Le, L Robinson, G Martinez, J Ross, K Jenniskens, P Shaddad, MH AF Zolensky, Michael Herrin, Jason Mikouchi, Takashi Ohsumi, Kazumasa Friedrich, Jon Steele, Andrew Rumble, Douglas Fries, Marc Sandford, Scott Milam, Stefanie Hagiya, Kenji Takeda, Hiroshi Satake, Wataru Kurihara, Taichi Colbert, Matthew Hanna, Romy Maisano, Jessie Ketcham, Richard Goodrich, Cyrena Le, Loan Robinson, GeorgAnn Martinez, James Ross, Kent Jenniskens, Peter Shaddad, Muawia H. TI Mineralogy and petrography of the Almahata Sitta ureilite SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID PARENT BODY; ANTARCTIC UREILITES; POLYMICT UREILITE; CRYSTAL-CHEMISTRY; ORIGIN; METEORITES; CHONDRITES; PIGEONITE; EVOLUTION; IMPACT AB We performed a battery of analyses on 17 samples of the Almahata Sitta meteorite, identifying three main lithologies and several minor ones present as clasts. The main lithologies are (1) a pyroxene-dominated, very porous, highly reduced lithology, (2) a pyroxene-dominated compact lithology, and (3) an olivine-dominated compact lithology. Although it seems possible that all three lithologies grade smoothly into each other at the kg-scale, at the g-scale this is not apparent. The meteorite is a polymict ureilite, with some intriguing features including exceptionally variable porosity and pyroxene composition. Although augite is locally present in Almahata Sitta, it is a minor phase in most (but not all) samples we have observed. Low-calcium pyroxene (< 5 mole% wollastonite) is more abundant than compositionally defined pigeonite; however, we found that even the low-Ca pyroxene in Almahata Sitta has the monoclinic pigeonite crystal structure, and thus is properly termed pigeonite. As the major pyroxene in Almahata Sitta is pigeonite, and the abundance of pigeonite is generally greater than that of olivine, this meteorite might be called a pigeonite-olivine ureilite, rather than the conventional olivine-pigeonite ureilite group. The wide variability of lithologies in Almahata Sitta reveals a complex history, including asteroidal igneous crystallization, impact disruption, reheating and partial vaporization, high-temperature reduction and carbon burning, and re-agglomeration. C1 [Zolensky, Michael] NASA, ARES, Johnson Space Ctr, Houston, TX 77058 USA. [Herrin, Jason; Le, Loan; Robinson, GeorgAnn; Martinez, James; Ross, Kent] ESCG Jacobs, Houston, TX 77058 USA. [Mikouchi, Takashi; Takeda, Hiroshi; Satake, Wataru; Kurihara, Taichi] Univ Tokyo, Dept Earth & Planetary Sci, Bunkyo Ku, Tokyo 1130033, Japan. [Friedrich, Jon] Fordham Univ, Dept Chem, Bronx, NY 10458 USA. [Ohsumi, Kazumasa] JASRI, Sayo, Hyogo 6795198, Japan. [Friedrich, Jon] Amer Museum Nat Hist, Dept Earth & Planetary Sci, New York, NY 10024 USA. [Steele, Andrew; Rumble, Douglas] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Fries, Marc] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Sandford, Scott] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Milam, Stefanie] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hagiya, Kenji] Univ Hyogo, Grad Sch Life Sci, Kamigori, Hyogo 6781297, Japan. [Colbert, Matthew; Hanna, Romy; Maisano, Jessie; Ketcham, Richard] Univ Texas Austin, Univ Texas High Resolut Xray CT Facil, Austin, TX 78712 USA. [Goodrich, Cyrena] Planetary Sci Inst, Tucson, AZ 85719 USA. [Jenniskens, Peter] SETI Inst, Mountain View, CA 94043 USA. [Shaddad, Muawia H.] Univ Khartoum, Dept Phys & Astron, Khartoum 11115, Sudan. RP Zolensky, M (reprint author), NASA, ARES, Johnson Space Ctr, Houston, TX 77058 USA. EM michael.e.zolensky@nasa.gov RI Ketcham, Richard/B-5431-2011; Milam, Stefanie/D-1092-2012; OI Ketcham, Richard/0000-0002-2748-0409; Milam, Stefanie/0000-0001-7694-4129; Herrin, Jason/0000-0002-2452-244X FU NASA [NNX07AI48G] FX We are happy to acknowledge the work of the many alert individuals who discovered, observed, tracked, predicted the asteroid landing site, and finally located asteroid 2008 TC3. We especially thank the many students of the University of Khartoum who worked hard to recover the final asteroid samples in a harsh environment. None of us had grant funding specifically to support study of Almahata Sitta, but fortunately our grant institutions were lenient for such a fascinating project. Reviews by and other discussions with Makoto Kimura and Paul Warren resulted in a greatly improved manuscript. M. Z. was supported by the Hayabusa Mission and the Stardust Sample Analysis Program. P. J. was supported by a grant from NASA's Planetary Astronomy Program. D. R. thanks NASA for grant NNX07AI48G which supported oxygen isotope analyses. NR 54 TC 31 Z9 31 U1 0 U2 8 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT-NOV PY 2010 VL 45 IS 10-11 BP 1618 EP 1637 DI 10.1111/j.1945-5100.2010.01128.x PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 700QP UT WOS:000285759700004 ER PT J AU Cloutis, EA Hudon, P Romanek, CS Bishop, JL Reddy, V Gaffey, MJ Hardersen, PS AF Cloutis, E. A. Hudon, Pierre Romanek, Christopher S. Bishop, Janice L. Reddy, Vishnu Gaffey, Michael J. Hardersen, Paul S. TI Spectral reflectance properties of ureilites SO METEORITICS & PLANETARY SCIENCE LA English DT Review ID NORTHWEST AFRICA 1500; ANTARCTIC UREILITES; COOLING HISTORY; ORTHO-PYROXENE; CARBONACEOUS CHONDRITES; ASTEROID 25143-ITOKAWA; ISOTOPIC COMPOSITION; OPTICAL-PROPERTIES; CRYSTAL-CHEMISTRY; METEORITE SPECTRA AB The 0.35-2.6 mu m reflectance spectra of 18 ureilites have been examined in order to improve our understanding of the spectral reflectance properties of this meteorite class. Across this spectral range, ureilite spectra are characterized by a steep rise in reflectance over the 0.3 to approximately 0.7 mu m range, low overall reflectance (< 25%) and weak mafic iron silicate absorption bands in the 1 and 2 mu m region. The weakness of these bands and the low reflectance are attributed to the presence of dispersed graphite and related carbonaceous phases, metal, and possibly shock. Wavelength positions of the mafic silicate absorption bands span a range of values, but are consistent with the presence of pyroxene and olivine. Ureilite spectra generally exhibit blue slopes across the 0.7-2.6 mu m interval and exhibit many overall similarities to some carbonaceous chondrites. The weak features and spectral diversity of ureilites make reflectance spectroscopy-based identification of a ureilite parent body challenging. As terrestrial alteration of ureilites is prevalent, spectral studies of falls are most useful for determining the spectral properties of likely parent bodies. C1 [Cloutis, E. A.] Univ Winnipeg, Dept Geog, Winnipeg, MB R3B 2E9, Canada. [Hudon, Pierre] NASA, Astromat Res & Explorat Sci Off, Johnson Space Ctr, Houston, TX 77058 USA. [Hudon, Pierre] McGill Univ, Dept Min & Mat Engn, Montreal, PQ H3A 2B2, Canada. [Romanek, Christopher S.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Romanek, Christopher S.] Univ Georgia, Dept Geol, Aiken, SC 29802 USA. [Bishop, Janice L.] NASA, Carl Sagan Ctr, SETI Inst, Ames Res Ctr, Mountain View, CA 94043 USA. [Reddy, Vishnu; Gaffey, Michael J.; Hardersen, Paul S.] Univ N Dakota, Dept Space Studies, Grand Forks, ND 58202 USA. RP Cloutis, EA (reprint author), Univ Winnipeg, Dept Geog, 515 Portage Ave, Winnipeg, MB R3B 2E9, Canada. EM e.cloutis@uwinnipeg.ca RI Hardersen, Paul/N-9343-2014; OI Hardersen, Paul/0000-0002-0440-9095; Reddy, Vishnu/0000-0002-7743-3491 FU National Research Council of the United States; NSERC; Canadian Space Agency; University of Winnipeg FX We are grateful to John E. Gruener for collecting the X-ray patterns and to David W. Mittlefehldt and Craig S. Schwandt for help with the electron probe microanalysis. We thank the Meteorite Research Group of the NASA Johnson Space Center, the National Museum of Natural History of the Smithsonian Institution, and the Antarctic Meteorite Research Center of the National Institute of Polar Research for the allocations of meteorites. Thanks also to Tom Burbine, Lucy McFadden, and Dale Cruikshank for their reviews of this study and excellent comments. P. Hudon was supported by a Research Associateship Award of the National Research Council of the United States. E. Cloutis was supported by research grants and contracts from NSERC, the Canadian Space Agency, and the University of Winnipeg. NR 139 TC 22 Z9 22 U1 1 U2 3 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT-NOV PY 2010 VL 45 IS 10-11 BP 1668 EP 1694 DI 10.1111/j.1945-5100.2010.01065.x PG 27 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 700QP UT WOS:000285759700007 ER PT J AU Glavin, DP Aubrey, AD Callahan, MP Dworkin, JP Elsila, JE Parker, ET Bada, JL Jenniskens, P Shaddad, MH AF Glavin, Daniel P. Aubrey, Andrew D. Callahan, Michael P. Dworkin, Jason P. Elsila, Jamie E. Parker, Eric T. Bada, Jeffrey L. Jenniskens, Peter Shaddad, Muawia H. TI Extraterrestrial amino acids in the Almahata Sitta meteorite SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID EARLY SOLAR SYSTEM; MURCHISON METEORITE; CARBONACEOUS CHONDRITES; LIQUID-CHROMATOGRAPHY; MONOCARBOXYLIC ACIDS; UREILITE METEORITES; CATALYTIC SYNTHESIS; MASS SPECTROMETRY; ALKANOIC ACIDS; ORGANIC MATTER AB Amino acid analysis of a meteorite fragment of asteroid 2008 TC(3) called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, beta-amino-n-butyric acid, 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (d/l similar to 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other nonprotein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2-methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five-carbon amino acids in Almahata Sitta compared to CI, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC(3) cooled to lower temperatures, or introduced as a contaminant from unrelated meteorite clasts and chemically altered by alpha-decarboxylation. C1 [Glavin, Daniel P.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Aubrey, Andrew D.] NASA, Jet Prop Lab, CALTECH, Pasadena, CA 91109 USA. [Parker, Eric T.; Bada, Jeffrey L.] Univ Calif San Diego, Scripps Inst Oceanog, Geosci Res Div, La Jolla, CA 92093 USA. [Jenniskens, Peter] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Shaddad, Muawia H.] Univ Khartoum, Dept Phys & Astron, Khartoum 11115, Sudan. RP Glavin, DP (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM daniel.p.glavin@nasa.gov RI Elsila, Jamie/C-9952-2012; Callahan, Michael/D-3630-2012; Glavin, Daniel/D-6194-2012; Dworkin, Jason/C-9417-2012 OI Glavin, Daniel/0000-0001-7779-7765; Dworkin, Jason/0000-0002-3961-8997 FU National Aeronautics and Space Administration (NASA) Astrobiology Institute; Goddard Center for Astrobiology; NASA; NASA at the Goddard Space Flight Center FX We thank the University of Khartoum and the students and staff of the Physics and Astronomy Department of the Faculty of Sciences for their efforts to recover the meteorites from the Nubian Desert; A. Lewis for optimizing the LC analytical separation conditions at GSFC. We are also grateful to C. Alexander and P. Ehrenfreund for providing helpful comments. D. P. G., J. P. D., and J. E. E. acknowledge funding support from the National Aeronautics and Space Administration (NASA) Astrobiology Institute and the Goddard Center for Astrobiology, and the NASA Cosmochemistry and Astrobiology: Exobiology and Evolutionary Biology Programs. The research carried out at the Jet Propulsion Laboratory, California Institute of Technology, was performed so under a contract with NASA and supported by an appointment to the NASA Postdoctoral Program at JPL, administered by Oak Ridge Associated Universities through a contract with NASA. M. P. C. also acknowledges support from the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 65 TC 24 Z9 25 U1 2 U2 15 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT-NOV PY 2010 VL 45 IS 10-11 BP 1695 EP 1709 DI 10.1111/j.1945-5100.2010.01094.x PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 700QP UT WOS:000285759700008 ER PT J AU Rumble, D Zolensky, ME Friedrich, JM Jenniskens, P Shaddad, MH AF Rumble, Douglas Zolensky, Michael E. Friedrich, Jon M. Jenniskens, Peter Shaddad, Muawia H. TI The oxygen isotope composition of Almahata Sitta SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID POLYMICT UREILITE; LASER; RATIOS; MINERALS; GARNET AB Eleven fragments of the meteorite Almahata Sitta (AHS) have been analyzed for oxygen isotopes. The fragments were separately collected as individual stones from the meteorite's linear strewn field in the Nubian Desert. Each of the fragments represents a sample of a different and distinct portion of asteroid 2008 TC(3). Ten of the fragments span the same range of values of delta 18O, delta 17O, and Delta 17O, and follow the same trend along the carbonaceous chondrite anhydrous minerals (CCAM) line as monomict and polymict members of the ureilite family of meteorites. The oxygen isotope composition of fragment #25 is consistent with its resemblance petrographically to an H5 ordinary chondrite. Our results demonstrate that a single small asteroidal parent body, asteroid 2008 TC(3), only 4 m in length, encompassed the entire range of variation in oxygen isotope compositions measured for monomict and polymict ureilites. C1 [Rumble, Douglas] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Zolensky, Michael E.] NASA, Johnson Space Flight Ctr, Houston, TX 77058 USA. [Friedrich, Jon M.] Fordham Univ, Dept Chem, Bronx, NY 10458 USA. [Jenniskens, Peter] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Shaddad, Muawia H.] Univ Khartoum, Dept Phys & Astron, Khartoum 11115, Sudan. RP Rumble, D (reprint author), Carnegie Inst Washington, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. EM rumble@gl.ciw.edu FU NASA [NNX07AI48G, NNX09AD92G] FX This study would have been impossible without hard work by students and staff of the University of Khartoum in collecting samples from the Nubian Desert strewn field. We are grateful to our Sudanese colleagues for making samples available for study. H. Downes, C. A. Goodrich, and N. T. Kita contributed to this study through helpful discussion and criticism. Rumble thanks NASA's Cosmochemistry program for support through grant NNX07AI48G. Portions of this work were supported by NASA under the Planetary Geology and Geophysics program through grant NNX09AD92G to Friedrich. Jenniskens is supported by a grant from NASA's Planetary Astronomy program. NR 17 TC 11 Z9 11 U1 0 U2 4 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT-NOV PY 2010 VL 45 IS 10-11 BP 1765 EP 1770 DI 10.1111/j.1945-5100.2010.01099.x PG 6 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 700QP UT WOS:000285759700014 ER PT J AU Herrin, JS Zolensky, ME Ito, M Le, L Mittlefehldt, DW Jenniskens, P Ross, AJ Shaddad, MH AF Herrin, Jason S. Zolensky, Michael E. Ito, Motoo Le, Loan Mittlefehldt, David W. Jenniskens, Peter Ross, Aidan J. Shaddad, Muawia H. TI Thermal and fragmentation history of ureilitic asteroids: Insights from the Almahata Sitta fall SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID POLYMICT UREILITE; PARENT BODY; NEBULAR PROCESSES; IRON-METEORITES; ORTHO-PYROXENE; NOBLE-GASES; ORIGIN; IMPACT; MESOSIDERITES; CONSTRAINTS AB The Almahata Sitta fall event provides a unique opportunity to gain insight into the nature of ureilitic objects in space and the delivery of ureilite meteorites to Earth. From thermal events recorded in the mineralogy, petrology, and chemistry of ureilites recovered from the fall area, we reconstruct a timeline of events that led to their genesis. This history is similar to that of other known ureilites and supportive of a disrupted ureilite parent body hypothesis. Temperatures of final mantle equilibrium were 1200-1300 degrees C, but this high-temperature history was abruptly terminated by rapid cooling and reduction associated with pressure loss. The onset of late reduction reactions and onset of rapid cooling must have been essentially simultaneous, most likely engendered by the same event. Cooling rates of 0.05-2 degrees C h-1 determined from reversely zoned olivines and pyroxenes in Almahata Sitta imply rapid disassembly into fragments tens meters in size or smaller. This phenomenon seems to have affected all known portions of the ureilite parent body mantle, implying an event of global significance rather than localized unroofing. Reaccretion of one or more daughter asteroids occurred only after significant heat loss at minimum time scales of weeks to months, during which time the debris cloud surrounding the disrupted parent was inefficient at retaining heat. Fragments initially dislodged from the ureilite parent body mantle underwent subsequent size reduction and mixed with various chondritic bodies, giving rise to polylithologic aggregate objects such as asteroid 2008 TC(3). C1 [Herrin, Jason S.; Zolensky, Michael E.; Ito, Motoo; Le, Loan; Mittlefehldt, David W.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Herrin, Jason S.; Le, Loan] ESCG Astromat Res Grp, Houston, TX 77058 USA. [Ito, Motoo] USRA, Lunar & Planetary Inst, Houston, TX 77058 USA. [Jenniskens, Peter] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Ross, Aidan J.] UCL, Birkbeck Res Sch Earth Sci, Ctr Planetary Sci, London WC1E 6BT, England. [Ross, Aidan J.] Nat Hist Museum, Dept Mineral, IARC, London SW7 5BD, England. [Shaddad, Muawia H.] Univ Khartoum, Dept Phys & Astron, Khartoum 11115, Sudan. RP Herrin, JS (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. EM jason.s.herrin@nasa.gov OI Herrin, Jason/0000-0002-2452-244X FU NASA; Hayabusa mission; NERC FX Thank you to the University of Khartoum, Department of Physics and Astronomy and all of the students from the University of Khartoum who aided in the recovery of Almahata Sitta, especially D. Aldhawi and R. Alderdeeri, as well as the various observers who tracked asteroid 2008 TC3. The ANSMET program and the U.S. Antarctic Meteorite Program provided recovery and allocation of other ureilites examined as part of this study. P. Abell, J. Jones, T. Mikouchi, J. Park, and P. Warren provided helpful discussion. H. Downes, S. Singletary, E. Scott, and T. Jull provided constructive comments and reviews. This work was supported in part by a grant from the NASA Cosmochemistry Program to D. W. M. M. E. Z. was supported by the Hayabusa mission. P. J. was supported by the NASA Planetary Astronomy program. A. J. R. was supported by a NERC CASE Studentship. NR 86 TC 21 Z9 21 U1 0 U2 7 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT-NOV PY 2010 VL 45 IS 10-11 BP 1789 EP 1803 DI 10.1111/j.1945-5100.2010.01136.x PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 700QP UT WOS:000285759700017 ER PT J AU Mikouchi, T Zolensky, ME Ohnishi, I Suzuki, T Takeda, H Jenniskens, P Shaddad, MH AF Mikouchi, Takashi Zolensky, Michael E. Ohnishi, Ichiro Suzuki, Toshiaki Takeda, Hiroshi Jenniskens, Peter Shaddad, Muawia H. TI Electron microscopy of pyroxene in the Almahata Sitta ureilite SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID ANTARCTIC UREILITES; PARENT BODY; METEORITES; MINERALOGY; ORIGIN; CLINOPYROXENE; PIGEONITES; IMPACT; TEM AB We performed scanning electron microscope-electron backscatter diffraction (SEM-EBSD) and focused ion beam-transmission electron microscopy (FIB-TEM) investigations of pyroxene in the Almahata Sitta ureilite (sample #7). The pyroxenes (mg# = similar to 0.92) are present as minute individual grains (10-20 mu m in size) showing a polycrystalline texture, and they are both low-Ca and high-Ca pyroxenes. Although their Ca contents are as low as Wo(2-3), the EBSD analysis shows that low-Ca pyroxenes are clinopyroxene (P2(1)/c). The obtained pyroxene equilibration temperature (1240-1280 degrees C) is consistent with the previous studies on many ureilites. In low-Ca pigeonite, (001) augite exsolution lamellae (10-15 nm wide) develop in the pigeonite host (20-45 nm wide), and a similar exsolution texture was observed in augite. The exsolution wavelength of pyroxene (typically 30-60 nm) gives the cooling rate of 0.2-5 degrees C h-1. Such a rapid cooling probably records quenching from high temperature (1240-1280 degrees C) down to 1000 degrees C (estimated from the exsolution pair) due to the breakup of the ureilite parent body (UPB) while it was still hot. The pyroxene microstructure of Almahata Sitta is within the range of known ureilites and is most similar to that of Allan Hills (ALH) A81101 with the affinity of polycrystalline texture. The coarser exsolution texture of ALHA81101 pyroxene suggests slower cooling history than Almahata Sitta. However, direct comparison is difficult because of different pyroxene compositions. Because ALHA77257 has a similar pyroxene composition to Almahata Sitta and does not show visible pyroxene exsolution, it should have cooled faster than Almahata Sitta. Rapid, albeit variable cooling rates observed in different ureilite samples may suggest that they originated from UPB fragments of different size. C1 [Mikouchi, Takashi; Takeda, Hiroshi] Univ Tokyo, Grad Sch Sci, Dept Earth & Planetary Sci, Bunkyo Ku, Tokyo 1130033, Japan. [Zolensky, Michael E.] NASA, ARES, Johnson Space Ctr, Houston, TX 77058 USA. [Ohnishi, Ichiro] JEOL Ltd, EM Business Unit, Tokyo 1968558, Japan. [Suzuki, Toshiaki] JEOL Ltd, SM Business Unit, Tokyo 1968558, Japan. [Jenniskens, Peter] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Shaddad, Muawia H.] Univ Khartoum, Dept Phys & Astron, Khartoum 11115, Sudan. RP Mikouchi, T (reprint author), Univ Tokyo, Grad Sch Sci, Dept Earth & Planetary Sci, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. EM mikouchi@eps.s.u-tokyo.ac.jp FU Japanese Ministry of Education, Culture, Sports, Science and Technology [20740305]; NIPR [P-8]; Ocean Research Institute [005]; University of Tokyo; JAXA-NASA Hayabusa Mission; NASA FX We thank the students and staff of the University of Khartoum who recovered the Almahata Sitta meteorites and the many astronomers that tracked the fall of asteroid 2008 TC3. We especially thank JEOL for offering us an opportunity to use their instruments with technical assistance. The insightful comments by referees Mario Tribaudino, David Mittlefehldt, Alan Rubin, and Christine Floss helped to improve the original manuscript and are greatly appreciated. This work was supported in part by the Grant-in-Aid for Young Scientists (B) by the Japanese Ministry of Education, Culture, Sports, Science and Technology No. 20740305 and by NIPR Research Project Funds, P-8 (evolution of the early solar system materials) (TM). This work is further supported in part by funds from the cooperative program (No. 005, 2007) provided by Ocean Research Institute, the University of Tokyo (HT) and by the JAXA-NASA Hayabusa Mission and the NASA Stardust Sample Analysis Program (MZ). P. J. is supported by NASA's Planetary Astronomy program. The SEM work was performed in the Electron Microbeam Analysis Facility for Mineralogy at the Department of Earth and Planetary Science, University of Tokyo. NR 36 TC 7 Z9 7 U1 1 U2 11 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT-NOV PY 2010 VL 45 IS 10-11 BP 1812 EP 1820 DI 10.1111/j.1945-5100.2010.01111.x PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 700QP UT WOS:000285759700019 ER PT J AU Greenhall, CA AF Greenhall, Charles A. TI An approach to power-law phase-noise models through generalized functions SO METROLOGIA LA English DT Article ID FREQUENCY STABILITY; FLICKER-NOISE; VARIANCE; STATISTICS; SIMULATION; STANDARDS; FREEDOM AB This paper has two purposes: first, as a tutorial on the use of generalized autocovariances for deriving covariance properties of phase-noise models with power-law spectra; second, to connect the subject to the theory of generalized functions, also called tempered distributions. Proofs of theorems are available in an online supplement (stacks.iop.org/Met/47/605/mmedia). C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Greenhall, CA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 298, Pasadena, CA 91109 USA. EM cgreenhall@jpl.nasa.gov FU National Aeronautics and Space Administration FX This work was performed by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 36 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0026-1394 J9 METROLOGIA JI Metrologia PD OCT PY 2010 VL 47 IS 5 BP 605 EP 615 DI 10.1088/0026-1394/47/5/011 PG 11 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 653CB UT WOS:000282060200014 ER PT J AU Rastogi, G Osman, S Kukkadapu, R Engelhard, M Vaishampayan, PA Andersen, GL Sani, RK AF Rastogi, Gurdeep Osman, Shariff Kukkadapu, Ravi Engelhard, Mark Vaishampayan, Parag A. Andersen, Gary L. Sani, Rajesh K. TI Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota SO MICROBIAL ECOLOGY LA English DT Article ID 16S RIBOSOMAL-RNA; MOSSBAUER-SPECTROSCOPY; SUBSURFACE; DIVERSITY; DNA; MICROARRAY; COMMUNITY; SHEWANELLA; EXTRACTION; REDUCTION AB A microbial census on deep biosphere (1.34 km depth) microbial communities was performed in two soil samples collected from the Ross and number 6 Winze sites of the former Homestake gold mine, Lead, South Dakota using high-density 16S microarrays (PhyloChip). Soil mineralogical characterization was carried out using X-ray diffraction, X-ray photoelectron, and Mossbauer spectroscopic techniques which demonstrated silicates and iron minerals (phyllosilicates and clays) in both samples. Microarray data revealed extensive bacterial diversity in soils and detected the largest number of taxa in Proteobacteria phylum followed by Firmicutes and Actinobacteria. The archael communities in the deep gold mine environments were less diverse and belonged to phyla Euryarchaeota and Crenarchaeota. Both the samples showed remarkable similarities in microbial communities (1,360 common OTUs) despite distinct geochemical characteristics. Fifty-seven phylotypes could not be classified even at phylum level representing a hitherto unidentified diversity in deep biosphere. PhyloChip data also suggested considerable metabolic diversity by capturing several physiological groups such as sulfur-oxidizer, ammonia-oxidizers, iron-oxidizers, methane-oxidizers, and sulfate-reducers in both samples. High-density microarrays revealed the greatest prokaryotic diversity ever reported from deep subsurface habitat of gold mines. C1 [Rastogi, Gurdeep; Sani, Rajesh K.] S Dakota Sch Mines & Technol, Dept Chem & Biol Engn, Rapid City, SD 57701 USA. [Osman, Shariff; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Div Earth Sci, Berkeley, CA 94720 USA. [Kukkadapu, Ravi; Engelhard, Mark] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Vaishampayan, Parag A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Sani, RK (reprint author), S Dakota Sch Mines & Technol, Dept Chem & Biol Engn, Rapid City, SD 57701 USA. EM Rajesh.Sani@sdsmt.edu RI Engelhard, Mark/F-1317-2010; Andersen, Gary/G-2792-2015; OI Andersen, Gary/0000-0002-1618-9827; Engelhard, Mark/0000-0002-5543-0812 FU South Dakota Board of Regents [SDBOR/SDSMT 2010-09-05]; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory FX This research was funded by the South Dakota Board of Regents Competitive Research Grant (Award No. SDBOR/SDSMT 2010-09-05). Powder XRD, XPS, and Mossbauer spectroscopy measurements were conducted using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. We would like to acknowledge Colleen Russell (PNNL) for her help in XRD measurements and Mossbauer sample preparations. Authors appreciate the assistance provided by Dr. L. D. Stetler of Department of Geology and Geological Engineering, SDSM&T in sample collection. We also would like to thank the anonymous reviewers whose critiques were instrumental in improving the quality of manuscript. NR 42 TC 29 Z9 30 U1 0 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-3628 J9 MICROB ECOL JI Microb. Ecol. PD OCT PY 2010 VL 60 IS 3 BP 539 EP 550 DI 10.1007/s00248-010-9657-y PG 12 WC Ecology; Marine & Freshwater Biology; Microbiology SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Microbiology GA 664OK UT WOS:000282971400007 PM 20386898 ER PT J AU Hou, Z Banday, AJ Gorski, KM Elsner, F Wandelt, BD AF Hou, Zhen Banday, A. J. Gorski, Krzysztof M. Elsner, Franz Wandelt, Benjamin D. TI The primordial non-Gaussianity of local type (flocal(NL)) in the WMAP 5-year data: the length distribution of CMB skeleton SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; cosmic background radiation ID MICROWAVE BACKGROUND MAPS; LARGE-SCALE STRUCTURE; MINKOWSKI FUNCTIONALS; INFLATIONARY UNIVERSE; FOREGROUND EMISSION; PERTURBATION-THEORY; PROBE; TEMPERATURE; ANISOTROPIES AB We present skeleton studies of non-Gaussianity in the cosmic microwave background temperature anisotropy observed in the 5-yr Wilkinson Microwave Anisotropy Probe (WMAP) data. The local skeleton is traced on the 2D sphere by cubic spline interpolation which leads to more accurate estimation of the intersection positions between the skeleton and the secondary pixels than conventional linear interpolation. We demonstrate that the skeleton-based estimator of non-Gaussianity of the local type (flocal(NL)) - the departure of the length distribution from the corresponding Gaussian expectation - yields an unbiased and sufficiently converged likelihood function for flocal(NL). We analyse the skeleton statistics in the WMAP 5-yr combined V- and W-band data outside the Galactic base-mask determined from the KQ75 sky coverage. The results are consistent with Gaussian simulations of the best-fitting cosmological model, but deviate from the previous results determined using the WMAP 1-yr data. We show that it is unlikely that the improved skeleton tracing method, the omission of Q-band data, the modification of the foreground-template fitting method or the absence of six extended regions in the new mask contribute to such a deviation. However, the application of the Kp0 base-mask in data processing does improve the consistency with the WMAP1 results. The flocal(NL)-likelihood functions of the data are estimated at nine different smoothing levels. It is unexpected that the best-fitting values show positive correlation with the smoothing scales. Further investigation argues against a point source or goodness-of-fit explanation but finds that about 30 per cent of either Gaussian or f(NL) samples having better goodness-of-fit than the WMAP 5-yr data show a similar correlation. We present the estimate flocal(NL) = 47.3 +/- 34.9 (1 Sigma error) determined from the first four smoothing angles and flocal(NL) = 76.8 +/- 43.1 for the combination of all nine. The former result may be overestimated at the 0.21 Sigma level because of point sources. C1 [Hou, Zhen] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Hou, Zhen; Banday, A. J.; Elsner, Franz] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Hou, Zhen] Nanjing Univ, Purple Mt Observ, Joint Ctr Particle Nucl Phys & Cosmol, Nanjing 210093, Peoples R China. [Hou, Zhen] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China. [Banday, A. J.] Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Gorski, Krzysztof M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gorski, Krzysztof M.] CALTECH, Pasadena, CA 91125 USA. [Gorski, Krzysztof M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Wandelt, Benjamin D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Wandelt, Benjamin D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. RP Hou, Z (reprint author), Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. EM houzhen@pmo.ac.cn FU Max-Planck-Gesellschaft Chinese Academy of Sciences; NASA Office of Space Science FX ZH acknowledges the support by Max-Planck-Gesellschaft Chinese Academy of Sciences Joint Doctoral Promotion Programme (MPG-CAS-DPP), and some useful discussions with H. K. Eriksen, Jun Pan and Xi Kang. We give special thanks to Stephane Colombi for suggestions on improving the manuscript. The computations were performed at the Rechenzentrum Garching (RZG) of Max-Planck-Gesellschaft and the GPU cluster of the cosmology group in Purple Mountain Observatory (PMO). Some of the results in this paper have been derived using the HEALPix (Gorski et al. 2005) software and analysis package. We acknowledge use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA) supported by the NASA Office of Space Science. NR 35 TC 4 Z9 4 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 1 PY 2010 VL 407 IS 4 BP 2141 EP 2156 DI 10.1111/j.1365-2966.2010.17098.x PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 651ST UT WOS:000281948100009 ER PT J AU Nicholls, SD Mohr, KI AF Nicholls, Stephen D. Mohr, Karen I. TI An Analysis of the Environments of Intense Convective Systems in West Africa in 2003 SO MONTHLY WEATHER REVIEW LA English DT Article ID VERTICAL WIND SHEAR; LIVED SQUALL LINES; EASTERLY WAVES; PART I; SUMMER MONSOON; LIGHTNING CHARACTERISTICS; PRECIPITATION FEATURES; PASSIVE MICROWAVE; CONCEPTUAL-MODEL; TROPICAL OCEANS AB The local- and regional-scale environments associated with intense convective systems in West Africa during 2003 were diagnosed from soundings, operational analysis, and space-based datasets. Convective system cases were identified from the Tropical Rainfall Measuring Mission (TRMM) microwave imagery and classified by the system minimum 85-GHz brightness temperature and the estimated elapsed time of propagation from terrain greater than 500 m. The speed of the midlevel jet, the magnitude of the low-level shear, and the surface equivalent potential temperature theta(e) were greater for the intense cases compared to the nonintense cases, although the differences between the means tended to be small: less than 3 K for surface theta(e) and less than 2 x 10(-3) s(-1) for low-level wind shear. Hypothesis testing of a series of commonly used intensity prediction metrics resulted in significant results only for low-level metrics such as convective available potential energy and not for any of the mid-or upper-level metrics such as the 700-hPa theta(e). None of the environmental variables or intensity metrics by themselves or in combination appeared to be reliable direct predictors of intensity. In the regional-scale analysis, the majority of intense convective systems occurred in the surface baroclinic zone where surface theta(e) exceeded 344 K and the 700-hPa zonal wind speeds were less than -6 m s(-1). Fewer intense cases compared to nonintense cases were associated with African easterly wave troughs. Fewer than 25% of these cases occurred in environments with detectable Saharan dust loads, and the results for intense and nonintense cases were similar. Although the discrimination between the intense and nonintense environments was narrow, the results were robust and consistent with the seasonal movement of the West African monsoon, regional differences in topography, and African easterly wave energetics. C1 [Mohr, Karen I.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Nicholls, Stephen D.] SUNY Albany, Dept Earth & Atmospher Sci, Albany, NY 12222 USA. RP Nicholls, SD (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Code 613-1, Greenbelt, MD 20771 USA. EM karen.mohr-1@nasa.gov RI Mohr, Karen/E-4331-2012 FU NASA [NNX07AD45G]; NSF [ATM0538164] FX We obtained the ECMWF operational analysis from the NCAR Research Data Archive, the in situ sounding data from the University of Wyoming atmospheric sounding Web site (see online at http://weather.uwyo.edu/upperair/sounding.html), the TRMM 1B11 brightness temperature product from the NASA GSFC Distributed Active Archive (see online at http://mirador.gsfc.nasa.gov), and the MODIS aerosol optical depth product from the NASA-GSFC Level 2 and Atmosphere Archive and Distribution System(see online at http://ladsweb.nascom.nasa.gov/). R. Hucek assisted with the processing and interpretation of the MODIS product. G. Berry and A. Srock provided code and advice for the AEW analysis. We had important conversations with L. Oolman, P. Roundy, J.-S. Hsieh, R. Kahn, S. Braun, and M. Weisman. C. Thorncroft provided comments on the thesis from which this manuscript is derived. The work of M. LeMone and two anonymous reviewers greatly improved this manuscript. We had support from NASA Precipitation Measuring Mission Grant NNX07AD45G and NSF Grant ATM0538164. NR 93 TC 14 Z9 14 U1 2 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD OCT PY 2010 VL 138 IS 10 BP 3721 EP 3739 DI 10.1175/2010MWR3321.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 668JM UT WOS:000283264600002 ER PT J AU Suh, J LaHaye, MD Echternach, PM Schwab, KC Roukes, ML AF Suh, Junho LaHaye, Matthew D. Echternach, Pierre M. Schwab, Keith C. Roukes, Michael L. TI Parametric Amplification and Back-Action Noise Squeezing by a Qubit-Coupled Nanoresonator SO NANO LETTERS LA English DT Article DE NEMS; Cooper-pair-box qubit; dispersive coupling; parametric amplification; noise squeezing; squeezed state ID QUANTUM-NOISE; NANOMECHANICAL RESONATOR; SUPERCONDUCTING QUBIT; MECHANICAL RESONATOR; GROUND-STATE; PHOTON; CONVERSION; AMPLIFIERS; CIRCUIT; MOTION AB We demonstrate the parametric amplification and noise squeezing of nanomechanical motion utilizing dispersive coupling to a Cooper-pair box qubit By modulating the qubit bias and resulting mechanical resonance shift, we achieve gain of 30 dB and noise squeezing of 4 dB This qubit-mediatal effect is 3000 times more effective than that resulting from the weak nonlinearity of capacitance to a nearby electrode This technique may be used to prepare nanomechanical squeezed states C1 [Suh, Junho; Roukes, Michael L.] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA. [LaHaye, Matthew D.] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. [Echternach, Pierre M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Roukes, ML (reprint author), CALTECH, Kavli Nanosci Inst, MC 114-36, Pasadena, CA 91125 USA. OI Suh, Junho/0000-0002-0112-0499; LaHaye, Matthew/0000-0003-1911-0704 FU National Aeronautics and Space Administration FX The authors thank to M Cross, R Lifshitz and R Karabalin for discussions and R E Muller for electron beam lithography This research was partially carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration NR 35 TC 41 Z9 41 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2010 VL 10 IS 10 BP 3990 EP 3994 DI 10.1021/nl101844r PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 661KQ UT WOS:000282727600032 PM 20843059 ER PT J AU Pallister, JS McCausland, WA Jonsson, S Lu, Z Zahran, HM El Hadidy, S Aburukbah, A Stewart, ICF Lundgren, PR White, RA Moufti, MRH AF Pallister, John S. McCausland, Wendy A. Jonsson, Sigurjon Lu, Zhong Zahran, Hani M. El Hadidy, Salah Aburukbah, Abdallah Stewart, Ian C. F. Lundgren, Paul R. White, Randal A. Moufti, Mohammed R. H. TI Broad accommodation of rift-related extension recorded by dyke intrusion in Saudi Arabia SO NATURE GEOSCIENCE LA English DT Article ID ALKALI BASALT PROVINCE; RED-SEA; WESTERN ARABIA; BENEATH; EARTHQUAKES; VOLCANO; AFAR; CONSTRAINTS; SEISMOLOGY; MAGNITUDE AB The extensive harrat lava province of Arabia formed during the past 30 million years in response to Red Sea rifting and mantle upwelling. The area was regarded as seismically quiet, but between April and June 2009 a swarm of more than 30,000 earthquakes struck one of the lava fields in the province, Harrat Lunayyir, northwest Saudi Arabia. Concerned that larger damaging earthquakes might occur, the Saudi Arabian government evacuated 40,000 people from the region. Here we use geologic, geodetic and seismic data to show that the earthquake swarm resulted from magmatic dyke intrusion. We document a surface fault rupture that is 8 km long with 91 cm of offset. Surface deformation is best modelled by the shallow intrusion of a north-west trending dyke that is about 10 km long. Seismic waves generated during the earthquakes exhibit overlapping very low-and high-frequency components. We interpret the low frequencies to represent intrusion of magma and the high frequencies to represent fracturing of the crystalline basement rocks. Rather than extension being accommodated entirely by the central Red Sea rift axis, we suggest that the broad deformation observed in Harrat Lunayyir indicates that rift margins can remain as active sites of extension throughout rifting. Our analyses allowed us to forecast the likelihood of a future eruption or large earthquake in the region and informed the decisions made by the Saudi Arabian government to return the evacuees. C1 [Pallister, John S.; McCausland, Wendy A.; Lu, Zhong; White, Randal A.] US Geol Survey, Volcano Disaster Assistance Program, Cascades Volcano Observ, Vancouver, WA 98683 USA. [Jonsson, Sigurjon] King Abdullah Univ Sci & Technol, Thuwal 23955, Saudi Arabia. [Zahran, Hani M.; El Hadidy, Salah; Aburukbah, Abdallah; Stewart, Ian C. F.] Natl Ctr Earthquakes & Volcanoes, Saudi Geol Survey, Jeddah 21514, Saudi Arabia. [Lundgren, Paul R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Moufti, Mohammed R. H.] King Abdulaziz Univ, Fac Earth Sci, Jeddah 21589, Saudi Arabia. RP Pallister, JS (reprint author), US Geol Survey, Volcano Disaster Assistance Program, Cascades Volcano Observ, 1300 SE Cardinal Court, Vancouver, WA 98683 USA. EM jpallist@usgs.gov RI Jonsson, Sigurjon/G-4353-2015 OI Jonsson, Sigurjon/0000-0001-5378-7079 FU USAID's Office of Foreign Disaster Assistance; USGS FX This work is the result of a joint effort of the Saudi Arabian Geological Survey (SGS), and the US Geological Survey (USGS), conducted with the assistance of the US Consulate, Jeddah, Saudi Arabia. We thank many SGS colleagues (too numerous to list individually here) who participated in field and laboratory work and contributed to the success of the crisis response. We also acknowledge support to the Volcano Disaster Assistance Program provided by USAID's Office of Foreign Disaster Assistance and the USGS Volcano Hazards Program, and we thank SGS President Z. Nawab for facilitating our work together. Original Envisat radar raw data are copyrighted by the European Space Agency (ESA) and were provided by ESA. We also acknowledge the Nature Geoscience reviewers and editor Whitchurch, whose contributions substantially improved this paper. NR 46 TC 76 Z9 76 U1 0 U2 15 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD OCT PY 2010 VL 3 IS 10 BP 705 EP 712 DI 10.1038/NGEO966 PG 8 WC Geosciences, Multidisciplinary SC Geology GA 657LJ UT WOS:000282413900014 ER PT J AU Ray, RD Byrne, DA AF Ray, Richard D. Byrne, Deirdre A. TI Bottom pressure tides along a line in the southeast Atlantic Ocean and comparisons with satellite altimetry SO OCEAN DYNAMICS LA English DT Article DE Oceanic tides; Satellite altimetry; Ocean bottom pressure ID INTERNAL TIDES; TOPEX/POSEIDON; EUROPE; MODELS AB Seafloor pressure records, collected at 11 stations aligned along a single ground track of the Topex/Poseidon and Jason satellites, are analyzed for their tidal content. With very low background noise levels and approximately 27 months of high-quality records, tidal constituents can be estimated with unusually high precision. This includes many high-frequency lines up through the seventh-diurnal band. The station deployment provides a unique opportunity to compare with tides estimated from satellite altimetry, point by point along the satellite track, in a region of moderately high mesoscale variability. That variability can significantly corrupt altimeter-based tide estimates, even with 17 years of data. A method to improve the along-track altimeter estimates by correcting the data for non-tidal variability is found to yield much better agreement with the bottom-pressure data. The technique should prove useful in certain demanding applications, such as altimetric studies of internal tides. C1 [Ray, Richard D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Byrne, Deirdre A.] Univ Maine, Sch Marine Sci, Orono, ME USA. RP Ray, RD (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM richard.ray@nasa.gov; dbyrne@umeoce.maine.edu RI Ray, Richard/D-1034-2012 FU US National Aeronautics and Space Administration; National Science Foundation [OCE-0099177]; CNES FX Brian Beckley is thanked for his help in processing Topex/Poseidon and Jason-1 altimeter data. Those data were obtained as Geophysical Data Records from PODAAC, Jet Propulsion Laboratory, Pasadena. The altimeter-based sea-level anomaly grids used here as a correction were produced by SSALTO/DUACS and distributed by AVISO with support from CNES. This work was supported by the Ocean Surface Topography program of the US National Aeronautics and Space Administration and by grant OCE-0099177 from the National Science Foundation. NR 28 TC 14 Z9 14 U1 0 U2 3 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1616-7341 EI 1616-7228 J9 OCEAN DYNAM JI Ocean Dyn. PD OCT PY 2010 VL 60 IS 5 BP 1167 EP 1176 DI 10.1007/s10236-010-0316-0 PG 10 WC Oceanography SC Oceanography GA 655AO UT WOS:000282213200008 ER PT J AU VanZwieten, TS VanZwieten, JH Balas, MJ Driscoll, FR AF VanZwieten, Tannen S. VanZwieten, James H., Jr. Balas, Mark J. Driscoll, Frederick R. TI Development of an adaptive disturbance rejection system for the rapidly deployable stable platform-Part 2 Controller design and closed loop response SO OCEAN ENGINEERING LA English DT Article DE Sea basing; Crane ship; SPAR; Disturbance rejection; Adaptive control; Saturation constraints; Rapidly deployable stable platform; RDSP; RDSC; MRAC AB Currently, both military and civilian operations that require at-sea cargo transfers are severely limited by environmental conditions and loading forces that induce vessel motions. To increase the robustness of at-sea cargo transfer to these environmental conditions and loading forces, efforts have recently been made toward an actively controlled, rapidly deployable stable platform (RDSP). The purpose of the research presented here is to implement an output feedback adaptive controller and adaptive disturbance rejection scheme that will mitigate the effect of environmental conditions and reject disturbances caused by various loading situations. Because of the controller's distinct ability to adapt to various operating conditions, anticipate and reject load disturbances of unknown magnitude, and adjust to stay within input saturation constraints, the framework is a good fit for the RDSP. Three missions are considered using a previously developed 3 degree of freedom simulation of a 1/10th scale RDSP prototype. Results show successful mitigation of load disturbances and a significant reduction in pitch motions using a control command that remains within the given amplitude and rate constraints. In the case of cargo transfer operations, the adaptive control system is able to significantly increase the cargo throughput by rejecting the disturbances before they are able to cause large pitching dynamics. (C) 2010 Elsevier Ltd. All rights reserved. C1 [VanZwieten, James H., Jr.] Florida Atlantic Univ, Ctr Ocean Energy Technol, Dania, FL 33004 USA. [VanZwieten, Tannen S.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Balas, Mark J.] Univ Wyoming, Dept Elect & Comp Engn, Laramie, WY 82071 USA. [Driscoll, Frederick R.] Natl Renewable Energy Lab, Natl Wind Technol Ctr, Golden, CO 80401 USA. RP VanZwieten, JH (reprint author), Florida Atlantic Univ, Ctr Ocean Energy Technol, 101 N Beach Rd, Dania, FL 33004 USA. EM tannen.s.vanzwieten@nasa.gov; jvanzwi@fau.edu; mbalas@uwyo.edu; frederick.driscoll@nrel.gov FU NASA; Office of Naval Research [N00014-06-1-0461] FX The authors would like to thank the NASA Graduate Student Researchers Program for providing partial funding for this research under the direction of Dr. Mark Whorton.; The authors gratefully acknowledge the Office of Naval Research, code 33, program manager Kelly Cooper for partially funding this work under Grant N00014-06-1-0461. NR 35 TC 1 Z9 1 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0029-8018 J9 OCEAN ENG JI Ocean Eng. PD OCT PY 2010 VL 37 IS 14-15 BP 1367 EP 1379 DI 10.1016/j.oceaneng.2010.07.005 PG 13 WC Engineering, Marine; Engineering, Civil; Engineering, Ocean; Oceanography SC Engineering; Oceanography GA 657ZW UT WOS:000282459200011 ER PT J AU Smialek, JL Humphrey, DL Noebe, RD AF Smialek, James L. Humphrey, Donald L. Noebe, Ronald D. TI Comparative Oxidation Kinetics of a NiPtTi High Temperature Shape Memory Alloy SO OXIDATION OF METALS LA English DT Article DE Isothermal oxidation; Parabolic rate constants; Activation energy; Ni-Ti alloys; Shape memory alloys; TiO(2) scales; NiO scales ID BEHAVIOR AB A high temperature shape memory alloy, Ni-30Pt-50Ti (at.%), with an Ms near 600 degrees C, was isothermally oxidized in air for 100 h over the temperature range of 500-900 degrees C. Nearly parabolic kinetics were observed in log-log and parabolic plots, with no indication of initial fast transient oxidation. On average the rates were about a factor of 4 lower than values measured here for a binary Ni-49Ti commercial SMA. The overall behavior could be best described by the Arrhenius relationships: NiPtTi: k(p) 1: 54 x 10(12) exp[(-250 kJ= mol_RT]mg(2) = cm(4)h NiTi: k(p) 6: 39 x 10(12) exp[(249 kJ/mol/RT]mg(2) /cm(4)h The activation energy was consistent with literature values for TiO2 scale growth measured for elemental Ti and some NiTi alloys, at similar to 210- 260 kJ/ol. However, a number of other studies produced activation energies in the range of 135-150 kJ/mol. This divergence may be related to various complex scale layers and depletion zones, however, no specific correlation can be identified at present. C1 [Smialek, James L.; Noebe, Ronald D.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Humphrey, Donald L.] ASRC Aerosp Corp, Cleveland, OH 44135 USA. RP Smialek, JL (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM james.l.smialek@nasa.gov FU NASA FX This work was supported by the NASA Fundamental Aeronautics Program, Supersonics Project, Dale Hopkins, Assoc. Principal Investigator. NR 26 TC 3 Z9 3 U1 0 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD OCT PY 2010 VL 74 IS 3-4 BP 125 EP 144 DI 10.1007/s11085-010-9202-x PG 20 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 648WO UT WOS:000281725300002 ER PT J AU Jacobson, N Hull, D AF Jacobson, Nathan Hull, David TI Characterization and Oxidation Behavior of Rayon-Derived Carbon Fibers SO OXIDATION OF METALS LA English DT Article DE Carbon; Carbon/carbon; Composite; Oxidation ID MATRIX COMPOSITES; CARBON/CARBON; REACTIVITY AB Rayon-derived fibers are the central constituent of reinforced carbon/carbon (RCC) composites. Optical, scanning electron, and transmission electron microscopy were used to characterize the as-fabricated fibers and the fibers after oxidation. Oxidation rates were measured with weight loss techniques in air and oxygen. The as-received fibers are similar to 10 mu m in diameter and characterized by grooves or crenulations around the edges. Below 800 A degrees C, in the reaction-controlled region, preferential attack began in the crenulations and appeared to occur down fissures in the fibers. C1 [Jacobson, Nathan; Hull, David] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. RP Jacobson, N (reprint author), NASA Glenn Res Ctr, Cleveland, OH 44135 USA. EM nathan.s.jacobson@nasa.gov RI Jacobson, Nathan/A-9411-2009 NR 17 TC 4 Z9 4 U1 1 U2 10 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD OCT PY 2010 VL 74 IS 3-4 BP 193 EP 203 DI 10.1007/s11085-010-9208-4 PG 11 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 648WO UT WOS:000281725300007 ER PT J AU Weber, RC Bills, BG Johnson, CL AF Weber, R. C. Bills, B. G. Johnson, C. L. TI A simple physical model for deep moonquake occurrence times SO PHYSICS OF THE EARTH AND PLANETARY INTERIORS LA English DT Article DE Moon; Moonquakes; Lunar interior; Lunar seismology ID TIDAL STRESSES; LUNAR SEISMICITY; MOON; CONSTITUTION; TECTONICS AB The physical process that results in moonquakes is not yet fully understood. The periodic occurrence times of events from individual clusters are clearly related to tidal stress, but also exhibit departures from the temporal regularity this relationship would seem to imply. Even simplified models that capture some of the relevant physics require a large number of variables. However, a single, easily accessible variable - the time interval I(n) between events - can be used to reveal behavior not readily observed using typical periodicity analyses (e.g., Fourier analyses). The delay-coordinate (DC) map, a particularly revealing way to display data from a time series, is a map of successive intervals: I(n + 1) plotted vs. I(n). We use a DC approach to characterize the dynamics of moonquake occurrence. Moonquake-like DC maps can be reproduced by combining sequences of synthetic events that occur with variable probability at tidal periods. Though this model gives a good description of what happens, it has little physical content, thus providing only little insight into why moonquakes occur. We investigate a more mechanistic model. In this study, we present a series of simple models of deep moonquake occurrence, with consideration of both tidal stress and stress drop during events. We first examine the behavior of inter-event times in a delay-coordinate context, and then examine the output, in that context, of a sequence of simple models of tidal forcing and stress relief. We find, as might be expected, that the stress relieved by moonquakes influences their occurrence times. Our models may also provide an explanation for the opposite-polarity events observed at some clusters. Published by Elsevier B.V. C1 [Weber, R. C.] USGS Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Bills, B. G.] NASA, Jet Prop Lab, Pasadena, CA USA. [Johnson, C. L.] UBC Dept Earth & Ocean Sci, Vancouver, BC, Canada. RP Weber, RC (reprint author), USGS Astrogeol Sci Ctr, 2255 N Gemini Dr, Flagstaff, AZ 86001 USA. EM rweber@usgs.gov FU NASA [NNH08AH55I, NNX08AL49G]; NSERC FX This work was supported by the Eugene M. Shoemaker Planetary Geology and Geophysics Fellowship awarded to RCW (Planetary Geology and Geophysics grant, NASA NNH08AH55I), and by a Planetary Geology and Geophysics grant, NASA NNX08AL49G, and NSERC grant to CLJ. NR 20 TC 1 Z9 1 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0031-9201 J9 PHYS EARTH PLANET IN JI Phys. Earth Planet. Inter. PD OCT PY 2010 VL 182 IS 3-4 BP 152 EP 160 DI 10.1016/j.pepi.2010.07.009 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 670GA UT WOS:000283408000003 ER PT J AU Stalport, F Guan, YY Audrey, N Coll, P Szopa, C Macari, F Person, A Chaput, D Raulin, F Cottin, H AF Stalport, Fabien Guan, Yuan Yong Audrey, Noblet Coll, Patrice Szopa, Cyril Macari, Frederique Person, Alain Chaput, Didier Raulin, Francois Cottin, Herve TI UVolution, a photochemistry experiment in low earth orbit: Investigation of the photostability of carbonates exposed to martian-like UV radiation conditions SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Mars; Astrobiology; UV radiation; Carbonates; Biominerals; Low Earth orbit ID EXPERIMENTAL SIMULATIONS; ORGANIC-COMPOUNDS; MERIDIANI-PLANUM; EARLY MARS; SEARCH; LIFE; CHEMISTRY; METHANE; SURFACE; IDENTIFICATION AB The detection and identification of carbonates on Mars are of prime importance to establish the evolution of its atmosphere, correlated to the history of the liquid water, or even to determine the existence of a possible ancient biological activity. Till date, no large deposits of carbonates have been found. In fact, their detection is specific to local areas and in very low amounts. The absence of such deposits is commonly attributed to the harsh environmental conditions at the surface of Mars. Additionally, the presence of UV radiation has been proposed to explain their photodecomposition and hence their absence. However, contradictory results from laboratory experiments mimicking Mars' surface UV radiation did not resolve the behaviour of carbonates in such an environment, which is why we exposed, in low Earth orbit and in laboratory experiments, both abiotic and biotic calcium carbonates to UV radiation of wavelength above 200 nm, the same spectral distribution as the one reaching the surface of Mars. For low Earth orbit (LEO) exposure, this was done for the UVolution experiment on board the BIOPAN ESA module, which was set outside a Russian Foton automated capsule, and exposed to space conditions for 12 days in September 2007. The targeted carbonates are biominerals and abiotic samples. Our laboratory results mainly show that the exposed carbonates appear to be stable to UV radiation if directly exposed to it. The LEO experiment results tend to the same conclusion, but the integrated exposition time to Solar UV during the experiment is not sufficient to be conclusive. However, the stability of the biominerals derived from the laboratory experiment could strengthen the interest to explore deeper their potential as life records at Mars. Hence, they should be considered as primary targets for in situ analyses during future missions. (c) 2010 Elsevier Ltd. All rights reserved. C1 [Stalport, Fabien] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Stalport, Fabien; Guan, Yuan Yong; Audrey, Noblet; Coll, Patrice; Macari, Frederique; Raulin, Francois; Cottin, Herve] Univ Paris 07, LISA, UMR 7583, CNRS,CMC, F-94010 Creteil, France. [Stalport, Fabien; Guan, Yuan Yong; Audrey, Noblet; Coll, Patrice; Macari, Frederique; Raulin, Francois; Cottin, Herve] Univ Paris 12, LISA, UMR 7583, CNRS,CMC, F-94010 Creteil, France. [Szopa, Cyril] Univ Versailles St Quentin, F-75005 Paris, France. [Szopa, Cyril] LATMOS IPSL, CNRS INSU, F-75005 Paris, France. [Person, Alain] Univ Paris 06, Lab Biomineralisat & Paleoenvironm, F-75005 Paris, France. [Chaput, Didier] Ctr Natl Etud Spatiales, F-31401 Toulouse 9, France. RP Stalport, F (reprint author), NASA, Goddard Space Flight Ctr, Code 699,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM Fabien.Stalport@lisa.univ-paris12.fr RI Cottin, Herve/H-5654-2013; szopa, cyril/C-6865-2015 OI Cottin, Herve/0000-0001-9170-5265; szopa, cyril/0000-0002-0090-4056 FU ESA; CNES; French Program for Planetology (PNP); COMAT aerospace (Toulouse, France); Kayser Threde (Munchen, Germany) FX This program has been selected by ESA in the frame of the AO Life and Physical Sciences and Applied Research Projects 2004. The authors would like to acknowledge the support of ESA (especially Rene Demets), CNES (especially Michel Viso for the human, financial, and technical supports), French Program for Planetology (PNP), COMAT aerospace (Toulouse, France), and Kayser Threde (Munchen, Germany). The authors also acknowledge Jennifer Stern and Amy Houghton for helpful comments. NR 50 TC 4 Z9 4 U1 0 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD OCT PY 2010 VL 58 IS 12 BP 1617 EP 1624 DI 10.1016/j.pss.2010.08.005 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 670GB UT WOS:000283408100009 ER PT J AU Daescu, DN Todling, R AF Daescu, Dacian N. Todling, Ricardo TI Adjoint sensitivity of the model forecast to data assimilation system error covariance parameters SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE state analysis; parameter estimation; forecast impact; covariance tuning ID VARIATIONAL DATA ASSIMILATION; ENSEMBLE KALMAN FILTER; ATMOSPHERIC DATA ASSIMILATION; 4D-VAR DATA ASSIMILATION; OBSERVATION IMPACT; BACKGROUND-ERROR; STATISTICS; DIAGNOSIS; APPROXIMATIONS; FORMULATION AB The development of the adjoint of the forecast model and of the adjoint of the data assimilation system (adjoint-DAS) makes feasible the evaluation of the local sensitivity of a model forecast aspect with respect to a large number of parameters in the DAS. In this study it is shown that, by exploiting sensitivity properties that are intrinsic to the analyses derived from a minimization principle, the adjoint-DAS software tools developed at numerical weather prediction centres for observation and background sensitivity may be used to estimate the forecast sensitivity to observation-and background-error covariance parameters and for forecast impact assessment. All-at-once sensitivity to error covariance weighting coefficients and first-order impact estimates are derived as a particular case of the error covariance perturbation analysis. The use of the sensitivity information as a DAS diagnostic tool and for implementing gradient-based error covariance tuning algorithms is illustrated in idealized data assimilation experiments with the Lorenz 40-variable model. Preliminary results of forecast sensitivity to observation-and background-error covariance weight parameters are presented using the fifth-generation NASA Goddard Earth Observing System (GEOS-5) atmospheric DAS and its adjoint developed at the Global Modeling and Assimilation Office. Copyright (C) 2010 Royal Meteorological Society C1 [Daescu, Dacian N.] Portland State Univ, Portland, OR 97207 USA. [Todling, Ricardo] NASA, Global Modeling & Assimilat Off, GSFC, Greenbelt, MD USA. RP Daescu, DN (reprint author), Portland State Univ, POB 751, Portland, OR 97207 USA. EM daescu@pdx.edu FU NASA [NNG06GC67G]; National Science Foundation [DMS-0914937] FX The work of D. N. Daescu was supported by the NASA Modeling, Analysis, and Prediction Program under award NNG06GC67G and by the National Science Foundation under award DMS-0914937. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Computational Sciences (NCCS) at Goddard Space Flight Center. NR 55 TC 12 Z9 12 U1 0 U2 10 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0035-9009 J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD OCT PY 2010 VL 136 IS 653 BP 2000 EP 2012 DI 10.1002/qj.693 PN B PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 694QO UT WOS:000285312900006 ER PT J AU Tong, JJ Velicogna, I AF Tong, Jinjun Velicogna, Isabella TI A Comparison of AMSR-E/Aqua Snow Products with in situ Observations and MODIS Snow Cover Products in the Mackenzie River Basin, Canada SO REMOTE SENSING LA English DT Article DE snow water equivalent; snow cover extent; AMSR-E; MODIS; Mackenzie River Basin AB Since 2002, global snow water equivalent (SWE) estimates have been generated using Advanced Microwave Scanning Radiometer (AMSR-E)/Aqua data. Accurate estimates of SWE are important to improve monitoring and managing of water resources in specific regions. SWE and snow map product accuracy are functions of topography and of land cover type because landscape characteristics have a strong influence on redistribution and physical properties of snow cover, and influence the microwave properties of the surface. Here we evaluate the AMSR-E SWE and derived snow map products in the Mackenzie River Basin (MRB), Canada, which is characterized by complex topography and varying land cover types from tundra to boreal forest. We compare in situ snow depth observations and Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover maps from January 2003 to December 2007 with passive microwave remotely sensed SWE from AMSR-E and derived snow cover maps. In the MRB the mean absolute error ranges from 12 mm in the early winter season to 50 mm in the late winter season and overestimations of snow cover maps based on a 1 mm threshold of AMSR-E SWE varies from 4% to 8%. The optimal threshold for AMSR-E SWE to classify the pixels as snow ranges from 6 mm to 9 mm. The overall accuracy of new snow cover maps from AMSR-E varies from 91% to 94% in different sub-basins in the MRB. C1 [Tong, Jinjun; Velicogna, Isabella] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Velicogna, Isabella] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Tong, JJ (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. EM jinjunt@uci.edu; isabella.velicogna@gmail.com FU NASA FX This work is supported by grants from NASA's Cryospheric Science Program, Solid Earth and Natural Hazards Program, Terrestrial Hydrology Program. The authors also thank Ross Brown and Chris Derksen in Environment Canada for supplying the snow density data and their constructive comments. Comments by three anonymous referees greatly improved the paper. NR 17 TC 8 Z9 10 U1 1 U2 8 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD OCT PY 2010 VL 2 IS 10 BP 2313 EP 2322 DI 10.3390/rs2102313 PG 10 WC Remote Sensing SC Remote Sensing GA V24HR UT WOS:000208402000001 ER PT J AU Kurtoglu, T Tumer, IY Jensen, DC AF Kurtoglu, Tolga Tumer, Irem Y. Jensen, David C. TI A functional failure reasoning methodology for evaluation of conceptual system architectures SO RESEARCH IN ENGINEERING DESIGN LA English DT Article DE Conceptual design; Functional failure reasoning; Failure-informed trade-off analysis; System architecture design; Model-based reasoning; Behavioral simulation ID FAULT-DIAGNOSIS; EVENT TREES; DESIGN; BEHAVIOR AB In this paper, we introduce a new methodology for reasoning about the functional failures during early design of complex systems. The proposed approach is based on the notion that a failure happens when a functional element in the system does not perform its intended task. Accordingly, a functional criticality is defined depending on the role of functionality in accomplishing designed tasks. A simulation-based failure analysis tool is then used to analyze functional failures and reason about their impact on overall system functionality. The analysis results are then integrated into an early stage system architecture analysis framework that analyzes the impact of functional failures and their propagation to guide system-level architectural design decisions. With this method, a multitude of failure scenarios can be quickly analyzed to determine the effects of architectural design decisions on overall system functionality. Using this framework, design teams can systematically explore risks and vulnerabilities during the early (functional design) stage of system development prior to the selection of specific components. Application of the presented method to the design of a representative aerospace electrical power system (EPS) testbed demonstrates these capabilities. C1 [Tumer, Irem Y.; Jensen, David C.] Oregon State Univ, Complex Engn Syst Design Lab, Corvallis, OR 97331 USA. [Kurtoglu, Tolga] NASA, Ames Res Ctr, Intelligent Syst Div, Moffett Field, CA 94035 USA. RP Tumer, IY (reprint author), Oregon State Univ, Complex Engn Syst Design Lab, Corvallis, OR 97331 USA. EM tolga.kurtoglu@nasa.gov; irem.tumer@oregonstate.edu; jensend@onid.orst.edu FU Air Force Office of Scientific Research [AFOSR FA9550-08-1-0158] FX This research is supported by the Air Force Office of Scientific Research under Grant Number AFOSR FA9550-08-1-0158. Any opinions or findings of this work are the responsibility of the authors and do not necessarily reflect the views of the sponsors or collaborators. NR 51 TC 47 Z9 48 U1 0 U2 5 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0934-9839 J9 RES ENG DES JI Res. Eng. Design PD OCT PY 2010 VL 21 IS 4 BP 209 EP 234 DI 10.1007/s00163-010-0086-1 PG 26 WC Engineering, Multidisciplinary; Engineering, Industrial; Engineering, Manufacturing SC Engineering GA 655AD UT WOS:000282212100002 ER PT J AU Beiersdorfer, P Brown, GV Clementson, J Dunn, J Morris, K Wang, E Kelley, RL Kilbourne, CA Porter, FS Bitter, M Feder, R Hill, KW Johnson, D Barnsley, R AF Beiersdorfer, P. Brown, G. V. Clementson, J. Dunn, J. Morris, K. Wang, E. Kelley, R. L. Kilbourne, C. A. Porter, F. S. Bitter, M. Feder, R. Hill, K. W. Johnson, D. Barnsley, R. TI The ITER core imaging x-ray spectrometer: X-ray calorimeter performance SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 18th Topical Conference on High-Temperature Plasma Diagnostics CY MAY 16-20, 2010 CL Wildwood, NJ ID MICROCALORIMETER SPECTROMETER; XRS MICROCALORIMETER; RESOLUTION AB We describe the anticipated performance of an x-ray microcalorimeter instrument on ITER. As part of the core imaging x-ray spectrometer, the instrument will augment the imaging crystal spectrometers by providing a survey of the concentration of heavy ion plasma impurities in the core and possibly ion temperature values from the emission lines of different elemental ions located at various radial positions. (C) 2010 American Institute of Physics. [doi:10.1063/1.3495789] C1 [Beiersdorfer, P.; Brown, G. V.; Clementson, J.; Dunn, J.; Morris, K.; Wang, E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bitter, M.; Feder, R.; Hill, K. W.; Johnson, D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Barnsley, R.] Cadarache Ctr, ITER Cadarache JWS, F-13108 St Paul Les Durance, France. RP Beiersdorfer, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012 OI Porter, Frederick/0000-0002-6374-1119; NR 13 TC 11 Z9 11 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2010 VL 81 IS 10 AR 10E323 DI 10.1063/1.3495789 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 674NQ UT WOS:000283754000220 PM 21034021 ER PT J AU Magee, EW Dunn, J Brown, GV Cone, KV Park, J Porter, FS Kilbourne, CA Kelley, RL Beiersdorfer, P AF Magee, E. W. Dunn, J. Brown, G. V. Cone, K. V. Park, J. Porter, F. S. Kilbourne, C. A. Kelley, R. L. Beiersdorfer, P. TI Calibration of a high resolution grating soft x-ray spectrometer SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 18th Topical Conference on High-Temperature Plasma Diagnostics CY MAY 16-20, 2010 CL Wildwood, NJ ID BEAM ION-TRAP; PLASMAS AB The calibration of the soft x-ray spectral response of a large radius of curvature, high resolution grating spectrometer (HRGS) with a back-illuminated charge-coupled device detector is reported. The instrument is cross-calibrated for the 10-50 angstrom waveband at the Lawrence Livermore National Laboratory electron beam ion trap (EBIT) x-ray source with the EBIT calorimeter spectrometer. The HRGS instrument is designed for laser-produced plasma experiments and is important for making high dynamic range measurements of line intensities, line shapes, and x-ray sources. (C) 2010 American Institute of Physics. [doi:10.1063/1.3494276] C1 [Magee, E. W.; Dunn, J.; Brown, G. V.; Cone, K. V.; Park, J.; Beiersdorfer, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Cone, K. V.; Park, J.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Porter, F. S.; Kilbourne, C. A.; Kelley, R. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. RP Dunn, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM dunn6@llnl.gov RI Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012 OI Porter, Frederick/0000-0002-6374-1119; NR 14 TC 3 Z9 3 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2010 VL 81 IS 10 AR 10E314 DI 10.1063/1.3494276 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 674NQ UT WOS:000283754000211 PM 21034013 ER PT J AU Park, J Brown, GV Schneider, MB Baldis, HA Beiersdorfer, P Cone, KV Kelley, RL Kilbourne, CA Magee, EW May, MJ Porter, FS AF Park, J. Brown, G. V. Schneider, M. B. Baldis, H. A. Beiersdorfer, P. Cone, K. V. Kelley, R. L. Kilbourne, C. A. Magee, E. W. May, M. J. Porter, F. S. TI Calibration of a flat field soft x-ray grating spectrometer for laser produced plasmas SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 18th Topical Conference on High-Temperature Plasma Diagnostics CY MAY 16-20, 2010 CL Wildwood, NJ AB We have calibrated the x-ray response of a variable line spaced grating spectrometer, known as the VSG, at the Fusion and Astrophysics Data and Diagnostic Calibration Facility at the Lawrence Livermore National Laboratory (LLNL). The VSG has been developed to diagnose laser produced plasmas, such as those created at the Jupiter Laser Facility and the National Ignition Facility at LLNL and at both the Omega and Omega EP lasers at the University of Rochester's Laboratory for Laser Energetics. The bandwidth of the VSG spans the range of similar to 6-60 angstrom. The calibration results presented here include the VSG's dispersion and quantum efficiency. The dispersion is determined by measuring the x rays emitted from the hydrogenlike and heliumlike ions of carbon, nitrogen, oxygen, neon, and aluminum. The quantum efficiency is calibrated to an accuracy of 30% or better by normalizing the x-ray intensities recorded by the VSG to those simultaneously recorded by an x-ray microcalorimeter spectrometer. (C) 2010 American Institute of Physics. [doi:10.1063/1.3495790] C1 [Park, J.; Brown, G. V.; Schneider, M. B.; Beiersdorfer, P.; Cone, K. V.; Magee, E. W.; May, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Park, J.; Baldis, H. A.; Cone, K. V.] Univ Calif Davis, Davis, CA 95616 USA. [Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. RP Park, J (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM park29@llnl.gov RI Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012 OI Porter, Frederick/0000-0002-6374-1119; NR 16 TC 10 Z9 10 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2010 VL 81 IS 10 AR 10E319 DI 10.1063/1.3495790 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 674NQ UT WOS:000283754000216 PM 21034017 ER PT J AU Holman, MJ Fabrycky, DC Ragozzine, D Ford, EB Steffen, JH Welsh, WF Lissauer, JJ Latham, DW Marcy, GW Walkowicz, LM Batalha, NM Jenkins, JM Rowe, JF Cochran, WD Fressin, F Torres, G Buchhave, LA Sasselov, DD Borucki, WJ Koch, DG Basri, G Brown, TM Caldwell, DA Charbonneau, D Dunham, EW Gautier, TN Geary, JC Gilliland, RL Haas, MR Howell, SB Ciardi, DR Endl, M Fischer, D Furesz, G Hartman, JD Isaacson, H Johnson, JA MacQueen, PJ Moorhead, AV Morehead, RC Orosz, JA AF Holman, Matthew J. Fabrycky, Daniel C. Ragozzine, Darin Ford, Eric B. Steffen, Jason H. Welsh, William F. Lissauer, Jack J. Latham, David W. Marcy, Geoffrey W. Walkowicz, Lucianne M. Batalha, Natalie M. Jenkins, Jon M. Rowe, Jason F. Cochran, William D. Fressin, Francois Torres, Guillermo Buchhave, Lars A. Sasselov, Dimitar D. Borucki, William J. Koch, David G. Basri, Gibor Brown, Timothy M. Caldwell, Douglas A. Charbonneau, David Dunham, Edward W. Gautier, Thomas N., III Geary, John C. Gilliland, Ronald L. Haas, Michael R. Howell, Steve B. Ciardi, David R. Endl, Michael Fischer, Debra Fueresz, Gabor Hartman, Joel D. Isaacson, Howard Johnson, John A. MacQueen, Phillip J. Moorhead, Althea V. Morehead, Robert C. Orosz, Jerome A. TI Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star, Confirmed by Timing Variations SO SCIENCE LA English DT Article ID EXTRA-SOLAR PLANETS; SUPER-EARTHS; SOLID EXOPLANETS; HARPS SEARCH; MASS; RESONANCES; DYNAMICS; MOTION; PERFORMANCE; STABILITY AB The Kepler spacecraft is monitoring more than 150,000 stars for evidence of planets transiting those stars. We report the detection of two Saturn-size planets that transit the same Sun-like star, based on 7 months of Kepler observations. Their 19.2- and 38.9-day periods are presently increasing and decreasing at respective average rates of 4 and 39 minutes per orbit; in addition, the transit times of the inner body display an alternating variation of smaller amplitude. These signatures are characteristic of gravitational interaction of two planets near a 2: 1 orbital resonance. Six radial-velocity observations show that these two planets are the most massive objects orbiting close to the star and substantially improve the estimates of their masses. After removing the signal of the two confirmed giant planets, we identified an additional transiting super-Earth-size planet candidate with a period of 1.6 days. C1 [Holman, Matthew J.; Fabrycky, Daniel C.; Ragozzine, Darin; Latham, David W.; Fressin, Francois; Torres, Guillermo; Buchhave, Lars A.; Sasselov, Dimitar D.; Charbonneau, David; Geary, John C.; Fueresz, Gabor; Hartman, Joel D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ford, Eric B.; Moorhead, Althea V.; Morehead, Robert C.] Univ Florida, Gainesville, FL 32611 USA. [Steffen, Jason H.] Fermilab Ctr Particle Astrophys, Batavia, IL 60510 USA. [Welsh, William F.; Orosz, Jerome A.] San Diego State Univ, San Diego, CA 92182 USA. [Lissauer, Jack J.; Jenkins, Jon M.; Rowe, Jason F.; Borucki, William J.; Koch, David G.; Caldwell, Douglas A.; Haas, Michael R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Lissauer, Jack J.] Stanford Univ, Stanford, CA 94305 USA. [Marcy, Geoffrey W.; Walkowicz, Lucianne M.; Basri, Gibor; Isaacson, Howard] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Batalha, Natalie M.] San Jose State Univ, San Jose, CA 95192 USA. [Jenkins, Jon M.; Caldwell, Douglas A.] SETI Inst, Mountain View, CA 94043 USA. [Cochran, William D.; Endl, Michael; MacQueen, Phillip J.] Univ Texas Austin, Austin, TX 78712 USA. [Buchhave, Lars A.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Ciardi, David R.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Brown, Timothy M.] Global Telescope, Las Cumbres Observ, Goleta, CA 93117 USA. [Dunham, Edward W.] Lowell Observ, Flagstaff, AZ 86001 USA. [Gautier, Thomas N., III] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gilliland, Ronald L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Howell, Steve B.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Fischer, Debra] Yale Univ, New Haven, CT 06510 USA. [Brown, Timothy M.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. RP Holman, MJ (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM mholman@cfa.harvard.edu RI Steffen, Jason/A-4320-2013; Ragozzine, Darin/C-4926-2013; Caldwell, Douglas/L-7911-2014; OI Caldwell, Douglas/0000-0003-1963-9616; Buchhave, Lars A./0000-0003-1605-5666; Ciardi, David/0000-0002-5741-3047; Fabrycky, Daniel/0000-0003-3750-0183 FU NASA's Science Mission Directorate; NASA [NCC2-1390]; NSF [0707203] FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. We acknowledge NASA Cooperative Agreement NCC2-1390. D. C. F. acknowledges support from the Michelson Fellowship, supported by NASA and administered by the NASA Exoplanet Science Institute. This material is based on work supported by the NSF under grant no. 0707203. This work is based, in part, on observations obtained at the W. M. Keck Observatory, which is operated by the Univ. of California and the California Institute of Technology. Some of the observations in this paper were obtained at Kitt Peak National Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy under cooperative agreement with the NSF. J.F.R. is a NASA postdoctoral program fellow. We are grateful to N. Haghighipour for many helpful comments and suggestions. NR 44 TC 213 Z9 213 U1 1 U2 11 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 1 PY 2010 VL 330 IS 6000 BP 51 EP 54 DI 10.1126/science.1195778 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 656KW UT WOS:000282334500030 PM 20798283 ER PT J AU Nishimura, Y Bortnik, J Li, W Thorne, RM Lyons, LR Angelopoulos, V Mende, SB Bonnell, JW Le Contel, O Cully, C Ergun, R Auster, U AF Nishimura, Y. Bortnik, J. Li, W. Thorne, R. M. Lyons, L. R. Angelopoulos, V. Mende, S. B. Bonnell, J. W. Le Contel, O. Cully, C. Ergun, R. Auster, U. TI Identifying the Driver of Pulsating Aurora SO SCIENCE LA English DT Article ID SOURCE REGION; THEMIS; CHORUS; ELECTRONS AB Pulsating aurora, a spectacular emission that appears as blinking of the upper atmosphere in the polar regions, is known to be excited by modulated, downward-streaming electrons. Despite its distinctive feature, identifying the driver of the electron precipitation has been a long-standing problem. Using coordinated satellite and ground-based all-sky imager observations from the THEMIS mission, we provide direct evidence that a naturally occurring electromagnetic wave, lower-band chorus, can drive pulsating aurora. Because the waves at a given equatorial location in space correlate with a single pulsating auroral patch in the upper atmosphere, our findings can also be used to constrain magnetic field models with much higher accuracy than has previously been possible. C1 [Nishimura, Y.; Bortnik, J.; Li, W.; Thorne, R. M.; Lyons, L. R.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Nishimura, Y.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Angelopoulos, V.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Angelopoulos, V.; Mende, S. B.; Bonnell, J. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Angelopoulos, V.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Le Contel, O.] UPMC Paris Sud 11, Ecole Polytech, CNRS, Lab Phys Plasmas, F-94107 St Maur Des Fosses, France. [Cully, C.] Swedish Inst Space Phys, SE-98128 Uppsala, Sweden. [Ergun, R.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. [Auster, U.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. RP Nishimura, Y (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. EM toshi@atmos.ucla.edu RI Li, Wen/F-3722-2011; Cully, Christopher/P-2539-2016 FU NASA [NAS5-02099, 9F007-046101]; NSF [ATM-0802843, AGS-0840178]; Japan Society for the Promotion of Science; CNES; CNRS FX This work was supported by NASA contract NAS5-02099, 9F007-046101; NSF grants ATM-0802843 and AGS-0840178; and a Research Fellowship from the Japan Society for the Promotion of Science. The French involvement (Search-coil magnetometer) on THEMIS is supported by CNES and CNRS. NR 29 TC 89 Z9 90 U1 1 U2 12 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 1 PY 2010 VL 330 IS 6000 BP 81 EP 84 DI 10.1126/science.1193186 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 656KW UT WOS:000282334500038 PM 20929809 ER PT J AU Canal, C Pasareanu, CS AF Canal, Carlos Pasareanu, Corina S. TI Special Issue on Selected papers of the 5th International Workshop on Formal Aspects of Component Software (FACS'08) Preface SO SCIENCE OF COMPUTER PROGRAMMING LA English DT Editorial Material C1 [Canal, Carlos] Univ Malaga, E-29071 Malaga, Spain. [Pasareanu, Corina S.] Carnegie Mellon Univ, NASA Ames, Pittsburgh, PA 15213 USA. RP Canal, C (reprint author), Univ Malaga, E-29071 Malaga, Spain. EM canal@lcc.uma.es; Corina.S.Pasareanu@nasa.gov RI Canal, Carlos/H-4782-2015 OI Canal, Carlos/0000-0002-8002-0372 NR 0 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6423 J9 SCI COMPUT PROGRAM JI Sci. Comput. Program. PD OCT 1 PY 2010 VL 75 IS 10 SI SI BP 809 EP 810 DI 10.1016/j.scico.2010.03.001 PG 2 WC Computer Science, Software Engineering SC Computer Science GA 638SZ UT WOS:000280917600001 ER PT J AU Wolff, CL Patrone, PN AF Wolff, Charles L. Patrone, Paul N. TI A New Way that Planets Can Affect the Sun SO SOLAR PHYSICS LA English DT Article DE Convection; Solar activity; Solar interior motions; Sun - planet interactions ID SOLAR CONVECTION ZONE; G-MODES; SUNSPOTS; MOTION; TACHOCLINE; ROTATION; CYCLE AB We derive a perturbation inside a rotating star that occurs when the star is accelerated by orbiting bodies. If a fluid element has rotational and orbital components of angular momentum with respect to the inertially fixed point of a planetary system that are of opposite sign, then the element may have potential energy that could be released by a suitable flow. We demonstrate the energy with a very simple model in which two fluid elements of equal mass exchange positions, calling to mind a turbulent field or natural convection. The exchange releases potential energy that, with a minor exception, is available only in the hemisphere facing the barycenter of the planetary system. We calculate its strength and spatial distribution for the strongest case ("vertical") and for weaker horizontal cases whose motions are all perpendicular to gravity. The vertical cases can raise the kinetic energy of a few well positioned convecting elements in the Sun's envelope by a factor a parts per thousand currency sign7. This is the first physical mechanism by which planets can have a nontrivial effect on internal solar motions. Occasional small mass exchanges near the solar center and in a recently proposed mixed shell centered at 0.16R (s) would carry fresh fuel to deeper levels. This would cause stars like the Sun with appropriate planetary systems to burn somewhat more brightly and have shorter lifetimes than identical stars without planets. The helioseismic sound speed and the long record of sunspot activity offer several bits of evidence that the effect may have been active in the Sun's core, its envelope, and in some vertically stable layers. Additional proof will require direct evidence from helioseismology or from transient waves on the solar surface. C1 [Wolff, Charles L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Patrone, Paul N.] Univ Maryland, College Pk, MD 20742 USA. RP Wolff, CL (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM charles.wolff@nasa.gov; ppatrone@umd.edu OI Wolff, Charles/0000-0001-8854-507X FU Heliophysics Science Division of Goddard Space Flight Center FX We appreciate support from the Heliophysics Science Division of Goddard Space Flight Center. NR 29 TC 22 Z9 24 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD OCT PY 2010 VL 266 IS 2 BP 227 EP 246 DI 10.1007/s11207-010-9628-y PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 655EO UT WOS:000282228700001 ER PT J AU Sych, RA Nakariakov, VM Anfinogentov, SA Ofman, L AF Sych, R. A. Nakariakov, V. M. Anfinogentov, S. A. Ofman, L. TI Web-Based Data Processing System for Automated Detection of Oscillations with Applications to the Solar Atmosphere SO SOLAR PHYSICS LA English DT Article DE Coronal oscillations; Coronal waves; EUV ID LONGITUDINAL INTENSITY OSCILLATIONS; SLOW MAGNETOACOUSTIC WAVES; CORONAL LOOPS; MEASURED PARAMETERS; ACTIVE-REGION; TRACE; EUV; EIT AB A web-based, interactive system for the remote processing of imaging data sets (i.e., EUV, X-ray, and microwave) and the automated interactive detection of wave and oscillatory phenomena in the solar atmosphere is presented. The system targets localized, but spatially resolved, phenomena such as kink, sausage, and longitudinal propagating and standing waves. The system implements the methods of Periodmapping for pre-analysis, and Pixelized Wavelet Filtering for detailed analysis of the imaging data cubes. The system is implemented on the dedicated data-processing server http://pwf.iszf.irk.ru, which is situated at the Institute of Solar-Terrestrial Physics, Irkutsk, Russia. Input data in the .sav, .fits, or .txt formats can be submitted via the local and/or global network (the Internet). The output data can be in the png, jpeg, and binary formats, on the user's request. The output data are periodmaps; narrowband amplitude, power, phase and correlation maps of the wave's sources at significant harmonics and in the chosen spectral intervals, and mpeg movies of their evolution. The system was tested by the analysis of the EUV and microwave emission from the active region NOAA 10756 on 4 May 2005 observed with TRACE and the Nobeyama Radioheliograph. The similarity of the spatial localization of three-minute propagating waves, near the footpoint of locally open magnetic-field lines determined by the potential-field extrapolation, in both the transition region and the corona was established. In the transition region the growth of the three-minute amplitude was found to be accompanied by the decrease in the line-of-sight angle to the wave-propagation direction. C1 [Sych, R. A.; Anfinogentov, S. A.] Inst Solar Terr Phys, Irkutsk, Russia. [Nakariakov, V. M.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Ofman, L.] Catholic Univ, Washington, DC USA. [Ofman, L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Sych, RA (reprint author), Inst Solar Terr Phys, 126 Lermontov St, Irkutsk, Russia. EM sych@iszf.irk.ru; V.Nakariakov@warwick.ac.uk; Leon.Ofman@nasa.gov RI Nakariakov, Valery/E-2375-2013; Sych, Robert/D-1499-2013; Lee, SungHwan/O-2563-2013; Anfinogentov, Sergey/A-6836-2014 OI Nakariakov, Valery/0000-0001-6423-8286; Sych, Robert/0000-0003-4693-0660; Anfinogentov, Sergey/0000-0002-1107-7420 FU Royal Society UK-Russian International; RFBR [10-02-00153a, 08-02-13633-ofi-c, 08-02-91860-KO-a, 08-02-92204-GFEN-a]; NASA; NRL FX The work was supported by the Royal Society UK-Russian International Joint Project, the grants RFBR 10-02-00153a, 08-02-13633-ofi-c, 08-02-91860-KO-a and 08-02-92204-GFEN-a. LO was supported by NASA and NRL grants to Catholic University of America. The TRACE and NoRH data were obtained from the TRACE and NoRH database. The authors acknowledge the TRACE and NoRH consortia for operating the instruments and performing the basic data reduction, and especially for the open data policy. Wavelet software was provided by C. Torrence and G. Compo and is available at URL: http://paos.colorado.edu/research/wavelets/. NR 28 TC 13 Z9 14 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD OCT PY 2010 VL 266 IS 2 BP 349 EP 367 DI 10.1007/s11207-010-9616-2 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 655EO UT WOS:000282228700009 ER PT J AU Petrosyan, A Balogh, A Goldstein, ML Leorat, J Marsch, E Petrovay, K Roberts, B von Steiger, R Vial, JC AF Petrosyan, A. Balogh, A. Goldstein, M. L. Leorat, J. Marsch, E. Petrovay, K. Roberts, B. von Steiger, R. Vial, J. C. TI Turbulence in the Solar Atmosphere and Solar Wind SO SPACE SCIENCE REVIEWS LA English DT Review DE Turbulence in the sun and heliosphere; Observations of turbulence in the solar corona and solar wind; Models of magnetohydrodynamic turbulence; Numerical simulations of turbulence; Cascading and scaling; Observations and models of intermittency ID CORONAL LOOP OSCILLATIONS; MAGNETIC-FLUX TUBES; LARGE-EDDY SIMULATION; COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE; ELECTROMAGNETIC PROTON/PROTON INSTABILITIES; INTERPLANETARY ALFVENIC FLUCTUATIONS; LONGITUDINAL INTENSITY OSCILLATIONS; EUV TRANSIENT BRIGHTENINGS; SLOW MAGNETOACOUSTIC WAVES; FULLY-DEVELOPED TURBULENCE AB The objective of this review article is to critically analyze turbulence and its role in the solar atmosphere and solar wind, as well as to provide a tutorial overview of topics worth clarification. Although turbulence is a ubiquitous phenomenon in the sun and its heliosphere, many open questions exist concerning the physical mechanisms of turbulence generation in solar environment. Also, the spatial and temporal evolution of the turbulence in the solar atmosphere and solar wind are still poorly understood. We limit the scope of this paper (leaving out the solar interior and convection zone) to the magnetized plasma that reaches from the photosphere and chromosphere upwards to the corona and inner heliosphere, and place particular emphasis on the magnetic field structures and fluctuations and their role in the dynamics and radiation of the coronal plasma. To attract the attention of scientists from both the fluid-dynamics and space-science communities we give in the first two sections a phenomenological overview of turbulence-related processes, in the context of solar and heliospheric physics and with emphasis on the photosphere-corona connection and the coupling between the solar corona and solar wind. We also discuss the basic tools and standard concepts for the empirical analysis and theoretical description of turbulence. The last two sections of this paper give a concise review of selected aspects of oscillations and waves in the solar atmosphere and related fluctuations in the solar wind. We conclude with some recommendations and suggest topics for future research. C1 [Petrosyan, A.] Russian Acad Sci, Space Res Inst, Moscow, Russia. [Balogh, A.; von Steiger, R.] ISSI, Bern, Switzerland. [Balogh, A.] Univ London Imperial Coll Sci Technol & Med, London, England. [Goldstein, M. L.] NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Greenbelt, MD 20771 USA. [Leorat, J.] Observ Paris, LUTH, F-92195 Meudon, France. [Marsch, E.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Petrovay, K.] Eotvos Lorand Univ, Dept Astron, H-1518 Budapest, Hungary. [Petrovay, K.] ASIAA Natl Tsing Hua Univ TIARA, Hsinchu, Taiwan. [Roberts, B.] Univ St Andrews, Math Inst, St Andrews KY16 9SS, Fife, Scotland. [Vial, J. C.] Univ Paris, F-75252 Paris, France. RP Petrosyan, A (reprint author), Russian Acad Sci, Space Res Inst, Moscow, Russia. EM apetrosy@iki.rssi.ru RI Goldstein, Melvyn/B-1724-2008; Von Steiger, Rudolf/F-6822-2011; OI Von Steiger, Rudolf/0000-0002-3350-0023; Petrovay, Kristof/0000-0002-1714-2027 FU National Science Council in Taiwan [NSC95-2752-M-007-006-PAE]; Hungarian Science Research Fund (OTKA) [K67746]; European Commission [MRTN-CT-2006-035484] FX K. Petrovay's work on this project was supported by the Theoretical Institute for Advanced Research in Astrophysics (TIARA) operated under Academia Sinica and the National Science Council Excellence Projects program in Taiwan administered through grant number NSC95-2752-M-007-006-PAE, as well as by the Hungarian Science Research Fund (OTKA) under grant No. K67746.; The collaboration of several of the authors of this paper has been facilitated by the European Commission through the RTN programme SOLAIRE (contract MRTN-CT-2006-035484). NR 421 TC 33 Z9 33 U1 3 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD OCT PY 2010 VL 156 IS 1-4 BP 135 EP 238 DI 10.1007/s11214-010-9694-3 PG 104 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 726WX UT WOS:000287758700005 ER PT J AU Gizon, L Schunker, H Baldner, CS Basu, S Birch, AC Bogart, RS Braun, DC Cameron, R Duvall, TL Hanasoge, SM Jackiewicz, J Roth, M Stahn, T Thompson, MJ Zharkov, S AF Gizon, L. Schunker, H. Baldner, C. S. Basu, S. Birch, A. C. Bogart, R. S. Braun, D. C. Cameron, R. Duvall, T. L., Jr. Hanasoge, S. M. Jackiewicz, J. Roth, M. Stahn, T. Thompson, M. J. Zharkov, S. TI Helioseismology of Sunspots: A Case Study of NOAA Region 9787 (vol 144, pg 249, 2009) SO SPACE SCIENCE REVIEWS LA English DT Correction C1 [Gizon, L.; Schunker, H.; Cameron, R.; Hanasoge, S. M.; Stahn, T.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Baldner, C. S.; Basu, S.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Birch, A. C.; Braun, D. C.] Colorado Res Associates, NWRA, Boulder, CO 80301 USA. [Bogart, R. S.] Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Duvall, T. L., Jr.] NASA, Goddard Space Flight Ctr, Lab Solar Phys, Greenbelt, MD 20771 USA. [Jackiewicz, J.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Roth, M.] Kiepenheuer Inst Sonnenphys, D-79104 Freiburg, Germany. [Thompson, M. J.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Zharkov, S.] Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. RP Gizon, L (reprint author), Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. EM gizon@mps.mpg.de RI Duvall, Thomas/C-9998-2012; Gizon, Laurent/B-9457-2008; Basu, Sarbani/B-8015-2014 OI Basu, Sarbani/0000-0002-6163-3472 NR 1 TC 6 Z9 6 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD OCT PY 2010 VL 156 IS 1-4 BP 257 EP 258 DI 10.1007/s11214-010-9688-1 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 726WX UT WOS:000287758700008 ER PT J AU Daigle, MJ Koutsoukos, XD Biswas, G AF Daigle, Matthew J. Koutsoukos, Xenofon D. Biswas, Gautam TI An event-based approach to integrated parametric and discrete fault diagnosis in hybrid systems SO TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL LA English DT Article DE discrete-event systems; electrical power distribution systems; hybrid bond graphs; hybrid systems; model-based diagnosis ID MODELS AB Fault diagnosis is crucial for ensuring the safe operation of complex engineering systems. These systems often exhibit hybrid behaviours, therefore, model-based diagnosis methods have to be based on hybrid system models. Most previous work in hybrid systems diagnosis has focused either on parametric or discrete faults. In this paper, we develop an integrated approach for hybrid diagnosis of parametric and discrete faults by incorporating the effects of both types of faults into our event-based qualitative fault signature framework. The framework allows for systematic design of event-based diagnosers that facilitate diagnosability analysis. Experimental results from a case study performed on an electrical power distribution system demonstrate the effectiveness of the approach. C1 [Daigle, Matthew J.] NASA, Ames Res Ctr, Moffett Field, CA 94025 USA. [Daigle, Matthew J.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Koutsoukos, Xenofon D.; Biswas, Gautam] Vanderbilt Univ, Dept EECS, Inst Software Integrated Syst, Nashville, TN USA. RP Daigle, MJ (reprint author), NASA, Ames Res Ctr, M-S 269-1, Moffett Field, CA 94025 USA. EM matthew.j.daigle@nasa.gov OI Daigle, Matthew/0000-0002-4616-3302 FU NSF [CNS-0615214, CNS-0347440]; NASA [USRA 08020-013, NRA NNX07AD12A] FX This work was supported in part by grants NSF CNS-0615214, NASA USRA 08020-013, NASA NRA NNX07AD12A, and NSF CNS-0347440. NR 18 TC 14 Z9 14 U1 0 U2 7 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0142-3312 J9 T I MEAS CONTROL JI Trans. Inst. Meas. Control PD OCT PY 2010 VL 32 IS 5 BP 487 EP 510 DI 10.1177/0142331208097840 PG 24 WC Automation & Control Systems; Instruments & Instrumentation SC Automation & Control Systems; Instruments & Instrumentation GA 656HZ UT WOS:000282321200004 ER PT J AU Pirtle, JL Stoner, AW AF Pirtle, Jodi L. Stoner, Allan W. TI Red king crab (Paralithodes camtschaticus) early post-settlement habitat choice: Structure, food, and ontogeny SO JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY LA English DT Article DE Biogenic habitat; King crab; Nursery habitat; Paralithodes camtschaticus ID CARIBBEAN SPINY LOBSTER; AMERICAN LOBSTER; DUNGENESS CRAB; CANCER-MAGISTER; RECRUITMENT; ALASKA; GLAUCOTHOE; JUVENILES; SUBSTRATE; SURVIVAL AB Little is known about nursery habitat function for red king crab (Paralithodes camtschaticus), a commercially important species that associates with complex benthic habitats from settlement through the first two years of life. During settlement, the red king crab actively seeks complex benthic habitats, with high availability of vertical structure and crevice space. Habitat choice for early juvenile red king crab may be driven by habitat complexity, or a function of several potential mechanisms, including foraging requirements, and shifting ontogeny. We established habitat preference and foraging behavior for two size classes of age-0 red king crab (small 2-4 mm, and large 7.5-9 mm carapace length) with laboratory experiments using habitat treatments composed of individual complex substrates that were living, biogenic substrates, including structural invertebrates, bryozoans and hydroids, and macroalgae in branched and blade forms. Non-living structural mimics of the biogenic substrates were presented to crabs as clean and fouled mimic treatments. We quantified the proportion of crab associations and foraging activity with single habitat treatments within a 24 h period. Substrates that were statistically attractive to small crabs were paired to test small crab foraging behavior. A variety of substrates were statistically attractive to red king crab. Small crabs associated with complex biogenic habitats and fouled mimics (group mean +/- SE 64% +/- 4%) more often than clean mimics (29% +/- 4%), and preferred to forage on the structural invertebrates (foraging frequency 81%) when presented with paired biogenic and fouled mimic substrates. Large crabs associated with habitats composed of structural invertebrates (group mean +/- SE 78% +/- 2%) statistically more often than macroalgae and fouled and clean mimics (32% +/- 5%). Strong attraction to structural invertebrates by early juvenile red king crab is likely driven by foraging opportunities. Our experiments demonstrate that biological habitat features may be functionally more important to early juvenile red king crab than complex physical structure alone. Habitats formed by structural invertebrates, in particular, may enhance growth and survival of early post-settlement stage red king crab in excess of other highly structured habitats, including macroalgae and complex physical substrates. (C) 2010 Elsevier B.V. All rights reserved. C1 [Pirtle, Jodi L.] Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, Juneau, AK 99801 USA. NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Fisheries Behav Ecol Program, Newport, OR 97365 USA. RP Pirtle, JL (reprint author), Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, 17101 Point Lena Loop Rd, Juneau, AK 99801 USA. EM jlpirtle@alaska.edu; al.stoner@noaa.gov FU Alaska Sea Grant Program; North Pacific Research Board; NOAA FX Funding for the dissertation research of J. Pirtle at the University Alaska Fairbanks, School of Fisheries and Ocean Sciences, Juneau, AK, was provided by the Alaska Sea Grant Program and the North Pacific Research Board. The Alutiiq Pride Shellfish Hatchery, Seward, AK, provided crabs for this study as a part of the AKCRRAB Program (Alaska King Crab Research, Rehabilitation, and Biology) funded by the NOAA Aquaculture Program and the Alaska Sea Grant Program. Crabs were produced, cared for, and shipped by B. Daly and J. Swingle, who provided advice on crab husbandry with M. Westphal. G. Eckert, D. Okamoto, and S. Tamone assisted with biogenic substrate collection near Juneau. S. Haines, J. Unrein, and L Loegers cared for the crabs in Newport, and assisted with the laboratory trials. M. Ottmar assisted with providing seawater systems in Newport. C. Leroux, AKCRRAB, provided the photo for Fig. 1. G. Eckert, T. Quinn, J. Reynolds, C. Ryer, B. Tissot, M. Westphal, and D. Woodby provided helpful criticisms of the manuscript. [SS] NR 44 TC 25 Z9 25 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0981 J9 J EXP MAR BIOL ECOL JI J. Exp. Mar. Biol. Ecol. PD SEP 30 PY 2010 VL 393 IS 1-2 BP 130 EP 137 DI 10.1016/j.jembe.2010.07.012 PG 8 WC Ecology; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA 657ER UT WOS:000282396500017 ER PT J AU Stoner, AW Ottmar, ML Copeman, LA AF Stoner, Allan W. Ottmar, Michele L. Copeman, Louise A. TI Temperature effects on the molting, growth, and lipid composition of newly-settled red king crab SO JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY LA English DT Article DE Bioenergetics; Culture; Fatty acid; Growth; Lipid; Paralithodes camtschaticus; Temperature ID FATTY-ACID COMPOSITION; EASTERN BERING-SEA; PARALITHODES-CAMTSCHATICUS; CLIMATE-CHANGE; BLUE CRABS; CALLINECTES-SAPIDUS; OXYGEN-CONSUMPTION; LITHODES-SANTOLLA; STOCK ENHANCEMENT; SCYLLA-SERRATA AB Red king crab (RKC) (Paralithodes camtschaticus Tilesius, 1815) is one of the most important fishery resource species in Alaska. It is threatened by heavy fishing pressure and changing climate conditions, yet little is known about the species' first year of post-settlement life. This study was undertaken to explore how temperature mediates growth and energy allocation in newly metamorphosed juveniles. RKC were reared using four temperature treatments ranging from 1.5 degrees to 12 degrees C for a period of 60 days, both individually and in low-density populations. Temperature had no significant effect on survival of RKC, and there was no consistent difference in survival between individually cultured crabs and those in populations. Growth was very slow at 1.5 degrees C, and increased rapidly with temperature with both a contracted intermolt period and small increase in growth increment. Twenty percent of the crabs held at 1.5 degrees C never molted, while more than 90% of the crabs in 12 degrees C reached juvenile stage 4 or higher. Overall growth increased as an exponential function of temperature, with slightly higher growth rates observed in populations than for isolated individuals. Growth records for individuals revealed an inverse exponential relationship between water temperature and intermolt period. There was also a small increase in growth increment from juvenile stage 1 to stage 2 with increasing temperature that appeared to be linear. Lipid class analysis revealed a trend towards higher proportions of storage lipids in larger crabs cultured at 12 degrees C than in crabs cultured at low temperatures. High proportions of essential fatty acids in all crab groups coupled with elevated levels of triacylglycerols in 12 degrees C animals, indicate that rapid growth does not negatively affect condition in juvenile RKC. Data provided by this study will help to model temperature-dependent growth and survival in the field, and assist in designing the best possible temperatures and diets for hatchery production of seed stock intended for enhancement of depleted RKC stocks. Published by Elsevier B.V. C1 [Stoner, Allan W.; Ottmar, Michele L.] Natl Ocean & Atmospher Adm, Fisheries Behav Ecol Program, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Newport, OR 97365 USA. [Copeman, Louise A.] Oregon State Univ, Cooperat Inst Marine Resources Studies, Hatfield Marine Sci Ctr, Newport, OR 97365 USA. RP Stoner, AW (reprint author), Natl Ocean & Atmospher Adm, Fisheries Behav Ecol Program, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2030 S Marine Sci Dr, Newport, OR 97365 USA. EM al.stoner@noaa.gov FU NOAA; Alaska Sea Grant College Program FX This study was conducted as part of the AKCRRAB Program (Alaska King Crab Research, Rehabilitation, and Biology) funded by the NOAA Aquaculture Program and the Alaska Sea Grant College Program. Crabs were provided by the Alutiiq Pride Shellfish Hatchery, Seward, AK, with special thanks to B. Daly and J. Swingle who cared for and shipped the experimental animals, and offered advice on crab husbandry. S. Haines helped care for the crabs in Newport, and J. Unrein assisted in building the experimental apparatus. We are grateful to J. Wells and T. Hooper as well as all the technical staff in Dr. Christopher Parrish's lab (Ocean Sciences Centre, Memorial University, Newfoundland, Canada) for the chromatography of lipid classes and fatty acids. B. Stevens offered advice on the topic of crustacean growth and biology. M. Westphal and T. Hurst provided helpful comments on the manuscript. [SS] NR 63 TC 27 Z9 30 U1 2 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0981 EI 1879-1697 J9 J EXP MAR BIOL ECOL JI J. Exp. Mar. Biol. Ecol. PD SEP 30 PY 2010 VL 393 IS 1-2 BP 138 EP 147 DI 10.1016/j.jembe.2010.07.011 PG 10 WC Ecology; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA 657ER UT WOS:000282396500018 ER PT J AU Arvidson, RE Bell, JF Bellutta, P Cabrol, NA Catalano, JG Cohen, J Crumpler, LS Marais, DJD Estlin, TA Farrand, WH Gellert, R Grant, JA Greenberger, RN Guinness, EA Herkenhoff, KE Herman, JA Iagnemma, KD Johnson, JR Klingelhofer, G Li, R Lichtenberg, KA Maxwell, SA Ming, DW Morris, RV Rice, MS Ruff, SW Shaw, A Siebach, KL de Souza, PA Stroupe, AW Squyres, SW Sullivan, RJ Talley, KP Townsend, JA Wang, A Wright, JR Yen, AS AF Arvidson, R. E. Bell, J. F., III Bellutta, P. Cabrol, N. A. Catalano, J. G. Cohen, J. Crumpler, L. S. Marais, D. J. Des Estlin, T. A. Farrand, W. H. Gellert, R. Grant, J. A. Greenberger, R. N. Guinness, E. A. Herkenhoff, K. E. Herman, J. A. Iagnemma, K. D. Johnson, J. R. Klingelhoefer, G. Li, R. Lichtenberg, K. A. Maxwell, S. A. Ming, D. W. Morris, R. V. Rice, M. S. Ruff, S. W. Shaw, A. Siebach, K. L. de Souza, P. A. Stroupe, A. W. Squyres, S. W. Sullivan, R. J. Talley, K. P. Townsend, J. A. Wang, A. Wright, J. R. Yen, A. S. TI Spirit Mars Rover Mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID THERMODYNAMIC BEHAVIOR; THEORETICAL PREDICTION; AQUEOUS ELECTROLYTES; HIGH PRESSURES; TEMPERATURES; DEPOSITS; LIFE AB This paper summarizes Spirit Rover operations in the Columbia Hills, Gusev crater, from sol 1410 (start of the third winter campaign) to sol 2169 (when extrication attempts from Troy stopped to winterize the vehicle) and provides an overview of key scientific results. The third winter campaign took advantage of parking on the northern slope of Home Plate to tilt the vehicle to track the sun and thus survive the winter season. With the onset of the spring season, Spirit began circumnavigating Home Plate on the way to volcanic constructs located to the south. Silica-rich nodular rocks were discovered in the valley to the north of Home Plate. The inoperative right front wheel drive actuator made climbing soil-covered slopes problematical and led to high slip conditions and extensive excavation of subsurface soils. This situation led to embedding of Spirit on the side of a shallow, 8 m wide crater in Troy, located in the valley to the west of Home Plate. Examination of the materials exposed during embedding showed that Spirit broke through a thin sulfate-rich soil crust and became embedded in an underlying mix of sulfate and basaltic sands. The nature of the crust is consistent with dissolution and precipitation in the presence of soil water within a few centimeters of the surface. The observation that sulfate-rich deposits in Troy and elsewhere in the Columbia Hills are just beneath the surface implies that these processes have operated on a continuing basis on Mars as landforms have been shaped by erosion and deposition. C1 [Arvidson, R. E.; Catalano, J. G.; Greenberger, R. N.; Guinness, E. A.; Lichtenberg, K. A.; Shaw, A.; Siebach, K. L.; Wang, A.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Bell, J. F., III; Rice, M. S.; Squyres, S. W.; Sullivan, R. J.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Bellutta, P.; Estlin, T. A.; Herman, J. A.; Maxwell, S. A.; Stroupe, A. W.; Talley, K. P.; Townsend, J. A.; Wright, J. R.; Yen, A. S.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Cabrol, N. A.; Marais, D. J. Des] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Cabrol, N. A.] SETI Inst, Mountain View, CA USA. [Cohen, J.] Honeybee Robot Spacecraft Mech Corp, New York, NY 10001 USA. [Crumpler, L. S.] New Mexico Museum Nat Hist & Sci, Albuquerque, NM 87104 USA. [Farrand, W. H.] Space Sci Inst, Boulder, CO 80301 USA. [Gellert, R.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Grant, J. A.] Smithsonian Inst, Ctr Earth & Planetary Studies, Washington, DC 20013 USA. [Herkenhoff, K. E.; Johnson, J. R.] US Geol Survey, Flagstaff, AZ 86001 USA. [Iagnemma, K. D.] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Klingelhoefer, G.] Johannes Gutenberg Univ Mainz, Inst Anorgan & Analyt Chem, D-55099 Mainz, Germany. [Li, R.] Ohio State Univ, Dept Civil & Environm Engn & Geodet Sci, Columbus, OH 43210 USA. [Ming, D. W.; Morris, R. V.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Ruff, S. W.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [de Souza, P. A.] CSIRO, Informat & Commun Technol Ctr, Hobart, Tas 7001, Australia. RP Arvidson, RE (reprint author), Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. EM arvidson@rsmail.wustl.edu RI de Souza, Paulo/B-8961-2008; Centre, TasICT/D-1212-2011; Catalano, Jeffrey/A-8322-2013; Johnson, Jeffrey/F-3972-2015; OI de Souza, Paulo/0000-0002-0091-8925; Catalano, Jeffrey/0000-0001-9311-977X; Siebach, Kirsten/0000-0002-6628-6297; Greenberger, Rebecca/0000-0003-1583-0261 FU NASA FX We thank the capable team of engineers and scientists at the Jet Propulsion Laboratory and elsewhere who made the Spirit mission possible. We also thank support from NASA for the science team. NR 34 TC 40 Z9 41 U1 1 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD SEP 30 PY 2010 VL 115 AR E00F03 DI 10.1029/2010JE003633 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 658TF UT WOS:000282511600003 ER PT J AU Greeley, R Waller, DA Cabrol, NA Landis, GA Lemmon, MT Neakrase, LDV Hoffer, MP Thompson, SD Whelley, PL AF Greeley, Ronald Waller, Devin A. Cabrol, Nathalie A. Landis, Geoffrey A. Lemmon, Mark T. Neakrase, Lynn D. V. Hoffer, Mary Pendleton Thompson, Shane D. Whelley, Patrick L. TI Gusev Crater, Mars: Observations of three dust devil seasons SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID CONVECTIVE VORTICES; PATHFINDER; CAMERA AB Spirit began operations in Gusev Crater in January 2004 and has returned data on three seasons of dust devil (DD) activity. Total DDs observed were 533 in season one, 101 in season two, and 127 in season three. Their general characteristics are the same within factors of 2 among the seasons, with median diameters of 19 m in season one, 24 m in season two, and 39 m in season three, and dust flux values for individual vortices ranging from 4.0 x 10(-9) to 4.6 x 10(-4) kg m(-2) s(-1) in season one, 5.2 x 10(-7) to 6.2 x 10(-5) kg m(-2) s(-1) in season two, and 1.5 x 10(-7) to 1.6 x 10(-4) kg m(-2) s(-1) in season three. All three seasons were initiated with the onset of southern Martian spring within 14 sols of the same L-s (181 degrees) and their frequency increased to the period corresponding to late southern spring. The occurrences decreased monotonically in seasons one and three but apparently ended abruptly in season two when a large dust storm occurred; although the dusty atmosphere might have precluded the detection of active DDs, the abrupt cessation could result from conditions such as thermal stability of the atmosphere due to the presence of dust which could halt DD formation. Dust devils can contribute significant quantities of dust to the atmosphere, although it is unclear as to whether this dust stays locally or is injected into higher-altitude winds and is distributed elsewhere. In the three DD seasons observed through Spirit, DDs in Gusev Crater injected a minimum average of similar to 18 x 10(6) kg of material into the atmosphere each season. C1 [Greeley, Ronald; Waller, Devin A.; Neakrase, Lynn D. V.; Hoffer, Mary Pendleton; Thompson, Shane D.; Whelley, Patrick L.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Cabrol, Nathalie A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Landis, Geoffrey A.] NASA, John Glenn Res Ctr, Cleveland, OH 44135 USA. [Lemmon, Mark T.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. RP Greeley, R (reprint author), Arizona State Univ, Sch Earth & Space Explorat, Box 871404, Tempe, AZ 85287 USA. EM greeley@asu.edu; devin.waller@asu.edu; Nathalie.A.Cabrol@nasa.gov; geoffrey.landis@nasa.gov; lemmon@tamu.edu; neakrase@gmail.com; pwhelley@buffalo.edu RI Lemmon, Mark/E-9983-2010; Whelley, Patrick/B-9560-2012 OI Lemmon, Mark/0000-0002-4504-5136; Whelley, Patrick/0000-0003-3266-9772 FU NASA FX This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by NASA. Support was provided through NASA's Mars Exploration Rover project and the planetary Geology and Geophysics Program. We thank the diligent work of the entire MER science and engineering team for the continued success in the operation of the rovers. We also acknowledge the ASU Space Photography Laboratory for data analysis facilities, Sue Selkirk for graphics support, and Stephanie Holaday for preparation of the final manuscript. The report benefited from helpful comments by two anonymous reviewers. NR 49 TC 34 Z9 34 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD SEP 30 PY 2010 VL 115 AR E00F02 DI 10.1029/2010JE003608 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 658TF UT WOS:000282511600002 ER PT J AU Forbes, KF St Cyr, OC AF Forbes, Kevin F. St Cyr, O. C. TI An anatomy of space weather's electricity market impact: Case of the PJM power grid and the performance of its 500 kV transformers SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID GEOMAGNETICALLY INDUCED CURRENTS; SEMIANNUAL VARIATION AB The PJM Interconnection is a regional electricity transmission organization which as of 30 April 2004 coordinated the dispatch of electricity over 320,000 km of transmission lines. The backbone of PJM's transmission system is a series of 500 kilovolt (kV) transmission lines and transformers. PJM operates both hourly real-time and day-ahead markets for energy. The differences between PJM's real-time and day-ahead prices reflect unexpected operating conditions. Using ground-based magnetometer data as a proxy for geomagnetically induced currents (GICs), we present evidence that the differences between PJM's real-time and day-ahead prices are statistically related with the GIC proxy. Extra high voltage energy losses and a measure of real-time congestion costs are also shown to be statistically related with the GIC proxy. The paper investigates these statistical linkages by examining the incidence of declared constraints in the 500 kV transformers. The relationship between the GIC proxy and the incidence of declared constraints in the transformers is examined using a multivariate regression model with a dependent variable that is binary. The model is estimated using hourly data over the period 1 April 2002 through 30 April 2004. The results indicate that GICs can contribute to conditions in which the system operator declares one or more of the 500 kV transformers to be constrained. This finding takes into account forecasted load, load forecasting errors, ambient temperature, a proxy for known transmission constraints, and scheduled flows with other power grids. The results are also consistent with published findings that GICs can contribute to overheating problems in transformers. C1 [Forbes, Kevin F.] Catholic Univ Amer, Dept Econ & Business, Washington, DC 20064 USA. [St Cyr, O. C.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [St Cyr, O. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Forbes, KF (reprint author), Catholic Univ Amer, Dept Econ & Business, Washington, DC 20064 USA. EM forbes@cua.edu FU National Science Foundation [0318582, 0921964] FX This research was made possible by grants from the National Science Foundation (awards 0318582 and 0921964). We thank the editor and an anonymous reviewer for their helpful comments and suggestions. We thank Michael A. Forbes for writing the software that processed the geomagnetic data used in this study and the staff of PJM Interconnection for providing access to their data series and for answering our many questions. We also thank Michael Shields, Anna Galati, and Cynthia Schmitt for their excellent research assistance. We have also benefited from discussions with Antti Pulkkinen and Mark Lively. We thank the United States Geological Survey for making its geomagnetic data available. We also thank Intermagnet (www.intermagnet.org) for promoting high standards of magnetic observatory practice and for providing an efficient mechanism for the distribution of the data. Any errors are the full responsibility of the authors. NR 35 TC 7 Z9 7 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD SEP 30 PY 2010 VL 8 AR S09004 DI 10.1029/2009SW000498 PG 24 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 657TN UT WOS:000282436600001 ER PT J AU Drouin, BJ Pearson, JC Dick, MJ AF Drouin, Brian J. Pearson, John C. Dick, Michael J. TI Reply to "Comment on 'Collisional cooling investigation of THz rotational transitions of water' " SO PHYSICAL REVIEW A LA English DT Article ID CARBON-MONOXIDE AB This response describes the authors' reaction to a critique of recent work on the ultracold physics of water. The possibility of spin-selective adsorption occurring in the context of the collisional cooling experiment is discussed. C1 [Drouin, Brian J.; Pearson, John C.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Dick, Michael J.] Bubble Technol Ind, Chalk River, ON, Canada. RP Drouin, BJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM brian.j.drouin@jpl.nasa.gov NR 7 TC 3 Z9 3 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD SEP 29 PY 2010 VL 82 IS 3 AR 036704 DI 10.1103/PhysRevA.82.036704 PG 2 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 655SF UT WOS:000282269100024 ER PT J AU Gettelman, A Liu, X Ghan, SJ Morrison, H Park, S Conley, AJ Klein, SA Boyle, J Mitchell, DL Li, JLF AF Gettelman, A. Liu, X. Ghan, S. J. Morrison, H. Park, S. Conley, A. J. Klein, S. A. Boyle, J. Mitchell, D. L. Li, J. -L. F. TI Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID PHASE STRATIFORM CLOUDS; GENERAL-CIRCULATION MODELS; LARGE-SCALE MODELS; MICROPHYSICS SCHEME; VERSION-3 CAM3; CIRRUS CLOUDS; ARCTIC CLOUD; WATER-VAPOR; PART II; RELATIVE-HUMIDITY AB A process-based treatment of ice supersaturation and ice nucleation is implemented in the National Center for Atmospheric Research Community Atmosphere Model (CAM). The new scheme is designed to allow (1) supersaturation with respect to ice, (2) ice nucleation by aerosol particles, and (3) ice cloud cover consistent with ice microphysics. The scheme is implemented with a two-moment microphysics code and is used to evaluate ice cloud nucleation mechanisms and supersaturation in CAM. The new model is able to reproduce field observations of ice mass and mixed phase cloud occurrence better than previous versions. The model is able to reproduce observed patterns and frequency of ice supersaturation. Simulations indicate homogeneous freezing of sulfate and heterogeneous freezing on dust are both important ice nucleation mechanisms, in different regions. Simulated cloud forcing and climate is sensitive to different formulations of the ice microphysics. Arctic surface radiative fluxes are sensitive to the parameterization of ice clouds. These results indicate that ice clouds are potentially an important part of understanding cloud forcing and potential cloud feedbacks, particularly in the Arctic. C1 [Gettelman, A.; Morrison, H.; Park, S.; Conley, A. J.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80305 USA. [Liu, X.; Ghan, S. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Klein, S. A.; Boyle, J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Mitchell, D. L.] Desert Res Inst, Reno, NV 89512 USA. [Li, J. -L. F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Gettelman, A (reprint author), Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80305 USA. EM andrew@ucar.edu RI Liu, Xiaohong/E-9304-2011; Ghan, Steven/H-4301-2011; Klein, Stephen/H-4337-2016 OI Liu, Xiaohong/0000-0002-3994-5955; Ghan, Steven/0000-0001-8355-8699; Klein, Stephen/0000-0002-5476-858X FU National Science Foundation (NSF); NSF Science and Technology Center for MultiScale Modeling of Atmospheric; Colorado State University [ATM-0425247] FX The National Center for Atmospheric Research is sponsored by the U. S. National Science Foundation (NSF). H. Morrison is partially supported by the NSF Science and Technology Center for MultiScale Modeling of Atmospheric Processes, managed by Colorado State University under cooperative agreement ATM-0425247. Support for S. A. Klein and J. S. Boyle was provided by the Atmospheric Radiation Measurement and Climate Change Prediction Programs of the Office of Science at the U. S. Department of Energy. The contribution of S. A. Klein and J. S. Boyle to this work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Amy Solomon is thanked for providing selected M-PACE cloud property retrieval data. X. Liu and S. J. Ghan were funded by the U. S. Department of Energy, Office of Science, Atmospheric Radiation Measurement, Scientific Discovery through Advanced Computing (SciDAC) program and by the NASA Interdisciplinary Science Program under grant NNX07AI56G. The Pacific Northwest National Laboratory is operated for Department of Energy by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. A. Conley was supported by the SciDAC project from the Department of Energy. We thank J. Kay, S. Massie, and two anonymous reviewers for their comments. NR 85 TC 155 Z9 157 U1 1 U2 40 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 28 PY 2010 VL 115 AR D18216 DI 10.1029/2009JD013797 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 658RJ UT WOS:000282506800006 ER PT J AU Jethva, H Satheesh, SK Srinivasan, J Levy, RC AF Jethva, H. Satheesh, S. K. Srinivasan, J. Levy, R. C. TI Improved retrieval of aerosol size-resolved properties from moderate resolution imaging spectroradiometer over India: Role of aerosol model and surface reflectance SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SULFUR-DIOXIDE EMISSIONS; COMBUSTION; INVENTORY; ALGORITHM; ASIA AB We have compared the total as well as fine mode aerosol optical depth (tau and tau(fine)) retrieved by Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua (2001-2005) with the equivalent parameters derived by Aerosol Robotic Network (AERONET) at Kanpur (26.45 degrees N, 80.35 degrees E), northern India. MODIS Collection 005 (C005)-derived tau(0.55) was found to be in good agreement with the AERONET measurements. The tau(fine) and eta (tau(fine)/tau) were, however, biased low significantly in most matched cases. A new set of retrieval with the use of absorbing aerosol model (SSA similar to 0.87) with increased visible surface reflectance provided improved tau and tau(fine) at Kanpur. The new derivation of eta also compares well qualitatively with an independent set of in situ measurements of accumulation mass fraction over much of the southern India. This suggests that though MODIS land algorithm has limited information to derive size properties of aerosols over land, more accurate parameterization of aerosol and surface properties within the existing C005 algorithm may improve the accuracy of size-resolved aerosol optical properties. The results presented in this paper indicate that there is a need to reconsider the surface parameterization and assumed aerosol properties in MODIS C005 algorithm over the Indian region in order to retrieve more accurate aerosol optical and size properties, which are essential to quantify the impact of human-made aerosols on climate. C1 [Jethva, H.] Hampton Univ, Dept Atmospher & Planetary Sci, Hampton, VA 23668 USA. [Satheesh, S. K.] Indian Inst Sci, Ctr Atmospher & Ocean Sci, Bangalore 560012, Karnataka, India. [Srinivasan, J.] Indian Inst Sci, Divecha Ctr Climate Change, Bangalore 560012, Karnataka, India. [Levy, R. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Jethva, H (reprint author), Hampton Univ, Dept Atmospher & Planetary Sci, 21 E Tyler St, Hampton, VA 23668 USA. EM hiren.jethva@hamptonu.edu; satheesh@caos.iisc.ernet.in; jayes@caos.iisc.ernet.in; robert.c.levy@nasa.gov RI Jethva, Hiren/H-2258-2012; Levy, Robert/M-7764-2013 OI Jethva, Hiren/0000-0002-5408-9886; Levy, Robert/0000-0002-8933-5303 NR 26 TC 11 Z9 11 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 28 PY 2010 VL 115 AR D18213 DI 10.1029/2009JD013218 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 658RJ UT WOS:000282506800002 ER PT J AU Su, WY Loeb, NG Xu, KM Schuster, GL Eitzen, ZA AF Su, Wenying Loeb, Norman G. Xu, Kuan-Man Schuster, Gregory L. Eitzen, Zachary A. TI An estimate of aerosol indirect effect from satellite measurements with concurrent meteorological analysis SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID STRATIFORM CLOUDS; GLOBAL SURVEY; WATER CLOUDS; REFLECTANCE; PARAMETERS; RETRIEVAL; POLLUTION; IMPACT; ALBEDO; ISCCP AB Many studies have used satellite retrievals to investigate the effect of aerosols on cloud properties, but these retrievals are subject to artifacts that can confound interpretation. Additionally, large-scale meteorological differences over a study region dominate cloud dynamics and must be accounted for when studying aerosol and cloud interactions. We have developed an analysis method which minimizes the effect of retrieval artifacts and large-scale meteorology on the assessment of the aerosol indirect effect. The method divides an oceanic study region into 1 degrees x 1 degrees grid boxes and separates the grid boxes into two populations according to back trajectory analysis: one population contains aerosols of oceanic origin, and the other population contains aerosols of continental origin. We account for variability in the large-scale dynamical and thermodynamical conditions by stratifying these two populations according to vertical velocity (at 700 hPa) and estimated inversion strength and analyze differences in the aerosol optical depths, cloud properties, and top of atmosphere (TOA) albedos. We also stratify the differences by cloud liquid water path (LWP) in order to quantify the first aerosol indirect effect. We apply our method to a study region off the west coast of Africa and only consider single-layer low-level clouds. We find that grid boxes associated with aerosols of continental origin have higher cloud fraction than those associated with oceanic origin. Additionally, we limit our analysis to those grid boxes with cloud fractions larger than 80% to ensure that the two populations have similar retrieval biases. This is important for eliminating the retrieval biases in our difference analysis. We find a significant reduction in cloud droplet effective radius associated with continental aerosols relative to that associated with oceanic aerosols under all LWP ranges; the overall reduction is about 1.0 mu m, when cloud fraction is not constrained, and is about 0.5 mu m, when cloud fraction is constrained to be larger than 80%. We also find significant increases in cloud optical depth and TOA albedo associated with continental aerosols relative to those associated with oceanic aerosols under all LWP ranges. The overall increase in cloud optical depth is about 0.6, and the overall increase in TOA albedo is about 0.021, when we do not constrained cloud fraction. The overall increases in cloud optical depth and TOA albedo are 0.4 and 0.008, when we only use grid boxes with cloud fraction larger than 80%. C1 [Su, Wenying; Eitzen, Zachary A.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Loeb, Norman G.; Xu, Kuan-Man; Schuster, Gregory L.] NASA, Langley Res Ctr, Hampton, VA 23666 USA. RP Su, WY (reprint author), Sci Syst & Applicat Inc, Hampton, VA 23666 USA. EM wenying.su-1@nasa.gov RI Xu, Kuan-Man/B-7557-2013 OI Xu, Kuan-Man/0000-0001-7851-2629 FU NASA FX This research has been supported by NASA Interdisciplinary Research in Earth Science, Aerosol Impacts on Clouds, Precipitation, and the Hydrologic Cycle, and by the NASA CALIPSO project. The CERES SSF data were obtained from the Atmospheric Sciences Data Center at the NASA Langley Research Center. ECMWF ERA-Interim data used in this study have been obtained from the ECMWF data server. W. Su would like to thank Roland Draxler for his help with HYSPLIT. We thank Patrick Minnis and Sunny Sun-Mack for helpful discussions. NR 47 TC 11 Z9 11 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 28 PY 2010 VL 115 AR D18219 DI 10.1029/2010JD013948 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 658RJ UT WOS:000282506800008 ER PT J AU Anderson, MS AF Anderson, Mark S. TI Nonplasmonic surface enhanced Raman spectroscopy using silica microspheres SO APPLIED PHYSICS LETTERS LA English DT Article ID SILVER ELECTRODE; MICROCAVITIES; RESONATORS; SCATTERING; PYRIDINE; SPECTRA; WAVES AB Surface enhanced Raman spectroscopy is presented using a nonplasmonic mechanism based on whispering gallery modes in silica microspheres. Sensitive Raman analysis of molecular films is demonstrated by using 5-10 mu m sized silica spheres. The advantages of this nonplasmonic approach are the active substrate is chemically inert, thermally stable, and relatively simple to fabricate. Applications include trace organic analysis particularly for in situ planetary instruments that require robust sensors with consistent response. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3493657] C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Anderson, MS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 125-109, Pasadena, CA 91109 USA. EM mark.s.anderson@jpl.nasa.gov NR 21 TC 12 Z9 12 U1 2 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 27 PY 2010 VL 97 IS 13 AR 131116 DI 10.1063/1.3493657 PG 3 WC Physics, Applied SC Physics GA 657UU UT WOS:000282443800016 ER PT J AU Sutton, A McKenzie, K Ware, B Shaddock, DA AF Sutton, Andrew McKenzie, Kirk Ware, Brent Shaddock, Daniel A. TI Laser ranging and communications for LISA SO OPTICS EXPRESS LA English DT Article AB The Laser Interferometer Space Antenna (LISA) will use Time Delay Interferometry (TDI) to suppress the otherwise dominant laser frequency noise. The technique uses sub-sample interpolation of the recorded optical phase measurements to form a family of interferometric combinations immune to frequency noise. This paper reports on the development of a Pseudo-Random Noise laser ranging system used to measure the sub-sample interpolation time shifts required for TDI operation. The system also includes an optical communication capability that meets the 20 kbps LISA requirement. An experimental demonstration of an integrated LISA phase measurement and ranging system achieved a approximate to 0.19 m rms absolute range error with a 0.5Hz signal bandwidth, surpassing the 1 m rms LISA specification. The range measurement is limited by mutual interference between the ranging signals exchanged between spacecraft and the interaction of the ranging code with the phase measurement. C1 [Sutton, Andrew; Shaddock, Daniel A.] Australian Natl Univ, Ctr Gravitat Phys, Canberra, ACT 0200, Australia. [McKenzie, Kirk; Ware, Brent; Shaddock, Daniel A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Sutton, A (reprint author), Australian Natl Univ, Ctr Gravitat Phys, GPO Box 4, Canberra, ACT 0200, Australia. EM andrew.sutton@anu.edu.au RI Shaddock, Daniel/A-7534-2011 OI Shaddock, Daniel/0000-0002-6885-3494 FU Australian Research Council [DP0986003]; National Aeronautics and Space Administration (NASA) FX This research was supported under Australian Research Council's Discovery Projects funding scheme (project number DP0986003). Part of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). NR 17 TC 14 Z9 14 U1 0 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 27 PY 2010 VL 18 IS 20 BP 20759 EP 20773 DI 10.1364/OE.18.020759 PG 15 WC Optics SC Optics GA 673QX UT WOS:000283679200023 PM 20940971 ER PT J AU Josset, D Zhai, PW Hu, YX Pelon, J Lucker, PL AF Josset, Damien Zhai, Peng-Wang Hu, Yongxiang Pelon, Jacques Lucker, Patricia L. TI Lidar equation for ocean surface and subsurface SO OPTICS EXPRESS LA English DT Article ID BIDIRECTIONAL REFLECTANCE; CLOUDS; RADIANCE; WATER; BACKSCATTER; CALIBRATION; WHITECAPS; AEROSOLS; MISSION; LAYERS AB The lidar equation for ocean at optical wavelengths including subsurface signals is revisited using the recent work of the radiative transfer and ocean color community for passive measurements. The previous form of the specular and subsurface echo term are corrected from their heritage, which originated from passive remote sensing of whitecaps, and is improved for more accurate use in future lidar research. A corrected expression for specular and subsurface lidar return is presented. The previous formalism does not correctly address angular dependency of specular lidar return and overestimates the subsurface term by a factor ranging from 89% to 194% for a nadir pointing lidar. Suggestions for future improvements to the lidar equation are also presented. (C) 2010 Optical Society of America C1 [Josset, Damien] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Josset, Damien; Zhai, Peng-Wang] SSAI, Hampton, VA 23666 USA. [Hu, Yongxiang] NASA, Langley Res Ctr, MS 475, Hampton, VA 23681 USA. [Pelon, Jacques] Univ Paris 06, LATMOS, CNRS, UMR 8190, F-75252 Paris 05, France. [Lucker, Patricia L.] NASA, Langley Res Ctr, SSAI, MS 475, Hampton, VA 23681 USA. RP Josset, D (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM damien.josset@aero.jussieu.fr RI Hu, Yongxiang/K-4426-2012 FU NASA at NASA Langley Research Center; Science Systems and Applications Inc. (SSAI) FX This work has been supported by NASA Postdoctoral Program (NPP) at NASA Langley Research Center administered by Oak Ridge Associated Universities. Science Systems and Applications Inc. (SSAI) is greatly acknowledged for their support. We would like to thank the two anonymous reviewers for suggesting corrections and improvements to the manuscript. NR 31 TC 5 Z9 6 U1 1 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 27 PY 2010 VL 18 IS 20 BP 20862 EP 20875 DI 10.1364/OE.18.020862 PG 14 WC Optics SC Optics GA 673QX UT WOS:000283679200033 PM 20940981 ER PT J AU Sayres, DS Pfister, L Hanisco, TF Moyer, EJ Smith, JB St Clair, JM O'Brien, AS Witinski, MF Legg, M Anderson, JG AF Sayres, D. S. Pfister, L. Hanisco, T. F. Moyer, E. J. Smith, J. B. St Clair, J. M. O'Brien, A. S. Witinski, M. F. Legg, M. Anderson, J. G. TI Influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TROPOSPHERE EXCHANGE; VAPOR; TRANSPORT; OZONE; DEHYDRATION; AIRCRAFT; AIR AB [1] We present the first in situ measurements of HDO across the tropical tropopause, obtained by the integrated cavity output spectroscopy (ICOS) and Hoxotope water isotope instruments during the Costa Rica Aura Validation Experiment (CR-AVE) and Tropical Composition, Cloud and Climate Coupling (TC4) aircraft campaigns out of Costa Rica in winter and summer, respectively. We use these data to explore the role convection plays in delivering water to the tropical tropopause layer (TTL) and stratosphere. We find that isotopic ratios within the TTL are inconsistent with gradual ascent and dehydration by in-situ cirrus formation and suggest that convective ice lofting and evaporation play a strong role throughout the TTL. We use a convective influence model and a simple parameterized model of dehydration along back trajectories to demonstrate that the convective injection of isotopically heavy water can account for the predominant isotopic profile in the TTL. Air parcels with significantly enhanced water vapor and isotopic composition can be linked via trajectory analysis to specific convective events in the Western Tropical Pacific, Southern Pacific Ocean, and South America. Using a simple model of dehydration and hydration along trajectories we show that convection during the summertime TC4 campaign moistened the upper part of the TTL by as much as 2.0 ppmv water vapor. The results suggest that deep convection is significant for the moisture budget of the tropical near-tropopause region and must be included to fully model the dynamics and chemistry of the TTL and lower stratosphere. C1 [Sayres, D. S.; Hanisco, T. F.; Moyer, E. J.; Smith, J. B.; St Clair, J. M.; O'Brien, A. S.; Witinski, M. F.; Anderson, J. G.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Pfister, L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Legg, M.] BAERI, Sonoma, CA 95476 USA. RP Sayres, DS (reprint author), Harvard Univ, Sch Engn & Appl Sci, 12 Oxford St, Cambridge, MA 02138 USA. EM sayres@huarp.harvard.edu FU NASA [NNG05G056G, NNG05GJ81G] FX The authors wish to thank the WB-57 pilots and crew for their hard work and dedication without which these measurements would not be possible. We also wish to thank A.E. Dessler for his comments and suggestions on this manuscript. Support from NASA grants NNG05G056G and NNG05GJ81G is gratefully acknowledged. NR 40 TC 33 Z9 33 U1 1 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 25 PY 2010 VL 115 AR D00J20 DI 10.1029/2009JD013100 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 656IF UT WOS:000282322100005 ER PT J AU Fisher, K Chang, CI AF Fisher, Kevin Chang, Chein-I TI Progressive band selection for satellite hyperspectral data compression and transmission SO JOURNAL OF APPLIED REMOTE SENSING LA English DT Article DE Backward progressive band selection (BPBS); Forward progressive band selection (FPBS); Progressive band selection; Virtual dimensionality (VD) ID SUBSPACE PROJECTION; CLASSIFICATION; IMAGERY AB Efficient data transmission is an important part of satellite communication, particularly when large data volumes need to be downlinked to the Earth. One general approach to dealing with this dilemma is data compression, either lossless or lossy. For hyperspectral data, compression is specifically crucial due to its high inter-band spectral correlation, resulting from the use of hundreds of high spectral resolution bands for data collection. This paper develops a new approach, called progressive band selection (PBS), to achieve both data compression and data transmission, in the sense that data can be compressed and transmitted progressively. First, PBS prioritizes each spectral band by assigning a priority score based on its information content measured by a certain criterion. Then, bands are selected progressively according to the priority scores assigned to each spectral band. Consequently, data can be compressed and transmitted in a progressive fashion to meet the application's requirements; this task cannot be accomplished by most data compression techniques. Most importantly, PBS can be implemented in two opposite manners. One is forward progressive band selection (FPBS), which starts with a low number of bands and gradually improves data quality by including more bands progressively, based on their priority scores, until data quality is satisfactory. The other is backward progressive band selection (BPBS), which begins with a high number of spectral bands and progressively removes them in accordance with their priority scores, until data quality falls below a given tolerance level. In order to determine the lower and upper bounds on the number of bands used for FPBS and BPBS, we use a recently developed concept called virtual dimensionality (VD). We demonstrate the utility of PBS in compression and transmission for satellite communication with an experiment in land use and cover classification, which uses a dataset collected by the Hyperion instrument aboard NASA's EO-1 satellite. C1 [Fisher, Kevin] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Chang, Chein-I] Univ Maryland, Dept Comp Sci & Elect Engn, Baltimore, MD 21250 USA. RP Fisher, K (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. NR 18 TC 1 Z9 1 U1 1 U2 4 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1931-3195 J9 J APPL REMOTE SENS JI J. Appl. Remote Sens. PD SEP 24 PY 2010 VL 4 AR 041770 DI 10.1117/1.3502036 PG 17 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 704RG UT WOS:000286069500001 ER PT J AU Di Girolamo, L Liang, LS Platnick, S AF Di Girolamo, Larry Liang, Lusheng Platnick, Steven TI A global view of one-dimensional solar radiative transfer through oceanic water clouds SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID INDEPENDENT PIXEL APPROXIMATION; OPTICAL DEPTH AB Solar radiative transfer through a cloudy atmosphere is commonly computed assuming clouds to be one-dimensional, i.e., plane-parallel. Here we provide a global perspective on how often and with what degree oceanic water clouds may be considered plane-parallel by fusing multi-view-angle and multi-spectral satellite data. We show that the view-angular distribution of the retrieved reflectance, spherical albedo and cloud optical thickness measured at 1 km resolution are indistinguishable from plane-parallel clouds 24%, 25% and 79% of the time, respectively, at the 95% confidence level of our measurement method. These plane-parallel clouds occur most frequently within regions dominated by stratiform clouds under solar zenith angles <60 degrees. For all other regions or sun-angles, the frequency in which clouds are indistinguishable from plane-parallel drops sharply to as low as a few percent. Our results provide a basis for interpreting space-time variability within many satellite-retrieved variables and reveal a need for continued efforts to handle three-dimensional radiative transfer in environmental modeling and monitoring systems. Citation: Di Girolamo, L., L. Liang, and S. Platnick (2010), A global view of one-dimensional solar radiative transfer through oceanic water clouds, Geophys. Res. Lett., 37, L18809, doi:10.1029/2010GL044094. C1 [Di Girolamo, Larry; Liang, Lusheng] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61801 USA. [Platnick, Steven] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. RP Di Girolamo, L (reprint author), Univ Illinois, Dept Atmospher Sci, 105 S Gregory Ave, Urbana, IL 61801 USA. EM larry@atmos.uiuc.edu RI liang, lusheng/E-1538-2014; Platnick, Steven/J-9982-2014 OI Platnick, Steven/0000-0003-3964-3567 FU NASA FX We are grateful to the NASA Langley Research Center Atmospheric Sciences Data Center and the NASA Goddard Space Flight Center Atmosphere Archive Distribution System for archiving and distributing the MISR and MODIS datasets. Funding was provided by NASA through the New Investigator Program and the Earth and Space Science Fellowship Program, as well as through the MISR project managed by the Jet Propulsion Laboratory of the California Institute of Technology. NR 14 TC 18 Z9 18 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 24 PY 2010 VL 37 AR L18809 DI 10.1029/2010GL044094 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 656HL UT WOS:000282319500001 ER PT J AU Liu, CX Liu, Y Cai, ZN Gao, ST Bian, JC Liu, XO Chance, K AF Liu, Chuanxi Liu, Yi Cai, Zhaonan Gao, Shouting Bian, Jianchun Liu, Xiong Chance, Kelly TI Dynamic formation of extreme ozone minimum events over the Tibetan Plateau during northern winters 1987-2001 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MADDEN-JULIAN OSCILLATION; TROPOSPHERIC OZONE; LOWER STRATOSPHERE; CLIMATOLOGY; TROPOPAUSE; HEMISPHERE; PACIFIC; HOLES AB Wintertime extreme ozone minima in the total column ozone over the Tibetan Plateau (TP) between 1978 and 2001 are analyzed using observations from the Total Ozone Mapping Spectrometer (TOMS), Global Ozone Monitoring Experiment (GOME), and reanalysis data from both National Centers for Environmental Prediction and European Centre for Medium-Range Weather Forecasts. Results show that total column ozone reduction in nine persistent (lasting for at least 2 days) and four transient events can be substantially attributed to ozone reduction in the upper troposphere and lower stratosphere region (below 25 km). This reduction is generally caused by uplift of the local tropopause and northward transport of tropical ozone-poor air associated with an anomalous anticyclone in the upper troposphere. These anticyclonic anomalies are closely related to anomalous tropical deep convective heating, which is, however, not necessarily phase locked with the tropical Madden-Julian Oscillation as in our earlier case study. Considering stratospheric processes, the selected 13 events can be combined into nine independent events. Moreover, five of the nine independent events, especially the persistent events, are coupled with contributions from stratospheric dynamics between 25 and 40 km, i.e., 15%-40% derived from GOME observations for events in November 1998, February 1999, and December 2001. On the basis of these events, stratospheric column ozone reduction over the TP region can be attributed to the dynamics (development and/or displacement) of the two main stratospheric systems, namely, the polar vortex and the Aleutian High. The effect of a "low-ozone pocket" inside the Aleutian High on the total column ozone in East Asia requires further study. C1 [Liu, Chuanxi; Liu, Yi; Cai, Zhaonan; Bian, Jianchun] Chinese Acad Sci, Inst Atmospher Phys, Key Lab Middle Atmosphere & Global Environm Obser, Beijing 100029, Peoples R China. [Liu, Xiong; Chance, Kelly] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Gao, Shouting] Chinese Acad Sci, Inst Atmospher Phys, LACS, Beijing 100029, Peoples R China. [Liu, Xiong] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Liu, Chuanxi; Cai, Zhaonan] Chinese Acad Sci, Grad Univ, Beijing 100029, Peoples R China. RP Liu, CX (reprint author), Chinese Acad Sci, Inst Atmospher Phys, Key Lab Middle Atmosphere & Global Environm Obser, Beijing 100029, Peoples R China. RI Liu, Xiong/P-7186-2014; OI Liu, Xiong/0000-0003-2939-574X; Chance, Kelly/0000-0002-7339-7577 FU National Basic Research Program of China [2010CB428604]; National Science Foundation of China [40633015]; Dragon 2 Programme [5311]; NASA; Smithsonian Institution FX This work was funded by the National Basic Research Program of China (grant 2010CB428604), National Science Foundation of China (grant 40633015), and the Dragon 2 Programme (ID: 5311). We thank the European Space Agency and the German Aerospace Center for their ongoing cooperation in the GOME program. The meteorological analysis was kindly provided by ECMWF and NCEP. Research at SAO was funded by NASA and the Smithsonian Institution. NR 46 TC 6 Z9 7 U1 0 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 24 PY 2010 VL 115 AR D18311 DI 10.1029/2009JD013130 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 656ID UT WOS:000282321800001 ER PT J AU France, K McCray, R Heng, K Kirshner, RP Challis, P Bouchet, P Crotts, A Dwek, E Fransson, C Garnavich, PM Larsson, J Lawrence, SS Lundqvist, P Panagia, N Pun, CSJ Smith, N Sollerman, J Sonneborn, G Stocke, JT Wang, LF Wheeler, JC AF France, Kevin McCray, Richard Heng, Kevin Kirshner, Robert P. Challis, Peter Bouchet, Patrice Crotts, Arlin Dwek, Eli Fransson, Claes Garnavich, Peter M. Larsson, Josefin Lawrence, Stephen S. Lundqvist, Peter Panagia, Nino Pun, Chun S. J. Smith, Nathan Sollerman, Jesper Sonneborn, George Stocke, John T. Wang, Lifan Wheeler, J. Craig TI Observing Supernova 1987A with the Refurbished Hubble Space Telescope SO SCIENCE LA English DT Article ID BALMER-DOMINATED SHOCKS; SNR 1987A; REVERSE SHOCK; CIRCUMSTELLAR RING; OPTICAL-EMISSION; LINE EMISSION; SN-1987A; ULTRAVIOLET; REMNANTS; NEBULA AB Observations with the Hubble Space Telescope (HST), conducted since 1990, now offer an unprecedented glimpse into fast astrophysical shocks in the young remnant of supernova 1987A. Comparing observations taken in 2010 with the use of the refurbished instruments on HST with data taken in 2004, just before the Space Telescope Imaging Spectrograph failed, we find that the Ly alpha and H alpha lines from shock emission continue to brighten, whereas their maximum velocities continue to decrease. We observe broad, blueshifted Ly alpha, which we attribute to resonant scattering of photons emitted from hot spots on the equatorial ring. We also detect N v lambda lambda 1239, 1243 angstrom line emission, but only to the red of Ly alpha. The profiles of the N v lines differ markedly from that of H alpha, suggesting that the N(4+) ions are scattered and accelerated by turbulent electromagnetic fields that isotropize the ions in the collisionless shock. C1 [Heng, Kevin] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [France, Kevin; Stocke, John T.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [McCray, Richard] Univ Colorado, JILA, Boulder, CO 80309 USA. [Heng, Kevin] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. [Kirshner, Robert P.; Challis, Peter] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bouchet, Patrice] Commissariat Energie Atom & Energies Alternat, Serv Astrophys, FR-91191 Gif Sur Yvette, France. [Crotts, Arlin] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Dwek, Eli; Sonneborn, George] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fransson, Claes; Larsson, Josefin; Sollerman, Jesper] Stockholm Univ, Oskar Klein Ctr, Dept Astron, S-10691 Stockholm, Sweden. [Garnavich, Peter M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Lawrence, Stephen S.] Hofstra Univ, Dept Phys & Astron, Hempstead, NY 11549 USA. [Panagia, Nino] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Panagia, Nino] Osserv Astrofis Catania, Inst Nazl Astrofis, I-95123 Catania, Italy. [Pun, Chun S. J.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Smith, Nathan] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Wang, Lifan] Texas A&M Univ, Dept Phys & Astron, College Stn, TX USA. [Wheeler, J. Craig] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. RP Heng, K (reprint author), ETH, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. EM kheng@phys.ethz.ch RI Dwek, Eli/C-3995-2012; Sonneborn, George/D-5255-2012; OI Sollerman, Jesper/0000-0003-1546-6615; /0000-0003-0065-2933 FU Space Telescope Science Institute [GO-11181]; NASA [NAS5-26555] FX K.F. thanks M. Beasley for enjoyable discussions. Support for this research was provided by NASA through grant GO-11181 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, under NASA contract NAS5-26555. NR 25 TC 12 Z9 12 U1 0 U2 12 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 24 PY 2010 VL 329 IS 5999 BP 1624 EP 1627 DI 10.1126/science.1192134 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 653NK UT WOS:000282098100034 PM 20813921 ER PT J AU Heavens, NG Benson, JL Kass, DM Kleinbohl, A Abdou, WA McCleese, DJ Richardson, MI Schofield, JT Shirley, JH Wolkenberg, PM AF Heavens, N. G. Benson, J. L. Kass, D. M. Kleinboehl, A. Abdou, W. A. McCleese, D. J. Richardson, M. I. Schofield, J. T. Shirley, J. H. Wolkenberg, P. M. TI Water ice clouds over the Martian tropics during northern summer SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GENERAL-CIRCULATION MODEL; INTERANNUAL VARIABILITY; MARS; ATMOSPHERE; TES AB Atmospheric models suggest that infrared heating due to water ice clouds over the tropics of Mars during early northern summer has a significant impact on the thermal structure of the tropics at cloud level and of the middle atmosphere near the south pole. Retrievals from limb observations by the Mars Climate Sounder on Mars Reconnaissance Orbiter during early northern summer show that water ice clouds over the northern tropics are thinner and higher than in published model results. Later in this season, the latitudinal extent, apparent mass mixing ratio (and infrared heating rate), and altitude of nighttime tropical clouds significantly increase, reaching a maximum just before northern fall equinox. Published model results do not show this transition. By underestimating the altitude at which water ice clouds form, models also may underestimate the intensity of the meridional circulation at higher altitudes in the tropics during northern summer. Citation: Heavens, N. G., J. L. Benson, D. M. Kass, A. Kleinbohl, W. A. Abdou, D. J. McCleese, M. I. Richardson, J. T. Schofield, J. H. Shirley, and P. M. Wolkenberg (2010), Water ice clouds over the Martian tropics during northern summer, Geophys. Res. Lett., 37, L18202, doi: 10.1029/2010GL044610. C1 [Heavens, N. G.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91109 USA. [Benson, J. L.; Kass, D. M.; Kleinboehl, A.; Abdou, W. A.; McCleese, D. J.; Schofield, J. T.; Shirley, J. H.; Wolkenberg, P. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Richardson, M. I.] Ashima Res, Pasadena, CA 91106 USA. RP Heavens, NG (reprint author), Cornell Univ, Dept Earth & Atmospher Sci, 1118 Bradfield Hall, Ithaca, NY 14850 USA. EM heavens@cornell.edu OI Heavens, Nicholas/0000-0001-7654-503X FU Jet Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration FX We thank John Wilson and an anonymous reviewer for helpful comments on this manuscript. We also thank Bob Haberle for useful discussion. This work was funded by and performed in part at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration as part of the Mars Reconnaissance Orbiter project. NR 18 TC 19 Z9 19 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 23 PY 2010 VL 37 AR L18202 DI 10.1029/2010GL044610 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 656HG UT WOS:000282318900002 ER PT J AU Smith, AK Marsh, DR Mlynczak, MG Mast, JC AF Smith, Anne K. Marsh, Daniel R. Mlynczak, Martin G. Mast, Jeffrey C. TI Temporal variations of atomic oxygen in the upper mesosphere from SABER SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID HYDROXYL AIRGLOW; TERRESTRIAL ATMOSPHERE; SEMIANNUAL OSCILLATION; SEMIDIURNAL TIDE; BAND EMISSION; DENSITIES; PROFILES; MODEL; RATES AB One of the atmospheric constituents that can be retrieved from observations by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is atomic oxygen in the upper mesosphere. Atomic oxygen can be determined during both day and night using two different techniques that both rely on ozone chemistry. The O concentrations retrieved from SABER data are higher by a factor of 2-5 compared to concentrations determined from other measurements and techniques and compiled in current empirical models. This paper presents variability of atomic oxygen with a focus on the diurnal cycle in low latitudes and the seasonal cycle of daily mean atomic oxygen globally. The results show a large diurnal variation, ranging from a factor of 2 to more than a factor of 10, of atomic oxygen near the equator. The relative magnitude varies with season (larger near the equinoxes) and with altitude (largest near 85 km). Vertical transport by the migrating diurnal tide explains the observed variation. The semiannual variation in tidal amplitude affects the seasonal variation of daily average atomic oxygen, which likely indicates that there is irreversible transport by the tides. At high latitudes, the atomic oxygen variation is characterized by wintertime maxima over the altitude range 80-95 km and summertime maxima above. The wintertime peaks are associated with the downwelling from the mean circulation and are particularly strong in late winter of 2004, 2006, and 2009, responding to the unusual dynamical situations in those years. C1 [Smith, Anne K.; Marsh, Daniel R.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Mlynczak, Martin G.] NASA Langley Res Ctr, Hampton, VA 23681 USA. [Mast, Jeffrey C.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. RP Smith, AK (reprint author), Natl Ctr Atmospher Res, Div Atmospher Chem, POB 3000, Boulder, CO 80307 USA. EM aksmith@ucar.edu RI Mlynczak, Martin/K-3396-2012; Marsh, Daniel/A-8406-2008 OI Marsh, Daniel/0000-0001-6699-494X FU NASA; National Science Foundation FX The authors gratefully acknowledge the SABER science, algorithm, and data support teams. Support for this work was provided by the NASA Heliospheric Guest Investigator Program. The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings, and conclusions or recommendations expressed in the publication are those of the authors and do not necessarily reflect the views of the National Science Foundation. NR 60 TC 55 Z9 55 U1 3 U2 23 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 23 PY 2010 VL 115 AR D18309 DI 10.1029/2009JD013434 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 656IB UT WOS:000282321500004 ER PT J AU Tilmes, S Pan, LL Hoor, P Atlas, E Avery, MA Campos, T Christensen, LE Diskin, GS Gao, RS Herman, RL Hintsa, EJ Loewenstein, M Lopez, J Paige, ME Pittman, JV Podolske, JR Proffitt, MR Sachse, GW Schiller, C Schlager, H Smith, J Spelten, N Webster, C Weinheimer, A Zondlo, MA AF Tilmes, S. Pan, L. L. Hoor, P. Atlas, E. Avery, M. A. Campos, T. Christensen, L. E. Diskin, G. S. Gao, R. -S. Herman, R. L. Hintsa, E. J. Loewenstein, M. Lopez, J. Paige, M. E. Pittman, J. V. Podolske, J. R. Proffitt, M. R. Sachse, G. W. Schiller, C. Schlager, H. Smith, J. Spelten, N. Webster, C. Weinheimer, A. Zondlo, M. A. TI An aircraft-based upper troposphere lower stratosphere O-3, CO, and H2O climatology for the Northern Hemisphere (vol 115, D14303, 2010) SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Correction C1 [Avery, M. A.; Diskin, G. S.; Sachse, G. W.] NASA Langley Res Ctr, Hampton, VA 23681 USA. RI hoor, peter/G-5421-2010; Schiller, Cornelius/B-1004-2013; Gao, Ru-Shan/H-7455-2013; Atlas, Elliot/J-8171-2015; Zondlo, Mark/R-6173-2016 OI hoor, peter/0000-0001-6582-6864; Zondlo, Mark/0000-0003-2302-9554 NR 2 TC 0 Z9 0 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 23 PY 2010 VL 115 AR D18310 DI 10.1029/2010JD014867 PG 1 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 656IB UT WOS:000282321500007 ER PT J AU Hayes, AG Wolf, AS Aharonson, O Zebker, H Lorenz, R Kirk, RL Paillou, P Lunine, J Wye, L Callahan, P Wall, S Elachi, C AF Hayes, A. G. Wolf, A. S. Aharonson, O. Zebker, H. Lorenz, R. Kirk, R. L. Paillou, P. Lunine, J. Wye, L. Callahan, P. Wall, S. Elachi, C. TI Bathymetry and absorptivity of Titan's Ontario Lacus SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID LAKES; ETHANE AB [1] Ontario Lacus is the largest and best characterized lake in Titan's south polar region. In June and July 2009, the Cassini RADAR acquired its first Synthetic Aperture Radar (SAR) images of the area. Together with closest approach altimetry acquired in December 2008, these observations provide a unique opportunity to study the lake's nearshore bathymetry and complex refractive properties. Average radar backscatter is observed to decrease exponentially with distance from the local shoreline. This behavior is consistent with attenuation through a deepening layer of liquid and, if local topography is known, can be used to derive absorptive dielectric properties. Accordingly, we estimate nearshore topography from a radar altimetry profile that intersects the shoreline on the East and West sides of the lake. We then analyze SAR backscatter in these regions to determine the imaginary component of the liquid's complex index of refraction (kappa). The derived value, kappa = (6.1(-1.3)(+1.7)) x 10(-4), Corresponds to a loss tangent of tan Delta = (9.2(-2.0)(+2.5)) x 10(-4) and is consistent with a composition dominated by liquid hydrocarbons. This value can be used to test compositional models once the microwave optical properties of candidate materials have been measured. In areas that do not intersect altimetry profiles, relative slopes can be calculated assuming the index of refraction is constant throughout the liquid. Accordingly, we construct a coarse bathymetry map for the nearshore region by measuring bathymetric slopes for eleven additional areas around the lake. These slopes vary by a factor of similar to 5 and correlate well with observed shoreline morphologies. C1 [Hayes, A. G.; Wolf, A. S.; Aharonson, O.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Callahan, P.; Wall, S.; Elachi, C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kirk, R. L.] US Geol Survey, Astrogeol Team, Flagstaff, AZ 86001 USA. [Lorenz, R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Lunine, J.] Univ Rome, Dept Phys, I-00173 Rome, Italy. [Paillou, P.] Univ Bordeaux 2, Aquitaine Sci Ctr, F-33270 Floirac, France. [Zebker, H.; Wye, L.] Stanford Univ, Stanford, CA 94305 USA. [Paillou, P.] Univ Bordeaux, Aquitaine Sci Ctr, Floirac, France. RP Hayes, AG (reprint author), CALTECH, Div Geol & Planetary Sci, MC 150-21, Pasadena, CA 91125 USA. EM hayes@gps.caltech.edu RI Hayes, Alexander/P-2024-2014; Lorenz, Ralph/B-8759-2016 OI Hayes, Alexander/0000-0001-6397-2630; Lorenz, Ralph/0000-0001-8528-4644 FU Cassini Project; NASA; NASA's Graduate Student Researchers Program; NSF Graduate Research Fellowship Program FX The authors would like to thank Bryan Stiles for helpful discussions and the Cassini engineering team, without whom the data presented here would not have been possible. This work was supported by the Cassini Project, managed by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA as well as by NASA's Graduate Student Researchers Program and the NSF Graduate Research Fellowship Program. NR 37 TC 34 Z9 34 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD SEP 23 PY 2010 VL 115 AR E09009 DI 10.1029/2009JE003557 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 656JD UT WOS:000282326000002 ER PT J AU Searls, ML Mellon, MT Cull, S Hansen, CJ Sizemore, HG AF Searls, M. L. Mellon, M. T. Cull, S. Hansen, C. J. Sizemore, H. G. TI Seasonal defrosting of the Phoenix landing site SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID SUBLIMATION-DRIVEN ACTIVITY; GROUND ICE; HIRISE OBSERVATIONS; POLAR-REGION; MARS; SURFACE; CAP; TES; STABILITY; DEPOSITS AB [1] The retreat of the seasonal polar cap at the Phoenix landing site is analyzed through observations of high resolution images and thermal modeling of the CO(2) frost mass. Numerical simulations indicate that the onset of CO(2) frost formation occurs around L(s) = 220 degrees at 68 degrees N; however, the polar hood prevented imaging of the surface during this time. In the late winter/early spring a continuous layer of frost coated the surface obscuring the underlying polygonal patterns; however, rocks are clearly evident indicating that the frost depth was relatively shallow. Rare dark fans originating from rocks are also observed in an image from early spring. Frost dissipated from the polygon centers first and lingered longer in polygon troughs. Polygon centers were first exposed on L(s) = 13.9 degrees, and the polygon troughs were frost free by L(s) similar to 57 degrees. Frost distributions varied slightly between geologic units; however, in general, global observations at similar latitudes are consistent with what is seen in the Phoenix region. A series of hypotheses is also explored to explain the preference for the CO(2) frost to linger in the troughs: lower thermal inertia material in the troughs, aeolian redistribution of frost, burial of the ice table via aeolian redistribution of dust, and shadowing. Each of these hypotheses has drawbacks to explaining this phenomenon as stand-alone components. Shadows do play a role in keeping the CO(2) frost on the surface; however, this effect is small and cannot alone account for the observations. C1 [Searls, M. L.; Mellon, M. T.; Sizemore, H. G.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Hansen, C. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cull, S.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63112 USA. RP Searls, ML (reprint author), Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. EM mindi.searls@lasp.colorado.edu RI Mellon, Michael/C-3456-2016 FU NASA [NNX08AE33G] FX We wish to thank the HiRISE, MRO, and Phoenix teams for their dedicated hard work which resulted in two successful missions. Numerical modeling was supported in part by NASA grant NNX08AE33G. We would also like to thank the reviewers for their thoughtful and constructive comments and Kim Seelos for providing a geologic map of the Phoenix landing region. NR 38 TC 4 Z9 4 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD SEP 23 PY 2010 VL 115 AR E00E24 DI 10.1029/2009JE003438 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 656JD UT WOS:000282326000001 ER PT J AU Sahraoui, F Goldstein, ML Belmont, G Canu, P Rezeau, L AF Sahraoui, F. Goldstein, M. L. Belmont, G. Canu, P. Rezeau, L. TI Three Dimensional Anisotropic k Spectra of Turbulence at Subproton Scales in the Solar Wind SO PHYSICAL REVIEW LETTERS LA English DT Article ID WEAKLY COLLISIONAL PLASMAS; DISSIPATION RANGE; MAGNETIC FLUCTUATIONS; DYNAMICS; MAGNETOSHEATH; CASCADE; MHD AB We show the first three dimensional (3D) dispersion relations and k spectra of magnetic turbulence in the solar wind at subproton scales. We used the Cluster data with short separations and applied the k-filtering technique to the frequency range where the transition to subproton scales occurs. We show that the cascade is carried by highly oblique kinetic Alfven waves with omega(plas) <= 0.1 omega(ci) down to k(perpendicular to)rho(i) similar to 2. Each k spectrum in the direction perpendicular to B(0) shows two scaling ranges separated by a breakpoint (in the interval [0.4, 1]k(perpendicular to)rho(i)): a Kolmogorov scaling k(perpendicular to)(-1.7) followed by a steeper scaling similar to k(perpendicular to)(-4.5). We conjecture that the turbulence undergoes a transition range, where part of the energy is dissipated into proton heating via Landau damping and the remaining energy cascades down to electron scales where electron Landau damping may predominate. C1 [Sahraoui, F.] CNRS Ecole Polytech UPMC, Observ St Maur, Lab Phys Plasmas, F-94107 St Maur Des Fosses, France. [Goldstein, M. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Belmont, G.; Canu, P.; Rezeau, L.] CNRS Ecole Polytech UPMC, Lab Phys Plasmas, F-91128 Palaiseau, France. RP Sahraoui, F (reprint author), CNRS Ecole Polytech UPMC, Observ St Maur, Lab Phys Plasmas, 4 Ave Neptune, F-94107 St Maur Des Fosses, France. EM fouad.sahraoui@lpp.polytechnique.fr RI Goldstein, Melvyn/B-1724-2008 FU NASA/GSFC FX The FGM and cluster ion spectrometry experiment data come from the CAA (ESA) and AMDA (CESR, France). We thank A. Vinas for providing the electron data. F. Sahraoui is funded partly by the NPP program at NASA/GSFC. NR 32 TC 203 Z9 204 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 23 PY 2010 VL 105 IS 13 AR 131101 DI 10.1103/PhysRevLett.105.131101 PG 4 WC Physics, Multidisciplinary SC Physics GA 653YZ UT WOS:000282136600002 PM 21230758 ER PT J AU Cohen, MB Inan, US Said, RK Briggs, MS Fishman, GJ Connaughton, V Cummer, SA AF Cohen, M. B. Inan, U. S. Said, R. K. Briggs, M. S. Fishman, G. J. Connaughton, V. Cummer, S. A. TI A lightning discharge producing a beam of relativistic electrons into space SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GAMMA-RAY FLASHES; SPRITES AB Strong electric fields associated with lightning generate brief (similar to 1 ms) but intense Terrestrial Gamma-ray Flashes (TGFs), detected by spacecrafts. A few events are thought to be the signature of a relativistic electron beam escaping the atmosphere, which is distinguishable from a TGF since the lightning discharge is along the geomagnetic field line from the spacecraft, rather than below. We refer to this event herein as a 'Terrestrial Energetic-electron Flash' (TEF), and present the first TEF with associated discharge. The TEF was detected by the Gamma-ray Burst Monitor aboard the Fermi satellite, and is correlated with a lightning discharge detected by three Stanford University AWESOME ELF/VLF receivers, a Duke University ULF receiver, and by the GLD360 lightning geolocation network. The discharge, nearly simultaneous with the generated electrons, was of intense peak current and of positive polarity, and with a modest total charge transfer, similar to TGF-associated discharges. Citation: Cohen, M. B., U. S. Inan, R. K. Said, M. S. Briggs, G. J. Fishman, V. Connaughton, and S. A. Cummer (2010), A lightning discharge producing a beam of relativistic electrons into space, Geophys. Res. Lett., 37, L18806, doi: 10.1029/2010GL044481. C1 [Cohen, M. B.; Inan, U. S.; Said, R. K.] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Inan, U. S.] Koc Univ, Dept Elect Engn, Istanbul, Turkey. [Briggs, M. S.] Univ Alabama, CSPAR, Huntsville, AL 35805 USA. [Fishman, G. J.; Connaughton, V.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. [Cummer, S. A.] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA. RP Cohen, MB (reprint author), Stanford Univ, Dept Elect Engn, 350 Sierra Mall, Stanford, CA 94305 USA. EM mcohen@stanford.edu RI Cummer, Steven/A-6118-2008; Cohen, Morris/A-3684-2012 OI Cummer, Steven/0000-0002-0002-0613; Cohen, Morris/0000-0002-7920-5759 FU NSF [OPP-0233955, ATM-0642757]; DARPA [HR0011-10-1-0058]; NASA FX This work was supported by NSF grant OPP-0233955 to Stanford University, and also by the DARPA NIMBUS program under grant HR0011-10-1-0058. GLD360 lightning discharge data are provided under a cooperative agreement with Vaisala, Inc. The Fermi satellite is supported by NASA. Duke University effort is supported by NSF grant ATM-0642757. We thank Brant Carlson and Nikolai Lehtinen for helpful discussions. NR 25 TC 17 Z9 17 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 22 PY 2010 VL 37 AR L18806 DI 10.1029/2010GL044481 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 656HB UT WOS:000282318200008 ER PT J AU Feofilov, AG Petelina, SV AF Feofilov, A. G. Petelina, S. V. TI Relation between mesospheric ice clouds, temperature, and water vapor determined from Odin/OSIRIS and TIMED/SABER data SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID NONLOCAL THERMODYNAMIC-EQUILIBRIUM; ACCELERATED LAMBDA ITERATION; NOCTILUCENT CLOUDS; PLANETARY-ATMOSPHERES; NORTHERN-HEMISPHERE; SUMMER MESOSPHERE; MIDDLE ATMOSPHERE; MU-M; SPACECRAFT; PARTICLES AB Altitude, brightness, and occurrence rate of polar mesospheric clouds (PMCs) with respect to kinetic temperature, pressure, and water vapor volume mixing ratio (VMR) in the ice formation area are studied. Cloud and atmospheric parameters are measured by the Optical Spectrograph and Infrared Imager System and by the Sounding of the Atmosphere using Broadband Emission Radiometry satellite instruments, correspondingly. The analysis has been done for all northern and southern PMC seasons of 2002-2008 for both zonal averages and nearly simultaneous common volume measurements performed by two instruments. It has been found that PMC peak altitudes correlate well with mesopause altitudes, although the former experience lower seasonal variability. Mesopause temperatures anticorrelate with PMC occurrence rates and, in the Northern Hemisphere, show larger seasonal variability at high latitudes poleward of 75 degrees N compared to 55 degrees N-65 degrees N. OSIRIS PMC brightness correlates with the vertical extent of the frost area and water vapor VMR below PMC (hydration effect) and anticorrelates with the mesopause temperature and water vapor VMR in the frost area (freeze-drying effect). C1 [Feofilov, A. G.] Catholic Univ Amer, Washington, DC 20064 USA. [Feofilov, A. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Petelina, S. V.] La Trobe Univ, Melbourne, Vic 3086, Australia. RP Feofilov, AG (reprint author), Catholic Univ Amer, Washington, DC 20064 USA. EM artem-feofilov@cua-nasa-gsfc.info RI Feofilov, Artem/A-2271-2015 OI Feofilov, Artem/0000-0001-9924-4846 FU NASA [NNX08AG41G]; Sweden (SNSB); Canada (CSA); France (CNES); Finland (Tekes) FX This research was partially supported under NASA grant NNX08AG41G. The authors are grateful to the SABER science, data processing, and flight operations for their ongoing support of this work. Odin is a Swedish-led satellite project funded jointly by Sweden (SNSB), Canada (CSA), France (CNES), and Finland (Tekes). Odin is presently a third party mission for the European Space Agency (ESA) and the OSIRIS data are provided by ESA. NR 53 TC 3 Z9 3 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 22 PY 2010 VL 115 AR D18305 DI 10.1029/2009JD013619 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 656IA UT WOS:000282321400006 ER PT J AU Gerber, EP Baldwin, MP Akiyoshi, H Austin, J Bekki, S Braesicke, P Butchart, N Chipperfield, M Dameris, M Dhomse, S Frith, SM Garcia, RR Garny, H Gettelman, A Hardiman, SC Karpechko, A Marchand, M Morgenstern, O Nielsen, JE Pawson, S Peter, T Plummer, DA Pyle, JA Rozanov, E Scinocca, JF Shepherd, TG Smale, D AF Gerber, Edwin P. Baldwin, Mark P. Akiyoshi, Hideharu Austin, John Bekki, Slimane Braesicke, Peter Butchart, Neal Chipperfield, Martyn Dameris, Martin Dhomse, Sandip Frith, Stacey M. Garcia, Rolando R. Garny, Hella Gettelman, Andrew Hardiman, Steven C. Karpechko, Alexey Marchand, Marion Morgenstern, Olaf Nielsen, J. Eric Pawson, Steven Peter, Tom Plummer, David A. Pyle, John A. Rozanov, Eugene Scinocca, John F. Shepherd, Theodore G. Smale, Dan TI Stratosphere-troposphere coupling and annular mode variability in chemistry-climate models SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID NORTH-ATLANTIC OSCILLATION; ZONAL INDEX; DOWNWARD PROPAGATION; ARCTIC OSCILLATION; TIME-SCALE; REANALYSIS; FEEDBACK; CIRCULATION; PERSISTENCE; HEMISPHERE AB The internal variability and coupling between the stratosphere and troposphere in CCMVal-2 chemistry-climate models are evaluated through analysis of the annular mode patterns of variability. Computation of the annular modes in long data sets with secular trends requires refinement of the standard definition of the annular mode, and a more robust procedure that allows for slowly varying trends is established and verified. The spatial and temporal structure of the models' annular modes is then compared with that of reanalyses. As a whole, the models capture the key features of observed intraseasonal variability, including the sharp vertical gradients in structure between stratosphere and troposphere, the asymmetries in the seasonal cycle between the Northern and Southern hemispheres, and the coupling between the polar stratospheric vortices and tropospheric midlatitude jets. It is also found that the annular mode variability changes little in time throughout simulations of the 21st century. There are, however, both common biases and significant differences in performance in the models. In the troposphere, the annular mode in models is generally too persistent, particularly in the Southern Hemisphere summer, a bias similar to that found in CMIP3 coupled climate models. In the stratosphere, the periods of peak variance and coupling with the troposphere are delayed by about a month in both hemispheres. The relationship between increased variability of the stratosphere and increased persistence in the troposphere suggests that some tropospheric biases may be related to stratospheric biases and that a well-simulated stratosphere can improve simulation of tropospheric intraseasonal variability. C1 [Gerber, Edwin P.] NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY 10016 USA. [Baldwin, Mark P.] NW Res Associates, Redmond, WA 98052 USA. [Akiyoshi, Hideharu] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Austin, John] Princeton Univ, GFDL, Princeton, NJ 08540 USA. [Bekki, Slimane; Marchand, Marion] UPMC, IPSL, UVSQ, LATMOS,INSU,CNRS, F-75231 Paris, France. [Braesicke, Peter; Pyle, John A.] Univ Cambridge, Ctr Atmospher Sci, Dept Chem, Cambridge CB2 1EW, England. [Chipperfield, Martyn; Dhomse, Sandip] Univ Leeds, Inst Climate & Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England. [Dameris, Martin; Garny, Hella] Inst Phys Atmosphare, Deutsch Zentrum Luft & Raumfaht, D-82234 Wessling, Germany. [Frith, Stacey M.] NASA, GSFC, Atmospher Chem & Dynam Branch, Greenbelt, MD 20071 USA. [Garcia, Rolando R.; Gettelman, Andrew] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Karpechko, Alexey] Finnish Meteorol Inst, FI-00101 Helsinki, Finland. [Morgenstern, Olaf; Smale, Dan] Natl Inst Water & Atmospher Res, Lauder, New Zealand. [Nielsen, J. Eric; Pawson, Steven] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Peter, Tom; Rozanov, Eugene] WRC, PMOD, CH-8092 Zurich, Switzerland. [Plummer, David A.; Scinocca, John F.] Univ Victoria, Canadian Ctr Climate Modelling & Anal, Victoria, BC V8W 3V6, Canada. [Shepherd, Theodore G.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. RP Gerber, EP (reprint author), NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY 10016 USA. EM gerber@cims.nyu.edu RI Dhomse, Sandip/C-8198-2011; Rozanov, Eugene/A-9857-2012; Baldwin, Mark/J-6720-2012; Chipperfield, Martyn/H-6359-2013; bekki, slimane/J-7221-2015; Braesicke, Peter/D-8330-2016; Pawson, Steven/I-1865-2014; OI Dhomse, Sandip/0000-0003-3854-5383; Rozanov, Eugene/0000-0003-0479-4488; Chipperfield, Martyn/0000-0002-6803-4149; bekki, slimane/0000-0002-5538-0800; Braesicke, Peter/0000-0003-1423-0619; Pawson, Steven/0000-0003-0200-717X; Gerber, Edwin/0000-0002-6010-6638; Morgenstern, Olaf/0000-0002-9967-9740 FU National Science Foundation (NSF); Joint DECC [GA01101]; Office of Science, U. S. Department of Energy; Ministry of the Environment of Japan [A-071] FX We thank Judith Perlwitz and two anonymous reviewers for constructive comments on earlier manuscript. E.P.G. acknowledges support from the National Science Foundation (NSF) under the Atmospheric and Geospace Sciences program. M.P.B. was funded by the NSF under the US CLIVAR program and the Office of Polar Programs. N.B. and S.H. were supported by the Joint DECC and Defra Integrated Climate Programme-DECC/Defra (GA01101). We acknowledge the modeling groups for making their simulations available for this analysis, the CCMVal Activity for WCRP's SPARC (Stratospheric Processes and their Role in Climate) project for organizing and coordinating the CCM data analysis activity, the British Atmospheric Data Center (BADC) for collecting and archiving the CCMVal model output, and the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP's Working Group on Coupled Modeling (WGCM) for their roles in making available the WCRP CMIP3 multimodel data set. Support for the CMIP3 data set is provided by the Office of Science, U. S. Department of Energy. CCSRNIES research was supported by the Global Environmental Research Fund of the Ministry of the Environment of Japan (A-071), and simulations were completed with the super computer at CGER, NIES. NR 45 TC 48 Z9 48 U1 0 U2 25 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 22 PY 2010 VL 115 AR D00M06 DI 10.1029/2009JD013770 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 656IA UT WOS:000282321400007 ER PT J AU Verkhoglyadova, OP Tsurutani, BT Lakhina, GS AF Verkhoglyadova, Olga P. Tsurutani, Bruce T. Lakhina, Gurbax S. TI Properties of obliquely propagating chorus SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID DRIVEN ELECTRON ACCELERATION; WHISTLER-MODE CHORUS; STORM-TIME CHORUS; RELATIVISTIC ENERGIES; RADIATION BELT; EMISSIONS; MAGNETOSPHERE AB We discuss chorus wave magnetic and electric field polarizations as functions on angle of propagation relative to the ambient magnetic field B(0). For the first time, it is shown using a cold plasma approximation that the general whistler wave has circularly polarized magnetic fields for oblique propagation. This theoretical result is verified by observations. The electric field polarization plane is not orthogonal to the wave vector k and is in general highly elliptically polarized. Both the magnetic and the electric polarizations have important consequences for cyclotron resonant electron pitch angle scattering and for electron energization, respectively. A special case of the whistler wave called the Gendrin mode is discussed. C1 [Verkhoglyadova, Olga P.; Tsurutani, Bruce T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lakhina, Gurbax S.] India Inst Geomagnetism, Navi Mumbai 410218, Maharashtra, India. [Verkhoglyadova, Olga P.] Univ Alabama, Ctr Space Plasma & Aeronom Res, Huntsville, AL 35899 USA. RP Verkhoglyadova, OP (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM olga.verkhoglyadova@jpl.nasa.gov RI Lakhina, Gurbax /C-9295-2012; OI Lakhina, Gurbax /0000-0002-8956-486X; Verkhoglyadova, Olga/0000-0002-9295-9539 FU NASA; Indian National Science Academy, New Delhi FX Portions of this research were done at the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA. G.S.L. thanks the Indian National Science Academy, New Delhi, for support under the Senior Scientist Scheme. NR 32 TC 22 Z9 22 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP 22 PY 2010 VL 115 AR A00F19 DI 10.1029/2009JA014809 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 656JN UT WOS:000282327100001 ER PT J AU Cohen, MI Cutler, C Vallisneri, M AF Cohen, Michael I. Cutler, Curt Vallisneri, Michele TI Searches for cosmic-string gravitational-wave bursts in Mock LISA Data SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article ID MONTE-CARLO METHODS; RADIATION; EFFICIENT; BINARIES AB A network of observable, macroscopic cosmic (super-)strings may well have formed in the early Universe. If so, the cusps that generically develop on cosmic-string loops emit bursts of gravitational radiation that could be detectable by gravitational-wave interferometers, such as the ground-based LIGO/Virgo detectors and the planned, space-based LISA detector. Here we report on two versions of a LISA-oriented string-burst search pipeline that we have developed and tested within the context of the Mock LISA Data Challenges. The two versions rely on the publicly available MultiNest and PyMC software packages, respectively. To reduce the effective dimensionality of the search space, our implementations use the F-statistic to analytically maximize over the signal's amplitude and polarization, A and psi, and use the FFT to search quickly over burst arrival times t(C). The standard F-statistic is essentially a frequentist statistic that maximizes the likelihood; we also demonstrate an approximate, Bayesian version of the F-statistic that incorporates realistic priors on A and psi. We calculate how accurately LISA can expect to measure the physical parameters of string-burst sources, and compare to results based on the Fisher-matrix approximation. To understand LISA's angular resolution for string-burst sources, we draw maps of the waveform fitting factor (maximized over (A, psi, t(C))) as a function of the sky position; these maps dramatically illustrate why (for LISA) inferring the correct sky location of the emitting string loop will often be practically impossible. In addition, we identify and elucidate several symmetries that are imbedded in this search problem, and we derive the distribution of cut-off frequencies f(max) for observable bursts. C1 [Cohen, Michael I.; Cutler, Curt; Vallisneri, Michele] CALTECH, Pasadena, CA 91125 USA. [Cutler, Curt; Vallisneri, Michele] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Cohen, MI (reprint author), CALTECH, Pasadena, CA 91125 USA. EM Curt.J.Cutler@jpl.nasa.gov FU National Aeronautics and Space Administration; NASA [NNX07AM80G] FX This research relied crucially on the hard work of the developers of open-source scientific software: we thank the authors and maintainers the of NumPy and SciPy Python libraries, and especially F Feroz and colleagues (MultiNest) and C Fonnesbeck and colleagues (PyMC). We thank J Gair, N Cornish and J Shapiro Key for useful interactions. The numerical computation for this work was performed primarily with computing resources from the Caltech Center for Advanced Computing Research. Much of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. MC, CC and MV also gratefully acknowledge support from the NASA grant NNX07AM80G. NR 35 TC 6 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD SEP 21 PY 2010 VL 27 IS 18 AR 185012 DI 10.1088/0264-9381/27/18/185012 PG 27 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 638UR UT WOS:000280923100013 ER PT J AU Fujiwara, M Vomel, H Hasebe, F Shiotani, M Ogino, SY Iwasaki, S Nishi, N Shibata, T Shimizu, K Nishimoto, E Canossa, JMV Selkirk, HB Oltmans, SJ AF Fujiwara, M. Voemel, H. Hasebe, F. Shiotani, M. Ogino, S-Y. Iwasaki, S. Nishi, N. Shibata, T. Shimizu, K. Nishimoto, E. Valverde Canossa, J. M. Selkirk, H. B. Oltmans, S. J. TI Seasonal to decadal variations of water vapor in the tropical lower stratosphere observed with balloon-borne cryogenic frost point hygrometers SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID HALOGEN OCCULTATION EXPERIMENT; TROPOPAUSE TEMPERATURES; QBO VARIATIONS; REANALYSIS; DEHYDRATION; AIR; TROPOSPHERE; TRANSPORT; PACIFIC; BOULDER AB We investigated water vapor variations in the tropical lower stratosphere on seasonal, quasi-biennial oscillation (QBO), and decadal time scales using balloon-borne cryogenic frost point hygrometer data taken between 1993 and 2009 during various campaigns including the Central Equatorial Pacific Experiment (March 1993), campaigns once or twice annually during the Soundings of Ozone and Water in the Equatorial Region (SOWER) project in the eastern Pacific (1998-2003) and in the western Pacific and Southeast Asia (2001-2009), and the Ticosonde campaigns and regular sounding at Costa Rica (2005-2009). Quasi-regular sounding data taken at Costa Rica clearly show the tape recorder signal. The observed ascent rates agree well with the ones from the Halogen Occultation Experiment (HALOE) satellite sensor. Average profiles from the recent five SOWER campaigns in the equatorial western Pacific in northern winter and from the three Ticosonde campaigns at Costa Rica (10 N) in northern summer clearly show two effects of the QBO. One is the vertical displacement of water vapor profiles associated with the QBO meridional circulation anomalies, and the other is the concentration variations associated with the QBO tropopause temperature variations. Time series of cryogenic frost point hygrometer data averaged in a lower stratospheric layer together with HALOE and Aura Microwave Limb Sounder data show the existence of decadal variations: The mixing ratios were higher and increasing in the 1990s, lower in the early 2000s, and probably slightly higher again or recovering after 2004. Thus linear trend analysis is not appropriate to investigate the behavior of the tropical lower stratospheric water vapor. C1 [Fujiwara, M.; Hasebe, F.; Shimizu, K.] Hokkaido Univ, Grad Sch Environm Sci, Sapporo, Hokkaido 0600810, Japan. [Iwasaki, S.] Natl Def Acad, Yokosuka, Kanagawa 2398686, Japan. [Nishi, N.] Kyoto Univ, Grad Sch Sci, Kyoto 6068502, Japan. [Ogino, S-Y.] Japan Agcy Marine Earth Sci & Technol, Yokosuka, Kanagawa 2370061, Japan. [Oltmans, S. J.] NOAA, Global Monitoring Div, Earth Syst Res Lab, Boulder, CO 80305 USA. [Selkirk, H. B.] Univ Maryland Baltimore Cty, Goddard Space Flight Ctr, Goddard Earth Sci & Technol Ctr, NASA, Greenbelt, MD 20771 USA. [Shibata, T.] Nagoya Univ, Grad Sch Environm Studies, Nagoya, Aichi 4648601, Japan. [Shiotani, M.; Nishimoto, E.] Kyoto Univ, Res Inst Sustainable Humanosphere, Uji, Kyoto 6110011, Japan. [Valverde Canossa, J. M.] Univ Nacl, Heredia 863000, Costa Rica. [Voemel, H.] Deutsch Wetterdienst, Meteorol Observ Lindenberg, D-15848 Tauche Lindenberg, Germany. [Shimizu, K.] Meisei Elect Co Ltd, Isesaki, Japan. RP Fujiwara, M (reprint author), Hokkaido Univ, Grad Sch Environm Sci, N10 W5, Sapporo, Hokkaido 0600810, Japan. EM fuji@ees.hokudai.ac.jp RI Fujiwara, Masatomo/F-7852-2012; Selkirk, Henry/H-2021-2012 FU Sumitomo Foundation; Asahi Breweries Foundation; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) [10041103, 11219201, 15204043, 18204041, 19740283]; Ministry of the Environment [A-1, A-071]; RISH, Kyoto University FX The balloon-borne water vapor measurements presented in this paper have been conducted with strong, long-term support from the Instituto Nacional de Meteorologia e Hidrologia (INAMHI), Ecuador, the Indonesian National Institute of Aeronautics and Space (LAPAN), Indonesia, the National Hydro-Meteorological Service, Ministry of Natural Resources and Environment, Vietnam, the Kiribati Meteorological Service, Kiribati, and Universidad Nacional, Costa Rica. The SOWER project has been financially supported by the Sumitomo Foundation, the Asahi Breweries Foundation, the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) through Grants-in-Aid for Scientific Research (10041103, 11219201, 15204043, 18204041, and 19740283), the Ministry of the Environment through the Global Environment Research Fund (A-1 and A-071), and RISH, Kyoto University. Support for the sounding program in Costa Rica has been provided by the NASA Upper Atmosphere Research Program, the Radiation Sciences Program, and the Aura Satellite Project. The HALOE data were provided by GATS, Inc., through their Web site. The EOS Aura MLS data were provided by the NASA/JPL through their Web site. The ERA40 and ERA-Interim data were provided by the ECMWF through their Web site (the ERA40 data were actually obtained through an authorized Web site at RISH, Kyoto University). The JRA25/JCDAS data were provided by the JMA and CRIEPI. The NCEP1 and NCEP2 reanalysis data were provided by the NOAA/OAR/ESRL PSD. We thank Takashi Imamura, Masanori Niwano, and Takatoshi Sakazaki for valuable discussion. We also thank Stephan Fueglistaler and two anonymous reviewers for valuable comments. All figures were produced using the GFD-DENNOU Library. NR 52 TC 29 Z9 29 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 21 PY 2010 VL 115 AR D18304 DI 10.1029/2010JD014179 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 656HW UT WOS:000282320900006 ER PT J AU Selkirk, HB Vomel, H Canossa, JMV Pfister, L Diaz, JA Fernandez, W Amador, J Stolz, W Peng, GS AF Selkirk, Henry B. Voemel, Holger Valverde Canossa, Jessica Maria Pfister, Leonhard Andres Diaz, Jorge Fernandez, Walter Amador, Jorge Stolz, Werner Peng, Grace S. TI Detailed structure of the tropical upper troposphere and lower stratosphere as revealed by balloon sonde observations of water vapor, ozone, temperature, and winds during the NASA TCSP and TC4 campaigns SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID LOW-LEVEL JET; CIRRUS CLOUDS; AIRCRAFT MEASUREMENTS; TROPOPAUSE LAYER; DEEP CONVECTION; ANNUAL CYCLE; DEHYDRATION; TRANSPORT; PACIFIC; CLIMATOLOGY AB We report on balloon sonde measurements of water vapor and ozone using the cryogenic frost point hygrometer and electrochemical concentration cell ozonesondes made at Alajuela, Costa Rica (10.0 degrees N, 84.2 degrees W) during two NASA airborne campaigns: the Tropical Convective Systems and Processes (TCSP) mission in July 2005 and the Tropical Composition, Clouds, and Climate Coupling Experiment (TC4), July-August 2007. In both campaigns we found an upper troposphere that was frequently supersaturated but no evidence that deep convection had reached the tropopause. The balloon sondes were complemented by campaigns of 4 times daily high-resolution radiosondes from mid-June through mid-August in both years. The radiosonde data reveal vertically propagating equatorial waves that caused a large increase in the variability of temperature in the tropical tropopause layer (TTL). These waves episodically produced cold point tropopauses (CPTs) above 18 km, yet in neither campaign was saturation observed above similar to 380 K or 17 km. The averages of the water vapor minima below this level were 5.2 ppmv in TCSP and 4.8 ppmv in TC4, and the individual profile minima all lay at or above similar to 360 K. The average minima in this 360-380 K layer provide a better estimate of the effective stratospheric entry value than the average mixing ratio at the CPT. We refer to this upper portion of the TTL as the tropopause saturation layer and consider it to be the locus of the final dehydration of nascent stratospheric air. As such, it is the local equivalent to the tape head of the water vapor tape recorder. C1 [Amador, Jorge] Univ Costa Rica, Ctr Geophys Res, San Jose 2060, Costa Rica. [Andres Diaz, Jorge; Fernandez, Walter; Amador, Jorge] Univ Costa Rica, Sch Phys, San Jose 2060, Costa Rica. [Peng, Grace S.] Aerosp Corp, Los Angeles, CA 90009 USA. [Pfister, Leonhard] NASA, Ames Res Ctr, Div Earth Sci, Moffett Field, CA 94035 USA. [Stolz, Werner] Natl Meteorol Inst, San Jose, Costa Rica. [Valverde Canossa, Jessica Maria] Natl Univ, Sch Environm Sci, Heredia 3000, Costa Rica. [Voemel, Holger] Meteorol Observ, Deutsch Wetterdienst, D-15848 Lindenburg, Germany. [Selkirk, Henry B.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. RP Selkirk, HB (reprint author), NASA, Goddard Space Flight Ctr, Code 613-3, Greenbelt, MD 20771 USA. EM henry.b.selkirk@nasa.gov RI Selkirk, Henry/H-2021-2012; OI Fernandez Rojas, Walter/0000-0001-5329-5410 FU NASA; Upper Atmosphere Research Project; Atmospheric Chemistry Modeling and Analysis; Climate Dynamics; Johns Hopkins University; University of Maryland, Baltimore County; Hal Maring of the Radiation Sciences; Costa Rica-USA Foundation (CRUSA) in Costa Rica; National Science Foundation; NOAA Office FX Funding for the Ticosonde project since 2004 at NASA has been provided through the Radiation Sciences Program, the Upper Atmosphere Research Project, the Atmospheric Chemistry Modeling and Analysis Program, and the Climate Dynamics Program. Donald Anderson (now at Johns Hopkins University), Michael Kurylo (now at the University of Maryland, Baltimore County), and Hal Maring of the Radiation Sciences Program were early advocates for and continuing supporters of this scientific collaboration between Costa Rica and the United States. The authors are grateful to Mark Schoeberl and Anne Douglass of the NASA Aura Science Team without whose support the CFH/SHADOZ Costa Rica launch program would never have become a reality. We would like to acknowledge the Costa Rica-USA Foundation (CRUSA) in Costa Rica, the National Science Foundation, and the NOAA Office for Global Programs for their support of the Ticosonde/NAME program and Ramesh Kakar of the NASA Atmospheric Dynamics program for his support of Ticosonde/TCSP. The Ticosonde data sets are a tribute to the enthusiasm and dedication of the launch teams from UNA, UCR, and IMN. In this regard, we are especially grateful to Victor Hernandez at IMN; Victor Beita, Karla Cerna, Diana Gonzales, and Jose Pablo Sibaja at UNA; and Kristel Heinrich, Marcial Garbanzo, and Gustavo Garbanzo at UCR. The Earth Science Project Office at NASA Ames Research Center has generously assisted the Ticosonde effort from the beginning and wish to thank Mike Gaunce, Mike Craig, and Marilyn Vasquez in particular. We also wish to acknowledge the important contributions in the field by Ticosonde Co-Investigators Jimena Lopez, formerly of the Bay Area Environmental Research (BAER) Institute, Sonoma, CA; Robert Bergstrom of the BAER Institute; Patrick Hamill of the San Jose State University, San Jose, CA; and Eladio Zarate, formerly of the National Meteorological Institute of Costa Rica and now at the Regional Committee on Hydrological Resources (CRRH). We are also thankful for the programming support at NASA Ames Research Center by Marion Legg and administrative support by Marion Williams and Mark Sittloh, all of the BAER Institute. We wish to thank Pedro Leon (now at Earth University) and Gustavo Otarola and their staff at the Costa Rican National Center for High Technology (CeNAT) who provided critical administrative and logistical support, as was also provided by the Regional Environmental Hub at the United States Embassy in San Jose and CRRH whose director is Max Campos. We thank Joan Alexander of Colorado Research Associates for useful suggestions and assistance in the crossspectral analysis. Finally, we wish to thank the anonymous reviewers for very constructive critiques. NR 64 TC 29 Z9 29 U1 0 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 21 PY 2010 VL 115 AR D00J19 DI 10.1029/2009JD013209 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 656HW UT WOS:000282320900002 ER PT J AU Yang, K Liu, XO Bhartia, PK Krotkov, NA Carn, SA Hughes, EJ Krueger, AJ Spurr, RJD Trahan, SG AF Yang, Kai Liu, Xiong Bhartia, Pawan K. Krotkov, Nickolay A. Carn, Simon A. Hughes, Eric J. Krueger, Arlin J. Spurr, Robert J. D. Trahan, Samuel G. TI Direct retrieval of sulfur dioxide amount and altitude from spaceborne hyperspectral UV measurements: Theory and application SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID OZONE MONITORING INSTRUMENT; VOLCANIC-ERUPTIONS; SO2; CLOUDS; SATELLITE; ALGORITHM; DOAS; GOME; TRANSPORT; TRACKING AB We describe the physical processes by which a vertically localized absorber perturbs the top-of-atmosphere solar backscattered ultraviolet (UV) radiance. The distinct spectral responses to perturbations of an absorber in its column amount and layer altitude provide the basis for a practical satellite retrieval technique, the Extended Iterative Spectral Fitting (EISF) algorithm, for the simultaneous retrieval of these quantities of a SO2 plume. In addition, the EISF retrieval provides an improved UV aerosol index for quantifying the spectral contrast of apparent scene reflectance at the bottom of atmosphere bounded by the surface and/or cloud; hence it can be used for detection of the presence or absence of UV absorbing aerosols. We study the performance and characterize the uncertainties of the EISF algorithm using synthetic backscattered UV radiances, retrievals from which can be compared with those used in the simulation. Our findings indicate that the presence of aerosols (both absorbing and nonabsorbing) does not cause large errors in EISF retrievals under most observing conditions when they are located below the SO2 plume. The EISF retrievals assuming a homogeneous field of view can provide accurate column amounts for inhomogeneous scenes, but they always underestimate the plume altitudes. The EISF algorithm reduces systematic errors present in existing linear retrieval algorithms that use prescribed SO2 plume heights. Applying the EISF algorithm to Ozone Monitoring Instrument satellite observations of the recent Kasatochi volcanic eruption, we demonstrate the successful retrieval of effective plume altitude of volcanic SO2, and we also show the improvement in accuracy in the corresponding SO2 columns. C1 [Yang, Kai; Liu, Xiong; Bhartia, Pawan K.; Krotkov, Nickolay A.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Carn, Simon A.] Michigan Technol Univ, Houghton, MI 49931 USA. [Hughes, Eric J.; Krueger, Arlin J.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Spurr, Robert J. D.] RT Solut Inc, Cambridge, MA 02138 USA. [Trahan, Samuel G.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21228 USA. [Yang, Kai; Krotkov, Nickolay A.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. RP Yang, K (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Mail Code 613-3, Greenbelt, MD 20771 USA. EM kai.yang-1@nasa.gov; xliu@umbc.edu; pawan.bhartia@nasa.gov; nickolay.a.krotkov@nasa.gov; scarn@mtu.edu; eric.hughes@noaa.gov; akrueger@umbc.edu; rtsolutions@verizon.net RI Krotkov, Nickolay/E-1541-2012; Liu, Xiong/P-7186-2014; Bhartia, Pawan/A-4209-2016 OI Krotkov, Nickolay/0000-0001-6170-6750; Liu, Xiong/0000-0003-2939-574X; Bhartia, Pawan/0000-0001-8307-9137 FU NASA [NNX10AG60G]; U.S. OMI Science Team FX This work was supported in part by NASA under grant NNX10AG60G (A Combined EOS Data and GEOS-Chem Modeling Study of the Direct Radiative Forcing of Volcanic Sulfate Aerosols) and by the U.S. OMI Science Team. NR 42 TC 40 Z9 40 U1 1 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 21 PY 2010 VL 115 AR D00L09 DI 10.1029/2010JD013982 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 656HW UT WOS:000282320900005 ER PT J AU Christoffersen, P Tulaczyk, S Behar, A AF Christoffersen, Poul Tulaczyk, Slawek Behar, Alberto TI Basal ice sequences in Antarctic ice stream: Exposure of past hydrologic conditions and a principal mode of sediment transfer SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article ID PLEISTOCENE-HOLOCENE RETREAT; LAST GLACIAL MAXIMUM; WEST ANTARCTICA; ROSS SEA; CONTINENTAL-SHELF; SUBGLACIAL SEDIMENTS; DEBRIS ENTRAINMENT; FREEZE-ON; TILL DEFORMATION; GROUNDING-LINE AB The brightness distribution of sequentially extracted borehole camera imagery shows two distinct sequences of basal ice in Kamb Ice Stream. The upper sequence (7.3 m) comprises clear ice and layers with dispersed and stratified debris. The lower sequence (8.2 m) consists of accretion ice with alternating layers of stratified and solid debris. The two sequences have volumetric debris contents of about 5% and 20%, respectively. We infer that the upper sequence formed in a tributary where subglacial meltwater was abundant and that the lower sequence formed on the Siple Coast plain where basal freezing currently dominates the basal thermal regime. The basal ice layer contains the equivalent of 2.1 +/- 0.4 m of frozen sediment. The high volume of sediment is a result of debris-rich layers interpreted to have formed by accretion in the stagnant phase of ice stream on/off cycles. Fast ice streaming punctuated by entrainment of debris during stagnation episodes is consistent with inferred past flow of adjacent ice streams and geologic features in the Ross Sea. Our results show that sediment wedges near grounding lines may form by melt out of basal ice debris. This is different from previous studies where it was assumed that sediment transfer occurs through sediment deformation within layers of subglacial till. Cumulative freezing in recurring ice stream cycles shows that entrainment of sediment by basal freeze-on is an important erosion mechanism and that high sediment fluxes can occur when ice streams override Coulomb-plastic substrates. C1 [Christoffersen, Poul] Univ Cambridge, Scott Polar Res Inst, Cambridge CB2 1ER, England. [Behar, Alberto] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tulaczyk, Slawek] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. RP Christoffersen, P (reprint author), Univ Cambridge, Scott Polar Res Inst, Cambridge CB2 1ER, England. EM pc350@cam.ac.uk RI Christoffersen, Poul/C-7328-2013 OI Christoffersen, Poul/0000-0003-2643-8724 FU Natural Environment Research Council (NERC); National Science Foundation Office of Polar Programs (NSF-OPP); NASA FX Support for this study was provided by grants to Poul Christoffersen and Slawek Tulaczyk from the Natural Environment Research Council (NERC) and the National Science Foundation Office of Polar Programs (NSF-OPP). Alberto Behar performed his contribution at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Acquisition of borehole imagery took place as part of a larger study funded by NSF OPP grants to Barclay Kamb and Hermann Engelhardt. We are grateful to both of them for their kind support. Editorial comments from Bryn Hubbard and reviews by Denis Samyn, Michael Hambrey, Simon Cook, and one anonymous person were helpful. NR 100 TC 28 Z9 28 U1 2 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9003 EI 2169-9011 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD SEP 21 PY 2010 VL 115 AR F03034 DI 10.1029/2009JF001430 PG 12 WC Geosciences, Multidisciplinary SC Geology GA 656IK UT WOS:000282322700001 ER PT J AU Martins, F Donati, JF Marcolino, WLF Bouret, JC Wade, GA Escolano, C Howarth, ID AF Martins, F. Donati, J. -F. Marcolino, W. L. F. Bouret, J. -C. Wade, G. A. Escolano, C. Howarth, I. D. CA MiMeS Collaboration TI Detection of a magnetic field on HD 108: clues to extreme magnetic braking and the Of?p phenomenon SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: magnetic field; stars: massive; stars: winds; outflows ID DRIVEN STELLAR WINDS; O-TYPE STARS; DYNAMICAL SIMULATIONS; CONFINED WIND; ORION NEBULA; EVOLUTION; HD-191612; ROTATION; EMISSION; VARIABILITY AB We report the detection of a magnetic field on the Of? p star HD 108. Spectropolarimetric observations conducted in 2007, 2008 and 2009, respectively, with NARVAL@ Telescope Bernard Lyot (TBL) and Echelle SpectroPolarimetric Device for the Observation of Stars at Canada-France-Hawaii Telescope (ESPaDOnS@CFHT) reveal a clear Zeeman signature in the average Stokes V profile, stable on time-scales of days to months and slowly increasing in amplitude on time-scales of years. We speculate that this time-scale is the same as that on which Ha emission is varying and is equal to the rotation period of the star. The corresponding longitudinal magnetic field, measured during each of the three seasons, increases slowly from 100 to 150 G, implying that the polar strength of the putatively dipolar large-scale magnetic field of HD 108 is at least 0.5 kG and most likely of the order of 1-2 kG. The stellar and wind properties are derived through a quantitative spectroscopic analysis with the code CMFGEN. The effective temperature is difficult to constrain because of the unusually strong He lambda lambda 4471, 5876 lines. Values in the range of 33 000-37 000K are preferred. A mass-loss rate of about 10(-7) M(circle dot) yr(-1) (with a clumping factor f = 0.01) and a wind terminal velocity of 2000 km s(-1) are derived. The wind confinement parameter. eta(star) is larger than 100, implying that the wind of HD 108 is magnetically confined. Stochastic short-term variability is observed in the wind-sensitive lines but not in the photospheric lines, excluding the presence of pulsations. Material infall in the confined wind is the most likely origin for lines formed in the inner wind. Wind clumping also probably causes part of the Ha variability. The projected rotational velocity of HD 108 is lower than 50 km s-1, consistent with the spectroscopic and photometric variation time-scales of a few decades. Overall, HD 108 is very similar to the magnetic O star HD 191612 except for an even slower rotation. C1 [Martins, F.] CNRS, GRAAL, UMR5024, F-34095 Montpellier 05, France. [Martins, F.] Univ Montpellier 2, F-34095 Montpellier 05, France. [Donati, J. -F.] CNRS, LATT, UMR 5572, F-31400 Toulouse, France. [Donati, J. -F.] Univ Toulouse, F-31400 Toulouse, France. [Marcolino, W. L. F.; Bouret, J. -C.; Escolano, C.] CNRS, LAM, UMR 6110, F-13388 Marseille 13, France. [Marcolino, W. L. F.; Bouret, J. -C.; Escolano, C.] Univ Provence, F-13388 Marseille 13, France. [Marcolino, W. L. F.] Observ Nacl MCT, BR-20921400 Rio De Janeiro, Brazil. [Bouret, J. -C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wade, G. A.] Royal Mil Coll Canada, Dept Phys, Stn Forces, Kingston, ON K7K 7B4, Canada. [Howarth, I. D.] UCL, Dept Phys & Astron, London WC1E 6BT, England. RP Martins, F (reprint author), CNRS, GRAAL, UMR5024, Pl Eugene Bataillon, F-34095 Montpellier 05, France. EM martins@graal.univ-montp2.fr RI 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; Marcolino, Wagner/M-7428-2014 FU Natural Science and Engineering Research Council of Canada (NSERC); French National Research Agency (ANR) [ANR-06-BLAN-0105] FX We thank John Hillier for making his code CMFGEN available and for constant help with it. We also thank the generous time allocation from the TBL TAC and the MagIcS initiative under which MiMeS is carried out. We acknowledge the help of the TBL and CFHT staff for service and QSO observing, respectively. GAW acknowledges Discovery Grant support from the Natural Science and Engineering Research Council of Canada (NSERC). JCB and WLFM acknowledge financial support from the French National Research Agency (ANR) through programme number ANR-06-BLAN-0105. NR 43 TC 54 Z9 54 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 21 PY 2010 VL 407 IS 3 BP 1423 EP 1432 DI 10.1111/j.1365-2966.2010.17005.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 649TX UT WOS:000281797900005 ER PT J AU Nurge, MA Perusich, SA AF Nurge, Mark A. Perusich, Stephen A. TI In-line capacitance sensor for real-time water absorption measurements SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Capacitance; Sensor; Water; Absorbent; Desiccant; Dielectric constant AB A capacitance/dielectric sensor was designed, constructed. and used to measure in real time the in situ water concentration in a desiccant water bed. Measurements were carried out with two experimental setups. (1) passing nitrogen through a humidity generator and allowing the gas stream to become saturated at a measured temperature and pressure, and (2) injecting water via a syringe pump Into a nitrogen stream. Both water vapor generating devices were attached to a downstream vertically mounted water capture bed filled with 19 5 g of Moisture Gone (TM) desiccant The sensor consisted of two electrodes (1) a 1/8 in dia stainless steel rod placed in the middle of the bed and (2) the outer shell of the stainless steel bed concentric with the rod All phases of the water capture process (background, heating, absorption. desorption, and cooling) were monitored with capacitance The measured capacitance was found to vary linearly with the water content in the bed at frequencies above 100 kHz indicating dipolar motion dominated the signal: below this frequency, ionic motion caused nonlinearities in the water concentration/capacitance relationship The desiccant exhibited a dielectric relaxation whose activation energy was lowered upon addition of water indicating either a less hindered rotational motion or crystal reorientation. (C) 2010 Elsevier B V All rights reserved C1 [Perusich, Stephen A.] ASRC Aerosp Corp, Appl Sci & Technol, John F Kennedy Space Ctr, Kennedy Space Ctr, FL 32899 USA. [Nurge, Mark A.] NASA, Appl Phys Lab, John F Kennedy Space Ctr, Kennedy Space Ctr, FL 32899 USA. RP Perusich, SA (reprint author), ASRC Aerosp Corp, Appl Sci & Technol, John F Kennedy Space Ctr, Mail Code ASRC-24, Kennedy Space Ctr, FL 32899 USA. EM Stephen.A.Perusich@nasa.gov FU KSC NASA FX The authors wish to thank Dr. Steve Trigwell for using his XPS expertise to uncover critical information concerning the desiccant composition In addition, thanks to many NASA and ASRC Aerospace personnel involved with the Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) project for their insightful comments throughout this project. Financial support was graciously provided by the KSC NASA ISRU program. NR 7 TC 3 Z9 4 U1 2 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD SEP 21 PY 2010 VL 150 IS 1 BP 105 EP 111 DI 10.1016/j.snb.2010.07.035 PG 7 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 661KC UT WOS:000282726200015 ER PT J AU Brodwin, M Ruel, J Ade, PAR Aird, KA Andersson, K Ashby, MLN Bautz, M Bazin, G Benson, BA Bleem, LE Carlstrom, JE Chang, CL Crawford, TM Crites, AT De Haan, T Desai, S Dobbs, MA Dudley, JP Fazio, GG Foley, RJ Forman, WR Garmire, G George, EM Gladders, MD Gonzalez, AH Halverson, NW High, FW Holder, GP Holzapfel, WL Hrubes, JD Jones, C Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Lueker, M Marrone, DP McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Murray, SS Padin, S Plagge, T Pryke, C Reichardt, CL Rest, A Ruhl, JE Schaffer, KK Shaw, L Shirokoff, E Song, J Spieler, HG Stalder, B Stanford, SA Staniszewski, Z Stark, AA Stubbs, CW Vanderlinde, K Vieira, JD Vikhlinin, A Williamson, R Yang, Y Zahn, O Zenteno, A AF Brodwin, M. Ruel, J. Ade, P. A. R. Aird, K. A. Andersson, K. Ashby, M. L. N. Bautz, M. Bazin, G. Benson, B. A. Bleem, L. E. Carlstrom, J. E. Chang, C. L. Crawford, T. M. Crites, A. T. De Haan, T. Desai, S. Dobbs, M. A. Dudley, J. P. Fazio, G. G. Foley, R. J. Forman, W. R. Garmire, G. George, E. M. Gladders, M. D. Gonzalez, A. H. Halverson, N. W. High, F. W. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Jones, C. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Lueker, M. Marrone, D. P. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Murray, S. S. Padin, S. Plagge, T. Pryke, C. Reichardt, C. L. Rest, A. Ruhl, J. E. Schaffer, K. K. Shaw, L. Shirokoff, E. Song, J. Spieler, H. G. Stalder, B. Stanford, S. A. Staniszewski, Z. Stark, A. A. Stubbs, C. W. Vanderlinde, K. Vieira, J. D. Vikhlinin, A. Williamson, R. Yang, Y. Zahn, O. Zenteno, A. TI SPT-CL J0546-5345: A MASSIVE z > 1 GALAXY CLUSTER SELECTED VIA THE SUNYAEV-ZEL'DOVICH EFFECT WITH THE SOUTH POLE TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: individual (SPT-CL J0546-5345); galaxies: distances and redshifts; galaxies: evolution ID IRAC SHALLOW SURVEY; X-RAY; VELOCITY DISPERSIONS; PHOTOMETRIC REDSHIFTS; TEMPERATURE RELATION; COSMOLOGY; CHANDRA; PROFILES; SAMPLE; GAS AB We report the spectroscopic confirmation of SPT-CL J0546-5345 at < z > = 1.067. To date this is the most distant cluster to be spectroscopically confirmed from the 2008 South Pole Telescope (SPT) catalog, and indeed the first z > 1 cluster discovered by the Sunyaev-Zel'dovich Effect (SZE). We identify 21 secure spectroscopic members within 0.9 Mpc of the SPT cluster position, 18 of which are quiescent, early-type galaxies. From these quiescent galaxies we obtain a velocity dispersion of 1179-(+232)(167) km s(-1), ranking SPT-CL J0546-5345 as the most dynamically massive cluster yet discovered at z > 1. Assuming that SPT-CL J0546-5345 is virialized, this implies a dynamical mass of M(200) = 1.0(-0.4)(+0.6) x 10(15) M(circle dot), in agreement with the X-ray and SZE mass measurements. Combining masses from several independent measures leads to a best-estimate mass of M(200) = (7.95 +/- 0.92) x 10(14) M(circle dot). The spectroscopic confirmation of SPT-CL J0546-5345, discovered in the wide-angle, mass-selected SPT cluster survey, marks the onset of the high-redshift SZE-selected galaxy cluster era. C1 [Brodwin, M.; Ashby, M. L. N.; Fazio, G. G.; Foley, R. J.; Forman, W. R.; Jones, C.; Murray, S. S.; Stalder, B.; Stark, A. A.; Stubbs, C. W.; Vikhlinin, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ruel, J.; High, F. W.; Rest, A.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Ade, P. A. R.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Aird, K. A.; Hrubes, J. D.; Marrone, D. P.] Univ Chicago, Chicago, IL 60637 USA. [Andersson, K.; Bautz, M.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Bazin, G.; Mohr, J. J.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Bazin, G.; Mohr, J. J.; Zenteno, A.] Excellence Cluster Univ, D-85758 Garching, Germany. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; Keisler, R.; Leitch, E. M.; Marrone, D. P.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Padin, S.; Pryke, C.; Schaffer, K. K.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; McMahon, J. J.; Meyer, S. S.; Pryke, C.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Padin, S.; Plagge, T.; Pryke, C.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [De Haan, T.; Dobbs, M. A.; Dudley, J. P.; Holder, G. P.; Shaw, L.; Vanderlinde, K.] McGill Univ, Dept Phys, Quebec City, PQ H3A 2T8, Canada. [Desai, S.; Song, J.; Yang, Y.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Garmire, G.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [George, E. M.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Plagge, T.; Reichardt, C. L.; Shirokoff, E.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Joy, M.] NASA Marshall Space Flight Ctr, Dept Space Sci, Huntsville, AL 35812 USA. [Knox, L.; Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, CERCA, Cleveland, OH 44106 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. RP Brodwin, M (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RI Stubbs, Christopher/C-2829-2012; Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Stark, Antony/0000-0002-2718-9996; Stubbs, Christopher/0000-0003-0347-1724; Williamson, Ross/0000-0002-6945-2975; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169 FU National Science Foundation [ANT-0638937]; NSF Physics Frontier Center [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; NASA; Chandra Xray Observatory [SV4-74018, A31]; W. M. Keck Foundation; Brinson Foundation FX Visiting astronomer, Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, under contract with the National Science Foundation; The SPT is supported by the National Science Foundation through grant ANT-0638937. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile. This work is based in part on observations obtained with the Chandra Xray Observatory, under contract SV4-74018, A31 with the Smithsonian Astrophysical Observatory which operates the Chandra for NASA. We are very grateful for the efforts of the Spitzer, Chandra, Magellan, and CTIO support staff without whom this paper would not be possible. Support for M. B. was provided by the W. M. Keck Foundation. B. S. acknowledges support from the Brinson Foundation. NR 60 TC 74 Z9 75 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2010 VL 721 IS 1 BP 90 EP 97 DI 10.1088/0004-637X/721/1/90 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TI UT WOS:000282192900007 ER PT J AU Bally, J Aguirre, J Battersby, C Bradley, ET Cyganowski, C Dowell, D Drosback, M Dunham, MK Evans, NJ Ginsburg, A Glenn, J Harvey, P Mills, E Merello, M Rosolowsky, E Schlingman, W Shirley, YL Stringfellow, GS Walawender, J Williams, J AF Bally, John Aguirre, James Battersby, Cara Bradley, Eric Todd Cyganowski, Claudia Dowell, Darren Drosback, Meredith Dunham, Miranda K. Evans, Neal J., II Ginsburg, Adam Glenn, Jason Harvey, Paul Mills, Elisabeth Merello, Manuel Rosolowsky, Erik Schlingman, Wayne Shirley, Yancy L. Stringfellow, Guy S. Walawender, Josh Williams, Jonathan TI THE BOLOCAM GALACTIC PLANE SURVEY: lambda = 1.1 AND 0.35 mm DUST CONTINUUM EMISSION IN THE GALACTIC CENTER REGION SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; Galaxy: center; ISM: clouds; stars: formation; surveys ID CENTER MOLECULAR CLOUDS; SUPERMASSIVE BLACK-HOLE; GAMMA-RAY EMISSION; STAR-FORMATION; MILKY-WAY; ARCHES CLUSTER; SAGITTARIUS B2; X-RAY; STATISTICAL PROPERTIES; INTERSTELLAR-MEDIUM AB The Bolocam Galactic Plane Survey (BGPS) data for a 6 deg(2) region of the Galactic plane containing the Galactic center are analyzed and compared to infrared and radio continuum data. The BGPS 1.1 mm emission consists of clumps interconnected by a network of fainter filaments surrounding cavities, a few of which are filled with diffuse near-IR emission indicating the presence of warm dust or with radio continuum characteristic of H II regions or supernova remnants. New 350 mu m images of the environments of the two brightest regions, Sgr A and B, are presented. Sgr B2 is the brightest millimeter-emitting clump in the Central Molecular Zone (CMZ) and may be forming the closest analog to a super star cluster in the Galaxy. The CMZ contains the highest concentration of millimeter- and submillimeter-emitting dense clumps in the Galaxy. Most 1.1 mm features at positive longitudes are seen in silhouette against the 3.6-24 mu m background observed by the Spitzer Space Telescope. However, only a few clumps at negative longitudes are seen in absorption, confirming the hypothesis that positive longitude clumps in the CMZ tend to be on the near side of the Galactic center, consistent with the suspected orientation of the central bar in our Galaxy. Some 1.1 mm cloud surfaces are seen in emission at 8 mu m, presumably due to polycyclic aromatic hydrocarbons. A similar to 0 degrees.2 (similar to 30 pc) diameter cavity and infrared bubble between l approximate to 0 degrees.0 and 0 degrees.2 surround the Arches and Quintuplet clusters and Sgr A. The bubble contains several clumpy dust filaments that point toward Sgr A*; its potential role in their formation is explored. Bania's Clump 2, a feature near l = 3 degrees-3 degrees.5 which exhibits extremely broad molecular emission lines (Delta V > 150 km s(-1)), contains dozens of 1.1 mm clumps. These clumps are deficient in near-and mid-infrared emission in the Spitzer images when compared to both the inner Galactic plane and the CMZ. Thus, Bania's Clump 2 is either inefficient in forming stars or is in a pre-stellar phase of clump evolution. The Bolocat catalog of 1.1 mm clumps contains 1428 entries in the Galactic center between l = 358 degrees.5 and l = 4 degrees.5 of which about 80% are likely to be within about 500 pc of the center. The mass spectrum above about 80 M(circle dot) can be described by a power-law Delta N/Delta M = N(0)M(-2.14(+ 0.1,-0.4)). The power-law index is somewhat sensitive to systematic grain temperature variations, may be highly biased by source confusion, and is very sensitive to the spatial filtering inherent in the data acquisition and reduction. C1 [Bally, John; Battersby, Cara; Ginsburg, Adam; Glenn, Jason; Harvey, Paul; Stringfellow, Guy S.] Univ Colorado, CASA, UCB 389, Boulder, CO 80309 USA. [Aguirre, James] Univ Penn, Dept Phys & Astron, Philadelphia, PA USA. [Bradley, Eric Todd] Univ Cent Florida, Dept Phys & Astron, Orlando, FL 32816 USA. [Cyganowski, Claudia] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Dowell, Darren] CALTECH, Jet Prop Lab, Pasadena, CA 91104 USA. [Drosback, Meredith] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Dunham, Miranda K.; Evans, Neal J., II; Merello, Manuel] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Mills, Elisabeth] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Rosolowsky, Erik] Univ British Columbia, Dept Phys & Astron, Kelowna, BC V1V 1V7, Canada. [Schlingman, Wayne; Shirley, Yancy L.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Walawender, Josh] Univ Hawaii, Inst Astron IfA, Hilo, HI 96720 USA. [Williams, Jonathan] Univ Hawaii, Inst Astron IfA, Honolulu, HI 96822 USA. RP Bally, J (reprint author), Univ Colorado, CASA, UCB 389, Boulder, CO 80309 USA. EM John.Bally@casa.colorado.edu; jaguirre@sas.upenn.edu; Cara.Battersby@colorado.edu; tbradley@physics.ucf.edu; ccyganow@astro.wisc.edu; cdd@submm.caltech.edu; drosback@virginia.edu; nordhaus@astro.as.utexas.edu; nje@astro.as.utexas.edu; Adam.Ginsburg@colorado.edu; Jason.Glenn@colorado.edu; pmh@astro.as.utexas.edu; millsb@astro.ucla.edu; manuel@astro.as.utexas.edu; erik.rosolowsky@ubc.ca; wschlingman@as.arizona.edu; yshirley@as.arizona.edu; Guy.Stringfellow@colorado.edu; joshw@ifa.hawaii.edu; jpw@ifa.hawaii.edu RI Ginsburg, Adam/E-6413-2011 FU National Science Foundation [AST-0708403, AST-9980846, AST-0206158, AST-0607793, AST-05-40882, AST-0838261]; National Radio Astronomy Observatory (NRAO) FX The BGPS project is supported in part by the National Science Foundation through NSF grant AST-0708403. J.A. was supported by a Jansky Fellowship from the National Radio Astronomy Observatory (NRAO). The first observing runs for BGPS were supported by travel funds provided by NRAO. Support for the development of Bolocam was provided by NSF grants AST-9980846 and AST-0206158. N.J.E. and M. K. D. were supported by NSF grant AST-0607793. This research was performed at the Caltech Submillimeter Observatory (CSO), supported by NSF grants AST-05-40882 and AST-0838261. C. B. and C. C. were supported by a National Science Foundation Graduate Research Fellowship. We thank Farhad Yusef-Zadeh for providing his 20 cm radio image. We thank an anonymous referee for very helpful comments that improved the manuscript. NR 111 TC 48 Z9 48 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2010 VL 721 IS 1 BP 137 EP 163 DI 10.1088/0004-637X/721/1/137 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TI UT WOS:000282192900010 ER PT J AU Zemcov, M Blain, A Halpern, M Levenson, L AF Zemcov, Michael Blain, Andrew Halpern, Mark Levenson, Louis TI CONTRIBUTION OF LENSED SCUBA GALAXIES TO THE COSMIC INFRARED BACKGROUND SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; gravitational lensing: strong; submillimeter: galaxies ID DEEP SUBMILLIMETER SURVEY; DEGREE EXTRAGALACTIC SURVEY; 14 HOUR FIELD; NUMBER COUNTS; VELOCITY DISPERSIONS; HIGH-REDSHIFT; LENSING CLUSTERS; ABELL CLUSTERS; STAR-FORMATION; EVOLUTION AB The surface density of submillimeter (sub-mm) galaxies as a function of flux, usually termed the source number counts, constrains models of the evolution of the density and luminosity of starburst galaxies. At the faint end of the distribution, direct detection and counting of galaxies are not possible. However, gravitational lensing by clusters of galaxies allows detection of sources which would otherwise be too dim to study. We have used the largest catalog of sub-mm-selected sources along the line of sight to galaxy clusters to estimate the faint end of the 850 mu m number counts; integrating to S = 0.10 mJy, the equivalent flux density at 850 mu m is nu I(nu) = 0.24 +/- 0.03 nW m(-2) sr(-1). This provides a lower limit to the extragalactic far-infrared background and is consistent with direct estimates of the full intensity from the FIRAS. The results presented here can help to guide strategies for upcoming surveys carried out with single-dish sub-mm instruments. C1 [Zemcov, Michael; Blain, Andrew; Levenson, Louis] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Zemcov, Michael] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Halpern, Mark] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. RP Zemcov, M (reprint author), CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. FU NASA FX M.Z.'s research was supported in part by a NASA Postdoctoral Fellowship. Many thanks to K. Coppin for the kind sharing of many of the data used in Figures 2 and 3, E. Jullo for help with LENSTOOL and other useful discussions, E. Valiante for valuable insights which improved this paper, and A. Conley for catching problems quickly. Thanks also to an anonymous referee whose comments and suggestions substantially improved this work. This work made use of the Canadian Astronomy Data Centre, which is operated by the Herzberg Institute of Astrophysics, National Research Council of Canada. NR 56 TC 22 Z9 22 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2010 VL 721 IS 1 BP 424 EP 430 DI 10.1088/0004-637X/721/1/424 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TI UT WOS:000282192900028 ER PT J AU Juhasz, A Bouwman, J Henning, T Acke, B van den Ancker, ME Meeus, G Dominik, C Min, M Tielens, AGGM Waters, LBFM AF Juhasz, A. Bouwman, J. Henning, Th. Acke, B. van den Ancker, M. E. Meeus, G. Dominik, C. Min, M. Tielens, A. G. G. M. Waters, L. B. F. M. TI DUST EVOLUTION IN PROTOPLANETARY DISKS AROUND HERBIG Ae/Be STARS-THE SPITZER VIEW SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; infrared: planetary systems; infrared: stars; stars: formation; stars: pre-main sequence ID INTERSTELLAR SILICATE MINERALOGY; INFRARED-ABSORPTION SPECTRA; MILLIMETER-WAVE PROPERTIES; MAIN-SEQUENCE STARS; VEGA-LIKE SYSTEMS; T-TAURI STARS; COMPOSITIONAL DEPENDENCE; CRYSTALLINE SILICATES; MAGNESIUM SILICATES; REFLECTION SPECTRA AB In this paper, we present mid-infrared spectra of a comprehensive set of Herbig Ae/Be stars observed with the Spitzer Space Telescope. The signal-to-noise ratio of these spectra is very high, ranging between about a hundred and several hundreds. During the analysis of these data we tested the validity of standardized protoplanetary dust models and studied grain growth and crystal formation. On the basis of the analyzed spectra, the major constituents of protoplanetary dust around Herbig Ae/Be stars are amorphous silicates with olivine and pyroxene stoichiometry, crystalline forsterite, and enstatite and silica. No other solid-state features, indicating other abundant dust species, are present in the Spitzer spectra. Deviations of the synthetic spectra from the observations are most likely related to grain shape effects and uncertainties in the iron content of the dust grains. Our analysis revealed that larger grains are more abundant in the disk atmosphere of flatter disks than in that of flared disks, indicating that grain growth and sedimentation decrease the disk flaring. We did not find, however, correlations between the value of crystallinity and any of the investigated system parameters. Our analysis shows that enstatite is more concentrated toward the warm inner disk than forsterite, in contrast to predictions of equilibrium condensation models. None of the three crystal formation mechanisms proposed so far can alone explain all our findings. It is very likely that all three play at least some role in the formation of crystalline silicates. C1 [Juhasz, A.; Bouwman, J.; Henning, Th.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Acke, B.; Waters, L. B. F. M.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [van den Ancker, M. E.] European So Observ, D-85748 Garching, Germany. [Meeus, G.; Min, M.; Waters, L. B. F. M.] Astrophys Inst Potsdam, D-14482 Potsdam, Germany. [Dominik, C.] Univ Amsterdam, Astron Inst, NL-1098 AJ Amsterdam, Netherlands. [Tielens, A. G. G. M.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Tielens, A. G. G. M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Juhasz, A (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. NR 73 TC 81 Z9 83 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2010 VL 721 IS 1 BP 431 EP 455 DI 10.1088/0004-637X/721/1/431 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TI UT WOS:000282192900029 ER PT J AU Hosokawa, T Yorke, HW Omukai, K AF Hosokawa, Takashi Yorke, Harold W. Omukai, Kazuyuki TI EVOLUTION OF MASSIVE PROTOSTARS VIA DISK ACCRETION SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; stars: early-type; stars: evolution; stars: formation; stars: pre-main sequence ID MAIN-SEQUENCE STARS; 1ST STARS; MOLECULAR CLOUDS; CIRCLE-DOT; CORES; FRAGMENTATION; CANDIDATES; TURBULENT; EMISSION; SYSTEMS AB Mass accretion onto (proto-)stars at high accretion rates (M) over dot(*) > 10(-4) M(circle dot) yr(-1) is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of "cold" disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10(-3) M(circle dot) yr(-1), the radius of a protostar is initially small, R(*) similar or equal to a few R(circle dot). After several solar masses have accreted, the protostar begins to bloat up and for M* similar or equal to 10 M(circle dot) the stellar radius attains its maximum of 30-400 R(circle dot). The large radius similar to 100 R(circle dot) is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M(*) similar or equal to 30 M(circle dot), independent of the accretion geometry. For accretion rates exceeding several 10(-3) M(circle dot) yr(-1), the protostar never contracts to the ZAMS. The very large radius of several hundreds R(circle dot) results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions. C1 [Hosokawa, Takashi; Omukai, Kazuyuki] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Hosokawa, Takashi; Yorke, Harold W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hosokawa, Takashi; Omukai, Kazuyuki] Natl Astron Observ, Div Theoret Astron, Tokyo 1818588, Japan. RP Hosokawa, T (reprint author), Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. EM hosokawa@tap.scphys.kyoto-u.ac.jp; Harold.Yorke@jpl.nasa.gov; omukai@tap.scphys.kyoto-u.ac.jp FU Japan Society for the Promotion of Science for Young Scientists; Ministry of Education, Science and Culture of Japan [18740117, 18026008, 19047004] FX We thank Peter Bodenheimer for a careful critique of the manuscript. We also thank Neal Turner for fruitful comments and discussions. This study is supported in part by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists (T. H.) and by the Grants-in-Aid by the Ministry of Education, Science and Culture of Japan (18740117, 18026008, 19047004: KO). Portions of this work were conducted at the Jet Propulsion Laboratory, California Institute of Technology, operating under a contract with the National Aeronautics and Space Administration (NASA). NR 47 TC 82 Z9 82 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2010 VL 721 IS 1 BP 478 EP 492 DI 10.1088/0004-637X/721/1/478 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TI UT WOS:000282192900032 ER PT J AU Pineda, JL Goldsmith, PF Chapman, N Snell, RL Li, D Cambresy, L Brunt, C AF Pineda, Jorge L. Goldsmith, Paul F. Chapman, Nicholas Snell, Ronald L. Li, Di Cambresy, Laurent Brunt, Chris TI THE RELATION BETWEEN GAS AND DUST IN THE TAURUS MOLECULAR CLOUD SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; ISM: molecules; ISM: structure ID INTER-STELLAR CLOUDS; DARK CLOUD; CARBON-MONOXIDE; COLUMN DENSITY; PROBABILITY-DISTRIBUTION; INTERSTELLAR-MEDIUM; STAR-FORMATION; ULTRAVIOLET SURVEY; HIGH-RESOLUTION; MILKY-WAY AB We report a study of the relation between dust and gas over a 100 deg(2) area in the Taurus molecular cloud. We compare the H-2 column density derived from dust extinction with the CO column density derived from the (CO)-C-12 and (CO)-C-13 J = 1 -> 0 lines. We derive the visual extinction from reddening determined from 2MASS data. The comparison is done at an angular size of 200 '' corresponding to 0.14 pc at a distance of 140 pc. We find that the relation between visual extinction AV and N(CO) is linear between A(V) similar or equal to 3 and 10 mag in the region associated with the B213-L1495 filament. In other regions, the linear relation is flattened for A(V) greater than or similar to 4 mag. We find that the presence of temperature gradients in the molecular gas affects the determination of N(CO) by similar to 30%-70% with the largest difference occurring at large column densities. Adding a correction for this effect and accounting for the observed relation between the column density of CO and CO2 ices and A(V), we find a linear relationship between the column of carbon monoxide and dust for observed visual extinctions up to the maximum value in our data similar or equal to 23 mag. We have used these data to study a sample of dense cores in Taurus. Fitting an analytical column density profile to these cores we derive an average volume density of about 1.4 x 10(4) cm(-3) and a CO depletion age of about 4.2 x 10(5) yr. At visual extinctions smaller than similar to 3 mag, we find that the CO fractional abundance is reduced by up to two orders of magnitude. The data show a large scatter suggesting a range of physical conditions of the gas. We estimate the H-2 mass of Taurus to be about 1.5 x 10(4) M-circle dot, independently derived from the A(V) and N(CO) maps. We derive a CO integrated intensity to H-2 conversion factor of about 2.1 x 10(20) cm(-2) (K km s(-1))(-1), which applies even in the region where the [CO]/[H-2] ratio is reduced by up to two orders of magnitude. The distribution of column densities in our Taurus maps resembles a log-normal function but shows tails at large and low column densities. The length scale at which the high column density tail starts to be noticeable is about 0.4 pc. C1 [Pineda, Jorge L.; Goldsmith, Paul F.; Chapman, Nicholas; Li, Di] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Snell, Ronald L.] Univ Massachusetts, Dept Astron, LGRT 619, Amherst, MA 01003 USA. [Cambresy, Laurent] Observ Astron, F-67000 Strasbourg, France. [Brunt, Chris] Univ Exeter, Astrophys Grp, Sch Phys, Exeter EX4 4QL, Devon, England. RP Pineda, JL (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Jorge.Pineda@jpl.nasa.gov RI Goldsmith, Paul/H-3159-2016 FU NASA at the Jet Propulsion Laboratory, California Institute of Technology; National Science Foundation FX We thank Douglas Whittet for the idea to add the column density of CO-ices to the gas-phase CO column densities, Jonathan Foster for providing sample extinction maps that were used to test the implementation of the NICER algorithm used here, John Black, Edwine van Dishoeck, and Ruud Visser for helpful discussions about the formation/destruction processes affecting CO at low column densities, specially Ruud Visser for providing results of his recent calculations, Kostas Tassis for discussions about the nature of column density distributions in molecular clouds, and Marko Krco for sharing his Hi map of Taurus. J.L.P was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by Oak Ridge Associated Universities through a contract with NASA. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology and was supported by a grant from the National Science Foundation. This research has made use of NASA's Astrophysics Data System Abstract Service. NR 75 TC 84 Z9 84 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2010 VL 721 IS 1 BP 686 EP 708 DI 10.1088/0004-637X/721/1/686 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TI UT WOS:000282192900050 ER PT J AU Osten, RA Godet, O Drake, S Tueller, J Cummings, J Krimm, H Pye, J Pal'shin, V Golenetskii, S Reale, F Oates, SR Page, MJ Melandri, A AF Osten, Rachel A. Godet, Olivier Drake, Stephen Tueller, Jack Cummings, Jay Krimm, Hans Pye, John Pal'shin, Valentin Golenetskii, Sergei Reale, Fabio Oates, Samantha R. Page, Mat J. Melandri, Andrea TI THE MOUSE THAT ROARED: A SUPERFLARE FROM THE dMe FLARE STAR EV LAC DETECTED BY SWIFT AND KONUS-WIND SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: activity; stars: coronae; stars: flare; stars: individual (EV Lac); stars: late-type; X-rays: stars ID X-RAY FLARE; K-ALPHA EMISSION; RADIATIVE HYDRODYNAMIC MODELS; SOLAR-FLARES; EV-LACERTAE; ULTRAVIOLET EMISSION; MAGNETIC-FIELDS; STELLAR FLARES; M-DWARFS; IMPULSIVE PHASE AB We report on a large stellar flare from the nearby dMe flare star EV Lac observed by the Swift and Konus-Wind satellites and the Liverpool Telescope. It is the first large stellar flare from a dMe flare star to result in a Swift trigger based on its hard X-ray intensity. Its peak f(X) from 0.3 to 100 keV of 5.3 x 10(-8) erg cm(-2) s(-1) is nearly 7000 times larger than the star's quiescent coronal flux, and the change in magnitude in the white filter is >= 4.7. This flare also caused a transient increase in EV Lac's bolometric luminosity (L-bol) during the early stages of the flare, with a peak estimated L-X/L-bol similar to 3.1. We apply flare loop hydrodynamic modeling to the plasma parameter temporal changes to derive a loop semi-length of l/R-star = 0.37 +/- 0.07. The soft X-ray spectrum of the flare reveals evidence of iron K alpha emission at 6.4 keV. We model the K alpha emission as fluorescence from the hot flare source irradiating the photospheric iron, and derive loop heights of h/R-star = 0.1, consistent within factors of a few with the heights inferred from hydrodynamic modeling. The K alpha emission feature shows variability on timescales of similar to 200 s which is difficult to interpret using the pure fluorescence hypothesis. We examine K alpha emission produced by collisional ionization from accelerated particles, and find parameter values for the spectrum of accelerated particles which can accommodate the increased amount of K alpha flux and the lack of observed nonthermal emission in the 20-50 keV spectral region. C1 [Osten, Rachel A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Godet, Olivier] Univ Toulouse, UPS, CESR, F-31028 Toulouse 9, France. [Drake, Stephen; Tueller, Jack; Cummings, Jay; Krimm, Hans] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Pye, John] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Pal'shin, Valentin; Golenetskii, Sergei] AF Ioffe Phys Tech Inst, Expt Astrophys Lab, St Petersburg 194021, Russia. [Reale, Fabio] Univ Palermo, Sez Astron, Dip Sci Fis & Astron, I-90134 Palermo, Italy. [Oates, Samantha R.; Page, Mat J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Melandri, Andrea] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. RP Osten, RA (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM osten@stsci.edu; Olivier.Godet@cesr.fr RI Tueller, Jack/D-5334-2012; Pal'shin, Valentin/F-3973-2014; Golenetskii, Sergey/B-3818-2015; OI Reale, Fabio/0000-0002-1820-4824 FU Russian Space Agency; RFBR [09-02-00166a] FX This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. The Konus-Wind experiment is supported by a Russian Space Agency contract and RFBR grant 09-02-00166a. We thank the Swift team for the ToO on Swift similar to 1 year after the flare to determine the quiescent level of EV Lac in several UVOT filters. NR 68 TC 39 Z9 39 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2010 VL 721 IS 1 BP 785 EP 801 DI 10.1088/0004-637X/721/1/785 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TI UT WOS:000282192900058 ER PT J AU Pott, JU Woillez, J Ragland, S Wizinowich, PL Eisner, JA Monnier, JD Akeson, RL Ghez, AM Graham, JR Hillenbrand, LA Millan-Gabet, R Appleby, E Berkey, B Colavita, MM Cooper, A Felizardo, C Herstein, J Hrynevych, M Medeiros, D Morrison, D Panteleeva, T Smith, B Summers, K Tsubota, K Tyau, C Wetherell, E AF Pott, J. -U. Woillez, J. Ragland, S. Wizinowich, P. L. Eisner, J. A. Monnier, J. D. Akeson, R. L. Ghez, A. M. Graham, J. R. Hillenbrand, L. A. Millan-Gabet, R. Appleby, E. Berkey, B. Colavita, M. M. Cooper, A. Felizardo, C. Herstein, J. Hrynevych, M. Medeiros, D. Morrison, D. Panteleeva, T. Smith, B. Summers, K. Tsubota, K. Tyau, C. Wetherell, E. TI PROBING LOCAL DENSITY INHOMOGENEITIES IN THE CIRCUMSTELLAR DISK OF A Be STAR USING THE NEW SPECTRO-ASTROMETRY MODE AT THE KECK INTERFEROMETER SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; infrared: stars; stars: emission-line, Be; stars: individual (48 Lib); techniques: interferometric; techniques: spectroscopic ID ONE-ARMED OSCILLATIONS; ZETA TAURI; INFRARED INTERFEROMETRY; CYCLIC VARIABILITY; GAMMA-CASSIOPEIAE; NEAR-IR; LINES; CONSTRAINTS; GEOMETRY; ENVELOPE AB We report on the successful science verification phase of a new observing mode at the Keck Interferometer, which provides a line-spread function width and sampling of 150 km s(-1) at the K '-band, at a current limiting magnitude of K ' similar to 7 mag with a spatial resolution of lambda/2B approximate to 2.7 mas and a measured differential phase stability of unprecedented precision (3 mrad at K = 5 mag, which represents 3 mu as on the sky or a centroiding precision of 10(-3)). The scientific potential of this mode is demonstrated by the presented observations of the circumstellar disk of the evolved Be-star 48 Lib. In addition to indirect methods such as multi-wavelength spectroscopy and polarimetry, the spectro-interferometric astrometry described here provides a new tool to directly constrain the radial density structure in the disk. For the first time, we resolve several Pfund emission lines, in addition to Br gamma, in a single interferometric spectrum, with adequate spatial and spectral resolution and precision to analyze the radial disk structure in 48 Lib. The data suggest that the continuum and Pf-emission originates in significantly more compact regions, inside the Br gamma-emission zone. Thus, spectro-interferometric astrometry opens the opportunity to directly connect the different observed line profiles of Br gamma and Pfund in the total and correlated flux to different disk radii. The gravitational potential of a rotationally flattened Be star is expected to induce a one-armed density perturbation in the circumstellar disk. Such a slowly rotating disk oscillation has been used to explain the well-known periodic V/R spectral profile variability in these stars, as well as the observed V/R cycle phase shifts between different disk emission lines. The differential line properties and linear constraints set by our data are consistent with theoretical models and lend direct support to the existence of a radius-dependent disk density perturbation. The data also show decreasing gas rotation velocities at increasing stellocentric radii as expected for Keplerian disk rotation, assumed by those models. C1 [Pott, J. -U.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Pott, J. -U.; Woillez, J.; Ragland, S.; Wizinowich, P. L.; Appleby, E.; Berkey, B.; Cooper, A.; Hrynevych, M.; Medeiros, D.; Morrison, D.; Panteleeva, T.; Smith, B.; Summers, K.; Tsubota, K.; Tyau, C.; Wetherell, E.] Calif Assoc Res Astron, WM Keck Observ, Kamuela, HI 96743 USA. [Pott, J. -U.; Ghez, A. M.] Univ Calif Los Angeles, Div Astron & Astrophys, Los Angeles, CA 90095 USA. [Eisner, J. A.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Monnier, J. D.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Akeson, R. L.; Millan-Gabet, R.; Felizardo, C.; Herstein, J.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Ghez, A. M.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Graham, J. R.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Colavita, M. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Pott, JU (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM jpott@mpia.de FU NSF MRI [AST-0619965]; W. M. Keck Foundation; National Aeronautics and Space Administration FX We are grateful to W. D. Vacca and A. Seifahrt for many useful discussions and contributions to this work. The excellent support of the KI team at WMKO and NExScI helped to make these observations a success. The realization of the KI-ASTRA upgrade is supported by the NSF MRI grant AST-0619965. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. The Keck Interferometer is funded by the National Aeronautics and Space Administration as part of its Exoplanet Exploration program. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This research has made use of NASA's Astrophysics Data System Bibliographic Services. This work has made use of the BeSS database, operated at GEPI, Observatoire de Meudon, France. NR 40 TC 18 Z9 18 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2010 VL 721 IS 1 BP 802 EP 808 DI 10.1088/0004-637X/721/1/802 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TI UT WOS:000282192900059 ER PT J AU Gopalswamy, N Makela, P AF Gopalswamy, Nat Makela, Pertti TI LONG-DURATION LOW-FREQUENCY TYPE III BURSTS AND SOLAR ENERGETIC PARTICLE EVENTS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: coronal mass ejections (CMEs); Sun: flares; Sun: particle emission; Sun: radio radiation ID CORONAL MASS EJECTIONS; RADIO-BURSTS; SEP EVENTS; SHOCKS; FLARES AB We analyzed the coronal mass ejections (CMEs), flares, and type II radio bursts associated with a set of three complex, long-duration, low-frequency (<14 MHz) type III bursts from active region 10588 in 2004 April. The durations were measured at 1 and 14 MHz using data from Wind/WAVES and were well above the threshold value (>15 minutes) normally used to define these bursts. One of the three type III bursts was not associated with a type II burst, which also lacked a solar energetic particle (SEP) event at energies >25 MeV. The 1 MHz duration of the type III burst (28 minutes) for this event was near the median value of type III durations found for gradual SEP events and ground level enhancement events. Yet, there was no sign of an SEP event. On the other hand, the other two type III bursts from the same active region had similar duration but were accompanied by WAVES type II bursts; these bursts were also accompanied by SEP events detected by SOHO/ERNE. The CMEs for the three events had similar speeds, and the flares also had similar size and duration. This study suggests that the occurrence of a complex, long-duration, low-frequency type III burst is not a good indicator of an SEP event. C1 [Gopalswamy, Nat; Makela, Pertti] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Makela, Pertti] Catholic Univ Amer, Washington, DC 20064 USA. RP Gopalswamy, N (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Gopalswamy, Nat/D-3659-2012 FU NASA FX This work was supported by NASA's LWS TR&T program. We thank Roger Hess for providing high-resolution Wind/WAVES data and the anonymous referee for helpful comments. SOHO is a project of international cooperation between ESA and NASA. NR 19 TC 10 Z9 10 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 20 PY 2010 VL 721 IS 1 BP L62 EP L66 DI 10.1088/2041-8205/721/1/L62 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647HY UT WOS:000281610300014 ER PT J AU Robinson, TD Meadows, VS Crisp, D AF Robinson, Tyler D. Meadows, Victoria S. Crisp, David TI DETECTING OCEANS ON EXTRASOLAR PLANETS USING THE GLINT EFFECT SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE astrobiology; Earth; planets and satellites: composition; radiative transfer; scattering; techniques: photometric ID DISK-AVERAGED SPECTRA; WEBB-SPACE-TELESCOPE; EARTHS ALBEDO; LIGHT-CURVES; DETECTABILITY; MODEL AB Glint, the specular reflection of sunlight off Earth's oceans, may reveal the presence of oceans on an extrasolar planet. As an Earth-like planet nears crescent phases, the size of the ocean glint spot increases relative to the fraction of the illuminated disk, while the reflectivity of this spot increases. Both effects change the planet's visible reflectivity as a function of phase. However, strong forward scattering of radiation by clouds can also produce increases in a planet's reflectivity as it approaches crescent phases, and surface glint can be obscured by Rayleigh scattering and atmospheric absorption. Here, we explore the detectability of glint in the presence of an atmosphere and realistic phase-dependent scattering from oceans and clouds. We use the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model to simulate Earth's broadband visible brightness and reflectivity over an orbit. Our validated simulations successfully reproduce phase-dependent Earthshine observations. We find that the glinting Earth can be as much as 100% brighter at crescent phases than simulations that do not include glint, and that the effect is dependent on both orbital inclination and wavelength, where the latter dependence is caused by Rayleigh scattering limiting sensitivity to the surface. We show that this phenomenon may be observable using the James Webb Space Telescope paired with an external occulter. C1 [Robinson, Tyler D.; Meadows, Victoria S.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Crisp, David] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David] NASA, Astrobiol Inst, Washington, DC USA. RP Robinson, TD (reprint author), Univ Washington, Dept Astron, Seattle, WA 98195 USA. EM robinson@astro.washington.edu FU NASA Astrobiology Institute's Virtual Planetary Laboratory [NNH05ZDA001C] FX This work was performed by the NASA Astrobiology Institute's Virtual Planetary Laboratory, supported under solicitation no. NNH05ZDA001C. NR 25 TC 32 Z9 32 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 20 PY 2010 VL 721 IS 1 BP L67 EP L71 DI 10.1088/2041-8205/721/1/L67 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647HY UT WOS:000281610300015 ER PT J AU Fiedler, J Feiveson, AH Hayat, MJ Vaksman, Z Boyd, JL Putcha, L AF Fiedler, James Feiveson, Alan H. Hayat, Matthew J. Vaksman, Zalman Boyd, Jason L. Putcha, Lakshmi TI Joint modeling of performance and subjective reporting to assess sensitivity to drug-induced sleepiness SO STATISTICS IN MEDICINE LA English DT Article DE Bayesian analysis; latent variable; WinBUGS; ordered probit; hierarchical Bayesian modeling ID MEASUREMENT ERROR; BINARY AB In an NASA ground study, two forms of cognitive tests were evaluated in terms of their sensitivity to sleepiness induced by the drug promethazine (PMZ). Performance for the two test modes (Y(1) and Y(2)), PMZ concentration, and a self-reported sleepiness using the Karolinska Sleepiness Scale (KSS) were monitored for 12 h post dose. A problem arises when using KSS to establish an association between true sleepiness and performance because KSS scores are discrete and also because they tend to concentrate on certain values. Therefore, we define a latent sleepiness measure X* as an unobserved continuous random variable describing a subject's actual state of sleepiness. Under the assumption that drug concentration affects X*, which then affects Y(1), Y(2), and KSS, we use Bayesian methods to estimate joint equations that permit unbiased comparison of the performance measures' sensitivity to X*. The equations incorporate subject random effects and include a negativity constraint on subject-specific slopes of performance with respect to sleepiness. Published in 2010 by John Wiley & Sons, Ltd. C1 [Feiveson, Alan H.; Putcha, Lakshmi] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Fiedler, James] Natl Space Biomed Res Inst, Houston, TX 77030 USA. [Fiedler, James; Hayat, Matthew J.; Boyd, Jason L.] Univ Space Res Assoc, Div Space Life Sci, Houston, TX 77058 USA. [Hayat, Matthew J.] Johns Hopkins Univ, Sch Nursing, Baltimore, MD 21205 USA. [Vaksman, Zalman] Univ Texas HMC, Dept Microbiol & Mol Genet, Houston, TX 77021 USA. RP Feiveson, AH (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 Nasa Pkwy,Mail Code SK3, Houston, TX 77058 USA. EM alan.h.feiveson@nasa.gov NR 22 TC 0 Z9 0 U1 0 U2 1 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0277-6715 J9 STAT MED JI Stat. Med. PD SEP 20 PY 2010 VL 29 IS 21 BP 2246 EP 2259 DI 10.1002/sim.3973 PG 14 WC Mathematical & Computational Biology; Public, Environmental & Occupational Health; Medical Informatics; Medicine, Research & Experimental; Statistics & Probability SC Mathematical & Computational Biology; Public, Environmental & Occupational Health; Medical Informatics; Research & Experimental Medicine; Mathematics GA 646AC UT WOS:000281506300008 PM 20564417 ER PT J AU Shen, BW Tao, WK Wu, MLC AF Shen, Bo-Wen Tao, Wei-Kuo Wu, Man-Li C. TI African easterly waves in 30-day high-resolution global simulations: A case study during the 2006 NAMMA period SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID 3-DIMENSIONAL STRUCTURE; ATLANTIC HURRICANES; JET; DISTURBANCES; MAINTENANCE; DYNAMICS; INTENSE AB In this study, extended-range (30-day) high-resolution simulations with the NASA global mesoscale model are conducted to simulate the initiation and propagation of six consecutive African easterly waves (AEWs) from late August to September 2006 and their association with hurricane formation. It is shown that the statistical characteristics of individual AEWs are realistically simulated with larger errors in the 5th and 6th AEWs. Remarkable simulations of a mean African easterly jet (AEJ) are also obtained. Nine additional 30-day experiments suggest that although land surface processes might contribute to the predictability of the AEJ and AEWs, the initiation and detailed evolution of AEWs still depend on the accurate representation of dynamic and land surface initial conditions and their time-varying nonlinear interactions. Of interest is the potential to extend the lead time for predicting hurricane formation (e. g., a lead time of up to 22 days) as the 4th AEW is realistically simulated. Citation: Shen, B.-W., W.-K. Tao, and M.-L. C. Wu (2010), African easterly waves in 30-day high-resolution global simulations: A case study during the 2006 NAMMA period, Geophys. Res. Lett., 37, L18803, doi: 10.1029/2010GL044355. C1 [Shen, Bo-Wen] UMCP, ESSIC, College Pk, MD USA. [Shen, Bo-Wen; Tao, Wei-Kuo; Wu, Man-Li C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Shen, BW (reprint author), UMCP, ESSIC, College Pk, MD USA. EM bo-wen.shen-1@nasa.gov FU NASA ESTO; AIST; MAP Program; NEWS; NSF STC FX We would like to thank reviewers for their valuable suggestions, which have substantially improved the manuscript. We are grateful for the following organizations for supporting this study: NASA ESTO; AIST Program; MAP Program; NEWS and NSF STC. We would also like to thank Steve Lang for reviewing this manuscript and Karen More for helpful discussion. Acknowledgment is also made to the NASA HEC Program, the NASA NAS and NCCS for the computer time used in this research. NR 18 TC 6 Z9 6 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 18 PY 2010 VL 37 AR L18803 DI 10.1029/2010GL044355 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 652MD UT WOS:000282009900004 ER PT J AU Smith, DE Zuber, MT Neumann, GA Lemoine, FG Mazarico, E Torrence, MH McGarry, JF Rowlands, DD Head, JW Duxbury, TH Aharonson, O Lucey, PG Robinson, MS Barnouin, OS Cavanaugh, JF Sun, XL Liiva, P Mao, DD Smith, JC Bartels, AE AF Smith, David E. Zuber, Maria T. Neumann, Gregory A. Lemoine, Frank G. Mazarico, Erwan Torrence, Mark H. McGarry, Jan F. Rowlands, David D. Head, James W., III Duxbury, Thomas H. Aharonson, Oded Lucey, Paul G. Robinson, Mark S. Barnouin, Olivier S. Cavanaugh, John F. Sun, Xiaoli Liiva, Peter Mao, Dan-dan Smith, James C. Bartels, Arlin E. TI Initial observations from the Lunar Orbiter Laser Altimeter (LOLA) SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SCALE ROUGHNESS; MISSION; TOPOGRAPHY; REGION; MOON; MARS AB As of June 19, 2010, the Lunar Orbiter Laser Altimeter, an instrument on the Lunar Reconnaissance Orbiter, has collected over 2.0 x 10(9) measurements of elevation that collectively represent the highest resolution global model of lunar topography yet produced. These altimetric observations have been used to improve the lunar geodetic grid to similar to 10 m radial and similar to 100 m spatial accuracy with respect to the Moon's center of mass. LOLA has also provided the highest resolution global maps yet produced of slopes, roughness and the 1064-nm reflectance of the lunar surface. Regional topography of the lunar polar regions allows precise characterization of present and past illumination conditions. LOLA's initial global data sets as well as the first high-resolution digital elevation models (DEMs) of polar topography are described herein. Citation: Smith, D. E., et al. (2010), Initial observations from the Lunar Orbiter Laser Altimeter (LOLA), Geophys. Res. Lett., 37, L18204, doi: 10.1029/2010GL043751. C1 [Smith, David E.; Zuber, Maria T.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Smith, David E.; Neumann, Gregory A.; Lemoine, Frank G.; Mazarico, Erwan; McGarry, Jan F.; Rowlands, David D.; Sun, Xiaoli] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD USA. [Torrence, Mark H.] SGT Inc, Greenbelt, MD 20770 USA. [Head, James W., III] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Duxbury, Thomas H.] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA. [Aharonson, Oded] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Lucey, Paul G.] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Robinson, Mark S.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Barnouin, Olivier S.] Johns Hopkins Univ, Appl Phys Lab, Dept Space, Laurel, MD 20723 USA. [Cavanaugh, John F.; Smith, James C.; Bartels, Arlin E.] NASA, Goddard Space Flight Ctr, Adv Engn & Technol Directorate, Greenbelt, MD 20771 USA. [Liiva, Peter; Mao, Dan-dan] Sigma Space Corp, Lanham, MD 20706 USA. RP Smith, DE (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. EM zuber@mit.edu RI Rowlands, David/D-2751-2012; Mazarico, Erwan/N-6034-2014; Barnouin, Olivier/I-7475-2015; Sun, Xiaoli/B-5120-2013; McGarry, Jan/C-4109-2013; Lemoine, Frank/D-1215-2013; Neumann, Gregory/I-5591-2013 OI Mazarico, Erwan/0000-0003-3456-427X; Barnouin, Olivier/0000-0002-3578-7750; Neumann, Gregory/0000-0003-0644-9944 FU NASA Exploration Systems Mission Directorate FX The LOLA investigation is supported by the LRO Project under contract from the NASA Exploration Systems Mission Directorate. We thank Patrick McGovern and Hiroshi Araki for helpful reviews. LOLA data and products are downloadable from http://pds-geosciences.wustl.edu/missions/lro/lola.htm. NR 20 TC 146 Z9 164 U1 1 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 18 PY 2010 VL 37 AR L18204 DI 10.1029/2010GL043751 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 652MD UT WOS:000282009900001 ER PT J AU Jenkins, G Kucera, P Joseph, E Fuentes, J Gaye, A Gerlach, J Roux, F Viltard, N Papazzoni, M Protat, A Bouniol, D Reynolds, A Arnault, J Badiane, D Kebe, F Camara, M Sall, S Ndiaye, SA Deme, A AF Jenkins, G. Kucera, P. Joseph, E. Fuentes, J. Gaye, A. Gerlach, J. Roux, F. Viltard, N. Papazzoni, M. Protat, A. Bouniol, D. Reynolds, A. Arnault, J. Badiane, D. Kebe, F. Camara, M. Sall, S. Ndiaye, S. A. Deme, A. TI Coastal observations of weather features in Senegal during the African Monsoon Multidisciplinary Analysis Special Observing Period 3 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TROPICAL SQUALL-LINE; WEST-AFRICAN; ICE-SCATTERING; RADAR; PRECIPITATION; RAINFALL; CLOUDS; SCHEME; COPT-81; PROJECT AB During 15 August through 30 September 2006 (Special Observing Period 3, SOP3), key weather measurements are obtained from ground and aircraft platforms during the African Monsoon Multidisciplinary Analysis campaign. Key measurements are aimed at investigating African easterly waves (AEWs) and mesoscale convective systems in a coastal environment as they transition to the eastern Atlantic Ocean. Ground and aircraft instruments include polarimetric radar, a coarse and a high-density rain gauge network, surface chemical measurements, 12 m meteorological measurement, broadband IR, solar and microwave measurements, rawinsonde, aircraft dropsonde, lidar, and cloud radar measurements. Ground observations during SOP3 show that Senegal was influenced by 5 squall lines, 6 Saharan air layer intrusions, and 10 AEWs. Downstream tropical cyclones developed were associated with the passage of four AEWs. FA-20 aircraft measurements of microphysical aspects of 22 September squall line and several nondeveloping AEWs over the extreme eastern Atlantic Ocean are presented. C1 [Jenkins, G.; Joseph, E.] Howard Univ, Dept Phys & Astron, Washington, DC 20059 USA. [Kucera, P.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Fuentes, J.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Gaye, A.; Badiane, D.; Kebe, F.; Sall, S.; Ndiaye, S. A.; Deme, A.] Cheikh Anta Diop Univ, Lab Atmospher Ocean Simeon Fongang LPAO SF, Dakar, Senegal. [Gerlach, J.] NASA, Wallops Flight Facil, Wallops Isl, VA 23337 USA. [Viltard, N.; Papazzoni, M.; Protat, A.] Observat Spatiales, LATMOS Lab Atmospheres Milieux, Velizy Villacoublay, France. [Protat, A.] CAWCR, Melbourne, Vic, Australia. [Bouniol, D.] CNRS Meteo France, GAME CNRM, Toulouse, France. [Roux, F.; Arnault, J.] Observ Midi Pyrenees, Lab Aerol, F-31400 Toulouse, France. [Reynolds, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Camara, M.] Univ Ziguinchor, Dept Phys, Ziguinchor, Senegal. RP Jenkins, G (reprint author), Howard Univ, Dept Phys & Astron, Washington, DC 20059 USA. EM gregory.s.jenkins@gmail.com FU NASA [NNX06AC78G] FX We are thank U. S. and Senegalese students Nyasha George, Deanne Grant, Marcia DeLonge, Aaron Pratt, Stephen Chan, Daniel Robertson, Segayle Walford, Tamara Battle, Christopher Foltz, Aaron Pratt, Andrew Newmann, Samo Diatta, and Thioro Fall for their extraordinary efforts during SOP3. We also thank D. Tanre for use of the Mbour AERONET data. This work was funded by NASA grant NNX06AC78G. NR 46 TC 6 Z9 6 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 18 PY 2010 VL 115 AR D18108 DI 10.1029/2009JD013022 PG 29 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 652MZ UT WOS:000282012400001 ER PT J AU Spinei, E Carn, SA Krotkov, NA Mount, GH Yang, K Krueger, A AF Spinei, Elena Carn, Simon A. Krotkov, Nickolay A. Mount, George H. Yang, Kai Krueger, Arlin TI Validation of ozone monitoring instrument SO2 measurements in the Okmok volcanic cloud over Pullman, WA, July 2008 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TRANSFORM INFRARED-SPECTROSCOPY; SOUFRIERE-HILLS VOLCANO; SULFUR-DIOXIDE; EL-CHICHON; EMISSIONS; STRATOSPHERE; ERUPTIONS; SCIAMACHY; RETRIEVAL; SPECTRA AB The ozone monitoring instrument (OMI), launched on the EOS/Aura satellite in July 2004, makes daily global observations of natural and anthropogenic SO2 emissions with unprecedented spatial resolution. Here we present the first robust comparison of OMI volcanic SO2 retrievals with ground-based instrumentation, using direct Sun observations of the Okmok volcanic cloud from Washington State University (WSU) in Pullman, WA on 18-20 July 2008. These measurements were made by the multifunction differential optical absorption spectroscopy (MFDOAS) instrument developed at WSU, as the Okmok cloud drifted over Pullman in the upper troposphere and lower stratosphere (UTLS). Observation conditions were favorable with cloud-free skies and a relatively homogeneous volcanic cloud distribution on OMI ground pixel scales (similar to 20-50 km). Movement of the Okmok cloud north and south of Pullman over a period of several days permitted comparison with three OMI overpasses with SO2 column amounts above the SO2 background level. The total SO2 columns measured by MFDOAS during OMI overpasses were 3.11 +/- 0.23 Dobson units (DU), 1.75 +/- 0.16 DU and 1.22 +/- 0.18 DU (1 DU = 2.69 x 10(16) molecules/cm(2) = 0.029 g/m(2)). Comparison of ground-based direct Sun and operational and off-line OMI retrievals show an excellent agreement, providing the first validation of OMI measurements of volcanic SO2 in the UTLS. C1 [Spinei, Elena; Mount, George H.] Washington State Univ, Lab Atmospher Res, Dept Civil & Environm Engn, Pullman, WA 99164 USA. [Carn, Simon A.] Michigan Technol Univ, Dept Geol & Min Engn & Sci, Houghton, MI 49931 USA. [Krotkov, Nickolay A.; Yang, Kai] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Krueger, Arlin] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. RP Spinei, E (reprint author), Washington State Univ, Lab Atmospher Res, Dept Civil & Environm Engn, Pullman, WA 99164 USA. EM espinei@wsu.edu; scarn@mtu.edu; krotkov@chescat.gsfc.nasa.gov; gmount@wsu.edu; Kai.Yang.1@gsfc.nasa.gov; akrueger@umbc.edu RI Krotkov, Nickolay/E-1541-2012 OI Krotkov, Nickolay/0000-0001-6170-6750 FU U.S. OMI operational team; NASA [NNG06GI00G, NNG06GJ02G, NNS06AA05G, NNG05GR56G] FX The Dutch-Finnish built OMI instrument is part of the NASA EOS Aura satellite payload. The OMI project is managed by NIVR and KNMI in Netherlands. The authors would like to thank the KNMI OMI team for producing L1B radiance data and the U.S. OMI operational team for SO2 analysis and continuing support. Nickolay Krotkov, Arlin Krueger, and Simon Carn acknowledge NASA funding of OMI SO2 research and validation (grants NNG06GI00G and NNG06GJ02G); Arlin Krueger, Simon Carn, and Kai Yang also acknowledge NASA CAN (NNS06AA05G) funding. The WSU instrument and field activities were supported by grant NNG05GR56G from NASA to Washington State University. The MFDOAS instrument was built in the WSU instrument shop by Kurt Hutchinson and Gary Held. NR 93 TC 30 Z9 31 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 18 PY 2010 VL 115 AR D00L08 DI 10.1029/2009JD013492 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 652MZ UT WOS:000282012400004 ER PT J AU Zhang, K Kimball, JS Nemani, RR Running, SW AF Zhang, Ke Kimball, John S. Nemani, Ramakrishna R. Running, Steven W. TI A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006 SO WATER RESOURCES RESEARCH LA English DT Article ID CARBON-DIOXIDE EXCHANGE; ECOSYSTEM CO2 EXCHANGE; ELEVATED ATMOSPHERIC CO2; ENERGY-BALANCE CLOSURE; NORTHERN GREAT-PLAINS; BOREAL FOREST; STREAM TEMPERATURE; PASSIVE MICROWAVE; DECIDUOUS FOREST; AIR-TEMPERATURE AB We applied a satellite remote sensing-based evapotranspiration ( ET) algorithm to assess global terrestrial ET from 1983 to 2006. The algorithm quantifies canopy transpiration and soil evaporation using a modified Penman-Monteith approach with biome-specific canopy conductance determined from the normalized difference vegetation index (NDVI) and quantifies open water evaporation using a Priestley-Taylor approach. These algorithms were applied globally using advanced very high resolution radiometer (AVHRR) GIMMS NDVI, NCEP/NCAR Reanalysis (NNR) daily surface meteorology, and NASA/GEWEX Surface Radiation Budget Release-3.0 solar radiation inputs. We used observations from 34 FLUXNET tower sites to parameterize an NDVI-based canopy conductance model and then validated the global ET algorithm using measurements from 48 additional, independent flux towers. Two sets of monthly ET estimates at the tower level, driven by in situ meteorological measurements and meteorology interpolated from coarse resolution NNR meteorology reanalysis, agree favorably ( root mean square error (RMSE) = 13.0-15.3 mm month(-1); R-2 = 0.80-0.84) with observed tower fluxes from globally representative land cover types. The global ET results capture observed spatial and temporal variations at the global scale and also compare favorably ( RMSE = 186.3 mm yr(-1); R-2 = 0.80) with ET inferred from basin-scale water balance calculations for 261 basins covering 61% of the global vegetated area. The results of this study provide a relatively long term global ET record with well-quantified accuracy for assessing ET climatologies, terrestrial water, and energy budgets and long-term water cycle changes. C1 [Zhang, Ke; Kimball, John S.] Univ Montana, Flathead Lake Biol Stn, Polson, MT 59860 USA. [Nemani, Ramakrishna R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Zhang, Ke; Kimball, John S.; Running, Steven W.] Univ Montana, Numer Terradynam Simulat Grp, Missoula, MT 59812 USA. RP Zhang, K (reprint author), Univ Montana, Flathead Lake Biol Stn, 32125 Bio Stn Lane, Polson, MT 59860 USA. EM zhang@ntsg.umt.edu RI Zhang, Ke/B-3227-2012 OI Zhang, Ke/0000-0001-5288-9372 FU NASA; Terrestrial Ecology; Earth System Science Fellowship FX This work was supported by the NASA Hydrology, Terrestrial Ecology, and Earth System Science Fellowship programs. The flux tower measurement data were provided by AmeriFlux, ORNL-DAAC, and individual tower site principal investigators. We gratefully acknowledge all tower site principle investigators and their teams for providing the evaporation and meteorological data used in this study. The NASA/GEWEX solar radiation data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. We also gratefully acknowledge MATLAB code developed by Hiekki Haario and associates, Lappeenranta U. of Technology, Helsinki, Finland, and their work in adaptive MCMC methods. NR 140 TC 121 Z9 129 U1 6 U2 63 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD SEP 18 PY 2010 VL 46 AR W09522 DI 10.1029/2009WR008800 PG 21 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 652XF UT WOS:000282044800002 ER PT J AU Han, SC Yeo, IY Alsdorf, D Bates, P Boy, JP Kim, H Oki, T Rodell, M AF Han, Shin-Chan Yeo, In-Young Alsdorf, Doug Bates, Paul Boy, Jean-Paul Kim, Hyungjun Oki, Taikan Rodell, Matthew TI Movement of Amazon surface water from time-variable satellite gravity measurements and implications for water cycle parameters in land surface models SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE Amazon basin; hydrology; GRACE; time-variable gravity; land surface model; runoff routing ID GLOBAL-SCALE; RIVER-BASIN; REGIONAL EVAPOTRANSPIRATION; CONTINENTAL-SCALE; CLIMATE MODELS; SCHEMES; FLOW; EVAPORATION; DISCHARGE; RUNOFF AB The large-scale observations of terrestrial water storage from GRACE satellites over the Amazon are analyzed with land surface model (LSM) outputs of runoff and soil moisture. A simple yet effective runoff routing method based on a continuity equation is implemented to model horizontal transport of surface water within the Amazon basin. The GRACE observations are analyzed separately for soil moisture and surface water storages (generated from runoff), relying on their distinct spatial patterns, being disperse for soil moisture and localized for surface water. Various effective velocities for storage transport are tested against the GRACE observations. When the model runoff is routed with an uniform velocity of 30 cm/s, the annual variation of the resulting surface water storage is generally found to be larger than the satellite measurements and ground gauge data by a factor of 1.5 or higher. The peak annual anomaly of surface water storage is observed around the midstream of the Amazon main stem. However, the runoff routing simulations present the peak amplitude consistently around the delta (downstream), unless the increasing velocity in a downstream region is used. As complements to the ground gauge data, the satellite observations provide unique 'spatial' information of water cycle parameters. Our analysis indicates possible shortcomings in the certain LSM mass transport scheme between atmosphere and land surface, particularly the production of too large seasonal variations in runoff (and maybe too little variations in evapotranspiration), and the dynamic characteristics of surface water transport within the Amazon basins. C1 [Han, Shin-Chan; Boy, Jean-Paul] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. [Han, Shin-Chan] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Yeo, In-Young] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Alsdorf, Doug] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. [Bates, Paul] Univ Bristol, Sch Geog Sci, Bristol BS8 1SS, Avon, England. [Boy, Jean-Paul] UdS, IPGS, UMR 7516, EOST,CNRS, F-67084 Strasbourg, France. [Kim, Hyungjun; Oki, Taikan] Univ Tokyo, Inst Ind Sci, Meguro Ku, Tokyo 1538505, Japan. [Rodell, Matthew] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA. RP Han, SC (reprint author), NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, 8300 Greenbelt Rd, Greenbelt, MD 20771 USA. EM shin-chan.han@nasa.gov RI Oki, Taikan/E-5778-2010; Rodell, Matthew/E-4946-2012; Han, Shin-Chan/A-2022-2009; Bates, Paul/C-8026-2012; KIM, HYUNGJUN/I-5099-2014; Boy, Jean-Paul/E-6677-2017 OI Oki, Taikan/0000-0003-4067-4678; Rodell, Matthew/0000-0003-0106-7437; Bates, Paul/0000-0001-9192-9963; KIM, HYUNGJUN/0000-0003-1083-8416; Boy, Jean-Paul/0000-0003-0259-209X FU NASA; Earth Surface and Interior program; NASA Goddard Space Flight Center [PIOF-GA2008-221753] FX This work was supported by NASA GRACE projects and the Earth Surface and Interior program. Scott Luthcke and David Rowlands are acknowledged for computing the precise orbits of the GRACE satellites. We would like to thank the German Space Operations Center of the German Aerospace Center, DLR, for providing continuously and nearly 100% of the raw telemetry data of the twin GRACE satellites. JPB is currently visiting NASA Goddard Space Flight Center with a Marie Curie International Outgoing Fellowship (PIOF-GA2008-221753). The comments from anonymous reviewers helped to improve the manuscript. NR 37 TC 9 Z9 9 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD SEP 17 PY 2010 VL 11 AR Q09007 DI 10.1029/2010GC003214 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 652LV UT WOS:000282009100001 ER PT J AU Head, JW Fassett, CI Kadish, SJ Smith, DE Zuber, MT Neumann, GA Mazarico, E AF Head, James W., III Fassett, Caleb I. Kadish, Seth J. Smith, David E. Zuber, Maria T. Neumann, Gregory A. Mazarico, Erwan TI Global Distribution of Large Lunar Craters: Implications for Resurfacing and Impactor Populations SO SCIENCE LA English DT Article ID INNER SOLAR-SYSTEM; MARE BASALTS; AGES; STRATIGRAPHY; VOLCANISM AB By using high-resolution altimetric measurements of the Moon, we produced a catalog of all impact craters >= 20 kilometers in diameter on the lunar surface and analyzed their distribution and population characteristics. The most-densely cratered portion of the highlands reached a state of saturation equilibrium. Large impact events, such as Orientale Basin, locally modified the prebasin crater population to similar to 2 basin radii from the basin center. Basins such as Imbrium, Orientale, and Nectaris, which are important stratigraphic markers in lunar history, are temporally distinguishable on the basis of crater statistics. The characteristics of pre- and postmare crater populations support the hypothesis that there were two populations of impactors in early solar system history and that the transition occurred near the time of the Orientale Basin event. C1 [Head, James W., III; Fassett, Caleb I.; Kadish, Seth J.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Smith, David E.; Zuber, Maria T.; Mazarico, Erwan] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02129 USA. [Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Mazarico, Erwan] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. RP Head, JW (reprint author), Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. EM james_head@brown.edu RI Neumann, Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014; OI Neumann, Gregory/0000-0003-0644-9944; Mazarico, Erwan/0000-0003-3456-427X; Fassett, Caleb/0000-0001-9155-3804 FU NASA [NNX09AM54G] FX We thank the LRO and LOLA mission teams for their efforts, which made the observations in this study possible, and T. Kneissl for developing the CraterTools extension to ArcMap. Funding was provided by NASA grant NNX09AM54G for LOLA. NR 19 TC 65 Z9 65 U1 1 U2 8 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 17 PY 2010 VL 329 IS 5998 BP 1504 EP 1507 DI 10.1126/science.1195050 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 650RK UT WOS:000281869000035 PM 20847265 ER PT J AU Greenhagen, BT Lucey, PG Wyatt, MB Glotch, TD Allen, CC Arnold, JA Bandfield, JL Bowles, NE Hanna, KLD Hayne, PO Song, E Thomas, IR Paige, DA AF Greenhagen, Benjamin T. Lucey, Paul G. Wyatt, Michael B. Glotch, Timothy D. Allen, Carlton C. Arnold, Jessica A. Bandfield, Joshua L. Bowles, Neil E. Hanna, Kerri L. Donaldson Hayne, Paul O. Song, Eugenie Thomas, Ian R. Paige, David A. TI Global Silicate Mineralogy of the Moon from the Diviner Lunar Radiometer SO SCIENCE LA English DT Article ID PLANETARY SURFACES; SPECTROSCOPY; EMISSION; EVOLUTION; VOLCANISM; FEATURES; CRUST; TES AB We obtained direct global measurements of the lunar surface using multispectral thermal emission mapping with the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Most lunar terrains have spectral signatures that are consistent with known lunar anorthosite and basalt compositions. However, the data have also revealed the presence of highly evolved, silica-rich lunar soils in kilometer-scale and larger exposures, expanded the compositional range of the anorthosites that dominate the lunar crust, and shown that pristine lunar mantle is not exposed at the lunar surface at the kilometer scale. Together, these observations provide compelling evidence that the Moon is a complex body that has experienced a diverse set of igneous processes. C1 [Greenhagen, Benjamin T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lucey, Paul G.] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Wyatt, Michael B.; Hanna, Kerri L. Donaldson] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Glotch, Timothy D.; Arnold, Jessica A.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Allen, Carlton C.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Bandfield, Joshua L.; Song, Eugenie] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Bowles, Neil E.; Thomas, Ian R.] Univ Oxford, Dept Atmospher Ocean & Planetary Phys, Oxford OX1 3PU, England. [Hayne, Paul O.; Paige, David A.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. RP Greenhagen, BT (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM benjamin.t.greenhagen@jpl.nasa.gov RI Greenhagen, Benjamin/C-3760-2016 FU NASA; Diviner science budget FX This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was funded by the Diviner science budget and the NASA LRO Participating Scientist program. NR 36 TC 55 Z9 55 U1 1 U2 8 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 17 PY 2010 VL 329 IS 5998 BP 1507 EP 1509 DI 10.1126/science.1192196 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 650RK UT WOS:000281869000036 PM 20847266 ER PT J AU Glotch, TD Lucey, PG Bandfield, JL Greenhagen, BT Thomas, IR Elphic, RC Bowles, N Wyatt, MB Allen, CC Hanna, KD Paige, DA AF Glotch, Timothy D. Lucey, Paul G. Bandfield, Joshua L. Greenhagen, Benjamin T. Thomas, Ian R. Elphic, Richard C. Bowles, Neil Wyatt, Michael B. Allen, Carlton C. Hanna, Kerri Donaldson Paige, David A. TI Highly Silicic Compositions on the Moon SO SCIENCE LA English DT Article ID LUNAR RED SPOTS; VOLCANISM; SURFACE; SPECTROSCOPY; GRUITHUISEN; SEPARATION; REGION; DOMES AB Using data from the Diviner Lunar Radiometer Experiment, we show that four regions of the Moon previously described as "red spots" exhibit mid-infrared spectra best explained by quartz, silica-rich glass, or alkali feldspar. These lithologies are consistent with evolved rocks similar to lunar granites in the Apollo samples. The spectral character of these spots is distinct from surrounding mare and highlands material and from regions composed of pure plagioclase feldspar. The variety of landforms associated with the silicic spectral character suggests that both extrusive and intrusive silicic magmatism occurred on the Moon. Basaltic underplating is the preferred mechanism for silicic magma generation, leading to the formation of extrusive landforms. This mechanism or silicate liquid immiscibility could lead to the formation of intrusive bodies. C1 [Glotch, Timothy D.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Lucey, Paul G.] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Bandfield, Joshua L.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Greenhagen, Benjamin T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Thomas, Ian R.; Bowles, Neil] Univ Oxford, Dept Phys, Oxford, England. [Elphic, Richard C.; Hanna, Kerri Donaldson] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Wyatt, Michael B.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Allen, Carlton C.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Paige, David A.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. RP Glotch, TD (reprint author), SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. EM tglotch@notes.cc.sunysb.edu RI Greenhagen, Benjamin/C-3760-2016 FU Diviner science budget; NASA FX This work was funded in part by the Diviner science budget. T. D. G., J.L.B., M. B. W., and R. C. E. were supported by the NASA Lunar Reconnaissance Orbiter Participating Scientist program. NR 29 TC 67 Z9 68 U1 3 U2 16 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 17 PY 2010 VL 329 IS 5998 BP 1510 EP 1513 DI 10.1126/science.1192148 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 650RK UT WOS:000281869000037 PM 20847267 ER PT J AU Badavi, FF Adams, DO Wilson, JW AF Badavi, Francis F. Adams, Daniel O. Wilson, John W. TI On the validity of the aluminum equivalent approximation in space radiation shielding applications SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Aluminum equivalent approximation; GCR; ISS; HZETRN AB The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range 1 <= Z <= 28 (H-Ni) and secondary neutrons through selected target materials. The coupling of the GCR extremes to HZETRN allows for the examination of the induced environment within the interior of an idealized spacecraft as approximated by a spherical shell shield, and the effects of the aluminum equivalent approximation for a good polymeric shield material such as generic polyethylene (PE). The shield thickness is represented by a 25 g/cm(2) spherical shell. Although, one could imagine the progression to greater thickness, the current range will be sufficient to evaluate the qualitative usefulness of the aluminum equivalent approximation. Upon establishing the inaccuracies of the aluminum equivalent approximation through numerical simulations of the GCR radiation field attenuation for PE and aluminum equivalent PE spherical shells, we further present results for a limited set of commercially available, hydrogen rich, multifunctional polymeric constituents to assess the effect of the aluminum equivalent approximation on their radiation attenuation response as compared to the generic PE. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Badavi, Francis F.] Christopher Newport Univ, Newport News, VA 23606 USA. [Adams, Daniel O.] Univ Utah, Salt Lake City, UT 84112 USA. [Wilson, John W.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Badavi, FF (reprint author), Christopher Newport Univ, 1 Univ Pl, Newport News, VA 23606 USA. EM francis.f.badavi@nasa.gov; adams@mech.utah.edu; jwilson61@cox.net NR 18 TC 5 Z9 5 U1 3 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD SEP 15 PY 2010 VL 46 IS 6 BP 719 EP 727 DI 10.1016/j.asr.2010.04.006 PG 9 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 643KZ UT WOS:000281296600006 ER PT J AU Thomas, EA Weislogel, MM Klaus, DM AF Thomas, Evan A. Weislogel, Mark M. Klaus, David M. TI Design considerations for sustainable spacecraft water management systems SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Sustainable; Life support; Wastewater; Fouling AB It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable over time. This paper presents design strategies and testing considerations for improving the reliability of water handling technologies. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence. Two representative boundary applications are presented. The first is a short term application where reduced gravity flight tests demonstrated a static phase separator prototype that achieved nearly 100% separation of gas from liquids under widely varying wetting conditions correlated to anticipated ranges of wastewater fouling. The second is a design concept for a lunar outpost water recovery system where wastewater is allowed to age and form biofilms and precipitates that can be filtered through lunar regolith media as the water is reclaimed. Both applications are supported by similar underlying principles of facilitating sustainable fluid handling in the presence of fouled surfaces. Published by Elsevier Ltd. on behalf of COSPAR. C1 [Thomas, Evan A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Weislogel, Mark M.] Portland State Univ, Dept Mech & Mat Engn, Portland, OR 97207 USA. [Klaus, David M.] Univ Colorado, Boulder, CO 80309 USA. RP Thomas, EA (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy,Mailcode EC3, Houston, TX 77058 USA. EM evan.a.thomas@nasa.gov; mmw@mme.pdx.edu; Klaus@colorado.edu NR 13 TC 6 Z9 6 U1 2 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD SEP 15 PY 2010 VL 46 IS 6 BP 761 EP 767 DI 10.1016/j.asr.2010.04.005 PG 7 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 643KZ UT WOS:000281296600011 ER PT J AU Slaba, TC Blattnig, SR Clowdsley, MS Walker, SA Badavi, FF AF Slaba, T. C. Blattnig, S. R. Clowdsley, M. S. Walker, S. A. Badavi, F. F. TI An improved neutron transport algorithm for HZETRN SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Neutron transport; Radiation constraints; Space radiation; Dose; Space radiation transport; HZETRN AB Long-term human presence in space requires the inclusion of radiation constraints in mission planning and the design of shielding materials, structures and vehicles. It is necessary to expose the numerical tools commonly used in radiation analyses to extensive verification, validation and uncertainty quantification. In this paper, the numerical error associated with energy discretization in HZETRN is addressed. An inadequate numerical integration scheme in the transport algorithm is shown to produce large errors in the low energy portion of the neutron and light ion fluence spectra. It is further shown that the errors result from the narrow energy domain of the neutron elastic cross section spectral distributions and that an extremely fine energy grid is required to resolve the problem under the current formulation. Since adding a sufficient number of energy points will render the code computationally inefficient, we revisit the light ion and neutron transport theory developed for HZETRN and focus on neutron elastic interactions. Two numerical methods (average value and collocation) are developed to provide adequate resolution in the energy domain and more accurately resolve the neutron elastic interactions. An energy grid convergence study is conducted to demonstrate the improved stability of the new methods. Based on the results of the convergence study and the ease of implementation, the average value method with a 100 point energy grid is found to be suitable for future use in HZETRN. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Slaba, T. C.; Walker, S. A.] Old Dominion Univ, Norfolk, VA 23529 USA. [Blattnig, S. R.; Clowdsley, M. S.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Badavi, F. F.] Christopher Newport Univ, Newport News, VA 23607 USA. RP Slaba, TC (reprint author), Old Dominion Univ, E&CS Bldg,Elkhorn Ave, Norfolk, VA 23529 USA. EM Tony.C.Slaba@nasa.gov; Steve.R.Blattnig@nasa.gov; Martha.S.Clowdsley@nasa.gov; Steven.A.Walker@nasa.gov; Francis.F.Badavi@nasa.gov NR 13 TC 12 Z9 12 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD SEP 15 PY 2010 VL 46 IS 6 BP 800 EP 810 DI 10.1016/j.asr.2010.03.005 PG 11 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 643KZ UT WOS:000281296600016 ER PT J AU Kminek, G Rummel, JD Cockell, CS Atlas, R Barlow, N Beaty, D Boynton, W Carr, M Clifford, S Conley, CA Davila, AF Debus, A Doran, P Hecht, M Heldmann, J Helbert, J Hipkin, V Horneck, G Kieft, TL Klingelhoefer, G Meyer, M Newsom, H Ori, GG Parnell, J Prieur, D Raulin, F Schulze-Makuch, D Spry, JA Stabekis, PE Stackebrandt, E Vago, J Viso, M Voytek, M Wells, L Westall, F AF Kminek, G. Rummel, J. D. Cockell, C. S. Atlas, R. Barlow, N. Beaty, D. Boynton, W. Carr, M. Clifford, S. Conley, C. A. Davila, A. F. Debus, A. Doran, P. Hecht, M. Heldmann, J. Helbert, J. Hipkin, V. Horneck, G. Kieft, T. L. Klingelhoefer, G. Meyer, M. Newsom, H. Ori, G. G. Parnell, J. Prieur, D. Raulin, F. Schulze-Makuch, D. Spry, J. A. Stabekis, P. E. Stackebrandt, E. Vago, J. Viso, M. Voytek, M. Wells, L. Westall, F. TI Report of the COSPAR Mars Special Regions Colloquium SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Special regions; Mars; Planetary protection; Forward contamination; Low temperature; Water activity ID UPPER MARTIAN SURFACE; SOUTH-POLE SNOW; SEA-ICE; GROUND ICE; BACTERIAL-ACTIVITY; WATER-VAPOR; SPACECRAFT SURFACES; HIGH OBLIQUITY; NEAR-SURFACE; LIQUID WATER AB In this paper we present the findings of a COSPAR Mars Special Regions Colloquium held in Rome in 2007. We review and discuss the definition of Mars Special Regions, the physical parameters used to define Mars Special Regions, and physical features on Mars that can be interpreted as Mars Special Regions. We conclude that any region experiencing temperatures > -25 degrees C for a few hours a year and a water activity > 0.5 can potentially allow the replication of terrestrial microorganisms. Physical features on Mars that can be interpreted as meeting these conditions constitute a Mars Special Region. Based on current knowledge of the martian environment and the conservative nature of planetary protection, the following features constitute Mars Special regions: Gullies and bright streaks associated with them, pasted-on terrain, deep subsurface, dark streaks only on a case-by-case basis, others to be determined. The parameter definition and the associated list of physical features should be re-evaluated on a regular basis. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Cockell, C. S.] Open Univ, Milton Keynes MK7 6AA, Bucks, England. [Kminek, G.; Vago, J.] ESA, Estec, NL-2200 Noordwijk, Netherlands. [Rummel, J. D.] E Carolina Univ, Greenville, NC 27858 USA. [Atlas, R.] Univ Louisville, Louiseville, KY 40292 USA. [Barlow, N.] No Arizona Univ, Flagstaff, AZ 86011 USA. [Beaty, D.; Hecht, M.; Spry, J. A.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Boynton, W.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Carr, M.] US Geol Survey, Pacific Sci Ctr, Santa Cruz, CA 95060 USA. [Clifford, S.] Lunar & Planetary Inst, Houston, TX 77058 USA. [Conley, C. A.; Meyer, M.; Stabekis, P. E.; Voytek, M.] NASA Headquarters, Washington, DC 20546 USA. [Davila, A. F.; Heldmann, J.] NASA, Ames Res Ctr, Mountain View, CA 94043 USA. [Debus, A.; Viso, M.] Agence Franaise Espace, CNES, F-31401 Toulouse 9, France. [Doran, P.] Univ Illinois, Chicago, IL 60607 USA. [Helbert, J.] DLR, Inst Planetenforsch, Berlin, Germany. [Hipkin, V.] Canadian Space Agcy, St Hubert, PQ J3Y 8Y9, Canada. [Horneck, G.] DLR, D-51147 Cologne, Germany. [Kieft, T. L.] New Mexico Inst Min & Technol, Socorro, NM 87801 USA. [Klingelhoefer, G.] Johannes Gutenberg Univ Mainz, D-55131 Mainz, Germany. [Newsom, H.] Univ New Mexico, Albuquerque, NM 87131 USA. [Ori, G. G.] Univ Annunzio, IRSPS, I-65127 Pescara, Italy. [Parnell, J.] Univ Aberdeen, Aberdeen AB24 3UE, Scotland. [Prieur, D.] Univ Brest, Brest, France. [Raulin, F.] CNRS, F-94010 Creteil, France. [Raulin, F.] Univ Paris, F-94010 Creteil, France. [Schulze-Makuch, D.] Washington State Univ, Pullman, WA 99164 USA. [Stackebrandt, E.] Deutsch Sammlung Mikroorganism Zellkultur GmbH, D-38124 Braunschweig, Germany. [Wells, L.] Univ Penn, Philadelphia, PA 19014 USA. [Westall, F.] CNRS, F-45100 Orleans, France. RP Cockell, CS (reprint author), Open Univ, Milton Keynes MK7 6AA, Bucks, England. EM c.s.cockell@open.ac.uk RI Davila, Alfonso/A-2198-2013; Atlas, Robert/A-5963-2011; OI Davila, Alfonso/0000-0002-0977-9909; Atlas, Robert/0000-0002-0706-3560; Helbert, Jorn/0000-0001-5346-9505; ORI, Gian Gabriele/0000-0002-6460-1476 NR 114 TC 25 Z9 25 U1 0 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD SEP 15 PY 2010 VL 46 IS 6 BP 811 EP 829 DI 10.1016/j.asr.2010.04.039 PG 19 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 643KZ UT WOS:000281296600017 ER PT J AU Crochet, AP Kabir, MM Francis, MB Paavola, CD AF Crochet, Amanda P. Kabir, Mohiuddin M. Francis, Matthew B. Paavola, Chad D. TI Site-selective dual modification of periplasmic binding proteins for sensing applications SO BIOSENSORS & BIOELECTRONICS LA English DT Article DE Periplasmic binding proteins (PBPs); Glutamine binding protein; Reagentless sensor; Fluorescence resonance energy transfer (FRET); Transamination ID RESONANCE ENERGY-TRANSFER; FLUORESCENT NANOSENSORS; TRANSPORT-SYSTEMS; CELLS; TRANSAMINATION; CONSTRUCTION; BIOSENSOR; RELEASE; SENSORS; FAMILY AB We have developed three sensitive and specific amino acid sensors based on bacterial periplasmic solute binding proteins A site-specific amino-terminal transamination reaction provides a useful complement to cysteine chemistry for the covalent modification of biomolecules in this application. We demonstrate this combination to attach two different chromophores to a single biomolecule in two locations The periplasmic glutamine binding protein from E colt was modified with a pair of dyes suitable for fluorescence resonance energy transfer, and this conjugate exhibited an L-glutamine dependent optical response Two periplasmic binding proteins from the thermophilic organism Thermotoga maritima, for arginine and aliphatic amino acids, were modified and evaluated similarly. All three conjugates manifested signal changes mediated by resonant energy transfer upon binding their respective ligands, with nanomolar dissociation constants and stereochemical specificity This represents a readily generalizable method for construction of reagentless biosensors The double-labeling strategy was also exploited for the surface attachment of a dye-labeled glutamine binding protein via a biotin-streptavidin interaction. Published by Elsevier B.V. C1 [Paavola, Chad D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Crochet, Amanda P.; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Crochet, Amanda P.; Francis, Matthew B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kabir, Mohiuddin M.] SETI Inst, Mountain View, CA 94043 USA. RP Paavola, CD (reprint author), NASA, Ames Res Ctr, Mail Stop 239-15, Moffett Field, CA 94035 USA. FU National Aeronautics and Space Administration [ASTID04-0000-0108, 07-ASTID07-0092] FX This work was supported by National Aeronautics and Space Administration, Astrobiology Science and Technology Instrument Development program grants ASTID04-0000-0108 and 07-ASTID07-0092. NR 32 TC 8 Z9 9 U1 0 U2 6 PU ELSEVIER ADVANCED TECHNOLOGY PI OXFORD PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0956-5663 J9 BIOSENS BIOELECTRON JI Biosens. Bioelectron. PD SEP 15 PY 2010 VL 26 IS 1 BP 55 EP 61 DI 10.1016/j.bios.2010.05.012 PG 7 WC Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical; Electrochemistry; Nanoscience & Nanotechnology SC Biophysics; Biotechnology & Applied Microbiology; Chemistry; Electrochemistry; Science & Technology - Other Topics GA 659IP UT WOS:000282560500009 PM 20541393 ER PT J AU Luck, M Maumenee, N Whited, D Lucotch, J Chilcote, S Lorang, M Goodman, D McDonald, K Kimball, J Stanford, J AF Luck, Matthew Maumenee, Niels Whited, Diane Lucotch, John Chilcote, Samantha Lorang, Mark Goodman, Daniel McDonald, Kyle Kimball, John Stanford, Jack TI Remote sensing analysis of physical complexity of North Pacific Rim rivers to assist wild salmon conservation SO EARTH SURFACE PROCESSES AND LANDFORMS LA English DT Article DE physical complexity; rivers; ranking; geomorphology; salmon ID FALL CHINOOK SALMON; COHO SALMON; SOCKEYE-SALMON; ONCORHYNCHUS-KISUTCH; BRITISH-COLUMBIA; LANDSCAPE CHARACTERISTICS; SPAWNING HABITAT; JUVENILE CHINOOK; CLIMATE; LEVEL AB Salmon populations are highly variable in both space and time. Accurate forecasting of the productivity of salmon stocks makes effective management and conservation of the resource extremely challenging. Furthermore, widespread and consistent data on the productivity of species-specific and total salmon stocks in a river are almost nonexistent. Ranking rivers based on physical complexity derived from remote sensing allows rivers to be objectively compared. Our approach considered rivers with great geomorphic complexity (e.g. having expansive, multichanneled floodplains and/or on-channel lakes) as likely to have greater productivity of salmon than rivers flowing in constrained or canyon-bound channels. Our objective was to develop a database of landscape metrics that could be used to rank the rivers in relation to potential salmon productivity. We then examined the rankings in relation to existing empirical (monitoring) data describing productivity of salmon stocks. To extract the metrics for each river basin we used a digital elevation model and multispectral satellite imagery. We developed procedures to extract channel networks, floodplains, on-channel lakes and other catchment features; variables such as catchment area, channel elevation, main channel length, floodplain area, and density of hydrojunctions (nodes) were measured. We processed 1509 catchments in the North Pacific Rim including the Kamchatka Peninsula in Russia and western North America. Overall, catchments were most physically complex in western Kamchatka and western Alaska, and particularly on the Arctic North Slope of Alaska. We could not directly examine coherence between potential and measured productivity except for a few rivers, but the expected relationship generally held. The resulting database and systematic ranking are objective tools that can be used to address questions about landscape structure and biological productivity at regional to continental extents, and provide a way to begin to efficiently prioritize the allocation of funding and resources towards salmon management and conservation. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Luck, Matthew; Maumenee, Niels; Whited, Diane; Lucotch, John; Chilcote, Samantha; Lorang, Mark; Kimball, John; Stanford, Jack] Univ Montana, Flathead Lake Biol Stn, Polson, MT 59860 USA. [Goodman, Daniel] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA. [McDonald, Kyle] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Stanford, J (reprint author), Univ Montana, Flathead Lake Biol Stn, 32125 Bio Stn Lane Polson, Polson, MT 59860 USA. EM jack.stanford@umontana.edu OI Luck, Matt/0000-0003-0691-6100 NR 51 TC 12 Z9 12 U1 2 U2 17 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0197-9337 J9 EARTH SURF PROC LAND JI Earth Surf. Process. Landf. PD SEP 15 PY 2010 VL 35 IS 11 BP 1330 EP 1343 DI 10.1002/esp.2044 PG 14 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 652VH UT WOS:000282038300007 ER PT J AU Zheng, X Albrecht, B Minnis, P Ayers, K Jonson, HH AF Zheng, Xue Albrecht, Bruce Minnis, Patrick Ayers, Kirk Jonson, Haflidi H. TI Observed aerosol and liquid water path relationships in marine stratocumulus SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CLOUDS AB The stratocumulus-topped marine boundary layer (BL), aerosol, and cloud properties observed on research flights made off the coast of northern Chile in the Southeastern Pacific (20 degrees S, 72 degrees W) during the VAMOS Ocean-Cloud-Atmosphere-Land Study-Regional Experiment (VOCALS-REx) were used to examine the variation of liquid water path (LWP) and cloud condensation nuclei (CCN). Ten flights were made under similar meteorological conditions where the BL structure was well-mixed, clouds were solid, and the conditions at the surface and at the top of the BL were similar. A strong positive correlation between the LWP, which varied from 15 to 73 gm(-2), and the BL CCN, which ranged from 190 to 565 cm(-3), was observed. Analysis of the highest and the lowest CCN concentration cases confirms that the differences in the thermodynamic jumps at the top of the BL and the turbulent fluxes at the surface cannot explain the observed differences in the LWP. Cloud properties from satellite retrievals combined with a back trajectories analysis demonstrated that the LWP differences observed at the time of the aircraft flights are also prevalent during the night-time hours prior to the aircraft observations. These results provide evidence for CCN and LWP relationships that are not fully explained by current hypotheses from numerical modeling. Citation: Zheng, X., B. Albrecht, P. Minnis, K. Ayers, and H. Jonson (2010), Observed aerosol and liquid water path relationships in marine stratocumulus, Geophys. Res. Lett., 37, L17803, doi: 10.1029/2010GL044095. C1 [Zheng, Xue; Albrecht, Bruce] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Div Meteorol & Phys Oceanog, Miami, FL 33149 USA. [Minnis, Patrick; Ayers, Kirk] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Jonson, Haflidi H.] USN, Postgrad Sch, Monterey, CA 93933 USA. RP Zheng, X (reprint author), Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Div Meteorol & Phys Oceanog, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. EM xzheng@rsmas.miami.edu RI Minnis, Patrick/G-1902-2010; Zheng, Xue/F-9988-2016 OI Minnis, Patrick/0000-0002-4733-6148; Zheng, Xue/0000-0002-9372-1776 FU ONR [N000140810465]; Department of Energy [DE-A102-07ER64546] FX We are grateful for the dedicated efforts of several individuals in making the observations from the CIRPAS Twin Otter during VOCALS-REx. Graham Feingold and Patrick Chuang provided key scientific input on the observing strategies employed and interpretation of the initial results. Shaunna Donaher, Dione Rossiter, and Virendra Ghate, provided critical support as airborne scientists. Djamal Khelif kindly provided the high temporal resolution observations for estimating turbulence quantities. Pilots Mike Hubble and Chris McGuire skillfully executed the flight plans and endured the long ferry of the Twin Otter aircraft to Iquique Chile and back. This research was supported by ONR grant N000140810465. Patrick Minnis and Kirk Ayers were supported by the Department of Energy ARM Program through DE-A102-07ER64546. NR 15 TC 5 Z9 5 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 15 PY 2010 VL 37 AR L17803 DI 10.1029/2010GL044095 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 652MA UT WOS:000282009600001 ER PT J AU Saba, VS Friedrichs, MAM Carr, ME Antoine, D Armstrong, RA Asanuma, I Aumont, O Bates, NR Behrenfeld, MJ Bennington, V Bopp, L Bruggeman, J Buitenhuis, ET Church, MJ Ciotti, AM Doney, SC Dowell, M Dunne, J Dutkiewicz, S Gregg, W Hoepffner, N Hyde, KJW Ishizaka, J Kameda, T Karl, DM Lima, I Lomas, MW Marra, J McKinley, GA Melin, F Moore, JK Morel, A O'Reilly, J Salihoglu, B Scardi, M Smyth, TJ Tang, SL Tjiputra, J Uitz, J Vichi, M Waters, K Westberry, TK Yool, A AF Saba, Vincent S. Friedrichs, Marjorie A. M. Carr, Mary-Elena Antoine, David Armstrong, Robert A. Asanuma, Ichio Aumont, Olivier Bates, Nicholas R. Behrenfeld, Michael J. Bennington, Val Bopp, Laurent Bruggeman, Jorn Buitenhuis, Erik T. Church, Matthew J. Ciotti, Aurea M. Doney, Scott C. Dowell, Mark Dunne, John Dutkiewicz, Stephanie Gregg, Watson Hoepffner, Nicolas Hyde, Kimberly J. W. Ishizaka, Joji Kameda, Takahiko Karl, David M. Lima, Ivan Lomas, Michael W. Marra, John McKinley, Galen A. Melin, Frederic Moore, J. Keith Morel, Andre O'Reilly, John Salihoglu, Baris Scardi, Michele Smyth, Tim J. Tang, Shilin Tjiputra, Jerry Uitz, Julia Vichi, Marcello Waters, Kirk Westberry, Toby K. Yool, Andrew TI Challenges of modeling depth-integrated marine primary productivity over multiple decades: A case study at BATS and HOT SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID ATLANTIC SUBTROPICAL GYRE; OCEAN PRIMARY PRODUCTION; NORTH PACIFIC-OCEAN; TIME-SERIES; OCEANOGRAPHIC CONDITIONS; INTERANNUAL VARIABILITY; SATELLITE CHLOROPHYLL; GENERALIZED-MODEL; SKILL ASSESSMENT; SARGASSO SEA AB The performance of 36 models (22 ocean color models and 14 biogeochemical ocean circulation models (BOGCMs)) that estimate depth-integrated marine net primary productivity (NPP) was assessed by comparing their output to in situ C-14 data at the Bermuda Atlantic Time series Study (BATS) and the Hawaii Ocean Time series (HOT) over nearly two decades. Specifically, skill was assessed based on the models' ability to estimate the observed mean, variability, and trends of NPP. At both sites, more than 90% of the models underestimated mean NPP, with the average bias of the BOGCMs being nearly twice that of the ocean color models. However, the difference in overall skill between the best BOGCM and the best ocean color model at each site was not significant. Between 1989 and 2007, in situ NPP at BATS and HOT increased by an average of nearly 2% per year and was positively correlated to the North Pacific Gyre Oscillation index. The majority of ocean color models produced in situ NPP trends that were closer to the observed trends when chlorophyll-alpha was derived from high-performance liquid chromatography (HPLC), rather than fluorometric or SeaWiFS data. However, this was a function of time such that average trend magnitude was more accurately estimated over longer time periods. Among BOGCMs, only two individual models successfully produced an increasing NPP trend (one model at each site). We caution against the use of models to assess multiannual changes in NPP over short time periods. Ocean color model estimates of NPP trends could improve if more high quality HPLC chlorophyll-alpha time series were available. C1 [Antoine, David; Morel, Andre] Univ Paris 06, Lab Oceanog Villefranche, UMR 7093, CNRS, F-06238 Villefranche Sur Mer, France. [Armstrong, Robert A.] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. [Asanuma, Ichio] Tokyo Univ Informat Sci, Chiba 2658501, Japan. [Aumont, Olivier] UPMC, Lab Oceanog Experimentat & Approche Numer, IPSL, IRD,CNRS,Ctr IRD Bretagne, F-29280 Plouzane, France. [Bates, Nicholas R.; Lomas, Michael W.] Bermuda Inst Ocean Sci, St Georges GE01, Bermuda. [Behrenfeld, Michael J.; Westberry, Toby K.] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA. [Bennington, Val; McKinley, Galen A.] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI 53706 USA. [Bopp, Laurent] UVSQ, Lab Sci Climat & Environm, IPSL, CEA,CNRS,CEN Saclay, F-91191 Gif Sur Yvette, France. [Bruggeman, Jorn] Vrije Univ Amsterdam, Dept Theoret Biol, Fac Earth & Life Sci, NL-1081 HV Amsterdam, Netherlands. [Buitenhuis, Erik T.] Univ E Anglia, Lab Global Marine & Atmospher Chem, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England. [Carr, Mary-Elena] Columbia Univ, Columbia Climate Ctr, Earth Inst, New York, NY 10027 USA. [Church, Matthew J.; Karl, David M.] Univ Hawaii Manoa, Dept Oceanog, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA. [Ciotti, Aurea M.] Univ Estadual Paulista, BR-11330900 Sao Paulo, Brazil. [Doney, Scott C.; Lima, Ivan] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA. [Dowell, Mark; Hoepffner, Nicolas; Melin, Frederic] Commiss European Communities, Joint Res Ctr, I-21020 Ispra, Italy. [Dunne, John] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA. [Dutkiewicz, Stephanie] MIT, Cambridge, MA 02139 USA. [Saba, Vincent S.; Friedrichs, Marjorie A. M.] Virginia Inst Marine Sci, Coll William & Mary, Gloucester Point, VA 23062 USA. [Gregg, Watson] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hyde, Kimberly J. W.; O'Reilly, John] NOAA, Natl Marine Fisheries Serv, Narragansett Lab, Narragansett, RI 02882 USA. [Ishizaka, Joji] Nagoya Univ, Hydrospher Atmospher Res Ctr, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [Kameda, Takahiko] Natl Res Inst Far Seas Fisheries, Grp Oceanog, Shizuoka 4248633, Japan. [Marra, John] CUNY Brooklyn Coll, Dept Geol, Brooklyn, NY 11210 USA. [Moore, J. Keith] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. Middle E Tech Univ, Inst Marine Sci, TR-33731 Erdemli Mersin, Turkey. [Scardi, Michele] Univ Roma Tor Vergata, Dept Biol, I-00133 Rome, Italy. [Smyth, Tim J.] Plymouth Marine Lab, Plymouth PL1 3DH, Devon, England. [Tang, Shilin] Fisheries & Oceans Canada, Inst Freshwater, Winnipeg, MB R3T 2N6, Canada. [Tjiputra, Jerry] Univ Bergen, Inst Geophys, N-5007 Bergen, Norway. [Uitz, Julia] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Vichi, Marcello] Ctr Euro Mediterraneo & Cambiamenti Climatici, Ist Nazl Geofis & Vulcanol, I-40127 Bologna, Italy. [Waters, Kirk] NOAA, Coastal Serv Ctr, Charleston, SC 29405 USA. [Yool, Andrew] Natl Oceanog Ctr, Southampton SO14 3ZH, Hants, England. RP Saba, VS (reprint author), Princeton Univ, Atmospher & Ocean Sci Program, 300 Forrestal Rd,Sayre Hall, Princeton, NJ 08544 USA. EM vsaba@princeton.edu RI Doney, Scott/F-9247-2010; Ciotti, Aurea Maria/B-7188-2011; Buitenhuis, Erik/A-7692-2012; Yool, Andrew/B-4799-2012; Dunne, John/F-8086-2012; Westberry, Toby/A-9871-2013; Antoine, David/C-3817-2013; Lima, Ivan/A-6823-2016; Salihoglu, Baris/D-1376-2010; Smyth, Tim/D-2008-2012; Vichi, Marcello/B-8719-2008; OI Doney, Scott/0000-0002-3683-2437; Ciotti, Aurea Maria/0000-0001-7163-8819; Buitenhuis, Erik/0000-0001-6274-5583; Yool, Andrew/0000-0002-9879-2776; Dunne, John/0000-0002-8794-0489; Antoine, David/0000-0002-9082-2395; Lima, Ivan/0000-0001-5345-0652; Salihoglu, Baris/0000-0002-7510-7713; Bruggeman, Jorn/0000-0003-2493-2323; Vichi, Marcello/0000-0002-0686-9634; Friedrichs, Marjorie/0000-0003-2828-7595; Lomas, Michael/0000-0003-1209-3753; Tjiputra, Jerry/0000-0002-4600-2453 FU National Aeronautics and Space Agency [NNG06GA03G] FX This research was supported by a grant from the National Aeronautics and Space Agency Ocean Biology and Biogeochemistry program (NNG06GA03G). We are also grateful for the hard work of the many scientists who helped acquire the BATS and HOT database. We also thank Richard Barber and an anonymous reviewer for helpful comments that improved the quality of this paper. This is Contribution 3083 of the Virginia Institute of Marine Science, College of William and Mary. NR 68 TC 68 Z9 70 U1 1 U2 63 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 EI 1944-9224 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD SEP 15 PY 2010 VL 24 AR GB3020 DI 10.1029/2009GB003655 PG 21 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA 652MG UT WOS:000282010300001 ER PT J AU Balasubramaniam, R Gokoglu, S Hegde, U AF Balasubramaniam, R. Gokoglu, S. Hegde, U. TI The reduction of lunar regolith by carbothermal processing using methane SO INTERNATIONAL JOURNAL OF MINERAL PROCESSING LA English DT Article DE Carbothermal processing; Lunar regolith; Pyrolysis; Kinetics AB The processing of lunar regolith for the production of oxygen is a key component of the In-Situ Resource Utilization plans currently being developed by NASA. In the carbothermal process, a portion of the surface of the regolith in a container is heated by exposure to a heat source so that a small zone of molten regolith is established. A continuous flow of methane is maintained over the molten regolith zone. In this paper, we discuss the development of a chemical conversion model of the carbothermal process to predict the rate of production of carbon monoxide. Our model is based on a mechanism where methane pyrolyzes when it comes in contact with the surface of the hot molten regolith to form solid carbon and hydrogen gas. Carbon is deposited on the surface of the melt, and hydrogen is released into the gas stream above the melt surface. We assume that the deposited carbon mixes in the molten regolith and reacts with metal oxides in a reduction reaction by which gaseous carbon monoxide is liberated. Carbon monoxide bubbles through the melt and is released into the gas stream. It is further processed downstream to ultimately produce oxygen. (C) 2010 Elsevier B.V. All rights reserved. C1 [Balasubramaniam, R.; Hegde, U.] NCSER, Cleveland, OH 44135 USA. [Gokoglu, S.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. RP Balasubramaniam, R (reprint author), NCSER, Cleveland, OH 44135 USA. EM bala@grc.nasa.gov; suleyman.gokoglu@nasa.gov; uday.g.hegde@nasa.gov FU NASA FX The authors would like to thank K. Sacksteder and D. Linne of NASA Glenn Research Center and R. Gustafson and B. White of Orbitec, Madison, Wisconsin, for discussions and comments during the course of the investigation. Support for this work was obtained from the In-Situ Resource Utilization (ISRU) project which is a part of the NASA Exploration Technology Development Program, for which we are grateful. NR 10 TC 5 Z9 5 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-7516 J9 INT J MINER PROCESS JI Int. J. Miner. Process. PD SEP 15 PY 2010 VL 96 IS 1-4 BP 54 EP 61 DI 10.1016/j.minpro.2010.06.001 PG 8 WC Engineering, Chemical; Mineralogy; Mining & Mineral Processing SC Engineering; Mineralogy; Mining & Mineral Processing GA 650VZ UT WOS:000281883200006 ER PT J AU Kindel, BC Schmidt, KS Pilewskie, P Baum, BA Yang, P Platnick, S AF Kindel, Bruce C. Schmidt, K. Sebastian Pilewskie, Peter Baum, Bryan A. Yang, Ping Platnick, Steven TI Observations and modeling of ice cloud shortwave spectral albedo during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4) SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SINGLE-SCATTERING PROPERTIES; SATELLITE RADIANCE MEASUREMENTS; REMOTE-SENSING PROBLEMS; EARTH RADIATION BUDGET; CIRRUS CLOUD; OPTICAL-THICKNESS; MULTIPLE-SCATTERING; PHOTON TRANSPORT; LIGHT-SCATTERING; EFFECTIVE RADIUS AB Ice cloud optical thickness and effective radius have been retrieved from hyperspectral irradiance and discrete spectral radiance measurements for four ice cloud cases during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4) over a range of solar zenith angle (23 degrees-53 degrees) and high (46-90) and low (5-15) optical thicknesses. The retrieved optical thickness and effective radius using measurements at only two wavelengths from the Solar Spectral Flux Radiometer (SSFR) irradiance and the Moderate Resolution Imaging Spectroradiometer Airborne Simulator (MAS) were input to a radiative transfer model using two libraries of ice crystal single-scattering optical properties to reproduce spectral albedo over the spectral range from 400 to 2130 nm. The two commonly used ice single-scattering models were evaluated by examining the residuals between observed spectral and predicted spectral albedo. The SSFR and MAS retrieved optical thickness and effective radius were found to be in close agreement for the low to moderately optically thick clouds with a mean difference of 3.42 in optical thickness (SSFR lower relative to MAS) and 3.79 mu m in effective radius (MAS smaller relative to SSFR). The higher optical thickness case exhibited a larger difference in optical thickness (40.5) but nearly identical results for effective radius. The single-scattering libraries were capable of reproducing the spectral albedo in most cases examined to better than 0.05 for all wavelengths. Systematic differences between the model and measurements increased with increasing optical thickness and approached 0.10 between 400 and 600 nm and selected wavelengths between 1200 and 1300 nm. Differences between radiance and irradiance based retrievals of optical thickness and effective radius error sources in the modeling of ice single-scattering properties are examined. C1 [Kindel, Bruce C.; Pilewskie, Peter] Univ Colorado, Atmospher & Space Phys Lab, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Baum, Bryan A.] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. [Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Platnick, Steven] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Kindel, BC (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Dept Atmospher & Ocean Sci, CB 392, Boulder, CO 80309 USA. EM kindel@lasp.colorado.edu RI Yang, Ping/B-4590-2011; SCHMIDT, KONRAD SEBASTIAN/C-1258-2013; Baum, Bryan/B-7670-2011; Platnick, Steven/J-9982-2014 OI SCHMIDT, KONRAD SEBASTIAN/0000-0003-3899-228X; Baum, Bryan/0000-0002-7193-2767; Platnick, Steven/0000-0003-3964-3567 FU NASA [NNX07AL12G, NNX08AF81G]; SSFR FX Bruce Kindel was supported through a NASA grant (NNX07AL12G). Bryan Baum acknowledges support through a NASA grant (NNX08AF81G). MAS analysis was made possible with support from various elements of the NASA Radiation Sciences Program. The authors wish to thank Warren Gore and Tony Trias (NASA Ames Research Center) for their support of SSFR during TC4, and Tom Arnold and Galina Wind (NASA Goddard Research Center) for their help with MAS data analysis. NR 66 TC 10 Z9 10 U1 2 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 15 PY 2010 VL 115 AR D00J18 DI 10.1029/2009JD013127 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 652MQ UT WOS:000282011500003 ER PT J AU Goldsby, JC AF Goldsby, Jon C. TI Temperature-dependent electrical and micromechanical properties of lanthanum titanate with additions of yttria SO MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS LA English DT Article DE Ceramics; Oxides; Electron states; Ionic conduction; Grain boundary ID LA2TI2O7; BEHAVIOR; CRYSTAL; ALUMINA AB Temperature-dependent elastic properties were determined by establishing continuous flexural vibrations in the material at its lowest resonance frequency of 3 kHz. The imaginary part of the complex impedance plotted as a function of frequency and temperature reveals a thermally activated peak, which decreases in magnitude as the temperature increases. Additions of yttria do not degrade the electromechanical in particularly the elastic and anelastic properties of lanthanum titanate. Y(2)O(3)/La(2)Ti(2)O(7) exhibits extremely low internal friction and hence may be more mechanical fatigue-resistant at low strains. Published by Elsevier B.V. C1 [Goldsby, Jon C.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Goldsby, JC (reprint author), NASA, Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH 44135 USA. EM Jon.C.Goldsby@nasa.gov NR 11 TC 0 Z9 0 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-5107 J9 MATER SCI ENG B-ADV JI Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. PD SEP 15 PY 2010 VL 172 IS 3 BP 248 EP 252 DI 10.1016/j.mseb.2010.05.025 PG 5 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 639PP UT WOS:000280987000007 ER PT J AU Bera, PP Nuevo, M Milam, SN Sandford, SA Lee, TJ AF Bera, Partha P. Nuevo, Michel Milam, Stefanie N. Sandford, Scott A. Lee, Timothy J. TI Mechanism for the abiotic synthesis of uracil via UV-induced oxidation of pyrimidine in pure H2O ices under astrophysical conditions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID POLYCYCLIC AROMATIC-HYDROCARBONS; MIDINFRARED LABORATORY SPECTRA; FOCK PERTURBATION-THEORY; SIDE-GROUP ADDITION; CYTOSINE BASE-PAIR; ULTRAVIOLET-IRRADIATION; MURCHISON METEORITE; PROTON-TRANSFER; SOLID H2O; INTERSTELLAR AB The UV photoirradiation of pyrimidine in pure H2O ices has been explored using second-order Moller-Plesset perturbation theory and density functional theory methods, and compared with experimental results. Mechanisms studied include those starting with neutral pyrimidine or cationic pyrimidine radicals, and reacting with OH radical. The ab initio calculations reveal that the formation of some key species, including the nucleobase uracil, is energetically favored over others. The presence of one or several water molecules is necessary in order to abstract a proton which leads to the final products. Formation of many of the photoproducts in UV-irradiated H2O:pyrimidine = 20:1 ice mixtures was established in a previous experimental study. Among all the products, uracil is predicted by quantum chemical calculations to be the most favored, and has been identified in experimental samples by two independent chromatography techniques. The results of the present study strongly support the scenario in which prebiotic molecules, such as the nucleobase uracil, can be formed under abiotic processes in astrophysically relevant environments, namely in condensed phase on the surface of icy, cold grains before being delivered to the telluric planets, like Earth. (c) 2010 American Institute of Physics. [doi:10.1063/1.3478524] C1 [Bera, Partha P.; Nuevo, Michel; Milam, Stefanie N.; Sandford, Scott A.; Lee, Timothy J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. [Milam, Stefanie N.] SETI Inst, Mountain View, CA 94043 USA. RP Bera, PP (reprint author), NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. EM partha.p.bera@nasa.gov; timothy.j.lee@nasa.gov RI Milam, Stefanie/D-1092-2012; Lee, Timothy/K-2838-2012; Bera, Partha /K-8677-2012 OI Milam, Stefanie/0000-0001-7694-4129; FU NASA [08-APRA08-0050]; Origins of Solar Systems and Astrobiology Programs; Oak Ridge Associated Universities FX P.P.B. and M.N. gratefully acknowledge fellowship awards by the NASA Postdoctoral Program administered by Oak Ridge Associated Universities. T.J.L. gratefully acknowledges support from NASA (Grant No. 08-APRA08-0050) and S.A.S. gratefully acknowledges support from NASA grants from the Origins of Solar Systems and Astrobiology Programs. NR 45 TC 14 Z9 14 U1 0 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 14 PY 2010 VL 133 IS 10 AR 104303 DI 10.1063/1.3478524 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 658FH UT WOS:000282475400017 PM 20849168 ER PT J AU Matteini, L Landi, S Velli, M Hellinger, P AF Matteini, Lorenzo Landi, Simone Velli, Marco Hellinger, Petr TI Kinetics of parametric instabilities of Alfven waves: Evolution of ion distribution functions SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SOLAR-WIND; MODULATIONAL INSTABILITY; FINITE-AMPLITUDE; NONLINEAR EVOLUTION; DECAY INSTABILITY; MAGNETIC-FIELD; PLASMA; SIMULATIONS; PARALLEL; FLUCTUATIONS AB Using numerical simulations in a hybrid regime, we studied the evolution of large-amplitude Alfven waves subject to modulational and decay instabilities, including the effects of ion kinetics. We considered both a monochromatic and incoherent spectrum of waves, different wave polarizations and amplitudes, and different plasma regimes, ranging from beta < 1 to beta > 1. We found in all cases that ion dynamics affects the instability evolution and saturation; as a feedback, wave-particle interactions provide a nonlinear trapping of resonant particles that importantly change the properties of the ion velocity distribution functions. In particular, we observed a proton acceleration along the magnetic field and in some cases the formation of a parallel velocity beam traveling faster than the rest of the distribution. For the range of parameters used in our simulations, the fundamental ingredient in generating an ion beam is observed to be the parallel electric field carried by the density fluctuations driven by the ion-acoustic modes generated by the parametric instabilities. C1 [Matteini, Lorenzo] LESIA, Observ Paris, F-92195 Meudon, France. [Landi, Simone] Univ Florence, Dipartimento Astron & Sci Spazio, I-50125 Florence, Italy. [Velli, Marco] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hellinger, Petr] Acad Sci Czech Republic, Astron Inst, Prague, Czech Republic. RP Matteini, L (reprint author), LESIA, Observ Paris, 5 Pl Jules Janssen, F-92195 Meudon, France. EM matteini@arcetri.astro.it RI Hellinger, Petr/F-5267-2014; Landi, Simone/G-7282-2015 OI Hellinger, Petr/0000-0002-5608-0834; Landi, Simone/0000-0002-1322-8712 FU National Aeronautics and Space Administration; Italian Space Agency [ASI I/015/07/0] FX The research described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. It was also supported by the Italian Space Agency contract ASI I/015/07/0 "Solar System Exploration." We thank Luca Del Zanna and Andre Mangeney for useful discussions during the preparation of the manuscript. NR 48 TC 40 Z9 40 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP 14 PY 2010 VL 115 AR A09106 DI 10.1029/2009JA014987 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 652OL UT WOS:000282016900002 ER PT J AU Qian, LY Burns, AG Chamberlin, PC Solomon, SC AF Qian, Liying Burns, Alan G. Chamberlin, Phillip C. Solomon, Stanley C. TI Flare location on the solar disk: Modeling the thermosphere and ionosphere response SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID GENERAL-CIRCULATION MODEL; TOTAL ELECTRON-CONTENT; ELECTRODYNAMICS; ATMOSPHERE AB Solar flare enhancements to the soft X-ray (XUV) and extreme ultraviolet (EUV) spectral irradiance depend on the location of the flare on the solar disk. Most emission lines in the XUV region (similar to 0.1 to similar to 25 nm) are optically thin and are weakly dependent on the location of the flare, but in the EUV region (similar to 25 to similar to 120 nm), many important lines and continua are optically thick, so enhancements are relatively smaller for flares located near the solar limb, due to absorption by the solar atmosphere. The flare irradiance spectral model (FISM) was used to illustrate these location effects, assuming two X17 flares that are identical except that one occurs near disk center and the other near the limb. FISM spectra of these two flares were used as solar input to the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) to investigate the ionosphere/thermosphere (I/T) response. Model simulations showed that in the E region ionosphere, where XUV dominates ionization, flare location does not affect I/T response. However, flare-driven changes in the F region ionosphere, total electron content (TEC), and neutral density in the upper thermosphere, are 2-3 times stronger for a disk-center flare than for a limb flare, due to the importance of EUV enhancement. Flare location did not affect the timing of the ionospheric response, but the thermospheric response was similar to 20 min faster for the disk-center flare. Model simulations of I/T responses to an X17 flare on 28 October 2003 were consistent with measurements of TEC and neutral density changes. C1 [Qian, Liying; Burns, Alan G.; Solomon, Stanley C.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80301 USA. [Chamberlin, Phillip C.] NASA Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD 20771 USA. RP Qian, LY (reprint author), Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80301 USA. EM lqian@ucar.edu RI Chamberlin, Phillip/C-9531-2012; Solomon, Stanley/J-4847-2012; Qian, Liying/D-9236-2013; Burns, Alan/L-1547-2013 OI Chamberlin, Phillip/0000-0003-4372-7405; Solomon, Stanley/0000-0002-5291-3034; Qian, Liying/0000-0003-2430-1388; FU NASA [NNX07AC61G, NNX08AQ31G, NNX09AJ60G]; Center for Integrated Space Weather Modeling (CISM); National Science Foundation FX The authors thank Anthea Coster for helping with the GPS TEC data. This research was supported by NASA grants NNX07AC61G, NNX08AQ31G, and NNX09AJ60G to the National Center for Atmospheric Research (NCAR), and by the Center for Integrated Space Weather Modeling (CISM). NCAR and CISM are supported by the National Science Foundation. NR 34 TC 30 Z9 30 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP 14 PY 2010 VL 115 AR A09311 DI 10.1029/2009JA015225 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 652OL UT WOS:000282016900004 ER PT J AU Gribakin, GF Young, JA Surko, CM AF Gribakin, G. F. Young, J. A. Surko, C. M. TI Positron-molecule interactions: Resonant attachment, annihilation, and bound states SO REVIEWS OF MODERN PHYSICS LA English DT Article ID SCHWINGER MULTICHANNEL METHOD; LOW-ENERGY POSITRONS; VIBRATIONAL FESHBACH RESONANCES; KOHN VARIATIONAL METHOD; GALACTIC-CENTER REGION; QUANTUM MONTE-CARLO; GAMMA-RAY SPECTRA; NOBLE-GAS ATOMS; TRAP-BASED BEAM; CONFIGURATION-INTERACTION AB This article presents an overview of current understanding of the interaction of low-energy positrons with molecules with emphasis on resonances, positron attachment, and annihilation. Measurements of annihilation rates resolved as a function of positron energy reveal the presence of vibrational Feshbach resonances (VFRs) for many polyatomic molecules. These resonances lead to strong enhancement of the annihilation rates. They also provide evidence that positrons bind to many molecular species. A quantitative theory of VFR-mediated attachment to small molecules is presented. It is tested successfully for selected molecules (e.g., methyl halides and methanol) where all modes couple to the positron continuum. Combination and overtone resonances are observed and their role is elucidated. Molecules that do not bind positrons and hence do not exhibit such resonances are discussed. In larger molecules, annihilation rates from VFR far exceed those explicable on the basis of single-mode resonances. These enhancements increase rapidly with the number of vibrational degrees of freedom, approximately as the fourth power of the number of atoms in the molecule. While the details are as yet unclear, intramolecular vibrational energy redistribution (IVR) to states that do not couple directly to the positron continuum appears to be responsible for these enhanced annihilation rates. In connection with IVR, experimental evidence indicates that inelastic positron escape channels are relatively rare. Downshifts of the VFR from the vibrational mode energies, obtained by measuring annihilate rates as a function of incident positron energy, have provided binding energies for 30 species. Their dependence upon molecular parameters and their relationship to positron-atom and positron-molecule binding-energy calculations are discussed. Feshbach resonances and positron binding to molecules are compared with the analogous electron-molecule (negative-ion) cases. The relationship of VFR-mediated annihilation to other phenomena such as Doppler broadening of the gamma-ray annihilation spectra, annihilation of thermalized positrons in gases, and annihilation-induced fragmentation of molecules is discussed. Possible areas for future theoretical and experimental investigation are also discussed. C1 [Gribakin, G. F.] Queens Univ Belfast, Dept Appl Math & Theoret Phys, Belfast BT7 1NN, Antrim, North Ireland. [Young, J. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Surko, C. M.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Gribakin, GF (reprint author), Queens Univ Belfast, Dept Appl Math & Theoret Phys, Belfast BT7 1NN, Antrim, North Ireland. EM g.gribakin@qub.ac.uk; jyoung@physics.ucsd.edu; csurko@ucsd.edu FU NSF [PHY 07-55809] FX We are indebted to many colleagues for their contributions to the topics reviewed here. In particular, we acknowledge the collaboration of L. D. Barnes, J. R. Danielson, L. Dunlop, P. Gill, R. G. Greaves, D. Green, K. Iwata, C. Kurz, C. M. R. Lee, M. Leventhal, J. Ludlow, J. Marler, T. J. Murphy, A. Passner, and J. P. Sullivan. We also gladly acknowledge helpful conversations with M. Allan, M. Bromley, S. Buckman, M. Charlton, P. Coleman, I. Fabrikant, F. Gianturco, H. Hotop, and M. Lima. G. F. G. is grateful to V. Flambaum for arousing his interest in the problem of low-energy positron interaction with atoms and molecules and for much of what he learned during seven years at UNSW (Sydney, Australia). The experimental work at UCSD was supported by the NSF, Grant No. PHY 07-55809. The work at UCSD benefited greatly from the technical assistance of E. A. Jerzewski. NR 243 TC 108 Z9 108 U1 2 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD SEP 14 PY 2010 VL 82 IS 3 BP 2557 EP 2607 DI 10.1103/RevModPhys.82.2557 PG 51 WC Physics, Multidisciplinary SC Physics GA 650RN UT WOS:000281869500001 ER PT J AU Mishchenko, MI AF Mishchenko, Michael I. TI Poynting-Stokes tensor and radiative transfer in discrete random media: The microphysical paradigm SO OPTICS EXPRESS LA English DT Article ID MULTIPLE-SCATTERING; TRANSFER EQUATION; PARTICLES AB This paper solves the long-standing problem of establishing the fundamental physical link between the radiative transfer theory and macroscopic electromagnetics in the case of elastic scattering by a sparse discrete random medium. The radiative transfer equation (RTE) is derived directly from the macroscopic Maxwell equations by computing theoretically the appropriately defined so-called Poynting-Stokes tensor carrying information on both the direction, magnitude, and polarization characteristics of local electromagnetic energy flow. Our derivation from first principles shows that to compute the local Poynting vector averaged over a sufficiently long period of time, one can solve the RTE for the direction-dependent specific intensity column vector and then integrate the direction-weighted specific intensity over all directions. Furthermore, we demonstrate that the specific intensity (or specific intensity column vector) can be measured with a well-collimated radiometer (photopolarimeter), which provides the ultimate physical justification for the use of such instruments in radiation-budget and particle-characterization applications. However, the specific intensity cannot be interpreted in phenomenological terms as signifying the amount of electromagnetic energy transported in a given direction per unit area normal to this direction per unit time per unit solid angle. Also, in the case of a densely packed scattering medium the relation of the measurement with a well-collimated radiometer to the time-averaged local Poynting vector remains uncertain, and the theoretical modeling of this measurement is likely to require a much more complicated approach than solving an RTE. (C) 2010 Optical Society of America C1 NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Mishchenko, MI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM mmishchenko@giss.nasa.gov RI Mishchenko, Michael/D-4426-2012 FU NASA FX The author thanks Brian Cairns, Joop Hovenier, Nikolai Khlebtsov, Daniel Mackowski, Pinar Menguc, and Victor Tishkovets for numerous illuminating discussions. This research was supported by the NASA Radiation Sciences Program managed by Hal Maring and by the NASA Glory Mission project. NR 44 TC 14 Z9 14 U1 1 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 13 PY 2010 VL 18 IS 19 BP 19770 EP 19791 DI 10.1364/OE.18.019770 PG 22 WC Optics SC Optics GA 693ZI UT WOS:000285263500020 PM 20940872 ER PT J AU Santamaria, L Ohme, F Ajith, P Brugmann, B Dorband, N Hannam, M Husa, S Mosta, P Pollney, D Reisswig, C Robinson, EL Seiler, J Krishnan, B AF Santamaria, L. Ohme, F. Ajith, P. Bruegmann, B. Dorband, N. Hannam, M. Husa, S. Moesta, P. Pollney, D. Reisswig, C. Robinson, E. L. Seiler, J. Krishnan, B. TI Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries SO PHYSICAL REVIEW D LA English DT Article ID INSPIRALING COMPACT BINARIES; GRAVITATIONAL-RADIATION; SPIN; COALESCENCE; EQUATIONS; ORDER; FIELD AB We present a new phenomenological gravitational waveform model for the inspiral and coalescence of nonprecessing spinning black hole binaries. Our approach is based on a frequency-domain matching of post-Newtonian inspiral waveforms with numerical relativity based binary black hole coalescence waveforms. We quantify the various possible sources of systematic errors that arise in matching post-Newtonian and numerical relativity waveforms, and we use a matching criteria based on minimizing these errors; we find that the dominant source of errors are those in the post-Newtonian waveforms near the merger. An analytical formula for the dominant mode of the gravitational radiation of nonprecessing black hole binaries is presented that captures the phenomenology of the hybrid waveforms. Its implementation in the current searches for gravitational waves should allow cross-checks of other inspiral-merger-ringdown waveform families and improve the reach of gravitational-wave searches. C1 [Santamaria, L.; Ohme, F.; Dorband, N.; Robinson, E. L.; Krishnan, B.] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Golm, Germany. [Ajith, P.] CALTECH, LIGO Lab, Pasadena, CA 91125 USA. [Bruegmann, B.] Univ Jena, Theoret Phys Inst, D-07743 Jena, Germany. [Hannam, M.] Univ Vienna, Fac Phys, A-1090 Vienna, Austria. [Husa, S.; Pollney, D.] Univ Illes Balears, Dept Fis, E-07122 Palma De Mallorca, Spain. [Seiler, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Santamaria, L (reprint author), Albert Einstein Inst, Max Planck Inst Gravitat Phys, Muhlenberg 1, D-14476 Golm, Germany. RI Santamaria, Lucia/A-7269-2012; OI Seiler, Jennifer/0000-0003-2855-3945; Husa, Sascha/0000-0002-0445-1971; Santamaria, Lucia/0000-0002-5986-0449; Reisswig, Christian/0000-0001-6855-9351 FU DAAD [A/06/12630]; FWF Lise-Meitner at the University of Vienna [M1178-N16]; Spanish Ministry of Science [D/07/13385, FPA-2007-60220, CSD-2007-00042]; Bundesministerium fur Bildung und Forschung, Germany FX We thank Doreen Muller for carrying out some of the BAH simulations, and Stas Babak, Vitor Cardoso, Steve Fairhurst, Ian Hinder, Doreen Muller, Dirk Putzfeld, Bangalore Sathyaprakash and Bernard Schutz for useful comments and discussions. L. S. has been partially supported by DAAD Grant No. A/06/12630. M. H. was supported by FWF Lise-Meitner Project No. M1178-N16 at the University of Vienna. S. H. was supported by DAAD Grant No. D/07/13385 and Grant No. FPA-2007-60220 from the Spanish Ministry of Science. D. P. has been supported by Grant No. CSD-2007-00042 of the Spanish Ministry of Science. D. P. and C. R. received support from the Bundesministerium fur Bildung und Forschung, Germany. BAH simulations were performed at computer centers LRZ Munich, ICHEC Dublin, VSC Vienna, CESGA Santiago the Compostela and at MareNostrum at Barcelona Supercomputing Center-Centro Nacional de Supercomputacion (Spanish National Supercomputing Center). This work was supported in part by the DFG Grant No. SFB/Transregio 7 "Gravitational-wave astronomy'' and by the DLR (Deutsches Zentrum fur Luft- und Raumfahrttechnik). NR 113 TC 151 Z9 151 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 13 PY 2010 VL 82 IS 6 AR 064016 DI 10.1103/PhysRevD.82.064016 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 649RS UT WOS:000281791300004 ER PT J AU Cohen, J Foster, J Barlow, M Saito, K Jones, J AF Cohen, Judah Foster, James Barlow, Mathew Saito, Kazuyuki Jones, Justin TI Winter 2009-2010: A case study of an extreme Arctic Oscillation event SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SNOW COVER; VARIABILITY; ANOMALIES AB Winter 2009-2010 made headlines for extreme cold and snow in most of the major population centers of the industrialized countries of the Northern Hemisphere (NH). The major teleconnection patterns of the Northern Hemisphere, El Nino/Southern Oscillation (ENSO) and the Arctic Oscillation (AO) were of moderate to strong amplitude, making both potentially key players during the winter of 2009-2010. The dominant NH winter circulation pattern can be shown to have originated with a two-way stratosphere-troposphere interaction forced by Eurasian land surface and lower tropospheric atmospheric conditions during autumn. This cycle occurred twice in relatively quick succession contributing to the record low values of the AO observed. Using a skillful winter temperature forecast, it is shown that the AO explained a greater variance of the observed temperature pattern across the extratropical landmasses of the NH than did ENSO. Citation: Cohen, J., J. Foster, M. Barlow, K. Saito, and J. Jones (2010), Winter 2009-2010: A case study of an extreme Arctic Oscillation event, Geophys. Res. Lett., 37, L17707, doi:10.1029/2010GL044256. C1 [Cohen, Judah; Jones, Justin] Atmospher & Environm Res Inc, Lexington, MA 02421 USA. [Barlow, Mathew] Univ Massachusetts, Lowell, MA 01854 USA. [Foster, James] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Saito, Kazuyuki] Univ Alaska, Int Arctic Res Ctr, Fairbanks, AK 99775 USA. [Saito, Kazuyuki] Japan Agcy Marine Earth Sci & Technol, Res Inst Global Change, Kanagawa, Japan. RP Cohen, J (reprint author), Atmospher & Environm Res Inc, 131 Hartwell Ave, Lexington, MA 02421 USA. EM jcohen@aer.com FU National Science Foundation [ARC-0909459, ARC-0909457, 0909272] FX JC is supported by the National Science Foundation grants ARC-0909459 and ARC-0909457. Barlow was supported by NSF 0909272. NR 17 TC 90 Z9 93 U1 0 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 11 PY 2010 VL 37 AR L17707 DI 10.1029/2010GL044256 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 649GB UT WOS:000281755000004 ER PT J AU Jackson, B Miller, N Barnes, R Raymond, SN Fortney, JJ Greenberg, R AF Jackson, Brian Miller, Neil Barnes, Rory Raymond, Sean N. Fortney, Jonathan J. Greenberg, Richard TI The roles of tidal evolution and evaporative mass loss in the origin of CoRoT-7 b SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE celestial mechanics; planets and satellites: atmospheres; planets and satellites: individual: CoRoT-7 b ID SOLAR GIANT PLANETS; HOT-JUPITERS; EXTRASOLAR PLANETS; SUPER-EARTH; TERRESTRIAL PLANETS; HYDRODYNAMIC ESCAPE; ATMOSPHERIC LOSS; GJ 1214B; EXOPLANETS; HYDROGEN AB CoRoT-7 b is the first confirmed rocky exoplanet, but, with an orbital semimajor axis of 0.0172 au, its origins may be unlike any rocky planet in our Solar system. In this study, we consider the roles of tidal evolution and evaporative mass loss in CoRoT-7 b's history, which together have modified the planet's mass and orbit. If CoRoT-7 b has always been a rocky body, evaporation may have driven off almost half its original mass, but the mass loss may depend sensitively on the extent of tidal decay of its orbit. As tides caused CoRoT-7 b's orbit to decay, they brought the planet closer to its host star, thereby enhancing the mass loss rate. Such a large mass loss also suggests the possibility that CoRoT-7 b began as a gas giant planet and had its original atmosphere completely evaporated. In this case, we find that CoRoT-7 b's original mass probably did not exceed 200 Earth masses (about two-third of a Jupiter mass). Tides raised on the host star by the planet may have significantly reduced the orbital semimajor axis, perhaps causing the planet to migrate through mean-motion resonances with the other planet in the system, CoRoT-7 c. The coupling between tidal evolution and mass loss may be important not only for CoRoT-7 b but also for other close-in exoplanets, and future studies of mass loss and orbital evolution may provide insight into the origin and fate of close-in planets, both rocky and gaseous. C1 [Jackson, Brian] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Miller, Neil; Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Barnes, Rory] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Raymond, Sean N.] Univ Bordeaux, Observ Aquitain Sci Univers, F-33271 Floirac, France. [Raymond, Sean N.] CNRS, Lab Astrophys Bordeaux, UMR 5804, F-75700 Paris, France. [Greenberg, Richard] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. RP Jackson, B (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM brian.k.jackson@nasa.gov OI Fortney, Jonathan/0000-0002-9843-4354 FU NASA [NNH05ZDA001C, NNG05GH65G]; NASA Astrobiology Institute's Virtual Planetary Laboratory lead team FX We thank Doug Hamilton, Dan Fabrycky, Maki Hattori, Diana Valencia, Marc Kuchner and John Debes for useful conversations and suggestions. We also thank our referee for a helpful and thorough review. BJ acknowledges support from the NASA Post-doctoral Program. RB acknowledges funding from NASA Astrobiology Institute's Virtual Planetary Laboratory lead team, supported by NASA under Cooperative Agreement No. NNH05ZDA001C. RG acknowledges support from NASA's Planetary Geology and Geophysics program, grant no. NNG05GH65G. NR 66 TC 46 Z9 46 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 11 PY 2010 VL 407 IS 2 BP 910 EP 922 DI 10.1111/j.1365-2966.2010.17012.x PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646OG UT WOS:000281551300014 ER PT J AU Zhekov, SA Park, S McCray, R Racusin, JL Burrows, DN AF Zhekov, Svetozar A. Park, Sangwook McCray, Richard Racusin, Judith L. Burrows, David N. TI Evolution of the Chandra CCD spectra of SNR 1987A: probing the reflected-shock picture SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE supernovae: individual (SNR 1987A); ISM: supernova remnants; X-rays: ISM ID SUPERNOVA REMNANT 1987A; X-RAY-EMISSION; SPACE-TELESCOPE OBSERVATIONS; LARGE-MAGELLANIC-CLOUD; TRIPLE-RING NEBULA; CIRCUMSTELLAR RING; RADIO REMNANT; LINE EMISSION; REVERSE SHOCK; HOT-SPOTS AB We continue to explore the validity of the reflected-shock structure (RSS) picture in SNR 1987A that was proposed in our previous analyses of the X-ray emission from this object. We used an improved version of our RSS model in a global analysis of 14 CCD spectra from the monitoring program with Chandra. In the framework of the RSS picture, we are able to match both the expansion velocity curve deduced from the analysis of the X-ray images and light curve. Using a simplified analysis, we also show that the X-rays and the non-thermal radio emission may originate from the same shock structure (the blast wave). We believe that using the RSS model in the analysis of grating data from the Chandra monitoring program of SNR 1987A that cover a long enough time interval will allow us to build a more realistic physical picture and model of SNR 1987A. C1 [Zhekov, Svetozar A.; McCray, Richard] Univ Colorado, JILA, Boulder, CO 80309 USA. [Park, Sangwook; Burrows, David N.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Racusin, Judith L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Zhekov, SA (reprint author), Univ Colorado, JILA, Boulder, CO 80309 USA. EM zhekovs@colorado.edu; park@astro.psu.edu; richard.mccray@colorado.edu; judith.racusin@nasa.gov; burrows@astro.psu.edu RI Racusin, Judith/D-2935-2012 FU Bulgarian National Science Fund [DO-02-85] FX SAZ acknowledges financial support from Bulgarian National Science Fund grant DO-02-85. The authors thank an anonymous referee for valuable comments and criticism. NR 78 TC 12 Z9 12 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 11 PY 2010 VL 407 IS 2 BP 1157 EP 1169 DI 10.1111/j.1365-2966.2010.16967.x PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646OG UT WOS:000281551300034 ER PT J AU Blacksberg, J Rossman, GR Gleckler, A AF Blacksberg, Jordana Rossman, George R. Gleckler, Anthony TI Time-resolved Raman spectroscopy for in situ planetary mineralogy SO APPLIED OPTICS LA English DT Article ID FT-RAMAN; FLUORESCENCE BANDS; MERIDIANI-PLANUM; MARS; VENUS; SPECTROMETER; EXCITATION; SPECTRA; PHOBOS; WATER AB Planetary mineralogy can be revealed through a variety of remote sensing and in situ investigations that precede any plans for eventual sample return. We briefly review those techniques and focus on the capabilities for on-surface in situ examination of Mars, Venus, the Moon, asteroids, and other bodies. Over the past decade, Raman spectroscopy has continued to develop as a prime candidate for the next generation of in situ planetary instruments, as it provides definitive structural and compositional information of minerals in their natural geological context. Traditional continuous-wave Raman spectroscopy using a green laser suffers from fluorescence interference, which can be large (sometimes saturating the detector), particularly in altered minerals, which are of the greatest geophysical interest. Taking advantage of the fact that fluorescence occurs at a later time than the instantaneous Raman signal, we have developed a time-resolved Raman spectrometer that uses a streak camera and pulsed miniature microchip laser to provide picosecond time resolution. Our ability to observe the complete time evolution of Raman and fluorescence spectra in minerals makes this technique ideal for exploration of diverse planetary environments, some of which are expected to contain strong, if not overwhelming, fluorescence signatures. We discuss performance capability and present time-resolved pulsed Raman spectra collected from several highly fluorescent and Mars-relevant minerals. In particular, we have found that conventional Raman spectra from fine grained clays, sulfates, and phosphates exhibited large fluorescent signatures, but high quality spectra could be obtained using our time-resolved approach. (C) 2010 Optical Society of America C1 [Blacksberg, Jordana] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rossman, George R.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Gleckler, Anthony] GEOST Inc, Tucson, AZ 85741 USA. RP Blacksberg, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM jordana.blacksberg@jpl.nasa.gov OI Rossman, George/0000-0002-4571-6884 FU National Aeronautics and Space Administration (NASA) FX We acknowledge invaluable discussions on Mars 2018 with Sabrina Feldman at the Jet Propulsion Laboratory (JPL). The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Continuous-wave Raman measurements were performed at the Mineral Spectroscopy Laboratory in the Department of Geological and Planetary Sciences at the California Institute of Technology, and time-resolved experiments at the JPL. NR 39 TC 16 Z9 16 U1 3 U2 27 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD SEP 10 PY 2010 VL 49 IS 26 BP 4951 EP 4962 DI 10.1364/AO.49.004951 PG 12 WC Optics SC Optics GA 648PN UT WOS:000281706500014 PM 20830184 ER PT J AU Bulbul, GE Hasler, N Bonamente, M Joy, M AF Bulbul, G. Esra Hasler, Nicole Bonamente, Massimiliano Joy, Marshall TI AN ANALYTIC MODEL OF THE PHYSICAL PROPERTIES OF GALAXY CLUSTERS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: individual (Abell 1835, Abell 2204); X-rays: galaxies: clusters ID X-RAY MEASUREMENTS; ZELDOVICH EFFECT DATA; DARK ENERGY; CHANDRA OBSERVATIONS; INTRACLUSTER MEDIUM; PROFILES; GAS; CONSTRAINTS; TEMPERATURE; MASS AB We introduce an analytic model of the diffuse intergalactic medium in galaxy clusters based on a polytropic equation of state for the gas in hydrostatic equilibrium with the cluster gravitational potential. This model is directly applicable to the analysis of X-ray and Sunyaev-Zel'dovich effect observations from the cluster core to the virial radius, with five global parameters and three parameters describing the cluster core. We validate the model using Chandra X-ray observations of two polytropic clusters, MS 1137.5+6625 and CL J1226.9+3332, and two cool core clusters, 1835 and A2204. We show that the model accurately describes the spatially resolved spectroscopic and imaging data, including the cluster core region where significant cooling of the plasma is observed. C1 [Bulbul, G. Esra; Hasler, Nicole; Bonamente, Massimiliano] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. [Bonamente, Massimiliano; Joy, Marshall] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. RP Bulbul, GE (reprint author), Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. NR 39 TC 21 Z9 21 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1038 EP 1044 DI 10.1088/0004-637X/720/2/1038 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300007 ER PT J AU Andersson, BG Potter, SB AF Andersson, B-G Potter, S. B. TI OBSERVATIONS OF ENHANCED RADIATIVE GRAIN ALIGNMENT NEAR HD 97300 SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; ISM: individual objects (Chamaeleon I) ID I DARK CLOUD; INTERSTELLAR LINEAR-POLARIZATION; NEARBY MOLECULAR CLOUDS; STAR-FORMING REGION; CHAMELEON-I; INFRARED POLARIMETRY; WAVELENGTH DEPENDENCE; MAGNETIC-FIELDS; DUST; EXTINCTION AB We have obtained optical multi-band polarimetry toward sightlines through the Chamaeleon I cloud, particularly in the vicinity of the young B9/A0 star HD 97300. We show, in agreement with earlier studies, that the radiation field impinging on the cloud in the projected vicinity of the star is dominated by the flux from the star, as evidenced by a local enhancement in the grain heating. By comparing the differential grain heating with the differential change in the location of the peak of the polarization curve, we show that the grain alignment is enhanced by the increase in the radiation field. We also find a weak, but measurable, variation in the grain alignment with the relative angle between the radiation field anisotropy and the magnetic field direction. Such an anisotropy in the grain alignment is consistent with a unique prediction of modern radiative alignment torque theory and provides direct support for radiatively driven grain alignment. C1 [Andersson, B-G] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Potter, S. B.] S African Astron Observ, ZA-7935 Cape Town, South Africa. RP Andersson, BG (reprint author), NASA, Ames Res Ctr, SOFIA Sci Ctr, MS N211-3, Moffett Field, CA 94035 USA. EM bg@sofia.usra.edu; sbp@saao.ac.za OI Andersson, B-G/0000-0001-6717-0686 NR 59 TC 20 Z9 20 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1045 EP 1054 DI 10.1088/0004-637X/720/2/1045 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300008 ER PT J AU Gould, A Dong, S Gaudi, BS Udalski, A Bond, IA Greenhill, J Street, RA Dominik, M Sumi, T Szymanski, MK Han, C Allen, W Bolt, G Bos, M Christie, GW Depoy, DL Drummond, J Eastman, JD Gal-Yam, A Higgins, D Janczak, J Kaspi, S Kozlowski, S Lee, CU Mallia, F Maury, A Maoz, D McCormick, J Monard, LAG Moorhouse, D Morgan, N Natusch, T Ofek, EO Park, BG Pogge, RW Polishook, D Santallo, R Shporer, A Spector, O Thornley, G Yee, JC Kubiak, M Pietrzynski, G Soszynski, I Szewczyk, O Wyrzykowski, E Ulaczyk, K Poleski, R Abe, F Bennett, DP Botzler, CS Douchin, D Freeman, M Fukui, A Furusawa, K Hearnshaw, JB Hosaka, S Itow, Y Kamiya, K Kilmartin, PM Korpela, A Lin, W Ling, CH Makita, S Masuda, K Matsubara, Y Miyake, N Muraki, Y Nagaya, M Nishimoto, K Ohnishi, K Okumura, T Perrott, YC Philpott, L Rattenbury, N Saito, T Sako, T Sullivan, DJ Sweatman, WL Tristram, PJ von Seggern, E Yock, PCM Albrow, M Batista, V Beaulieu, JP Brillant, S Caldwell, J Calitz, JJ Cassan, A Cole, A Cook, K Coutures, C Dieters, S Prester, DD Donatowicz, J Fouque, P Hill, K Hoffman, M Jablonski, F Kane, SR Kains, N Kubas, D Marquette, JB Martin, R Martioli, E Meintjes, P Menzies, J Pedretti, E Pollard, K Sahu, KC Vinter, C Wambsganss, J Watson, R Williams, A Zub, M Allan, A Bode, MF Bramich, DM Burgdorf, MJ Clay, N Fraser, S Hawkins, E Horne, K Kerins, E Lister, TA Mottram, C Saunders, ES Snodgrass, C Steele, IA Tsapras, Y Jorgensen, UG Anguita, T Bozza, V Novati, SC Harpsoe, K Hinse, TC Hundertmark, M Kjaergaard, P Liebig, C Mancini, L Masi, G Mathiasen, M Rahvar, S Ricci, D Scarpetta, G Southworth, J Surdej, J Thone, CC AF Gould, A. Dong, Subo Gaudi, B. S. Udalski, A. Bond, I. A. Greenhill, J. Street, R. A. Dominik, M. Sumi, T. Szymanski, M. K. Han, C. Allen, W. Bolt, G. Bos, M. Christie, G. W. DePoy, D. L. Drummond, J. Eastman, J. D. Gal-Yam, A. Higgins, D. Janczak, J. Kaspi, S. Kozlowski, S. Lee, C. -U. Mallia, F. Maury, A. Maoz, D. McCormick, J. Monard, L. A. G. Moorhouse, D. Morgan, N. Natusch, T. Ofek, E. O. Park, B. -G. Pogge, R. W. Polishook, D. Santallo, R. Shporer, A. Spector, O. Thornley, G. Yee, J. C. Kubiak, M. Pietrzynski, G. Soszynski, I. Szewczyk, O. Wyrzykowski, E. Ulaczyk, K. Poleski, R. Abe, F. Bennett, D. P. Botzler, C. S. Douchin, D. Freeman, M. Fukui, A. Furusawa, K. Hearnshaw, J. B. Hosaka, S. Itow, Y. Kamiya, K. Kilmartin, P. M. Korpela, A. Lin, W. Ling, C. H. Makita, S. Masuda, K. Matsubara, Y. Miyake, N. Muraki, Y. Nagaya, M. Nishimoto, K. Ohnishi, K. Okumura, T. Perrott, Y. C. Philpott, L. Rattenbury, N. Saito, To. Sako, T. Sullivan, D. J. Sweatman, W. L. Tristram, P. J. von Seggern, E. Yock, P. C. M. Albrow, M. Batista, V. Beaulieu, J. P. Brillant, S. Caldwell, J. Calitz, J. J. Cassan, A. Cole, A. Cook, K. Coutures, C. Dieters, S. Prester, D. Dominis Donatowicz, J. Fouque, P. Hill, K. Hoffman, M. Jablonski, F. Kane, S. R. Kains, N. Kubas, D. Marquette, J. -B. Martin, R. Martioli, E. Meintjes, P. Menzies, J. Pedretti, E. Pollard, K. Sahu, K. C. Vinter, C. Wambsganss, J. Watson, R. Williams, A. Zub, M. Allan, A. Bode, M. F. Bramich, D. M. Burgdorf, M. J. Clay, N. Fraser, S. Hawkins, E. Horne, K. Kerins, E. Lister, T. A. Mottram, C. Saunders, E. S. Snodgrass, C. Steele, I. A. Tsapras, Y. Jorgensen, U. G. Anguita, T. Bozza, V. Novati, S. Calchi Harpsoe, K. Hinse, T. C. Hundertmark, M. Kjaergaard, P. Liebig, C. Mancini, L. Masi, G. Mathiasen, M. Rahvar, S. Ricci, D. Scarpetta, G. Southworth, J. Surdej, J. Thone, C. C. CA FUN Collaboration OGLE Collaboration MOA Collaboration PLANET Collaboration RoboNet Collaboration MiNDSTEp Consortium TI FREQUENCY OF SOLAR-LIKE SYSTEMS AND OF ICE AND GAS GIANTS BEYOND THE SNOW LINE FROM HIGH-MAGNIFICATION MICROLENSING EVENTS IN 2005-2008 SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational lensing: micro; planetary systems ID GRAVITATIONAL LENSING EXPERIMENT; EXTRASOLAR PLANETS; GALACTIC BULGE; MASS PLANET; EARTH-MASS; JUPITER/SATURN ANALOG; COMPANIONS; SEARCH; CONSTRAINTS; STELLAR AB We present the first measurement of the planet frequency beyond the "snow line," for the planet-to-star mass-ratio interval -4.5 < log q < -2, corresponding to the range of ice giants to gas giants. We find d(2)N(pl)/d log q d log s = (0.36 +/- 0.15) dex(-2) at the mean mass ratio q = 5 x 10(-4) with no discernible deviation from a flat (Opik's law) distribution in log-projected separation s. The determination is based on a sample of six planets detected from intensive follow-up observations of high-magnification (A > 200) microlensing events during 2005-2008. The sampled host stars have a typical mass M(host) similar to 0.5M(circle dot), and detection is sensitive to planets over a range of planet-star-projected separations (s(max)(-1)R(E), s(max)R(E)), where R(E) similar to 3.5 AU(M(host)/M(circle dot))(1/2) is the Einstein radius and s(max) similar to (q/10(-4.3))(1/3). This corresponds to deprojected separations roughly three times the " snow line." We show that the observations of these events have the properties of a "controlled experiment," which is what permits measurement of absolute planet frequency. High-magnification events are rare, but the survey-plus-follow-up high-magnification channel is very efficient: half of all high-mag events were successfully monitored and half of these yielded planet detections. The extremely high sensitivity of high-mag events leads to a policy of monitoring them as intensively as possible, independent of whether they show evidence of planets. This is what allows us to construct an unbiased sample. The planet frequency derived from microlensing is a factor 8 larger than the one derived from Doppler studies at factor similar to 25 smaller star-planet separations (i.e., periods 2-2000 days). However, this difference is basically consistent with the gradient derived from Doppler studies (when extrapolated well beyond the separations from which it is measured). This suggests a universal separation distribution across 2 dex in planet-star separation, 2 dex in mass ratio, and 0.3 dex in host mass. Finally, if all planetary systems were "analogs" of the solar system, our sample would have yielded 18.2 planets (11.4 "Jupiters," 6.4 "Saturns," 0.3 "Uranuses," 0.2 "Neptunes") including 6.1 systems with two or more planet detections. This compares to six planets including one twoplanet system in the actual sample, implying a first estimate of 1/6 for the frequency of solar-like systems. C1 [Gould, A.; Gaudi, B. S.; Eastman, J. D.; Janczak, J.; Kozlowski, S.; Morgan, N.; Pogge, R. W.; Yee, J. C.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Dong, Subo] Inst Adv Study, Princeton, NJ 08540 USA. [Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Ulaczyk, K.; Poleski, R.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Bond, I. A.; Lin, W.; Ling, C. H.; Sweatman, W. L.] Massey Univ, Inst Informat & Math Sci, N Shore Mail Ctr, Auckland, New Zealand. [Greenhill, J.; Cole, A.; Hill, K.; Watson, R.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. [Street, R. A.; Hawkins, E.; Lister, T. A.; Saunders, E. S.; Tsapras, Y.] Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Street, R. A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Dominik, M.; Kains, N.; Pedretti, E.; Horne, K.; Liebig, C.] Univ St Andrews, SUPA Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Sumi, T.; Abe, F.; Fukui, A.; Furusawa, K.; Hosaka, S.; Itow, Y.; Kamiya, K.; Makita, S.; Masuda, K.; Matsubara, Y.; Miyake, N.; Nagaya, M.; Nishimoto, K.; Okumura, T.; Sako, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Han, C.] Chungbuk Natl Univ, Inst Basic Sci Res, Dept Phys, Chonju 361763, South Korea. [Allen, W.] Vintage Lane Observ, Blenheim, New Zealand. [Bolt, G.] Craigie Observ, Perth, WA, Australia. [Bos, M.] Molehill Astron Observ, Auckland, New Zealand. [Christie, G. W.] Auckland Observ, Auckland, New Zealand. [DePoy, D. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX USA. [Drummond, J.] Possum Observ, Patutahi, New Zealand. [Gal-Yam, A.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Higgins, D.] Hunters Hill Observ, Canberra, ACT, Australia. [Kaspi, S.; Maoz, D.; Polishook, D.; Shporer, A.; Spector, O.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Kaspi, S.; Maoz, D.; Polishook, D.; Shporer, A.; Spector, O.] Tel Aviv Univ, Wise Observ, IL-69978 Tel Aviv, Israel. [Kaspi, S.] Dept Phys, IL-32000 Haifa, Israel. [Lee, C. -U.; Park, B. -G.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Mallia, F.; Maury, A.] Campo Catino Austral Observ, San Pedro, Chile. [McCormick, J.] Ctr Backyard Astrophys, Farm Cove Observ, Auckland, New Zealand. [Monard, L. A. G.] Ctr Backyard Astrophys, Bronberg Observ, Pretoria, South Africa. [Moorhouse, D.; Thornley, G.] Kumeu Observ, Kumeu, New Zealand. [Natusch, T.] AUT Univ, Auckland, New Zealand. [Santallo, R.] So Stars Observ, Tahiti, Fr Polynesia. [Pietrzynski, G.; Szewczyk, O.] Univ Concepcion, Dept Fis, Concepcion, Chile. [Wyrzykowski, E.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Bennett, D. P.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Botzler, C. S.; Douchin, D.; Freeman, M.; Perrott, Y. C.; Philpott, L.; Rattenbury, N.; von Seggern, E.; Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland, New Zealand. [Hearnshaw, J. B.; Albrow, M.; Pollard, K.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Kilmartin, P. M.; Tristram, P. J.] Mt John Observ, Lake Tekapo 8780, New Zealand. [Korpela, A.; Sullivan, D. J.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand. [Muraki, Y.] Konan Univ, Dept Phys, Kobe, Hyogo 6588501, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Saito, To.] Tokyo Metropolitan Coll Ind Technol, Tokyo 1168523, Japan. [Batista, V.; Beaulieu, J. P.; Cassan, A.; Dieters, S.; Marquette, J. -B.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Brillant, S.; Kubas, D.; Snodgrass, C.] European So Observ, Santiago 19, Chile. [Caldwell, J.] McDonald Observ, Ft Davis, TX 79734 USA. [Calitz, J. J.; Hoffman, M.; Meintjes, P.] Univ Orange Free State, Dept Phys, Fac Nat & Agr Sci, ZA-9300 Bloemfontein, South Africa. [Cook, K.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [Coutures, C.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Prester, D. Dominis] Univ Rijeka, Dept Phys, Omladinska 51000, Rijeka, Croatia. [Donatowicz, J.] Vienna Univ Technol, A-1040 Vienna, Austria. [Fouque, P.] Univ Toulouse, CNRS, LATT, Toulouse, France. [Jablonski, F.; Martioli, E.] Inst Nacl Pesquisas Espaciais, Sao Jose Dos Campos, SP, Brazil. [Kane, S. R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Martin, R.; Williams, A.] Perth Observ, Perth, WA 6076, Australia. [Menzies, J.] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Sahu, K. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Vinter, C.; Jorgensen, U. G.; Harpsoe, K.; Hinse, T. C.; Kjaergaard, P.; Mathiasen, M.; Thone, C. C.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Wambsganss, J.; Zub, M.; Anguita, T.; Liebig, C.] Univ Heidelberg, Zent Astron, Astronom Rechen Inst, D-69120 Heidelberg, Germany. [Zub, M.] Univ Zielona Gora, Inst Astron, PL-66265 Zielona Gora, Poland. [Allan, A.; Saunders, E. S.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Bode, M. F.; Clay, N.; Fraser, S.; Mottram, C.; Steele, I. A.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool CH41 1LD, Merseyside, England. [Bramich, D. M.] European So Observ, D-85748 Garching, Germany. [Burgdorf, M. J.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Burgdorf, M. J.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Kerins, E.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Snodgrass, C.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Tsapras, Y.] Univ London, Sch Math Sci, Astron Unit, London E1 4NS, England. [Jorgensen, U. G.] Univ Copenhagen, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Anguita, T.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago, Chile. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] Univ Salerno, Dipartimento Fis E R Caianiello, I-84085 Fisciano, SA, Italy. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] Ist Nazl Fis Nucl, Gruppo Collegato Salerno, Sez Napoli, Milan, Italy. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] IIASS, I-84019 Vietri Sul Mare, SA, Italy. [Hinse, T. C.] Armagh Observ, Armagh BT61 9DG, North Ireland. [Hundertmark, M.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Mancini, L.] Univ Sannio, Dipartimento Ingn, I-82100 Benevento, Italy. [Masi, G.] Bellatrix Astron Observ, I-03023 Ceccano, FR, Italy. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran 111559161, Iran. [Ricci, D.; Surdej, J.] Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Southworth, J.] Univ Keele, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Thone, C. C.] INAF, Osservatorio Astron Brera, I-23806 Merate, LC, Italy. EM gould@astronomy.ohio-state.edu; dong@ias.edu; gaudi@astronomy.ohio-state.edu; udalski@astrouw.edu.pl; i.a.bond@massey.ac.nz; John.Greenhill@utas.edu.au; md35@st-andrews.ac.uk; sumi@stelab.nagoya-u.ac.jp; msz@astrouw.edu; cheongho@astroph.chungbuk.ac.kr; whallen@xtra.co.nz; gbolt@iinet.net.au; molehill@ihug.co.nz; gwchristie@christie.org.nz; depoy@physics.tamu.edu; john_drummond@xtra.co.nz; jdeast@astronomy.ohio-state.edu; avishay.gal-yam@weizmann.ac.il; dhi67540@bigpond.net.au; shai@wise.tau.ac.il; simkoz@astronomy.ohio-state.edu; leecu@kasi.re.kr; francomallia@campocatinobservatory.org; alain@spaceobs.com; dani@wise.tau.ac.il; farmcoveobs@xtra.co; lagmonar@nmisa.org; acrux@orcon.net.nz; nick.morgan@alum.mit.edu; tim.natusch@aut.ac.nz; eran@astro.caltech.edu; bgpark@kasi.re.kr; pogge@astronomy.ohio-state.edu; david@wise.tau.ac.il; obs930@southernstars-observatory.org; shporer@wise.tau.ac.il; odedspec@wise.tau.ac; guy.thornley@gmail.com; jyee@astronomy.ohio-state.edu; mk@astrouw.edu.pl; pietrzyn@astrouw.edu.pl; soszynsk@astrouw.edu.pl; szewczyk@astro-udec.cl; wyrzykow@ast.cam.ac.uk; kulaczyk@astrouw.edu.pl; rpoleski@astrouw.edu.pl; abe@stelab.nagoya-u.ac.jp; bennett@nd.edu; c.botzler@auckland.ac.nz; afukui@stelab.nagoya-u.ac.jp; furusawa@stelab.nagoya-u.ac.jp; itow@stelab.nagoya-u.ac.jp; kkamiya@stelab.nagoya-u.ac.jp; a.korpela@niwa.co.nz; w.lin@massey.ac.nz; c.h.ling@massey.ac.nz; kmasuda@stelab.nagoya-u.ac.jp; ymatsu@stelab.nagoya-u.ac.jp; nmiyake@stelab.nagoya-u.ac.jp; nmiyake@stelab.nagya-u.ac.jp; mnagaya@stelab.nagoya-u.ac.jp; okumurat@stelab.nagoya-u.ac.jp; yper006@aucklanduni.ac.nz; sako@stelab.nagoya-u.ac.jp; denis.sullivan@vuw.ac.nz; w.sweatman@massey.ac.nz; p.yock@auckland.ac.nz; beaulieu@iap.fr; sbrillan@eso.org; caldwell@astro.as.utexas.edu; HoffmaMJ.SCI@mail.uovs.ac.za; Andrew.Cole@utas.edu.au; kcook@llnl.gov; coutures@iap.fr; donatowicz@tuwien.ac.at; pfouque@ast.obs-mip.fr; skane@ipac.caltech.edu; nk87@st-andrews.ac.uk; dkubas@eso.org; marquett@iap.fr; rmartin@physics.uwa.edu.au; ep41@st-andrews.ac.uk; andrew@physics.uwa.edu.au; kdh1@st-andrews.ac.uk; Eamonn.Kerins@manchester.ac.uk RI Gaudi, Bernard/I-7732-2012; Dong, Subo/J-7319-2012; Kane, Stephen/B-4798-2013; Greenhill, John/C-8367-2013; Kozlowski, Szymon/G-4799-2013; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; Williams, Andrew/K-2931-2013; Hundertmark, Markus/C-6190-2015; Rahvar, Sohrab/A-9350-2008; OI Cole, Andrew/0000-0003-0303-3855; Eastman, Jason/0000-0003-3773-5142; Thone, Christina/0000-0002-7978-7648; Ricci, Davide/0000-0002-9790-0552; Snodgrass, Colin/0000-0001-9328-2905; Dominik, Martin/0000-0002-3202-0343; Kozlowski, Szymon/0000-0003-4084-880X; Williams, Andrew/0000-0001-9080-0105; Hundertmark, Markus/0000-0003-0961-5231; Rahvar, Sohrab/0000-0002-7084-5725; Philpott, Lydia/0000-0002-5286-8528 FU NSF [AST 0757888, AST-0708890]; NASA [1277721]; Polish MNiSW [N20303032/4275]; Marsden Fund of New Zealand; JSPS; MEXT of Japan; PPARC (Particle Physics and Astronomy Research Council); STFC (Science and Technology Facilities Council); National Research Foundation of Korea [2009-0081561]; EU; Minerva Foundation, Benoziyo Center for Astrophysics; Weizmann Institute; Technion; Israel-Niedersachsen collaboration program; [JSPS18749004]; [JSPS20740104]; [MEXT19015005] FX Work by A. G. was supported in part by NSF grant AST 0757888 and in part by NASA grant 1277721 issued by JPL/Caltech. Work by S. D. was performed under contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program. This work was supported in part by an allocation of computing time from the Ohio Supercomputer Center. The OGLE project is partially supported by the Polish MNiSW grant N20303032/4275 to AU. The MOA collaboration was supported by the Marsden Fund of New Zealand. The MOA collaboration and a part of authors are supported by the Grant-in-Aid for Scientific Research, JSPS Research fellowships and the Global COE Program "Quest for Fundamental Principles in the Universe" from JSPS and MEXT of Japan. T. S. acknowledges support from grants JSPS18749004, JSPS20740104, and MEXT19015005. The RoboNet project acknowledges support from PPARC (Particle Physics and Astronomy Research Council) and STFC (Science and Technology Facilities Council). C. H. was supported by Creative Research Initiative Program (2009-0081561) of National Research Foundation of Korea. AGY's activity is supported by a Marie Curie IRG grant from the EU, and by the Minerva Foundation, Benoziyo Center for Astrophysics, a research grant from Peter and Patricia Gruber Awards, and the William Z. and Eda Bess Novick New Scientists Fund at the Weizmann Institute. D. P. B. was supported by grants AST-0708890 from the NSF and NNX07AL71G from NASA. Work by S. K. was supported at the Technion by the Kitzman Fellowship and by a grant from the Israel-Niedersachsen collaboration program. Mt Canopus observatory is financially supported by Dr. David Warren. NR 62 TC 152 Z9 152 U1 2 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1073 EP 1089 DI 10.1088/0004-637X/720/2/1073 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300011 ER PT J AU Beccari, G Spezzi, L De Marchi, G Paresce, F Young, E Andersen, M Panagia, N Balick, B Bond, H Calzetti, D Carollo, CM Disney, MJ Dopita, MA Frogel, JA Hall, DNB Holtzman, JA Kimble, RA McCarthy, PJ O'Connell, RW Saha, A Silk, JI Trauger, JT Walker, AR Whitmore, BC Windhorst, RA AF Beccari, Giacomo Spezzi, Loredana De Marchi, Guido Paresce, Francesco Young, Erick Andersen, Morten Panagia, Nino Balick, Bruce Bond, Howard Calzetti, Daniela Carollo, C. Marcella Disney, Michael J. Dopita, Michael A. Frogel, Jay A. Hall, Donald N. B. Holtzman, Jon A. Kimble, Randy A. McCarthy, Patrick J. O'Connell, Robert W. Saha, Abhijit Silk, Joseph I. Trauger, John T. Walker, Alistair R. Whitmore, Bradley C. Windhorst, Rogier A. TI PROGRESSIVE STAR FORMATION IN THE YOUNG GALACTIC SUPER STAR CLUSTER NGC 3603 SO ASTROPHYSICAL JOURNAL LA English DT Article DE open clusters and associations: individual (NGC 3603); stars: pre-main sequence ID INITIAL MASS FUNCTION; NEAREST STARBURST CLUSTER; MAIN-SEQUENCE STARS; H II REGIONS; GLOBULAR-CLUSTERS; MAGELLANIC-CLOUD; STELLAR CONTENT; NGC-3603; EVOLUTION; ACCRETION AB Early Release Science observations of the cluster NGC 3603 with the WFC3 on the refurbished Hubble Space Telescope allow us to study its recent star formation history. Our analysis focuses on stars with H alpha excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with H alpha excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate. C1 [Beccari, Giacomo; Spezzi, Loredana; De Marchi, Guido; Andersen, Morten] European Space Agcy, Dept Space Sci, NL-2200 AG Noordwijk, Netherlands. [Paresce, Francesco] INAF Ist Astrofis Spaziale & Fis Cosm, I-40129 Bologna, Italy. [Young, Erick] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Panagia, Nino; Bond, Howard; Whitmore, Bradley C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Panagia, Nino] Osserv Astrofis Catania, INAF CT, I-95123 Catania, Italy. [Balick, Bruce] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Calzetti, Daniela] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Carollo, C. Marcella] ETH, Dept Phys, CH-8093 Zurich, Switzerland. [Disney, Michael J.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Dopita, Michael A.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Frogel, Jay A.] Assoc Univ Res Astron, Washington, DC 20005 USA. [Hall, Donald N. B.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Holtzman, Jon A.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Kimble, Randy A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCarthy, Patrick J.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [O'Connell, Robert W.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Saha, Abhijit] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Silk, Joseph I.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Trauger, John T.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Walker, Alistair R.] Cerro Tololo Interamer Observ, La Serena, Chile. [Windhorst, Rogier A.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. RP Beccari, G (reprint author), European Space Agcy, Dept Space Sci, Keplerlaan 1, NL-2200 AG Noordwijk, Netherlands. RI Kimble, Randy/D-5317-2012; Dopita, Michael/P-5413-2014; OI Dopita, Michael/0000-0003-0922-4986; silk, joe/0000-0002-1566-8148 FU Space Telescope Science Institute FX We are indebted to an anonymous referee for valuable comments and suggestions that have helped us to improve the presentation of our work. We thank Vera Kozhurina-Platais for providing FORTRAN codes for WFC3 geometric distortion corrections and Max Mutchler for producing the drizzled images shown in Figures 1 and 7. This paper is based on Early Release Science observations made by the WFC3 Scientific Oversight Committee. We are grateful to the Director of the Space Telescope Science Institute for awarding Director's Discretionary time for this program. Finally, we are deeply indebted to the brave astronauts of STS-125 for rejuvenating HST. NR 50 TC 46 Z9 46 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1108 EP 1117 DI 10.1088/0004-637X/720/2/1108 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300014 ER PT J AU Thejappa, G MacDowall, RJ AF Thejappa, G. MacDowall, R. J. TI LOCALIZATION OF A TYPE III RADIO BURST OBSERVED BY THE STEREO SPACECRAFT SO ASTROPHYSICAL JOURNAL LA English DT Article DE solar wind; Sun: flares; Sun: radio radiation ID SOLAR CORONA; EMISSION; DIRECTIVITY; OCCULTATION; REFLECTION; MISSION; DENSITY; WIND; SUN AB Ray tracing calculations show that (1) emissions from a localized source escape as direct and reflected waves along different paths, (2) the reflected waves experience higher attenuation and group delay because they travel longer path lengths in regions of reduced refractive index, and (3) widely separated spacecraft "A" and "B" can detect the direct as well as reflected emissions escaping along different directions. It is proposed that the source of a radio burst observed by twin spacecraft "A" and "B" can be localized if at a given frequency the emission at one of them is identified as the direct emission and is identified at the other as the reflected emission by comparing the observed time delays Delta T, as well as intensity ratios I(B)/I(A) with the corresponding values of the direct and reflected emissions obtained for a given coronal model. A type III event observed by the STEREO spacecraft "A" and "B" shows that its characteristics are consistent with direct and reflected emissions by being less intense and delayed at "A" in comparison to that at "B." By applying the proposed technique to this event, the location of its source is found to lie between the turning point of the ray and the harmonic layer corresponding to f(pe) = f/2, where f and f(pe) are the frequency of the emission and the electron plasma frequency, respectively. The comparisons of the widths of the fundamental and harmonic emission cones with the angular separation of spacecraft "A" and "B" indicate that the mode of the observed emission is probably the harmonic. C1 [Thejappa, G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [MacDowall, R. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Thejappa, G (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM thejappa@astro.umd.edu; Robert.MacDowall@nasa.gov RI MacDowall, Robert/D-2773-2012 FU NASA [NNX08AO02G, NNX09AB19G] FX The research of T.G. is supported by the NASA Grants NNX08AO02G and NNX09AB19G. NR 32 TC 6 Z9 6 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1395 EP 1404 DI 10.1088/0004-637X/720/2/1395 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300040 ER PT J AU Lamb, DA DeForest, CE Hagenaar, HJ Parnell, CE Welsch, BT AF Lamb, D. A. DeForest, C. E. Hagenaar, H. J. Parnell, C. E. Welsch, B. T. TI SOLAR MAGNETIC TRACKING. III. APPARENT UNIPOLAR FLUX EMERGENCE IN HIGH-RESOLUTION OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: granulation; Sun: photosphere; Sun: surface magnetism ID OPTICAL TELESCOPE; QUIET-SUN; FIELD; PATTERNS; MISSION; REGIONS AB Understanding the behavior of weak magnetic fields near the detection limit of current instrumentation is important for determining the flux budget of the solar photosphere at small spatial scales. Using 0 ''.3-resolution magnetograms from the Solar Optical Telescope's Narrowband Filter Imager (NFI) on the Hinode spacecraft, we confirm that the previously reported apparent unipolar magnetic flux emergence seen in intermediate-resolution magnetograms is indeed the coalescence of previously existing flux. We demonstrate that similar but smaller events seen in NFI magnetograms are also likely to correspond to the coalescence of previously existing weak fields. The uncoalesced flux, detectable only in the ensemble average of hundreds of these events, accounts for 50% of the total flux within 3 Mm of the detected features. The spatial scale at which apparent unipolar emergence can be directly observed as coalescence remains unknown. The polarity of the coalescing flux is more balanced than would be expected given the imbalance of the data set, however without further study we cannot speculate whether this implies that the flux in the apparent unipolar emergence events is produced by a granulation-scale dynamo or is recycled from existing field. C1 [Lamb, D. A.] Catholic Univ Amer, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [DeForest, C. E.] SW Res Inst, Boulder, CO 80302 USA. [Hagenaar, H. J.] Org ADBS, Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. [Parnell, C. E.] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland. [Welsch, B. T.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Lamb, DA (reprint author), Catholic Univ Amer, NASA, Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA. EM dlamb@spd.aas.org OI Lamb, Derek/0000-0002-6061-6443 FU NASA [NX08AJ06G] FX The authors thank T. Tarbell for discussions regarding the NFI calibration and help in selecting suitable data sets. This work was supported by NASA grant NX08AJ06G (SHP-GI program). The authors thank the SOHO-MDI and Hinode teams for making their data publicly available. SOHO is a project of international collaboration between ESA and NASA. Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in co-operation with ESA and NSC (Norway). NR 22 TC 26 Z9 27 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1405 EP 1416 DI 10.1088/0004-637X/720/2/1405 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300041 ER PT J AU Brosius, JW Holman, GD AF Brosius, Jeffrey W. Holman, Gordon D. TI EARLY CHROMOSPHERIC RESPONSE DURING A SOLAR MICROFLARE OBSERVED WITH SOHO's CDS AND RHESSI SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: activity; Sun: corona; Sun: flares; Sun: transition region; Sun: UV radiation; Sun: X-rays, gamma rays ID CORONAL DIAGNOSTIC SPECTROMETER; LOOP RADIATIVE HYDRODYNAMICS; HIGH TIME RESOLUTION; BRAGG CRYSTAL SPECTROMETER; X-RAY SPECTROSCOPY; EXTREME-ULTRAVIOLET; IMPULSIVE PHASE; CA-XIX; FLARE; EVAPORATION AB We observed a solar microflare with RHESSI and SOHO's Coronal Diagnostic Spectrometer (CDS) on 2009 July 5. With CDS we obtained rapid cadence (7 s) stare spectra within a narrow field of view toward the center of AR 11024. The spectra contain emission lines from ions that cover a wide range of temperature, including He I (<0.025 MK), O V (0.25 MK), Si XII (2 MK), and Fe XIX (8 MK). The start of a precursor burst of He I and O V line emission preceded the steady increase of Fe XIX line emission by about 1 minute and the emergence of 3-12 keV X-ray emission by about 4 minutes. Thus, the onset of the microflare was observed in upper chromospheric (He I) and transition region (O V) line emission before it was detected in high-temperature flare plasma emission. Redshifted O V emission during the precursor suggests explosive chromospheric evaporation, but no corresponding blueshifts were found with either Fe XIX (which was very weak) or Si XII. Similarly, in subsequent microflare brightenings the O V and He I intensities increased (between 49 s and almost 2 minutes) before emissions from the hot flare plasma. Although these time differences likely indicate heating by a nonthermal particle beam, the RHESSI spectra provide no additional evidence for such a beam. In intervals lasting up to about 3 minutes during several bursts, the He I and O V emission line profiles showed secondary, highly blueshifted (similar to-200 km s(-1)) components; during intervals lasting nearly 1 minute the velocities of the primary and secondary components were oppositely directed. Combined with no corresponding blueshifts in either Fe XIX or Si XII, this indicates that explosive chromospheric evaporation occurred predominantly at either comparatively cool temperatures (<2 MK) or within a hot temperature range to which our observations were not sensitive (e.g., between 2 and 8 MK). C1 [Brosius, Jeffrey W.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Catholic Univ Amer, Greenbelt, MD 20771 USA. RP Brosius, JW (reprint author), NASA, Goddard Space Flight Ctr, Solar Phys Lab, Catholic Univ Amer, Code 671, Greenbelt, MD 20771 USA. EM Jeffrey.W.Brosius@nasa.gov; Gordon.D.Holman@nasa.gov RI Holman, Gordon/C-9548-2012 FU NASA [NNX07AI09G]; RHESSI Project FX J.W.B. acknowledges NASA support through SR&T grant NNX07AI09G. G.D.H. acknowledges partial support from SR&T grant NNX07AI09G and the RHESSI Project. We thank the referee for comments that helped to improve the manuscript. NR 56 TC 15 Z9 15 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1472 EP 1482 DI 10.1088/0004-637X/720/2/1472 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300045 ER PT J AU Kann, DA Klose, S Zhang, B Malesani, D Nakar, E Pozanenko, A Wilson, AC Butler, NR Jakobsson, P Schulze, S Andreev, M Antonelli, LA Bikmaev, IF Biryukov, V Bottcher, M Burenin, RA Ceron, JMC Castro-Tirado, AJ Chincarini, G Cobb, BE Covino, S D'Avanzo, P D'Elia, V Della Valle, M Postigo, AD Efimov, Y Ferrero, P Fugazza, D Fynbo, JPU Galfalk, M Grundahl, F Gorosabel, J Gupta, S Guziy, S Hafizov, B Hjorth, J Holhjem, K Ibrahimov, M Im, M Israel, GL Jelinek, M Jensen, BL Karimov, R Khamitov, IM Kiziloglu, U Klunko, E Kubanek, P Kutyrev, AS Laursen, P Levan, AJ Mannucci, F Martin, CM Mescheryakov, A Mirabal, N Norris, JP Ovaldsen, JE Paraficz, D Pavlenko, E Piranomonte, S Rossi, A Rumyantsev, V Salinas, R Sergeev, A Sharapov, D Sollerman, J Stecklum, B Stella, L Tagliaferri, G Tanvir, NR Telting, J Testa, V Updike, AC Volnova, A Watson, D Wiersema, K Xu, D AF Kann, D. A. Klose, S. Zhang, B. Malesani, D. Nakar, E. Pozanenko, A. Wilson, A. C. Butler, N. R. Jakobsson, P. Schulze, S. Andreev, M. Antonelli, L. A. Bikmaev, I. F. Biryukov, V. Boettcher, M. Burenin, R. A. Castro Ceron, J. M. Castro-Tirado, A. J. Chincarini, G. Cobb, B. E. Covino, S. D'Avanzo, P. D'Elia, V. Della Valle, M. Postigo, A. de Ugarte Efimov, Yu. Ferrero, P. Fugazza, D. Fynbo, J. P. U. Galfalk, M. Grundahl, F. Gorosabel, J. Gupta, S. Guziy, S. Hafizov, B. Hjorth, J. Holhjem, K. Ibrahimov, M. Im, M. Israel, G. L. Jelinek, M. Jensen, B. L. Karimov, R. Khamitov, I. M. Kiziloglu, Ue Klunko, E. Kubanek, P. Kutyrev, A. S. Laursen, P. Levan, A. J. Mannucci, F. Martin, C. M. Mescheryakov, A. Mirabal, N. Norris, J. P. Ovaldsen, J. -E. Paraficz, D. Pavlenko, E. Piranomonte, S. Rossi, A. Rumyantsev, V. Salinas, R. Sergeev, A. Sharapov, D. Sollerman, J. Stecklum, B. Stella, L. Tagliaferri, G. Tanvir, N. R. Telting, J. Testa, V. Updike, A. C. Volnova, A. Watson, D. Wiersema, K. Xu, D. TI THE AFTERGLOWS OF SWIFT-ERA GAMMA-RAY BURSTS. I. COMPARING PRE-SWIFT AND SWIFT-ERA LONG/SOFT (TYPE II) GRB OPTICAL AFTERGLOWS SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; gamma-ray burst: general ID HIGH-RESOLUTION SPECTROSCOPY; COSMIC CHEMICAL EVOLUTION; BAND SPECTRAL EVOLUTION; FOLLOW-UP OBSERVATIONS; STAR-FORMATION RATE; HIGH-REDSHIFT GRBS; EARLY X-RAY; HOST-GALAXY; LIGHT CURVES; MG-II AB We have gathered optical photometry data from the literature on a large sample of Swift-era gamma-ray burst (GRB) afterglows including GRBs up to 2009 September, for a total of 76 GRBs, and present an additional three pre-Swift GRBs not included in an earlier sample. Furthermore, we publish 840 additional new photometry data points on a total of 42 GRB afterglows, including large data sets for GRBs 050319, 050408, 050802, 050820A, 050922C, 060418, 080413A, and 080810. We analyzed the light curves of all GRBs in the sample and derived spectral energy distributions for the sample with the best data quality, allowing us to estimate the host-galaxy extinction. We transformed the afterglow light curves into an extinction-corrected z = 1 system and compared their luminosities with a sample of pre-Swift afterglows. The results of a former study, which showed that GRB afterglows clustered and exhibited a bimodal distribution in luminosity space, are weakened by the larger sample. We found that the luminosity distribution of the two afterglow samples (Swift-era and pre-Swift) is very similar, and that a subsample for which we were not able to estimate the extinction, which is fainter than the main sample, can be explained by assuming a moderate amount of line-of-sight host extinction. We derived bolometric isotropic energies for all GRBs in our sample, and found only a tentative correlation between the prompt energy release and the optical afterglow luminosity at 1 day after the GRB in the z = 1 system. A comparative study of the optical luminosities of GRB afterglows with echelle spectra (which show a high number of foreground absorbing systems) and those without, reveals no indication that the former are statistically significantly more luminous. Furthermore, we propose the existence of an upper ceiling on afterglow luminosities and study the luminosity distribution at early times, which was not accessible before the advent of the Swift satellite. Most GRBs feature afterglows that are dominated by the forward shock from early times on. Finally, we present the first indications of a class of long GRBs, which form a bridge between the typical high-luminosity, high-redshift events and nearby low-luminosity events (which are also associated with spectroscopic supernovae) in terms of energetics and observed redshift distribution, indicating a continuous distribution overall. C1 [Kann, D. A.; Klose, S.; Schulze, S.; Ferrero, P.; Rossi, A.; Stecklum, B.] Thuringer Landessternwarte Tautenburg, D-07778 Tautenburg, Germany. [Zhang, B.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. [Malesani, D.; Castro Ceron, J. M.; Fynbo, J. P. U.; Hjorth, J.; Jensen, B. L.; Laursen, P.; Paraficz, D.; Sollerman, J.; Watson, D.; Xu, D.] Univ Copenhagen, Dark Cosmol Ctr, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Nakar, E.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Nakar, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Pozanenko, A.; Burenin, R. A.; Mescheryakov, A.] Space Res Inst IKI, Moscow 117997, Russia. [Wilson, A. C.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Butler, N. R.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Butler, N. R.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Jakobsson, P.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Jakobsson, P.; Schulze, S.] Univ Iceland, Inst Sci, Ctr Astrophys & Cosmol, IS-107 Reykjavik, Iceland. [Andreev, M.; Sergeev, A.] RAS, Terskol Branch, Inst Astron, Kabardino Balkaria Repub 361605, Russia. [Andreev, M.; Sergeev, A.] NASU, Int Ctr Astron & Medicoecol Res, UA-03680 Kiev, Ukraine. [Antonelli, L. A.; D'Elia, V.; Israel, G. L.; Piranomonte, S.; Stella, L.; Testa, V.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, RM, Italy. [Bikmaev, I. F.] Kazan VI Lenin State Univ, Kazan 420008, Russia. [Bikmaev, I. F.] Acad Sci Tatarstan, Kazan, Russia. [Biryukov, V.; Pavlenko, E.; Rumyantsev, V.] SRI Crimean Astrophys Observ, UA-98409 Nauchnyi, Crimea, Ukraine. [Boettcher, M.; Gupta, S.] Ohio Univ, Inst Astrophys, Dept Phys & Astron, Athens, OH 45701 USA. [Biryukov, V.; Efimov, Yu.] Sternberg Astron Inst, Crimean Lab, UA-98409 Nauchnyi, Crimea, Ukraine. [Castro Ceron, J. M.; Kubanek, P.] European Space Agcy, European Space Astron Ctr, Madrid 28691, Spain. [Castro-Tirado, A. J.; Gorosabel, J.; Guziy, S.; Jelinek, M.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Chincarini, G.; Covino, S.; Postigo, A. de Ugarte; Fugazza, D.; Tagliaferri, G.] Osserv Astron Brera, INAF, I-23807 Merate, LC, Italy. [Chincarini, G.; D'Avanzo, P.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Cobb, B. E.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Cobb, B. E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [D'Avanzo, P.] Univ Insubria, Dipartimento Matemat & Fis, I-22100 Como, Italy. [D'Elia, V.] ASI Sci Data Ctr, I-00044 Frascati, Italy. [Della Valle, M.] Osserv Astron Capodimonte, INAF, I-80131 Naples, Italy. [Della Valle, M.] European So Observ, D-85748 Garching, Germany. [Della Valle, M.] Int Ctr Relativist Astrophys Network, Pescara, Abruzzo, Italy. [Ferrero, P.] Inst Astrofis Canarias, E-38205 San Cristobal la Laguna, Tenerife, Spain. [Galfalk, M.; Sollerman, J.] Stockholm Univ, AlbaNova Univ Ctr, Stockholm Observ, Dept Astron, S-10691 Stockholm, Sweden. [Grundahl, F.] Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Hafizov, B.; Ibrahimov, M.; Karimov, R.; Sharapov, D.; Telting, J.] Ulugh Beg Astron Inst, Tashkent 700052, Uzbekistan. [Holhjem, K.] Nord Opt Telescope, Santa Cruz De La Palma, Spain. [Holhjem, K.] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Im, M.] Seoul Natl Univ, CEOU, Astron Program, Dept Phys & Astron, Seoul, South Korea. [Khamitov, I. M.] TUBITAK Natl Observ, Antalya, Turkey. [Kiziloglu, Ue] Middle E Tech Univ, TR-06531 Ankara, Turkey. [Klunko, E.] Inst Solar Terr Phys, Irkutsk 664033, Russia. [Kutyrev, A. S.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Levan, A. J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Mannucci, F.] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Martin, C. M.] Loyola Coll, Baltimore, MD 21210 USA. [Mirabal, N.] Univ Complutense Madrid, Dpto Fis Atom Mol & Nucl, Madrid, Spain. [Norris, J. P.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ovaldsen, J. -E.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Salinas, R.] Univ Concepcion, Astron Grp, Fac Ciencias Fis & Matemat, Concepcion, Chile. [Tanvir, N. R.; Wiersema, K.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Updike, A. C.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Volnova, A.] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow 119992, Russia. [Wiersema, K.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. RP Kann, DA (reprint author), Thuringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg, Germany. RI Im, Myungshin/B-3436-2013; Kubanek, Petr/G-7209-2014; Fynbo, Johan/L-8496-2014; Hjorth, Jens/M-5787-2014; Watson, Darach/E-4521-2015; Jensen, Brian Lindgren/E-1275-2015; Jakobsson, Pall/L-9950-2015; Jelinek, Martin/E-5290-2016; Rossi, Andrea/N-4674-2015; OI de Ugarte Postigo, Antonio/0000-0001-7717-5085; Covino, Stefano/0000-0001-9078-5507; Tagliaferri, Gianpiero/0000-0003-0121-0723; Testa, Vincenzo/0000-0003-1033-1340; Castro-Tirado, A. J./0000-0003-2999-3563; D'Elia, Valerio/0000-0002-7320-5862; Della Valle, Massimo/0000-0003-3142-5020; Sollerman, Jesper/0000-0003-1546-6615; Rumyantsev, Vasilij/0000-0003-1894-7019; Salinas, Ricardo/0000-0002-1206-1930; Israel, GianLuca/0000-0001-5480-6438; Schulze, Steve/0000-0001-6797-1889; Im, Myungshin/0000-0002-8537-6714; Fynbo, Johan/0000-0002-8149-8298; Hjorth, Jens/0000-0002-4571-2306; Watson, Darach/0000-0002-4465-8264; Jensen, Brian Lindgren/0000-0002-0906-9771; Jakobsson, Pall/0000-0002-9404-5650; Jelinek, Martin/0000-0003-3922-7416; Rossi, Andrea/0000-0002-8860-6538; mannucci, filippo/0000-0002-4803-2381 FU DFG [Kl 766/13-2]; NASA [NNG 05GC22G, NNG06GH62G]; Spanish research programs [ESP2005-07714-C03-03, AYA2004-01515]; Instrument Center for Danish Astrophysics; Danish National Science Fundation [G2007101421517916]; CRDF [RP1-2394-MO-02]; TUBITAK; IKI; KSU [RTT150, 998,999]; Korea government (MEST) [2010-0000712]; [NSh-4224.2008.2]; [RFBR-09-02-97013-p-povolzh'e-a] FX We thank the anonymous referee for helpful comments that improved this paper. D. A. K. thanks C. Guidorzi for helpful comments as well as the GRB 061007 calibration, D. A. Perley for "better-late-than-never" comments, and A. Zeh for the fitting scripts. D.A.K., S.K., and P.F. acknowledge financial support by DFG grant Kl 766/13-2. B.Z. acknowledges NASA NNG 05GC22G and NNG06GH62G for support. The research activity of J.G. is supported by Spanish research programs ESP2005-07714-C03-03 and AYA2004-01515. D. M. thanks the Instrument Center for Danish Astrophysics for support. The Dark Cosmology Centre is funded by the Danish National Science Fundation. A.U. acknowledges travel grant Sigma Xi Grant G2007101421517916. We are grateful to K. Antoniuk (CrAO) for observation of the GRB 060927. A.P. acknowledges the CRDF grant RP1-2394-MO-02 which supported observations in CrAO in 2003-2005. S. S. acknowledges support by a Grant of Excellence from the Icelandic Research Fund. I.B., R.B., I.K. and A.G. express thanks to TUBITAK, IKI, and KSU for partial support in using RTT150 (Russian-Turkish 1.5-m telescope in Antalya) with project number 998,999. I.B. and A.G. are grateful for partial support by grants "NSh-4224.2008.2" and "RFBR-09-02-97013-p-povolzh'e-a." M. I. acknowledges the support from the Creative Research Initiative program, No. 2010-0000712, of the Korea Science and Engineering Foundation (KOSEF) funded by the Korea government (MEST). Furthermore, we thank Scott Barthelmy, NASA, for the upkeep of the GCN Circulars, Jochen Greiner, Garching, for the "GRB Big List," Robert Quimby et al. for GRBlog and D. A. Perley et al. for GRBOX. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. NR 702 TC 147 Z9 149 U1 1 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1513 EP 1558 DI 10.1088/0004-637X/720/2/1513 PG 46 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300049 ER PT J AU Dauphas, N Remusat, L Chen, JH Roskosz, M Papanastassiou, DA Stodolna, J Guan, Y Ma, C Eiler, JM AF Dauphas, N. Remusat, L. Chen, J. H. Roskosz, M. Papanastassiou, D. A. Stodolna, J. Guan, Y. Ma, C. Eiler, J. M. TI NEUTRON-RICH CHROMIUM ISOTOPE ANOMALIES IN SUPERNOVA NANOPARTICLES SO ASTROPHYSICAL JOURNAL LA English DT Article DE meteorites, meteors, meteoroids; nuclear reactions, nucleosynthesis, abundances; protoplanetary disks; supernovae: general ID EARLY SOLAR-SYSTEM; X-RAY-MICROANALYSIS; IA SUPERNOVAE; MASSIVE STARS; PRESOLAR GRAINS; ABUNDANCE STRATIFICATION; CARBONACEOUS CHONDRITES; S-PROCESS; NUCLEOSYNTHESIS; ALLENDE AB Neutron-rich isotopes with masses near that of iron are produced in Type Ia and II supernovae (SNeIa and SNeII). Traces of such nucleosynthesis are found in primitive meteorites in the form of variations in the isotopic abundance of (54)Cr, the most neutron-rich stable isotope of chromium. The hosts of these isotopic anomalies must be presolar grains that condensed in the outflows of SNe, offering the opportunity to study the nucleosynthesis of iron-peak nuclei in ways that complement spectroscopic observations and can inform models of stellar evolution. However, despite almost two decades of extensive search, the carrier of (54)Cr anomalies is still unknown, presumably because it is fine grained and is chemically labile. Here, we identify in the primitive meteorite Orgueil the carrier of (54)Cr anomalies as nanoparticles (<100 nm), most likely spinels that show large enrichments in (54)Cr relative to solar composition ((54)Cr/(52)Cr ratio >3.6 x solar). Such large enrichments in (54)Cr can only be produced in SNe. The mineralogy of the grains supports condensation in the O/Ne-O/C zones of an SNII, although a Type Ia origin cannot be excluded. We suggest that planetary materials incorporated different amounts of these nanoparticles, possibly due to late injection by a nearby SN that also delivered (26)Al and (60)Fe to the solar system. This idea explains why the relative abundance of (54)Cr and other neutron-rich isotopes vary between planets and meteorites. We anticipate that future isotopic studies of the grains identified here will shed new light on the birth of the solar system and the conditions in SNe. C1 [Dauphas, N.] Univ Chicago, Dept Geophys Sci, Origins Lab, Chicago, IL 60637 USA. [Dauphas, N.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Dauphas, N.; Remusat, L.; Papanastassiou, D. A.; Guan, Y.; Ma, C.; Eiler, J. M.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Remusat, L.] Museum Natl Hist Nat, CNRS, Lab Mineral & Cosmochim Museum, UMR 7202, F-75231 Paris, France. [Chen, J. H.; Papanastassiou, D. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Roskosz, M.; Stodolna, J.] Univ Lille 1, CNRS, Unite Mat & Transformat, UMR 8207, F-59655 Villeneuve Dascq, France. RP Dauphas, N (reprint author), Univ Chicago, Dept Geophys Sci, Origins Lab, 5734 S Ellis Ave, Chicago, IL 60637 USA. EM dauphas@uchicago.edu RI Dauphas, Nicolas/E-4568-2011; Remusat, Laurent/A-8298-2016; IMPMC, Geobio/F-8819-2016 FU Conseil Regional du Nord-Pas de Calais; European Regional Development Fund (ERDF); Institut National des Sciences de l'Univers (INSU, CNRS); NASA Cosmochemistry; Packard fellowship; France Chicago Center; California Institute of Technology; NASA; NSF [NNX09AG59G, EAR-0820807] FX Discussions with B. S. Meyer, F. K. Thielemann, T. Rauscher, R. Yokochi, A. M. Davis, and P. R. Craddock were appreciated. We thank T. Stephan and F.J. Stadermann for their help in our attempt to acquire Auger data on the 54Cr-rich grains. Constructive comments from an anonymous referee greatly improved the manuscript. The TEM national facility in Lille (France) is supported by the Conseil Regional du Nord-Pas de Calais, the European Regional Development Fund (ERDF), and the Institut National des Sciences de l'Univers (INSU, CNRS). J.H.C. and the laboratories at JPL were supported by NASA Cosmochemistry. This work was supported by a Packard fellowship, the France Chicago Center, a Moore Distinguished Scholarship at the California Institute of Technology, and NASA and NSF through grants NNX09AG59G and EAR-0820807 to N.D. NR 73 TC 67 Z9 69 U1 1 U2 23 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1577 EP 1591 DI 10.1088/0004-637X/720/2/1577 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300052 ER PT J AU Hathi, NP Ryan, RE Cohen, SH Yan, H Windhorst, RA McCarthy, PJ O'Connell, RW Koekemoer, AM Rutkowski, MJ Balick, B Bond, HE Calzetti, D Disney, MJ Dopita, MA Frogel, JA Hall, DNB Holtzman, JA Kimble, RA Paresce, F Saha, A Silk, JI Trauger, JT Walker, AR Whitmore, BC Young, ET AF Hathi, N. P. Ryan, R. E., Jr. Cohen, S. H. Yan, H. Windhorst, R. A. McCarthy, P. J. O'Connell, R. W. Koekemoer, A. M. Rutkowski, M. J. Balick, B. Bond, H. E. Calzetti, D. Disney, M. J. Dopita, M. A. Frogel, Jay A. Hall, D. N. B. Holtzman, J. A. Kimble, R. A. Paresce, F. Saha, A. Silk, J. I. Trauger, J. T. Walker, A. R. Whitmore, B. C. Young, E. T. TI UV-DROPOUT GALAXIES IN THE GOODS-SOUTH FIELD FROM WFC3 EARLY RELEASE SCIENCE OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: high-redshift; galaxies: luminosity function, mass function ID LYMAN-BREAK GALAXIES; ULTRA DEEP FIELD; HIGH-REDSHIFT GALAXIES; STAR-FORMING GALAXIES; STELLAR MASS DENSITY; TO 8 GALAXIES; LUMINOSITY FUNCTION; FORMATION HISTORY; SPECTROSCOPY; ULTRAVIOLET AB We combine new high sensitivity ultraviolet (UV) imaging from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) with existing deep HST/Advanced Camera for Surveys optical images from the Great Observatories Origins Deep Survey (GOODS) program to identify UV-dropouts, which are Lyman break galaxy (LBG) candidates at z similar or equal to 1-3. These new HST/WFC3 observations were taken over 50 arcmin(2) in the GOODS-South field as a part of the Early Release Science program. The uniqueness of these new UV data is that they are observed in three UV/optical (WFC3 UVIS) channel filters (F225W, F275W, and F336W), which allows us to identify three different sets of UV-dropout samples. We apply Lyman break dropout selection criteria to identify F225W-, F275W-, and F336W-dropouts, which are z similar or equal to 1.7, 2.1, and 2.7 LBG candidates, respectively. We use multi-wavelength imaging combined with available spectroscopic and photometric redshifts to carefully access the validity of our UV-dropout candidates. Our results are as follows: (1) these WFC3 UVIS filters are very reliable in selecting LBGs with z similar or equal to 2.0, which helps to reduce the gap between the well-studied z greater than or similar to 3 and z similar to 0 regimes; (2) the combined number counts with average redshift z similar or equal to 2.2 agree very well with the observed change in the surface densities as a function of redshift when compared with the higher redshift LBG samples; and (3) the best-fit Schechter function parameters from the rest-frame UV luminosity functions at three different redshifts fit very well with the evolutionary trend of the characteristic absolute magnitude, M*, and the faint-end slope, alpha, as a function of redshift. This is the first study to illustrate the usefulness of the WFC3 UVIS channel observations to select z less than or similar to 3 LBGs. The addition of the new WFC3 on the HST has made it possible to uniformly select LBGs from z similar or equal to 1 to z similar or equal to 9 and significantly enhance our understanding of these galaxies using HST sensitivity and resolution. C1 [Hathi, N. P.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Ryan, R. E., Jr.] Univ Calif Davis, Dept Phys & Astron, Davis, CA 92616 USA. [Cohen, S. H.; Windhorst, R. A.; Rutkowski, M. J.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Yan, H.] Ohio State Univ, Ctr Cosmol & AstroParticle Phys, Columbus, OH 43210 USA. [McCarthy, P. J.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [O'Connell, R. W.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Koekemoer, A. M.; Bond, H. E.; Whitmore, B. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Balick, B.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Calzetti, D.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Disney, M. J.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Dopita, M. A.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Frogel, Jay A.] Assoc Univ Res Astron, Washington, DC 20005 USA. [Hall, D. N. B.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Holtzman, J. A.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Kimble, R. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Paresce, F.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-40129 Bologna, Italy. [Saha, A.] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Silk, J. I.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Trauger, J. T.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Walker, A. R.] Cerro Tololo Interamer Observ, La Serena, Chile. [Young, E. T.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Hathi, NP (reprint author), Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. EM Nimish.Hathi@ucr.edu RI Kimble, Randy/D-5317-2012; Dopita, Michael/P-5413-2014; Hathi, Nimish/J-7092-2014; OI Koekemoer, Anton/0000-0002-6610-2048; Dopita, Michael/0000-0003-0922-4986; Hathi, Nimish/0000-0001-6145-5090; silk, joe/0000-0002-1566-8148 FU Space Telescope Science Institute; Space Telescope Science Institute [11359]; NASA [NAS 5-26555] FX We thank the referee for helpful comments and suggestions that significantly improved this paper. We thank M. Nonino, C. Ly, and their collaborators for providing their LBG number counts. This paper is based on Early Release Science observations made by the WFC3 Scientific Oversight Committee. We are grateful to the Director of the Space Telescope Science Institute for awarding Director's Discretionary time for this program. Finally, we are deeply indebted to the brave astronauts of STS-125 for rejuvenating HST. Support for program 11359 was provided by the NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS 5-26555. NR 44 TC 45 Z9 45 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1708 EP 1716 DI 10.1088/0004-637X/720/2/1708 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300063 ER PT J AU Champion, DJ Hobbs, GB Manchester, RN Edwards, RT Backer, DC Bailes, M Bhat, NDR Burke-Spolaor, S Coles, W Demorest, PB Ferdman, RD Folkner, WM Hotan, AW Kramer, M Lommen, AN Nice, DJ Purver, MB Sarkissian, JM Stairs, IH van Straten, W Verbiest, JPW Yardley, DRB AF Champion, D. J. Hobbs, G. B. Manchester, R. N. Edwards, R. T. Backer, D. C. Bailes, M. Bhat, N. D. R. Burke-Spolaor, S. Coles, W. Demorest, P. B. Ferdman, R. D. Folkner, W. M. Hotan, A. W. Kramer, M. Lommen, A. N. Nice, D. J. Purver, M. B. Sarkissian, J. M. Stairs, I. H. van Straten, W. Verbiest, J. P. W. Yardley, D. R. B. TI MEASURING THE MASS OF SOLAR SYSTEM PLANETS USING PULSAR TIMING SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planets and satellites: general; planets and satellites: individual (Jupiter); pulsars: general ID GRAVITY-FIELD; TRACKING DATA; EPHEMERIS; PACKAGE; TEMPO2; MODEL AB High-precision pulsar timing relies on a solar system ephemeris in order to convert times of arrival (TOAs) of pulses measured at an observatory to the solar system barycenter. Any error in the conversion to the barycentric TOAs leads to a systematic variation in the observed timing residuals; specifically, an incorrect planetary mass leads to a predominantly sinusoidal variation having a period and phase associated with the planet's orbital motion about the Sun. By using an array of pulsars (PSRs J0437-4715, J1744-1134, J1857+0943, J1909-3744), the masses of the planetary systems from Mercury to Saturn have been determined. These masses are consistent with the best-known masses determined by spacecraft observations, with the mass of the Jovian system, 9.547921(2) x 10(-4) M(circle dot), being significantly more accurate than the mass determined from the Pioneer and Voyager spacecraft, and consistent with but less accurate than the value from the Galileo spacecraft. While spacecraft are likely to produce the most accurate measurements for individual solar system bodies, the pulsar technique is sensitive to planetary system masses and has the potential to provide the most accurate values of these masses for some planets. C1 [Champion, D. J.; Hobbs, G. B.; Manchester, R. N.; Edwards, R. T.; Burke-Spolaor, S.; Sarkissian, J. M.; Yardley, D. R. B.] Australia Telescope Natl Facil, CSIRO Astron & Space Sci, Epping, NSW 1710, Australia. [Champion, D. J.; Kramer, M.; Verbiest, J. P. W.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Edwards, R. T.] Kilmore Int Sch, Kilmore, Vic 3764, Australia. [Backer, D. C.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Backer, D. C.] Univ Calif Berkeley, Radio Astron Lab, Berkeley, CA 94720 USA. [Bailes, M.; Bhat, N. D. R.; Burke-Spolaor, S.; van Straten, W.] Swinburne Univ Technol, Hawthorn, Vic 3122, Australia. [Coles, W.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Demorest, P. B.] Natl Radio Astron Observ, Charlottesville, VA 22901 USA. [Ferdman, R. D.; Purver, M. B.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Folkner, W. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hotan, A. W.] Curtin Univ, Curtin Inst Radio Astron, Bentley, WA 6102, Australia. [Lommen, A. N.] Franklin & Marshall Coll, Lancaster, PA 17604 USA. [Nice, D. J.] Lafayette Coll, Dept Phys, Easton, PA 18042 USA. [Stairs, I. H.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Yardley, D. R. B.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. RP Champion, DJ (reprint author), Australia Telescope Natl Facil, CSIRO Astron & Space Sci, POB 76, Epping, NSW 1710, Australia. EM champion@pulsarastronomy.net RI Bhat, Ramesh/B-7396-2013; OI Champion, David/0000-0003-1361-7723; Nice, David/0000-0002-6709-2566; van Straten, Willem/0000-0003-2519-7375 FU Australian Research Council Federation [FF0348478]; Australian Research Council [DP0878388]; NSF [AST-0647820, AST-0748580]; Commonwealth of Australia FX We thank R. A. Jacobson for useful information about the planetary mass determinations, and F. A. Jenet, S. Oslowski, E. Splaver, K. Xilouris, and X. P. You for assistance with the observations and analysis. We also thank the referee for constructive comments. This work is undertaken as part of the Parkes Pulsar Timing Array project which was supported by R.N.M.'s Australian Research Council Federation Fellowship (FF0348478). G. H. is the recipient of an Australian Research Council QEII Fellowship (DP0878388), D.N. is the recipient of an NSF grant (AST-0647820) and A. L. is the recipient of a National Science Foundation CAREER award (AST-0748580). Pulsar research at UBC is funded by an NSERC Discovery Grant. The Parkes radio telescope is part of the Australia Telescope, which is funded by the Commonwealth of Australia for operation as a National Facility managed by the Commonwealth Scientific and Industrial Research Organisation. NR 21 TC 38 Z9 39 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 10 PY 2010 VL 720 IS 2 BP L201 EP L205 DI 10.1088/2041-8205/720/2/L201 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647HX UT WOS:000281610200015 ER PT J AU Matranga, M Drake, JJ Kashyap, VL Marengo, M Kuchner, MJ AF Matranga, M. Drake, J. J. Kashyap, V. L. Marengo, M. Kuchner, M. J. TI CLOSE BINARIES WITH INFRARED EXCESS: DESTROYERS OF WORLDS? SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: close; circumstellar matter; infrared: stars; stars: individual (AR Psc, II Peg, UX Ari) ID RS CANUM-VENATICORUM; SUN-LIKE; DEBRIS DISKS; PHOTOMETRIC-OBSERVATIONS; RESONANT SIGNATURES; PLANETARY SYSTEMS; ACTIVE STARS; SPITZER MIPS; WARM DUST; II PEGASI AB We present the results of a Spitzer photometric investigation into the IR excesses of close binary systems. In a sample of 10 objects, excesses in Infrared Array Camera and MIPS24 bands implying the presence of warm dust are found for 3. For two objects, we do not find excesses reported in earlier IRAS studies. We discuss the results in the context of the scenario suggested by Rhee and co-workers, in which warm dust is continuously created by destructive collisions between planetary bodies. A simple numerical model for the steady-state distribution of dust in one IR excess system shows a central clearing of radius 0.22 AU caused by dynamical perturbations from the binary star. This is consistent with the size of the central clearing derived from the Spitzer spectral energy distribution. We conclude that close binaries could be efficient "destroyers of worlds" and lead to destabilization of the orbits of their planetary progeny by magnetically driven angular momentum loss and secular shrinkage of the binary separation. C1 [Matranga, M.; Drake, J. J.; Kashyap, V. L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Marengo, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kuchner, M. J.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab Greenbelt, Greenbelt, MD 20771 USA. RP Matranga, M (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RI Kuchner, Marc/E-2288-2012 FU Spitzer [1279130]; NASA [NAS8-39073, 1407] FX M. Matranga was supported by Spitzer contract 1279130. J.J.D. and V. L. K. were funded by the NASA contract NAS8-39073 to the Chandra X-ray Center. Observations were made with Spitzer, operated by JPL under the NASA contract 1407. NR 47 TC 5 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 10 PY 2010 VL 720 IS 2 BP L164 EP L168 DI 10.1088/2041-8205/720/2/L164 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647HX UT WOS:000281610200008 ER PT J AU Sada, PV Deming, D Jackson, B Jennings, DE Peterson, SW Haase, F Bays, K O'Gorman, E Lundsford, A AF Sada, Pedro V. Deming, Drake Jackson, Brian Jennings, Donald E. Peterson, Steven W. Haase, Flynn Bays, Kevin O'Gorman, Eamon Lundsford, Alan TI RECENT TRANSITS OF THE SUPER-EARTH EXOPLANET GJ 1214b SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE eclipses; infrared: planetary systems; planets and satellites: fundamental parameters; techniques: photometric ID PLANET AB We report recent ground-based photometry of the transiting super-Earth exoplanet GJ 1214b at several wavelengths, including the infrared near 1.25 mu m (J band). We observed a J-band transit with the FLAMINGOS infrared imager and the 2.1 m telescope on Kitt Peak, and we observed several optical transits using a 0.5 m telescope on Kitt Peak and the 0.36 m Universidad de Monterrey Observatory telescope. Our high-precision J-band observations exploit the brightness of the M dwarf host star at this infrared wavelength as compared with the optical and are significantly less affected by stellar activity and limb darkening. We fit the J-band transit to obtain an independent determination of the planetary and stellar radii. Our radius for the planet (2.61(-0.11)(+0.30)R(circle plus)) is in excellent agreement with the discovery value reported by Charbonneau et al. based on optical data. We demonstrate that the planetary radius is insensitive to degeneracies in the fitting process. We use all of our observations to improve the transit ephemeris, finding P = 1.5804043 +/- 0.0000005 days and T(0) = 2454964.94390 +/- 0.00006 BJD. C1 [Sada, Pedro V.] Univ Monterrey, Monterrey, Mexico. [Deming, Drake; Jackson, Brian; Jennings, Donald E.] NASA, Goddard Space Flight Ctr, Planetary Syst Lab, Greenbelt, MD 20771 USA. [Peterson, Steven W.; Haase, Flynn; Bays, Kevin] Kitt Peak Natl Observ, Natl Opt Astron Observ, Tucson, AZ 85719 USA. [O'Gorman, Eamon] Univ Dublin Trinity Coll, Dublin 2, Ireland. [Lundsford, Alan] Catholic Univ, Amer & Planetary Syst Lab, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Sada, PV (reprint author), Univ Monterrey, Monterrey, Mexico. RI Jennings, Donald/D-7978-2012 NR 9 TC 20 Z9 21 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 10 PY 2010 VL 720 IS 2 BP L215 EP L218 DI 10.1088/2041-8205/720/2/L215 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647HX UT WOS:000281610200018 ER PT J AU Snow, TP Destree, JD Burgh, EB Ferguson, RM Danforth, CW Cordiner, M AF Snow, Theodore P. Destree, Joshua D. Burgh, Eric B. Ferguson, Ryan M. Danforth, Charles W. Cordiner, Martin TI COSMIC ORIGINS SPECTROGRAPH OBSERVATIONS OF TRANSLUCENT CLOUDS: Cyg OB2 8A SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE dust, extinction; ISM: abundances; ISM: atoms; ISM: molecules; ultraviolet: ISM ID RESONANCE-ABSORPTION LINES; INTERSTELLAR-MEDIUM; WAVELENGTHS LONGWARD; MOLECULAR CLOUDS; LYMAN LIMIT; ATOMIC DATA; STARS; TEMPERATURES; EMISSION; ELEMENTS AB Data from the Cosmic Origins Spectrograph ( COS) are presented for the first highly reddened target (Cyg OB2 8A) under the COS Science Team's guaranteed time allocation. Column densities of ionic, atomic, and molecular species are reported and implications are discussed. Data from Cyg OB2 8A demonstrate the ability to analyze highly reddened interstellar sight lines with the COS that were unavailable to previous UV instruments. Measured column densities indicate that the Cyg OB2 8A line of sight contains multiple diffuse clouds rather than a dominant translucent cloud. C1 [Snow, Theodore P.; Destree, Joshua D.; Burgh, Eric B.; Ferguson, Ryan M.; Danforth, Charles W.] Univ Colorado, Ctr Astrophys & Space Astron, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Cordiner, Martin] NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, Greenbelt, MD 20771 USA. RP Snow, TP (reprint author), Univ Colorado, Ctr Astrophys & Space Astron, Dept Astrophys & Planetary Sci, Campus Box 391, Boulder, CO 80309 USA. EM tsnow@casa.colorado.edu; destree@colorado.edu; eric.burgh@colorado.edu; ryan.m.ferguson@colorado.edu; danforth@casa.colorado.edu; martin.cordiner@nasa.gov FU NASA [NNX08AC14G] FX This research was supported by NASA grant NNX08AC14G. We thank the other members of the COS Science Team for developing data co-addition techniques. We thank Kevin France for his helpful comments, George Herbig for providing the raw Keck HIRES data, and Rachel Destree for her constant editing help.; Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. NR 25 TC 2 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 10 PY 2010 VL 720 IS 2 BP L190 EP L194 DI 10.1088/2041-8205/720/2/L190 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647HX UT WOS:000281610200013 ER PT J AU Davis, S Hlavka, D Jensen, E Rosenlof, K Yang, QO Schmidt, S Borrmann, S Frey, W Lawson, P Voemel, H Bui, TP AF Davis, Sean Hlavka, Dennis Jensen, Eric Rosenlof, Karen Yang, Qiong Schmidt, Sebastian Borrmann, Stephan Frey, Wiebke Lawson, Paul Voemel, Holger Bui, T. P. TI In situ and lidar observations of tropopause subvisible cirrus clouds during TC4 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID STRATOSPHERIC WATER-VAPOR; TROPICAL TROPOPAUSE; MICROPHYSICAL PROPERTIES; RADIATIVE PROPERTIES; ACCURATE PARAMETERIZATION; CLIMATE MODELS; ICE CRYSTALS; NASA ER-2; PART I; AIRCRAFT AB During the Tropical Composition, Clouds, and Climate Coupling (TC4) experiment in July-August 2007, the NASA WB-57F and ER-2 aircraft made coordinated flights through a tropopause subvisible cirrus (SVC) layer off the Pacific Coast of Central America. The ER-2 aircraft was equipped with a remote sensing payload that included the cloud physics lidar (CPL). The WB-57F payload included cloud microphysical and trace gas measurements, and the aircraft made four vertical profiles through the SVC layer shortly after the ER-2 flew over. The in situ and remotely sensed data are used to quantify the meteorological and microphysical properties of the SVC layer, and these data are compared to the limited set of SVC measurements that have previously been made. It is found that the layer encountered was particularly tenuous, with optical depths (tau) between about 10(-4) and 10(-3). From the in situ and other meteorological data, radiative heating rate perturbations of similar to 0.05-0.1 K day(-1) are calculated. These heating rates are smaller than previous estimates for tropopause SVC, consistent with the smaller tau in the present study. Coverage statistics based on CPL data from other TC4 flights indicate that this cloud was not an outlier among the sampled population. SVC with properties similar to the one presented here are below the detection limit of space-based lidars such as CALIPSO, and a comparison with the TC4 statistics suggests that a majority (> 50%) of tropopause SVC (with tau < 0.01) could be unaccounted for in studies using CALIPSO data. C1 [Davis, Sean; Rosenlof, Karen] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO 80305 USA. [Davis, Sean] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Hlavka, Dennis] NASA, Goddard Space Flight Ctr, Sci Syst & Applicat Inc, Greenbelt, MD 20771 USA. [Jensen, Eric; Bui, T. P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Yang, Qiong] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Schmidt, Sebastian] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. [Borrmann, Stephan; Frey, Wiebke] Johannes Gutenberg Univ Mainz, Inst Phys Atmosphere, D-55099 Mainz, Germany. [Borrmann, Stephan] Max Planck Inst Chem, Particle Chem Dept, D-55128 Mainz, Germany. [Lawson, Paul] Stratton Pk Engn Co Inc, Boulder, CO 80301 USA. [Voemel, Holger] Deutsch Wetterdienst, Meteorol Observ Lindenberg, Richard Assmann Observ, D-15848 Tauche, Lindenberg, Germany. RP Davis, S (reprint author), NOAA, Div Chem Sci, Earth Syst Res Lab, 325 S Broadway, Boulder, CO 80305 USA. EM sean.davis@colorado.edu RI Borrmann, Stephan/E-3868-2010; Davis, Sean/C-9570-2011; Rosenlof, Karen/B-5652-2008; Frey, Wiebke/G-2058-2014; SCHMIDT, KONRAD SEBASTIAN/C-1258-2013; Manager, CSD Publications/B-2789-2015; OI Davis, Sean/0000-0001-9276-6158; Rosenlof, Karen/0000-0002-0903-8270; Frey, Wiebke/0000-0003-4282-1264; SCHMIDT, KONRAD SEBASTIAN/0000-0003-3899-228X; Hlavka, Dennis/0000-0002-2976-7243 FU NASA [NNX07AL20G]; NOAA FX The authors would like to acknowledge the efforts of the TC4 mission planners and instrument investigators, as well as the pilots and staff of the WB-57F and ER-2 aircraft. The authors would also like to acknowledge the CPL instrument team, led by P. I. Matt McGill. S. M. D. would like to thank Karl Froyd, Bob Portmann, and Anthony Bucholtz for helpful discussions and reviews. S. M. D. acknowledges support from Linnea Avallone under NASA Radiation Sciences Program grant NNX07AL20G, and the NOAA atmospheric composition and climate program. NR 53 TC 34 Z9 34 U1 2 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 10 PY 2010 VL 115 AR D00J17 DI 10.1029/2009JD013093 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 649GH UT WOS:000281755600002 ER PT J AU Gautam, R Hsu, NC Lau, KM AF Gautam, Ritesh Hsu, N. Christina Lau, K. -M. TI Premonsoon aerosol characterization and radiative effects over the Indo-Gangetic Plains: Implications for regional climate warming SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID BLACK CARBON AEROSOLS; ASIAN SUMMER MONSOON; ENERGY SYSTEM CERES; OPTICAL-PROPERTIES; TIBETAN PLATEAU; INDIAN MONSOON; ATMOSPHERIC AEROSOLS; TEMPERATURE TRENDS; HYDROLOGICAL CYCLE; DUST AB The Himalayas have a profound effect on the South Asian climate and the regional hydrological cycle, as it forms a barrier for the strong monsoon winds and serves as an elevated heat source, thus controlling the onset and distribution of precipitation during the Indian summer monsoon. Recent studies have suggested that radiative heating by absorbing aerosols, such as dust and black carbon over the Indo-Gangetic Plains (IGP) and slopes of the Himalayas, may significantly accelerate the seasonal warming of the Hindu Kush-Himalayas-Tibetan Plateau (HKHT) and influence the subsequent evolution of the summer monsoon. This paper presents a detailed characterization of aerosols over the IGP and their radiative effects during the premonsoon season (April-May-June) when dust transport constitutes the bulk of the regional aerosol loading, using ground radiometric and spaceborne observations. During the dust-laden period, there is a strong response of surface shortwave flux to aerosol absorption indicated by the diurnally averaged forcing efficiency of -70 Wm(-2) per unit optical depth. The simulated aerosol single-scattering albedo, constrained by surface flux and aerosol measurements, is estimated to be 0.89 +/- 0.01 (at similar to 550 nm) with diurnal mean surface and top-of-atmosphere forcing values ranging from -11 to -79.8 Wm(-2) and + 1.4 to + 12 Wm(-2), respectively, for the premonsoon period. The model-simulated solar heating rate profile peaks in the lower troposphere with enhanced heating penetrating into the middle troposphere (5-6 km), caused by vertically extended aerosols over the IGP with peak altitude of similar to 5 km as indicated by spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization observations. On a long-term climate scale, our analysis, on the basis of microwave satellite measurements of tropospheric temperatures from 1979 to 2007, indicates accelerated annual mean warming rates found over the Himalayan-Hindu Kush region (0.21 degrees C/decade +/- 0.08 degrees C/decade) and underscores the potential role of enhanced aerosol solar absorption in the maximum warming localized over the western Himalayas (0.26 degrees C/decade +/- 0.09 degrees C/decade) that significantly exceed the entire HKHT and global warming rates. We believe the accelerated warming rates reported here are critical to both the South Asian summer monsoon and hydro-glaciological resource variability in the Himalayan-Hindu Kush snowpack and therefore to the densely populated downstream regions. C1 [Gautam, Ritesh] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Gautam, Ritesh; Hsu, N. Christina; Lau, K. -M.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. RP Gautam, R (reprint author), Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. EM ritesh.gautam@nasa.gov RI Gautam, Ritesh/E-9776-2010; Hsu, N. Christina/H-3420-2013; Lau, William /E-1510-2012 OI Gautam, Ritesh/0000-0002-2177-9346; Lau, William /0000-0002-3587-3691 FU NASA FX This work is supported by grant from the NASA EOS Program, managed by Hal Maring. We thank the various agencies, portals, and science teams for making the ground and satellite data used in this study available in public domain, namely, AERONET, CALIPSO, CERES, MODIS, and MSU/RSS. Efforts of the AERONET PIs (B. Holben and R. Singh) in establishing and maintaining the Kanpur site are also acknowledged. We thank the anonymous reviewers for the useful comments in improving an earlier version of the manuscript. NR 85 TC 81 Z9 81 U1 2 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 10 PY 2010 VL 115 AR D17208 DI 10.1029/2010JD013819 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 649GH UT WOS:000281755600007 ER PT J AU Petropavlovskikh, I Ray, E Davis, SM Rosenlof, K Manney, G Shetter, R Hall, SR Ullmann, K Pfister, L Hair, J Fenn, M Avery, M Thompson, AM AF Petropavlovskikh, I. Ray, E. Davis, S. M. Rosenlof, K. Manney, G. Shetter, R. Hall, S. R. Ullmann, K. Pfister, L. Hair, J. Fenn, M. Avery, M. Thompson, A. M. TI Low-ozone bubbles observed in the tropical tropopause layer during the TC4 campaign in 2007 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID COUNTERFLOW VIRTUAL IMPACTOR; AIR-MASS CHARACTERISTICS; MONITORING INSTRUMENT; TRAJECTORY CALCULATIONS; DEEP CONVECTION; PACIFIC-OCEAN; POLAR VORTEX; SATELLITE; CLIMATOLOGY; OZONESONDES AB In the summer of 2007, the NASA DC-8 aircraft took part in the Tropical Composition, Cloud and Climate Coupling campaign based in San Jose, Costa Rica. During this campaign, multiple in situ and remote-sensing instruments aboard the aircraft measured the atmospheric composition of the tropical tropopause layer (TTL) in the equatorial region around Central and South America. During the 17 July flight off the Ecuadorian coast, well-defined "bubbles" of anomalously low-ozone concentration (less than 75 ppbv) were detected above the aircraft in the TTL at the altitude near 365 K (between 14 and 16 km) and at similar to 3 degrees S and similar to 82 degrees W. Backward trajectories from meteorological analyses and the aircraft in situ measurements suggest that the ozone-depleted air mass originated from deep convection in the equatorial eastern Pacific and/or Panama Bight regions at least 5 days before observation by the DC-8; this was not a feature produced by local convection. Given uncertainties known in regard to trajectories calculated from global reanalysis, it is not possible to identify the exact convective system that produced this particular low-ozone anomaly, but only the general origin from a region of high convective activity. However, the fact that the feature apparently maintained its coherency for at least 5 days suggests a significant contribution to the chemical composition of the tropical upper troposphere portion of the TTL from convective systems followed by quasi-horizontal transport. It also suggests that mixing time scales for these relatively small spatial features are greater than 5 days. C1 [Petropavlovskikh, I.; Ray, E.; Davis, S. M.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Petropavlovskikh, I.; Ray, E.; Davis, S. M.; Rosenlof, K.] NOAA, Earth Syst Res Lab, GMD, Boulder, CO 80303 USA. [Manney, G.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Manney, G.] New Mexico Inst Min & Technol, Socorro, NM 87801 USA. [Shetter, R.; Hall, S. R.; Ullmann, K.] Natl Ctr Atmospher Res, Div Atmospher Chem, ESSL, Boulder, CO 80303 USA. [Pfister, L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Hair, J.; Avery, M.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Fenn, M.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Thompson, A. M.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. RP Petropavlovskikh, I (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. EM irina.petro@noaa.gov; anne@met.psu.edu RI Davis, Sean/C-9570-2011; Manager, CSD Publications/B-2789-2015; Rosenlof, Karen/B-5652-2008; Ray, Eric/D-5941-2013; Thompson, Anne /C-3649-2014 OI Davis, Sean/0000-0001-9276-6158; Rosenlof, Karen/0000-0002-0903-8270; Ray, Eric/0000-0001-8727-9849; Thompson, Anne /0000-0002-7829-0920 FU NASA; Radiation Science Program; Tropospheric Chemistry Program FX This work was supported by the NASA Headquarters Atmospheric Composition Focus Area including the Upper Atmospheric Research Program (Michael Kurylo, program manager), the Radiation Science Program (Hal Maring, program manager), and the Tropospheric Chemistry Program (Jim Crawford, program manager). We gratefully acknowledge helpful discussions with R. McPeters (NASA, Goddard), K. Chance (Harvard University), and E. Hilsenrath (NASA Headquarters). We also emphasize the crucial contributions of the pilots and crew of the NASA DC-8 aircrafts. We extend our gratitude to mission scientists (Brian Toon and Dave Starr) and DC-8 platform scientists (Mark Schoeberl and Paul Wennberg) for planning and successfully executing the TC4 campaign. We greatly appreciate support from the Aura HIRDLS, OMI, and MLS teams for providing us with the coincident data. We extend our special thanks to J. Gille and S. Karol (HIRDLS, NCAR) for help with data quality, analysis, and discussion. We also thank Marc Kroon (OMI, KNMI) for help with the OMI DOAS data analysis, updates, and conscientious figures. The OMI-TOMS and OMI-DOAS total ozone data were obtained from the NASA Goddard Earth Sciences (GES) Data and Information Services Center, home of the GES Distributed Active Archive Center. Work at the Jet Propulsion Laboratory, California Institute of Technology, was done under contract with NASA. We extend special thanks to Kurt Severance (NASA, Langley) and William Daffer (NASA, JPL) for help preparing the 3-D graphics in record short time. Finally, we acknowledge the hard work by Gary A. Morris (Valparaiso University) and Alex Bryan and David Lutz (Valparaiso University undergraduates), who were responsible for all 25 ozonesonde launches from Las Tablas. Without their effort, we would have no balloon data from Panama. NR 58 TC 6 Z9 6 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 10 PY 2010 VL 115 AR D00J16 DI 10.1029/2009JD012804 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 649GH UT WOS:000281755600001 ER PT J AU Hofmann, DC AF Hofmann, Douglas C. TI Shape Memory Bulk Metallic Glass Composites SO SCIENCE LA English DT Editorial Material ID TENSILE DUCTILITY; MATRIX COMPOSITES; SCIENCE C1 CALTECH, Jet Prop Lab, Engn & Sci Directorate, Pasadena, CA 91109 USA. RP Hofmann, DC (reprint author), CALTECH, Jet Prop Lab, Engn & Sci Directorate, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM dch@jpl.nasa.gov NR 14 TC 85 Z9 86 U1 16 U2 111 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 10 PY 2010 VL 329 IS 5997 BP 1294 EP 1295 DI 10.1126/science.1193522 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 647YR UT WOS:000281657300023 PM 20829474 ER PT J AU Niles, PB Boynton, WV Hoffman, JH Ming, DW Hamara, D AF Niles, Paul B. Boynton, William V. Hoffman, John H. Ming, Douglas W. Hamara, Dave TI Stable Isotope Measurements of Martian Atmospheric CO2 at the Phoenix Landing Site SO SCIENCE LA English DT Article ID ALLAN HILLS 84001; SNC METEORITES; WEATHERING PRODUCTS; VOLATILE EVOLUTION; CALCIUM-CARBONATE; MARS; OXYGEN; EETA-79001; ALH84001; RATIOS AB Carbon dioxide is a primary component of the martian atmosphere and reacts readily with water and silicate rocks. Thus, the stable isotopic composition of CO2 can reveal much about the history of volatiles on the planet. The Mars Phoenix spacecraft measurements of carbon isotopes [referenced to the Vienna Pee Dee belemnite (VPDB)] [delta C-13(VPDB) = -2.5 +/- 4.3 per mil (parts per thousand)] and oxygen isotopes [referenced to the Vienna standard mean ocean water (VSMOW)] (delta O-18(VSMOW) = 31.0 +/- 5.7 parts per thousand), reported here, indicate that CO2 is heavily influenced by modern volcanic degassing and equilibration with liquid water. When combined with data from the martian meteorites, a general model can be constructed that constrains the history of water, volcanism, atmospheric evolution, and weathering on Mars. This suggests that low-temperature water-rock interaction has been dominant throughout martian history, carbonate formation is active and ongoing, and recent volcanic degassing has played a substantial role in the composition of the modern atmosphere. C1 [Niles, Paul B.; Ming, Douglas W.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Boynton, William V.; Hamara, Dave] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Hoffman, John H.] Univ Texas Dallas, Dept Phys, Dallas, TX 75080 USA. RP Niles, PB (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. EM paul.b.niles@nasa.gov NR 30 TC 30 Z9 32 U1 1 U2 15 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 10 PY 2010 VL 329 IS 5997 BP 1334 EP 1337 DI 10.1126/science.1192863 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 647YR UT WOS:000281657300036 PM 20829484 ER PT J AU Yu, FQ Luo, G Bates, TS Anderson, B Clarke, A Kapustin, V Yantosca, RM Wang, YX Wu, SL AF Yu, Fangqun Luo, Gan Bates, Timothy S. Anderson, Bruce Clarke, Antony Kapustin, Vladimir Yantosca, Robert M. Wang, Yuxuan Wu, Shiliang TI Spatial distributions of particle number concentrations in the global troposphere: Simulations, observations, and implications for nucleation mechanisms SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ION-MEDIATED NUCLEATION; ACID-WATER NUCLEATION; SULFURIC-ACID; AEROSOL CONCENTRATIONS; ULTRAFINE PARTICLES; SIZE DISTRIBUTION; BOUNDARY-LAYER; MODEL; RATES; EMISSIONS AB Particle number concentration in the troposphere is an important parameter controlling the climate and health impacts of atmospheric aerosols. We show that nucleation rates and total particle number concentrations in the troposphere, predicted by different nucleation schemes, differ significantly. Our extensive comparisons of simulated results with land-, ship-, and aircraft-based measurements indicate that, among six widely used nucleation schemes involving sulfuric acid, only the ion-mediated nucleation (IMN) scheme can reasonably account for both absolute values (within a factor of similar to 2) and spatial distributions of particle number concentrations in the whole troposphere. Binary homogeneous nucleation (BHN) schemes significantly underpredict particle number concentration in the lower troposphere (below similar to 500 mbar), especially in the boundary layer over major continents (by a factor of up to similar to 10). BHN is also insignificant in the upper troposphere based on a recent kinetically self-consistent nucleation model constrained by multiple independent laboratory data. Previous conclusions about the importance of BHN in the upper troposphere should be revisited. Empirical activation and kinetic nucleation formulas significantly overpredict the particle number concentrations over tropical and subtropical oceans (by a factor of up to similar to 10 in the boundary layer), and the overpredictions extend from ocean surface to around similar to 400 mbar. This study represents the first comprehensive comparison of global particle number simulations with relevant measurements that have a 3-D global spatial coverage. Our results suggest that ion-mediated H2SO4-H2O nucleation appears to dominate over neutral H2SO4-H2O nucleation, not only in the lower troposphere but also in the middle and upper troposphere. C1 [Yu, Fangqun; Luo, Gan] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12203 USA. [Anderson, Bruce] NASA, Langley Res Ctr, Sci Directorate, Chem & Dynam Branch, Hampton, VA 23681 USA. [Bates, Timothy S.] Natl Ocean & Atmospher Adm, Pacific Marine Environm Lab, Seattle, WA 98115 USA. [Clarke, Antony; Kapustin, Vladimir] Univ Hawaii Manoa, Dept Oceanog, Honolulu, HI 96822 USA. [Wang, Yuxuan] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. [Wu, Shiliang] Michigan Technol Univ, Dept Geol & Min Engn & Sci, Houghton, MI 49931 USA. [Wu, Shiliang] Michigan Technol Univ, Dept Civil & Environm Engn, Houghton, MI 49931 USA. [Yantosca, Robert M.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. RP Yu, FQ (reprint author), SUNY Albany, Atmospher Sci Res Ctr, 251 Fuller Rd, Albany, NY 12203 USA. EM yfq@asrc.cestm.albany.edu RI Yu, Fangqun/F-3708-2011; Wang, Yuxuan/C-6902-2014; Yantosca, Robert/F-7920-2014; Bates, Timothy/L-6080-2016 OI Yu, Fangqun/0000-0003-0874-4883; Wang, Yuxuan/0000-0002-1649-6974; Yantosca, Robert/0000-0003-3781-1870; FU NSF [AGS-0942106]; NASA [NNX08AK48G]; EPA [R83428601] FX This study is supported by the NSF under grant AGS-0942106 and by NASA under grant NNX08AK48G. S.W. acknowledges funding support from EPA grant R83428601. The GEOS-Chem model is managed by the Atmospheric Chemistry Modeling Group at Harvard University with support from the NASA Atmospheric Chemistry Modeling and Analysis Program. NR 60 TC 63 Z9 63 U1 6 U2 23 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 9 PY 2010 VL 115 AR D17205 DI 10.1029/2009JD013473 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 649GG UT WOS:000281755500006 ER PT J AU O'Byrne, G Martin, RV van Donkelaar, A Joiner, J Celarier, EA AF O'Byrne, G. Martin, R. V. van Donkelaar, A. Joiner, J. Celarier, E. A. TI Surface reflectivity from the Ozone Monitoring Instrument using the Moderate Resolution Imaging Spectroradiometer to eliminate clouds: Effects of snow on ultraviolet and visible trace gas retrievals SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID NORTHERN-HEMISPHERE; SPECTRAL ALBEDO; GOME MEASUREMENTS; TROPOSPHERIC NO2; COVERED SURFACES; MODIS; PRODUCTS; SPACE; UV; ALGORITHM AB Satellite retrievals of tropospheric composition from measurements of solar backscatter require accurate information about surface reflectivity. We use clear-sky data from the Ozone Monitoring Instrument (OMI) to determine global surface reflectivity under both snow-covered and snow-free conditions at 354 nm. Clear-sky scenes are determined using cloud and aerosol data from the Moderate Resolution Imaging Spectroradiometer/Aqua satellite instrument that flies 12 min ahead of OMI/Aura. The result is a database of OMI-observed Lambertian equivalent reflectivity (LER) that does not rely on statistical methods to eliminate cloud and aerosol contamination. We apply this database to evaluate previous climatologies of surface reflectivity. Except for regions of seasonal snow cover, agreement is best with a climatology from OMI, which selects the surface reflectivity from a histogram of observed LER (mean difference, 0.0002; standard deviation, 0.011). Three other climatologies of surface reflectivity from Total Ozone Mapping Spectrometer, Global Ozone Monitoring Experiment, and OMI, based on minimum observed LER, are less consistent with our cloud-and aerosol-filtered data set (mean difference, -0.008, 0.012, and -0.002; standard deviation, 0.022, 0.026, and 0.033). Snow increases the sensitivity of solar backscatter measurements at ultraviolet and visible wavelengths to trace gases in the lower troposphere. However, all four existing LER climatologies poorly represent seasonal snow. Surface reflectivity over snow-covered lands depends strongly on the vegetation type covering the surface. The monthly variation of snow-covered reflectivity varies by less than 0.1 in fall and winter. Applying our snow-covered surface reflectivity database to OMI NO2 retrievals could change the retrieved NO2 column by 20%-50% over large regions with seasonal snow cover. C1 [O'Byrne, G.; Martin, R. V.; van Donkelaar, A.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada. [Martin, R. V.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Joiner, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celarier, E. A.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. RP O'Byrne, G (reprint author), Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada. EM randall.martin@dal.ca RI Joiner, Joanna/D-6264-2012; Martin, Randall/C-1205-2014 OI Martin, Randall/0000-0003-2632-8402 FU NASA; Canadian Foundation for Climate and Atmospheric Science FX Terry O'Byrne and two anonymous reviewers provided helpful comments that improved this manuscript. We thank the OMI and MODIS teams as well as Environment Canada for making their data publicly available. This research was supported by NASA and the Canadian Foundation for Climate and Atmospheric Science. NR 57 TC 10 Z9 10 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 8 PY 2010 VL 115 AR D17305 DI 10.1029/2009JD013079 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 649GF UT WOS:000281755400002 ER PT J AU Abadie, J Abbott, BP Abbott, R Abernathy, M Accadia, T Acerneseac, F Adams, C Adhikari, R Ajith, P Allen, B Allen, G Ceron, EA Amin, RS Anderson, SB Anderson, WG Antonuccia, F Aoudiaa, S Arain, MA Araya, M Aronsson, M Arun, KG Aso, Y Aston, S Astonea, P Atkinson, DE Aufmuth, P Aulbert, C Babak, S Baker, P Ballardin, G Ballmer, S Barker, D Barnum, S Baroneac, F Barr, B Barriga, P Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Bauchrowitz, J Bauera, TS Behnke, B Beker, MG Benacquista, M Bertolini, A Betzwieser, J Beveridge, N Beyersdorf, PT Bigottaab, S Bilenko, IA Billingsley, G Birch, J Birindellia, S Biswas, R Bitossi, M Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Bloma, M Blomberg, A Boccara, C Bock, O Bodiya, TP Bondarescu, R Bondu, F Bonelli, L Bork, R Born, M Bose, S Bosi, L Boyle, M Braccini, S Bradaschia, C Brady, PR Braginsky, VB Brau, JE Breyer, J Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Budzynski, R Bulik, T Bulten, HJ Buonanno, A Burguet-Castell, J Burmeister, O Buskulic, D Byer, RL Cadonati, L Cagnoli, G Calloni, E Camp, JB Campagna, E Campsie, P Cannizzo, J Cannon, KC Canuel, B Cao, J Capano, C Carbognani, F Caride, S Caudill, S Cavagli, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chalermsongsak, T Chalkley, E Charlton, P Mottin, EC Chelkowski, S Chen, Y Chincarini, A Christensen, N Chua, SSY Chung, CTY Clark, D Clark, J Clayton, JH Cleva, F Coccia, E Colacino, CN Colas, J Colla, A Colombini, M Conte, R Cook, D Corbitt, TR Corda, C Cornish, N Corsi, A Costa, CA Coulon, JP Coward, D Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Culter, RM Cumming, A Cunningham, L Cuoco, E Dahl, K Danilishin, SL Dannenberg, R D'Antonio, S Danzmann, K Dari, A Das, K Dattilo, V Daudert, B Davier, M Davies, G Davis, A Daw, EJ Day, R Dayanga, T De Rosa, R Debra, D Degallaix, J Del Prete, M Dergachev, V DeRosa, R DeSalvo, R Devanka, P Dhurandhar, S Fiore, L Di Lieto, A Di Palma, I Emilio, MD Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Doomes, EE Dorsher, S Douglas, ESD Dragocd, M Drever, RWP Driggers, JC Dueck, J Dumas, JC Eberle, T Edgar, M Edwards, M Effler, A Ehrens, P Engel, R Etzel, T Evans, M Evans, T Fafone, V Fairhurst, S Fan, Y Farr, BF Fazi, D Fehrmann, H Feldbaum, D Ferrante, I Fidecaro, F Finn, LS Fiori, I Flaminio, R Flanigan, M Flasch, K Foley, S Forrest, C Forsi, E Fotopoulos, N Fournier, JD Franc, J Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fulda, P Fyffe, M Gammaitoni, L Garofoli, JA Garufiab, F Gemme, G Genin, E Gennai, A Gholami, I Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Gill, C Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Graef, C Granata, M Grant, A Gras, S Gray, C Greenhalgh, RJS Gretarsson, AM Greveriea, C Grosso, R Grote, H Grunewald, S Guidi, GM Gustafson, EK Gustafson, R Hage, B Hall, P Hallam, JM Hammer, D Hammond, G Hanks, J Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Haughian, K Hayama, K Heefner, J Heitmann, H Hello, P Heng, IS Heptonstall, A Hewitson, M Hild, S Hirose, E Hoak, D Hodge, KA Holt, K Hosken, DJ Hough, J Howell, E Hoyland, D Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Ingram, DR Inta, R Isogai, T Ivanov, A Jaranowski, P Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kanner, J Katsavounidis, E Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Khalaidovski, A Khalili, FY Khazanov, EA Kim, C Kim, H King, PJ Kinzel, DL Kissel, JS Klimenko, S Kondrashov, V Kopparapu, R Koranda, S Kowalska, I Kozak, D Krause, T Kringel, V Krishnamurthy, S Krishnan, B Krolak, A Kuehn, G Kullman, J Kumar, R Kwee, P Landry, M Lang, M Lantz, B Lastzka, N Lazzarini, A Leaci, P Leong, J Leonor, I Leroy, N Letendre, N Li, J Li, TGF Lin, H Lindquist, PE Lockerbie, NA Lodhia, D Lorenzinia, M Lorietteb, V Lormand, M Losurdo, G Lu, P Luan, J Lubinski, M Lucianetti, A Luck, H Lundgren, A Machenschalk, B MacInnis, M Mackowski, JM Mageswaran, M Mailand, K Majoranaa, E Mak, C Man, N Mandel, I Mandic, V Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McIntyre, G McIvor, G McKechan, DJA Meadors, G Mehmet, M Meier, T Melatos, A Melissinos, AC Mendell, G Menendez, DF Mercer, RA Merill, L Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mino, Y Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moe, B Mohan, M Mohanty, SD Mohapatra, SRP Moraru, D Moreau, J Moreno, G Morgado, N Morgia, A Morioka, T Mors, K Mosca, S Moscatelli, V Mossavi, K Mours, B MowLowry, C Mueller, G Mukherjee, S Mullavey, A Muller-Ebhardt, H Munch, J Murray, PG Nash, T Nawrodt, R Nelson, J Neri, I Newton, G Nishizawa, A Nocera, F Nolting, D Ochsner, E O'Dell, J Ogin, GH Oldenburg, RG O'Reilly, B O'Shaughnessy, R Osthelder, C Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pagliaroli, G Palladino, L Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Pardi, S Pareja, M Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pedraza, M Pekowsky, L Penn, S Peralta, C Perreca, A Persichetti, G Pichot, M Pickenpack, M Piergiovanni, F Pietkae, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Postiglione, F Prato, M Predoi, V Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, L Puncken, O Punturoa, M Puppo, P Quetschke, V Raab, FJ Rabaste, O Rabeling, DS Radke, T Radkins, H Raffai, P Rakhmanov, M Rankins, B Rapagnani, P Raymond, V Re, V Reed, CM Reed, T Regimbau, T Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Roberts, P Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rover, C Rogstad, S Rolland, L Rollins, J Romano, JD Romano, R Romie, JH Rosinskag, D Rowan, S Udiger, AR Ruggi, P Ryan, K Sakata, S Sakosky, M Salemi, F Sammut, L de la Jordana, LS Sandberg, V Sannibale, V Santamaria, L Santostasi, G Saraf, S Sassolas, B Sathyaprakash, BS Sato, S Satterthwaite, M Saulson, PR Savage, R Schilling, R Schnabel, R Schofield, R Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Seifert, F Sellers, D Sengupta, AS Sentenac, D Sergeev, A Shaddock, DA Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Singer, A Sintes, AM Skelton, G Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Somiya, K Sorazu, B Speirits, FC Stein, AJ Stein, LC Steinlechner, S Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, A Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thomas, P Thorne, KA Thorne, KS Thrane, E Thuering, A Titsler, C Tokmakov, KV Toncelli, A Tonelli, M Torres, C Torrie, CI Tournefier, E Travasso, F Traylor, G Trias, M Trummer, J Tseng, K Ugolini, D Urbanek, K Vahlbruch, H Vaishnav, B Vajente, G Vallisneri, M van den Branda, JFJ Van den Broeck, C Van der Puttena, S van der Sluys, MV van Veggel, AA Vass, S Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G Veitch, J Veitch, PJ Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, A Vineta, JY Vocca, H Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Wanner, A Ward, RL Wasa, M Wei, P Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wessels, P West, M Westphal, T Wette, K Whelan, JT EWhitcomb, S White, DJ Whiting, BF Wilkinson, C Willems, PA Williams, L Willke, B Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Yakushin, I Yamamoto, H Yamamoto, K Yeaton-Massey, D Yoshida, S Yu, PP Yvert, M Zanolin, M Zhang, L Zhang, Z Zhao, C Zotov, N Zucker, ME Zweizig, J Belczynski, K AF Abadie, J. Abbott, B. P. Abbott, R. Abernathy, M. Accadia, T. Acerneseac, F. Adams, C. Adhikari, R. Ajith, P. Allen, B. Allen, G. Ceron, E. Amador Amin, R. S. Anderson, S. B. Anderson, W. G. Antonuccia, F. Aoudiaa, S. Arain, M. A. Araya, M. Aronsson, M. Arun, K. G. Aso, Y. Aston, S. Astonea, P. Atkinson, D. E. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barker, D. Barnum, S. Baroneac, F. Barr, B. Barriga, P. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Bauchrowitz, J. Bauera, Th S. Behnke, B. Beker, M. G. Benacquista, M. Bertolini, A. Betzwieser, J. Beveridge, N. Beyersdorf, P. T. Bigottaab, S. Bilenko, I. A. Billingsley, G. Birch, J. Birindellia, S. Biswas, R. Bitossi, M. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Bloma, M. Blomberg, A. Boccara, C. Bock, O. Bodiya, T. P. Bondarescu, R. Bondu, F. Bonelli, L. Bork, R. Born, M. Bose, S. Bosi, L. Boyle, M. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Brau, J. E. Breyer, J. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Budzynski, R. Bulik, T. Bulten, H. J. Buonanno, A. Burguet-Castell, J. Burmeister, O. Buskulic, D. Byer, R. L. Cadonati, L. Cagnoli, G. Calloni, E. Camp, J. B. Campagna, E. Campsie, P. Cannizzo, J. Cannon, K. C. Canuel, B. Cao, J. Capano, C. Carbognani, F. Caride, S. Caudill, S. Cavagli, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chalermsongsak, T. Chalkley, E. Charlton, P. Mottin, E. Chassande Chelkowski, S. Chen, Y. Chincarini, A. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Clark, D. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, R. Cook, D. Corbitt, T. R. Corda, C. Cornish, N. Corsi, A. Costa, C. A. Coulon, J. P. Coward, D. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Culter, R. M. Cumming, A. Cunningham, L. Cuoco, E. Dahl, K. Danilishin, S. L. Dannenberg, R. D'Antonio, S. Danzmann, K. Dari, A. Das, K. Dattilo, V. Daudert, B. Davier, M. Davies, G. Davis, A. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. Debra, D. Degallaix, J. Del Prete, M. Dergachev, V. DeRosa, R. DeSalvo, R. Devanka, P. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Di Palma, I. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Doomes, E. E. Dorsher, S. Douglas, E. S. D. Dragocd, M. Drever, R. W. P. Driggers, J. C. Dueck, J. Dumas, J. C. Eberle, T. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Engel, R. Etzel, T. Evans, M. Evans, T. Fafone, V. Fairhurst, S. Fan, Y. Farr, B. F. Fazi, D. Fehrmann, H. Feldbaum, D. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Flaminio, R. Flanigan, M. Flasch, K. Foley, S. Forrest, C. Forsi, E. Fotopoulos, N. Fournier, J. D. Franc, J. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gammaitoni, L. Garofoli, J. A. Garufiab, F. Gemme, G. Genin, E. Gennai, A. Gholami, I. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Gill, C. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Graef, C. Granata, M. Grant, A. Gras, S. Gray, C. Greenhalgh, R. J. S. Gretarsson, A. M. Greveriea, C. Grosso, R. Grote, H. Grunewald, S. Guidi, G. M. Gustafson, E. K. Gustafson, R. Hage, B. Hall, P. Hallam, J. M. Hammer, D. Hammond, G. Hanks, J. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Haughian, K. Hayama, K. Heefner, J. Heitmann, H. Hello, P. Heng, I. S. Heptonstall, A. Hewitson, M. Hild, S. Hirose, E. Hoak, D. Hodge, K. A. Holt, K. Hosken, D. J. Hough, J. Howell, E. Hoyland, D. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Ingram, D. R. Inta, R. Isogai, T. Ivanov, A. Jaranowski, P. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kanner, J. Katsavounidis, E. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, C. Kim, H. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kondrashov, V. Kopparapu, R. Koranda, S. Kowalska, I. Kozak, D. Krause, T. Kringel, V. Krishnamurthy, S. Krishnan, B. Krolak, A. Kuehn, G. Kullman, J. Kumar, R. Kwee, P. Landry, M. Lang, M. Lantz, B. Lastzka, N. Lazzarini, A. Leaci, P. Leong, J. Leonor, I. Leroy, N. Letendre, N. Li, J. Li, T. G. F. Lin, H. Lindquist, P. E. Lockerbie, N. A. Lodhia, D. Lorenzinia, M. Lorietteb, V. Lormand, M. Losurdo, G. Lu, P. Luan, J. Lubinski, M. Lucianetti, A. Lueck, H. Lundgren, A. Machenschalk, B. MacInnis, M. Mackowski, J. M. Mageswaran, M. Mailand, K. Majoranaa, E. Mak, C. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McIvor, G. McKechan, D. J. A. Meadors, G. Mehmet, M. Meier, T. Melatos, A. Melissinos, A. C. Mendell, G. Menendez, D. F. Mercer, R. A. Merill, L. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mino, Y. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moe, B. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moraru, D. Moreau, J. Moreno, G. Morgado, N. Morgia, A. Morioka, T. Mors, K. Mosca, S. Moscatelli, V. Mossavi, K. Mours, B. MowLowry, C. Mueller, G. Mukherjee, S. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murray, P. G. Nash, T. Nawrodt, R. Nelson, J. Neri, I. Newton, G. Nishizawa, A. Nocera, F. Nolting, D. Ochsner, E. O'Dell, J. Ogin, G. H. Oldenburg, R. G. O'Reilly, B. O'Shaughnessy, R. Osthelder, C. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pagliaroli, G. Palladino, L. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Pardi, S. Pareja, M. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pedraza, M. Pekowsky, L. Penn, S. Peralta, C. Perreca, A. Persichetti, G. Pichot, M. Pickenpack, M. Piergiovanni, F. Pietkae, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Postiglione, F. Prato, M. Predoi, V. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturoa, M. Puppo, P. Quetschke, V. Raab, F. J. Rabaste, O. Rabeling, D. S. Radke, T. Radkins, H. Raffai, P. Rakhmanov, M. Rankins, B. Rapagnani, P. Raymond, V. Re, V. Reed, C. M. Reed, T. Regimbau, T. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Roberts, P. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Roever, C. Rogstad, S. Rolland, L. Rollins, J. Romano, J. D. Romano, R. Romie, J. H. Rosinskag, D. Rowan, S. Udiger, A. R. Ruggi, P. Ryan, K. Sakata, S. Sakosky, M. Salemi, F. Sammut, L. Sancho de la Jordana, L. Sandberg, V. Sannibale, V. Santamaria, L. Santostasi, G. Saraf, S. Sassolas, B. Sathyaprakash, B. S. Sato, S. Satterthwaite, M. Saulson, P. R. Savage, R. Schilling, R. Schnabel, R. Schofield, R. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Seifert, F. Sellers, D. Sengupta, A. S. Sentenac, D. Sergeev, A. Shaddock, D. A. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Singer, A. Sintes, A. M. Skelton, G. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Somiya, K. Sorazu, B. Speirits, F. C. Stein, A. J. Stein, L. C. Steinlechner, S. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Thuering, A. Titsler, C. Tokmakov, K. V. Toncelli, A. Tonelli, M. Torres, C. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Trias, M. Trummer, J. Tseng, K. Ugolini, D. Urbanek, K. Vahlbruch, H. Vaishnav, B. Vajente, G. Vallisneri, M. van den Branda, J. F. J. Van den Broeck, C. Van der Puttena, S. van der Sluys, M. V. van Veggel, A. A. Vass, S. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. Vineta, J-Y Vocca, H. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Wanner, A. Ward, R. L. Wasa, M. Wei, P. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. EWhitcomb, S. White, D. J. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, L. Willke, B. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yeaton-Massey, D. Yoshida, S. Yu, P. P. Yvert, M. Zanolin, M. Zhang, L. Zhang, Z. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. Belczynski, K. CA LIGO Sci Collaboration & Virgo TI Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors SO CLASSICAL AND QUANTUM GRAVITY LA English DT Review ID GAMMA-RAY BURSTS; MASS BLACK-HOLES; NEUTRON-STAR BINARIES; CONSTRAINING POPULATION; GLOBULAR-CLUSTERS; SYNTHESIS MODELS; SUPERNOVA RATES; MERGERS; COMPANIONS; RADIATION AB We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo. Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters and are still uncertain. Themost confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our galaxy. These yield a likely coalescence rate of 100 Myr(-1) per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 Myr(-1) MWEG(-1) to 1000 Myr(-1) MWEG(-1) (Kalogera et al 2004 Astrophys. J. 601 L179; Kalogera et al 2004 Astrophys. J. 614 L137 ( erratum)). We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our advanced detectors. Using the detector sensitivities derived from these data, we find a likely detection rate of 0.02 per year for Initial LIGO-Virgo interferometers, with a plausible range between 2 x 10(-4) and 0.2 per year. The likely binary neutron-star detection rate for the Advanced LIGO-Virgo network increases to 40 events per year, with a range between 0.4 and 400 per year. C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Araya, M.; Aronsson, M.; Aso, Y.; Ballmer, S.; Bertolini, A.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cannon, K. C.; Cepeda, C.; Chalermsongsak, T.; Coyne, D. C.; Dannenberg, R.; Daudert, B.; Dergachev, V.; DeSalvo, R.; Driggers, J. C.; Ehrens, P.; Engel, R.; Etzel, T.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Kozak, D.; Lazzarini, A.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Mak, C.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Mitra, S.; Ochsner, E.; Ogin, G. H.; Osthelder, C.; Patel, P.; Pedraza, M.; Privitera, S.; Robertson, N. A.; Sannibale, V.; Searle, A. C.; Seifert, F.; Sengupta, A. S.; Singer, A.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Vass, S.; Villar, A.; Wallace, L.; Ward, R. L.; Weinstein, A. J.; EWhitcomb, S.; Willems, P. A.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Beveridge, N.; Campsie, P.; Chalkley, E.; Cumming, A.; Cunningham, L.; Edgar, M.; Gill, C.; Grant, A.; Hammond, G.; Haughian, K.; Heng, I. S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Martin, I. W.; Miller, J.; Murray, P. G.; Nash, T.; Nelson, J.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Scott, J.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Tokmakov, K. V.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Accadia, T.; Buskulic, D.; Dietz, A.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Trummer, J.; Verkindt, D.; Yvert, M.] Univ Savoie, Lab Annecy Le Vieux Phys Particules LAPP, IN2P3, CNRS, F-74941 Annecy Le Vieux, France. [Acerneseac, F.; Baroneac, F.; Calloni, E.; De Rosa, R.; Di Fiore, L.; Garufiab, F.; Milano, L.; Mosca, S.; Pardi, S.; Persichetti, G.; Romano, R.] Univ Naples Federico 2, Sez Napolia, I-80126 Naples, Italy. [Acerneseac, F.; Baroneac, F.; Romano, R.] Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Adams, C.; Birch, J.; Bridges, D. O.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Hild, S.; Holt, K.; Huynh-Dinh, T.; Kinzel, D. L.; Lormand, M.; Meyer, M. S.; Nishizawa, A.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] LIGO, Livingston Observ, Livingston, LA 70754 USA. [Allen, B.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Burmeister, O.; Dahl, K.; Danzmann, K.; Di Palma, I.; Dueck, J.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Giampanis, S.; Gossler, S.; Graef, C.; Grote, H.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kullman, J.; Lastzka, N.; Leaci, P.; Leong, J.; Lueck, H.; Machenschalk, B.; Mehmet, M.; Messenger, C.; Mors, K.; Mossavi, K.; Mueller-Ebhardt, H.; Pareja, M.; Pickenpack, M.; Pletsch, H. J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Udiger, A. R.; Salemi, F.; Schilling, R.; Schnabel, R.; Schulz, B.; Steinlechner, S.; Taylor, J. R.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Allen, B.; Ceron, E. Amador; Biswas, R.; Brady, P. R.; Burguet-Castell, J.; Clayton, J. H.; Creighton, J. D. E.; Flasch, K.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Moe, B.; Oldenburg, R. G.; Papa, M. A.; Price, L. R.; Siemens, X.; Skelton, G.; Vaulin, R.; Wiseman, A. G.; Yu, P. P.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, G.; Byer, R. L.; Clark, D.; Debra, D.; Lantz, B.; Lu, P.; Tseng, K.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Amin, R. S.; Caudill, S.; Costa, C. A.; DeRosa, R.; Effler, A.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Kissel, J. S.; Slutsky, J.; Sung, M.; Wen, S.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Antonuccia, F.; Astonea, P.; Colla, A.; Corsi, A.; Frasca, S.; Majoranaa, E.; Moscatelli, V.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] INFN, Sez Roma, I-00185 Rome, Italy. [Colla, A.; Colombini, M.; Frasca, S.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Aoudiaa, S.; Birindellia, S.; Bondu, F.; Brillet, A.; Cleva, F.; Coulon, J. P.; Fournier, J. D.; Greveriea, C.; Heitmann, H.; Man, N.; Pichot, M.; Regimbau, T.; Vineta, J-Y] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Arain, M. A.; Das, K.; Dooley, K. L.; Feldbaum, D.; Klimenko, S.; Lin, H.; Lucianetti, A.; Martin, R. M.; Mitselmakher, G.; Mueller, G.; Ottens, R. S.; Pankow, C.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Wasa, M.] Univ Paris 11, LAL, IN2P3, CNRS, F-91898 Orsay, France. [Boccara, C.; Lorietteb, V.; Moreau, J.] CNRS, ESPCI, F-75005 Paris, France. [Aston, S.; Chelkowski, S.; Cruise, A. M.; Culter, R. M.; Freise, A.; Fulda, P.; Hallam, J. M.; Hoyland, D.; Lodhia, D.; Page, A.; Perreca, A.; Vecchio, A.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Atkinson, D. E.; Barker, D.; Barton, M. A.; Bland, B.; Cook, D.; Douglas, E. S. D.; Flanigan, M.; Gray, C.; Hanks, J.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sakosky, M.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO, Hanford Observ, Richland, WA 99352 USA. [Aufmuth, P.; Bizouard, M. A.; Danzmann, K.; Hage, B.; Kwee, P.; Lueck, H.; Meier, T.; Thuering, A.; Vahlbruch, H.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Anderson, W. G.; Babak, S.; Behnke, B.; Gholami, I.; Grunewald, S.; Krishnan, B.; Papa, M. A.; Peralta, C.; Radke, T.; Robinson, E. L.; Santamaria, L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.; Ingram, D. R.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Huet, D.; Marque, J.; Mohan, M.; Newton, G.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.] European Gravitat Observ, I-56021 Cascina, Pi, Italy. [Barnum, S.; Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Barriga, P.; Blair, D.; Coward, D.; Dumas, J. C.; Fan, Y.; Gras, S.; Howell, E.; Ju, L.; Merill, L.; Miao, H.; Susmithan, S.; Wen, L.; Zhang, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Corbitt, T. R.; Donovan, F.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Stein, A. J.; Stein, L. C.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Barsuglia, M.; Mottin, E. Chassande; Granata, M.; Rabaste, O.] Univ Denis Diderot Paris 7, APC, CNRS, UMR7164 IN2P3,Observ Paris, Paris, France. [Bartos, I.; Marka, S.; Marka, Z.; Matone, L.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Bauera, Th S.; Beker, M. G.; Bloma, M.; Bulten, H. J.; Li, T. G. F.; Rabeling, D. S.; van den Branda, J. F. J.; Van der Puttena, S.] NIKHEF H, Natl Inst Subat Phys, NL-1009 DB Amsterdam, Netherlands. [Bulten, H. J.; Rabeling, D. S.; van den Branda, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Benacquista, M.; Creighton, T. D.; Diaz, M.; Grosso, R.; Li, J.; Mohanty, S. D.; Mukherjee, S.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Vaishnav, B.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Bigottaab, S.; Bonelli, L.; Corda, C.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Bigottaab, S.; Bitossi, M.; Bonelli, L.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; Corda, C.; Del Prete, M.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] INFN, Sez Pisa, I-56127 Pisa, Italy. [Del Prete, M.; Mantovani, M.] Univ Siena, I-53100 Siena, Italy. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Tarabrin, S. P.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Blomberg, A.; Cadonati, L.; Hoak, D.; Mohapatra, S. R. P.; Rogstad, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Bondarescu, R.; Finn, L. S.; Kopparapu, R.; Lang, M.; Menendez, D. F.; O'Shaughnessy, R.; Owen, B. J.; Titsler, C.] Penn State Univ, University Pk, PA 16802 USA. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Dari, A.; Gammaitoni, L.; Marchesoni, F.; Nawrodt, R.; Punturoa, M.; Travasso, F.; Vocca, H.] INFN, Sez Perugia, I-6123 Perugia, Italy. [Dari, A.; Gammaitoni, L.; Nawrodt, R.; Travasso, F.] Univ Perugia, I-6123 Perugia, Italy. [Bertolini, A.; Boyle, M.; Chen, Y.; Luan, J.; Mino, Y.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Wen, L.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Schofield, R.] Univ Oregon, Eugene, OR 97403 USA. [Brown, D. A.; Capano, C.; Garofoli, J. A.; Hirose, E.; Lundgren, A.; Pekowsky, L.; Saulson, P. R.; Wei, P.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Budzynski, R.] Univ Warsaw, PL-00681 Warsaw, Poland. [Bulik, T.; Kowalska, I.] Univ Warsaw, Astron Observ, PL-00681 Warsaw, Poland. [Bulik, T.] CAMK PAN, PL-00716 Warsaw, Poland. [Jaranowski, P.; Pietkae, M.] Bialystok Univ, PL-15424 Bialystok, Poland. [Krolak, A.] IPJ, PL-05400 Otwock, Poland. [Rosinskag, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Buonanno, A.; Kanner, J.; Nocera, F.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Cagnoli, G.; Campagna, E.; Guidi, G. M.; Lorenzinia, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] INFN, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Campagna, E.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino, I-61029 Urbino, Italy. [Camp, J. B.; Cannizzo, J.; Stroeer, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cao, J.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Goetz, E.; Gustafson, R.; Meadors, G.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Cavagli, M.; Rankins, B.] Univ Mississippi, University, MS 38677 USA. [Charlton, P.] Charles Sturt Univ, Wagga, NSW 2678, Australia. [Chincarini, A.; Gemme, G.; Prato, M.] INFN, Sez Genova, I-16146 Genoa, Italy. [Christensen, N.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Chua, S. S. Y.; Inta, R.; McClelland, D. E.; MowLowry, C.; Mullavey, A.; Satterthwaite, M.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wette, K.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Melbourne, Vic 3010, Australia. [Clark, J.; Davies, G.; Devanka, P.; Edwards, M.; Fairhurst, S.; Hall, P.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Van den Broeck, C.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Minenkov, Y.; Morgia, A.; Pagliaroli, G.; Palladino, L.; Rocchi, A.] INFN, Sez Roma Tor Vergata, I-67100 Laquila, Italy. [Coccia, E.; Fafone, V.; Morgia, A.] Univ Roma Tor Vergata, I-67100 Laquila, Italy. [Emilio, M. Di Paolo; Pagliaroli, G.; Palladino, L.] Univ Aquila, I-67100 Laquila, Italy. [Conte, R.; Postiglione, F.] Univ Salerno, I-84084 Salerno, Italy. [Davis, A.; Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Daw, E. J.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Dhurandhar, S.] Inter Univ, Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Doomes, E. E.; McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [Doomes, E. E.; McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Dorsher, S.; Harms, J.; Kandhasamy, S.; Mandic, V.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA. [Prodi, G. A.; Re, V.] INFN, Grp Collegato Trento, I-38050 Padua, Italy. [Prodi, G. A.; Re, V.] Univ Trent, I-38050 Padua, Italy. [Dragocd, M.; Vedovato, G.] INFN, Sez Padova, I-35131 Padua, Italy. [Dragocd, M.] Univ Padua, I-35131 Padua, Italy. [Drever, R. W. P.] CALTECH, Pasadena, CA 91125 USA. [Farr, B. F.; Fazi, D.; Kalogera, V.; Krishnamurthy, S.; Mandel, I.; Raymond, V.; van der Sluys, M. V.] Northwestern Univ, Evanston, IL 60208 USA. [Flaminio, R.; Franc, J.; Mackowski, J. M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] Univ Lyon 1, CNRS, Lab Mat Avancs, IN2P3, F-69622 Villeurbanne, France. [Forrest, C.; Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Frei, M.; Krause, T.; Matzner, R. A.; McIvor, G.] Univ Texas Austin, Austin, TX 78712 USA. [Frei, Z.; Raffai, P.] Eotvos Lorand Univ, ELTE, H-1053 Budapest, Hungary. [Greenhalgh, R. J. S.; Nolting, D.; O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Hayama, K.; Kawamura, S.; Morioka, T.; Neri, I.; Sakata, S.; Sato, S.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Husa, S.; Sancho de la Jordana, L.; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Khazanov, E. A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, C.] Lund Observ, SE-22100 Lund, Sweden. [Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [Belczynski, K.] Los Alamos Natl Lab, CCS 2, ISR Grp 1, Los Alamos, NM USA. [Belczynski, K.] Univ Warsaw, Astron Observ, PL-00478 Warsaw, Poland. RP Abadie, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. EM ilyamandel@chgk.info RI Mitrofanov, Valery/D-8501-2012; Puppo, Paola/J-4250-2012; Colla, Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Punturo, Michele/I-3995-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Parisi, Maria/D-2817-2013; Bondu, Francois/A-2071-2012; Toncelli, Alessandra/A-5352-2012; Vocca, Helios/F-1444-2010; Prato, Mirko/D-8531-2012; Hild, Stefan/A-3864-2010; prodi, giovanni/B-4398-2010; Santamaria, Lucia/A-7269-2012; Costa, Cesar/G-7588-2012; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; Kawabe, Keita/G-9840-2011; Neri, Igor/F-1482-2010; Hammond, Giles/B-7861-2009; Shaddock, Daniel/A-7534-2011; Gammaitoni, Luca/B-5375-2009; McClelland, David/E-6765-2010; Strain, Kenneth/D-5236-2011; Martin, Iain/A-2445-2010; Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; Freise, Andreas/F-8892-2011; Abernathy, Matthew/G-1113-2011; Marchesoni, Fabio/A-1920-2008; Ferrante, Isidoro/F-1017-2012; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Ward, Robert/I-8032-2014; Mow-Lowry, Conor/F-8843-2015; Finn, Lee Samuel/A-3452-2009; Ottaway, David/J-5908-2015; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Gehring, Tobias/A-8596-2016; Howell, Eric/H-5072-2014; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Sigg, Daniel/I-4308-2015; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Steinlechner, Sebastian/D-5781-2013; Re, Virginia /F-6403-2013; Pitkin, Matthew/I-3802-2013; Vyatchanin, Sergey/J-2238-2012; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Lucianetti, Antonio/G-7383-2014; Losurdo, Giovanni/K-1241-2014; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Khalili, Farit/D-8113-2012; Vecchio, Alberto/F-8310-2015 OI Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Punturo, Michele/0000-0001-8722-4485; Allen, Bruce/0000-0003-4285-6256; Zhao, Chunnong/0000-0001-5825-2401; Veitch, John/0000-0002-6508-0713; Garufi, Fabio/0000-0003-1391-6168; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Kanner, Jonah/0000-0001-8115-0577; Bondu, Francois/0000-0001-6487-5197; Toncelli, Alessandra/0000-0003-4400-8808; Vocca, Helios/0000-0002-1200-3917; Prato, Mirko/0000-0002-2188-8059; prodi, giovanni/0000-0001-5256-915X; Gorodetsky, Michael/0000-0002-5159-2742; Vicere, Andrea/0000-0003-0624-6231; Neri, Igor/0000-0002-9047-9822; Shaddock, Daniel/0000-0002-6885-3494; Gammaitoni, Luca/0000-0002-4972-7062; McClelland, David/0000-0001-6210-5842; Strain, Kenneth/0000-0002-2066-5355; Lueck, Harald/0000-0001-9350-4846; Marchesoni, Fabio/0000-0001-9240-6793; Granata, Massimo/0000-0003-3275-1186; Aulbert, Carsten/0000-0002-1481-8319; Di Paolo Emilio, Maurizio/0000-0002-9558-3610; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Sorazu, Borja/0000-0002-6178-3198; Zweizig, John/0000-0002-1521-3397; O'Shaughnessy, Richard/0000-0001-5832-8517; Pathak, Devanka/0000-0002-1768-8353; Husa, Sascha/0000-0002-0445-1971; Pinto, Innocenzo M./0000-0002-2679-4457; Guidi, Gianluca/0000-0002-3061-9870; Coccia, Eugenio/0000-0002-6669-5787; Vetrano, Flavio/0000-0002-7523-4296; Nishizawa, Atsushi/0000-0003-3562-0990; calloni, enrico/0000-0003-4819-3297; Swinkels, Bas/0000-0002-3066-3601; Drago, Marco/0000-0002-3738-2431; Hallam, Jonathan Mark/0000-0002-7087-0461; Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; Fairhurst, Stephen/0000-0001-8480-1961; Matichard, Fabrice/0000-0001-8982-8418; Ferrante, Isidoro/0000-0002-0083-7228; Travasso, Flavio/0000-0002-4653-6156; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Stein, Leo/0000-0001-7559-9597; Milano, Leopoldo/0000-0001-9487-5876; Santamaria, Lucia/0000-0002-5986-0449; Ward, Robert/0000-0001-5503-5241; Finn, Lee Samuel/0000-0002-3937-0688; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Gehring, Tobias/0000-0002-4311-2593; Howell, Eric/0000-0001-7891-2817; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Sigg, Daniel/0000-0003-4606-6526; Steinlechner, Sebastian/0000-0003-4710-8548; Pitkin, Matthew/0000-0003-4548-526X; Miao, Haixing/0000-0003-4101-9958; Losurdo, Giovanni/0000-0003-0452-746X; Danilishin, Stefan/0000-0001-7758-7493; Vecchio, Alberto/0000-0002-6254-1617 FU Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation and the Alfred P Sloan Foundation; European Commission FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation and the Alfred P Sloan Foundation. One of us (CK) would like to acknowledge the European Commission. NR 60 TC 619 Z9 619 U1 20 U2 137 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD SEP 7 PY 2010 VL 27 IS 17 AR 173001 DI 10.1088/0264-9381/27/17/173001 PG 25 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 631AC UT WOS:000280317700001 ER PT J AU Chembo, YK Yu, N AF Chembo, Yanne K. Yu, Nan TI Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators SO PHYSICAL REVIEW A LA English DT Article ID MICROWAVE-OSCILLATORS; CALCIUM-FLUORIDE; MIE SCATTERING; NOBEL LECTURE; RAMAN LASER; WAVE-GUIDES; RESONANCES; MICRORESONATORS; MICROCAVITIES; MICROSPHERES AB We describe a general framework based on modal expansion for the study of optical-frequency combs generated with monolithic whispering-gallery-mode resonators. We obtain a set of time-domain rate equations describing the dynamics of each mode as a function of the main characteristics of the cavity, namely, Kerr nonlinearity, absorption, coupling losses, and cavity dispersion (geometrical and material). A stability analysis of the various side modes is performed, which finds analytically the threshold power needed for comb generation. We show that the various whispering gallery modes are excited in a nontrivial way, strongly dependent on the value of the overall cavity dispersion. We demonstrate that the combs are not simply generated through a direct transfer of energy from the pumped mode to all their neighbors but rather through complex intermediate interactions. Anomalous cavity dispersion is also demonstrated to be critical for these cascading processes, and comb generation is thereby unambiguously linked to modulational instability. This theory accurately describes the emergence of spectral modulation and free spectral-range tunability in the comb. It also enables a clear understanding of the various phenomena responsible for the spectral span limitation. Our theoretical predictions are in excellent agreement with the numerical simulations, and they successfully explain the internal mechanisms responsible for the generation of hundreds of Kerr modes in monolithic whispering-gallery-mode resonators. C1 [Chembo, Yanne K.; Yu, Nan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Chembo, YK (reprint author), Univ Franche Comte, Phys Mol Lab, CNRS, Opt Dept,FEMTO ST Inst,UMR 6174, 16 Route Gray, F-25030 Besancon, France. EM yanne.chembo@jpl.nasa.gov FU NASA FX This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Y.K.C. acknowledges support from the NASA postdoctoral program, administered by Oak Ridge Associated Universities (ORAU). The authors would also like to acknowledge logistic support from the JPL Supercomputing and Visualization Facility. NR 49 TC 135 Z9 136 U1 6 U2 65 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD SEP 7 PY 2010 VL 82 IS 3 AR 033801 DI 10.1103/PhysRevA.82.033801 PG 18 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 647TK UT WOS:000281642000004 ER PT J AU Leduc, HG Bumble, B Day, PK Eom, BH Gao, JS Golwala, S Mazin, BA McHugh, S Merrill, A Moore, DC Noroozian, O Turner, AD Zmuidzinas, J AF Leduc, Henry G. Bumble, Bruce Day, Peter K. Eom, Byeong Ho Gao, Jiansong Golwala, Sunil Mazin, Benjamin A. McHugh, Sean Merrill, Andrew Moore, David C. Noroozian, Omid Turner, Anthony D. Zmuidzinas, Jonas TI Titanium nitride films for ultrasensitive microresonator detectors SO APPLIED PHYSICS LETTERS LA English DT Article ID KINETIC INDUCTANCE DETECTORS; SUPERCONDUCTORS; LIFETIMES; TIN AB Titanium nitride (TiN(x)) films are ideal for use in superconducting microresonator detectors for the following reasons: (a) the critical temperature varies with composition (0 < T(c) <5 K); (b) the normal-state resistivity is large, p(n) similar to 100 mu Omega cm, facilitating efficient photon absorption and providing a large kinetic inductance and detector responsivity; and (c) TiN films are very hard and mechanically robust. Resonators using reactively sputtered TiN films show remarkably low loss (Q(i)>10(7)) and have noise properties similar to resonators made using other materials, while the quasiparticle lifetimes are reasonably long, 10-200 mu s. TiN microresonators should therefore reach sensitivities well below 10(-19) W Hz(-1/2). (C) 2010 American Institute of Physics. [doi: 10.1063/1.3480420] C1 [Eom, Byeong Ho; Golwala, Sunil; Moore, David C.; Noroozian, Omid; Zmuidzinas, Jonas] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Leduc, Henry G.; Bumble, Bruce; Day, Peter K.; Turner, Anthony D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gao, Jiansong] Natl Inst Stand & Technol, Boulder, CO 80305 USA. [Mazin, Benjamin A.; McHugh, Sean; Merrill, Andrew] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. RP Zmuidzinas, J (reprint author), CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. EM jonas@caltech.edu RI Mazin, Ben/B-8704-2011; Noroozian, Omid/G-3519-2011 OI Mazin, Ben/0000-0003-0526-1114; Noroozian, Omid/0000-0002-9904-1704 FU National Aeronautics and Space Administration (NASA) [NNG06GC71G, NNX10AC83G]; Jet Propulsion Laboratory (JPL); Gordon and Betty Moore Foundation FX This research was carried out in part at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The devices used in this work were fabricated at the JPL Microdevices Laboratory. This work was supported in part by NASA grants NNG06GC71G and NNX10AC83G, JPL, and the Gordon and Betty Moore Foundation. NR 27 TC 99 Z9 99 U1 3 U2 37 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 6 PY 2010 VL 97 IS 10 AR 102509 DI 10.1063/1.3480420 PG 3 WC Physics, Applied SC Physics GA 658GP UT WOS:000282478800031 ER PT J AU Bedka, KM Minnis, P AF Bedka, Kristopher M. Minnis, Patrick TI GOES 12 observations of convective storm variability and evolution during the Tropical Composition, Clouds and Climate Coupling Experiment field program SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID STRATOSPHERIC WATER-VAPOR; SATELLITE-OBSERVATIONS; DEEP CONVECTION; THUNDERSTORM; TROPOPAUSE; CIRRUS; TEMPERATURE; TRANSPORT; METEOSAT; FLORIDA AB This study characterizes convective clouds that occurred during the Tropical Composition, Clouds and Climate Coupling Experiment as observed within GOES imagery. Overshooting deep convective cloud tops (OT) that penetrate through the tropical tropopause layer and into the stratosphere are of particular interest in this study. The results show that there were clear differences in the areal coverage of anvil cloud, deep convection, and OT activity over land and water and also throughout the diurnal cycle. The offshore waters of Panama, northwest Colombia, and El Salvador were the most active regions for OT-producing convection. A cloud object tracking system is used to monitor the duration and areal coverage of convective cloud complexes as well as the time evolution of their cloud-top microphysical properties. The mean lifetime for these complexes is 5 hours, with some existing for longer than 16 hours. Deep convection is found within the anvil cloud during 60% of the storm lifetime and covered 24% of the anvil cloud. The cloud-top height and optical depth at the storm core followed a reasonable pattern, with maximum values occurring 20% into the storm lifetime. The values in the surrounding anvil cloud peaked at a relative age of 20%-50% before decreasing as the convective cloud complex decayed. Ice particle diameter decreased with distance from the core but generally increased with storm age. These results, which characterize the average convective system during the experiment, should be valuable for formulating and validating convective cloud process models. C1 [Bedka, Kristopher M.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Minnis, Patrick] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Bedka, KM (reprint author), Sci Syst & Applicat Inc, Hampton, VA 23666 USA. EM kristopher.m.bedka@nasa.gov RI Minnis, Patrick/G-1902-2010 OI Minnis, Patrick/0000-0002-4733-6148 FU NASA; Department of Energy [DE-AI02-07ER64546] FX This research was supported by the NASA Radiation Science Program TC4 project, the NASA Applied Sciences Program, and the Department of Energy Atmospheric Radiation Measurement Program through interagency agreement DE-AI02-07ER64546. The authors thank Kirk Ayers for processing the TC4 VIST microphysical retrievals and the University of Wisconsin Space Science and Engineering Center for providing the GOES 12 data and McIDAS software support. NR 45 TC 6 Z9 6 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 3 PY 2010 VL 115 AR D00J13 DI 10.1029/2009JD013227 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 646WE UT WOS:000281574000001 ER PT J AU Parodi, A Tanelli, S AF Parodi, Antonio Tanelli, Simone TI Influence of turbulence parameterizations on high-resolution numerical modeling of tropical convection observed during the TC4 field campaign SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SCALE THERMODYNAMIC FORCINGS; DEEP MOIST CONVECTION; PART I; HORIZONTAL RESOLUTION; VERTICAL DIFFUSION; SIMULATION; SYSTEMS; FORECASTS; CLOUDS; MICROPHYSICS AB In this work, deep moist convective processes, observed during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4) over the East Pacific Intertropical Convergence Zone, were modeled by means of high-resolution numerical simulations with the Weather Research and Forecasting model. Three different turbulence parameterizations and two microphysical parameterizations are used. Their impact on the spatio-temporal structure of predicted convective fields is compared to TC4 observations from a geostationary imager, airborne precipitation radar, and dropsondes. It is found that the large-eddy simulation turbulence closure "upscaled" to the terra incognita range of grid spacings (i.e., 0.1-1 km) is best suited to model the deep convective processes under examination. C1 [Parodi, Antonio] CIMA Res Fdn, I-17100 Savona, Italy. [Tanelli, Simone] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Parodi, A (reprint author), CIMA Res Fdn, Via A Magliotto 2, I-17100 Savona, Italy. EM antonio.parodi@cimafoundation.org FU NASA; Italian Civil Protection Department FX This work was performed at Jet Propulsion Laboratory under contract with NASA, in collaboration with the CIMA Research Foundation with the support of the Italian Civil Protection Department. Support from the NASA Cloud and Radiation Program, Precipitation Measurement Missions Program, and Earth Sciences New Investigator Program is gratefully acknowledged. We are grateful to W.-K. Tao, F. Siccardi, R. Rotunno, Z. S. Haddad, K. A. Emanuel, S. L. Durden, and M. Antonelli for enlightening discussions and useful comments. NR 52 TC 8 Z9 8 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 3 PY 2010 VL 115 AR D00J14 DI 10.1029/2009JD013302 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 646WE UT WOS:000281574000003 ER PT J AU Zhang, ZB Platnick, S Yang, P Heidinger, AK Comstock, JM AF Zhang, Zhibo Platnick, Steven Yang, Ping Heidinger, Andrew K. Comstock, Jennifer M. TI Effects of ice particle size vertical inhomogeneity on the passive remote sensing of ice clouds SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID DROPLET EFFECTIVE RADIUS; BULK SCATTERING PROPERTIES; MU-M WINDOW; CIRRUS CLOUDS; RADIATIVE PROPERTIES; TROPICAL CIRRUS; RESOLUTION; RETRIEVAL; MODIS; PARAMETERIZATION AB The solar reflectance bi-spectral (SRBS) and infrared split-window (IRSpW) methods are two of the most popular techniques for passive ice cloud property retrievals from multispectral imagers. Ice clouds are usually assumed to be vertically homogeneous in global operational algorithms based on these methods, although significant vertical variations of ice particle size are typically observed in ice clouds. In this study we investigate uncertainties in retrieved optical thickness, effective particle size, and ice water path introduced by a homogeneous cloud assumption in both the SRBS and IRSpW methods, and focus on whether the assumption can lead to significant discrepancies between the two methods. The study simulates the upwelling spectral radiance associated with vertically structured clouds and passes the results through representative SRBS and IRSpW retrieval algorithms. Cloud optical thickness is limited to values for which IRSpW retrievals are possible (optical thickness less than about 7). When the ice cloud is optically thin and yet has a significant ice particle size vertical variation, it is found that both methods tend to underestimate the effective radius and ice water path. The reason for the underestimation is the nonlinear dependence of ice particle scattering properties (extinction and single scattering albedo) on the effective radius. Because the nonlinearity effect is stronger in the IRSpW than the SRBS method, the IRSpW-based IWP tends to be smaller than the SRBS counterpart. When the ice cloud is moderately optically thick, the IRSpW method is relatively insensitive to cloud vertical structure and effective radius retrieval is weighted toward smaller ice particle size, while the weighting function makes the SRBS method more sensitive to the ice particle size in the upper portion of the cloud. As a result, when ice particle size increases monotonically toward cloud base, the two methods are in qualitative agreement; in the event that ice particle size decreases toward cloud base, the effective radius and ice water path retrievals based on the SRBS method are substantially larger than those from the IRSpW. The main findings of this study suggest that the homogenous cloud assumption can affect the SRBS and IRSpW methods to different extents and, consequently, can lead to significantly different retrievals. Therefore caution should be taken when comparing and combining the ice cloud property retrievals from these two methods. C1 [Zhang, Zhibo] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Comstock, Jennifer M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Heidinger, Andrew K.] Natl Environm Satellite Data & Informat Serv, Ctr Satellite Applicat & Res, NOAA, Madison, WI 53706 USA. [Platnick, Steven] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. RP Zhang, ZB (reprint author), Univ Maryland, Goddard Earth Sci & Technol Ctr, 5523 Res Pk Dr,Ste 320, Baltimore, MD 21228 USA. EM zzbatmos@umbc.edu RI Yang, Ping/B-4590-2011; Zhang, Zhibo/D-1710-2010; Platnick, Steven/J-9982-2014; Heidinger, Andrew/F-5591-2010 OI Zhang, Zhibo/0000-0001-9491-1654; Platnick, Steven/0000-0003-3964-3567; Heidinger, Andrew/0000-0001-7631-109X FU NASA [NNX08AP57G]; DOE FX This work was funded in part by NASA's Radiation Sciences Program. P. Yang acknowledges NASA support (NNX08AP57G). The contribution from J. M. Comstock was supported by the DOE Atmospheric Radiation Measurement Program. The authors thank the two reviewers for their insightful comments, questions, and suggestions, which have helped to improve this manuscript. NR 72 TC 27 Z9 27 U1 2 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 3 PY 2010 VL 115 AR D17203 DI 10.1029/2010JD013835 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 646WE UT WOS:000281574000006 ER PT J AU Selvans, MM Plaut, JJ Aharonson, O Safaeinili, A AF Selvans, M. M. Plaut, J. J. Aharonson, O. Safaeinili, A. TI Internal structure of Planum Boreum, from Mars advanced radar for subsurface and ionospheric sounding data SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID POLAR LAYERED DEPOSITS; REGION; STRATIGRAPHY; SURFACE; HISTORY; ORIGIN AB An investigation of the internal structure of the ice-rich Planum Boreum (PB) deposit at the north pole of Mars is presented, using 178 orbits of Mars advanced radar for subsurface and ionospheric sounding data. For each radargram, bright, laterally extensive surface and subsurface reflectors are identified and the time delay between them is converted to unit thicknesses, using a real dielectric constant of 3. Results include maps of unit thickness, for PB and its two constituent units, the stratigraphically older basal unit (BU) and the stratigraphically younger north polar layered deposits (NPLD). Maps of the individual units' surface elevation are also provided. Estimates of water ice volume in each unit are (1.3 +/- 0.2) x 10(6) km(3) in PB, (7.8 +/- 1.2) x 10(5) km(3) in the NPLD, and (4.5 +/- 1.0) x 10(5) km(3) in the BU. No lithospheric deflection is apparent under PB, in agreement with previous findings for only the Gemina Lingula lobe, which suggests that a thick elastic lithosphere has existed at the north pole of Mars since before the emplacement of the BU. The extent of BU material in the Olympia Planum lobe of PB is directly detected, providing a more accurate map of BU extent than previously available from imagery and topography. A problematic area for mapping the BU extent and thickness is in the distal portion of the 290 degrees E-300 degrees E region, where MARSIS data show no subsurface reflectors, even though the BU is inferred to be present from other lines of evidence. C1 [Selvans, M. M.; Aharonson, O.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Plaut, J. J.; Safaeinili, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Selvans, MM (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM selvans@gps.caltech.edu FU NASA FX We dedicate this paper to the late Ali Safaeinili, whose passion, skill, and support were both inspiring and essential for the completion of this study. Part of the research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support from the NASA-Mars Express project is gratefully acknowledged. NR 28 TC 13 Z9 13 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD SEP 3 PY 2010 VL 115 AR E09003 DI 10.1029/2009JE003537 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 647QE UT WOS:000281632900001 ER PT J AU Lohn, AJ Onishi, T Kobayashi, NP AF Lohn, Andrew J. Onishi, Takehiro Kobayashi, Nobuhiko P. TI Optical properties of indium phosphide nanowire ensembles at various temperatures SO NANOTECHNOLOGY LA English DT Article ID INP NANOWIRES; DEPENDENT PHOTOLUMINESCENCE; TWINNING SUPERLATTICES; BAND-GAP; NANONEEDLES; SURFACES AB Ensembles that contain two types (zincblende and wurtzite) of indium phosphide nanowires grown on non-single crystalline surfaces were studied by micro-photoluminescence and micro-Raman spectroscopy at various low temperatures. The obtained spectra are discussed with the emphasis on the effects of differing lattice types, geometries, and crystallographic orientations present within an ensemble of nanowires grown on non-single crystalline surfaces. In the photoluminescence spectra, a typical Varshni dependence of band gap energy on temperature was observed for emissions from zincblende nanowires and in the high temperature regime energy transfer from excitonic transitions and band-edge transitions was identified. In contrast, the photoluminescence emissions associated with wurtzite nanowires were rather insensitive to temperature. Raman spectra were collected simultaneously from zincblende and wurtzite nanowires coexisting in an ensemble. Raman peaks of the wurtzite nanowires are interpreted as those related to the zincblende nanowires by a folding of the phonon dispersion. C1 [Lohn, Andrew J.] Univ Calif Santa Cruz, Baskin Sch Engn, Santa Cruz, CA 95064 USA. Univ Calif Santa Cruz, Adv Studies Labs, NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Lohn, AJ (reprint author), Univ Calif Santa Cruz, Baskin Sch Engn, Santa Cruz, CA 95064 USA. RI Kobayashi, Nobuhiko/E-3834-2012 NR 22 TC 14 Z9 14 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD SEP 3 PY 2010 VL 21 IS 35 AR 355702 DI 10.1088/0957-4484/21/35/355702 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 636MY UT WOS:000280742000018 PM 20689159 ER PT J AU Hill, CJ Soibel, A Keo, SA Mumolo, M Ting, DZ Gunapala, SD AF Hill, C. J. Soibel, A. Keo, S. A. Mumolo, M. Ting, D. Z. Gunapala, S. D. TI Mid-infrared quantum dot barrier photodetectors with extended cutoff wavelengths SO ELECTRONICS LETTERS LA English DT Article AB A method to extend the cutoff wavelength of mid-infrared barrier photodetectors by incorporating self-assembled InSb quantum dots into the active area of the detector is demonstrated. This approach enables the extension of the cutoff wavelength of barrier photodetectors from 4.2 to 6 mu m, demonstrating infrared response at temperatures up to 225 K. C1 [Hill, C. J.; Soibel, A.; Keo, S. A.; Mumolo, M.; Ting, D. Z.; Gunapala, S. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hill, CJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Alexander.Soibel@jpl.nasa.gov RI Soibel, Alexander/A-1313-2007 FU National Aeronautics and Space Administration FX This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the National Aeronautics and Space Administration. NR 5 TC 28 Z9 28 U1 2 U2 9 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 0013-5194 J9 ELECTRON LETT JI Electron. Lett. PD SEP 2 PY 2010 VL 46 IS 18 BP 1286 EP U71 DI 10.1049/el.2010.1844 PG 2 WC Engineering, Electrical & Electronic SC Engineering GA 648KY UT WOS:000281693800029 ER PT J AU Tsurutani, BT Horne, RB Pickett, JS Santolik, O Schriver, D Verkhoglyadova, OP AF Tsurutani, Bruce T. Horne, Richard B. Pickett, Jolene S. Santolik, Ondrej Schriver, David Verkhoglyadova, Olga P. TI Introduction to the special section on Chorus: Chorus and its role in space weather SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Editorial Material AB Chorus, a naturally occurring magnetospheric electromagnetic wave, is believed to be the result of a long chain of physical processes starting with supergranular circulation at the sun. The interaction of chorus with energetic electrons produces similar to MeV "killer" electrons that can disable Earth orbiting spacecraft. C1 [Tsurutani, Bruce T.; Verkhoglyadova, Olga P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tsurutani, Bruce T.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys Extraterr Phys, Braunschweig, Germany. [Horne, Richard B.] British Antarctic Survey, NERC, Cambridge CB3 0ET, England. [Pickett, Jolene S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Santolik, Ondrej] Inst Atmospher Phys, Dept Space Phys, Prague 14131 4, Czech Republic. [Santolik, Ondrej] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Schriver, David] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Verkhoglyadova, Olga P.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. RP Tsurutani, BT (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM bruce.tsurutani@jpl.nasa.gov RI Santolik, Ondrej/F-7766-2014; OI Verkhoglyadova, Olga/0000-0002-9295-9539; Horne, Richard/0000-0002-0412-6407 NR 2 TC 7 Z9 7 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP 2 PY 2010 VL 115 AR A00F01 DI 10.1029/2010JA015870 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647QL UT WOS:000281633600007 ER PT J AU Jones, B Matsyutenko, P Su, NC Chang, AHH Kaiser, RI AF Jones, Brant Matsyutenko, Pavlo Su, Nung C. Chang, Agnes H. H. Kaiser, Ralf I. TI Crossed Molecular Beam Study on the Ground State Reaction of Atomic Boron [B(P-2(j))] with Hydrogen Cyanide [HCN(X-1 Sigma(+))] SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID C-N NANOTUBES; DENSITY-FUNCTIONAL THERMOCHEMISTRY; LASER-ABLATION; AB-INITIO; INTERSTELLAR BORON; ORION ASSOCIATION; BONDING STRUCTURE; MASS-SPECTRUM; BCN; FILMS AB The linear boronisocyanide species, [BNC(X-1 Sigma(+))], represents the simplest triatomic molecule with three distinct, neighboring main group atoms of the second row of the periodic table of the elements: boron, carbon, and nitrogen. This makes boronisocyanide a crucial benchmark system to understand the chemical bonding and the electronic structure of small molecules, in particular when compared to the isoelectronic tricarbon molecule, [CCC(X-1 Sigma(+))]. However, a clean, directed synthesis of boronisocyanide a crucial prerequisite to study the properties of this molecule has remained elusive so far. Here, we combine crossed molecular beam experiments of ground state boron atoms (P-2(j)) with hydrogen cyanide with electronic structure calculations and reveal that the boronisocyanide molecule, [BNC(X-1 Sigma(+))], is formed as the exclusive product under gas phase single collision conditions. We also show that higher energy isomers such as the hitherto unnoticed, ring-strained cyclic BNC(X(3)A') structure, which is isoelectronic to the triplet, cyclic tricarbon molecule, [C-3(X(3)A(2)')], do exist as local minima. Our studies present the first directed synthesis and observation of gas phase boronisocyanide providing a doorway for further fundamental studies on one of the simplest triatomic molecules composed solely of group III-V elements. C1 [Jones, Brant; Matsyutenko, Pavlo; Kaiser, Ralf I.] Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. [Jones, Brant] Univ Hawaii Manoa, NASA Astrobiol Inst, Honolulu, HI 96822 USA. [Chang, Agnes H. H.] Natl Dong Hwa Univ, Dept Chem, Shoufeng 974, Hualien, Taiwan. RP Kaiser, RI (reprint author), Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. EM ralfk@hawaii.edu FU Air Force Office of Scientific Research [A9550-09-1-0177] FX This work was supported by the Air Force Office of Scientific Research (A9550-09-1-0177) (PM, RIK). B. J. thanks the NASA Postdoctoral Program at the NASA Astrobiology Institute, administered by Oak Ridge Associated Universities. NR 85 TC 0 Z9 0 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 2 PY 2010 VL 114 IS 34 BP 8999 EP 9006 DI 10.1021/jp104426f PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 641LW UT WOS:000281128900009 PM 20681533 ER PT J AU Peslier, AH Woodland, AB Bell, DR Lazarov, M AF Peslier, Anne H. Woodland, Alan B. Bell, David R. Lazarov, Marina TI Olivine water contents in the continental lithosphere and the longevity of cratons SO NATURE LA English DT Article ID UPPER-MANTLE BENEATH; SOUTHERN AFRICA; PERIDOTITE XENOLITHS; THERMAL EVOLUTION; SINGLE-CRYSTALS; KAAPVAAL CRATON; OXYGEN FUGACITY; EARTHS MANTLE; VISCOSITY; MINERALS AB Cratons, the ancient cores of continents, contain the oldest crust and mantle on the Earth (>2 Gyr old)(1). They extend laterally for hundreds of kilometres, and are underlain to depths of 180-250 km by mantle roots that are chemically and physically distinct from the surrounding mantle(2-4). Forming the thickest lithosphere on our planet, they act as rigid keels isolated from the flowing asthenosphere(5); however, it has remained an open question how these large portions of the mantle can stay isolated for so long from mantle convection. Key physical properties thought to contribute to this longevity include chemical buoyancy due to high degrees of melt-depletion and the stiffness imparted by the low temperatures of a conductive thermal gradient(2,6,7). Geodynamic calculations, however, suggest that these characteristics are not sufficient to prevent the lithospheric mantle from being entrained during mantle convection over billions of years(6,7). Differences in water content are a potential source of additional viscosity contrast between cratonic roots and ambient mantle owing to the well-established hydrolytic weakening effect in olivine(8-10), the most abundant mineral of the upper mantle. However, the water contents of cratonic mantle roots have to date been poorly constrained. Here we show that olivine in peridotite xenoliths from the lithosphere-asthenosphere boundary region of the Kaapvaal craton mantle root are water-poor and provide sufficient viscosity contrast with underlying asthenosphere to satisfy the stability criteria required by geodynamic calculations(9). Our results provide a solution to a puzzling mystery of plate tectonics, namely why the oldest continents, in contrast to short-lived oceanic plates, have resisted recycling into the interior of our tectonically dynamic planet. C1 [Peslier, Anne H.] ESCG, Houston, TX 77058 USA. [Peslier, Anne H.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Woodland, Alan B.; Lazarov, Marina] Goethe Univ Frankfurt, Inst Geosci, D-60438 Frankfurt, Germany. [Bell, David R.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. RP Peslier, AH (reprint author), ESCG, Mail Code JE23,2224 Bay Area Blvd, Houston, TX 77058 USA. EM anne.h.peslier@nasa.gov RI Lazarov, Marina/A-9592-2010; Peslier, Anne/F-3956-2010 FU NSF [EAR0802652] FX We thank M. Kurosawa for providing unpublished mineral data so that we could recalculate pressure-temperature conditions for his samples. We also thank C.-T. Lee, Z.-X. A. Li, F. Niu and A. D. Brandon for discussions. Earlier versions of this manuscript were improved by the comments of D. E. James. This work was supported by NSF grant EAR0802652. NR 49 TC 104 Z9 114 U1 4 U2 42 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD SEP 2 PY 2010 VL 467 IS 7311 BP 78 EP U108 DI 10.1038/nature09317 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 645MB UT WOS:000281461200038 PM 20811455 ER PT J AU Olivas, JD Wright, MC Christoffersen, R Cone, DM McDanels, SJ AF Olivas, J. D. Wright, M. C. Christoffersen, R. Cone, D. M. McDanels, S. J. TI Crystallographic oxide phase identification of char deposits obtained from space shuttle Columbia window debris SO ACTA ASTRONAUTICA LA English DT Article DE Transmission electron microscopy (TEM); Combustion; Titanium; Focused ion beam (FIB); Space shuttle ID PLASMA-SPRAYED COATINGS; MICROSTRUCTURE; ALLOY; SOLIDIFICATION; MORPHOLOGY; ZIRCONIA AB Char deposits on recovered fragments of space shuttle Columbia windowpanes were analyzed to further understand the events that occurred during orbiter reentry and breakup. The TEM analysis demonstrated that oxides of aluminum and titanium mixed with silicon oxides to preserve a history of thermal conditions to which portions of the vehicle were exposed. The presence of Ti during the beginning of the deposition process, along with the thermodynamic phase precipitation upon cool down, indicated that temperatures well above the Ti melt point were experienced. The stratified observations implied that additional exothermic reactions, expectedly metal combustion of a Ti-6Al-4V structure, had to occur for oxide formation. Results are significant for aerospace vehicles, where thermal protection system (TPS) breaches could cause material originally designed for substructural applications to be in direct path with reentry plasma. Published by Elsevier Ltd. C1 [Wright, M. C.; McDanels, S. J.] NASA, Kennedy Space Ctr, FL 32899 USA. [Olivas, J. D.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Christoffersen, R.] Sci Applicat Int Corp, Lyndon B Johnson Space Ctr, Houston, TX USA. RP Wright, MC (reprint author), NASA, Kennedy Space Ctr, FL 32899 USA. EM m.clara.wright@nasa.gov FU National Aeronautics and Space Administration FX This document was prepared under the sponsorship of the National Aeronautics and Space Administration. Neither the United States government nor any person acting on behalf of the United States government assumes any liability resulting from the use of the information contained in this document, or warrants that such use will be free from privately owned rights. NR 27 TC 0 Z9 0 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD SEP-OCT PY 2010 VL 67 IS 5-6 BP 553 EP 560 DI 10.1016/j.actaastro.2010.04.019 PG 8 WC Engineering, Aerospace SC Engineering GA 620AT UT WOS:000279472100005 ER PT J AU Parker, JS Davis, KE Born, GH AF Parker, Jeffrey S. Davis, Kathryn E. Born, George H. TI Chaining periodic three-body orbits in the Earth-Moon system SO ACTA ASTRONAUTICA LA English DT Article DE Earth-Moon orbits; Three-body trajectories; Low-energy; Mission design; Dynamical systems; Manifolds; Orbit transfers ID HETEROCLINIC CONNECTIONS; EXPLORATION NUMERIQUE; PROBLEME RESTREINT; HALO ORBITS; STABILITY AB In this paper, we describe methods to construct complex chains of orbit transfers in the planar circular restricted Earth-Moon three-body system using the invariant manifolds of unstable three-body orbits. It is shown that the Poincare map is a useful tool to identify and construct transfer trajectories from one orbit to another, i.e., homoclinic and heteroclinic orbit connections, with applications to practical spacecraft mission design. A multiple-shooting differential corrector is used to construct complex orbit chains and complex periodic orbits. The resulting complex periodic orbits are shown to be members of continuous families of such orbits, where the characteristics of each orbit in the family vary continuously from one end of the family to the other. Finally, we characterize the cost of constructing an orbit transfer between any two points along two libration orbits using a single maneuver. It is shown that a spacecraft requires substantially less AV to perform such single-maneuver transfers if the transfers are near heteroclinic connections in the corresponding phase space. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Parker, Jeffrey S.; Davis, Kathryn E.; Born, George H.] Univ Colorado, Colorado Ctr Astrodynam Res, Boulder, CO 80309 USA. RP Parker, JS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM parkerjs@gmail.com; katedavis22@gmail.com; george.born@colorado.edu FU NASA; National Science Foundation; Zonta International Amelia Earhart; Alliance for Graduate Education and the Professoriate FX This work has been completed under partial funding by a NASA Graduate Student Researchers Program (GSRP) Fellowship by the National Aeronautics and Space Administration through the Jet Propulsion Laboratory, California Institute of Technology, by a National Science Foundation Graduate Research Fellowship, by a Zonta International Amelia Earhart Fellowship, and by funds from the Alliance for Graduate Education and the Professoriate. NR 43 TC 8 Z9 8 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD SEP-OCT PY 2010 VL 67 IS 5-6 BP 623 EP 638 DI 10.1016/j.actaastro.2010.04.003 PG 16 WC Engineering, Aerospace SC Engineering GA 620AT UT WOS:000279472100012 ER PT J AU Sen, S Carranza, S Pillay, S AF Sen, S. Carranza, S. Pillay, S. TI Multifunctional Martian habitat composite material synthesized from in situ resources SO ADVANCES IN SPACE RESEARCH LA English DT Article DE In situ resources; Martian habitat structures; Multifunctional composites; Radiation shielding; Mechanical properties; Micrometeoroid impact resistance ID HUMAN EXPLORATION; MARS AB The two primary requirements for a Martian habitat structure include effective radiation shielding against the Galactic Cosmic Ray (GCR) environment and sufficient structural and thermal integrity. To significantly reduce the cost associated with transportation of such materials and structures from earth, it is imperative that such building materials should be synthesized primarily from Martian in situ resources. This paper illustrates the feasibility of such an approach. Experimental results are discussed to demonstrate the synthesis of polyethylene (PE) from a simulated Martian atmosphere and the fabrication of a composite material using simulated Martian regolith with PE as the binding material. The radiation shielding effectiveness of the proposed composites is analyzed using results from radiation transport codes and exposure of the samples to high-energy beams that serve as a terrestrial proxy for the GCR environment. Mechanical and ballistic impact resistance properties of the proposed composite as a function of composition, processing parameters, and thermal variations are also discussed to evaluate the multifunctionality of such in situ synthesized composite materials. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Sen, S.] NASA, George C Marshall Space Flight Ctr, BAE Syst, EM 30, Huntsville, AL 35812 USA. [Carranza, S.] Makel Engn Inc, Chico, CA 95973 USA. [Pillay, S.] Univ Alabama, Dept Mat Sci & Engn, Birmingham, AL 35294 USA. RP Sen, S (reprint author), NASA, George C Marshall Space Flight Ctr, BAE Syst, EM 30, Bldg 4464, Huntsville, AL 35812 USA. EM Subhayu.Sen-1@nasa.gov FU NASA FX The authors wish to acknowledge the NASA SBIR program for funding this effort. The authors are extremely grateful to Prof. S. Guetersloh of Texas A&M University, College Station, TX and the personnel at Plasma Processes Inc., Huntsville, Al and HIMAC, Chiba, Japan without whose assistance exposure of the samples to heavy ion beam would not be possible. The authors also wish to express their gratitude to Dr. M. Bhattacharya of Siemens Medical Solutions USA Inc., Chicago, IL for many insightful discussions on deep space radiation environment and experimental nuclear physics. The technical assistance received from Mr. William Seymour for composite sample fabrication is also acknowledged. NR 27 TC 1 Z9 1 U1 1 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD SEP 1 PY 2010 VL 46 IS 5 BP 582 EP 592 DI 10.1016/j.asr.2010.04.009 PG 11 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 640DL UT WOS:000281028000003 ER PT J AU Canan, J Bigelow, RT AF Canan, James Bigelow, Robert T. TI Robert T. Bigelow SO AEROSPACE AMERICA LA English DT Editorial Material C1 [Bigelow, Robert T.] NASA, Washington, DC USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0740-722X J9 AEROSPACE AM JI Aerosp. Am. PD SEP PY 2010 VL 48 IS 8 BP 10 EP 13 PG 4 WC Engineering, Aerospace SC Engineering GA V24JW UT WOS:000208407700009 ER PT J AU Park, MA Darmofal, DL AF Park, Michael A. Darmofal, David L. TI Validation of an Output-Adaptive, Tetrahedral Cut-Cell Method for Sonic Boom Prediction SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT AIAA 26th Applied Aerodynamics Conference CY AUG 18-21, 2008 CL Honolulu, HI SP Amer Inst Aeronaut & Astronaut ID UNSTRUCTURED GRIDS; TURBULENT FLOWS; FLUID-DYNAMICS; ALGORITHM; EQUATIONS; IMPLICIT; MESHES AB A cut-cell approach to computational fluid dynamics that uses the median dual of a tetrahedral background grid is described. The discrete adjoint is also calculated for an adaptive method to control error in a specified Output. The adaptive method is applied to sonic boom prediction by specifying an integral of offbody pressure signature as the output. These predicted signatures are compared to wind-tunnel measurements to validate the method for sonic boom prediction. Accurate midfield sonic boom pressure signatures are calculated with the Euler equations without the use of hybrid grid or signature propagation methods. Highly refined, shock-aligned anisotropic grids are produced by this method from coarse isotropic grids created without prior knowledge of shock locations. A heuristic reconstruction limiter provides stable flow and adjoint solution schemes while producing similar signatures to Barth-Jespersen and Venkatakrishnan limiters. The use of cut cells with an output-based adaptive scheme automates the volume grid generation task after a triangular mesh is generated for the cut surface. C1 [Park, Michael A.] NASA, Langley Res Ctr, Computat Aerosci Branch, Hampton, VA 23681 USA. [Darmofal, David L.] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA. RP Park, MA (reprint author), NASA, Langley Res Ctr, Computat Aerosci Branch, Mail Stop 128, Hampton, VA 23681 USA. NR 67 TC 7 Z9 8 U1 0 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD SEP PY 2010 VL 48 IS 9 BP 1928 EP 1945 DI 10.2514/1.J050111 PG 18 WC Engineering, Aerospace SC Engineering GA 646NK UT WOS:000281548100007 ER PT J AU Lee, BJ Liou, MS Kim, C AF Lee, Byung Joon Liou, Mena-Sing Kim, Chongam TI Optimizing a Boundary-Layer-Ingestion Offset Inlet by Discrete Adjoint Approach SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT 19th AIAA Computational Fluid Dynamics Conference CY JUN 22-25, 2009 CL San Antonio, TX SP Amer Inst Aeronaut & Astronaut ID AUTOMATED DESIGN; DIFFUSER; FLOW AB A large amount of low-momentum boundary-layer flow ingesting into a flush-mounted inlet can cause significant total pressure loss and distortion to the extent beyond operability of a fan/compressor. To improve the quality of incoming flow into the engine, shape optimization of the surface geometry at the inlet entrance has been carried out using the discrete adjoint method; the inlet-floor shape is parameterized by the use of control points on B-spline surface patches. To resolve the complicated geometry flexibly and wall-bounded turbulent flow accurately, an overset mesh system is well-suited for integrating the flow analysis code, sensitivity analysis code, and grid modification tools. To enhance the convergence characteristics of the sensitivity analysis code, additional numerical dissipation for the discrete adjoint formulation is introduced. After using this optimization procedure, the new inlet yields a significant improvement in performance: a more than 50% reduction in flow distortion kind a 3% increase in total pressure recovery. High performance at off-design conditions is also realized with only slight degradation, confirming the capability of the adjoin( method for a practical design problem. Finally, the physical meaning and implication of the performance improvement are elaborated upon in relation to the flow characteristics resulting from the new design. C1 [Lee, Byung Joon; Liou, Mena-Sing] NASA, John H Glenn Res Ctr Lewis Field, Aeroprop Div, Cleveland, OH 44135 USA. [Kim, Chongam] Seoul Natl Univ, Sch Mech & Aerosp Engn, Seoul 151742, South Korea. RP Lee, BJ (reprint author), NASA, John H Glenn Res Ctr Lewis Field, Aeroprop Div, Cleveland, OH 44135 USA. NR 28 TC 8 Z9 8 U1 1 U2 7 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD SEP PY 2010 VL 48 IS 9 BP 2008 EP 2016 DI 10.2514/1.J050222 PG 9 WC Engineering, Aerospace SC Engineering GA 646NK UT WOS:000281548100013 ER PT J AU Nishino, T Shariff, K AF Nishino, Takafumi Shariff, Karim TI Numerical Study of Wind-Tunnel Sidewall Effects on Circulation Control Airfoil Flows SO AIAA JOURNAL LA English DT Article AB Two- and three-dimensional numerical simulations are performed of the flow around a circulation control airfoil (using a Coanda jet blowing over a rounded trailing edge) placed in a rectangular wind-tunnel test section. The airfoil model spans the entire tunnel and the span-to-chord ratio of the model is 3.26. The objective of this numerical study, in which we solve the compressible Reynolds-averaged Navier-Stokes equations in a time-resolved manner (but the solutions eventually converge to steady states), is to investigate the physical mechanisms of wind-tunnel sidewall effects on the flow, especially in the midspan region. The three-dimensional simulations predict that the Coanda jet flow is quasi-two-dimensional until the flow separates from the trailing edge of the airfoil; however, the spanwise ends of this Coanda jet sheet then three-dimensionally roll up on the side walls of the wind tunnel to form two large streamwise vortices downstream. Careful comparisons between the two- and three-dimensional simulations reveal that the wind-tunnel stream goes below the airfoil more in the three-dimensional cases than in the two-dimensional cases due to the presence of these two streamwise vortices downstream. This results in smaller lift and larger drag being produced at the midspan of the airfoil in the three-dimensional cases than in the two-dimensional cases. C1 [Nishino, Takafumi; Shariff, Karim] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Nishino, T (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RI Nishino, Takafumi/A-2685-2012; OI Nishino, Takafumi/0000-0001-6306-7702; Shariff, Karim/0000-0002-7256-2497 FU NASA FX The present work was supported by NASA's Fundamental Act mimics Program (Subsonic Fixed Wing Project). and T Nishino has been supported by the NASA Postdoctoral Program administrated by Oak Ridge Associated Universities The authors would like to thank S Hahn of the Center for Turbulence Research at Stanford University for providing the computational code, G Jones and B Allan of NASA Langley Research Center for providing the airfoil geometry. and M Rogers and N Madavan of NASA Ames Research Center for many valuable discussions NR 20 TC 6 Z9 7 U1 0 U2 7 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD SEP PY 2010 VL 48 IS 9 BP 2123 EP 2132 DI 10.2514/1.J050328 PG 10 WC Engineering, Aerospace SC Engineering GA 646NK UT WOS:000281548100022 ER PT J AU Danks, R AF Danks, Richard TI O&M for Green Buildings SO ASHRAE JOURNAL LA English DT Editorial Material C1 NASA, Glenn Res Ctr, Facil Div, Cleveland, OH USA. RP Danks, R (reprint author), NASA, Glenn Res Ctr, Facil Div, Cleveland, OH USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD SEP PY 2010 VL 52 IS 9 BP 92 EP 92 PG 1 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 651LL UT WOS:000281929100024 ER PT J AU Grant, JA Westall, F Beaty, DW Vago, JL AF Grant, John A. Westall, Frances Beaty, David W. Vago, Jorge L. TI Two Rovers to the Same Site on Mars, 2018: Possibilities for Cooperative Science SO ASTROBIOLOGY LA English DT Article ID SAMPLE RETURN; MISSION; EXPLORATION; SURFACE; LIFE C1 [Grant, John A.] Smithsonian Inst, Ctr Earth & Planetary Studies, Natl Air & Space Museum, MRC 315, Washington, DC 20013 USA. [Westall, Frances] CNRS, Ctr Biophys Mol, F-45071 Orleans 2, France. [Beaty, David W.] CALTECH, Mars Program Off, Jet Prop Lab, Pasadena, CA 91109 USA. [Vago, Jorge L.] European Space Agcy, ESA ESTEC HME ME, NL-2201 AZ Noordwijk, Netherlands. RP Grant, JA (reprint author), Smithsonian Inst, Ctr Earth & Planetary Studies, Natl Air & Space Museum, MRC 315, POB 37012, Washington, DC 20013 USA. EM grantj@si.edu; frances.westall@cnrs-orleans.fr; David.Beaty@jpl.nasa.gov; Jorge.Vago@esa.int FU National Aeronautics and Space Administration FX An early draft of the list of possible options for collaborative science and their priorities (Table 2 of this report) was discussed with multiple colleagues within the Mars exploration community, including the leaders of MRR-SAG; ExoMars project leadership; the ExoMars Science Working Group; ExoMars instrument science colleagues; the JPL Mars Program Office science team; similar to 8-10 MER scientists; and professional colleagues of several team members. This resulted in the addition of several new ideas, valuable clarification of others, and refinement of our perception of their relative priorities. Chad Edwards (Chief Telecommunications Engineer, Mars Program Office, JPL) provided extensive input to the telecommunications analysis. Gerhard Kminek (Planetary Protection Officer, ESA) provided input to the section on planetary protection. An early draft of this report was presented orally on March 17, 2010, at the MEPAG meeting in Monrovia, and the ensuing discussion was very helpful in refining the ideas contained in this report. A portion of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 40 TC 4 Z9 4 U1 0 U2 7 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD SEP PY 2010 VL 10 IS 7 BP 663 EP 685 DI 10.1089/ast.2010.0526 PG 23 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 671EM UT WOS:000283483100001 ER PT J AU Michalski, JR Bibring, JP Poulet, F Loizeau, D Mangold, N Dobrea, EN Bishop, JL Wray, JJ McKeown, NK Parente, M Hauber, E Altieri, F Carrozzo, FG Niles, PB AF Michalski, Joseph R. Bibring, Jean-Pierre Poulet, Francois Loizeau, Damien Mangold, Nicolas Dobrea, Eldar Noe Bishop, Janice L. Wray, James J. McKeown, Nancy K. Parente, Mario Hauber, Ernst Altieri, Francesca Carrozzo, F. Giacomo Niles, Paul B. TI The Mawrth Vallis Region of Mars: A Potential Landing Site for the Mars Science Laboratory (MSL) Mission SO ASTROBIOLOGY LA English DT Article DE Clays; Planetary science; Habitability; Infrared spectroscopy; Mars ID MORPHOLOGICAL BIOSIGNATURES; CONTINENTAL-CRUST; MERIDIANI PLANUM; CLAY-MINERALS; LIFE; CRATER; EARTH; OPPORTUNITY; DIVERSITY; EVOLUTION AB The primary objective of NASA's Mars Science Laboratory (MSL) mission, which will launch in 2011, is to characterize the habitability of a site on Mars through detailed analyses of the composition and geological context of surface materials. Within the framework of established mission goals, we have evaluated the value of a possible landing site in the Mawrth Vallis region of Mars that is targeted directly on some of the most geologically and astrobiologically enticing materials in the Solar System. The area around Mawrth Vallis contains a vast (>1x10(6)km(2)) deposit of phyllosilicate-rich, ancient, layered rocks. A thick (>150 m) stratigraphic section that exhibits spectral evidence for nontronite, montmorillonite, amorphous silica, kaolinite, saponite, other smectite clay minerals, ferrous mica, and sulfate minerals indicates a rich geological history that may have included multiple aqueous environments. Because phyllosilicates are strong indicators of ancient aqueous activity, and the preservation potential of biosignatures within sedimentary clay deposits is high, martian phyllosilicate deposits are desirable astrobiological targets. The proposed MSL landing site at Mawrth Vallis is located directly on the largest and most phyllosilicate-rich deposit on Mars and is therefore an excellent place to explore for evidence of life or habitability. C1 [Michalski, Joseph R.; Bibring, Jean-Pierre; Poulet, Francois; Loizeau, Damien] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Michalski, Joseph R.; Dobrea, Eldar Noe] Planetary Sci Inst, Tucson, AZ USA. [Mangold, Nicolas] Univ Nantes, CNRS, LPGN, Nantes, France. [Bishop, Janice L.] SETI Inst, Mountain View, CA USA. [Bishop, Janice L.] NASA, Ames Res Ctr, Mountain View, CA USA. [Wray, James J.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [McKeown, Nancy K.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Parente, Mario] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Hauber, Ernst] DLR, Inst Planetary Res, Berlin, Germany. [Altieri, Francesca; Carrozzo, F. Giacomo] INAF, IFSI, Rome, Italy. [Niles, Paul B.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Michalski, JR (reprint author), Univ Paris 11, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. EM Michalski@psi.edu RI Wray, James/B-8457-2008; OI Wray, James/0000-0001-5559-2179; Carrozzo, Filippo Giacomo/0000-0002-0391-6407 NR 71 TC 21 Z9 21 U1 2 U2 21 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD SEP PY 2010 VL 10 IS 7 BP 687 EP 703 DI 10.1089/ast.2010.0491 PG 17 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 671EM UT WOS:000283483100002 PM 20950170 ER PT J AU Davila, AF Skidmore, M Fairen, AG Cockell, C Schulze-Makuch, D AF Davila, Alfonso F. Skidmore, Mark Fairen, Alberto G. Cockell, Charles Schulze-Makuch, Dirk TI New Priorities in the Robotic Exploration of Mars: The Case for In Situ Search for Extant Life SO ASTROBIOLOGY LA English DT Article ID MICROBIAL LIFE; ATACAMA DESERT; GROUND ICE; LAYERED DEPOSITS; POLAR-REGIONS; BASAL ICE; PERMAFROST; GLACIER; METHANE; SOILS C1 [Davila, Alfonso F.; Fairen, Alberto G.] SETI Inst, Mountain View, CA 94043 USA. [Davila, Alfonso F.; Fairen, Alberto G.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Skidmore, Mark] Montana State Univ, Dept Earth Sci, Bozeman, MT 59717 USA. [Cockell, Charles] Open Univ, Geomicrobiol Res Grp, PSSRI, Milton Keynes MK7 6AA, Bucks, England. [Schulze-Makuch, Dirk] Washington State Univ, Sch Earth & Environm Sci, Pullman, WA 99164 USA. RP Davila, AF (reprint author), SETI Inst, 515 N Whisman Rd, Mountain View, CA 94043 USA. EM adavila@seti.org RI Davila, Alfonso/A-2198-2013; OI Davila, Alfonso/0000-0002-0977-9909; Schulze-Makuch, Dirk/0000-0002-1923-9746 NR 49 TC 9 Z9 9 U1 0 U2 17 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD SEP PY 2010 VL 10 IS 7 BP 705 EP 710 DI 10.1089/ast.2010.0538 PG 6 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 671EM UT WOS:000283483100003 PM 20929400 ER PT J AU Roberts, LC Gies, DR Parks, JR Grundstrom, ED McSwain, MV Berger, DH Mason, BD ten Brummelaar, TA Turner, NH AF Roberts, Lewis C., Jr. Gies, Douglas R. Parks, J. Robert Grundstrom, Erika D. McSwain, M. Virginia Berger, David H. Mason, Brian D. ten Brummelaar, Theo A. Turner, Nils H. TI THE MEMBERSHIP AND DISTANCE OF THE OPEN CLUSTER COLLINDER 419 SO ASTRONOMICAL JOURNAL LA English DT Article DE open clusters and associations: individual (Collinder 419); stars: early-type; stars: individual (HD 193322, IRAS 20161+4035) ID STAR-FORMATION; SPECTRAL CLASSIFICATION; INTERSTELLAR EXTINCTION; HIPPARCOS PARALLAXES; MODEL ATMOSPHERES; OB STARS; CALIBRATION; ISOCHRONES; CATALOG; GIANTS AB The young open cluster Collinder 419 surrounds the massive O star, HD 193322, that is itself a remarkable multiple star system containing at least four components. Here we present a discussion of the cluster distance based upon new spectral classifications of the brighter members, UBV photometry, and an analysis of astrometric and photometric data from the third U. S. Naval Observatory CCD Astrograph Catalog and Two Micron All Sky Survey Catalog. We determine an average cluster reddening of E(B - V) = 0.37+/-0.05 mag and a cluster distance of 741+/-36 pc. The cluster probably contains some very young stars that may include a reddened M3 III star, IRAS 20161+4035. C1 [Roberts, Lewis C., Jr.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gies, Douglas R.; Parks, J. Robert] Georgia State Univ, Dept Phys & Astron, Ctr High Angular Resolut Astron, Atlanta, GA 30302 USA. [Grundstrom, Erika D.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [McSwain, M. Virginia] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA. [Berger, David H.] Syst Planning Corp, Arlington, VA 22201 USA. [Mason, Brian D.] USN Observ, Washington, DC 20392 USA. [ten Brummelaar, Theo A.; Turner, Nils H.] Georgia State Univ, Ctr High Angular Resolut Astron, Mt Wilson, CA 91023 USA. RP Roberts, LC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM lewis.c.roberts@jpl.nasa.gov; gies@chara.gsu.edu; parksj@chara.gsu.edu; erika.grundstrom@vanderbilt.edu; mcswain@lehigh.edu; dberger@sysplan.com; bdm@usno.navy.mil; theo@chara-array.org; nils@chara-array.org OI Grundstrom, Erika/0000-0002-5130-0260 FU National Aeronautics and Space Administration; National Science Foundation; GSU College of Arts and Sciences FX We thank Todd Henry, Adric Riedel, and Russel White for helpful comments about M-star spectra, and we also thank Bill Binkert of the KPNO staff for his assistance at the KPNO Coude Feed Telescope. We are grateful to David Turner for discussions about field contamination by distant massive stars. This publication made use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. It also used images from the Second Palomar Observatory Sky Survey (POSS-II), which was made by the California Institute of Technology with funds from the National Science Foundation, the National Geographic Society, the Sloan Foundation, the Samuel Oschin Foundation, and the Eastman Kodak Corporation. We also made use of the Washington Double Star Catalog, maintained at the U. S. Naval Observatory, and the SIMBADdatabase, operated by theCDS in Strasbourg, France. This material is based upon work supported by the National Science Foundation under grant AST-0606861. Institutional support has been provided from the GSU College of Arts and Sciences and from the Research Program Enhancement Fund of the Board of Regents of the University System of Georgia, administered through the GSU Office of the Vice President for Research. Aportion of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 54 TC 4 Z9 4 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD SEP PY 2010 VL 140 IS 3 BP 744 EP 752 DI 10.1088/0004-6256/140/3/744 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 638GT UT WOS:000280882300008 ER PT J AU Trilling, DE Mueller, M Hora, JL Harris, AW Bhattacharya, B Bottke, WF Chesley, S Delbo, M Emery, JP Fazio, G Mainzer, A Penprase, B Smith, HA Spahr, TB Stansberry, JA Thomas, CA AF Trilling, D. E. Mueller, M. Hora, J. L. Harris, A. W. Bhattacharya, B. Bottke, W. F. Chesley, S. Delbo, M. Emery, J. P. Fazio, G. Mainzer, A. Penprase, B. Smith, H. A. Spahr, T. B. Stansberry, J. A. Thomas, C. A. TI EXPLORENEOs. I. DESCRIPTION AND FIRST RESULTS FROM THE WARM SPITZER NEAR-EARTH OBJECT SURVEY SO ASTRONOMICAL JOURNAL LA English DT Article DE minor planets, asteroids: general; infrared: planetary systems; surveys ID THERMAL INFRARED SPECTROPHOTOMETRY; KUIPER-BELT OBJECTS; SPACE-TELESCOPE; ASTEROID BELT; ARRAY CAMERA; RA-SHALOM; ORIGIN; POPULATION; MAGNITUDES; YARKOVSKY AB We have begun the ExploreNEOs project in which we observe some 700 Near-Earth Objects (NEOs) at 3.6 and 4.5 mu m with the Spitzer Space Telescope in its Warm Spitzer mode. From these measurements and catalog optical photometry we derive albedos and diameters of the observed targets. The overall goal of our ExploreNEOs program is to study the history of near-Earth space by deriving the physical properties of a large number of NEOs. In this paper, we describe both the scientific and technical construction of our ExploreNEOs program. We present our observational, photometric, and thermal modeling techniques. We present results from the first 101 targets observed in this program. We find that the distribution of albedos in this first sample is quite broad, probably indicating a wide range of compositions within the NEO population. Many objects smaller than 1 km have high albedos (greater than or similar to 0.35), but few objects larger than 1 km have high albedos. This result is consistent with the idea that these larger objects are collisionally older, and therefore possess surfaces that are more space weathered and therefore darker, or are not subject to other surface rejuvenating events as frequently as smaller NEOs. C1 [Trilling, D. E.; Thomas, C. A.] No Arizona Univ, Dept Phys & Astron, Flagstaff, AZ 86001 USA. [Mueller, M.; Delbo, M.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice 4, France. [Hora, J. L.; Fazio, G.; Smith, H. A.; Spahr, T. B.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Harris, A. W.] DLR Inst Planetary Res, D-12489 Berlin, Germany. [Bhattacharya, B.] CALTECH, NASA Herschel Sci Ctr, Pasadena, CA 91125 USA. [Bottke, W. F.] SW Res Inst, Boulder, CO 80302 USA. [Chesley, S.; Mainzer, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Emery, J. P.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Penprase, B.] Pomona Coll, Dept Phys & Astron, Claremont, CA 91711 USA. [Stansberry, J. A.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. RP Trilling, DE (reprint author), No Arizona Univ, Dept Phys & Astron, Flagstaff, AZ 86001 USA. EM david.trilling@nau.edu OI Mueller, Michael/0000-0003-3217-5385; Hora, Joseph/0000-0002-5599-4650; Thomas, Cristina/0000-0003-3091-5757 FU NASA FX We acknowledge the thorough and prompt hard work of the staff at the Spitzer Science Center, without whom the execution of this program would not be possible. We thank Michael Mommert (DLR) for help in checking the modeling results given in the data tables. We thank an anonymous referee for making a number of useful suggestions. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by JPL/Caltech under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. NR 68 TC 29 Z9 29 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD SEP PY 2010 VL 140 IS 3 BP 770 EP 784 DI 10.1088/0004-6256/140/3/770 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 638GT UT WOS:000280882300010 ER PT J AU Ade, PAR Savini, G Sudiwala, R Tucker, C Catalano, A Church, S Colgan, R Desert, FX Gleeson, E Jones, WC Lamarre, JM Lange, A Longval, Y Maffei, B Murphy, JA Noviello, F Pajot, F Puget, JL Ristorcelli, I Woodcraft, A Yurchenko, V AF Ade, P. A. R. Savini, G. Sudiwala, R. Tucker, C. Catalano, A. Church, S. Colgan, R. Desert, F. X. Gleeson, E. Jones, W. C. Lamarre, J. -M. Lange, A. Longval, Y. Maffei, B. Murphy, J. A. Noviello, F. Pajot, F. Puget, J. -L. Ristorcelli, I. Woodcraft, A. Yurchenko, V. TI Planck pre-launch status: The optical architecture of the HFI SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; space vehicles: instruments; instrumentation: detectors; instrumentation: polarimeters; submillimeter: general; techniques: photometric AB The Planck High Frequency Instrument, HFI, has been designed to allow a clear unobscured view of the CMB sky through an off-axis Gregorian telescope. The prime science target is to measure the polarized anisotropy of the CMB with a sensitivity of 1 part in 10(6) with a maximum spatial resolution of 5 arcmin (C(l) similar to 3000) in four spectral bands with two further high-frequency channels measuring total power for foreground removal. These requirements place critical constraints on both the telescope configuration and the receiver coupling and require precise determination of the spectral and spatial characteristics at the pixel level, whilst maintaining control of the polarisation. To meet with the sensitivity requirements, the focal plane needs to be cooled with the optics at a few Kelvin and detectors at 100 mK. To limit inherent instrumental thermal emission and diffraction effects, there is no vacuum window, so the detector feedhorns view the telescope secondary directly. This requires that the instrument is launched warm with the cooler chain only being activated during its cruise to L2. Here we present the novel optical configuration designed to meet with all the above criteria. C1 [Ade, P. A. R.; Savini, G.; Sudiwala, R.; Tucker, C.] Cardiff Univ, Astron & Instrumentat Grp, Cardiff, S Glam, Wales. [Savini, G.] UCL, Opt Sci Lab, London WC1E 6BT, England. [Catalano, A.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Church, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Colgan, R.; Gleeson, E.; Murphy, J. A.; Yurchenko, V.] NUI, Dept Expt Phys, Maynooth, Kildare, Ireland. [Desert, F. X.] CNRS, Astrophys Lab, Observ Grenoble LOAG, F-38041 Grenoble 9, France. [Jones, W. C.; Lange, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lange, A.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Longval, Y.; Noviello, F.; Pajot, F.; Puget, J. -L.] Univ Paris 11, CNRS, IAS, Inst Astrophys Spatiale, F-91405 Orsay, France. [Maffei, B.] Univ Manchester, JBCA, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Ristorcelli, I.] CNRS, CESR, F-31038 Toulouse 4, France. [Woodcraft, A.] Univ Edinburgh, SUPA, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Yurchenko, V.] NAS Ukraine, Inst Radiophys & Elect, UA-61085 Kharkov, Ukraine. RP Ade, PAR (reprint author), Cardiff Univ, Astron & Instrumentat Grp, Cardiff, S Glam, Wales. EM gs@star.ucl.ac.uk OI Savini, Giorgio/0000-0003-4449-9416 FU ESA; UK STFC; CNES; NASA; Enterprise Ireland; Science Foundation Ireland FX Planck (http://www.esa.int/Planck) is an ESA project with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.; The authors would like to acknowledge the support from the UK STFC, CNES, NASA, Enterprise Ireland and Science Foundation Ireland. The authors extend their gratitude to numerous engineers and scientists who have somehow contributed to the design, development, construction or evaluation of HFI. NR 12 TC 18 Z9 18 U1 0 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A11 DI 10.1051/0004-6361/200913039 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200012 ER PT J AU Bersanelli, M Mandolesi, N Butler, RC Mennella, A Villa, F Aja, B Artal, E Artina, E Baccigalupi, C Balasini, M Baldan, G Banday, A Bastia, P Battaglia, P Bernardino, T Blackhurst, E Boschini, L Burigana, C Cafagna, G Cappellini, B Cavaliere, F Colombo, F Crone, G Cuttaia, F D'Arcangelo, O Danese, L Davies, RD Davis, RJ De Angelis, L De Gasperis, GC De La Fuente, L De Rosa, A De Zotti, G Falvella, MC Ferrari, F Ferretti, R Figini, L Fogliani, S Franceschet, C Franceschi, E Gaier, T Garavaglia, S Gomez, F Gorski, K Gregorio, A Guzzi, P Herreros, JM Hildebrandt, SR Hoyland, R Hughes, N Janssen, M Jukkala, P Kettle, D Kilpia, VH Laaninen, M Lapolla, PM Lawrence, CR Lawson, D Leahy, JP Leonardi, R Leutenegger, P Levin, S Lilje, PB Lowe, SR Lubin, PM Maino, D Malaspina, M Maris, M Marti-Canales, J Martinez-Gonzalez, E Mediavilla, A Meinhold, P Miccolis, M Morgante, G Natoli, P Nesti, R Pagan, L Paine, C Partridge, B Pascual, JP Pasian, F Pearson, D Pecora, M Perrotta, F Platania, P Pospieszalski, M Poutanen, T Prina, M Rebolo, R Roddis, N Rubino-Martin, JA Salmon, MJ Sandri, M Seiffert, M Silvestri, R Simonetto, A Sjoman, P Smoot, GF Sozzi, C Stringhetti, L Taddei, E Tauber, J Terenzi, L Tomasi, M Tuovinen, J Valenziano, L Varis, J Vittorio, N Wade, LA Wilkinson, A Winder, F Zacchei, A Zonca, A AF Bersanelli, M. Mandolesi, N. Butler, R. C. Mennella, A. Villa, F. Aja, B. Artal, E. Artina, E. Baccigalupi, C. Balasini, M. Baldan, G. Banday, A. Bastia, P. Battaglia, P. Bernardino, T. Blackhurst, E. Boschini, L. Burigana, C. Cafagna, G. Cappellini, B. Cavaliere, F. Colombo, F. Crone, G. Cuttaia, F. D'Arcangelo, O. Danese, L. Davies, R. D. Davis, R. J. De Angelis, L. De Gasperis, G. C. De La Fuente, L. De Rosa, A. De Zotti, G. Falvella, M. C. Ferrari, F. Ferretti, R. Figini, L. Fogliani, S. Franceschet, C. Franceschi, E. Gaier, T. Garavaglia, S. Gomez, F. Gorski, K. Gregorio, A. Guzzi, P. Herreros, J. M. Hildebrandt, S. R. Hoyland, R. Hughes, N. Janssen, M. Jukkala, P. Kettle, D. Kilpia, V. H. Laaninen, M. Lapolla, P. M. Lawrence, C. R. Lawson, D. Leahy, J. P. Leonardi, R. Leutenegger, P. Levin, S. Lilje, P. B. Lowe, S. R. Lubin, P. M. Maino, D. Malaspina, M. Maris, M. Marti-Canales, J. Martinez-Gonzalez, E. Mediavilla, A. Meinhold, P. Miccolis, M. Morgante, G. Natoli, P. Nesti, R. Pagan, L. Paine, C. Partridge, B. Pascual, J. P. Pasian, F. Pearson, D. Pecora, M. Perrotta, F. Platania, P. Pospieszalski, M. Poutanen, T. Prina, M. Rebolo, R. Roddis, N. Rubino-Martin, J. A. Salmon, M. J. Sandri, M. Seiffert, M. Silvestri, R. Simonetto, A. Sjoman, P. Smoot, G. F. Sozzi, C. Stringhetti, L. Taddei, E. Tauber, J. Terenzi, L. Tomasi, M. Tuovinen, J. Valenziano, L. Varis, J. Vittorio, N. Wade, L. A. Wilkinson, A. Winder, F. Zacchei, A. Zonca, A. TI Planck pre-launch status: Design and description of the Low Frequency Instrument SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; cosmology: observations; space vehicles: instruments ID MICROWAVE BACKGROUND ANISOTROPY; 1/F NOISE; LFI INSTRUMENT; RADIOMETERS; FLUCTUATIONS; TEMPERATURE; PERFORMANCE; MISSION AB In this paper we present the Low Frequency Instrument (LFI), designed and developed as part of the Planck space mission, the ESA programme dedicated to precision imaging of the cosmic microwave background (CMB). Planck-LFI will observe the full sky in intensity and polarisation in three frequency bands centred at 30, 44 and 70 GHz, while higher frequencies (100-850 GHz) will be covered by the HFI instrument. The LFI is an array of microwave radiometers based on state-of-the-art indium phosphide cryogenic HEMT amplifiers implemented in a differential system using blackbody loads as reference signals. The front end is cooled to 20 K for optimal sensitivity and the reference loads are cooled to 4 K to minimise low-frequency noise. We provide an overview of the LFI, discuss the leading scientific requirements, and describe the design solutions adopted for the various hardware subsystems. The main drivers of the radiometric, optical, and thermal design are discussed, including the stringent requirements on sensitivity, stability, and rejection of systematic effects. Further details on the key instrument units and the results of ground calibration are provided in a set of companion papers. C1 [Bersanelli, M.; Mennella, A.; Cappellini, B.; Cavaliere, F.; Franceschet, C.; Maino, D.; Perrotta, F.; Tomasi, M.; Zonca, A.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bersanelli, M.; Mennella, A.; Cappellini, B.; Zonca, A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Mandolesi, N.; Butler, R. C.; Villa, F.; Burigana, C.; Cuttaia, F.; De Rosa, A.; Franceschi, E.; Malaspina, M.; Morgante, G.; Sandri, M.; Stringhetti, L.; Terenzi, L.; Valenziano, L.] INAF Ist Astrofis Spaziale & Fis Cosm, I-40129 Bologna, Italy. [Aja, B.; Artal, E.; De La Fuente, L.; Mediavilla, A.; Pascual, J. P.] Univ Cantabria, Dept Ingn Comunicac, E-39005 Santander, Spain. [Artina, E.; Balasini, M.; Baldan, G.; Bastia, P.; Battaglia, P.; Boschini, L.; Cafagna, G.; Colombo, F.; Ferrari, F.; Ferretti, R.; Guzzi, P.; Lapolla, P. M.; Leutenegger, P.; Miccolis, M.; Pagan, L.; Pecora, M.; Perrotta, F.; Silvestri, R.; Taddei, E.] Thales Alenia Space Italia SpA, I-20090 Milan, Italy. [Baccigalupi, C.; Danese, L.; Perrotta, F.] SISSA ISAS, Astrophys Sector, I-34014 Trieste, Italy. [Banday, A.] Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Bernardino, T.; Martinez-Gonzalez, E.; Salmon, M. J.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Blackhurst, E.; Davies, R. D.; Davis, R. J.; Kettle, D.; Lawson, D.; Leahy, J. P.; Lowe, S. R.; Roddis, N.; Wilkinson, A.; Winder, F.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Crone, G.; Marti-Canales, J.] Sci Projects Dpt ESA, Herschel Planck Project, NL-2200 AG Noordwijk, Netherlands. [D'Arcangelo, O.; Figini, L.; Garavaglia, S.; Platania, P.; Simonetto, A.; Sozzi, C.] CNR, Ist Fis Plasma, I-20125 Milan, Italy. [De Angelis, L.; Falvella, M. C.] ASI, I-00198 Rome, Italy. [De Gasperis, G. C.; Natoli, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [De Zotti, G.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Baccigalupi, C.; Fogliani, S.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Gaier, T.; Gorski, K.; Janssen, M.; Lawrence, C. R.; Levin, S.; Paine, C.; Pearson, D.; Prina, M.; Seiffert, M.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gomez, F.; Herreros, J. M.; Hildebrandt, S. R.; Hoyland, R.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Hughes, N.; Jukkala, P.; Kilpia, V. H.; Sjoman, P.] DA Design Oy, Jokioinen 31600, Finland. [Laaninen, M.] Ylinen Elect Oy, Kauniainen 02700, Finland. [Leonardi, R.; Lubin, P. M.; Meinhold, P.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Nesti, R.] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Partridge, B.] Haverford Coll, Haverford, PA 19041 USA. [Pospieszalski, M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. [Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Poutanen, T.] Helsinki Univ Technol, Metsahovi Radio Observ, Kylmala 02540, Finland. [Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Tauber, J.] European Space Agcy, Div Astrophys, NL-2201AZ Noordwijk, Netherlands. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo 02044, Finland. [Banday, A.] MPA Max Planck Inst Astrophys, D-85741 Garching, Germany. RP Bersanelli, M (reprint author), Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. EM marco.bersanelli@unimi.it RI Lilje, Per/A-2699-2012; de Gasperis, Giancarlo/C-8534-2012; Sozzi, Carlo/F-4158-2012; Pascual, Juan Pablo/K-5066-2014; Martinez-Gonzalez, Enrique/E-9534-2015; de la Fuente, Luisa/J-5142-2012; Artal, Eduardo/H-5546-2015; Tomasi, Maurizio/I-1234-2016; Aja, Beatriz/H-5573-2015; OI Zonca, Andrea/0000-0001-6841-1058; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Lowe, Stuart/0000-0002-2975-9032; Stringhetti, Luca/0000-0002-3961-9068; Pasian, Fabio/0000-0002-4869-3227; Gregorio, Anna/0000-0003-4028-8785; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; de Gasperis, Giancarlo/0000-0003-2899-2171; Sozzi, Carlo/0000-0001-8951-0071; Pascual, Juan Pablo/0000-0003-2123-0502; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; de la Fuente, Luisa/0000-0003-1403-1660; Artal, Eduardo/0000-0002-2569-1894; Tomasi, Maurizio/0000-0002-1448-6131; Aja, Beatriz/0000-0002-4229-2334; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Nesti, Renzo/0000-0003-0303-839X; Burigana, Carlo/0000-0002-3005-5796; Villa, Fabrizio/0000-0003-1798-861X; GARAVAGLIA, SAUL FRANCESCO/0000-0002-8433-1901; TERENZI, LUCA/0000-0001-9915-6379; Zacchei, Andrea/0000-0003-0396-1192; Lilje, Per/0000-0003-4324-7794 FU Italian Space Agency (ASI); Academy of Finland [205800, 214598, 121703, 121962]; Waldemar von Frenckells Stiftelse; Magnus Ehrnrooth Foundation; Vaisala Foundation; NASA LTSA [NNG04CG90G] FX The Planck-LFI project is developed by an International Consortium led by Italy and involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK, USA. The Italian contribution to Planck is supported by the Italian Space Agency (ASI). T.P.'s work was supported in part by the Academy of Finland grants 205800, 214598, 121703, and 121962. T. P. thanks the Waldemar von Frenckells Stiftelse, Magnus Ehrnrooth Foundation, and Vaisala Foundation for financial support. We acknowledge partial support from the NASA LTSA Grant NNG04CG90G. NR 53 TC 97 Z9 97 U1 2 U2 14 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A4 DI 10.1051/0004-6361/200912853 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200005 ER PT J AU Butters, OW West, RG Anderson, DR Cameron, AC Clarkson, WI Enoch, B Haswell, CA Hellier, C Horne, K Joshi, Y Kane, SR Lister, TA Maxted, PFL Parley, N Pollacco, D Smalley, B Street, RA Todd, I Wheatley, PJ Wilson, DM AF Butters, O. W. West, R. G. Anderson, D. R. Cameron, A. Collier Clarkson, W. I. Enoch, B. Haswell, C. A. Hellier, C. Horne, K. Joshi, Y. Kane, S. R. Lister, T. A. Maxted, P. F. L. Parley, N. Pollacco, D. Smalley, B. Street, R. A. Todd, I. Wheatley, P. J. Wilson, D. M. TI The first WASP public data release SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE catalogs; planets and satellites: general; stars: general ID SUPERWASP AB The WASP (wide angle search for planets) project is an exoplanet transit survey that has been automatically taking wide field images since 2004. Two instruments, one in La Palma and the other in South Africa, continually monitor the night sky, building up light curves of millions of unique objects. These light curves are used to search for the characteristics of exoplanetary transits. This first public data release (DR1) of the WASP archive makes available all the light curve data and images from 2004 up to 2008 in both the Northern and Southern hemispheres. A web interface (www.wasp.le.ac.uk/public/) to the data allows easy access over the Internet. The data set contains 3 631 972 raw images and 17 970 937 light curves. In total the light curves have 119 930 299 362 data points available between them. C1 [Butters, O. W.; West, R. G.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Anderson, D. R.; Hellier, C.; Maxted, P. F. L.; Smalley, B.; Wilson, D. M.] Keele Univ, Sch Phys & Geog Sci, Astrophys Grp, Lennard Jones Labs, Keele ST5 5BG, Staffs, England. [Cameron, A. Collier; Enoch, B.; Horne, K.; Parley, N.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Clarkson, W. I.] STScI, Baltimore, MD 21218 USA. [Haswell, C. A.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Joshi, Y.; Pollacco, D.; Todd, I.] Queens Univ Belfast, Astrophys Res Ctr, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. [Kane, S. R.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Lister, T. A.; Street, R. A.] Las Cumbres Observ, Goleta, CA 93117 USA. [Wheatley, P. J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. RP Butters, OW (reprint author), Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. EM oliver.butters@star.le.ac.uk RI Kane, Stephen/B-4798-2013; OI Butters, Olly/0000-0003-0354-8461; Cameron, Andrew/0000-0002-8863-7828; Wheatley, Peter/0000-0003-1452-2240 FU Consortium Universities; UK's Science and Technology Facilities Council FX The WASP Consortium consists of astronomers primarily from the Queen's University Belfast, Keele, Leicester, The Open University, St Andrews, the Isaac Newton Group (La Palma), the Instituto de Astrofisica de Canarias (Tenerife) and the South African Astronomical Observatory. The WASP-N and WASP-S Cameras were constructed and are operated with funds made available from Consortium Universities and the UK's Science and Technology Facilities Council. NR 7 TC 58 Z9 58 U1 0 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR L10 DI 10.1051/0004-6361/201015655 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200024 ER PT J AU Delsanti, A Merlin, F Guilbert-Lepoutre, A Bauer, J Yang, B Meech, KJ AF Delsanti, A. Merlin, F. Guilbert-Lepoutre, A. Bauer, J. Yang, B. Meech, K. J. TI Methane, ammonia, and their irradiation products at the surface of an intermediate-size KBO? A portrait of Plutino (90482) Orcus SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Kuiper belt objects: individual: (90482) Orcus; methods: observational; methods: numerical; techniques: photometric; techniques: spectroscopic; radiative transfer ID KUIPER-BELT OBJECTS; NEAR-INFRARED SPECTROSCOPY; TRANS-NEPTUNIAN OBJECTS; CRYSTALLINE WATER ICE; 50000 QUAOAR; 2003 EL61; ION IRRADIATION; PHOTOMETRIC-OBSERVATIONS; COLLISIONAL FAMILY; OPTICAL-CONSTANTS AB Orcus is an intermediate-size 1000 km-scale Kuiper belt object (KBO) in 3:2 mean-motion resonance with Neptune, in an orbit very similar to that of Pluto. It has a water-ice dominated surface with solar-like visible colors. We present visible and near-infrared photometry and spectroscopy obtained with the Keck 10 m-telescope (optical) and the Gemini 8 m-telescope (near-infrared). We confirm the unambiguous detection of crystalline water ice as well as absorption in the 2.2 mu m region. These spectral properties are close to those observed for Pluto's larger satellite Charon, and for Plutino (208996) 2003 AZ(84). Both in the visible and near-infrared Orcus' spectral properties appear to be homogeneous over time (and probably rotation) at the resolution available. From Hapke radiative transfer models involving intimate mixtures of various ices we find for the first time that ammonium (NH4+) and traces of ethane (C2H6), which are most probably solar irradiation products of ammonia and methane, and a mixture of methane and ammonia (diluted or not) are the best candidates to improve the description of the data with respect to a simple water ice mixture (Haumea type surface). The possible more subtle structure of the 2.2 mu m band(s) should be investigated thoroughly in the future for Orcus and other intermediate size Plutinos to better understand the methane and ammonia chemistry at work, if any. We investigated the thermal history of Orcus with a new 3D thermal evolution model. Simulations over 4.5x10(9) yr with an input 10% porosity, bulk composition of 23% amorphous water ice and 77% dust (mass fraction), and cold accretion show that even with the action of long-lived radiogenic elements only, Orcus should have a melted core and most probably suffered a cryovolcanic event in its history which brought large amounts of crystalline ice to the surface. The presence of ammonia in the interior would strengthen the melting process. A surface layer of a few hundred meters to a few tens of kilometers of amorphous water ice survives, while most of the remaining volume underneath contains crystalline ice. The crystalline water ice possibly brought to the surface by a past cryovolcanic event should still be detectable after several billion years despite the irradiation effects, as demonstrated by recent laboratory experiments. C1 [Delsanti, A.] Univ Aix Marseille 1, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Delsanti, A.] Observ Paris, F-92190 Meudon, France. [Merlin, F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Guilbert-Lepoutre, A.] Univ Calif Los Angeles, Earth & Space Sci Dept, Los Angeles, CA 90095 USA. [Bauer, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Yang, B.; Meech, K. J.] NASA, Astrobiol Inst Manoa, Inst Astron, Honolulu, HI 96822 USA. RP Delsanti, A (reprint author), Univ Aix Marseille 1, CNRS, Lab Astrophys Marseille, 38 Rue Frederic Joliot Curie, F-13388 Marseille 13, France. EM Audrey.Delsanti@oamp.fr; merlin@astro.umd.edu; aguilbert@ucla.edu; bauer@scn.jpl.nasa.gov; yangbin@ifa.hawaii.edu; meech@ifa.hawaii.edu FU National Aeronautics and Space Administration through the NASA Astrobiology Institute [NNA04CC08A]; NASA FX We thank D. Jewitt for fruitful suggestions and are grateful to J.C. Cook for kindly sharing with us estimated optical constants of ammonium, to S. Fornasier et al. for providing us with their Orcus visible spectra, and to S. Spjuth for the computation of the visible geometric albedo of Charon. This material is based upon work supported by the National Aeronautics and Space Administration through the NASA Astrobiology Institute under Cooperative Agreement No. NNA04CC08A issued through the Office of Space Science. B. Yang acknowledges support from a NASA Origins grant and A. Guilbert-Lepoutre from a NASA Herschel grant, both to D. Jewitt. Part of the data presented here were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and NASA. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. NR 83 TC 21 Z9 21 U1 1 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A40 DI 10.1051/0004-6361/201014296 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200106 ER PT J AU Lamarre, JM Puget, JL Ade, PAR Bouchet, F Guyot, G Lange, AE Pajot, F Arondel, A Benabed, K Beney, JL Benoit, A Bernard, JP Bhatia, R Blanc, Y Bock, JJ Breelle, E Bradshaw, TW Camus, P Catalano, A Charra, J Charra, M Church, SE Couchot, F Coulais, A Crill, BP Crook, MR Dassas, K de Bernardis, P Delabrouille, J de Marcillac, P Delouis, JM Desert, FX Dumesnil, C Dupac, X Efstathiou, G Eng, P Evesque, C Fourmond, JJ Ganga, K Giard, M Gispert, R Guglielmi, L Haissinski, J Henrot-Versille, S Hivon, E Holmes, WA Jones, WC Koch, TC Lagardere, H Lami, P Lande, J Leriche, B Leroy, C Longval, Y Macias-Perez, JF Maciaszek, T Maffei, B Mansoux, B Marty, C Masi, S Mercier, C Miville-Deschenes, MA Moneti, A Montier, L Murphy, JA Narbonne, J Nexon, M Paine, CG Pahn, J Perdereau, O Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Pons, R Ponthieu, N Prunet, S Rambaud, D Recouvreur, G Renault, C Ristorcelli, I Rosset, C Santos, D Savini, G Serra, G Stassi, P Sudiwala, RV Sygnet, JF Tauber, JA Torre, JP Tristram, M Vibert, L Woodcraft, A Yurchenko, V Yvon, D AF Lamarre, J. -M. Puget, J. -L. Ade, P. A. R. Bouchet, F. Guyot, G. Lange, A. E. Pajot, F. Arondel, A. Benabed, K. Beney, J. -L. Benoit, A. Bernard, J. -Ph. Bhatia, R. Blanc, Y. Bock, J. J. Breelle, E. Bradshaw, T. W. Camus, P. Catalano, A. Charra, J. Charra, M. Church, S. E. Couchot, F. Coulais, A. Crill, B. P. Crook, M. R. Dassas, K. de Bernardis, P. Delabrouille, J. de Marcillac, P. Delouis, J. -M. Desert, F. -X. Dumesnil, C. Dupac, X. Efstathiou, G. Eng, P. Evesque, C. Fourmond, J. -J. Ganga, K. Giard, M. Gispert, R. Guglielmi, L. Haissinski, J. Henrot-Versille, S. Hivon, E. Holmes, W. A. Jones, W. C. Koch, T. C. Lagardere, H. Lami, P. Lande, J. Leriche, B. Leroy, C. Longval, Y. Macias-Perez, J. F. Maciaszek, T. Maffei, B. Mansoux, B. Marty, C. Masi, S. Mercier, C. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Murphy, J. A. Narbonne, J. Nexon, M. Paine, C. G. Pahn, J. Perdereau, O. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Pons, R. Ponthieu, N. Prunet, S. Rambaud, D. Recouvreur, G. Renault, C. Ristorcelli, I. Rosset, C. Santos, D. Savini, G. Serra, G. Stassi, P. Sudiwala, R. V. Sygnet, J. -F. Tauber, J. A. Torre, J. -P. Tristram, M. Vibert, L. Woodcraft, A. Yurchenko, V. Yvon, D. TI Planck pre-launch status: The HFI instrument, from specification to actual performance SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; space vehicles: instruments; submillimeter: general; techniques: photometric; techniques: polarimetric ID HIGH-FREQUENCY INSTRUMENT; MICROWAVE BACKGROUND ANISOTROPIES; THERMAL ARCHITECTURE; DESIGN; BOLOMETERS; MILLIMETER; SYSTEM; BOOMERANG; RECEIVER; NOISE AB Context. The High Frequency Instrument (HFI) is one of the two focal instruments of the Planck mission. It will observe the whole sky in six bands in the 100 GHz-1 THz range. Aims. The HFI instrument is designed to measure the cosmic microwave background (CMB) with a sensitivity limited only by fundamental sources: the photon noise of the CMB itself and the residuals left after the removal of foregrounds. The two high frequency bands will provide full maps of the submillimetre sky, featuring mainly extended and point source foregrounds. Systematic effects must be kept at negligible levels or accurately monitored so that the signal can be corrected. This paper describes the HFI design and its characteristics deduced from ground tests and calibration. Methods. The HFI instrumental concept and architecture are feasible only by pushing new techniques to their extreme capabilities, mainly: (i) bolometers working at 100 mK and absorbing the radiation in grids; (ii) a dilution cooler providing 100 mK in microgravity conditions; (iii) a new type of AC biased readout electronics and (iv) optical channels using devices inspired from radio and infrared techniques. Results. The Planck-HFI instrument performance exceeds requirements for sensitivity and control of systematic effects. During ground-based calibration and tests, it was measured at instrument and system levels to be close to or better than the goal specification. C1 [Lamarre, J. -M.; Catalano, A.; Coulais, A.; Recouvreur, G.] UCP, UPMC, CNRS, Observ Paris,ENS,LERMA, F-75014 Paris, France. [Puget, J. -L.; Guyot, G.; Pajot, F.; Arondel, A.; Charra, J.; Charra, M.; Dassas, K.; de Marcillac, P.; Dumesnil, C.; Eng, P.; Evesque, C.; Fourmond, J. -J.; Gispert, R.; Lagardere, H.; Lami, P.; Leriche, B.; Leroy, C.; Longval, Y.; Mercier, C.; Miville-Deschenes, M. -A.; Ponthieu, N.; Torre, J. -P.; Vibert, L.] CNRS, IAS, Inst Astrophys Spatiale, F-91405 Orsay, France. [Puget, J. -L.; Guyot, G.; Pajot, F.; Arondel, A.; Charra, J.; Charra, M.; Dassas, K.; de Marcillac, P.; Dumesnil, C.; Eng, P.; Evesque, C.; Fourmond, J. -J.; Gispert, R.; Lagardere, H.; Lami, P.; Leriche, B.; Leroy, C.; Longval, Y.; Mercier, C.; Miville-Deschenes, M. -A.; Ponthieu, N.; Torre, J. -P.; Vibert, L.] Univ Paris 11, F-91405 Orsay, France. [Ade, P. A. R.; Savini, G.; Sudiwala, R. V.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bouchet, F.; Benabed, K.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Bouchet, F.; Benabed, K.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.] Univ Paris 06, F-75014 Paris, France. [Lange, A. E.; Bock, J. J.; Crill, B. P.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Lange, A. E.; Bock, J. J.; Crill, B. P.; Holmes, W. A.; Jones, W. C.; Koch, T. C.; Paine, C. G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bhatia, R.; Tauber, J. A.] European Space Agcy ESTEC, Div Astrophys, NL-2201 AZ Noordwijk, Netherlands. [Beney, J. -L.; Couchot, F.; Haissinski, J.; Henrot-Versille, S.; Mansoux, B.; Perdereau, O.; Plaszczynski, S.; Rosset, C.; Tristram, M.] CNRS, LAL, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Beney, J. -L.; Couchot, F.; Haissinski, J.; Henrot-Versille, S.; Mansoux, B.; Perdereau, O.; Plaszczynski, S.; Rosset, C.; Tristram, M.] Univ Paris 11, F-91898 Orsay, France. [Benoit, A.; Camus, P.] Univ Grenoble 1, CNRS, Inst Neel, F-38042 Grenoble 9, France. [Bernard, J. -Ph.; Giard, M.; Lande, J.; Marty, C.; Montier, L.; Narbonne, J.; Nexon, M.; Pointecouteau, E.; Pons, R.; Rambaud, D.; Ristorcelli, I.; Serra, G.] CNRS, CESR, Ctr Etud Spatiale Rayonnements, F-31038 Toulouse 4, France. [Blanc, Y.; Maciaszek, T.; Pahn, J.] CNES, F-31401 Toulouse 9, France. [Breelle, E.; Catalano, A.; Delabrouille, J.; Ganga, K.; Guglielmi, L.; Piat, M.; Rosset, C.] CNRS, Lab Astroparticule & Cosmol APC, F-75205 Paris 13, France. [Breelle, E.; Catalano, A.; Delabrouille, J.; Ganga, K.; Guglielmi, L.; Piat, M.; Rosset, C.] Univ Paris 07, F-75205 Paris 13, France. [Bradshaw, T. W.; Crook, M. R.] STFC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Church, S. E.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Church, S. E.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [de Bernardis, P.; Masi, S.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Desert, F. -X.] CNRS, LAOG, F-38041 Grenoble 9, France. [Dupac, X.] European Space Agcy ESAC, Madrid 28691, Spain. [Efstathiou, G.] Univ Cambridge, Inst Astron, Cambridge CB3 OHA, England. [Jones, W. C.] Princeton Univ, Dept Phys, Joseph Henry Lab, Princeton, NJ 08544 USA. RP Lamarre, JM (reprint author), UCP, UPMC, CNRS, Observ Paris,ENS,LERMA, 61 Ave Observ, F-75014 Paris, France. EM jean-michel.lamarre@obspm.fr RI Bouchet, Francois/B-5202-2014; Yvon, Dominique/D-2280-2015; Piacentini, Francesco/E-7234-2010; OI Piacentini, Francesco/0000-0002-5444-9327; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Bouchet, Francois/0000-0002-8051-2924; Hivon, Eric/0000-0003-1880-2733; Savini, Giorgio/0000-0003-4449-9416 FU ESA; CNES; CNES, CNRS; NASA; STFC; ASI FX Planck (http://www.esa.int/Planck) is a project of the European Space Agency - ESA - with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.; The Planck-HFI instrument (http://hfi.planck.fr/) was designed and built by an international consortium of laboratories, universities and institutes, with important contributions from the industry, under the leadership of the PI institute, IAS at Orsay, France. It was funded in particular by CNES, CNRS, NASA, STFC and ASI. The authors extend their gratitude to the numerous engineers and scientists, who have contributed to the design, development, construction or evaluation of the HFI instrument. The authors are pleased to thank the referee for his/her very useful remarks. NR 58 TC 142 Z9 143 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A9 DI 10.1051/0004-6361/200912975 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200010 ER PT J AU Leahy, JP Bersanelli, M D'Arcangelo, O Ganga, K Leach, SM Moss, A Keihanen, E Keskitalo, R Kurki-Suonio, H Poutanen, T Sandri, M Scott, D Tauber, J Valenziano, L Villa, F Wilkinson, A Zonca, A Baccigalupi, C Borrill, J Butler, RC Cuttaia, F Davis, RJ Frailis, M Francheschi, E Galeotta, S Gregorio, A Leonardi, R Mandolesi, N Maris, M Meinhold, P Mendes, L Mennella, A Morgante, G Prezeau, G Rocha, G Stringhetti, L Terenzi, L Tomasi, M AF Leahy, J. P. Bersanelli, M. D'Arcangelo, O. Ganga, K. Leach, S. M. Moss, A. Keihanen, E. Keskitalo, R. Kurki-Suonio, H. Poutanen, T. Sandri, M. Scott, D. Tauber, J. Valenziano, L. Villa, F. Wilkinson, A. Zonca, A. Baccigalupi, C. Borrill, J. Butler, R. C. Cuttaia, F. Davis, R. J. Frailis, M. Francheschi, E. Galeotta, S. Gregorio, A. Leonardi, R. Mandolesi, N. Maris, M. Meinhold, P. Mendes, L. Mennella, A. Morgante, G. Prezeau, G. Rocha, G. Stringhetti, L. Terenzi, L. Tomasi, M. TI Planck pre-launch status: Expected LFI polarisation capability SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE polarization; instrumentation: polarimeters; space vehicles: instruments; techniques: polarimetric; cosmic microwave background ID UNDERSTANDING RADIO POLARIMETRY; PROBE WMAP OBSERVATIONS; MAP-MAKING METHOD; 30 GHZ DATA; POWER SPECTRUM; CRAB-NEBULA; MICROWAVE; ANISOTROPY; DEFINITIONS; CALIBRATION AB We present a system-level description of the Low Frequency Instrument (LFI) considered as a differencing polarimeter, and evaluate its expected performance. The LFI is one of the two instruments on board the ESA Planck mission to study the cosmic microwave background. It consists of a set of 22 radiometers sensitive to linear polarisation, arranged in orthogonally-oriented pairs connected to 11 feed horns operating at 30, 44 and 70 GHz. In our analysis, the generic Jones and Mueller-matrix formulations for polarimetry are adapted to the special case of the LFI. Laboratory measurements of flight components are combined with optical simulations of the telescope to investigate the values and uncertainties in the system parameters affecting polarisation response. Methods of correcting residual systematic errors are also briefly discussed. The LFI has beam-integrated polarisation efficiency >99% for all detectors, with uncertainties below 0.1%. Indirect assessment of polarisation position angles suggests that uncertainties are generally less than 0 degrees.5, and this will be checked in flight using observations of the Crab nebula. Leakage of total intensity into the polarisation signal is generally well below the thermal noise level except for bright Galactic emission, where the dominant effect is likely to be spectral-dependent terms due to bandpass mismatch between the two detectors behind each feed, contributing typically 1-3% leakage of foreground total intensity. Comparable leakage from compact features occurs due to beam mismatch, but this averages to < 5 x 10(-4) for large-scale emission. An inevitable feature of the LFI design is that the two components of the linear polarisation are recovered from elliptical beams which differ substantially in orientation. This distorts the recovered polarisation and its angular power spectrum, and several methods are being developed to correct the effect, both in the power spectrum and in the sky maps. The LFI will return a high-quality measurement of the CMB polarisation, limited mainly by thermal noise. To meet our aspiration of measuring polarisation at the 1% level, further analysis of flight and ground data is required. We are still researching the most effective techniques for correcting subtle artefacts in polarisation; in particular the correction of bandpass mismatch effects is a formidable challenge, as it requires multi-band analysis to estimate the spectral indices that control the leakage. C1 [Leahy, J. P.; Wilkinson, A.; Davis, R. J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Leahy, J. P.; Frailis, M.; Galeotta, S.; Maris, M.] Osservatorio Astron Trieste INAF, I-34143 Trieste, Italy. [Bersanelli, M.; Zonca, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, I-20122 Milan, Italy. [Bersanelli, M.; Zonca, A.; Mennella, A.] INAF, IASF Sez Milano, Milan, Italy. [D'Arcangelo, O.] Ist Fis Plasma CNR, I-20125 Milan, Italy. [Ganga, K.] CNRS, Lab APC, F-75205 Paris 13, France. [Leach, S. M.; Baccigalupi, C.] SISSA, ISAS, Astrophys Sect, I-34014 Trieste, Italy. [Leach, S. M.; Baccigalupi, C.] Ist Nazl Fis Nucl, Sez Trieste, I-34014 Trieste, Italy. [Moss, A.; Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. [Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Helsinki Inst Phys, Helsinki 00014, Finland. [Poutanen, T.] Helsinki Univ Technol, Metsahovi Radio Observ, TKK, Kylmala 02540, Finland. [Sandri, M.; Valenziano, L.; Villa, F.; Butler, R. C.; Cuttaia, F.; Francheschi, E.; Mandolesi, N.; Morgante, G.; Stringhetti, L.; Terenzi, L.] INAF, Ist Astrofis Spaziale & Fis Cosm, Sez Bologna, Bologna, Italy. [Tauber, J.] European Space Agcy, Div Astrophys, NL-2201 AZ Noordwijk, Netherlands. [Baccigalupi, C.] INAF Trieste, I-34131 Trieste, Italy. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Gregorio, A.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Leonardi, R.; Meinhold, P.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93110 USA. [Mendes, L.] European Space Astron Ctr, European Space Agcy, Planck Sci Off, Madrid 28691, Spain. [Prezeau, G.; Rocha, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rocha, G.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. RP Leahy, JP (reprint author), Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. EM j.p.leahy@manchester.ac.uk RI Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; OI Cuttaia, Francesco/0000-0001-6608-5017; Frailis, Marco/0000-0002-7400-2135; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Maris, Michele/0000-0001-9442-2754; Zonca, Andrea/0000-0001-6841-1058; Morgante, Gianluca/0000-0001-9234-7412; Valenziano, Luca/0000-0002-1170-0104; Stringhetti, Luca/0000-0002-3961-9068; Scott, Douglas/0000-0002-6878-9840; Gregorio, Anna/0000-0003-4028-8785; Sandri, Maura/0000-0003-4806-5375 FU Italian Space Agency (ASI); Science and Technology Facilities Council (STFC); Finnish Funding Agency for Technology and Innovation (Tekes); Academy of Finland; Canadian Space Agency; NASA LTSA [NNG04CG90G]; ESA FX Planck (http://www.esa.int/Planck) is a project of the European Space Agency - ESA - with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.; J.P.L. thanks Johan Hamaker for a fruitful collaboration (Hamaker & Leahy 2004) which has significantly influenced the presentation in this paper. J.P.L. also thanks the Osservatorio Astronomico di Trieste for hospitality while much of this paper was written. We thank the referee for a perceptive review. The Planck-LFI project is developed by an International Consortium led by Italy and involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK, USA. The Italian contribution to Planck is supported by the Italian Space Agency (ASI). The UK contribution is supported by the Science and Technology Facilities Council (STFC). The Finnish contribution is supported by the Finnish Funding Agency for Technology and Innovation (Tekes) and the Academy of Finland. The Canadian contribution is supported by the Canadian Space Agency. We wish to thank people of the Herschel/Planck Project of ESA, ASI, THALES Alenia Space Industries, and the LFI Consortium that are involved in activities related to optical simulations and the measurement and modelling of the radiometer performance. We acknowledge the use of the Planck sky model, developed by the Component Separation Working Group (WG2) of the Planck Collaboration. We thank the members of the Planck CTP working group for the preparation and validation of the Trieste simulations. Some of the results in this paper have been derived using the HEALPix (Gorski et al. 1999). We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. This research has made use of NASA's Astrophysics Data System. We acknowledge partial support of the NASA LTSA Grant NNG04CG90G. NR 55 TC 60 Z9 60 U1 0 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A8 DI 10.1051/0004-6361/200912855 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200009 ER PT J AU Mandolesi, N Bersanelli, M Butler, RC Artal, E Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartelmann, M Bennett, K Bhandari, P Bonaldi, A Borrill, J Bremer, M Burigana, C Bowman, RC Cabella, P Cantalupo, C Cappellini, B Courvoisier, T Crone, G Cuttaia, F Danese, L D'Arcangelo, O Davies, RD Davis, RJ De Angelis, L de Gasperis, G De Rosa, A De Troia, G de Zotti, G Dick, J Dickinson, C Diego, JM Donzelli, S Dorl, U Dupac, X Ensslin, TA Eriksen, HK Falvella, MC Finelli, F Frailis, M Franceschi, E Gaier, T Galeotta, S Gasparo, F Giardino, G Gomez, F Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, F Hell, R Herranz, D Herreros, JM Hildebrandt, S Hovest, W Hoyland, R Huffenberger, K Janssen, M Jaffe, T Keihanen, E Keskitalo, R Kisner, T Kurki-Suonio, H Lahteenmaki, A Lawrence, CR Leach, SM Leahy, JP Leonardi, R Levin, S Lilje, PB Lopez-Caniego, M Lowe, SR Lubin, PM Maino, D Malaspina, M Maris, M Marti-Canales, J Martinez-Gonzalez, E Massardi, M Matarrese, S Matthai, F Meinhold, P Melchiorri, A Mendes, L Mennella, A Morgante, G Morigi, G Morisset, N Moss, A Nash, A Natoli, P Nesti, R Paine, C Partridge, B Pasian, F Passvogel, T Pearson, D Perez-Cuevas, L Perrotta, F Polenta, G Popa, LA Poutanen, T Prezeau, G Prina, M Rachen, JP Rebolo, R Reinecke, M Ricciardi, S Riller, T Rocha, G Roddis, N Rohlfs, R Rubino-Martin, JA Salerno, E Sandri, M Scott, D Seiffert, M Silk, J Simonetto, A Smoot, GF Sozzi, C Sternberg, J Stivoli, F Stringhetti, L Tauber, J Terenzi, L Tomasi, M Tuovinen, J Turler, M Valenziano, L Varis, J Vielva, P Villa, F Vittorio, N Wade, L White, M White, S Wilkinson, A Zacchei, A Zonca, A AF Mandolesi, N. Bersanelli, M. Butler, R. C. Artal, E. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartelmann, M. Bennett, K. Bhandari, P. Bonaldi, A. Borrill, J. Bremer, M. Burigana, C. Bowman, R. C. Cabella, P. Cantalupo, C. Cappellini, B. Courvoisier, T. Crone, G. Cuttaia, F. Danese, L. D'Arcangelo, O. Davies, R. D. Davis, R. J. De Angelis, L. de Gasperis, G. De Rosa, A. De Troia, G. de Zotti, G. Dick, J. Dickinson, C. Diego, J. M. Donzelli, S. Doerl, U. Dupac, X. Ensslin, T. A. Eriksen, H. K. Falvella, M. C. Finelli, F. Frailis, M. Franceschi, E. Gaier, T. Galeotta, S. Gasparo, F. Giardino, G. Gomez, F. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. Hell, R. Herranz, D. Herreros, J. M. Hildebrandt, S. Hovest, W. Hoyland, R. Huffenberger, K. Janssen, M. Jaffe, T. Keihanen, E. Keskitalo, R. Kisner, T. Kurki-Suonio, H. Lahteenmaki, A. Lawrence, C. R. Leach, S. M. Leahy, J. P. Leonardi, R. Levin, S. Lilje, P. B. Lopez-Caniego, M. Lowe, S. R. Lubin, P. M. Maino, D. Malaspina, M. Maris, M. Marti-Canales, J. Martinez-Gonzalez, E. Massardi, M. Matarrese, S. Matthai, F. Meinhold, P. Melchiorri, A. Mendes, L. Mennella, A. Morgante, G. Morigi, G. Morisset, N. Moss, A. Nash, A. Natoli, P. Nesti, R. Paine, C. Partridge, B. Pasian, F. Passvogel, T. Pearson, D. Perez-Cuevas, L. Perrotta, F. Polenta, G. Popa, L. A. Poutanen, T. Prezeau, G. Prina, M. Rachen, J. P. Rebolo, R. Reinecke, M. Ricciardi, S. Riller, T. Rocha, G. Roddis, N. Rohlfs, R. Rubino-Martin, J. A. Salerno, E. Sandri, M. Scott, D. Seiffert, M. Silk, J. Simonetto, A. Smoot, G. F. Sozzi, C. Sternberg, J. Stivoli, F. Stringhetti, L. Tauber, J. Terenzi, L. Tomasi, M. Tuovinen, J. Tuerler, M. Valenziano, L. Varis, J. Vielva, P. Villa, F. Vittorio, N. Wade, L. White, M. White, S. Wilkinson, A. Zacchei, A. Zonca, A. TI Planck pre-launch status: The Planck-LFI programme SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; space vehicles: instruments; instrumentation: detectors; instrumentation: polarimeters; submillimeter: general; telescopes ID MICROWAVE BACKGROUND MAPS; LOW-FREQUENCY INSTRUMENT; DATA-PROCESSING CENTERS; ANGULAR POWER SPECTRA; LARGE-AREA TELESCOPE; DMR SKY MAPS; NON-GAUSSIANITY; STRAYLIGHT CONTAMINATION; GALACTIC FOREGROUNDS; COMPONENT SEPARATION AB This paper provides an overview of the Low Frequency Instrument (LFI) programme within the ESA Planck mission. The LFI instrument has been developed to produce high precision maps of the microwave sky at frequencies in the range 27-77 GHz, below the peak of the cosmic microwave background (CMB) radiation spectrum. The scientific goals are described, ranging from fundamental cosmology to Galactic and extragalactic astrophysics. The instrument design and development are outlined, together with the model philosophy and testing strategy. The instrument is presented in the context of the Planck mission. The LFI approach to ground and inflight calibration is described. We also describe the LFI ground segment. We present the results of a number of tests demonstrating the capability of the LFI data processing centre (DPC) to properly reduce and analyse LFI flight data, from telemetry information to calibrated and cleaned time ordered data, sky maps at each frequency (in temperature and polarization), component emission maps (CMB and diffuse foregrounds), catalogs for various classes of sources (the Early Release Compact Source Catalogue and the Final Compact Source Catalogue). The organization of the LFI consortium is briefly presented as well as the role of the core team in data analysis and scientific exploitation. All tests carried out on the LFI flight model demonstrate the excellent performance of the instrument and its various subunits. The data analysis pipeline has been tested and its main steps verified. In the first three months after launch, the commissioning, calibration, C1 [Mandolesi, N.; Butler, R. C.; Burigana, C.; Cuttaia, F.; De Rosa, A.; Finelli, F.; Gruppuso, A.; Malaspina, M.; Morgante, G.; Morigi, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Stringhetti, L.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Ist Nazl Astrofis, Ist Astrofis Spaziale & Fis Cosm Bologna, I-40129 Bologna, Italy. [Bersanelli, M.; Cappellini, B.; Maino, D.; Mennella, A.; Tomasi, M.; Zonca, A.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bonaldi, A.; de Zotti, G.; Massardi, M.] INAF OAPd, Ist Nazl Astrofis, Osservatorio Astron Padova, I-35122 Padua, Italy. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; De Troia, G.; Natoli, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Baccigalupi, C.; Frailis, M.; Galeotta, S.; Gasparo, F.; Maris, M.; Pasian, F.; Zacchei, A.] INAF OATs, Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34131 Trieste, Italy. [Artal, E.] Univ Cantabria, Dep Ing Comunicac DICOM, E-39005 Santander, Spain. [Baccigalupi, C.; Danese, L.; Dick, J.; Gonzalez-Nuevo, J.; Leach, S. M.; Perrotta, F.] SISSA, ISAS, Astrophys Sect, Sez Trieste, I-34014 Trieste, Italy. [Banday, A. J.; Bartelmann, M.; Doerl, U.; Ensslin, T. A.; Hell, R.; Hovest, W.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.; White, S.] MPA Max Planck Inst Astrophys, D-85741 Garching, Germany. [Bhandari, P.; Bowman, R. C.; Gaier, T.; Gorski, K. M.; Janssen, M.; Lahteenmaki, A.; Levin, S.; Nash, A.; Paine, C.; Pearson, D.; Prezeau, G.; Prina, M.; Rocha, G.; Seiffert, M.; Wade, L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Courvoisier, T.; Morisset, N.; Rohlfs, R.; Tuerler, M.] Univ Geneva, ISDC Data Ctr Astrophys, CH-1290 Versoix, Switzerland. [Crone, G.; Marti-Canales, J.; Passvogel, T.; Perez-Cuevas, L.] ESA, Sci Projects Dpt, Herschel Planck Project, NL-2200 AG Noordwijk, Netherlands. [D'Arcangelo, O.; Simonetto, A.; Sozzi, C.] IFP CNR, Ist Fis Plasma, Consiglio Nazl Ric, I-20125 Milan, Italy. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Jaffe, T.; Leahy, J. P.; Lowe, S. R.; Roddis, N.; Wilkinson, A.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [De Angelis, L.; Falvella, M. C.] ASI, Agenzia Spaziale Italiana, I-00198 Rome, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Barreiro, R. B.; Diego, J. M.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Gomez, F.; Herreros, J. M.; Hildebrandt, S.; Hoyland, R.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. [Poutanen, T.] Helsinki Univ Technol, Metsahovi Radio Observ, TKK, Kylmala 02540, Finland. [Leonardi, R.; Lubin, P. M.; Meinhold, P.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Donzelli, S.; Eriksen, H. K.; Hansen, F.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Donzelli, S.; Eriksen, H. K.; Hansen, F.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway. [Mendes, L.] ESA ESAC RSSD, European Space Agcy, European Space Astron Ctr, Res & Sci Support Dept, Madrid 28691, Spain. [Nesti, R.] Osserv Astrofis Arcetri, I-50125 Florence, Italy. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Bennett, K.; Bremer, M.; Giardino, G.; Sternberg, J.; Tauber, J.] Estec, ESA, Res & Sci Support Dept, NL-2201 AZ Noordwijk, Netherlands. [Popa, L. A.] Inst Space Sci, RO-077125 Bucharest, Romania. [Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Phys, Berkeley, CA 94720 USA. [Smoot, G. F.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA. [Moss, A.; Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Silk, J.] Univ Oxford, Oxford OX1 3RH, England. [Smoot, G. F.] Univ Paris 07, APC, Case 7020, F-75205 Paris 13, France. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo 02044, Finland. [Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Helsinki Inst Phys, Helsinki 00014, Finland. [Finelli, F.] INAF OABo, Ist Nazl Astrofis, Osservatorio Astron Bologna, I-40127 Bologna, Italy. [Baccigalupi, C.; Leach, S. M.] Ist Nazl Fis Nucl, Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Natoli, P.; Vittorio, N.] Ist Nazl Fis Nucl, Ist Nazl Fis Nucl, Sez Tor Vergata, I-00133 Rome, Italy. [Borrill, J.; Ricciardi, S.; Stivoli, F.] Univ Calif Berkeley, Berkeley Space Sci Lab, Berkeley, CA 94720 USA. [Borrill, J.; Cantalupo, C.; Kisner, T.; Ricciardi, S.; Stivoli, F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Banday, A. J.] CESR, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Dupac, X.] ESA, ESAC, European Space Agcy, European Space Astron Ctr, Madrid 28080, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Lopez-Caniego, M.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Huffenberger, K.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Natoli, P.; Polenta, G.] ASI, Agenzia Spaziale Italiana, Sci Data Ctr, I-00044 Frascati, Italy. [Cabella, P.; Melchiorri, A.; Polenta, G.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Polenta, G.] INAF OARo, Ist Nazl Astrofis, Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Salerno, E.] CNR, Consiglio Nazl Ric, Area Ric Pisa, Ist Scie & Technol Informaz Alessandro Faedo, I-56124 Pisa, Italy. [White, M.] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. RP Mandolesi, N (reprint author), INAF IASF Bologna, Ist Nazl Astrofis, Ist Astrofis Spaziale & Fis Cosm Bologna, Via Gobetti 101, I-40129 Bologna, Italy. EM mandolesi@iasfbo.inaf.it RI Butler, Reginald/N-4647-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; White, Martin/I-3880-2015; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; popa, lucia/B-4718-2012; Martinez-Gonzalez, Enrique/E-9534-2015; Artal, Eduardo/H-5546-2015; Lilje, Per/A-2699-2012; Salerno, Emanuele/A-2137-2010; de Gasperis, Giancarlo/C-8534-2012; Sozzi, Carlo/F-4158-2012; Gregorio, Anna/J-1632-2012; Lopez-Caniego, Marcos/M-4695-2013; Bartelmann, Matthias/A-5336-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Herranz, Diego/K-9143-2014; Barreiro, Rita Belen/N-5442-2014; OI Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Frailis, Marco/0000-0002-7400-2135; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Matarrese, Sabino/0000-0002-2573-1243; Lowe, Stuart/0000-0002-2975-9032; Stringhetti, Luca/0000-0002-3961-9068; Pasian, Fabio/0000-0002-4869-3227; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Nesti, Renzo/0000-0003-0303-839X; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; White, Martin/0000-0001-9912-5070; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Melchiorri, Alessandro/0000-0001-5326-6003; Morgante, Gianluca/0000-0001-9234-7412; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Artal, Eduardo/0000-0002-2569-1894; Salerno, Emanuele/0000-0002-3433-3634; de Gasperis, Giancarlo/0000-0003-2899-2171; Sozzi, Carlo/0000-0001-8951-0071; Vielva, Patricio/0000-0003-0051-272X; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; silk, joe/0000-0002-1566-8148; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Zacchei, Andrea/0000-0003-0396-1192; Lilje, Per/0000-0003-4324-7794; Bowman, Robert/0000-0002-2114-1713 FU ESA; Bundesministerium fur Wirtschaft und Technologie through the Raumfahrt-Agentur of the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) [FKZ: 50 OP 0901]; Max-Planck-Gesellschaft (MPG); Finnish Funding Agency for Technology and Innovation (Tekes); Academy of Finland; Ministerio de Ciencia e Innovacion [ESP2004-07067-C03, AYA2007-68058-C03]; Science and Technology Facilities Council (STFC); NASA LTSA [NNG04CG90G]; NASA Office of Space Science; Canadian Space Agency FX Planck is a project of the European Space Agency with instruments funded by ESA member states, and with special contributions from Denmark and NASA (USA). The Planck-LFI project is developed by an International Consortium led by Italy and involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK and USA. The Italian contribution to Planck is supported by the Agenzia Spaziale Italiana (ASI) and INAF. We also wish to thank the many people of the Herschel/Planck Project and RSSD of ESA, ASI, THALES Alenia Space Industries and the LFI Consortium that have contributed to the realization of LFI. We are grateful to our HFI colleagues for such a fruitful collaboration during so many years of common work. The German participation at the Max-Planck-Institut fur Astrophysik is funded by the Bundesministerium fur Wirtschaft und Technologie through the Raumfahrt-Agentur of the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) [FKZ: 50 OP 0901] and by the Max-Planck-Gesellschaft (MPG). The Finnish contribution is supported by the Finnish Funding Agency for Technology and Innovation (Tekes) and the Academy of Finland. The Spanish participation is funded by Ministerio de Ciencia e Innovacion through the project ESP2004-07067-C03 and AYA2007-68058-C03. The UK contribution is supported by the Science and Technology Facilities Council (STFC). C. Baccigalupi and F. Perrotta acknowledge partial support of the NASA LTSA Grant NNG04CG90G. We acknowledge the use of the BCX cluster at CINECA under the agreement INAF/CINECA. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. We acknowledge use of the HEALPix (Gorski et al. 2005) software and analysis package for deriving some of the results in this paper. The Canadian participation is supported by the Canadian Space Agency. NR 135 TC 74 Z9 74 U1 1 U2 14 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A3 DI 10.1051/0004-6361/200912837 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200004 ER PT J AU Martin, SR Booth, AJ AF Martin, S. R. Booth, A. J. TI Demonstration of exoplanet detection using an infrared telescope array SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE techniques: interferometric; planets and satellites: detection ID TERRESTRIAL ATMOSPHERES; NULLING INTERFEROMETER; STARLIGHT SUPPRESSION; EXTRASOLAR PLANETS; BROAD-BAND; SEARCH; SPACE; SINGLE; CONFIGURATIONS; FIBERS AB Context. Technology is being developed for the characterization and detection of small, Earth-size exoplanets by nulling interferometry in the mid-infrared waveband. While high-performance nulling experiments have shown the possibility of using the technique, to achieve these goals, nulling has to be done on multiple beams, with high stability over periods of hours. To address the issues of the perceived complexity and difficulty of the method, a testbed was developed for the Terrestrial Planet Finder Interferometer (TPF-I) project which would demonstrate four beam nulling and faint exoplanet signal extraction at levels traceable to flight requirements. Containing star and planet sources, the testbed would demonstrate the principal functional processes of the TPF-I beam-combiner by generating four input beams of star and planet light, and recovering the planet signature at the output. Aims. Here we report on experiments designed with traceability to a flight system, showing faint exoplanet signal detection in the presence of strong starlight. The experiments were designed to show nulling at the flight level of approximate to 10 (5), starlight suppression of 10 (7) or better, and detection of an exoplanet at a contrast of 10(-6) compared to the star. This performance level meets the flight requirements for the parts of the detection process that can be demonstrated using a monochromatic source. To achieve these results, the testbed would have to operate stably for several hours, showing control of disturbances at levels equivalent to the flight requirements. Methods. A test process was designed which would show that the necessary performance could be achieved. To show reproducibility, the tests were run on three separate occasions, separated by several days. The tests were divided into three main parts which would show first, starlight suppression, second, a realistic faint exoplanet signal production, and finally, exoplanet signal detection in the presence of the starlight. Results. A number of data sets were acquired showing the achievement of the required performance. The data reported here show nulling at levels between about 5.5 and 8.5 x 10(-6), starlight suppression between 8.4 x 10(-9) and 1.4 x 10(-8), and detection of planet signals with contrast to the star between 3.8 x 10(-7) and 4.4 x 10(-7). The signal to noise ratios for the detections were between 14.0 and 26.9. These data met all the criteria of the demonstration, showing reproducible stable performance over several hours of operation. Conclusions. These data show the successful execution, at flight-like performance levels, of almost the whole exoplanet detection process using a four beam, nulling beam-combiner. C1 [Martin, S. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Booth, A. J.] Sigma Space Corp, Lanham, MD 20706 USA. RP Martin, SR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM stefan.r.martin@jpl.nasa.gov FU NASA FX Kurt Liewer assisted with testbed development and operation. Frank Loya developed the software control system and several electronics systems. Oliver Lay assisted with development of the data analysis techniques and the traceability to flight. Hong Tang developed the testbed metrology system. Numerous others participated in testbed development over several years including Nasrat Raouf (optics), Piotr Szwaykowski (optical engineering), Randall Bartos (engineering), Boris Lurie (controls systems), Santos "Felipe" Fregoso (software), Francisco Aguayo (engineering), Martin Marcin (optical engineering), Ray Lam (software), Andrew Lowman (optical engineering), Steve Monacos (electronics engineering), Robert Peters (optical engineering) and Muthu Jeganathan (optical engineering). The authors are also grateful to Mike Devirian and to Peter Lawson for their unflagging support of the testbed. The work reported here was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The mention of any commercial product herein does not constitute an endorsement. (C) 2010. All rights reserved. NR 35 TC 4 Z9 4 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A96 DI 10.1051/0004-6361/201014942 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200120 ER PT J AU Mennella, A Bersanelli, M Butler, RC Cuttaia, F D'Arcangelo, O Davis, RJ Frailis, M Galeotta, S Gregorio, A Lawrence, CR Leonardi, R Lowe, SR Mandolesi, N Maris, M Meinhold, P Mendes, L Morgante, G Sandri, M Stringhetti, L Terenzi, L Tomasi, M Valenziano, L Villa, F Zacchei, A Zonca, A Balasini, M Franceschet, C Battaglia, P Lapolla, PM Leutenegger, P Miccolis, M Pagan, L Silvestri, R Aja, B Artal, E Baldan, G Bastia, P Bernardino, T Boschini, L Cafagna, G Cappellini, B Cavaliere, F Colombo, F de La Fuente, L Edgeley, J Falvella, MC Ferrari, F Fogliani, S Franceschi, E Gaier, T Gomez, F Herreros, JM Hildebrandt, S Hoyland, R Hughes, N Jukkala, P Kettle, D Laaninen, M Lawson, D Leahy, P Levin, S Lilje, PB Maino, D Malaspina, M Manzato, P Marti-Canales, J Martinez-Gonzalez, E Mediavilla, A Pasian, F Pascual, JP Pecora, M Peres-Cuevas, L Platania, P Pospieszalsky, M Poutanen, T Rebolo, R Roddis, N Salmon, M Seiffert, M Simonetto, A Sozzi, C Tauber, J Tuovinen, J Varis, J Wilkinson, A Winder, F AF Mennella, A. Bersanelli, M. Butler, R. C. Cuttaia, F. D'Arcangelo, O. Davis, R. J. Frailis, M. Galeotta, S. Gregorio, A. Lawrence, C. R. Leonardi, R. Lowe, S. R. Mandolesi, N. Maris, M. Meinhold, P. Mendes, L. Morgante, G. Sandri, M. Stringhetti, L. Terenzi, L. Tomasi, M. Valenziano, L. Villa, F. Zacchei, A. Zonca, A. Balasini, M. Franceschet, C. Battaglia, P. Lapolla, P. M. Leutenegger, P. Miccolis, M. Pagan, L. Silvestri, R. Aja, B. Artal, E. Baldan, G. Bastia, P. Bernardino, T. Boschini, L. Cafagna, G. Cappellini, B. Cavaliere, F. Colombo, F. de La Fuente, L. Edgeley, J. Falvella, M. C. Ferrari, F. Fogliani, S. Franceschi, E. Gaier, T. Gomez, F. Herreros, J. M. Hildebrandt, S. Hoyland, R. Hughes, N. Jukkala, P. Kettle, D. Laaninen, M. Lawson, D. Leahy, P. Levin, S. Lilje, P. B. Maino, D. Malaspina, M. Manzato, P. Marti-Canales, J. Martinez-Gonzalez, E. Mediavilla, A. Pasian, F. Pascual, J. P. Pecora, M. Peres-Cuevas, L. Platania, P. Pospieszalsky, M. Poutanen, T. Rebolo, R. Roddis, N. Salmon, M. Seiffert, M. Simonetto, A. Sozzi, C. Tauber, J. Tuovinen, J. Varis, J. Wilkinson, A. Winder, F. TI Planck pre-launch status: Low Frequency Instrument calibration and expected scientific performance SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; telescopes; space vehicles: instruments; instrumentation: detectors; instrumentation: polarimeters; submillimeter: general ID RADIOMETERS; TELESCOPE AB We present the calibration and scientific performance parameters of the Planck Low Frequency Instrument (LFI) measured during the ground cryogenic test campaign. These parameters characterise the instrument response and constitute our optimal pre-launch knowledge of the LFI scientific performance. The LFI shows excellent 1/f stability and rejection of instrumental systematic effects; its measured noise performance shows that LFI is the most sensitive instrument of its kind. The calibration parameters will be updated during flight operations until the end of the mission. C1 [Mennella, A.; Bersanelli, M.; Tomasi, M.; Franceschet, C.; Cavaliere, F.; Maino, D.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Butler, R. C.; Cuttaia, F.; Mandolesi, N.; Morgante, G.; Sandri, M.; Stringhetti, L.; Terenzi, L.; Valenziano, L.; Villa, F.; Franceschi, E.; Malaspina, M.] INAF IASF, Sez Bologna, I-40129 Bologna, Italy. [D'Arcangelo, O.; Platania, P.; Simonetto, A.; Sozzi, C.] CNR, Ist Fis Plasma, I-20125 Milan, Italy. [Davis, R. J.; Lowe, S. R.; Edgeley, J.; Kettle, D.; Lawson, D.; Leahy, P.; Roddis, N.; Wilkinson, A.; Winder, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Frailis, M.; Galeotta, S.; Maris, M.; Zacchei, A.; Fogliani, S.; Manzato, P.; Pasian, F.] INAF, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Lawrence, C. R.; Gaier, T.; Seiffert, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Leonardi, R.; Meinhold, P.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Mendes, L.] ESAC, Planck Sci Off, European Space Agcy, Madrid 28691, Spain. [Zonca, A.; Cappellini, B.] INAF IASF, Sez Milano, I-20133 Milan, Italy. [Balasini, M.; Battaglia, P.; Lapolla, P. M.; Leutenegger, P.; Miccolis, M.; Pagan, L.; Silvestri, R.; Baldan, G.; Bastia, P.; Boschini, L.; Cafagna, G.; Colombo, F.; Ferrari, F.; Pecora, M.] Thales Alenia Space Italia, I-20090 Milan, Italy. [Aja, B.; Artal, E.; de La Fuente, L.; Mediavilla, A.; Pascual, J. P.] Univ Cantabria, Dept Ingeniera Comunicac, E-39005 Santander, Spain. [Bernardino, T.; Martinez-Gonzalez, E.; Salmon, M.] Univ Cantabria, Inst Fis Cantabria, Consejo Super Invest Cient, E-39005 Santander, Spain. [Falvella, M. C.] Agenzia Spaziale Italiana, I-00198 Rome, Italy. [Gomez, F.; Herreros, J. M.; Hildebrandt, S.; Hoyland, R.; Levin, S.] Inst Astrofis Canarias, San Cristobal la Laguna 38200, Tenerife, Spain. [Hughes, N.; Jukkala, P.; Rebolo, R.] DA Design Oy, Jokioinen 31600, Finland. [Laaninen, M.] Ylinen Elect Oy, Kauniainen 02700, Finland. [Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Marti-Canales, J.] Joint ALMA Observ, Santiago, Chile. [Peres-Cuevas, L.; Tauber, J.] ESTEC, European Space Agcy, Res & Sci Support Dpt, Noordwijk, Netherlands. [Pospieszalsky, M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. [Poutanen, T.] Helsinki Inst Phys, Helsinki 00014, Finland. [Poutanen, T.] Helsinki Univ Technol, Metsahovi Radio Observ, Kylmala 02540, Finland. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. RP Mennella, A (reprint author), Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. EM aniello.mennella@fisica.unimi.it RI Butler, Reginald/N-4647-2015; Lilje, Per/A-2699-2012; Sozzi, Carlo/F-4158-2012; Martinez-Gonzalez, Enrique/E-9534-2015; de la Fuente, Luisa/J-5142-2012; Artal, Eduardo/H-5546-2015; Tomasi, Maurizio/I-1234-2016; Aja, Beatriz/H-5573-2015; Pascual, Juan Pablo/K-5066-2014 OI Frailis, Marco/0000-0002-7400-2135; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Zacchei, Andrea/0000-0003-0396-1192; Lilje, Per/0000-0003-4324-7794; Maris, Michele/0000-0001-9442-2754; Valenziano, Luca/0000-0002-1170-0104; Lowe, Stuart/0000-0002-2975-9032; Stringhetti, Luca/0000-0002-3961-9068; Pasian, Fabio/0000-0002-4869-3227; Gregorio, Anna/0000-0003-4028-8785; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Sozzi, Carlo/0000-0001-8951-0071; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; de la Fuente, Luisa/0000-0003-1403-1660; Artal, Eduardo/0000-0002-2569-1894; Tomasi, Maurizio/0000-0002-1448-6131; Aja, Beatriz/0000-0002-4229-2334; Franceschi, Enrico/0000-0002-0585-6591; Zonca, Andrea/0000-0001-6841-1058; Morgante, Gianluca/0000-0001-9234-7412; Pascual, Juan Pablo/0000-0003-2123-0502 FU Italian Space Agency (ASI); NASA Science Mission Directorate; Finnish Funding Agency for Technology and Innovation (Tekes); ESA FX The Planck-LFI project is developed by an Interntional Consortium lead by Italy and involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK, USA. The Italian contribution to Planck is supported by the Italian Space Agency (ASI). The work in this paper has been supported by in the framework of the ASI-E2 phase of the Planck contract. The US Planck Project is supported by the NASA Science Mission Directorate. In Finland, the Planck-LFI 70 GHz work was supported by the Finnish Funding Agency for Technology and Innovation (Tekes).; Planck http://www.esa.int/Planck is a project of the European Space Agency - ESA - with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark. NR 24 TC 20 Z9 20 U1 0 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A5 DI 10.1051/0004-6361/200912849 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200006 ER PT J AU Pajot, F Ade, PAR Beney, JL Breelle, E Broszkiewicz, D Camus, P Carabetian, C Catalano, A Chardin, A Charra, M Charra, J Cizeron, R Couchot, F Coulais, A Crill, BP Dassas, K Daubin, J de Bernardis, P de Marcillac, P Delouis, JM Desert, FX Duret, P Eng, P Evesque, C Fourmond, JJ Francois, S Giard, M Giraud-Heraud, Y Guglielmi, L Guyot, G Haissinski, J Henrot-Versille, S Hervier, V Holmes, W Jones, WC Lamarre, JM Lami, P Lange, AE Lefebvre, M Leriche, B Leroy, C Macias-Perez, J Maciaszek, T Maffei, B Mahendran, A Mansoux, B Marty, C Masi, S Mercier, C Miville-Deschenes, MA Montier, L Nicolas, C Noviello, F Perdereau, O Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Pons, R Ponthieu, N Puget, JL Rambaud, D Renault, C Renault, JC Rioux, C Ristorcelli, I Rosset, C Savini, G Sudiwala, R Torre, JP Tristram, M Vallee, D Veneziani, M Yvon, D AF Pajot, F. Ade, P. A. R. Beney, J. -L. Breelle, E. Broszkiewicz, D. Camus, P. Carabetian, C. Catalano, A. Chardin, A. Charra, M. Charra, J. Cizeron, R. Couchot, F. Coulais, A. Crill, B. P. Dassas, K. Daubin, J. de Bernardis, P. de Marcillac, P. Delouis, J. -M. Desert, F. -X. Duret, P. Eng, P. Evesque, C. Fourmond, J. -J. Francois, S. Giard, M. Giraud-Heraud, Y. Guglielmi, L. Guyot, G. Haissinski, J. Henrot-Versille, S. Hervier, V. Holmes, W. Jones, W. C. Lamarre, J. -M. Lami, P. Lange, A. E. Lefebvre, M. Leriche, B. Leroy, C. Macias-Perez, J. Maciaszek, T. Maffei, B. Mahendran, A. Mansoux, B. Marty, C. Masi, S. Mercier, C. Miville-Deschenes, M. -A. Montier, L. Nicolas, C. Noviello, F. Perdereau, O. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Pons, R. Ponthieu, N. Puget, J. -L. Rambaud, D. Renault, C. Renault, J. -C. Rioux, C. Ristorcelli, I. Rosset, C. Savini, G. Sudiwala, R. Torre, J. -P. Tristram, M. Vallee, D. Veneziani, M. Yvon, D. TI Planck pre-launch status: HFI ground calibration SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; space vehicles: instruments; submillimeter: general ID HIGH-FREQUENCY INSTRUMENT; POLARIZATION; DESIGN; FIRAS AB Context. The Planck satellite was successfully launched on May 14th 2009. We have completed the pre-launch calibration measurements of the High Frequency Instrument (HFI) on board Planck and their processing. Aims. We present the results ot the pre-launch calibration of HFI in which we have multiple objectives. First, we determine instrumental parameters that cannot be measured in-flight and predict parameters that can. Second, we take the opportunity to operate and understand the instrument under a wide range of anticipated operating conditions. Finally, we estimate the performance of the instrument built. Methods. We obtained our pre-launch calibration results by characterising the component and subsystems, then by calibrating the focal plane at IAS (Orsay) in the Saturne simulator, and later from the tests at the satellite level carried out in the CSL (Liege) cryogenic vacuum chamber. We developed models to estimate the instrument pre-launch parameters when no measurement could be performed. Results. We reliably measure the Planck-HFI instrument characteristics and behaviour, and determine the flight nominal setting of all parameters. The expected in-flight performance exceeds the requirements and is close or superior to the goal specifications. C1 [Pajot, F.; Carabetian, C.; Chardin, A.; Charra, M.; Charra, J.; Dassas, K.; de Marcillac, P.; Duret, P.; Eng, P.; Evesque, C.; Fourmond, J. -J.; Francois, S.; Guyot, G.; Hervier, V.; Lami, P.; Lefebvre, M.; Leriche, B.; Leroy, C.; Mahendran, A.; Mercier, C.; Miville-Deschenes, M. -A.; Nicolas, C.; Noviello, F.; Ponthieu, N.; Puget, J. -L.; Rioux, C.; Torre, J. -P.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Ade, P. A. R.; Sudiwala, R.] Cardiff Univ, Astron & Instrumentat Grp, Cardiff, S Glam, Wales. [Beney, J. -L.; Cizeron, R.; Couchot, F.; Daubin, J.; Haissinski, J.; Henrot-Versille, S.; Mansoux, B.; Perdereau, O.; Plaszczynski, S.; Rosset, C.; Tristram, M.] Univ Paris 11, Lab Accelerateur Lineaire, F-91405 Orsay, France. [Breelle, E.; Broszkiewicz, D.; Catalano, A.; Giraud-Heraud, Y.; Guglielmi, L.; Piat, M.; Vallee, D.; Veneziani, M.] CNRS, Lab Astroparticule & Cosmol APC, UMR 7164, F-75205 Paris 13, France. [Breelle, E.; Broszkiewicz, D.; Catalano, A.; Giraud-Heraud, Y.; Guglielmi, L.; Piat, M.; Vallee, D.; Veneziani, M.] Univ Paris 07, F-75205 Paris 13, France. [Camus, P.] CNRS UJF, Inst Neel, F-38042 Grenoble 9, France. [Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Crill, B. P.; Lange, A. E.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Crill, B. P.; Holmes, W.; Jones, W. C.; Lange, A. E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [de Bernardis, P.; Masi, S.; Piacentini, F.] Univ Roma La Sapienza, Grp Cosmol Sperimentale, Dipart Fis, I-00185 Rome, Italy. [Delouis, J. -M.; Renault, J. -C.] CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France. [Delouis, J. -M.; Renault, J. -C.] Univ Paris 06, F-75014 Paris, France. [Desert, F. -X.] Obs Grenoble, Lab Astrophys, F-38041 Grenoble 9, France. [Giard, M.; Marty, C.; Montier, L.; Pointecouteau, E.; Pons, R.; Rambaud, D.; Ristorcelli, I.] CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse, France. [Jones, W. C.] Princeton Univ, Dept Phys, Joseph Henry Lab, Princeton, NJ 08544 USA. [Macias-Perez, J.; Renault, C.] Univ Grenoble 1, LPSC, CNRS IN2P3, Inst Natl Polytech Grenoble, F-38026 Grenoble, France. [Maciaszek, T.] CNES, Ctr Spatial Toulouse, F-31401 Toulouse 9, France. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Savini, G.] UCL, Opt Sci Lab, London WC1E 6BT, England. [Yvon, D.] CEA CE Saclay, DAPNIA, Serv Phys Particules, F-91191 Gif Sur Yvette, France. RP Pajot, F (reprint author), Univ Paris 11, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. EM francois.pajot@ias.u-psud.fr RI Yvon, Dominique/D-2280-2015; Piacentini, Francesco/E-7234-2010; OI Piacentini, Francesco/0000-0002-5444-9327; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Savini, Giorgio/0000-0003-4449-9416 FU CSL team; ESA FX Planck (http://www.esa.int/Planck) is an ESA project with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in collaboration between ESA and a scientific Consortium led and funded by Denmark.; The authors would like to express their gratitude to the CSL team for its contributions and support to the Planck cryogenic test campaigns. NR 25 TC 16 Z9 16 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A10 DI 10.1051/0004-6361/200913203 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200011 ER PT J AU Rosset, C Tristram, M Ponthieu, N Ade, P Aumont, J Catalano, A Conversi, L Couchot, F Crill, BP Desert, FX Ganga, K Giard, M Giraud-Heraud, Y Haissinski, J Henrot-Versille, S Holmes, W Jones, WC Lamarre, JM Lange, A Leroy, C Macias-Perez, J Maffei, B de Marcillac, P Miville-Deschenes, MA Montier, L Noviello, F Pajot, F Perdereau, O Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Puget, JL Ristorcelli, I Savini, G Sudiwala, R Veneziani, M Yvon, D AF Rosset, C. Tristram, M. Ponthieu, N. Ade, P. Aumont, J. Catalano, A. Conversi, L. Couchot, F. Crill, B. P. Desert, F. -X. Ganga, K. Giard, M. Giraud-Heraud, Y. Haissinski, J. Henrot-Versille, S. Holmes, W. Jones, W. C. Lamarre, J. -M. Lange, A. Leroy, C. Macias-Perez, J. Maffei, B. de Marcillac, P. Miville-Deschenes, M. -A. Montier, L. Noviello, F. Pajot, F. Perdereau, O. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Puget, J. -L. Ristorcelli, I. Savini, G. Sudiwala, R. Veneziani, M. Yvon, D. TI Planck pre-launch status: High Frequency Instrument polarization calibration SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE space vehicles: instruments; techniques: polarimetric; instrumentation: polarimeters; instrumentation: detectors; cosmic microwave background; submillimeter: general ID PROBE WMAP OBSERVATIONS; POWER SPECTRA; MICROWAVE; TEMPERATURE; PARAMETERS AB The High Frequency Instrument of Planck will map the entire sky in the millimeter and sub-millimeter domain from 100 to 857 GHz with unprecedented sensitivity to polarization (Delta P/T-cmb similar to 4 x 10(-6) for P either Q or U and T-cmb similar or equal to 2.7 K) at 100, 143, 217 and 353 GHz. It will lead to major improvements in our understanding of the cosmic microwave background anisotropies and polarized foreground signals. Planck will make high resolution measurements of the E-mode spectrum (up to l similar to 1500) and will also play a prominent role in the search for the faint imprint of primordial gravitational waves on the CMB polarization. This paper addresses the effects of calibration of both temperature (gain) and polarization (polarization efficiency and detector orientation) on polarization measurements. The specific requirements on the polarization parameters of the instrument are set and we report on their pre-flight measurement on HFI bolometers. We present a semi-analytical method that exactly accounts for the scanning strategy of the instrument as well as the combination of different detectors. We use this method to propagate errors through to the CMB angular power spectra in the particular case of Planck-HFI, and to derive constraints on polarization parameters. We show that in order to limit the systematic error to 10% of the cosmic variance of the E-mode power spectrum, uncertainties in gain, polarization efficiency and detector orientation must be below 0.15%, 0.3% and 1 degrees respectively. Pre-launch ground measurements reported in this paper already fulfill these requirements. C1 [Rosset, C.; Tristram, M.; Couchot, F.; Haissinski, J.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.] Univ Paris 11, CNRS, LAL, Lab Accelerateur Lineaire, F-91405 Orsay, France. [Ponthieu, N.; Aumont, J.; Leroy, C.; de Marcillac, P.; Miville-Deschenes, M. -A.; Noviello, F.; Pajot, F.; Puget, J. -L.] Univ Paris 11, CNRS, IAS, Inst Astrophys Spatiale, F-91405 Orsay, France. [Ade, P.; Savini, G.; Sudiwala, R.] Cardiff Univ, Astron & Instrumentat Grp, Cardiff, S Glam, Wales. [Catalano, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Rosset, C.; Catalano, A.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Veneziani, M.] Univ Paris Diderot, APC Astroparticule & Cosmol, F-75205 Paris 13, France. [Crill, B. P.; Jones, W. C.; Lange, A.] CALTECH, Observat Cosmol, Pasadena, CA 91125 USA. [Desert, F. -X.; Macias-Perez, J.] CNRS, LAOG, Astrophys Lab, Observ Grenoble, Grenoble, France. [Giard, M.; Leroy, C.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, CESR, F-31038 Toulouse 4, France. [Crill, B. P.; Holmes, W.; Jones, W. C.; Lange, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Maffei, B.] Univ Manchester, JBCA, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Tristram, M.; Aumont, J.] CNRS, LPSC, Lab Phys Subatom & Cosmol, Grenoble, France. [Piacentini, F.; Veneziani, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Yvon, D.] CEA, Serv Phys Particules, Saclay, France. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Savini, G.] UCL, Opt Sci Lab, London WC1E 6BT, England. [Conversi, L.] European Space Astron Ctr, Villanueava De La Canada 28691, Madrid, Spain. RP Rosset, C (reprint author), Univ Paris 11, CNRS, LAL, Lab Accelerateur Lineaire, Batiment 200, F-91405 Orsay, France. EM cyrille.rosset@apc.univ-paris-diderot.fr RI Yvon, Dominique/D-2280-2015; Piacentini, Francesco/E-7234-2010; OI Piacentini, Francesco/0000-0002-5444-9327; Savini, Giorgio/0000-0003-4449-9416 FU ESA; CNES; CNRS; NASA; STFC; ASI FX Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.; The Planck-HFI instrument (http://hfi.planck.fr/) was designed and built by an international consortium of laboratories, universities and institutes, with important contributions from the industry, under the leadership of the PI institute, IAS at Orsay, France. It was funded in particular by CNES, CNRS, NASA, STFC and ASI. The authors extend their gratitude to the numerous engineers and scientists, who have contributed to the design, development, construction or evaluation of the HFI instrument. The authors are pleased to thank the referee for his/her very useful remarks. NR 35 TC 59 Z9 59 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A13 DI 10.1051/0004-6361/200913054 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200014 ER PT J AU Sandri, M Villa, F Bersanelli, M Burigana, C Butler, RC D'Arcangelo, O Figini, L Gregorio, A Lawrence, CR Maino, D Mandolesi, N Maris, M Nesti, R Perrotta, F Platania, P Simonetto, A Sozzi, C Tauber, J Valenziano, L AF Sandri, M. Villa, F. Bersanelli, M. Burigana, C. Butler, R. C. D'Arcangelo, O. Figini, L. Gregorio, A. Lawrence, C. R. Maino, D. Mandolesi, N. Maris, M. Nesti, R. Perrotta, F. Platania, P. Simonetto, A. Sozzi, C. Tauber, J. Valenziano, L. TI Planck pre-launch status: Low Frequency Instrument optics SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; space vehicles: instruments; instrumentation: detectors; submillimeter: general; telescopes ID MICROWAVE BACKGROUND ANISOTROPY; DIPOLE STRAYLIGHT CONTAMINATION; ANGULAR RESOLUTION; TRADE-OFF AB We describe the optical design and optimisation of the Low Frequency Instrument (LFI), one of two instruments onboard the Planck satellite, which will survey the cosmic microwave background with unprecedented accuracy. The LFI covers the 30-70 GHz frequency range with an array of cryogenic radiometers. Stringent optical requirements on angular resolution, sidelobes, main beam symmetry, polarization purity, and feed orientation have been achieved. The optimisation process was carried out by assuming an ideal telescope according to the Planck design and by using both physical optics and multi-reflector geometrical theory of diffraction. This extensive study led to the flight design of the feed horns, their characteristics, arrangement, and orientation, while taking into account the opto-mechanical constraints imposed by complex interfaces in the Planck focal surface. C1 [Sandri, M.; Villa, F.; Burigana, C.; Butler, R. C.; Mandolesi, N.; Valenziano, L.] INAF IASF Bologna, I-40129 Bologna, Italy. [Bersanelli, M.; Maino, D.] Univ Milan, I-20133 Milan, Italy. [D'Arcangelo, O.; Figini, L.; Platania, P.; Simonetto, A.; Sozzi, C.] IFP CNR, Milan, Italy. [Gregorio, A.; Maris, M.] INAF OATs, I-34143 Trieste, Italy. [Gregorio, A.] Univ Trieste, Dept Phys, I-34127 Trieste, Italy. [Lawrence, C. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Nesti, R.] INAF, Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Perrotta, F.] SISSA, I-34014 Trieste, Italy. [Tauber, J.] ESA ESTEC, NL-2200 AG Noordwijk, Netherlands. RP Sandri, M (reprint author), INAF IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy. EM sandri@iasfbo.inaf.it; villa@iasfbo.inaf.it; marco.bersanelli@mi.infn.it; burigana@iasfbo.inaf.it; butler@iasfbo.inaf.it; darcangelo@ifp.cnr.it; anna.gregorio@ts.infn.it; Charles.R.Lawrence@jpl.nasa.gov; davide.maino@mi.infn.it; mandolesi@iasfbo.inaf.it; maris@oats.inaf.it; nesti@arcetri.astro.it; perrotta@sissa.it; platania@ifp.cnr.it; simonetto@ifp.cnr.it; sozzi@ifp.cnr.it; jtauber@rssd.esa.int; valenziano@iasfbo.inaf.it RI Sozzi, Carlo/F-4158-2012; Butler, Reginald/N-4647-2015; OI Nesti, Renzo/0000-0003-0303-839X; Gregorio, Anna/0000-0003-4028-8785; Sandri, Maura/0000-0003-4806-5375; Burigana, Carlo/0000-0002-3005-5796; Villa, Fabrizio/0000-0003-1798-861X; Sozzi, Carlo/0000-0001-8951-0071; Butler, Reginald/0000-0003-4366-5996; Maris, Michele/0000-0001-9442-2754; Valenziano, Luca/0000-0002-1170-0104 FU ESA; Italian Space Agency (ASI) FX Planck is a project of the European Space Agency with instruments funded by ESA member states, and with special contributions from Denmark and NASA (USA). The Planck-LFI project is developed by an International Consortium lead by Italy and involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK, USA. The Italian contribution to Planck is supported by the Italian Space Agency (ASI). We wish to thank people of the Herschel/Planck Project of ESA, ASI, THALES Alenia Space Industries, and the LFI Consortium that are involved in activities related to optical simulations. Some of the results in this paper have been derived using the HEALPix (Gorski, Hivon, and Wandelt 1999). Special thanks to Denis Dubruel (THALES Alenia Space), for his professional collaboration in all these years. We warmly thank David Pearson for constructive comments and suggestions, and for the careful reading of the first version of this work. NR 27 TC 15 Z9 15 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A7 DI 10.1051/0004-6361/200912891 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200008 ER PT J AU Strassmeier, KG Granzer, T Kopf, M Weber, M Kuker, M Reegen, P Rice, JB Matthews, JM Kuschnig, R Rowe, JF Guenther, DB Moffat, AFJ Rucinski, SM Sasselov, D Weiss, WW AF Strassmeier, K. G. Granzer, T. Kopf, M. Weber, M. Kueker, M. Reegen, P. Rice, J. B. Matthews, J. M. Kuschnig, R. Rowe, J. F. Guenther, D. B. Moffat, A. F. J. Rucinski, S. M. Sasselov, D. Weiss, W. W. TI Rotation and magnetic activity of the Hertzsprung-gap giant 31 Comae SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: activity; stars: atmospheres; stars: individual: 31 Comae; starspots; stars: late-type; stars: rotation ID PRE-MAIN-SEQUENCE; LATE-TYPE STARS; GENEVA-COPENHAGEN SURVEY; TIME-SERIES ANALYSIS; X-RAY ACTIVITY; LATE A-TYPE; G-K GIANTS; STELLAR EVOLUTION; COOL STARS; LUMINOSITY CLASSIFICATION AB Context. The single rapidly-rotating G0 giant 31 Comae has been a puzzle because of the absence of photometric variability despite its strong chromospheric and coronal emissions. As a Hertzsprung-gap giant, it is expected to be at the stage of rearranging its moment of inertia, hence likely also its dynamo action, which could possibly be linked with its missing photospheric activity. Aims. Our aim is to detect photospheric activity, obtain the rotation period, and use it for a first Doppler image of the star's surface. Its morphology could be related to the evolutionary status. Methods. We carried out high-precision, white-light photometry with the MOST satellite, ground-based Stromgren photometry with automated telescopes, and high-resolution optical echelle spectroscopy with the new STELLA robotic facility. Results. The MOST data reveal, for the first time, light variations with a full amplitude of 5 mmag and an average photometric period of 6.80 +/- 0.06 days. Radial-velocity variations with a full amplitude of 270 ms(-1) and a period of 6.76 +/- 0.02 days were detected from our STELLA spectra, which we also interpret as due to stellar rotation. The two-year constancy of the average radial velocity of +0.10 +/- 0.33 km s(-1) confirms the star's single status, as well as the membership in the cluster Melotte 111. A spectrum synthesis gives T-eff = 5660 +/- 42 K, log g = 3.51 +/- 0.09, and [Fe/H] = -0.15 +/- 0.03, which together with the revised Hipparcos distance, suggests a mass of 2.6 +/- 0.1 M-circle dot and an age of approximate to 540 Myr. The surface lithium abundance is measured to be nearly primordial. A detection of a strong He I absorption line indicates nonradiative heating processes in the atmosphere. Our Doppler images show a large, asymmetric polar spot, cooler than Teff by approximate to 1600 K, and several small low-to-mid latitude features that are warmer by approximate to 300-400 K and are possibly of chromospheric origin. We computed the convective turnover time for 31 Com as a function of depth and found on average tau(C) approximate to 5 days. Conclusions. 31 Com appears to be just at the onset of rapid magnetic braking and Li dilution because its age almost exactly coincides with the predicted onset of envelope convection. That we recover a big polar starspot despite the Rossby number being larger than unity, and thus no efficient (envelope) dynamo is expected, leads us to conclude that 31 Com still harbors a fossil predominantly poloidal magnetic field. However, the increasing convective envelope may have just started an interface dynamo that now is the source of the warm surface features and the corresponding UV and X-ray emission. C1 [Strassmeier, K. G.; Granzer, T.; Kopf, M.; Weber, M.; Kueker, M.] AIP, D-14482 Potsdam, Germany. [Reegen, P.; Kuschnig, R.; Weiss, W. W.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Rice, J. B.] Brandon Univ, Dept Phys, Brandon, MB R7A 6A9, Canada. [Matthews, J. M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Rowe, J. F.] NASA Ames Res Ctr, Moffett Field, CA 94035 USA. [Guenther, D. B.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Moffat, A. F. J.] Univ Montreal CP 6128, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Rucinski, S. M.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON OM5S 3H4, Canada. [Sasselov, D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Strassmeier, KG (reprint author), AIP, Sternwarte 16, D-14482 Potsdam, Germany. EM kstrassmeier@aip.de; reegen@astro.univie.ac.at; rice@BrandonU.ca FU Natural Sciences and Engineering Research Council (NSERC) Canada; Canadian Space Agency; Austrian Science Promotion Agency (FFG-MOST); Austrian Science Funds [FWF-P17580]; FWF; KGS FX K.G.S. and the AIP coauthors are grateful to the State of Brandenburg and the German federal ministry for education and research (BMBF) for their continuous support of the STELLA and APT activities. It is our pleasure to thank Sydney Barnes and Yong-Cheol Kim for computing the moment-of-inertia models for us. We particularly thank our anonymous referee whose comments resulted in a much improved paper. J.B.R., J.M.M., D.B.G., A.F.J.M., and S.M.R. are supported by funding from the Natural Sciences and Engineering Research Council (NSERC) Canada. R.K. is funded by the Canadian Space Agency. W.W.W. is supported by the Austrian Science Promotion Agency (FFG-MOST) and the Austrian Science Funds (FWF-P17580). The APT operation has been supported by grants from the FWF to M. Breger and KGS. This work has made use of BaSTI web tools, the MESA code and of the many CDS-Strasbourg services. NR 120 TC 10 Z9 10 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A52 DI 10.1051/0004-6361/201015023 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200075 ER PT J AU Tauber, JA Norgaard-Nielsen, HU Ade, PAR Parian, JA Banos, T Bersanelli, M Burigana, C Chamballu, A de Chambure, D Christensen, PR Corre, O Cozzani, A Crill, B Crone, G D'Arcangelo, O Daddato, R Doyle, D Dubruel, D Forma, G Hills, R Huffenberger, K Jaffe, AH Jessen, N Kletzkine, P Lamarre, JM Leahy, JP Longval, Y de Maagt, P Maffei, B Mandolesi, N Marti-Canales, J Martin-Polegre, A Martin, P Mendes, L Murphy, JA Nielsen, P Noviello, F Paquay, M Peacocke, T Ponthieu, N Pontoppidan, K Ristorcelli, I Riti, JB Rolo, L Rosset, C Sandri, M Savini, G Sudiwala, R Tristram, M Valenziano, L van der Vorst, M van't Klooster, K Villa, F Yurchenko, V AF Tauber, J. A. Norgaard-Nielsen, H. U. Ade, P. A. R. Parian, J. Amiri Banos, T. Bersanelli, M. Burigana, C. Chamballu, A. de Chambure, D. Christensen, P. R. Corre, O. Cozzani, A. Crill, B. Crone, G. D'Arcangelo, O. Daddato, R. Doyle, D. Dubruel, D. Forma, G. Hills, R. Huffenberger, K. Jaffe, A. H. Jessen, N. Kletzkine, P. Lamarre, J. M. Leahy, J. P. Longval, Y. de Maagt, P. Maffei, B. Mandolesi, N. Marti-Canales, J. Martin-Polegre, A. Martin, P. Mendes, L. Murphy, J. A. Nielsen, P. Noviello, F. Paquay, M. Peacocke, T. Ponthieu, N. Pontoppidan, K. Ristorcelli, I. Riti, J. -B. Rolo, L. Rosset, C. Sandri, M. Savini, G. Sudiwala, R. Tristram, M. Valenziano, L. van der Vorst, M. van't Klooster, K. Villa, F. Yurchenko, V. TI Planck pre-launch status: The optical system SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; space vehicles: instruments; instrumentation: detectors; instrumentation: polarimeters; submillimeter: general; telescopes ID STRAYLIGHT CONTAMINATION; FREQUENCY INSTRUMENT; CRAB-NEBULA; POLARIZATION; ANISOTROPY; TELESCOPE; RECONSTRUCTION; LFI AB Planck is a scientific satellite that represents the next milestone in space-based research related to the cosmic microwave background, and in many other astrophysical fields. Planck was launched on 14 May of 2009 and is now operational. The uncertainty in the optical response of its detectors is a key factor allowing Planck to achieve its scientific objectives. More than a decade of analysis and measurements have gone into achieving the required performances. In this paper, we describe the main aspects of the Planck optics that are relevant to science, and the estimated in-flight performance, based on the knowledge available at the time of launch. We also briefly describe the impact of the major systematic effects of optical origin, and the concept of in-flight optical calibration. Detailed discussions of related areas are provided in accompanying papers. C1 [Tauber, J. A.] European Space Agcy, Res & Sci Support Dpt, Div Astrophys, NL-2201 AZ Noordwijk, Netherlands. [Norgaard-Nielsen, H. U.; Jessen, N.] Danish Natl Space Ctr, DK-2100 Copenhagen, Denmark. [Parian, J. Amiri] PhotoCore GmbH, CH-8050 Zurich, Switzerland. [Banos, T.; Corre, O.; Dubruel, D.; Forma, G.; Martin, P.; Riti, J. -B.] Thales Alenia Space, F-06156 Cannes La Bocca, France. [Bersanelli, M.] Univ Milan, I-20133 Milan, Italy. [Burigana, C.; Mandolesi, N.; Sandri, M.; Valenziano, L.; Villa, F.] INAF Ist Astrofis Spaziale & Fis Cosm, I-40129 Bologna, Italy. [Chamballu, A.; Jaffe, A. H.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Christensen, P. R.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Cozzani, A.; Crone, G.; Daddato, R.; Doyle, D.; Kletzkine, P.; de Maagt, P.; Marti-Canales, J.; Martin-Polegre, A.; Paquay, M.; Rolo, L.; van der Vorst, M.; van't Klooster, K.] Estec, European Space Agcy, NL-2201 AZ Noordwijk, Netherlands. [Crill, B.; Huffenberger, K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [D'Arcangelo, O.] IFP CNR, Milan, Italy. [Hills, R.] Univ Cambridge, Cavendish Lab, Dpt Phys, Cambridge CB3 0HE, England. [Lamarre, J. M.] LERMA, Observ Paris, F-75014 Paris, France. [Leahy, J. P.; Maffei, B.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Mendes, L.] European Space Astron Ctr, European Space Agcy, Planck Sci Off, Madrid 28691, Spain. [Murphy, J. A.; Peacocke, T.] NUI Maynooth, Maynooth Co, Dpt Expt Phys, Kildare, Ireland. [Nielsen, P.; Pontoppidan, K.] Ticra, DK-21201 Copenhagen, Denmark. [Longval, Y.; Noviello, F.; Ponthieu, N.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Ristorcelli, I.] Univ Toulouse 3, Ctr Etud Spatiale Rayonnements, CESR, F-31038 Toulouse 4, France. [Ristorcelli, I.] CNRS, F-31038 Toulouse 4, France. [Rosset, C.] Univ Paris Diderot Paris 7, Lab Astroparticule & Cosmol APC, F-75205 Paris 13, France. [Rosset, C.] CNRS, F-75205 Paris 13, France. [Savini, G.] UCL, Opt Sci Lab, Dpt Phys & Astron, London WC1E 6BT, England. [Ade, P. A. R.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. Univ Paris 11, Lab Accelerateur Lineaire, F-91898 Orsay, France. [de Chambure, D.] European Space Agcy, F-75015 Paris, France. RP Tauber, JA (reprint author), European Space Agcy, Res & Sci Support Dpt, Div Astrophys, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. EM jtauber@rssd.esa.int OI Valenziano, Luca/0000-0002-1170-0104; Sandri, Maura/0000-0003-4806-5375; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Villa, Fabrizio/0000-0003-1798-861X; Savini, Giorgio/0000-0003-4449-9416 FU ESA; Scientific Consortium Denmark FX Planck (http://www.esa.int/Planck) is a project of the European Space Agency - ESA - with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark. NR 45 TC 41 Z9 41 U1 0 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A2 DI 10.1051/0004-6361/200912911 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200003 ER PT J AU Tauber, JA Mandolesi, N Puget, JL Banos, T Bersanelli, M Bouchet, FR Butler, RC Charra, J Crone, G Dodsworth, J Efstathiou, G Gispert, R Guyot, G Gregorio, A Juillet, JJ Lamarre, JM Laureijs, RJ Lawrence, CR Norgaard-Nielsen, HU Passvogel, T Reix, JM Texier, D Vibert, L Zacchei, A Ade, PAR Aghanim, N Aja, B Alippi, E Aloy, L Armand, P Arnaud, M Arondel, A Arreola-Villanueva, A Artal, E Artina, E Arts, A Ashdown, M Aumont, J Azzaro, M Bacchetta, A Baccigalupi, C Baker, M Balasini, M Balbi, A Banday, AJ Barbier, G Barreiro, RB Bartelmann, M Battaglia, P Battaner, E Benabed, K Beney, JL Beneyton, R Bennett, K Benoit, A Bernard, JP Bhandari, P Bhatia, R Biggi, M Biggins, R Billig, G Blanc, Y Blavot, H Bock, JJ Bonaldi, A Bond, R Bonis, J Borders, J Borrill, J Boschini, L Boulanger, F Bouvier, J Bouzit, M Bowman, R Breelle, E Bradshaw, T Braghin, M Bremer, M Brienza, D Broszkiewicz, D Burigana, C Burkhalter, M Cabella, P Cafferty, T Cairola, M Caminade, S Camus, P Cantalupo, CM Cappellini, B Cardoso, JF Carr, R Catalano, A Cayon, L Cesa, M Chaigneau, M Challinor, A Chamballu, A Chambelland, JP Charra, M Chiang, LY Chlewicki, G Christensen, PR Church, S Ciancietta, E Cibrario, M Cizeron, R Clements, D Collaudin, B Colley, JM Colombi, S Colombo, A Colombo, F Corre, O Couchot, F Cougrand, B Coulais, A Couzin, P Crane, B Crill, B Crook, M Crumb, D Cuttaia, F Dorl, U da Silva, P Daddato, R Damasio, C Danese, L d'Aquino, G D'Arcangelo, O Dassas, K Davies, RD Davies, W Davis, RJ De Bernardis, P de Chambure, D de Gasperis, G De la Fuente, ML De Paco, P De Rosa, A De Troia, G De Zotti, G Dehamme, M Delabrouille, J Delouis, JM Desert, FX di Girolamo, G Dickinson, C Doelling, E Dolag, K Domken, I Douspis, M Doyle, D Du, S Dubruel, D Dufour, C Dumesnil, C Dupac, X Duret, P Eder, C Elfving, A Ensslin, TA Eng, P English, K Eriksen, HK Estaria, P Falvella, MC Ferrari, F Finelli, F Fishman, A Fogliani, S Foley, S Fonseca, A Forma, G Forni, O Fosalba, P Fourmond, JJ Frailis, M Franceschet, C Franceschi, E Francois, S Frerking, M Gomez-Renasco, MF Gorski, KM Gaier, TC Galeotta, S Ganga, K Lazaro, JG Gavila, E Giard, M Giardino, G Gienger, G Giraud-Heraud, Y Glorian, JM Griffin, M Gruppuso, A Guglielmi, L Guichon, D Guillaume, B Guillouet, P Haissinski, J Hansen, FK Hardy, J Harrison, D Hazell, A Hechler, M Heckenauer, V Heinzer, D Hell, R Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Herreros, JM Hervier, V Heske, A Heurtel, A Hildebrandt, SR Hills, R Hivon, E Hobson, M Hollert, D Holmes, W Hornstrup, A Hovest, W Hoyland, RJ Huey, G Huffenberger, KM Hughes, N Israelsson, U Jackson, B Jaffe, A Jaffe, TR Jagemann, T Jessen, NC Jewell, J Jones, W Juvela, M Kaplan, J Karlman, P Keck, F Keihanen, E King, M Kisner, TS Kletzkine, P Kneissl, R Knoche, J Knox, L Koch, T Krassenburg, M Kurki-Suonio, H Lahteenmaki, A Lagache, G Lagorio, E Lami, P Lande, J Lange, A Langlet, F Lapini, R Lapolla, M Lasenby, A Le Jeune, M Leahy, JP Lefebvre, M Legrand, F Le Meur, G Leonardi, R Leriche, B Leroy, C Leutenegger, P Levin, SM Lilje, PB Lindensmith, C Linden-Vornle, M Loc, A Longval, Y Lubin, PM Luchik, T Luthold, I Macias-Perez, JF Maciaszek, T MacTavish, C Madden, S Maffei, B Magneville, C Maino, D Mambretti, A Mansoux, B Marchioro, D Maris, M Marliani, F Marrucho, JC Marti-Canales, J Martinez-Gonzalez, E Martin-Polegre, A Martin, P Marty, C Marty, W Masi, S Massardi, M Matarrese, S Matthai, F Mazzotta, P McDonald, A McGrath, P Mediavilla, A Meinhold, R Melin, JB Melot, F Mendes, L Mennella, A Mervier, C Meslier, L Miccolis, M Miville-Deschenes, MA Moneti, A Montet, D Montier, L Mora, J Morgante, G Morigi, G Morinaud, G Morisset, N Mortlock, D Mottet, S Mulder, J Munshi, D Murphy, A Murphy, P Musi, P Narbonne, J Naselsky, P Nash, A Nati, F Natoli, P Netterfield, B Newell, J Nexon, M Nicolas, C Nielsen, PH Ninane, N Noviello, F Novikov, D Novikov, I O'Dwyer, IJ Oldeman, P Olivier, P Ouchet, L Oxborrow, CA Perez-Cuevas, L Pagan, L Paine, C Pajot, F Paladini, R Pancher, F Panh, J Parks, G Parnaudeau, P Partridge, B Parvin, B Pascual, JP Pasian, F Pearson, DP Pearson, T Pecora, M Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Pierpaoli, E Piersanti, O Plaige, E Plaszczynski, S Platania, P Pointecouteau, E Polenta, G Ponthieu, N Popa, L Poulleau, G Poutanen, T Prezeau, G Pradell, L Prina, M Prunet, S Rachen, JP Rambaud, D Rame, F Rasmussen, I Rautakoski, J Reach, WT Rebolo, R Reinecke, M Reiter, J Renault, C Ricciardi, S Rideau, P Riller, T Ristorcelli, I Riti, JB Rocha, G Roche, Y Pons, R Rohlfs, R Romero, D Roose, S Rosset, C Rouberol, S Rowan-Robinson, M Rubino-Martin, JA Rusconi, P Rusholme, B Salama, M Salerno, E Sandri, M Santos, D Sanz, JL Sauter, L Sauvage, F Savini, G Schmelzel, M Schnorhk, A Schwarz, W Scott, D Seiffert, MD Shellard, P Shih, C Sias, M Silk, JI Silvestri, R Sippel, R Smoot, GF Starck, JL Stassi, P Sternberg, J Stivoli, F Stolyarov, V Stompor, R Stringhetti, L Strommen, D Stute, T Sudiwala, R Sugimura, R Sunyaev, R Sygnet, JF Turler, M Taddei, E Tallon, J Tamiatto, C Taurigna, M Taylor, D Terenzi, L Thuerey, S Tillis, J Tofani, G Toffolatti, L Tommasi, E Tomasi, M Tonazzini, E Torre, JP Tosti, S Touze, F Tristram, M Tuovinen, J Tuttlebee, M Umana, G Valenziano, L Vallee, D van der Vlis, M Van Leeuwen, F Vanel, JC Van-Tent, B Varis, J Vassallo, E Vescovi, C Vezzu, F Vibert, D Vielva, P Vierra, J Villa, F Vittorio, N Vuerli, C Wade, LA Walker, AR Wandelt, BD Watson, C Werner, D White, M White, SDM Wilkinson, A Wilson, P Woodcraft, A Yoffo, B Yun, M Yurchenko, V Yvon, D Zhang, B Zimmermann, O Zonca, A Zorita, D AF Tauber, J. A. Mandolesi, N. Puget, J. -L. Banos, T. Bersanelli, M. Bouchet, F. R. Butler, R. C. Charra, J. Crone, G. Dodsworth, J. Efstathiou, G. Gispert, R. Guyot, G. Gregorio, A. Juillet, J. J. Lamarre, J. -M. Laureijs, R. J. Lawrence, C. R. Norgaard-Nielsen, H. U. Passvogel, T. Reix, J. M. Texier, D. Vibert, L. Zacchei, A. Ade, P. A. R. Aghanim, N. Aja, B. Alippi, E. Aloy, L. Armand, P. Arnaud, M. Arondel, A. Arreola-Villanueva, A. Artal, E. Artina, E. Arts, A. Ashdown, M. Aumont, J. Azzaro, M. Bacchetta, A. Baccigalupi, C. Baker, M. Balasini, M. Balbi, A. Banday, A. J. Barbier, G. Barreiro, R. B. Bartelmann, M. Battaglia, P. Battaner, E. Benabed, K. Beney, J. -L. Beneyton, R. Bennett, K. Benoit, A. Bernard, J. -P. Bhandari, P. Bhatia, R. Biggi, M. Biggins, R. Billig, G. Blanc, Y. Blavot, H. Bock, J. J. Bonaldi, A. Bond, R. Bonis, J. Borders, J. Borrill, J. Boschini, L. Boulanger, F. Bouvier, J. Bouzit, M. Bowman, R. Breelle, E. Bradshaw, T. Braghin, M. Bremer, M. Brienza, D. Broszkiewicz, D. Burigana, C. Burkhalter, M. Cabella, P. Cafferty, T. Cairola, M. Caminade, S. Camus, P. Cantalupo, C. M. Cappellini, B. Cardoso, J. -F. Carr, R. Catalano, A. Cayon, L. Cesa, M. Chaigneau, M. Challinor, A. Chamballu, A. Chambelland, J. P. Charra, M. Chiang, L. -Y. Chlewicki, G. Christensen, P. R. Church, S. Ciancietta, E. Cibrario, M. Cizeron, R. Clements, D. Collaudin, B. Colley, J. -M. Colombi, S. Colombo, A. Colombo, F. Corre, O. Couchot, F. Cougrand, B. Coulais, A. Couzin, P. Crane, B. Crill, B. Crook, M. Crumb, D. Cuttaia, F. Doerl, U. da Silva, P. Daddato, R. Damasio, C. Danese, L. d'Aquino, G. D'Arcangelo, O. Dassas, K. Davies, R. D. Davies, W. Davis, R. J. De Bernardis, P. de Chambure, D. de Gasperis, G. De la Fuente, M. L. De Paco, P. De Rosa, A. De Troia, G. De Zotti, G. Dehamme, M. Delabrouille, J. Delouis, J. -M. Desert, F. -X. di Girolamo, G. Dickinson, C. Doelling, E. Dolag, K. Domken, I. Douspis, M. Doyle, D. Du, S. Dubruel, D. Dufour, C. Dumesnil, C. Dupac, X. Duret, P. Eder, C. Elfving, A. Ensslin, T. A. Eng, P. English, K. Eriksen, H. K. Estaria, P. Falvella, M. C. Ferrari, F. Finelli, F. Fishman, A. Fogliani, S. Foley, S. Fonseca, A. Forma, G. Forni, O. Fosalba, P. Fourmond, J. -J. Frailis, M. Franceschet, C. Franceschi, E. Francois, S. Frerking, M. Gomez-Renasco, M. F. Gorski, K. M. Gaier, T. C. Galeotta, S. Ganga, K. Lazaro, J. Garcia Gavila, E. Giard, M. Giardino, G. Gienger, G. Giraud-Heraud, Y. Glorian, J. -M. Griffin, M. Gruppuso, A. Guglielmi, L. Guichon, D. Guillaume, B. Guillouet, P. Haissinski, J. Hansen, F. K. Hardy, J. Harrison, D. Hazell, A. Hechler, M. Heckenauer, V. Heinzer, D. Hell, R. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Herreros, J. M. Hervier, V. Heske, A. Heurtel, A. Hildebrandt, S. R. Hills, R. Hivon, E. Hobson, M. Hollert, D. Holmes, W. Hornstrup, A. Hovest, W. Hoyland, R. J. Huey, G. Huffenberger, K. M. Hughes, N. Israelsson, U. Jackson, B. Jaffe, A. Jaffe, T. R. Jagemann, T. Jessen, N. C. Jewell, J. Jones, W. Juvela, M. Kaplan, J. Karlman, P. Keck, F. Keihanen, E. King, M. Kisner, T. S. Kletzkine, P. Kneissl, R. Knoche, J. Knox, L. Koch, T. Krassenburg, M. Kurki-Suonio, H. Lahteenmaki, A. Lagache, G. Lagorio, E. Lami, P. Lande, J. Lange, A. Langlet, F. Lapini, R. Lapolla, M. Lasenby, A. Le Jeune, M. Leahy, J. P. Lefebvre, M. Legrand, F. Le Meur, G. Leonardi, R. Leriche, B. Leroy, C. Leutenegger, P. Levin, S. M. Lilje, P. B. Lindensmith, C. Linden-Vornle, M. Loc, A. Longval, Y. Lubin, P. M. Luchik, T. Luthold, I. Macias-Perez, J. F. Maciaszek, T. MacTavish, C. Madden, S. Maffei, B. Magneville, C. Maino, D. Mambretti, A. Mansoux, B. Marchioro, D. Maris, M. Marliani, F. Marrucho, J. -C. Marti-Canales, J. Martinez-Gonzalez, E. Martin-Polegre, A. Martin, P. Marty, C. Marty, W. Masi, S. Massardi, M. Matarrese, S. Matthai, F. Mazzotta, P. McDonald, A. McGrath, P. Mediavilla, A. Meinhold, R. Melin, J. -B. Melot, F. Mendes, L. Mennella, A. Mervier, C. Meslier, L. Miccolis, M. Miville-Deschenes, M. -A. Moneti, A. Montet, D. Montier, L. Mora, J. Morgante, G. Morigi, G. Morinaud, G. Morisset, N. Mortlock, D. Mottet, S. Mulder, J. Munshi, D. Murphy, A. Murphy, P. Musi, P. Narbonne, J. Naselsky, P. Nash, A. Nati, F. Natoli, P. Netterfield, B. Newell, J. Nexon, M. Nicolas, C. Nielsen, P. H. Ninane, N. Noviello, F. Novikov, D. Novikov, I. O'Dwyer, I. J. Oldeman, P. Olivier, P. Ouchet, L. Oxborrow, C. A. Perez-Cuevas, L. Pagan, L. Paine, C. Pajot, F. Paladini, R. Pancher, F. Panh, J. Parks, G. Parnaudeau, P. Partridge, B. Parvin, B. Pascual, J. P. Pasian, F. Pearson, D. P. Pearson, T. Pecora, M. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Piersanti, O. Plaige, E. Plaszczynski, S. Platania, P. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Poulleau, G. Poutanen, T. Prezeau, G. Pradell, L. Prina, M. Prunet, S. Rachen, J. P. Rambaud, D. Rame, F. Rasmussen, I. Rautakoski, J. Reach, W. T. Rebolo, R. Reinecke, M. Reiter, J. Renault, C. Ricciardi, S. Rideau, P. Riller, T. Ristorcelli, I. Riti, J. B. Rocha, G. Roche, Y. Pons, R. Rohlfs, R. Romero, D. Roose, S. Rosset, C. Rouberol, S. Rowan-Robinson, M. Rubino-Martin, J. A. Rusconi, P. Rusholme, B. Salama, M. Salerno, E. Sandri, M. Santos, D. Sanz, J. L. Sauter, L. Sauvage, F. Savini, G. Schmelzel, M. Schnorhk, A. Schwarz, W. Scott, D. Seiffert, M. D. Shellard, P. Shih, C. Sias, M. Silk, J. I. Silvestri, R. Sippel, R. Smoot, G. F. Starck, J. -L. Stassi, P. Sternberg, J. Stivoli, F. Stolyarov, V. Stompor, R. Stringhetti, L. Strommen, D. Stute, T. Sudiwala, R. Sugimura, R. Sunyaev, R. Sygnet, J. -F. Tuerler, M. Taddei, E. Tallon, J. Tamiatto, C. Taurigna, M. Taylor, D. Terenzi, L. Thuerey, S. Tillis, J. Tofani, G. Toffolatti, L. Tommasi, E. Tomasi, M. Tonazzini, E. Torre, J. -P. Tosti, S. Touze, F. Tristram, M. Tuovinen, J. Tuttlebee, M. Umana, G. Valenziano, L. Vallee, D. van der Vlis, M. Van Leeuwen, F. Vanel, J. -C. Van-Tent, B. Varis, J. Vassallo, E. Vescovi, C. Vezzu, F. Vibert, D. Vielva, P. Vierra, J. Villa, F. Vittorio, N. Vuerli, C. Wade, L. A. Walker, A. R. Wandelt, B. D. Watson, C. Werner, D. White, M. White, S. D. M. Wilkinson, A. Wilson, P. Woodcraft, A. Yoffo, B. Yun, M. Yurchenko, V. Yvon, D. Zhang, B. Zimmermann, O. Zonca, A. Zorita, D. TI Planck pre-launch status: The Planck mission SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; space vehicles: instruments; instrumentation: detectors; instrumentation: polarimeters; submillimeter: general; radio continuum: general ID HIGH-FREQUENCY INSTRUMENT; MICROWAVE BACKGROUND ANISOTROPY; CMB EXPERIMENTS; CALIBRATION; POLARIZATION; SPACE; HFI; PERFORMANCE; DESIGN; SYSTEM AB The European Space Agency's Planck satellite, launched on 14 May 2009, is the third-generation space experiment in the field of cosmic microwave background (CMB) research. It will image the anisotropies of the CMB over the whole sky, with unprecedented sensitivity (Delta T/T similar to 2 x 10(-6)) and angular resolution (similar to 5 arcmin). Planck will provide a major source of information relevant to many fundamental cosmological problems and will test current theories of the early evolution of the Universe and the origin of structure. It will also address a wide range of areas of astrophysical research related to the Milky Way as well as external galaxies and clusters of galaxies. The ability of Planck to measure polarization across a wide frequency range (30-350 GHz), with high precision and accuracy, and over the whole sky, will provide unique insight, not only into specific cosmological questions, but also into the properties of the interstellar medium. This paper is part of a series which describes the technical capabilities of the Planck scientific payload. It is based on the knowledge gathered during the on-ground calibration campaigns of the major subsystems, principally its telescope and its two scientific instruments, and of tests at fully integrated satellite level. It represents the best estimate before launch of the technical performance that the satellite and its payload will achieve in flight. In this paper, we summarise the main elements of the payload performance, which is described in detail in the accompanying papers. In addition, we describe the satellite performance elements which are most relevant for science, and provide an overview of the plans for scientific operations and data analysis. C1 [Tauber, J. A.; Laureijs, R. J.; Bennett, K.; Bremer, M.; Giardino, G.; Sternberg, J.] ESTEC, European Space Agcy, Div Astrophys, NL-2201 AZ Noordwijk, Netherlands. [Polenta, G.] ESRIN, Agenzia Spaziale Italiana, Sci Data Ctr, Frascati, Italy. [Falvella, M. C.; Tommasi, E.] Agenzia Spaziale Italiana, Rome, Italy. [Sippel, R.; Stute, T.] Astrium GmbH, Friedrichshafen, Germany. [Broszkiewicz, D.; Cardoso, J. -F.; Catalano, A.; Colley, J. -M.; Delabrouille, J.; Dufour, C.; Ganga, K.; Giraud-Heraud, Y.; Guglielmi, L.; Guillouet, P.; Kaplan, J.; Le Jeune, M.; Piat, M.; Stompor, R.; Vallee, D.; Vanel, J. -C.; Yoffo, B.] Univ Denis Diderot Paris 7, CNRS, UMR7164, Paris, France. [Baccigalupi, C.; Danese, L.; Perrotta, F.] SISSA ISAS, Astrophys Sect, Trieste, Italy. [Ade, P. A. R.; Griffin, M.; Sudiwala, R.; Woodcraft, A.] Cardiff Univ, Dept Phys & Astron, Cardiff, Wales. [Arnaud, M.] IrfU SAp, CEA Saclay, Gif Sur Yvette, France. [Magneville, C.; Melin, J. -B.; Starck, J. -L.; Yvon, D.] IrfU SPP, CEA Saclay, Gif Sur Yvette, France. [Aumont, J.] Ctr Etud Spatiale Rayonnements, UMR 5187, Toulouse, France. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Domken, I.; Ninane, N.; Roose, S.] Ctr Spatial Liege, Angleur, Belgium. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Glorian, J. -M.; Lande, J.; Marty, C.; Marty, W.; Montier, L.; Narbonne, J.; Nexon, M.; Pointecouteau, E.; Rambaud, D.; Ristorcelli, I.; Pons, R.] CNRS Univ Toulouse, CESR, Toulouse, France. [Bond, R.; Netterfield, B.] Univ Toronto, CITA, Toronto, ON, Canada. [Blanc, Y.; Maciaszek, T.; Panh, J.; Pradell, L.] Ctr Spatial Toulouse, CNES, Toulouse, France. [Salerno, E.; Tonazzini, E.] CNR ISTI, Area Ric, Pisa, Italy. Univ Politecn Cataluna, Dept Teoria Senyal & Comunicac, Barcelona, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Aja, B.; Artal, E.; De la Fuente, M. L.; Mediavilla, A.; Pascual, J. P.] Univ Cantabria, Dept Ingn Comunicac, E-39005 Santander, Spain. [Scott, D.; Walker, A. R.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA USA. [Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Jones, W.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Church, S.] Standford Univ, Dept Phys, Stanford, CA USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Meinhold, R.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Silk, J. I.] Univ Oxford, Dept Phys, Oxford, England. [White, M.] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, Padua, Italy. [Bersanelli, M.; Cappellini, B.; Franceschet, C.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; De Troia, G.; Mazzotta, P.; Natoli, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Brienza, D.; De Bernardis, P.; Masi, S.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Norgaard-Nielsen, H. U.; Hornstrup, A.; Jessen, N. C.; Oxborrow, C. A.] DTU Space, Natl Space Inst, Copenhagen, Denmark. [Crone, G.; Passvogel, T.; Aloy, L.; Arts, A.; Baker, M.; Braghin, M.; Colombo, A.; Daddato, R.; Damasio, C.; d'Aquino, G.; de Chambure, D.; Doyle, D.; Elfving, A.; Estaria, P.; Guillaume, B.; Heske, A.; Jackson, B.; Kletzkine, P.; Krassenburg, M.; Luthold, I.; Madden, S.; Marliani, F.; Marti-Canales, J.; Martin-Polegre, A.; Oldeman, P.; Olivier, P.; Perez-Cuevas, L.; Piersanti, O.; Rasmussen, I.; Rautakoski, J.; Schnorhk, A.; Thuerey, S.; van der Vlis, M.] Estec, European Space Agcy, Herschel Planck Project, NL-2201 AZ Noordwijk, Netherlands. [Dodsworth, J.; Biggins, R.; Billig, G.; di Girolamo, G.; Doelling, E.; Foley, S.; Gienger, G.; Hechler, M.; Heinzer, D.; Keck, F.; Tuttlebee, M.; Vassallo, E.; Watson, C.; Werner, D.] ESOC, European Space Agcy, Herschel Planck Project, Darmstadt, Germany. [Texier, D.; Carr, R.; Dupac, X.; Lazaro, J. Garcia; Jagemann, T.; Mendes, L.; Taylor, D.] Planck Sci Off ESAC, European Space Agcy, Madrid, Spain. [Azzaro, M.] Univ Granada, Granada, Spain. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Chamballu, A.; Clements, D.; Jaffe, A.; MacTavish, C.; Novikov, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London, England. [Tofani, G.] INAF Arcetri Astrophys Observ, Florence, Italy. [Mandolesi, N.; Butler, R. C.; Burigana, C.; Cuttaia, F.; De Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Morgante, G.; Morigi, G.; Sandri, M.; Stringhetti, L.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF Ist Astrofis Spaziale & Fis Cosm, Bologna, Italy. [Zacchei, A.; Fogliani, S.; Frailis, M.; Maris, M.; Pasian, F.; Vuerli, C.] INAF Osservatorio Astronom Trieste, Trieste, Italy. [Umana, G.] INAF, Osservatorio Astrofis Catania, Catania, Italy. [Galeotta, S.; Zonca, A.] INAF IASF Milano, Milan, Italy. [Bonaldi, A.; De Zotti, G.; Massardi, M.] INAF Osservatorio Astronom Padova, Padua, Italy. [Reach, W. T.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Bouchet, F. R.; Benabed, K.; Beneyton, R.; Colley, J. -M.; Colombi, S.; da Silva, P.; Delouis, J. -M.; Hivon, E.; Legrand, F.; Moneti, A.; Mottet, S.; Parnaudeau, P.; Prunet, S.; Rouberol, S.; Sauter, L.; Sygnet, J. -F.; Van-Tent, B.; Vibert, D.] Univ Paris 06, CNRS, Inst Astrophys Paris, Paris, France. [Bouchet, F. R.; Benabed, K.; Beneyton, R.; Colley, J. -M.; Colombi, S.; da Silva, P.; Delouis, J. -M.; Hivon, E.; Legrand, F.; Moneti, A.; Mottet, S.; Parnaudeau, P.; Prunet, S.; Rouberol, S.; Sauter, L.; Sygnet, J. -F.; Van-Tent, B.; Vibert, D.] Univ Paris 06, UPMC, Paris, France. [Puget, J. -L.; Charra, J.; Gispert, R.; Guyot, G.; Vibert, L.; Aghanim, N.; Arondel, A.; Blavot, H.; Boulanger, F.; Bouzit, M.; Caminade, S.; Chaigneau, M.; Charra, M.; Cougrand, B.; Crane, B.; Dassas, K.; Douspis, M.; Dumesnil, C.; Duret, P.; Eng, P.; Fourmond, J. -J.; Francois, S.; Heckenauer, V.; Hervier, V.; Lagache, G.; Lami, P.; Langlet, F.; Lefebvre, M.; Leriche, B.; Leroy, C.; Longval, Y.; Mervier, C.; Meslier, L.; Miville-Deschenes, M. -A.; Morinaud, G.; Nicolas, C.; Noviello, F.; Pajot, F.; Ponthieu, N.; Poulleau, G.; Tamiatto, C.; Torre, J. -P.; Tosti, S.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Camus, P.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Chiang, L. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Gomez-Renasco, M. F.; Herreros, J. M.; Hildebrandt, S. R.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Herranz, D.; Martinez-Gonzalez, E.; Sanz, J. L.; Vielva, P.] CSIC Univ Cantabria, Inst Fis Cantabria, Santander, Spain. [Morisset, N.; Rohlfs, R.; Tuerler, M.] Univ Geneva, ISDC Data Ctr Astrophys, Versoix, Switzerland. [D'Arcangelo, O.; Platania, P.] CNR, Ist Fis Plasma, I-20133 Milan, Italy. [Lawrence, C. R.; Arreola-Villanueva, A.; Bhandari, P.; Bhatia, R.; Bock, J. J.; Borders, J.; Bowman, R.; Cafferty, T.; Crill, B.; Crumb, D.; English, K.; Fishman, A.; Fonseca, A.; Frerking, M.; Gorski, K. M.; Gaier, T. C.; Hardy, J.; Hollert, D.; Holmes, W.; Huey, G.; Israelsson, U.; Jewell, J.; Karlman, P.; King, M.; Koch, T.; Lange, A.; Levin, S. M.; Lindensmith, C.; Loc, A.; Luchik, T.; McGrath, P.; Mora, J.; Mulder, J.; Murphy, P.; Nash, A.; Newell, J.; O'Dwyer, I. J.; Paine, C.; Parks, G.; Parvin, B.; Pearson, D. P.; Pearson, T.; Prezeau, G.; Prina, M.; Reiter, J.; Rocha, G.; Romero, D.; Salama, M.; Schmelzel, M.; Schwarz, W.; Seiffert, M. D.; Shih, C.; Strommen, D.; Sugimura, R.; Tallon, J.; Tillis, J.; Vierra, J.; Wade, L. A.; Wilson, P.; Yun, M.; Zhang, B.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Jaffe, T. R.; Leahy, J. P.; Maffei, B.; Wilkinson, A.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester, Lancs, England. [Beney, J. -L.; Cizeron, R.; Couchot, F.; Dehamme, M.; Du, S.; Eder, C.; Haissinski, J.; Henrot-Versille, S.; Heurtel, A.; Le Meur, G.; Mansoux, B.; Marrucho, J. -C.; Perdereau, O.; Plaige, E.; Plaszczynski, S.; Rosset, C.; Taurigna, M.; Touze, F.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, Accelerateur Lineaire Lab, F-91405 Orsay, France. [Barbier, G.; Benoit, A.; Bouvier, J.; Desert, F. -X.; Lagorio, E.; Pancher, F.; Vescovi, C.; Vezzu, F.; Zimmermann, O.] CNRS, UMR 5571, Lab Astrophys Grenoble, Grenoble, France. [Cantalupo, C. M.; Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Lamarre, J. -M.; Coulais, A.] CNRS, LERMA, Observ Paris, Paris, France. [Banday, A. J.; Bartelmann, M.; Doerl, U.; Dolag, K.; Ensslin, T. A.; Hell, R.; Hernandez-Monteagudo, C.; Hovest, W.; Kneissl, R.; Knoche, J.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Lahteenmaki, A.; McDonald, A.; Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala, Finland. [Tuovinen, J.; Varis, J.] VTT Informat Technol, MilliLab, Espoo, Finland. [Murphy, A.; Yurchenko, V.] Natl Univ Ireland, Dept Expt Phys, Dublin, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Juvela, M.] Univ Helsinki, Observ Tahtitorninmaki, Helsinki, Finland. [Burkhalter, M.; Davies, W.] Oerlikon Space, Zurich, Switzerland. [Biggi, M.; Lapini, R.] Officine Pasquali, Florence, Italy. [Savini, G.] UCL, Opt Sci Lab, London, England. [Hazell, A.] Estec, Res & Sci Support Dept, ESA, NL-2201 AZ Noordwijk, Netherlands. [Bradshaw, T.; Crook, M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Zorita, D.] Sener Ingn Sistemas SA, C Severo Ochoa, Tres Cantos, Spain. [Ricciardi, S.; Stivoli, F.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Paladini, R.] Spitzer Sci Ctr, Pasadena, CA USA. [De Paco, P.] Univ Autonoma Barcelona, Telecommun & Syst Engn Dept, E-08193 Barcelona, Spain. [Banos, T.; Juillet, J. J.; Reix, J. M.; Armand, P.; Chambelland, J. P.; Collaudin, B.; Corre, O.; Couzin, P.; Dubruel, D.; Forma, G.; Gavila, E.; Guichon, D.; Martin, P.; Montet, D.; Ouchet, L.; Rideau, P.; Riti, J. B.; Roche, Y.; Sauvage, F.] Thales Alenia Space France, Cannes La Bocca, France. [Bacchetta, A.; Cairola, M.; Cesa, M.; Chlewicki, G.; Ciancietta, E.; Cibrario, M.; Musi, P.; Rame, F.; Sias, M.] Thales Alenia Space Italia, Turin, Italy. [Alippi, E.; Artina, E.; Balasini, M.; Battaglia, P.; Boschini, L.; Colombo, F.; Ferrari, F.; Lapolla, M.; Leutenegger, P.; Mambretti, A.; Marchioro, D.; Miccolis, M.; Pagan, L.; Pecora, M.; Rusconi, P.; Silvestri, R.; Taddei, E.] Thales Alenia Space Italia, Milan, Italy. [Nielsen, P. H.] TICRA, Copenhagen, Denmark. [Linden-Vornle, M.] Tycho Brahe Planetarium, Copenhagen, Denmark. [Fosalba, P.] Univ Barcelona, ICE CSIC, Cerdanyola Del Valles, Barcelona, Spain. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Dept, Berkeley, CA 94720 USA. [Ashdown, M.; Hills, R.; Hobson, M.; Lasenby, A.; Shellard, P.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Efstathiou, G.; Challinor, A.; Harrison, D.; Mortlock, D.; Munshi, D.; Stolyarov, V.; Van Leeuwen, F.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gregorio, A.; Bonis, J.] Univ Trieste, Dept Phys, Trieste, Italy. [Hughes, N.] Ylinen Elect Ltd, Kauniainen, Finland. [Bartelmann, M.] Univ Heidelberg, Inst Theoret Astrophys, Zentrum Astronom, D-6900 Heidelberg, Germany. [Macias-Perez, J. F.; Melot, F.; Perotto, L.; Renault, C.; Santos, D.; Stassi, P.] Univ Grenoble 1, IN2P3, CNRS, Inst Natl Polytech Grenoble,LPSC, F-38026 Grenoble, France. RP Tauber, JA (reprint author), ESTEC, European Space Agcy, Div Astrophys, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. EM jtauber@rssd.esa.int RI Bouchet, Francois/B-5202-2014; van Leeuwen, Floor/D-4586-2011; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Pascual, Juan Pablo/K-5066-2014; Toffolatti, Luigi/K-5070-2014; Starck, Jean-Luc/D-9467-2011; Juvela, Mika/H-6131-2011; Lilje, Per/A-2699-2012; Salerno, Emanuele/A-2137-2010; de Gasperis, Giancarlo/C-8534-2012; Gregorio, Anna/J-1632-2012; Pradell, Lluis/F-8150-2013; Bartelmann, Matthias/A-5336-2014; Fosalba Vela, Pablo/I-5515-2016; Aja, Beatriz/H-5573-2015; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; Collaudin, Bernard/H-7149-2015; Butler, Reginald/N-4647-2015; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; de la Fuente, Luisa/J-5142-2012; Artal, Eduardo/H-5546-2015; White, Martin/I-3880-2015; Pearson, Timothy/N-2376-2015; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016 OI Vielva, Patricio/0000-0003-0051-272X; Pascual, Juan Pablo/0000-0003-2123-0502; Toffolatti, Luigi/0000-0003-2645-7386; Starck, Jean-Luc/0000-0003-2177-7794; Juvela, Mika/0000-0002-5809-4834; Salerno, Emanuele/0000-0002-3433-3634; de Gasperis, Giancarlo/0000-0003-2899-2171; Pradell, Lluis/0000-0003-4026-226X; Fonseca, Ana/0000-0001-9900-7015; Scott, Douglas/0000-0002-6878-9840; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Vuerli, Claudio/0000-0002-9640-8785; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Aja, Beatriz/0000-0002-4229-2334; Nati, Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Polenta, Gianluca/0000-0003-4067-9196; Pierpaoli, Elena/0000-0002-7957-8993; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Bowman, Robert/0000-0002-2114-1713; Savini, Giorgio/0000-0003-4449-9416; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Burigana, Carlo/0000-0002-3005-5796; Frailis, Marco/0000-0002-7400-2135; de Paco, Pedro/0000-0002-7628-7189; Bouchet, Francois/0000-0002-8051-2924; Collaudin, Bernard/0000-0003-0114-3014; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; silk, joe/0000-0002-1566-8148; Stringhetti, Luca/0000-0002-3961-9068; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Gregorio, Anna/0000-0003-4028-8785; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; de la Fuente, Luisa/0000-0003-1403-1660; Artal, Eduardo/0000-0002-2569-1894; White, Martin/0000-0001-9912-5070; Pearson, Timothy/0000-0001-5213-6231; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131 FU NASA; Danish National Research Council; European Space Agency - ESA FX Planck is too large a project to allow full acknowledgement of all contributions by individuals, institutions, industries, and funding agencies. The main entities involved in the mission are as follows. The European Space Agency (ESA) manages the project and funds the development of the satellite, its launch, and operations. ESA's prime industrial contractor for Planck is Thales Alenia Space (Cannes, France). Industry from all over Europe has contributed to the development of Planck. Specially notable contributions to the development are due to Thales Alenia Spazio (Italy) for the Service Module, Astrium (Friedrichshafen, Germany) for the Planck reflectors, and Oerlikon Space (Zurich, Switzerland) for the payload structures. Much of the most challenging cryogenic and optical testing has been carried out at the Centre Spatial de Liege in Belgium and on the premises of Thales Alenia Space in Cannes. Two Consortia, comprising around 50 scientific institutes within Europe and the US, and funded by agencies from the participating countries, have developed the scientific instruments LFI and HFI, and delivered them to ESA (see also Appendix A). The Consortia are also responsible for scientific operation of their respective instruments and processing the acquired data. The Consortia are led by the Principal Investigators: J.-L. Puget in France of HFI (funded principally via CNES) and N. Mandolesi in Italy of LFI (funded principally via ASI). NASA has funded the US Planck Project, based at JPL and involving scientists at many US institutions, which has contributed very significantly to the efforts of these two Consortia. A Consortium of Danish institutes (DK-Planck), funded by the Danish National Research Council, has participated with ESA in a joint development of the two reflectors for the Planck telescope. The author list for this paper has been selected by the Planck Science Team, and is composed of individuals from all of the above entities who have made multi-year contributions to the development of the mission. It does not pretend to be inclusive of all contributions.; Planck (http://www.esa.int/Planck) is a project of the European Space Agency - ESA - with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark. NR 44 TC 196 Z9 197 U1 0 U2 40 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A1 DI 10.1051/0004-6361/200912983 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200002 ER PT J AU Villa, F Terenzi, L Sandri, M Meinhold, P Poutanen, T Battaglia, P Franceschet, C Hughes, N Laaninen, M Lapolla, P Bersanelli, M Butler, RC Cuttaia, F D'Arcangelo, O Frailis, M Franceschi, E Galeotta, S Gregorio, A Leonardi, R Lowe, SR Mandolesi, N Maris, M Mendes, L Mennella, A Morgante, G Stringhetti, L Tomasi, M Valenziano, L Zacchei, A Zonca, A Aja, B Artal, E Balasini, M Bernardino, T Blackhurst, E Boschini, L Cappellini, B Cavaliere, F Colin, A Colombo, F Davis, RJ De La Fuente, L Edgeley, J Gaier, T Galtress, A Hoyland, R Jukkala, P Kettle, D Kilpia, VH Lawrence, CR Lawson, D Leahy, JP Leutenegger, P Levin, S Maino, D Malaspina, M Mediavilla, A Miccolis, M Pagan, L Pascual, JP Pasian, F Pecora, M Pospieszalski, M Roddis, N Salmon, MJ Seiffert, M Silvestri, R Simonetto, A Sjoman, P Sozzi, C Tuovinen, J Varis, J Wilkinson, A Winder, F AF Villa, F. Terenzi, L. Sandri, M. Meinhold, P. Poutanen, T. Battaglia, P. Franceschet, C. Hughes, N. Laaninen, M. Lapolla, P. Bersanelli, M. Butler, R. C. Cuttaia, F. D'Arcangelo, O. Frailis, M. Franceschi, E. Galeotta, S. Gregorio, A. Leonardi, R. Lowe, S. R. Mandolesi, N. Maris, M. Mendes, L. Mennella, A. Morgante, G. Stringhetti, L. Tomasi, M. Valenziano, L. Zacchei, A. Zonca, A. Aja, B. Artal, E. Balasini, M. Bernardino, T. Blackhurst, E. Boschini, L. Cappellini, B. Cavaliere, F. Colin, A. Colombo, F. Davis, R. J. De La Fuente, L. Edgeley, J. Gaier, T. Galtress, A. Hoyland, R. Jukkala, P. Kettle, D. Kilpia, V. -H. Lawrence, C. R. Lawson, D. Leahy, J. P. Leutenegger, P. Levin, S. Maino, D. Malaspina, M. Mediavilla, A. Miccolis, M. Pagan, L. Pascual, J. P. Pasian, F. Pecora, M. Pospieszalski, M. Roddis, N. Salmon, M. J. Seiffert, M. Silvestri, R. Simonetto, A. Sjoman, P. Sozzi, C. Tuovinen, J. Varis, J. Wilkinson, A. Winder, F. TI Planck pre-launch status: Calibration of the Low Frequency Instrument flight model radiometers SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; space vehicles: instruments; instrumentation: detectors; techniques: miscellaneous AB The Low Frequency Instrument (LFI) on-board the ESA Planck satellite carries eleven radiometer subsystems, called radiometer chain assemblies (RCAs), each composed of a pair of pseudo-correlation receivers. We describe the on-ground calibration campaign performed to qualify the flight model RCAs and to measure their pre-launch performances. Each RCA was calibrated in a dedicated flight-like cryogenic environment with the radiometer front-end cooled to 20 K and the back-end at 300 K, and with an external input load cooled to 4 K. A matched load simulating a blackbody at different temperatures was placed in front of the sky horn to derive basic radiometer properties such as noise temperature, gain, and noise performance, e. g. 1/f noise. The spectral response of each detector was measured as was their susceptibility to thermal variation. All eleven LFI RCAs were calibrated. Instrumental parameters measured in these tests, such as noise temperature, bandwidth, radiometer isolation, and linearity, provide essential inputs to the Planck-LFI data analysis. C1 [Villa, F.; Terenzi, L.; Sandri, M.; Butler, R. C.; Cuttaia, F.; Franceschi, E.; Mandolesi, N.; Morgante, G.; Stringhetti, L.; Valenziano, L.; Malaspina, M.] INAF Ist Astrofis Spaziale & Fis Cosm, I-40129 Bologna, Italy. [Meinhold, P.; Leonardi, R.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. [Poutanen, T.] Helsinki Inst Phys, Helsinki 00014, Finland. [Poutanen, T.] Helsinki Univ Technol, Metsahovi Radio Observ, Kylmala 02540, Finland. [Battaglia, P.; Lapolla, P.; Balasini, M.; Boschini, L.; Colombo, F.; Leutenegger, P.; Miccolis, M.; Pagan, L.; Pecora, M.; Silvestri, R.] Thales Alenia Space Italia SpA, I-20090 Milan, Italy. [Franceschet, C.; Bersanelli, M.; Mennella, A.; Tomasi, M.; Cavaliere, F.; Maino, D.] Univ Milan, I-20133 Milan, Italy. [Hughes, N.; Laaninen, M.; Jukkala, P.; Kilpia, V. -H.; Sjoman, P.] DA Design Oy Aka Ylinen Elect, Jokioinen 31600, Finland. [D'Arcangelo, O.; Simonetto, A.; Sozzi, C.] IFP CNR, I-20125 Milan, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Zacchei, A.; Pasian, F.] INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Gregorio, A.] Univ Trieste, Dept Phys, I-34127 Trieste, Italy. [Lowe, S. R.; Blackhurst, E.; Davis, R. J.; Edgeley, J.; Galtress, A.; Kettle, D.; Lawson, D.; Leahy, J. P.; Roddis, N.; Wilkinson, A.; Winder, F.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Mendes, L.] ESAC, European Space Agcy, Planck Sci Off, Madrid 28691, Spain. [Zonca, A.; Cappellini, B.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Aja, B.; Artal, E.; De La Fuente, L.; Mediavilla, A.; Pascual, J. P.] Univ Cantabria, Dep Ingn Comunicac, E-39005 Santander, Spain. [Bernardino, T.; Colin, A.; Lawrence, C. R.; Levin, S.; Salmon, M. J.] Inst Fis Cantabria CSIC UC, Santander 39005, Spain. [Gaier, T.; Seiffert, M.] Jet Prop Lab, Pasadena, CA 91109 USA. [Hoyland, R.] Inst Astrofis Canarias, San Cristobal la Laguna 38205, Tenerife, Spain. [Pospieszalski, M.] Univ Virginia, Natl Radio Astron Observ, Charlottesville, VA USA. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. RP Villa, F (reprint author), INAF Ist Astrofis Spaziale & Fis Cosm, Via P Gobetti 101, I-40129 Bologna, Italy. EM villa@iasfbo.inaf.it RI Sozzi, Carlo/F-4158-2012; Pascual, Juan Pablo/K-5066-2014; de la Fuente, Luisa/J-5142-2012; Artal, Eduardo/H-5546-2015; Tomasi, Maurizio/I-1234-2016; Aja, Beatriz/H-5573-2015; Butler, Reginald/N-4647-2015; OI Valenziano, Luca/0000-0002-1170-0104; Sozzi, Carlo/0000-0001-8951-0071; Pascual, Juan Pablo/0000-0003-2123-0502; de la Fuente, Luisa/0000-0003-1403-1660; Artal, Eduardo/0000-0002-2569-1894; Tomasi, Maurizio/0000-0002-1448-6131; Aja, Beatriz/0000-0002-4229-2334; Zonca, Andrea/0000-0001-6841-1058; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Lowe, Stuart/0000-0002-2975-9032; Stringhetti, Luca/0000-0002-3961-9068; Pasian, Fabio/0000-0002-4869-3227; Gregorio, Anna/0000-0003-4028-8785; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Frailis, Marco/0000-0002-7400-2135; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379; Zacchei, Andrea/0000-0003-0396-1192; Galeotta, Samuele/0000-0002-3748-5115 FU ESA; Italian Space Agency (ASI); Finnish Funding Agency for Technology and Innovation (Tekes); Academy of Finland [205800, 214598, 121703, 121962]; Waldemar von Frenckells stiftelse; Magnus Ehrnrooth Foundation; Vaisala Foundation; Ministerio de Ciencia e Innovacion [ESP2004-07067-C03-01, AYA2007-68058-C03-02] FX Planck (http://www.esa.int/Planck) is a project of the European Space Agency - ESA - with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.; Planck is a project of the European Space Agency with instruments funded by ESA member states, and with special contributions from Denmark and NASA (USA). The Planck-LFI project is developed by an International Consortium lead by Italy and involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK, USA. The Italian contribution to Planck is supported by the Italian Space Agency (ASI). In Finland, the Planck LFI 70 GHz work was supported by the Finnish Funding Agency for Technology and Innovation (Tekes) T.P.'s work was supported in part by the Academy of Finland grants 205800, 214598, 121703, and 121962. T. P. thank Waldemar von Frenckells stiftelse, Magnus Ehrnrooth Foundation, and Vaisala Foundation for financial support. The Spanish participation is funded by Ministerio de Ciencia e Innovacion through the projects ESP2004-07067-C03-01 and AYA2007-68058-C03-02. NR 22 TC 9 Z9 9 U1 0 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A6 DI 10.1051/0004-6361/200912860 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200007 ER PT J AU Evans, PA Willingale, R Osborne, JP O'Brien, PT Page, KL Markwardt, CB Barthelmy, SD Beardmore, AP Burrows, DN Pagani, C Starling, RLC Gehrels, N Romano, P AF Evans, P. A. Willingale, R. Osborne, J. P. O'Brien, P. T. Page, K. L. Markwardt, C. B. Barthelmy, S. D. Beardmore, A. P. Burrows, D. N. Pagani, C. Starling, R. L. C. Gehrels, N. Romano, P. TI The Swift Burst Analyser I. BAT and XRT spectral and flux evolution of gamma ray bursts SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gamma-ray burst: general; methods: data analysis; catalogs ID AFTERGLOWS; TELESCOPE; EMISSION; MISSION; GRBS AB Context. Gamma ray burst models predict the broadband spectral evolution and the temporal evolution of the energy flux. In contrast, standard data analysis tools and data repositories provide count-rate data, or use single flux conversion factors for all of the data, neglecting spectral evolution. Aims. We produce Swift BAT and XRT light curves in flux units, where the spectral evolution is accounted for. Methods. We have developed software to use the hardness ratio information to track spectral evolution of GRBs, and thus to convert the count-rate light curves from the BAT and XRT instruments on Swift into accurate, evolution-aware flux light curves. Results. The Swift Burst Analyser website(star) contains BAT, XRT and combined BAT-XRT flux light curves in three energy regimes for all GRBs observed by the Swift satellite. These light curves are automatically built and updated when data become available, are presented in graphical and plain-text format, and are available for download and use in research. C1 [Evans, P. A.; Willingale, R.; Osborne, J. P.; O'Brien, P. T.; Page, K. L.; Beardmore, A. P.; Pagani, C.; Starling, R. L. C.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Markwardt, C. B.; Barthelmy, S. D.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Markwardt, C. B.] CRESST, Columbia, MD 21044 USA. [Markwardt, C. B.] Univ Maryland Coll Pk, Dept Astron, College Pk, MD 20742 USA. [Burrows, D. N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Romano, P.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-90146 Palermo, Italy. RP Evans, PA (reprint author), Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. EM pae9@star.le.ac.uk RI Barthelmy, Scott/D-2943-2012; Gehrels, Neil/D-2971-2012 FU NASA [NAS5-00136]; STFC FX This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. P. A. E., J.P.O., K. L. P., A. P. B., C. P. and R. L. C. S. acknowledge STFC support, D.N.B., acknowledges support from NASA contract NAS5-00136. NR 15 TC 51 Z9 51 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2010 VL 519 AR A102 DI 10.1051/0004-6361/201014819 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 668UQ UT WOS:000283297300102 ER PT J AU Furst, F Kreykenbohm, I Pottschmidt, K Wilms, J Hanke, M Rothschild, RE Kretschmar, P Schulz, NS Huenemoerder, DP Klochkov, D Staubert, R AF Fuerst, F. Kreykenbohm, I. Pottschmidt, K. Wilms, J. Hanke, M. Rothschild, R. E. Kretschmar, P. Schulz, N. S. Huenemoerder, D. P. Klochkov, D. Staubert, R. TI X-ray variation statistics and wind clumping in Vela X-1 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE accretion, accretion disks; X-rays: binaries; X-rays: individuals: Vela X-1; methods: statistical ID HOT-STAR WINDS; STELLAR WIND; NEUTRON-STAR; MASS; VARIABILITY; ACCRETION; EMISSION; BINARIES; FLUX; SPECTROSCOPY AB We investigate the structure of the wind in the neutron star X-ray binary system Vela X-1 by analyzing its flaring behavior. Vela X-1 shows constant flaring, with some flares reaching fluxes of more than 3.0 Crab between 20-60 keV for several 100 s, while the average flux is around 250 mCrab. We analyzed all archival INTEGRAL data, calculating the brightness distribution in the 20-60 keV band, which, as we show, closely follows a log-normal distribution. Orbital resolved analysis shows that the structure is strongly variable, explainable by shocks and a fluctuating accretion wake. Analysis of RXTE ASM data suggests a strong orbital change of N(H). Accreted clump masses derived from the INTEGRAL data are on the order of 5x10(19) - 10(21) g. We show that the lightcurve can be described with a model of multiplicative random numbers. In the course of the simulation we calculate the power spectral density of the system in the 20-100 keV energy band and show that it follows a red-noise power law. We suggest that a mixture of a clumpy wind, shocks, and turbulence can explain the measured mass distribution. As the recently discovered class of supergiant fast X-ray transients (SFXT) seems to show the same parameters for the wind, the link between persistent HMXB like Vela X-1 and SFXT is further strengthened. C1 [Fuerst, F.; Kreykenbohm, I.; Wilms, J.; Hanke, M.] Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte & ECAP, D-96049 Bamberg, Germany. [Pottschmidt, K.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Pottschmidt, K.] CRESST, Greenbelt, MD 20771 USA. [Pottschmidt, K.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Rothschild, R. E.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Kretschmar, P.] European Space Astron Ctr, European Space Agcy, Madrid 28691, Spain. [Schulz, N. S.; Huenemoerder, D. P.] MIT, Ctr Space Res, Cambridge, MA 02139 USA. [Klochkov, D.; Staubert, R.] Univ Tubingen, Inst Astron & Astrophys, Kepler Ctr Astro & Particle Phys, D-72076 Tubingen, Germany. RP Furst, F (reprint author), Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte & ECAP, Sternwartstr 7, D-96049 Bamberg, Germany. EM felix.fuerst@sternwarte.uni-erlangen.de RI Wilms, Joern/C-8116-2013; Kreykenbohm, Ingo/H-9659-2013; OI Wilms, Joern/0000-0003-2065-5410; Kreykenbohm, Ingo/0000-0001-7335-1803; Kretschmar, Peter/0000-0001-9840-2048 FU Bundesministerium fur Wirtschaft und Technologie [50 OR0808]; DAAD; European Commission [ITN215212]; ESA FX This work was supported by the Bundesministerium fur Wirtschaft und Technologie through DLR grant 50 OR0808 and via a DAAD fellowship. This work has been partially funded by the European Commission under the 7th Framework Program under contract ITN215212. F. F. thanks the colleagues at UCSD and GSFC for their hospitality. We thank M. A. Nowak and A. Pollock for the useful discussions. For this work we used the ISIS software package provided by MIT. We especially like to thank J.C. Houck and J. E. Davis for their restless work to improve ISIS and S-Lang. This research has made use of NASA's Astrophysics Data System. This work is based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland, and with the participation of Russia and the USA. We used the archival data from the ASM Light Curve web page, developed by the ASM team at the Kavli Institute for Astrophysics and Space Research at the Massachusetts Institute of Technology. We thank the anonymous referee for her/ his useful comments. NR 57 TC 30 Z9 30 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2010 VL 519 AR A37 DI 10.1051/0004-6361/200913981 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 668UQ UT WOS:000283297300037 ER PT J AU Gunther, HM Matt, SP Schmitt, JHMM Gudel, M Li, ZY Burton, DM AF Guenther, H. M. Matt, S. P. Schmitt, J. H. M. M. Guedel, M. Li, Z. -Y. Burton, D. M. TI The disk-bearing young star IM Lupi X-ray properties and limits on accretion SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; stars: individual: IM Lup; X-rays: stars ID T-TAURI-STARS; MAIN-SEQUENCE STARS; NEWTON EXTENDED SURVEY; LOW-MASS STARS; EMISSION-LINES; BROWN DWARFS; MAGNETOSPHERIC ACCRETION; MOLECULAR CLOUD; ATOMIC DATABASE; HERBIG STAR AB Context. Classical T Tauri stars (CTTS) differ in their X-ray signatures from older pre-main sequence stars, e.g., weak-lined TTS (WTTS). CTTS exhibit a soft excess and deviations from the low-density coronal limit in the He-like triplets. Aims. We test whether these features correlate with either accretion or the presence of a disk by observing IM Lup, a disk-bearing object apparently in transition between CTTS and WTTS without obvious accretion. Methods. We analyse a Chandra grating spectrum and additional XMM-Newton data of IM Lup and accompanying optical spectra, some of which where taken simultaneously with the X-ray observations. We fit the X-ray emission lines and decompose the H alpha emission line into different components. Results. In X-rays, IM Lup has a bright and hot active corona, where elements with low first-ionisation potential are depleted. The He-like Ne IX triplet is in the low-density state, but because of the small number of counts in the data a high-density scenario cannot be excluded at the 90% confidence level. In terms of all its X-ray properties, IM Lup resembles a main-sequence star, but is also compatible with CTTS signatures at the 90% confidence level, thus we cannot decide whether the soft excess and deviations from the low-density coronal limit for the He-like triplets in CTTS are produced by accretion or only the presence of a disk. The star IM Lup is chromospherically active, which accounts for most of its emission in H alpha. Despite its low equivalent width, the complexity of the H alpha line profile is reminiscent of CTTS. We estimate the mass accretion rate to be 10(-11) M(circle dot) yr(-1). C1 [Guenther, H. M.; Schmitt, J. H. M. M.] Univ Hamburg, Hamburger Sternwarte, D-21029 Hamburg, Germany. [Guenther, H. M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Matt, S. P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Guedel, M.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Guedel, M.] Univ Vienna, Dept Astron, A-1180 Vienna, Austria. [Li, Z. -Y.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Burton, D. M.] Univ So Queensland, Toowoomba, Qld 4350, Australia. RP Gunther, HM (reprint author), Univ Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany. EM moritz.guenther@hs.uni-hamburg.de RI Guedel, Manuel/C-8486-2015; OI Guedel, Manuel/0000-0001-9818-0588; Gunther, Hans Moritz/0000-0003-4243-2840; Matt, Sean/0000-0001-9590-2274 FU ESA Member States; NASA; NRL (USA); RAL (UK); MSSL (UK); Universities of Florence (Italy); Cambridge (UK); George Mason University (USA); La Silla Observatory [081.C-0779(A)]; DLR [50OR0105]; Oak Ridge Associated Universities; Chandra [GO9-0007X] FX Based on observations obtained with XMM-Newton, an ESA science mission, and Chandra, a NASA science mission, both with instruments and contributions directly funded by ESA Member States and NASA.; CHIANTI is a collaborative project involving the NRL (USA), RAL (UK), MSSL (UK), the Universities of Florence (Italy) and Cambridge (UK), and George Mason University (USA). We made use of observations made with ESO Telescopes at the La Silla Observatory under programme ID 081.C-0779(A). The authors would like to thank Ian Waite, USQ, for the initial extraction of the IM Lup data from ANU. H.M.G. acknowledges support from DLR under 50OR0105. S.P.M. was supported by an appointment to the NASA Postdoctoral Program at Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. Z.-Y.L. acknowledges support from Chandra grant GO9-0007X. NR 66 TC 5 Z9 5 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2010 VL 519 AR A97 DI 10.1051/0004-6361/201014386 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 668UQ UT WOS:000283297300097 ER PT J AU Kumar, MSN Velusamy, T Davis, CJ Varricatt, WP Dewangan, LK AF Kumar, M. S. N. Velusamy, T. Davis, C. J. Varricatt, W. P. Dewangan, L. K. TI Ring-like features around young B stars SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; stars: emission-line, Be; stars: rotation; HII region ID SPECTRAL ENERGY-DISTRIBUTIONS; MASSIVE MOLECULAR OUTFLOWS; SPITZER-IRAC GLIMPSE; STELLAR OBJECTS; PROTOSTELLAR OBJECTS; MAIN-SEQUENCE; EMISSION; REGION; DISKS; CANDIDATES AB Aims. We investigate the nature of two young intermediate mass stars namely IRAS20293+3952 (I20293) and IRAS05358+3843 (I05358), which display clearly defined H(2) emission rings. Methods. High resolution deconvolution of finely sampled 3.6-8.0 mu m Spitzer-IRAC images are carried out. Continuum-subtracted 2.122 mu m H(2) 1-0 S(1) narrow-band images of both targets and HK band spectrum of two main stars in I20293 are presented. The spectral energy distibutions (SED) of the stars enclosed in the H(2) rings are constructed using photometry from the literature and combining with newly obtained Spitzer-MIPS 70 mu m photometry. The SEDs are modelled using a grid of radiative transfer models to obtain estimates of the star, disk and envelope physical parameters. Results. The images reveal ring-like structures surrounding isolated young B-type stars. The modelling attributes a mass and age of similar to 7 M(circle dot) and similar to 0.1 Myr, respectively, to both young stars, in agreement with other observational indicators. The HK band spectra of I20293 display the Brackett series of HI recombination lines, which appears to correspond exclusively to the young star inside this IRAS source. The ring around I20293 appears to be a single well-defined ellipse with inner parts shining brightly in the Spitzer broad band images and outer parts displaying strong H(2) emission. In the source I05358, at least two ring's are found, one circumscribing the other. The emission in the Spitzer bands and the H(2) emission are mostly coincident for the inner ring. The outer ring is visible partly in the Spitzer bands and partly in H(2) emission. The rings in both the sources, I20293 and I05358, have diameters of similar to 25000-30000 AU. The envelope sizes estimated by the SED modelling are consistent with the size of the rings estimated using the imaging data. The spectrum of the H(2) ring in I20293 is suggestive of fluorescent excitation. In the source I05358, the inner ring displays a combination of PAH and H(2) line emission with excess PAH emission closer to the star. C1 [Kumar, M. S. N.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Velusamy, T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Davis, C. J.; Varricatt, W. P.] Joint Astron Ctr, Hilo, HI 96720 USA. [Dewangan, L. K.] Phys Res Lab, Ahmadabad 380009, Gujarat, India. RP Kumar, MSN (reprint author), Univ Porto, Ctr Astrofis, Rua Estrelas, P-4150762 Oporto, Portugal. EM nanda@astro.up.pt RI Kumar, Nanda/I-4183-2013; OI Dewangan, Lokesh/0000-0001-6725-0483 FU FCT/MCTES (Portugal); POPH/FSE (EC); FCT (The Portuguese national science foundation) [PTDC/CTE-AST/65971/2006]; NASA FX Our sincere thanks to Henrik Beuther for providing the millimetre and VLA data of these sources that is used for analysis. Kumar is supported by a Ciencia 2007 contract, funded by FCT/MCTES (Portugal) and POPH/FSE (EC) and a research grant PTDC/CTE-AST/65971/2006 approved by the FCT (The Portuguese national science foundation). This work is based [in part] on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. NR 36 TC 0 Z9 0 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2010 VL 519 AR A99 DI 10.1051/0004-6361/200912880 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 668UQ UT WOS:000283297300099 ER PT J AU Ojha, R Kadler, M Bock, M Booth, R Dutka, MS Edwards, PG Fey, AL Fuhrmann, L Gaume, RA Hase, H Horiuchi, S Jauncey, DL Johnston, KJ Katz, U Lister, M Lovell, JEJ Muller, C Plotz, C Quick, JFH Ros, E Taylor, GB Thompson, DJ Tingay, SJ Tosti, G Tzioumis, AK Wilms, J Zensus, JA AF Ojha, R. Kadler, M. Boeck, M. Booth, R. Dutka, M. S. Edwards, P. G. Fey, A. L. Fuhrmann, L. Gaume, R. A. Hase, H. Horiuchi, S. Jauncey, D. L. Johnston, K. J. Katz, U. Lister, M. Lovell, J. E. J. Mueller, C. Ploetz, C. Quick, J. F. H. Ros, E. Taylor, G. B. Thompson, D. J. Tingay, S. J. Tosti, G. Tzioumis, A. K. Wilms, J. Zensus, J. A. TI TANAMI: tracking active galactic nuclei with austral milliarcsecond interferometry I. First-epoch 8.4GHz images SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: active; galaxies: jets; galaxies: nuclei; gamma rays: observations; quasars: general ID SOUTHERN RADIO-SOURCES; GAMMA-RAY EMISSION; GIGAHERTZ-PEAKED SPECTRUM; LACERTAE OBJECT PKS-2005-489; HEMISPHERE ICRF SOURCES; PARSEC-SCALE STRUCTURE; LARGE-AREA TELESCOPE; BLAZAR PKS 0537-441; VLBI OBSERVATIONS; EGRET OBSERVATIONS AB Context. A number of theoretical models vie to explain the gamma-ray emission from active galactic nuclei (AGN). This was a key discovery of EGRET. With its broader energy coverage, higher resolution, wider field of view and greater sensitivity, the Large Area Telescope (LAT) of the Fermi Gamma-ray Space Telescope is dramatically increasing our knowledge of AGN gamma-ray emission. However, discriminating between competing theoretical models requires quasi-simultaneous observations across the electromagnetic spectrum. By resolving the powerful parsec-scale relativistic outflows in extragalactic jets and thereby allowing us to measure critical physical properties, Very Long Baseline Interferometry observations are crucial to understanding the physics of extragalactic gamma-ray objects. Aims. We introduce the TANAMI program (Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry) which is monitoring an initial sample of 43 extragalactic jets located south of -30 degrees declination at 8.4GHz and 22GHz since 2007. All aspects of the program are discussed. First epoch results at 8.4GHz are presented along with physical parameters derived therefrom. Methods. These observations were made during 2007/2008 using the telescopes of the Australian Long Baseline Array in conjunction with Hartebeesthoek in South Africa. These data were correlated at the Swinburne University correlator. Results. We present first epoch images for 43 sources, some observed for the first time at milliarcsecond resolution. Parameters of these images as well as physical parameters derived from them are also presented and discussed. These and subsequent images from the TANAMI survey are available at http://pulsar.sternwarte.uni-erlangen.de/tanami/. Conclusions. We obtain reliable, high dynamic range images of the southern hemisphere AGN. All the quasars and BL Lac objects in the sample have a single-sided radio morphology. Galaxies are either double-sided, single-sided or irregular. About 28% of the TANAMI sample has been detected by LAT during its first three months of operations. Initial analysis suggests that when galaxies are excluded, sources detected by LAT have larger opening angles than those not detected by LAT. Brightness temperatures of LAT detections and non-detections seem to have similar distributions. The redshift distributions of the TANAMI sample and sub-samples are similar to those seen for the bright gamma-ray AGN seen by LAT and EGRET but none of the sources with a redshift above 1.8 have been detected by LAT. C1 [Ojha, R.; Fey, A. L.; Gaume, R. A.; Johnston, K. J.] USN Observ, Washington, DC 20392 USA. [Ojha, R.] NVI Inc, Greenbelt, MD 20770 USA. [Kadler, M.; Boeck, M.; Mueller, C.; Wilms, J.] Univ Erlangen Nurnberg, Astron Inst, D-96049 Bamberg, Germany. [Kadler, M.; Boeck, M.; Katz, U.; Mueller, C.; Wilms, J.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Kadler, M.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Kadler, M.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Booth, R.; Quick, J. F. H.] Hartebeesthoek Radio Astron Observ, ZA-1740 Krugersdorp, South Africa. [Dutka, M. S.] Catholic Univ Amer, Washington, DC 20064 USA. [Edwards, P. G.; Jauncey, D. L.; Tzioumis, A. K.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Fuhrmann, L.; Ros, E.; Zensus, J. A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Hase, H.] Univ Concepcion, Germany Entrusted Transportable Integrated Geodet, Bundesamt Kartograph & Geodesie, Concepcion, Chile. [Lister, M.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Lovell, J. E. J.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. [Ploetz, C.] Geodet Observ Wettzell, Fed Agcy Cartog & Geodesy BKG, D-93444 Bad Kotzting, Germany. [Ros, E.] Univ Valencia, Dept Astron & Astrofis, E-46100 Valencia, Spain. [Taylor, G. B.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Thompson, D. J.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Tingay, S. J.] Curtin Univ Technol, Curtin Inst Radio Astron, Bentley, WA 6102, Australia. [Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. RP Ojha, R (reprint author), USN Observ, 3450 Massachusetts Ave NW, Washington, DC 20392 USA. EM rojha@usno.navy.mil; matthias.kadler@sternwarte.uni-erlangen.de RI Thompson, David/D-2939-2012; Tingay, Steven/B-5271-2013; Wilms, Joern/C-8116-2013; Katz, Uli/E-1925-2013; Tosti, Gino/E-9976-2013; OI Thompson, David/0000-0001-5217-9135; Wilms, Joern/0000-0003-2065-5410; Katz, Uli/0000-0002-7063-4418; Ros, Eduardo/0000-0001-9503-4892; Kadler, Matthias/0000-0001-5606-6154 FU Commonwealth of Australia; Goddard Space Flight Center; NASA FX We are grateful to Dirk Behrend, Neil Gehrels, Julie McEnery, David Murphy, and John Reynolds, who contributed in numerous ways to the success of the TANAMI program so far. Furthermore, we thank the Fermi/LAT AGN group for the good collaboration. The Long Baseline Array is part of the Australia Telescope which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. This work made use of the Swinburne University of Technology software correlator, developed as part of the Australian Major National Research Facilities Programme and operated under licence. M. K. has been supported in part by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. We would like to thank the staff of the Swinburne correlator for their unflagging support. This research has made use of data from the NASA/IPAC Extragalactic Database (NED, operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration); and the SIMBAD database (operated at CDS, Strasbourg, France). This research has made use of NASA's Astrophysics Data System. This research has made use of the United States Naval Observatory (USNO) Radio Reference Frame Image Database (RRFID). NR 147 TC 41 Z9 41 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2010 VL 519 AR A45 DI 10.1051/0004-6361/200912724 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 668UQ UT WOS:000283297300045 ER PT J AU Ardo, AA Ajello, M Antolini, E Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bechtol, K Bellazzini, R Berenji, B Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Burnett, TH Buson, S Caliandro, GA Camilo, F Caraveo, PA Celik, O Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cognard, I Cohen-Tanugi, J Dermer, CD De Palma, F Digel, SW Silva, EDE Drell, PS Dubois, R Dumora, D Favuzzi, C Ferrara, EC Fortin, P Frailis, M Freire, PCC Fukazawa, Y Funk, S Fusco, P Gargano, F Gehrels, N Germani, S Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hadasch, D Hanabata, Y Harding, AK Hays, E Johannesson, G Johnson, RP Johnson, TJ Johnson, WN Johnston, S Kamae, T Katagiri, H Kataoka, J Keith, M Kerr, M Knodlseder, J Kramer, M Kuss, M Lande, J Latronico, L Lee, SH Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lubrano, P Makeev, A Manchester, RN Marelli, M Mazziotta, MN Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Mnzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Nolan, PL Norris, JP Noutos, A Nuss, E Ohsugi, T Okumura, A Orlando, E Ormes, JF Ozaki, M Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Raino, S Razzano, M Reimer, A Reimer, O Reposeur, T Rirken, J Romani, RW Sadrozinski, HFW Sander, A Parkinson, PMS Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Suson, DJ Takahashi, H Tanaka, T Thayer, JB Thayer, JG Theureau, G Thompson, DJ Thorsett, SE Tibaldo, L Tibolla, O Torres, DF Tosti, G Tramacere, A Usher, TL Vandenbroucke, J Vasileiou, V Vitale, V Waite, AP Wang, P Weltevrede, P Winer, BL Yang, Z Ylinen, T Ziegler, M AF Ardo, A. A. Ajello, M. Antolini, E. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Buson, S. Caliandro, G. A. Camilo, F. Caraveo, P. A. Celik, Oe Chekhtman, A. . Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cognard, I. Cohen-Tanugi, J. Dermer, C. D. De Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Favuzzi, C. Ferrara, E. C. Fortin, P. Frailis, M. Freire, P. C. C. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gehrels, N. Germani, S. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Hadasch, D. Hanabata, Y. Harding, A. K. Hays, E. Johannesson, G. Johnson, R. P. Johnson, T. J. Johnson, W. N. Johnston, S. Kamae, T. Katagiri, H. Kataoka, J. Keith, M. Kerr, M. Knoedlseder, J. Kramer, M. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lubrano, P. Makeev, A. Manchester, R. N. Marelli, M. Mazziotta, M. N. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Mnzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Nolan, P. L. Norris, J. P. Noutos, A. Nuss, E. Ohsugi, T. Okumura, A. Orlando, E. Ormes, J. F. Ozaki, M. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Raino, S. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Rirken, J. Romani, R. W. Sadrozinski, H. F. -W. Sander, A. Parkinson, P. M. Saz Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Theureau, G. Thompson, D. J. Thorsett, S. E. Tibaldo, L. Tibolla, O. Torres, D. F. Tosti, G. Tramacere, A. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vitale, V. Waite, A. P. Wang, P. Weltevrede, P. Winer, B. L. Yang, Z. Ylinen, T. Ziegler, M. TI FERMI LARGE AREA TELESCOPE OBSERVATIONS OF GAMMA-RAY PULSARS PSR J1057-5226, J1709-4429, AND J1952+3252 SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: stars; pulsars: individual (PSR J1057-5226, PSR J1709-4429, and PSR J1952+3252) ID HIGH-ENERGY; X-RAY; LIGHT CURVES; SPACE-TELESCOPE; RADIO PULSARS; SOUTHERN PULSARS; WIND NEBULAE; VELA PULSAR; EMISSION; RADIATION AB The Fermi Large Area Telescope (LAT) data have confirmed the pulsed emission from all six high-confidence gamma-ray pulsars previously known from the EGRET observations. We report results obtained from the analysis of 13 months of LAT data for three of these pulsars (PSR J1057-5226, PSR J1709-4429, and PSR 11952+3252) each of which had some unique feature among the EGRET pulsars. The excellent sensitivity of LAT allows more detailed analysis of the evolution of the pulse profile with energy and also of the variation of the spectral shape with phase. We measure the cutoff energy of the pulsed emission from these pulsars for the first time and provide a more complete picture of the emission mechanism. The results confirm some, but not all, of the features seen in the EGRET data. C1 [Ardo, A. A.; Chekhtman, A. .; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Makeev, A.; Strickman, M. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Ardo, A. A.; Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ajello, M.; Bechtol, K.; Berenji, B.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Kamae, T.; Lande, J.; Lee, S. -H.; Mitthumsiri, W.; Mnzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Panetta, J. H.; Reimer, A.; Reimer, O.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ajello, M.; Bechtol, K.; Berenji, B.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Kamae, T.; Lande, J.; Lee, S. -H.; Mitthumsiri, W.; Mnzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Panetta, J. H.; Reimer, A.; Reimer, O.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Antolini, E.; Bonamente, E.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Antolini, E.; Bonamente, E.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Grenier, I. A.] Uiv Paris Diderot, CNRS,CEA IRFU, Lab AIM,Serv Astrophys, CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Buson, S.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Brigida, M.; De Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; De Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fortin, P.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Camilo, F.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Caraveo, P. A.; Marelli, M.] INAF Ist Astrofis Spaziale Fis Cosm, I-20133 Milan, Italy. [Celik, Oe; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. J.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A. .; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cognard, I.; Theureau, G.] CNRS, LPCE, UMR 6115, F-45071 Orleans 02, France. [Cognard, I.; Theureau, G.] CNRS, INSU, Observ Paris, Stn Radioastron Nancay, F-18330 Nancay, France. [Cohen-Tanugi, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Caliandro, G. A.; Lott, B.; Torres, D. F.] Univ Bordeaux, CEN Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Gruppo Collegato Udine, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Freire, P. C. C.; Guillemot, L.; Kramer, M.; Noutos, A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Higashihiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Johnson, R. P.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Johnson, R. P.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Johnson, T. J.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Johnson, T. J.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Johnston, S.; Keith, M.; Manchester, R. N.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan. [Knoedlseder, J.] CNRS, UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Kramer, M.; Weltevrede, P.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.; Ozaki, M.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Rirken, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Rirken, J.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Ardo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM ocelik@milkyway.gsfc.nasa.gov; fabio.gargano@ba.infn.it; David.J.Thompson@nasa.gov; reposeur@cenbg.in2p3.fr RI Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Funk, Stefan/B-7629-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; OI Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Thorsett, Stephen/0000-0002-2025-9613; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; Bastieri, Denis/0000-0002-6954-8862; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Berenji, Bijan/0000-0002-4551-772X; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Marelli, Martino/0000-0002-8017-0338 FU International Doctorate on Astroparticle Physics (IDAPP); Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; Commonwealth of Australia FX Partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France.; This work made extensive use of the ATNF pulsar catalog (Manchester et al. 2005).63; The Parkes radio telescope is part of the Australia Telescope which is funded by the Commonwealth of Australia for operation as a National Facility managed by the CSIRO. NR 72 TC 0 Z9 0 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 26 EP 40 DI 10.1088/0004-637X/720/1/26 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000004 ER PT J AU Bhattacharya, B Noriega-Crespo, A Penprase, BE Meadows, VS Salvato, M Aussel, H Frayer, D Ilbert, O Le Floc'h, E Looper, D Surace, J Capak, P Glorgini, JD Granvik, M Grillmair, C Hagen, A Helou, G Reach, WT Rebull, LM Sanders, DB Scoville, N Sheth, K Yan, L AF Bhattacharya, B. Noriega-Crespo, A. Penprase, B. E. Meadows, V. S. Salvato, M. Aussel, H. Frayer, D. Ilbert, O. Le Floc'h, E. Looper, D. Surace, J. Capak, P. Glorgini, J. D. Granvik, M. Grillmair, C. Hagen, A. Helou, G. Reach, W. T. Rebull, L. M. Sanders, D. B. Scoville, N. Sheth, K. Yan, L. TI MID-INFRARED PHOTOMETRIC ANALYSIS OF MAIN BELT ASTEROIDS: A TECHNIQUE FOR COLOR-COLOR DIFFERENTIATION FROM BACKGROUND ASTROPHYSICAL SOURCES SO ASTROPHYSICAL JOURNAL LA English DT Article DE minor planets, asteroids: general; techniques: photometric ID SPITZER-SPACE-TELESCOPE; MULTIBAND IMAGING PHOTOMETER; NEAR-EARTH ASTEROIDS; 160 MU-M; 1ST-LOOK SURVEY; THERMAL-MODEL; COSMOS FIELD; MAGNITUDES; DIAMETERS; ALBEDOS AB The Spitzer Space Telescope routinely detects asteroids in astrophysical observations near the ecliptic plane. For the galactic or extragalactic astronomer, these solar system bodies can introduce appreciable uncertainty into the source identification process. We discuss an infrared color discrimination tool that may be used to distinguish between solar system objects and extrasolar sources. We employ four Spitzer Legacy data sets, the First Look Survey-Ecliptic Plane Component (FLS-EPC), SCOSMOS, SWIRE, and GOODS. We use the Standard Thermal Model to derive FLS-EPC main belt asteroid (MBA) diameters of 1-4 km for the numbered asteroids in our sample and note that several of our solar system sources may have fainter absolute magnitude values than previously thought. A number of the MBAs are detected at flux densities as low as a few tens of mu Jy at 3.6 mu m. As the FLS-EPC provides the only 3.6-24.0 mu m observations of individual asteroids to date, we are able to use this data set to carry out a detailed study of asteroid color in comparison to astrophysical sources observed by SCOSMOS, SWIRE, and GOODS. Both SCOSMOS and SWIRE have identified a significant number of asteroids in their data, and we investigate the effectiveness of using relative color to distinguish between asteroids and background objects. We find a notable difference in color in the IRAC 3.6-8.0 mm and MIPS 24 mu m bands between the majority of MBAs, stars, galaxies, and active galactic nuclei, though this variation is less significant when comparing fluxes in individual bands. We find median colors for the FLS-EPC asteroids to be [F(5.8/3.6), F(8.0/4.5), F(24/8)] = (4.9 +/- 1.8, 8.9 +/- 7.4, 6.4 +/- 2.3). Finally, we consider the utility of this technique for other mid-infrared observations that are sensitive to near-Earth objects, MBAs, and trans-Neptunian objects. We consider the potential of using color to differentiate between solar system and background sources for several space-based observatories, including Warm Spitzer, Herschel, and WISE. C1 [Bhattacharya, B.; Helou, G.] CALTECH, NASA Herschel Sci Ctr, Pasadena, CA 91125 USA. [Noriega-Crespo, A.; Surace, J.; Capak, P.; Grillmair, C.; Helou, G.; Rebull, L. M.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Penprase, B. E.] Pomona Coll, Dept Phys & Astron, Claremont, CA 91711 USA. [Meadows, V. S.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Salvato, M.; Helou, G.; Scoville, N.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Salvato, M.] Max Planck Inst Plasma Phys & Cluster Excellence, Garching, Germany. [Aussel, H.] CEA Saclay, Serv Astrophys, F-91191 Gif Sur Yvette, France. [Frayer, D.] NRAO, Green Bank, WV 24944 USA. [Ilbert, O.; Le Floc'h, E.; Looper, D.; Granvik, M.; Sanders, D. B.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Glorgini, J. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hagen, A.] Harvey Mudd Coll, Dept Phys, Claremont, CA 91711 USA. [Reach, W. T.] NASA, Ames Res Ctr, Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Sheth, K.] NRAO NAASC, Charlottesville, VA 22903 USA. [Yan, L.] CALTECH, WISE Data Ctr, Pasadena, CA 91125 USA. RP Bhattacharya, B (reprint author), CALTECH, NASA Herschel Sci Ctr, MC 100-22, Pasadena, CA 91125 USA. OI Hagen, Alex/0000-0003-2031-7737; Rebull, Luisa/0000-0001-6381-515X; Reach, William/0000-0001-8362-4094 FU NASA [1407]; NASA Herschel Science Center FX The authors acknowledge the late S. Tyler, whose enthusiastic presence is missed by the FLS-EPC team. During his years at the Spitzer Science Center, Mr. Tyler assisted in data analysis for this project. The authors also thank the anonymous referee for helpful comments. B.B. thanks Dr. Tom Jarrett for providing valuable feedback, and the FLS-EPC team acknowledges Professor Jim Elliot for developing the original concept of the solar system First Look Survey. This work is based upon observations made with the Spitzer Space Telescope, operated by JPL, Caltech, and funded under NASA contract 1407. Additional work is funded by the NASA Herschel Science Center, operated by JPL, Caltech. NR 38 TC 2 Z9 2 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 114 EP 129 DI 10.1088/0004-637X/720/1/114 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000010 ER PT J AU Cacketti, EM Miller, JM Ballantyne, DR Barret, D Bhattacharyya, S Boutelier, M Millers, MC Strohmayer, TE Wijnands, R AF Cacketti, Edward M. Miller, Jon M. Ballantyne, David R. Barret, Didier Bhattacharyya, Sudip Boutelier, Martin Millers, M. Coleman Strohmayer, Tod E. Wijnands, Rudy TI RELATIVISTIC LINES AND REFLECTION FROM THE INNER ACCRETION DISKS AROUND NEUTRON STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; stars: neutron; X-rays: binaries ID X-RAY BINARIES; QUASI-PERIODIC OSCILLATIONS; BLACK-HOLE SPIN; BROADENED IRON LINE; EQUATION-OF-STATE; CYGNUS X-2; XMM-NEWTON; BOUNDARY-LAYER; EMISSION-LINE; 4U 1705-44 AB A number of neutron star low-mass X-ray binaries (LMXBs) have recently been discovered to show broad, asymmetric Fe K emission lines in their X-ray spectra. These lines are generally thought to be the most prominent part of a reflection spectrum, originating in the inner part of the accretion disk where strong relativistic effects can broaden emission lines. We present a comprehensive, systematic analysis of Suzaku and XMM-Newton spectra of 10 neutron star LMXBs, all of which display broad Fe K emission lines. Of the 10 sources, 4 are Z sources, 4 are atolls, and 2 are accreting millisecond X-ray pulsars (also atolls). The Fe K lines are fit well by a relativistic line model for a Schwarzschild metric, and imply a narrow range of inner disk radii (6-15 GM/c(2)) in most cases. This implies that the accretion disk extends close to the neutron star surface over a range of luminosities. Continuum modeling shows that for the majority of observations, a blackbody component (plausibly associated with the boundary layer) dominates the X-ray emission from 8 to 20 keV. Thus it appears likely that this spectral component produces the majority of the ionizing flux that illuminates the accretion disk. Therefore, we also fit the spectra with a blurred reflection model, wherein a blackbody component illuminates the disk. This model fits well in most cases, supporting the idea that the boundary layer illuminates a geometrically thin disk. C1 [Cacketti, Edward M.; Miller, Jon M.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Ballantyne, David R.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Barret, Didier; Boutelier, Martin] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 04, France. [Bhattacharyya, Sudip] Tata Inst Fundamental Res, Dept Astron & Astrophys, Bombay 400005, Maharashtra, India. [Millers, M. Coleman] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Strohmayer, Tod E.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Wijnands, Rudy] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 XH Amsterdam, Netherlands. RP Cacketti, EM (reprint author), Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. EM ecackett@umich.edu RI XRAY, SUZAKU/A-1808-2009 FU NASA [PF8-90052]; ESA Member States FX We appreciate the extremely helpful comments from the referee that have improved the paper. E.M.C. gratefully acknowledges support provided by NASA through the Chandra Fellowship Program, grant number PF8-90052. This research has made use of data obtained from the Suzaku satellite, a collaborative mission between the space agencies of Japan (JAXA) and the USA (NASA). It also made use of observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. NR 115 TC 56 Z9 56 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 205 EP 225 DI 10.1088/0004-637X/720/1/205 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000018 ER PT J AU Leggett, SK Saumon, D Burningham, B Cushing, MC Marley, MS Pinfield, DJ AF Leggett, S. K. Saumon, D. Burningham, Ben Cushing, Michael C. Marley, M. S. Pinfield, D. J. TI PROPERTIES OF THE T8.5 DWARF WOLF 940 B SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; infrared: stars; stars: fundamental parameters; stars: individual (Wolf 940B) ID SPITZER-SPACE-TELESCOPE; STAR SPECTROSCOPIC SURVEY; EXOPLANET HOST STAR; DIGITAL SKY SURVEY; COOL BROWN DWARF; MID-T DWARFS; CHEMICAL-EQUILIBRIUM; PHYSICAL-PROPERTIES; BINARY-SYSTEM; GLIESE 570D AB We present 7.5-14.2 mu m low-resolution spectroscopy, obtained with the Spitzer Infrared Spectrograph, of the T8.5 dwarf Wolf 940 B, which is a companion to an M4 dwarf with a projected separation of 400 AU. We combine these data with previously published near-infrared spectroscopy and mid-infrared photometry to produce the spectral energy distribution for the very low temperature T dwarf. We use atmospheric models to derive the bolometric correction and obtain a luminosity of log L/L(circle dot) = -6.01 +/- 0.05 (the observed spectra make up 47% of the total flux). Evolutionary models are used with the luminosity to constrain the values of effective temperature (T(eff)) and surface gravity and hence mass and age for the T dwarf. We ensure that the spectral models used to determine the bolometric correction have T(eff) and gravity values consistent with the luminosity-implied values. We further restrict the allowed range of T(eff) and gravity using age constraints implied by the M dwarf primary and refine the physical properties of the T dwarf by comparison of the observed and modeled spectroscopy and photometry. This comparison indicates that Wolf 940 B has a metallicity within similar to 0.2 dex of solar, as more extreme values give poor fits to the data-lower metallicity produces a poor fit at lambda > 2 mu m, while higher metallicity produces a poor fit at lambda < 2 mu m. This is consistent with the independently derived value of [m/H] = +0.24 +/- 0.09 for the primary star, using the Johnson & Apps M(K): V - K relationship. We find that the T dwarf atmosphere is undergoing vigorous mixing, with an eddy diffusion coefficient K(zz) of 10(4) to 10(6) cm(2) s(-1). We derive an effective temperature of 585 K to 625 K, and surface gravity log g = 4.83 to 5.22 (cm s(-2)), for an age range of 3 Gyr to 10 Gyr, as implied by the kinematic and Ha properties of the M dwarf primary. Gravity and temperature are correlated such that the lower gravity corresponds to the lower temperature and younger age for the system and the higher values to the higher temperature and older age. The mass of the T dwarf is 24 M(Jupiter) to 45 M(Jupiter) for the younger to older age limit. C1 [Leggett, S. K.] No Operat Ctr, Gemini Observ, Hilo, HI 96720 USA. [Saumon, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Burningham, Ben; Pinfield, D. J.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Cushing, Michael C.] CALTECH, Jet Prop Lab, Dept Astrophys, Pasadena, CA 91109 USA. [Marley, M. S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Leggett, SK (reprint author), No Operat Ctr, Gemini Observ, 670 N Aohoku Pl, Hilo, HI 96720 USA. EM sleggett@gemini.edu RI Marley, Mark/I-4704-2013; OI Marley, Mark/0000-0002-5251-2943; Burningham, Ben/0000-0003-4600-5627; Leggett, Sandy/0000-0002-3681-2989 FU NASA; Gemini Observatory FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. Support for this work was also provided by the Spitzer Space Telescope Theoretical Research Program, through NASA. S.K.L.'s research is supported by the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., on behalf of the international Gemini partnership of Argentina, Australia, Brazil, Canada, Chile, the United Kingdom, and the United States of America. NR 55 TC 20 Z9 20 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 252 EP 258 DI 10.1088/0004-637X/720/1/252 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000022 ER PT J AU Whittet, DCB Goldsmith, PF Pineda, JL AF Whittet, D. C. B. Goldsmith, P. F. Pineda, J. L. TI THE UPTAKE OF INTERSTELLAR GASEOUS CO INTO ICY GRAIN MANTLES IN A QUIESCENT DARK CLOUD SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; ISM: abundances; ISM: individual objects (Taurus Dark Cloud); ISM: molecules ID TAURUS MOLECULAR CLOUD; MASS STAR-FORMATION; CARBON-MONOXIDE; BACKGROUND STARS; CORES; DUST; GAS; DEPLETION; ICES; ABUNDANCE AB Data from the Five College Radio Astronomy Observatory CO Mapping Survey of the Taurus molecular cloud are combined with extinction data for a sample of 292 background field stars to investigate the uptake of CO from the gas to icy grain mantles on dust within the cloud. On the assumption that the reservoir of CO in the ices is represented well by the combined abundances of solid CO and solid CO(2) (which forms by oxidation of CO on the dust), we find that the total column density (gas + solid) correlates tightly with visual extinction (A(V)) over the range 5 mag < A(V) < 30 mag, i.e., up to the highest extinctions covered by our sample. The mean depletion of gas-phase CO, expressed as delta(CO) = N(CO)(ice)/N(CO)(total), increases monotonically from negligible levels for A(V) less than or similar to 5 to similar to 0.3 at A(V) = 10 and similar to 0.6 at A(V) = 30. As these results refer to line-of-sight averages, they must be considered lower limits to the actual depletion at loci deep within the cloud, which may approach unity. We show that it is plausible for such high levels of depletion to be reached in dense cores on timescales similar to 0.6 Myr, comparable with their expected lifetimes. Dispersal of cores during star formation may be effective in maintaining observable levels of gaseous CO on the longer timescales estimated for the age of the cloud. C1 [Whittet, D. C. B.] Rensselaer Polytech Inst, New York Ctr Astrobiol, Troy, NY 12180 USA. [Whittet, D. C. B.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Goldsmith, P. F.; Pineda, J. L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Whittet, DCB (reprint author), Rensselaer Polytech Inst, New York Ctr Astrobiol, 110 8th St, Troy, NY 12180 USA. RI Goldsmith, Paul/H-3159-2016 OI Whittet, Douglas/0000-0001-8539-3891; FU National Aeronautics and Space Administration (NASA) [NNX07AK38G]; National Science Foundation; NASA Astrobiology Institute [NNA09DA80A] FX This research has made use of data from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, funded by the National Aeronautics and Space Administration (NASA) and the National Science Foundation. D.C.B.W. acknowledges financial support from the NASA Exobiology and Evolutionary Biology program (grant NNX07AK38G) and the NASA Astrobiology Institute (grant NNA09DA80A). This work was supported in part by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. We are grateful to an anonymous referee for helpful comments. NR 58 TC 14 Z9 14 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 259 EP 265 DI 10.1088/0004-637X/720/1/259 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000023 ER PT J AU Abdo, AA Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Bastier, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Bignami, GF Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bregeon, J Brez, A Brigida, M Brueli, P Burnett, TH Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Celik, O Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Dermer, CD de Palma, F Dormody, M Silva, EDE Drell, PS Dubois, R Dumora, D Edmonds, Y Farnier, C Favuzzi, C Fegan, SJ Focke, WB Fortin, P Frailis, M Furazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giavitto, G Giglietto, N Giordano, F Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hadasch, D Hardino, AK Hays, E Hughes, RE Johannesson, G Johnson, AS Johnson, TJ Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Marelli, M Mazziotta, MN McEnery, JE Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenk, IV Murgia, S Nolan, PL Norris, JP Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Rayi, PS Razzano, M Reimer, A Reimer, O Reposeur, T Rochester, LS Rodriguez, AY Romani, RW Roth, M Ryde, F Sadrozinski, HFW Sander, A Parkinson, PMS Scargle, JD Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Suson, DJ Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Usher, TL Van Etten, A Vasileiou, V Venter, C Vilchez, N Vitale, V Waite, AP Wang, P Watters, K Winer, BL Wood, KS Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Bastier, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Bignami, G. F. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brez, A. Brigida, M. Brueli, P. Burnett, T. H. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Celik, Oe. Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Dermer, C. D. de Palma, F. Dormody, M. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Edmonds, Y. Farnier, C. Favuzzi, C. Fegan, S. J. Focke, W. B. Fortin, P. Frailis, M. Furazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giavitto, G. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Hadasch, D. Hardino, A. K. Hays, E. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, T. J. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Marelli, M. Mazziotta, M. N. McEnery, J. E. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenk, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Rayi, P. S. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Rochester, L. S. Rodriguez, A. Y. Romani, R. W. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Usher, T. L. Van Etten, A. Vasileiou, V. Venter, C. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Watters, K. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. TI FERMI-LAT OBSERVATIONS OF THE GEMINGA PULSAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: stars; pulsars: general; pulsars: individual (PSR J0633+1746, Geminga) ID LARGE-AREA TELESCOPE; GAMMA-RAY PULSARS; PHASE-RESOLVED SPECTRA; SPACE-TELESCOPE; VELA PULSAR; OUTER MAGNETOSPHERE; OPTICAL COUNTERPART; WIND TORI; RADIATION; EMISSION AB We report on the Fermi-LAT observations of the Geminga pulsar, the second brightest non-variable GeV source in the gamma-ray sky and the first example of a radio-quiet gamma-ray pulsar. The observations cover one year, from the launch of the Fermi satellite through 2009 June 15. A data sample of over 60,000 photons enabled us to build a timing solution based solely on gamma-rays. Timing analysis shows two prominent peaks, separated by Delta phi = 0.497 +/- 0.004 in phase, which narrow with increasing energy. Pulsed gamma-rays are observed beyond 18 GeV, precluding emission below 2.7 stellar radii because of magnetic absorption. The phase-averaged spectrum was fitted with a power law with exponential cutoff of spectral index Gamma = (1.30 +/- 0.01 +/- 0.04), cutoff energy E-0 = (2.46 +/- 0.04 +/- 0.17) GeV, and an integral photon flux above 0.1 GeV of (4.14 +/- 0.02 +/- 0.32) x 10(-6) cm(-2) s(-1). The first uncertainties are statistical and the second ones are systematic. The phase-resolved spectroscopy shows a clear evolution of the spectral parameters, with the spectral index reaching a minimum value just before the leading peak and the cutoff energy having maxima around the peaks. The phase-resolved spectroscopy reveals that pulsar emission is present at all rotational phases. The spectral shape, broad pulse profile, and maximum photon energy favor the outer magnetospheric emission scenarios. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Rayi, P. S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Brez, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Edmonds, Y.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenk, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.; Watters, K.] Stanford Univ, WW Hansen Labs Phys, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Brez, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Edmonds, Y.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenk, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.; Watters, K.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-156127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Tibaldo, L.] Univ Paris Diderot, CNRS IRFU, Lab AIM,Serv Astrophys, CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Giavitto, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Giavitto, G.; Longo, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bastier, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastier, D.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bignami, G. F.] IUSS, I-27100 Pavia, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] M Merlin Univ Politecn Bari, Dipartimento Fis, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Brueli, P.; Fegan, S. J.; Fortin, P.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.; Marelli, M.] INAF Ist Astrofis Spaziale Fis Cosm, Milan, Italy. [Celik, Oe.; Gehrels, N.; Hardino, A. K.; Hays, E.; Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe.; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Meurer, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Meurer, C.; Ryde, F.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Dormody, M.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Dormody, M.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, IN2P3, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, CEN Bordeaux Gradignan, F-33175 Gradignan, France. [Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Furazawa, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gasparrini, D.] ASI Sci Date Ctr, I-00044 Frascati, Italy. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeronom Res, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS, UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Venter, C.] NW Univ, ZA-2520 Potchefstroom, South Africa. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM dumora@cenbg.in2p3.fr; Fabio.Gargano@ba.infn.it; massimiliano.razzano@pi.infn.it RI Thompson, David/D-2939-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Venter, Christo/E-6884-2011; Funk, Stefan/B-7629-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; OI Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Ray, Paul/0000-0002-5297-5278; Marelli, Martino/0000-0002-8017-0338; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Venter, Christo/0000-0002-2666-4812; Funk, Stefan/0000-0002-2012-0080; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Bignami, Giovanni/0000-0001-9582-2450; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; Rando, Riccardo/0000-0001-6992-818X FU K. A. Wallenberg Foundation; International Doctorate on Astroparticle Physics (IDAPP); Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation.; Partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program.; The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States; the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy; the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK), and Japan Aerospace Exploration Agency (JAXA) in Japan; and the K. A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 64 TC 45 Z9 46 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 272 EP 283 DI 10.1088/0004-637X/720/1/272 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000025 ER PT J AU Mancone, CL Gonzalez, AH Brodwin, M Stanford, SA Eisenhardt, PRM Stern, D Jones, C AF Mancone, Conor L. Gonzalez, Anthony H. Brodwin, Mark Stanford, Spencer A. Eisenhardt, Peter R. M. Stern, Daniel Jones, Christine TI THE FORMATION OF MASSIVE CLUSTER GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; galaxies: evolution galaxies: formation; galaxies: luminosity function, mass function ID IRAC SHALLOW SURVEY; STELLAR POPULATION SYNTHESIS; NEAR-INFRARED PROPERTIES; LUMINOSITY FUNCTION; RED SEQUENCE; STAR-FORMATION; EVOLUTION; SPITZER; 1ST; UNCERTAINTIES AB We present composite 3.6 and 4.5 mu m luminosity functions (LFs) for cluster galaxies measured from the Spitzer Deep, Wide-Field Survey for 0.3 < z < 2. We compare the evolution of m* for these LFs to models for passively evolving stellar populations to constrain the primary epoch of star formation in massive cluster galaxies. At low redshifts (z less than or similar to 1.3), our results agree well with models with no mass assembly and passively evolving stellar populations with a luminosity-weighted mean formation redshift z(f) = 2.4 assuming a Kroupa initial mass function (IMF). We conduct a thorough investigation of systematic biases that might influence our results, and estimate systematic uncertainties of Delta z(f) = (+0.16)(-0.18) (model normalization), Delta z(f) = (+0.40)(-0.05) (a), and Delta z(f) = (+0.30)(-0.45) (choice of stellar population model). For a Salpeter-type IMF, the typical formation epoch is thus strongly constrained to be z similar to 2-3. Higher formation redshifts can only be made consistent with the data if one permits an evolving IMF that is bottom-light at high redshift, as suggested by van Dokkum. At high redshifts (z greater than or similar to 1.3), we also witness a statistically significant (>5 sigma) disagreement between the measured LF and the continuation of the passive evolution model from lower redshifts. After considering potential systematic biases that might influence our highest redshift data points, we interpret the observed deviation as potential evidence for ongoing mass assembly at this epoch. C1 [Mancone, Conor L.; Gonzalez, Anthony H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Brodwin, Mark; Jones, Christine] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Stanford, Spencer A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Stanford, Spencer A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Eisenhardt, Peter R. M.; Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Mancone, CL (reprint author), Univ Florida, Dept Astron, Gainesville, FL 32611 USA. EM cmaneone@astro.ufl.edu; anthony@astro.ufl.edu FU National Science Foundation [AST-0708490]; U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344]; NASA FX This paper is based upon work supported by the National Science Foundation under grant AST-0708490. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The work of P.R.M.E. and D.S. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. NR 40 TC 46 Z9 46 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 284 EP 298 DI 10.1088/0004-637X/720/1/284 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000026 ER PT J AU Lewis, NK Showman, AP Fortney, JJ Marley, MS Freedman, RS Lodders, R AF Lewis, Nikole K. Showman, Adam P. Fortney, Jonathan J. Marley, Mark S. Freedman, Richard S. Lodders, Ratharina TI ATMOSPHERIC CIRCULATION OF ECCENTRIC HOT NEPTUNE GJ436b SO ASTROPHYSICAL JOURNAL LA English DT Article DE atmospheric effects; methods: numerical; planets and satellites: general; planets and satellites: individual (GJ436b) ID HUBBLE-SPACE-TELESCOPE; HD 209458B; GIANT PLANETS; GJ 436B; JUPITERS; SIMULATIONS; DYNAMICS; 189733B; TRANSIT; SPITZER AB GJ436b is a unique member of the transiting extrasolar planet population being one of the smallest and least irradiated and possessing an eccentric orbit. Because of its size, mass, and density, GJ436b could plausibly have an atmospheric metallicity similar to Neptune (20-60 times solar abundances), which makes it an ideal target to study the effects of atmospheric metallicity on dynamics and radiative transfer in an extrasolar planetary atmosphere. We present three-dimensional atmospheric circulation models that include realistic non-gray radiative transfer for 1, 3, 10, 30, and 50 times solar atmospheric metallicity cases of GJ436b. Low metallicity models (1 and 3 times solar) show little day/night temperature variation and strong high-latitude jets. In contrast, higher metallicity models (30 and 50 times solar) exhibit day/night temperature variations and a strong equatorial jet. Spectra and light curves produced from these simulations show strong orbital phase dependencies in the 50 times solar case and negligible variations with orbital phase in the 1 times solar case. Comparisons between the predicted planet/star flux ratio from these models and current secondary eclipse measurements support a high metallicity atmosphere (30-50 times solar abundances) with disequilibrium carbon chemistry at play for GJ436b. Regardless of the actual atmospheric composition of GJ436b, our models serve to illuminate how metallicity influences the atmospheric circulation for a broad range of warm extrasolar planets. C1 [Lewis, Nikole K.; Showman, Adam P.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Lewis, Nikole K.; Showman, Adam P.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Marley, Mark S.; Freedman, Richard S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Lodders, Ratharina] Washington Univ, St Louis, MO 63130 USA. [Freedman, Richard S.] SETI Inst, Mountain View, CA 94043 USA. RP Lewis, NK (reprint author), Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. EM nlewis@lpl.arizona.edu RI Marley, Mark/I-4704-2013; OI Marley, Mark/0000-0002-5251-2943; Fortney, Jonathan/0000-0002-9843-4354 FU NASA Headquarters [NNX08AX02H, NNX08AF27G]; NSF [AST 0707377]; National Science Foundation; NASA Advanced Supercomputing (NAS) Division at Ames Research Center FX This work was supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program (Grant NNX08AX02H) and Origins Program (Grant NNX08AF27G). Work by K.L. was supported by NSF grant AST 0707377 and by the National Science Foundation, while working at the Foundation. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. The authors thank Yuan Lian for his helpful insights into working with the MITgcm and the anonymous referee for their helpful comments and suggestions. NR 46 TC 76 Z9 77 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 344 EP 356 DI 10.1088/0004-637X/720/1/344 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000031 ER PT J AU Shao, M Catanzarite, J Pan, XP AF Shao, Michael Catanzarite, Joseph Pan, Xiaopei TI THE SYNERGY OF DIRECT IMAGING AND ASTROMETRY FOR ORBIT DETERMINATION OF EXO-EARTHS SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrometry; planets and satellites: detection; techniques: high angular resolution ID SUPER-EARTHS; PLANETS; SEARCH; MASS AB The holy grail of exoplanet searches is an exo-Earth, an Earth mass planet in the habitable zone (HZ) around a nearby star. Mass is one of the most important characteristics of a planet and can only be measured by observing the motion of the star around the planet star center of gravity. The planet's orbit can be measured either by imaging the planet at multiple epochs or by measuring the position of the star at multiple epochs by space-based astrometry. The measurement of an exoplanet