FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Gaillou, E Post, JE Bassim, ND Zaitsev, AM Rose, T Fries, MD Stroud, RM Steele, A Butler, JE AF Gaillou, E. Post, J. E. Bassim, N. D. Zaitsev, A. M. Rose, T. Fries, M. D. Stroud, R. M. Steele, A. Butler, J. E. TI Spectroscopic and microscopic characterizations of color lamellae in natural pink diamonds SO DIAMOND AND RELATED MATERIALS LA English DT Article DE Natural pink diamond; Graining; Deformation twin; Plastic deformation; 405.5 nm center ID PLASTIC-DEFORMATION; RAMAN-SPECTROSCOPY; OPTICAL-CENTERS; CVD DIAMOND; CRYSTALS; GROWTH; PHOTOLUMINESCENCE; TEMPERATURE; PRESSURE; STRESS AB Nineteen natural, untreated, type laAB pink diamonds from various localities were studied. They display microscopic (similar to 1 mu m thick) pink lamellae along {111} in an otherwise colorless diamond. This coloration concentrated in lamellae is commonly referred to as "graining". The diamonds were examined using high spatial resolution spectroscopic methods and transmission electron microscopy. TEM revealed that a pink lamella consists of a cluster of paired microtwins created under stress by plastic deformation. Raman line shift and broadening associated with the twinned pink lamellae indicate the presence of residual stress. Ultraviolet-visible absorption spectra from each of the samples showed a broad absorption band centered at similar to 550 nm, the source of the pink color. Cathodoluminescence spectra of the pink lamellae are different from those of the bulk, colorless diamond matrix. Within the lamellae only, the H3 center is observed along with a less intense N3 center. In some samples, instead of the N3 center a new center with a zero phonon line at 405.5 nm is observed. This previously unreported 405.5 nm center has phonon sidebands qualitatively identical to the N3 center, and may be an N3 center modified by a specific environment. These results suggest that lattice vacancies were created during twinning resulting from plastic deformation, and that impurity centers (such as those containing nitrogen) trap some of the diffusing vacancies. Since the pink lamellae are still under residual stress, new or modified defect centers are created, e.g. H3 and N3. The color center(s) responsible for the pink color (550 nm absorption) was not identified, but likely is only present in diamonds that experienced plastic deformation. Reported annealing of plastically deformed brown diamonds, which results in a residual pink color, suggests that the pink color is stable under these high pressure, high temperature conditions. The reported observations that annealing plastically deformed brown diamonds results in a residual pink color and that the pink color does not anneal out under similar high pressure, high temperature conditions, suggests that the deformation inducing pink color occurs inside the Earth's mantle, whereas brown coloration might be induced during a more recent event such as the ascent of the diamond to the surface in a kimberlitic/lamproitic eruption. Published by Elsevier BM. C1 [Gaillou, E.; Post, J. E.; Rose, T.] Smithsonian Inst, Dept Mineral Sci, Washington, DC 20560 USA. [Gaillou, E.; Bassim, N. D.; Stroud, R. M.; Butler, J. E.] USN, Res Lab, Washington, DC 20375 USA. [Zaitsev, A. M.] CUNY Coll Staten Isl, Staten Isl, NY 10314 USA. [Fries, M. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Steele, A.] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. RP Gaillou, E (reprint author), Smithsonian Inst, Natl Museum Nat Hist, MRC 0119,Natl Hist Bldg W,Loading Dock 10th & Con, Washington, DC 20560 USA. EM gailloue@si.edu RI Butler, James/B-7965-2008; Gaillou, Eloise/D-1753-2009; Stroud, Rhonda/C-5503-2008 OI Butler, James/0000-0002-4794-7176; Gaillou, Eloise/0000-0002-7949-268X; Stroud, Rhonda/0000-0001-5242-8015 FU Apollo Diamond; JCK Industry Fund; Coralyn Whitney Endowment Fund (Smithsonian Institution) FX The authors wish to thank Alan Collins for constructive discussion of the some spectroscopic results, as well as Fischione and Yoosuff Piccard for assistance with the Nanomilling of the FIB sections. We gratefully acknowledge grants from Apollo Diamond, the JCK Industry Fund, and the Coralyn Whitney Endowment Fund (Smithsonian Institution). We also thank Dr. Benjamin Rondeau and the anonymous person who reviewed this paper, and who improved the quality of this manuscript. NR 60 TC 25 Z9 25 U1 2 U2 20 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-9635 J9 DIAM RELAT MATER JI Diam. Relat. Mat. PD OCT PY 2010 VL 19 IS 10 BP 1207 EP 1220 DI 10.1016/j.diamond.2010.06.015 PG 14 WC Materials Science, Multidisciplinary SC Materials Science GA 654XB UT WOS:000282203300014 ER PT J AU van Donkelaar, A Martin, R Verduzco, C Brauer, M Kahn, R Levy, R Villeneuve, P AF van Donkelaar, Aaron Martin, Randall Verduzco, Caroline Brauer, Mike Kahn, Ralph Levy, Robert Villeneuve, Paul TI A Hybrid Approach for Predicting PM2.5 Exposure Response SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Letter C1 [van Donkelaar, Aaron; Martin, Randall; Verduzco, Caroline] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada. [Brauer, Mike] Univ British Columbia, Sch Environm Hlth, Vancouver, BC V5Z 1M9, Canada. [Kahn, Ralph; Levy, Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Villeneuve, Paul] Hlth Canada, Populat Studies Div, Ottawa, ON K1A 0L2, Canada. RP van Donkelaar, A (reprint author), Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada. EM Aaron.van.Donkelaar@dal.ca NR 3 TC 3 Z9 3 U1 2 U2 10 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD OCT PY 2010 VL 118 IS 10 BP A426 EP A426 DI 10.1289/ehp.1002706R PG 1 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 656YL UT WOS:000282376900006 ER PT J AU Cook, BI Terando, A Steiner, A AF Cook, Benjamin I. Terando, Adam Steiner, Allison TI Ecological forecasting under climatic data uncertainty: a case study in phenological modeling SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE ecology; climate; forecasting ID GLOBAL VEGETATION MODELS; REANALYSIS; ENSEMBLES AB Forecasting ecological responses to climate change represents a challenge to the ecological community because models are often site-specific and climate data are lacking at appropriate spatial and temporal resolutions. We use a case study approach to demonstrate uncertainties in ecological predictions related to the driving climatic input data. We use observational records, derived observational datasets (e.g. interpolated observations from local weather stations and gridded data products) and output from general circulation models (GCM) in conjunction with site based phenology models to estimate the first flowering date (FFD) for three woody flowering species. Using derived observations over the modern time period, we find that cold biases and temperature trends lead to biased FFD simulations for all three species. Observational datasets resolved at the daily time step result in better FFD predictions compared to simulations using monthly resolution. Simulations using output from an ensemble of GCM and regional climate models over modern and future time periods have large intra-ensemble spreads and tend to underestimate observed FFD trends for the modern period. These results indicate that certain forcing datasets may be missing key features needed to generate accurate hindcasts at the local scale (e.g. trends, temporal resolution), and that standard modeling techniques (e.g. downscaling, ensemble mean, etc) may not necessarily improve the prediction of the ecological response. Studies attempting to simulate local ecological processes under modern and future climate forcing therefore need to quantify and propagate the climate data uncertainties in their simulations. C1 [Cook, Benjamin I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Cook, Benjamin I.] Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Terando, Adam] N Carolina State Univ, Biodivers & Spatial Informat Ctr, Raleigh, NC 27695 USA. [Steiner, Allison] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Cook, BI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM bc9z@ldeo.columbia.edu; ajterand@ncsu.edu; alsteiner@umich.edu RI Cook, Benjamin/H-2265-2012; Steiner, Allison/F-4942-2011; OI Terando, Adam/0000-0002-9280-043X FU National Science Foundation (NSF) [IOS-0639794]; US Department of Energy (DoE); National Oceanic and Atmospheric Administration (NOAA); US Environmental Protection Agency Office of Research and Development (EPA) FX The authors thank the editor and reviewers whose comments greatly improved the quality of this manuscript. This project resulted from work initiated at a USA National Phenology Network Research Coordination Network meeting held in October 2009 and supported by National Science Foundation Grant IOS-0639794. Special thanks to the Mohonk Preserve and the Smiley Family for providing climate and phenology data. We also wish to thank the North American Regional Climate Change Assessment Program (NARCCAP) for providing the data used in this paper. NARCCAP is funded by the National Science Foundation (NSF), the US Department of Energy (DoE), the National Oceanic and Atmospheric Administration (NOAA), and the US Environmental Protection Agency Office of Research and Development (EPA). Lamont contribution 7422. NR 25 TC 14 Z9 14 U1 0 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD OCT-DEC PY 2010 VL 5 IS 4 AR 044014 DI 10.1088/1748-9326/5/4/044014 PG 7 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 709EO UT WOS:000286420700016 ER PT J AU Abbasi, R Abdou, Y Abu-Zayyad, T Adams, J Aguilar, JA Ahlers, M Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Bay, R Alba, JLB Beattie, K Beatty, JJ Bechet, S Becker, JK Becker, KH Benabderrahmane, ML BenZvi, S Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bissok, M Blaufuss, E Boersma, DJ Bohm, C Boser, S Botner, O Bradley, L Braun, J Buitink, S Carson, M Chirkin, D Christy, B Clem, J Clevermann, F Cohen, S Colnard, C Cowen, DF D'Agostino, MV Danninger, M Davis, JC De Clercq, C Demirors, L Depaepe, O Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dierckxsens, M Dreyer, J Dumm, JP Duvoort, MR Ehrlich, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Feusels, T Filimonov, K Finley, C Foerster, MM Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Geisler, M Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Goodman, JA Grant, D Griesel, T Gross, A Grullon, S Gurtner, M Ha, C Hallgren, A Halzen, F Han, K Hanson, K Helbing, K Herquet, P Hickford, S Hill, GC Hoffman, KD Homeier, A Hoshina, K Hubert, D Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Joseph, JM Kampert, KH Karg, T Karle, A Kelley, JL Kemming, N Kenny, P Kiryluk, J Kislat, F Klein, SR Knops, S Kohne, JH Kohnen, G Kolanoski, H Kopke, L Koskinen, DJ Kowalski, M Kowarik, T Krasberg, M Krings, T Kroll, G Kuehn, K Kuwabara, T Labare, M Lafebre, S Laihem, K Landsman, H Lauer, R Lehmann, R Lennarz, D Lunemann, J Madsen, J Majumdar, P Marotta, A Maruyama, R Mase, K Matis, HS Matusik, M Meagher, K Merck, M Meszaros, P Meures, T Middell, E Milke, N Miller, J Montaruli, T Morse, R Movit, SM Nahnhauer, R Nam, JW Naumann, U Niessen, P Nygren, DR Odrowski, S Olivas, A Olivo, M O'Murchadha, A Ono, M Panknin, S Paul, L de los Heros, CP Petrovic, J Piegsa, A Pieloth, D Porrata, R Posselt, J Price, PB Prikockis, M Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Rizzo, A Rodrigues, JP Roth, P Rothmaier, F Rott, C Roucelle, C Ruhe, T Rutledge, D Ruzybayev, B Ryckbosch, D Sander, HG Santander, M Sarkar, S Schatto, K Schlenstedt, S Schmidt, T Schukraft, A Schultes, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Slipak, A Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stephens, G Stezelberger, T Stokstad, RG Stoyanov, S Strahler, EA Straszheim, T Sullivan, GW Swillens, Q Taavola, H Taboada, I Tamburro, A Tarasova, O Tepe, A Ter-Antonyan, S Tilav, S Toale, PA Toscano, S Tosi, D Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A van Santen, J Voge, M Voigt, B Walck, C Waldenmaier, T Wallraff, M Walter, M Weaver, C Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Wikstrom, G Williams, DR Wischnewski, R Wissing, H Wolf, M Woschnagg, K Xu, C Xu, XW Yodh, G Yoshida, S Zarzhitsky, P AF Abbasi, R. Abdou, Y. Abu-Zayyad, T. Adams, J. Aguilar, J. A. Ahlers, M. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Beatty, J. J. Bechet, S. Becker, J. K. Becker, K. -H. Benabderrahmane, M. L. BenZvi, S. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bissok, M. Blaufuss, E. Boersma, D. J. Bohm, C. Boeser, S. Botner, O. Bradley, L. Braun, J. Buitink, S. Carson, M. Chirkin, D. Christy, B. Clem, J. Clevermann, F. Cohen, S. Colnard, C. Cowen, D. F. D'Agostino, M. V. Danninger, M. Davis, J. C. De Clercq, C. Demiroers, L. Depaepe, O. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dierckxsens, M. Dreyer, J. Dumm, J. P. Duvoort, M. R. Ehrlich, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Feusels, T. Filimonov, K. Finley, C. Foerster, M. M. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Geisler, M. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Goodman, J. A. Grant, D. Griesel, T. Gross, A. Grullon, S. Gurtner, M. Ha, C. Hallgren, A. Halzen, F. Han, K. Hanson, K. Helbing, K. Herquet, P. Hickford, S. Hill, G. C. Hoffman, K. D. Homeier, A. Hoshina, K. Hubert, D. Huelsnitz, W. Huelss, J. -P. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Joseph, J. M. Kampert, K. -H. Karg, T. Karle, A. Kelley, J. L. Kemming, N. Kenny, P. Kiryluk, J. Kislat, F. Klein, S. R. Knops, S. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koepke, L. Koskinen, D. J. Kowalski, M. Kowarik, T. Krasberg, M. Krings, T. Kroll, G. Kuehn, K. Kuwabara, T. Labare, M. Lafebre, S. Laihem, K. Landsman, H. Lauer, R. Lehmann, R. Lennarz, D. Luenemann, J. Madsen, J. Majumdar, P. Marotta, A. Maruyama, R. Mase, K. Matis, H. S. Matusik, M. Meagher, K. Merck, M. Meszaros, P. Meures, T. Middell, E. Milke, N. Miller, J. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Nam, J. W. Naumann, U. Niessen, P. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. O'Murchadha, A. Ono, M. Panknin, S. Paul, L. de los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Porrata, R. Posselt, J. Price, P. B. Prikockis, M. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Rodrigues, J. P. Roth, P. Rothmaier, F. Rott, C. Roucelle, C. Ruhe, T. Rutledge, D. Ruzybayev, B. Ryckbosch, D. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Schlenstedt, S. Schmidt, T. Schukraft, A. Schultes, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Slipak, A. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stephens, G. Stezelberger, T. Stokstad, R. G. Stoyanov, S. Strahler, E. A. Straszheim, T. Sullivan, G. W. Swillens, Q. Taavola, H. Taboada, I. Tamburro, A. Tarasova, O. Tepe, A. Ter-Antonyan, S. Tilav, S. Toale, P. A. Toscano, S. Tosi, D. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. van Santen, J. Voge, M. Voigt, B. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Weaver, Ch. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Wikstrom, G. Williams, D. R. Wischnewski, R. Wissing, H. Wolf, M. Woschnagg, K. Xu, C. Xu, X. W. Yodh, G. Yoshida, S. Zarzhitsky, P. CA IceCube Collaboration TI Search for relativistic magnetic monopoles with the AMANDA-II neutrino telescope SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID HIGH-ENERGY NEUTRINOS; DETECTORS; SELECTION; LIMITS; FIELD; MODEL; DEEP; FLUX; ICE AB We present the search for Cherenkov signatures from relativistic magnetic monopoles in data taken with the AMANDA-II detector, a neutrino telescope deployed in the Antarctic ice cap at the Geographic South Pole. The non-observation of a monopole signal in data collected during the year 2000 improves present experimental limits on the flux of relativistic magnetic monopoles: Our flux limit varies between 3.8x10(-17) cm(-2) s(-1) sr(-1) (for monopoles moving at the vacuum speed of light) and 8.8x10(-16) cm(-2) s(-1) sr(-1) (for monopoles moving at a speed beta=v/c=0.76, just above the Cherenkov threshold in ice). These limits apply to monopoles that are energetic enough to penetrate the Earth and enter the detector from below the horizon. The limit obtained for monopoles reaching the detector from above the horizon is less stringent by roughly an order of magnitude, due to the much larger background from down-going atmospheric muons. This looser limit is however valid for a larger class of magnetic monopoles, since the monopoles are not required to pass through the Earth. C1 [Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; BenZvi, S.; Berghaus, P.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; O'Murchadha, A.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Abdou, Y.; Carson, M.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Abu-Zayyad, T.; Madsen, J.; Spiczak, G. M.; Tamburro, A.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Adams, J.; Gross, A.; Han, K.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Auffenberg, J.; Becker, K. -H.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Matusik, M.; Naumann, U.; Posselt, J.; Schultes, A.; Semburg, B.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Franke, R.; Kislat, F.; Lauer, R.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Schlenstedt, S.; Spiering, C.; Tarasova, O.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany. [Beattie, K.; Buitink, S.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Bechet, S.; Bertrand, D.; Dierckxsens, M.; Hanson, K.; Labare, M.; Marotta, A.; Petrovic, J.; Swillens, Q.] Univ Libre Bruxelles, Sci Fac CP230, B-1050 Brussels, Belgium. [Becker, J. K.; Dreyer, J.; Olivo, M.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; Sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Bissok, M.; Boersma, D. J.; Euler, S.; Geisler, M.; Gluesenkamp, T.; Huelss, J. -P.; Knops, S.; Krings, T.; Laihem, K.; Lennarz, D.; Meures, T.; Paul, L.; Schukraft, A.; Schunck, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wikstrom, G.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wikstrom, G.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Boeser, S.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Botner, O.; Engdegard, O.; Hallgren, A.; Miller, J.; Olivo, M.; de los Heros, C. Perez; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Bradley, L.; Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Ha, C.; Koskinen, D. J.; Lafebre, S.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Slipak, A.; Stephens, G.; Toale, P. A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Clevermann, F.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Cohen, S.; Demiroers, L.; Ribordy, M.] Ecole Polytech Fed Lausanne, Lab High Energy Phys, CH-1015 Lausanne, Switzerland. [Colnard, C.; Gross, A.; Odrowski, S.; Resconi, E.; Roucelle, C.; Schulz, O.; Sestayo, Y.; Voge, M.; Wolf, M.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [De Clercq, C.; Depaepe, O.; Hubert, D.; Rizzo, A.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Duvoort, M. R.] Utrecht Univ SRON, Dept Phys & Astron, NL-3584 CC Utrecht, Netherlands. [Fadiran, O.; Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Grant, D.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Griesel, T.; Koepke, L.; Kowarik, T.; Kroll, G.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Ishihara, A.; Mase, K.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Kemming, N.; Kolanoski, H.; Lehmann, R.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Montaruli, T.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Montaruli, T.] Sezione Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Seunarine, S.] Univ W Indies, Dept Phys, Bridgetown 11000, Barbados. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Taboada, I.; Tepe, A.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Taboada, I.; Tepe, A.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Williams, D. R.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. RP Abbasi, R (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM hwissing@icecube.umd.edu RI Botner, Olga/A-9110-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011; Beatty, James/D-9310-2011; Taavola, Henric/B-4497-2011; Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Tamburro, Alessio/A-5703-2013; Hallgren, Allan/A-8963-2013 OI Actis, Oxana/0000-0001-8851-3983; Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Sarkar, Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952; Taavola, Henric/0000-0002-2604-2810; Wiebusch, Christopher/0000-0002-6418-3008; FU US National Science Foundation-Office of Polar Programs; US National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; US Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council of Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG) [SFB-676]; Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; EU; Capes Foundation, Ministry of Education of Brazil FX We acknowledge the support from the following agencies: US National Science Foundation-Office of Polar Programs, US National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, US Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council of Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG) SFB-676, Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; A. Gross acknowledges support by the EU Marie Curie OIF Program; J.P. Rodrigues acknowledges support by the Capes Foundation, Ministry of Education of Brazil. NR 48 TC 18 Z9 18 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD OCT PY 2010 VL 69 IS 3-4 BP 361 EP 378 DI 10.1140/epjc/s10052-010-1411-6 PG 18 WC Physics, Particles & Fields SC Physics GA 669PD UT WOS:000283361800003 ER PT J AU Weikl, MC Tedder, SA Seeger, T Leipertz, A AF Weikl, M. C. Tedder, S. A. Seeger, T. Leipertz, A. TI Investigation of porous media combustion by coherent anti-Stokes Raman spectroscopy SO EXPERIMENTS IN FLUIDS LA English DT Article ID DUAL-PUMP CARS; SIMULTANEOUS TEMPERATURE; INERT MEDIA; SCATTERING; BURNERS AB High efficiency, marginal pollutant emissions and low fuel consumption are desirable standards for modern combustion devices. The porous burner technology is a modern type of energy conversion with a strong potential to achieve these standards. However, due to the solid ceramic framework investigation of the thermodynamic properties of combustion, for example temperature, is difficult. The combustion process inside the ceramic structure of a porous burner was experimentally investigated by coherent anti-Stokes Raman spectroscopy (CARS). In this work, we present measurements using dual-pump dual-broadband CARS (DP-DBB-CARS) of temperature and species concentrations inside the reaction and flue gas zone of a porous media burner. Improvements to the setup and data evaluation procedure in contrast to previous measurements are discussed in detail. The results at varied thermal power and stoichiometry are presented. In addition, measurements at a range of radial positions inside a pore are conducted and correlated with the solid structure of the porous foam, which was determined by X-ray computer tomography. C1 [Weikl, M. C.; Seeger, T.; Leipertz, A.] LTT, D-91058 Erlangen, Germany. [Tedder, S. A.] NASA, Adv Sensing & Opt Measurement Branch, Langley Res Ctr, Hampton, VA 23681 USA. RP Seeger, T (reprint author), LTT, Weichselgarten 8, D-91058 Erlangen, Germany. EM ts@ltt.uni-erlangen.de RI Seeger, Thomas/C-3951-2017; OI Seeger, Thomas/0000-0002-9145-5910; Weikl, Markus/0000-0002-8570-3842 FU German Science Foundation DFG; Erlangen Graduate School in Advanced Optical Technologies (SAOT) FX The authors gratefully acknowledge financial support for parts of the work by the German Science Foundation DFG and for funding the Erlangen Graduate School in Advanced Optical Technologies (SAOT) within the framework of the German Excellence Initiative. Also we gratefully acknowledge the supply of the burner by the Lehrstuhl fur Stromungsmechanik LSTM in Erlangen. Last but not least, the authors gratefully acknowledge support from M.Sc. M. Meyer and Prof. W. A. Kalender, Institute of Medical Physics (IMP) of the University of Erlangen-Nurnberg for acquisition of the computer tomography data of the porous foam. NR 20 TC 8 Z9 8 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0723-4864 J9 EXP FLUIDS JI Exp. Fluids PD OCT PY 2010 VL 49 IS 4 BP 775 EP 781 DI 10.1007/s00348-010-0903-3 PG 7 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA 655BE UT WOS:000282215500004 ER PT J AU Hurst, TP Laurel, BJ Ciannelli, L AF Hurst, Thomas P. Laurel, Benjamin J. Ciannelli, Lorenzo TI Ontogenetic patterns and temperature-dependent growth rates in early life stages of Pacific cod (Gadus macrocephalus) SO FISHERY BULLETIN LA English DT Article ID NORTHERN ROCK SOLE; PLAICE PLEURONECTES-PLATESSA; SOUTHEASTERN BERING-SEA; JUVENILE ATLANTIC COD; CLIMATE-CHANGE; LEPIDOPSETTA-POLYXYSTRA; THERAGRA-CHALCOGRAMMA; FISH POPULATIONS; LARVAE; MORHUA AB Pacific cod (Gadus macrocephalus) is an important component of fisheries and food webs in the North Pacific Ocean and Bering Sea. However, vital rates of early life stages of this species have yet to be described in detail. We determined the thermal sensitivity of growth rates of embryos, preflexion and postflexion larvae, and postsettlement juveniles. Growth rates (length and mass) at each ontogenetic stage were measured in three replicate tanks at four to five temperatures. Nonlinear regression was used to obtain parameters for independent stage-specific growth functions and a unified size- and temperature-dependent growth function. Specific growth rates increased with temperature at all stages and generally decreased with increases in body size. However, these analyses revealed a departure from a strict size-based allometry in growth patterns, as reduced growth rates were observed among preflexion larvae: the reduction in specific growth rate between embryos and free-swimming larvae was greater than expected based on body size differences. Growth reductions in the preflexion larvae appear to be associated with increased metabolic rates and the transition from endogenous to exogenous feeding. In future studies, experiments should be integrated across life transitions to more clearly define intrinsic ontogenetic and size-dependent growth patterns because these are critical for evaluations of spatial and temporal variation in habitat quality. C1 [Hurst, Thomas P.; Laurel, Benjamin J.] Oregon State Univ, Hatfield Marine Sci Ctr, NOAA, Natl Marine Fisheries Serv,Alaska Fisheries Sci C, Newport, OR 97365 USA. [Ciannelli, Lorenzo] Oregon State Univ, Coll Atmospher & Oceanog Sci, Corvallis, OR 97331 USA. RP Hurst, TP (reprint author), Oregon State Univ, Hatfield Marine Sci Ctr, NOAA, Natl Marine Fisheries Serv,Alaska Fisheries Sci C, Newport, OR 97365 USA. EM thomas.hurst@noaa.gov RI Hurst, Thomas/N-1401-2013 FU North Pacific Research Board [R0605] FX We thank T. Tripp, M. Spencer, and B. Knoth for assistance with fish collection and shipping. Staff and students in the Fisheries Behavioral Ecology Program, including L. Copeman, S. Haines, M. Ottmar, P. Iseri, A. Colton, L. Logers, E. Seale, and J. Scheingross assisted with various laboratory experiments. S. Munch, L. Tomaro, A. Stoner, and three anonymous reviewers provided helpful comments on earlier versions of this manuscript. This research was supported in part by a grant from the North Pacific Research Board (no. R0605). This is publication no. 248 of the North Pacific Research Board. NR 48 TC 22 Z9 23 U1 1 U2 7 PU NATL MARINE FISHERIES SERVICE SCIENTIFIC PUBL OFFICE PI SEATTLE PA 7600 SAND POINT WAY NE BIN C15700, SEATTLE, WA 98115 USA SN 0090-0656 J9 FISH B-NOAA JI Fish. Bull. PD OCT PY 2010 VL 108 IS 4 BP 382 EP 392 PG 11 WC Fisheries SC Fisheries GA 676XS UT WOS:000283953000002 ER PT J AU Hart, TD Clemons, JER Wakefield, WW Heppell, SS AF Hart, Ted D. Clemons, Julia E. R. Wakefield, W. Waldo Heppell, Selina S. TI Day and night abundance, distribution, and activity patterns of demersal fishes on Heceta Bank, Oregon SO FISHERY BULLETIN LA English DT Article ID REEF FISHES; HABITAT ASSOCIATIONS; PHOTIC ENVIRONMENT; CONTINENTAL-SHELF; DIEL VARIATION; SILVER HAKE; DEEP-REEF; SEBASTES; TRAWL; CATCHABILITY AB Most shallow-dwelling tropical marine fishes exhibit different activity patterns during the day and night but show similar transition behavior among habitat sites despite the dissimilar assemblages of the species. However, changes in species abundance, distribution, and activity patterns have only rarely been examined in temperate deepwater habitats during the day and night, where day-to-night differences in light intensity are extremely slight. Direct-observation surveys were conducted over several depths and habitat types on Heceta Bank, the largest rocky bank off the Oregon coast. Day and night fish community composition, relative density, and activity levels were compared by using videotape footage from a remotely operated vehicle (ROV) operated along paired transects. Habitat-specific abundance and activity were determined for 31 taxa or groups. General patterns observed were similar to shallow temperate day and night studies, with an overall increase in the abundance and activity of fishes during the day than at night, particularly in shallower cobble, boulder, and rock ridge habitats. Smaller schooling rockfishes (Sebastes spp.) were more abundant and active in day than in night transects, and sharp-chin (S. zacentrus) and harlequin (S. variegatus) rockfish were significantly more abundant in night transects. Most taxa, however, did not exhibit distinct diurnal or nocturnal activity patterns. Rosethorn rockfish (S. helvomaculatus) and hagfishes (Eptatretus spp.) showed the clearest diurnal and nocturnal activity patterns, respectively. Because day and night distributions and activity patterns in demersal fishes are likely to influence both catchability and observability in bottom trawl and direct-count in situ surveys, the patterns observed in the current study should be considered for survey design and interpretation. C1 [Clemons, Julia E. R.; Wakefield, W. Waldo] Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fishery Resource Anal & Monitoring Div, Newport, OR 97365 USA. [Hart, Ted D.; Heppell, Selina S.] Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA. RP Clemons, JER (reprint author), Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fishery Resource Anal & Monitoring Div, 2032 SE OSU Dr, Newport, OR 97365 USA. EM Julia.Clemons@noaa.gov RI Bizzarro, Joseph/A-2988-2012 FU West Coast and Polar Regions Undersea Research Center of the National Oceanographic and Atmospheric Administration (NOAA); Northwest and Southwest Fisheries Science Centers; NOAA's Pacific Marine Environmental Laboratory; Cooperative Institute for Marine Resources Studies at Oregon State University; Oregon Agricultural Experiment Station [ORE00102]; H. Richard Carlson Scholarship; Collaborative Marine Fisheries Fellowship; Oregon State University FX We would especially like to thank the following colleagues who contributed to this study: B. Barss, B. Embley, G. Hendler, M. Hixon, D. Markle, B. McCune, S. Merle, B. Tissot, M. Yoklavich, and K. York. A. Whitmire and T. Cowles generously contributed information on ambient light levels. L. Britt, C. Whitmire, and L. Ciannelli provided constructive reviews of the manuscript. This portion of the Heceta Bank project was funded by the West Coast and Polar Regions Undersea Research Center of the National Oceanographic and Atmospheric Administration's (NOAA) National Undersea Research Program, the Northwest and Southwest Fisheries Science Centers, NOAA's Pacific Marine Environmental Laboratory, and the Cooperative Institute for Marine Resources Studies at Oregon State University. We would like to thank the professional personnel who operated the ROV ROPOS and the NOAA RV Ronald Brown. T. Hart was supported through the Oregon Agricultural Experiment Station project ORE00102, the H. Richard Carlson Scholarship, the Collaborative Marine Fisheries Fellowship and the Bill Wick Award through Oregon State University. NR 41 TC 4 Z9 4 U1 2 U2 12 PU NATL MARINE FISHERIES SERVICE SCIENTIFIC PUBL OFFICE PI SEATTLE PA 7600 SAND POINT WAY NE BIN C15700, SEATTLE, WA 98115 USA SN 0090-0656 J9 FISH B-NOAA JI Fish. Bull. PD OCT PY 2010 VL 108 IS 4 BP 466 EP 477 PG 12 WC Fisheries SC Fisheries GA 676XS UT WOS:000283953000009 ER PT J AU He, JK Peltzer, G AF He, Jiankun Peltzer, Gilles TI Poroelastic triggering in the 9-22 January 2008 Nima-Gaize (Tibet) earthquake sequence SO GEOLOGY LA English DT Article ID 1992 LANDERS EARTHQUAKE; SAN-ANDREAS FAULT; PORE FLUID-FLOW; STRESS; PRESSURE; AFTERSHOCKS; CALIFORNIA; DEFORMATION; SHEAR AB A sequence of three earthquakes of Ms = 6.4, 5.9, and 5.4 occurred in southern central Tibet on 9, 16, and 22 January 2008. Interferometric satellite aperture radar (InSAR) observations indicate that the two largest events occurred on two northeast-trending, northwest-dipping normal faults, separated by similar to 9.5 km, with slip reaching 1.2 m on the main fault and 0.75 m on the second. We develop a three-dimensional finite element model to calculate the Coulomb stress change due to poroelastic deformation in the crust after the first event. Using a uniform permeability of 8 x 10(-15) m(2) for faults and the host rock leads to negligible temporal pore pressure change in the two weeks after the first event. However, assuming higher permeability along faults (10(-14) to 10(-11) m(2)), the second fault channels the flow of pore fluids upward from the deeper region where the pore pressure increase was the largest immediately after the first event. In this case, the poroelastic Coulomb stress on the second fault increased suddenly by similar to 1 x 10(5) Pa after the first earthquake and continued to increase by as much as 70% in the subsequent week. Furthermore, the distribution of Coulomb stress change on the second fault correlates precisely with the slip distribution inferred for the second event. These findings suggest that the first earthquake not only triggered the second event, but the Coulomb stress change it induced on the second fault plane controlled the extent of the second rupture. C1 [He, Jiankun] Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Continental Collis & Plateau Uplift, Beijing 100085, Peoples R China. [Peltzer, Gilles] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Peltzer, Gilles] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP He, JK (reprint author), Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Continental Collis & Plateau Uplift, Beijing 100085, Peoples R China. EM jkhe@itpcas.ac.cn FU National Science Foundation of China [40774050]; University of California-Los Angeles [4-403875-G2-69314]; National Aeronautics and Space Administration FX This work was supported by National Science Foundation of China grant NO. 40774050 to He, and University of California-Los Angeles grant 4-403875-G2-69314 to Peltzer. Part of Peltzer's contribution was done at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Envisat data were provided by the European Space Agency under Peltzer's Category-1 project (C1P.4424). We thank the anonymous reviewers for insightful comments that helped to improve the manuscript. The poroelastic modeling was developed in collaboration with Huashan Qian under contract with Beijing Supcompute Technology Co. Ltd. NR 29 TC 7 Z9 10 U1 2 U2 10 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0091-7613 J9 GEOLOGY JI Geology PD OCT PY 2010 VL 38 IS 10 BP 907 EP 910 DI 10.1130/G31104.1 PG 4 WC Geology SC Geology GA 656PL UT WOS:000282348600012 ER PT J AU Carvalhais, N Reichstein, M Ciais, P Collatz, GJ Mahecha, MD Montagnani, L Papale, D Rambal, S Seixas, J AF Carvalhais, Nuno Reichstein, Markus Ciais, Philippe Collatz, G. James Mahecha, Miguel D. Montagnani, Leonardo Papale, Dario Rambal, Serge Seixas, Julia TI Identification of vegetation and soil carbon pools out of equilibrium in a process model via eddy covariance and biometric constraints SO GLOBAL CHANGE BIOLOGY LA English DT Article DE carbon pools; CASA model; equifinality; model-data integration; multiple constraints; net ecosystem production; steady-state assumption ID NET ECOSYSTEM EXCHANGE; UNCERTAINTY ESTIMATION; PLANT RESPIRATION; DATA ASSIMILATION; ATMOSPHERIC CO2; USE EFFICIENCY; CLIMATE-CHANGE; LEAST-SQUARES; FOREST; INVERSION AB Assumptions of steady-state conditions in biogeochemical modelling are often invoked because knowledge on the development status of the modelling domain is generally unavailable. Here, we investigate the role of vegetation pool sizes on nonequilibrium conditions through model-data integration approaches for a set of sites using eddy covariance CO(2) flux data. The study is based on the Carnegie-Ames-Stanford Approach (CASA) model, modified (CASA(G)) in order to evaluate the sensitivity of simulated net ecosystem production (NEP) fluxes to vegetation pool sizes. The experimental design is based on the inverse model optimization of different parameter vectors performed at the measurement site level. Each parameter vector prescribes different simulation dynamics that embody different model structural assumptions concerning (non)steady-state conditions in vegetation and soil carbon pools. We further explore the potential of assimilating biometric constraints through the cost function for sites where in situ information on aboveground biomass or wood pools is available. The integration of biometric data yields marked improvements in the simulation of vegetation C pools compared to single constraints with eddy flux data. Overall, it is necessary to relax both vegetation and soil carbon pools for consistency with the observed data streams. Multiple constraints approaches also leads to variable model performance among the different experimental setups and model structures. We identify and assess the limitations of various model structures and the role of multiple constraints approaches for tackling issues of equifinality. These studies emphasize the need for establishing consistent data sets of fluxes and biometric data for successful model-data fusion. C1 [Carvalhais, Nuno; Seixas, Julia] Univ Nova Lisboa, FCT, DCEA, P-2829516 Caparica, Portugal. [Carvalhais, Nuno; Reichstein, Markus; Mahecha, Miguel D.] Max Planck Inst Biogeochem, D-07745 Jena, Germany. [Ciais, Philippe] CEA CNRS UVSQ, Lab Sci Climate & Environm, F-91191 Gif Sur Yvette, France. [Collatz, G. James] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Montagnani, Leonardo] Free Univ Bolzano Bozen, Fac Sci & Technol, I-39100 Bozen Bolzano, Italy. [Papale, Dario] Univ Tuscia, DISAFRI, I-01100 Viterbo, Italy. [Rambal, Serge] CNRS, UMR 5175, CEFE, DREAM, F-34293 Montpellier 5, France. RP Carvalhais, N (reprint author), Univ Nova Lisboa, FCT, DCEA, P-2829516 Caparica, Portugal. EM ncarvalhais@gmail.com RI Mahecha, Miguel/F-2443-2010; Reichstein, Markus/A-7494-2011; collatz, george/D-5381-2012; Seixas, Julia/K-9400-2013; Montagnani, Leonardo/F-1837-2016; OI Mahecha, Miguel/0000-0003-3031-613X; Reichstein, Markus/0000-0001-5736-1112; Seixas, Julia/0000-0003-0355-0465; Montagnani, Leonardo/0000-0003-2957-9071; rambal, serge/0000-0001-5869-8382; Carvalhais, Nuno/0000-0003-0465-1436; Papale, Dario/0000-0001-5170-8648 FU Portuguese Foundation for Science and Technology (FCT) [PTDC/AGR-CFL/69733/2006, FP7-ENV-2008-1-226701]; European Union [POCI 2010, SFRH/BD/6517/2001]; Max-Planck-Society; CARBOEUROPE-IP FX We are grateful to Marco Correia, Martin Jung, Gitta Lasslop, Mirco Migliavacca, Christopher Neigh, Wouter Peters and Enrico Tomelleri for very helpful comments on the manuscript. We are also very thankful to three anonymous reviewers for constructive comments that significantly helped improving the manuscript. This work was supported by the Portuguese Foundation for Science and Technology (FCT) under the MODNET project (contract no. PTDC/AGR-CFL/69733/2006) and also by the CARBO-Extreme project (FP7-ENV-2008-1-226701). NC acknowledges the support given by the Portuguese Foundation for Science and Technology (FCT), the European Union under Operational Program 'Science and Innovation' (POCI 2010), PhD grant ref. SFRH/BD/6517/2001. MR is grateful to the Max-Planck-Society for supporting the independent junior research group Biogeochemical Model-Data Integration. Research leading to flux data and scientific insight was supported by the CARBOEUROPE-IP project. NR 77 TC 39 Z9 40 U1 3 U2 38 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1354-1013 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD OCT PY 2010 VL 16 IS 10 BP 2813 EP 2829 DI 10.1111/j.1365-2486.2010.02173.x PG 17 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 648FV UT WOS:000281676700015 ER PT J AU Matsuyama, I Bills, BG AF Matsuyama, Isamu Bills, Bruce G. TI Global contraction of planetary bodies due to despinning: Application to Mercury and Iapetus SO ICARUS LA English DT Article DE Rotational dynamics; Planetary dynamics; Tectonics; Mercury; Iapetus ID GRAVITATIONAL MOMENTS; ICY SATELLITES; LOBATE SCARPS; TECTONICS; ROTATION; SURFACE; SHAPES; CORE AB We extend previous work on the global tectonic patterns generated by despinning with a self-consistent treatment of the isotropic despinning contraction that has been ignored. We provide simple analytic approximations that quantify the effect of the isotropic despinning contraction on the global shape and tectonic pattern. The isotropic despinning contraction of Mercury is similar to 93 m (T/1 day)(-2), where T is the initial rotation period. If we take into account both the isotropic contraction and the degree-2 deformations associated with despinning, the preponderance of compressional tectonic features on Mercury's surface requires an additional isotropic contraction >= 1 km (T/1 day)(-2), presumably due to cooling of the interior and growth of the solid inner core. The isotropic despinning contraction of Iapetus is similar to 9 m (T/ 16 h)(-2), and it is not sensitive to the presence of a core or the thickness of the elastic lithosphere. The tectonic pattern expected for despinning, including the isotropic contraction, does not explain Iapetus' ridge. Furthermore, the ridge remains unexplained with the addition of any isotropic compressional stresses, including those generating by cooling. (C) 2010 Elsevier Inc. All rights reserved. C1 [Matsuyama, Isamu] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Bills, Bruce G.] Jet Prop Lab, Pasadena, CA 90119 USA. RP Matsuyama, I (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM isa@berkeley.edu OI Matsuyama, Isamu/0000-0002-2917-8633 FU Miller Institute for Basic Research; NASA FX We thank Tim Van Hoolst and an anonymous referee for their constructive comments. We acknowledge support from the Miller Institute for Basic Research. Part of the research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 35 TC 1 Z9 1 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD OCT PY 2010 VL 209 IS 2 BP 271 EP 279 DI 10.1016/j.icarus.2010.05.011 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654VL UT WOS:000282199000001 ER PT J AU Williams, KE Mckay, CP Toon, OB Head, JW AF Williams, K. E. Mckay, Christopher P. Toon, O. B. Head, James W. TI Do ice caves exist on Mars? SO ICARUS LA English DT Article DE Mars, Surface; Mars, Atmosphere; Mars, Climate; Ices ID GENERAL-CIRCULATION MODEL; MIDLATITUDE SNOWPACKS; FROST FORMATION; LIQUID WATER; LAVA TUBES; FLOW; VOLCANISM; GLACIERS; SIMULATIONS; PARAMETERS AB We have developed a numerical model for assessing the lifetime of ice deposits in martian caves that are open to the atmosphere. Our model results and sensitivity tests indicate that cave ice would be stable over significant portions of the surface of Mars. Ice caves on Earth commonly occur in lava tubes, and Mars has been significantly resurfaced by volcanic activity during its history, including the two main volcanic provinces, the Tharsis and Elysium rises. These areas, known or suspected of having subsurface caves and related voids are among the most favorable regions for the occurrence of ice stability. The martian ice cave model predicts regions which, if caves occur, would potentially be areas of astrobiological importance as well as possible water sources for future human missions to Mars. (C) 2010 Elsevier Inc. All rights reserved. C1 [Williams, K. E.; Mckay, Christopher P.] NASA, Ames Res Ctr, Div Space Sci & Astrobiol, Moffett Field, CA 94035 USA. [Toon, O. B.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Toon, O. B.] Univ Colorado, Atmospher & Space Phys Lab, LASP UCB 392, Boulder, CO 80309 USA. [Head, James W.] Brown Univ, Dept Geol Sci, Providence, RI 02906 USA. RP Williams, KE (reprint author), NASA, Ames Res Ctr, Div Space Sci & Astrobiol, Mail Stop 245-3, Moffett Field, CA 94035 USA. EM kaj.williams@gmail.com FU NASA FX The authors would like to thank James Schaeffer for providing the MGCM data used in this study (AmesMGCM model run # 2009.003). K.E. Williams would like to thank Andrew Ingersoll for helpful discussions. This paper also benefited from the comments of two anonymous reviewers. J.W.H. gratefully acknowledges support from the NASA Mars Data Analysis Program (MDAP). Thanks are extended to James Dickson for data and image processing and presentation. K.E. Williams was funded by the NASA Postdoctoral Program. NR 56 TC 17 Z9 17 U1 2 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD OCT PY 2010 VL 209 IS 2 BP 358 EP 368 DI 10.1016/j.icarus.2010.03.039 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654VL UT WOS:000282199000007 ER PT J AU Busch, MW Kulkarni, SR Brisken, W Ostro, SJ Benner, LAM Giorgini, JD Nolan, MC AF Busch, Michael W. Kulkarni, Shrinivas R. Brisken, Walter Ostro, Steven J. Benner, Lance A. M. Giorgini, Jon D. Nolan, Michael C. TI Determining asteroid spin states using radar speckles SO ICARUS LA English DT Article DE Asteroids; Asteroids, Rotation; Asteroids, Dynamics; Radar observations ID SMALL BINARY ASTEROIDS; 1999 KW4; EARTH; YARKOVSKY; DYNAMICS AB Knowing the shapes and spin states of near-Earth asteroids is essential to understanding their dynamical evolution because of the Yarkovsky and YORP effects. Delay-Doppler radar imaging is the most powerful ground-based technique for imaging near-Earth asteroids and can obtain spatial resolution of <10 m, but frequently produces ambiguous pole direction solutions. A radar echo from an asteroid consists of a pattern of speckles caused by the interference of reflections from different parts of the surface. It is possible to determine an asteroid's pole direction by tracking the motion of the radar speckle pattern. Speckle tracking can potentially measure the poles of at least several radar targets each year, rapidly increasing the available sample of NEA pole directions. We observed the near-Earth asteroid 2008 EV5 with the Arecibo planetary radar and the Very Long Baseline Array in December 2008. By tracking the speckles moving from the Pie Town to Los Alamos VLBA stations, we have shown that EV5 rotates retrograde. This is the first speckle detection of a near-Earth asteroid. (C) 2010 Elsevier Inc. All rights reserved. C1 [Busch, Michael W.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Kulkarni, Shrinivas R.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Brisken, Walter] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Ostro, Steven J.; Benner, Lance A. M.; Giorgini, Jon D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Nolan, Michael C.] Arecibo Observ, Arecibo, PR 00612 USA. RP Busch, MW (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM busch@caltech.edu RI Nolan, Michael/H-4980-2012 OI Nolan, Michael/0000-0001-8316-0680 FU National Aeronautics and Space Administration (NASA); Hertz Foundation FX The NRAO Socorro & Green Bank, Goldstone Solar System Radar, and NAIC Arecibo staff helped to obtain the data presented here. A. Galad, B.W. Koehn, and M.D. Hicks observed EV5 optically and determined its rotation rate. J.-L. Margot and C. Magri provided very helpful reviews. A.T. Deller and R.C. Walker provided helpful technical comments. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The Arecibo Observatory is part of the National Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative agreement with the National Science Foundation. Some of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). This paper is based in part on work funded by NASA under the Science Mission Directorate Research and Analysis Programs. M.W. Busch was supported by the Hertz Foundation. NR 31 TC 6 Z9 7 U1 1 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD OCT PY 2010 VL 209 IS 2 BP 535 EP 541 DI 10.1016/j.icarus.2010.05.002 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654VL UT WOS:000282199000021 ER PT J AU Shestopalov, DI McFadden, LA Golubeva, LF Orujova, LO AF Shestopalov, D. I. McFadden, L. A. Golubeva, L. F. Orujova, L. O. TI About mineral composition of geologic units in the northern hemisphere of Vesta SO ICARUS LA English DT Article DE Asteroids; Spectrophotometry ID ASTEROID 4 VESTA; SPECTROSCOPIC SURVEY; BHOLGHATI HOWARDITE; SURFACE; SPECTRA; PYROXENE; MODEL AB In the present paper we seek to understand the geologic diversity of units in the northern hemisphere of Vesta using HST observations (Binzel et al., 1997). First, we compare colors R(0.673 mu m)/R(0.953 mu m) and R(0.673 mu m)/R(1.042 mu m) of Vesta's units with those of V-type asteroids (vestoids) as well as howardite, eucrite, and diogenite meteorites (HEDs). This comparative analysis showed that: (i) on the color-color plot, regions on Vesta are clustered whereas vestoids and HEDs cover a wide range in color: (ii) very few vestoids or HEDs fall into Vesta's color region. This implies that Vesta's units are more homogenous than most vestoids and HEDs examined here and material of the units are slightly different from that of vestoids and HEDs. Assuming reasonable choice of end-member materials, an optical model (Shkuratov et al., 1999) was used to simulate intimate mixtures of particles at the surface of Vesta's units. Simulation of albedo, colors, and four-point spectra of Vesta's units reveals that the rock-forming material is nearly equal for all units and has HED-like composition. Diversity of the units depends on the minor constituents such as chromite and a neutral phase. The western units contain more chromite and neutral phase than the eastern, consequently albedo of the western units is lower and their four-point spectra are flatter. Olivine and feldspar are also needed to give the best fit for the calculated and observed albedos and colors of Vesta's units, but being in minor amount in Vesta's rocks they play a secondary role in contributing to the optical properties of the units. Questions about the proportions of HED-like rock and the constituent called neutral phase remain open. Spectrophotometric studies of Vesta with both higher spatial and spectral resolution as expected from NASA's Dawn mission are needed for resolving these problems. (C) 2010 Elsevier Inc. All rights reserved. C1 [Shestopalov, D. I.; Golubeva, L. F.; Orujova, L. O.] Azerbaijan Acad Sci, Shemakha Astrophys Observ, AZ-3243 Shemakha, Azerbaijan. [McFadden, L. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Shestopalov, DI (reprint author), Azerbaijan Acad Sci, Shemakha Astrophys Observ, AZ-3243 Shemakha, Azerbaijan. EM shestopalov_d@mail.ru; lucy.mcfadden@nasa.gov; lara_golubeva@mail.ru; oleyli@yahoo.com RI McFadden, Lucy-Ann/I-4902-2013 OI McFadden, Lucy-Ann/0000-0002-0537-9975 FU National Science Foundation [0506716] FX This research utilizes spectra of meteorites and minerals acquired by R.P. Binzel, E.A. Cloutis, M.J. Gaffey, T. Hiroi, C.M. Pieters, J.T. Wasson with the NASA RELAB facility at Brown University. The authors thank T.H. Burbine for providing the dates and times for the asteroid spectral observations, which were needed to calculate phase angles. Part of the data utilized in this publication were obtained and made available by the MIT-UH-IRTF Joint Campaign for NEO Reconnaissance. The IRTF is operated by the University of Hawaii under Cooperative Agreement No. NCC 5-538 with the National Aeronautics and Space Administration, Office of Space Science, Planetary Astronomy Program. The MIT component of this work is supported by the National Science Foundation under Grant No. 0506716. We are very grateful to an anonymous reviewer for his valuable and well-wishing comments, which have helped to improve greatly our article. NR 31 TC 7 Z9 7 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD OCT PY 2010 VL 209 IS 2 BP 575 EP 585 DI 10.1016/j.icarus.2010.04.012 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654VL UT WOS:000282199000025 ER PT J AU De Luise, F Dotto, E Fornasier, S Barucci, MA Pinilla-Alonso, N Perna, D Marzari, F AF De Luise, F. Dotto, E. Fornasier, S. Barucci, M. A. Pinilla-Alonso, N. Perna, D. Marzari, F. TI A peculiar family of Jupiter Trojans: The Eurybates SO ICARUS LA English DT Article DE Trojan asteroids; Asteroids, surface; Asteroids, composition; Spectroscopy ID CHARGED-PARTICLE IRRADIATION; VISIBLE SPECTROSCOPIC SURVEY; SURFACE-COMPOSITION; DYNAMICAL FAMILIES; OPTICAL-CONSTANTS; ION IRRADIATION; PROPER ELEMENTS; SOLAR-SYSTEM; PHOTOMETRIC SURVEY; ASTEROIDS AB The Eurybates family is a compact core inside the Menelaus clan, located in the L(4) swarm of Jupiter Trojans. Fornasier et al. (Fornasier, S., Dotto, E., Hainaut, O., Marzari, F., Boehnhardt, H., De Luise, F., Barucci, M.A. [2007] Icarus 190, 622-642) found that this family exhibits a peculiar abundance of spectrally flat objects, similar to Chiron-like Centaurs and C-type main belt asteroids. On the basis of the visible spectra available in literature, Eurybates family's members seemed to be good candidates for having on their surfaces water/water ice or aqueous altered materials. To improve our knowledge of the surface composition of this peculiar family, we carried out an observational campaign at the Telescopio Nazionale Galileo (TNG), obtaining near-infrared spectra of 7 members. Our data show a surprisingly absence of any spectral feature referable to the presence of water, ices or aqueous altered materials on the surface of the observed objects. Models of the surface composition are attempted, evidencing that amorphous carbon seems to dominate the surface composition of the observed bodies and some amount of silicates (olivine) could be present. (C) 2010 Elsevier Inc. All rights reserved. C1 [De Luise, F.] INAF Osservatorio Astron Collurania Teramo, I-64100 Teramo, TE, Italy. [De Luise, F.; Dotto, E.; Perna, D.] INAF Osservatorio Astron Roma, I-00040 Rome, Italy. [Fornasier, S.; Barucci, M. A.; Perna, D.] Observ Paris, LESIA, F-92195 Meudon, France. [Fornasier, S.] Univ Paris 07, F-75013 Paris, France. [Pinilla-Alonso, N.] Fdn Galileo Galilei, Tenerife 38700, Spain. [Pinilla-Alonso, N.] Telescopio Nazl Galileo, Tenerife 38700, Spain. [Pinilla-Alonso, N.] Oak Ridge Associated Univ, NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Perna, D.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Marzari, F.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. RP De Luise, F (reprint author), INAF Osservatorio Astron Collurania Teramo, Via Mentore Maggini,Snc, I-64100 Teramo, TE, Italy. EM deluise@oa-teramo.inaf.it OI De Luise, Fiore/0000-0002-6570-8208; Dotto, Elisabetta/0000-0002-9335-1656 NR 44 TC 7 Z9 7 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD OCT PY 2010 VL 209 IS 2 BP 586 EP 590 DI 10.1016/j.icarus.2010.04.024 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654VL UT WOS:000282199000026 ER PT J AU Movshovitz, N Bodenheimer, P Podolak, M Lissauer, JJ AF Movshovitz, Naor Bodenheimer, Peter Podolak, Morris Lissauer, Jack J. TI Formation of Jupiter using opacities based on detailed grain physics SO ICARUS LA English DT Article DE Planetary formation; Jovian planets; Jupiter, Interior; Accretion ID GIANT PLANET FORMATION; SOLAR NEBULA; PROTOPLANETARY ATMOSPHERES; ACCRETION; CORE; EVOLUTION; MODELS; PLANETESIMALS; VELOCITIES; MIGRATION AB Numerical simulations, based on the core-nucleated accretion model, are presented for the formation of Jupiter at 5.2 AU in three primordial disks with three different assumed values of the surface density of solid particles. The grain opacities in the envelope of the protoplanet are computed using a detailed model that includes settling and coagulation of grains and that incorporates a recalculation of the grain size distribution at each point in time and space. We generally find lower opacities than the 2% of interstellar values used in previous calculations (Hubickyj, O., Bodenheimer, P., Lissauer, J.J.[2005]. Icarus 179, 415-431; Lissauer, J.J., Hubickyj, O., D'Angelo, G., Bodenheimer, P. [2009]. Icarus 199, 338-350). These lower opacities result in more rapid heat loss from and more rapid contraction of the protoplanetary envelope. For a given surface density of solids, the new calculations result in a substantial speedup in formation time as compared with those previous calculations. Formation times are calculated to be 1.0, 1.9, and 4.0 Myr, and solid core masses are found to be 16.8, 8.9, and 4.7 M(circle dot), for solid surface densities, sigma, of 10, 6, and 4 g cm(-2), respectively. For sigma = 10 and sigma = 6 g cm(-2), respectively, these formation times are reduced by more than 50% and more than 80% compared with those in a previously published calculation with the old approximation to the opacity. (C) 2010 Elsevier Inc. All rights reserved. C1 [Movshovitz, Naor] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Movshovitz, Naor; Podolak, Morris] Tel Aviv Univ, Dept Geophys & Planetary Sci, IL-69978 Ramat Aviv, Israel. [Bodenheimer, Peter] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Lissauer, Jack J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. RP Movshovitz, N (reprint author), Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. EM nmovshov@ucsc.edu OI Podolak, Morris/0000-0003-4801-8691 FU NASA [NNX08AH82G]; Israel Academy of Sciences FX This work was supported in part by NASA Origins Grant NNX08AH82G. M.P. acknowledges the support of the Israel Academy of Sciences. N.M. acknowledges assistance from the Sackler Institute of Astronomy. NR 33 TC 77 Z9 77 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD OCT PY 2010 VL 209 IS 2 BP 616 EP 624 DI 10.1016/j.icarus.2010.06.009 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654VL UT WOS:000282199000029 ER PT J AU Guerlet, S Fouchet, T Bezard, B Moses, JI Fletcher, LN Simon-Miller, AA Flasar, FM AF Guerlet, Sandrine Fouchet, Thierry Bezard, Bruno Moses, Julianne I. Fletcher, Leigh N. Simon-Miller, Amy A. Flasar, F. Michael TI Meridional distribution of CH3C2H and C4H2 in Saturn's stratosphere from CIRS/Cassini limb and nadir observations SO ICARUS LA English DT Article DE Saturn; Infrared observations; Atmospheres, Composition ID ROTOTRANSLATIONAL ABSORPTION-SPECTRA; POLAR ATMOSPHERE; SPECTROSCOPIC DATABASE; RING ATMOSPHERE; CLOUD STRUCTURE; HAZE FORMATION; OUTER PLANETS; GIANT PLANETS; CHEMISTRY; JUPITER AB Limb and nadir spectra acquired by Cassini/CIRS (Composite InfraRed Spectrometer) are analyzed in order to derive, for the first time, the meridional variations of diacetylene (C4H2) and methylacetylene (CH3C2H) mixing ratios in Saturn's stratosphere, from 5 hPa up to 0.05 hPa and 80 degrees S to 45 degrees N. We find that the C4H2 and CH3C2H meridional distributions mimic that of acetylene (C2H2), exhibiting small-scale variations that are not present in photochemical model predictions. The most striking feature of the meridional distribution of both molecules is an asymmetry between mid-southern and mid-northern latitudes. The mid-southern latitudes are found depleted in hydrocarbons relative to their northern counterparts. In contrast, photochemical models predict similar abundances at north and south mid-latitudes. We favor a dynamical explanation for this asymmetry, with upwelling in the south and downwelling in the north, the latter coinciding with the region undergoing ring shadowing. The depletion in hydrocarbons at mid-southern latitudes could also result from chemical reactions with oxygen-bearing molecules. Poleward of 60 degrees S, at 0.1 and 0.05 hPa, we find that the CH3C2H and C4H2 abundances increase dramatically. This behavior is in sharp contradiction with photochemical model predictions, which exhibit a strong decrease towards the south pole. Several processes could explain our observations, such as subsidence, a large vertical eddy diffusion coefficient at high altitudes, auroral chemistry that enhances CH3C2H and C4H2 production, or shielding from photolysis by aerosols or molecules produced from auroral chemistry. However, problems remain with all these hypotheses, including the lack of similar behavior at lower altitudes. Our derived mean mixing ratios at 0.5 hPa of (2.4 +/- 0.3) x 10(-10) for C4H2 and of (1.1 +/- 0.3) x 10(-9) for CH3C2H are compatible with the analysis of global-average ISO observations performed by Moses et al. (Moses, J.I., Bezard, B., Lellouch, E., Gladstone, G.R., Feuchtgruber, H., Allen, M. [2000a]. Icarus 143, 244-298). Finally, we provide values for the ratios [CH3C2H]/[C2H2] and [C4H2]/[C2H2] that can constrain the coupled chemistry of these hydrocarbons. (C) 2010 Elsevier Inc. All rights reserved. C1 [Guerlet, Sandrine; Fouchet, Thierry; Bezard, Bruno] Observ Paris, LESIA, F-92195 Meudon, France. [Fouchet, Thierry] Univ Paris 06, UMR 8109, F-75006 Paris, France. [Moses, Julianne I.] Space Sci Inst, Seabrook, TX 77586 USA. [Fletcher, Leigh N.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Simon-Miller, Amy A.; Flasar, F. Michael] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Guerlet, S (reprint author), Observ Paris, LESIA, 5 Pl Janssen, F-92195 Meudon, France. EM Sandrine.Guerlet@obspm.fr RI Fletcher, Leigh/D-6093-2011; Flasar, F Michael/C-8509-2012; Moses, Julianne/I-2151-2013; Simon, Amy/C-8020-2012; Fouchet, Thierry/C-6374-2017 OI Fletcher, Leigh/0000-0001-5834-9588; Moses, Julianne/0000-0002-8837-0035; Simon, Amy/0000-0003-4641-6186; Fouchet, Thierry/0000-0001-9040-8285 FU Centre National d'Etudes Spatiales (CNES); Programme National de Planetologie (PNP/INSU); NASA [NNX08AQ79G] FX We would like to thank the CIRS investigation team involved in planning the observational sequences and calibration of the data. This research was supported by the Centre National d'Etudes Spatiales (CNES) and the Programme National de Planetologie (PNP/INSU). Fletcher was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, under contract for the National Aeronautics and Space Administration (NASA), administered by Oak Ridge Associated Universities through a contract with NASA. Moses acknowledges support from the NASA Cassini Data Analysis Program, Grant Number NNX08AQ79G. We thank the two referees for their useful comments. NR 55 TC 17 Z9 17 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD OCT PY 2010 VL 209 IS 2 BP 682 EP 695 DI 10.1016/j.icarus.2010.03.033 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654VL UT WOS:000282199000035 ER PT J AU Cassidy, TA Johnson, RE AF Cassidy, T. A. Johnson, R. E. TI Collisional spreading of Enceladus' neutral cloud SO ICARUS LA English DT Article DE Enceladus; Saturn, Magnetosphere; Satellites, Atmospheres ID CROSS-SECTIONS; WATER-VAPOR; SATURN; MAGNETOSPHERE; ATMOSPHERE; HYDROGEN; TORI; IONIZATION; MORPHOLOGY; TRITON AB We describe a direct simulation Monte Carlo (DSMC) model of Enceladus' neutral cloud and compare its results to observations of OH and O orbiting Saturn. The OH and O are observed far from Enceladus (at 3.95 R(S)), as far out as 25 R(S) for O. Previous DSMC models attributed this breadth primarily to ion/neutral scattering (including charge exchange) and molecular dissociation. However, the newly reported O observations and a reinterpretation of the OH observations (Melin, H., Shemansky, D.E., Liu, X. [2009] Planet. Space Sci., 57, 1743-1753, PS&S) showed that the cloud is broader than previously thought. We conclude that the addition of neutral/neutral scattering (Farmer, A.J. [2009] Icarus, 202, 280-286), which was underestimated by previous models, brings the model results in line with the new observations. Neutral/neutral collisions primarily happen in the densest part of the cloud, near Enceladus' orbit, but contribute to the spreading by pumping up orbital eccentricity. Based on the cloud model presented here Enceladus maybe the ultimate source of oxygen for the upper atmospheres of Titan and Saturn. We also predict that large quantities of OH, O and H(2)O bombard Saturn's icy satellites. (C) 2010 Elsevier Inc. All rights reserved. RP Cassidy, TA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 183-601, Pasadena, CA 91109 USA. EM timothy.a.cassidy@jpl.nasa.gov NR 47 TC 59 Z9 59 U1 3 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD OCT PY 2010 VL 209 IS 2 BP 696 EP 703 DI 10.1016/j.icarus.2010.04.010 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654VL UT WOS:000282199000036 ER PT J AU Blackburn, DG Buratti, BJ Ulrich, R Mosher, JA AF Blackburn, David G. Buratti, Bonnie J. Ulrich, Richard Mosher, Joel A. TI Solar phase curves and phase integrals for the leading and trailing hemispheres of Iapetus from the Cassini Visual Infrared Mapping Spectrometer SO ICARUS LA English DT Article DE Iapetus; Photometry; Satellites, Surfaces ID VOYAGER PHOTOMETRY; SATURNS SATELLITES; DICHOTOMY; SURFACES; PHOEBE AB We performed photometry of Cassini Visual Infrared Mapping Spectrometer observations of Iapetus to produce the first phase integrals calculated directly from solar phase curves of Iapetus for the leading hemisphere and to estimate the phase integrals for the trailing hemisphere. We also explored the phase integral dependence on wavelength and geometric albedo. The extreme dichotomy of the brightness of the leading and trailing sides of Iapetus is reflected in their phase integrals. Our phase integrals, which are lower than the results of Morrison et al. (Morrison, D., Jones, T.J., Cruikshank, D.P., Murphy, R.E. [1975]. Icarus 24, 157-171) and Squyres et al. (Squyres, S.W., Buratti, B.J., Veverka, J., Sagan, C. [1984]. Icarus 59, 426-435), have profound implications on the energy balance and volatile transport on this icy satellite. (C) 2010 Elsevier Inc. All rights reserved. C1 [Blackburn, David G.; Ulrich, Richard] Univ Arkansas, Arkansas Ctr Space & Planetary Sci, Fayetteville, AR 72701 USA. [Buratti, Bonnie J.; Mosher, Joel A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Blackburn, DG (reprint author), Univ Arkansas, Arkansas Ctr Space & Planetary Sci, 202 Old Museum Bldg, Fayetteville, AR 72701 USA. EM dgblackb@uark.edu FU National Aeronautics and Space Administration; University of Arkansas; Arkansas Space Grant Consortium FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the National Aeronautics and Space Administration's Space Grant Program. We would like to thank the University of Arkansas and the Arkansas Space Grant Consortium for support, as well as helpful conversation with Mike Hicks, Ken Lawrence, Karly Pitman, and Sean Faulk. We would also like to thank the comments and suggestions from two anonymous reviewers who improved the quality of our manuscript. NR 19 TC 2 Z9 2 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD OCT PY 2010 VL 209 IS 2 BP 738 EP 744 DI 10.1016/j.icarus.2010.04.011 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654VL UT WOS:000282199000040 ER PT J AU Reach, WT AF Reach, William T. TI Structure of the Earth's circumsolar dust ring SO ICARUS LA English DT Article DE Interplanetary dust; Infrared observations; Resonances, Orbital ID BACKGROUND EXPERIMENT SEARCH; SPITZER-SPACE-TELESCOPE; RESONANT SIGNATURES; ZODIACAL CLOUD; DEBRIS DISKS; ORIGIN; IRAS; SATELLITE; EMISSION; MISSION AB Interplanetary dust particles from comets and asteroids pervade the Solar System and become temporarily trapped into orbital resonances with Earth, leading to a circumsolar dust ring. Using the unique vantage point of the Spitzer Space Telescope from its Earth-trailing solar orbit, we have measured for the first time the azimuthal structure of the Earth's resonant dust ring. There is a relative paucity of particles within 0.1 AU of the Earth, followed by an enhancement in a cloud that is centered 0.2 AU behind Earth with a width of 0.08 AU along the Earth's orbit. The North ecliptic pole is similar to 3% brighter at 8 pm wavelength when viewed from inside the enhancement. The presence of azimuthal asymmetries in debris disks around other stars is considered strong evidence for planets. By measuring the properties of the Earth's resonant ring, we can provide "ground truth" to models for interactions of planets and debris disks, possibly leading to improved predictions for detecrability of life-bearing planets. The low amplitude of the azimuthal asymmetry in the Earth's circumsolar ring suggests significant contributions to the zodiacal light from particles that are large (>30 mu m) or have large orbital eccentricity that makes capture into mean motion resonances inefficient. (C) 2010 Elsevier Inc. All rights reserved. C1 [Reach, William T.] NASA, Ames Res Ctr, Stratospher Observ Infrared Astron, Univ Space Res Assoc, Moffett Field, CA 94035 USA. [Reach, William T.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. RP Reach, WT (reprint author), NASA, Ames Res Ctr, Stratospher Observ Infrared Astron, Univ Space Res Assoc, Mail Stop 211-3, Moffett Field, CA 94035 USA. EM wreach@sofia.usra.edu OI Reach, William/0000-0001-8362-4094 NR 22 TC 9 Z9 9 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD OCT PY 2010 VL 209 IS 2 BP 848 EP 850 DI 10.1016/j.icarus.2010.06.034 PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654VL UT WOS:000282199000049 ER PT J AU Rubincam, DP Paddack, SJ AF Rubincam, David Parry Paddack, Stephen J. TI Zero secular torque on asteroids from impinging solar photons in the YORP effect: A simple proof SO ICARUS LA English DT Article DE Asteroids; Asteroids, Rotation; Asteroids, Dynamics; Rotational dynamics; Celestial mechanics ID RADIATION PRESSURE; EVOLUTION AB YORP torques, where "YORP" stands for "Yarokovsky-O'Keefe-Radzievskii-Paddack," arise mainly from sunlight reflected off a Solar System object and the infrared radiation emitted by it. We show here, through the most elementary demonstration that we can devise, that secular torques from impinging solar photons are generally negligible and thus cause little secular evolution of an asteroid's obliquity or spin rate. Published by Elsevier Inc. C1 [Rubincam, David Parry] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. [Paddack, Stephen J.] USN Acad, Dept Aerosp Engn, Annapolis, MD 21402 USA. RP Rubincam, DP (reprint author), NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. EM David.P.Rubincam@nasa.gov; Stephen.Paddack@verizon.net RI Rubincam, David/D-2918-2012 NR 12 TC 6 Z9 6 U1 2 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD OCT PY 2010 VL 209 IS 2 BP 863 EP 865 DI 10.1016/j.icarus.2010.05.015 PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654VL UT WOS:000282199000053 ER PT J AU Schmalzel, J Bracey, A Rawls, S Morris, J Turowski, M Franzl, R Figueroa, F AF Schmalzel, John Bracey, Andrew Rawls, Stephen Morris, Jon Turowski, Mark Franzl, Richard Figueroa, Fernando TI Smart Sensor Demonstration Payload SO IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE LA English DT Article C1 [Schmalzel, John] Rowan Univ, ECE Dept, Glassboro, NJ USA. [Schmalzel, John] NASA, John C Stennis Space Ctr, MS IPA, Washington, DC USA. RP Schmalzel, J (reprint author), Rowan Univ, ECE Dept, Glassboro, NJ USA. EM j.schmalzel@ieee.org FU NASA-SSC; NASA-HQ FX A year ago (as of this writing), the SiSP field team was swatting mosquitoes on Wallops Island during the final week of installation and checkout. The project could never have gotten to that point without the leadership of the NESC, the support of the NASA-SSC Innovative Partnerships Program, the NASA-HQ Technical Excellence Initiative Program, and the many contributing NASA centers. L. Langford and W. Mitchell provided continuing systems engineering and technical support. P. Mease (Rowan University) fabricated our abrasive water jet parts. All are gratefully acknowledged. NR 7 TC 2 Z9 2 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1094-6969 J9 IEEE INSTRU MEAS MAG JI IEEE Instrum. Meas. Mag. PD OCT PY 2010 VL 13 IS 5 BP 8 EP 15 PG 8 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 669NQ UT WOS:000283357900003 ER PT J AU Lopes, CG Satorius, EH Estabrook, P Sayed, AH AF Lopes, C. G. Satorius, E. H. Estabrook, P. Sayed, A. H. TI Adaptive Carrier Tracking for Mars to Earth Communications During Entry, Descent, and Landing SO IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS LA English DT Article ID CONVEX COMBINATION; MAXIMUM-LIKELIHOOD; FILTERS; FREQUENCY; PREDICTION; ALGORITHM AB We propose a robust and low complexity scheme to estimate and track carrier frequency from signals traveling under low signal-to-noise ratio (SNR) conditions in highly nonstationary channels. These scenarios arise in planetary exploration missions subject to high dynamics, such as the Mars exploration rover missions. The method comprises a bank of adaptive linear predictors (ALP) supervised by a convex combiner that dynamically aggregates the individual predictors. The adaptive combination is able to outperform the best individual estimator in the set, which leads to a universal scheme for frequency estimation and tracking. A simple technique for bias compensation considerably improves the ALP performance. It is also shown that retrieval of frequency content by a fast Fourier transform (FFT)-search method, instead of only inspecting the angle of a particular root of the error predictor filter, enhances performance, particularly at very low SNR levels. Simple techniques that enforce frequency continuity improve further the overall performance. In summary we illustrate by extensive simulations that adaptive linear prediction methods render a robust and competitive frequency tracking technique. C1 [Lopes, C. G.] Univ Sao Paulo, Escola Politecn, Dept Elect Syst, Sao Paulo, Brazil. [Satorius, E. H.; Estabrook, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Sayed, A. H.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RP Lopes, CG (reprint author), Univ Sao Paulo, Escola Politecn, Dept Elect Syst, Sao Paulo, Brazil. EM sayed@ee.ucla.edu RI Sayed, Ali/D-6251-2012 OI Sayed, Ali/0000-0002-5125-5519 FU Jet Propulsion Laboratory [1276256]; National Science Foundation [ECS-0601266]; CAPES, Brazil [1168/01-0] FX This material was supported by the Jet Propulsion Laboratory under Award 1276256 and by the National Science Foundation Award ECS-0601266.; The work of C. G. Lopes was also supported by a fellowship from CAPES, Brazil, under Award 1168/01-0. NR 22 TC 9 Z9 10 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9251 J9 IEEE T AERO ELEC SYS JI IEEE Trans. Aerosp. Electron. Syst. PD OCT PY 2010 VL 46 IS 4 BP 1865 EP 1879 DI 10.1109/TAES.2010.5595600 PG 15 WC Engineering, Aerospace; Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 701SE UT WOS:000285842800022 ER PT J AU Martin, RA AF Martin, Rodney A. TI A State-Space Approach to Optimal Level-Crossing Prediction for Linear Gaussian Processes SO IEEE TRANSACTIONS ON INFORMATION THEORY LA English DT Article DE Alarm systems; approximation methods; Kalman filtering; level-crossing problems; prediction methods ID FAILURE-DETECTION; ALGORITHMS; ALARM AB In this paper, approximations of an optimal level-crossing predictor for a zero-mean stationary linear dynamical system driven by Gaussian noise in state-space form are investigated. The study of this problem is motivated by the practical implications for design of an optimal alarm system, which will elicit the fewest false alarms for a fixed detection probability in this context. This work introduces the use of Kalman filtering in tandem with the optimal level-crossing prediction problem. It is shown that there is a negligible loss in overall accuracy when using approximations to the theoretically optimal predictor, at the advantage of greatly reduced computational complexity. C1 [Martin, Rodney A.] NASA, Intelligent Syst Div, Ames Res Ctr, Moffett Field, CA 94035 USA. [Martin, Rodney A.] NASA, Intelligent Data Understanding Grp, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Martin, RA (reprint author), NASA, Intelligent Syst Div, Ames Res Ctr, Moffett Field, CA 94035 USA. EM rodney.martin@nasa.gov FU NASA's Aeronautics Research Mission Directorate FX Manuscript received March 31, 2007; revised November 17, 2009. Date of current version September 15, 2010. This work was supported in part by the Integrated Vehicle Health Management (IVHM) project, funded by the Aviation Safety Program of NASA's Aeronautics Research Mission Directorate. NR 20 TC 4 Z9 4 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9448 J9 IEEE T INFORM THEORY JI IEEE Trans. Inf. Theory PD OCT PY 2010 VL 56 IS 10 BP 5083 EP 5096 DI 10.1109/TIT.2010.2059930 PG 14 WC Computer Science, Information Systems; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 668ID UT WOS:000283260900021 ER PT J AU Adell, PC Edmonds, L McPeak, R Scheick, L McClure, SS AF Adell, Philippe C. Edmonds, Larry McPeak, Richard Scheick, Leif McClure, Steve S. TI An Approach to Single Event Testing of SDRAMs SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Micro-displacement; SDRAMs; single event effects; stuck bits ID BULK DAMAGE AB A unique testing approach based on error-pattern identification with a graphical mapping and color-coding of the full SDRAM memory during single-event characterization is proposed. Results about unique SEFI modes and the role of temperature are discussed. C1 [Adell, Philippe C.; Edmonds, Larry; McPeak, Richard; Scheick, Leif; McClure, Steve S.] CALTECH, Jet Prop Lab, Pasadena, CA 91101 USA. RP Adell, PC (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91101 USA. EM philippe.c.adell@jpl.nasa.gov; rfmcpeak@gmail.com FU National Aeronautics and Space Administration FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 10 TC 4 Z9 4 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2010 VL 57 IS 5 BP 2923 EP 2928 DI 10.1109/TNS.2010.2059711 PN 3 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 670PS UT WOS:000283440400016 ER PT J AU Pellish, JA Xapsos, MA LaBel, KA Marshall, PW Heidel, DF Rodbell, KP Hakey, MC Dodd, PE Shaneyfelt, MR Schwank, JR Baumann, RC Deng, XW Marshall, A Sierawski, BD Black, JD Reed, RA Schrimpf, RD Kim, HS Berg, MD Campola, MJ Friendlich, MR Perez, CE Phan, AM Seidleck, CM AF Pellish, Jonathan A. Xapsos, Michael A. LaBel, Kenneth A. Marshall, Paul W. Heidel, David F. Rodbell, Kenneth P. Hakey, Mark C. Dodd, Paul E. Shaneyfelt, Marty R. Schwank, James R. Baumann, Robert C. Deng, Xiaowei Marshall, Andrew Sierawski, Brian D. Black, Jeffrey D. Reed, Robert A. Schrimpf, Ronald D. Kim, Hak S. Berg, Melanie D. Campola, Michael J. Friendlich, Mark R. Perez, Christopher E. Phan, Anthony M. Seidleck, Christina M. TI Heavy Ion Testing With Iron at 1 GeV/amu SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE FPGA; galactic cosmic ray; heavy ion testing; SRAM ID MODULAR REDUNDANCY CIRCUITS; SINGLE-EVENT-UPSETS; NM SOI SRAM; XILINX FPGAS; ANGLE AB A 1 GeV/amu (56)Fe ion beam allows for true 90 degrees tilt irradiations of various microelectronic components and reveals relevant upset trends at the GCR flux energy peak. Three SRAMs and an SRAM-based FPGA evaluated at the NASA Space Radiation Effects Laboratory demonstrate that a 90 degrees tilt irradiation yields a unique device response. These tilt angle effects need to be screened for, and if found, pursued with radiation transport simulations to quantify their impact on event rate calculations. C1 [Pellish, Jonathan A.; Xapsos, Michael A.; LaBel, Kenneth A.] NASA GSFC, Radiat Effects & Anal Grp, Greenbelt, MD 20771 USA. [Marshall, Paul W.] NASA, Brookneal, VA 24528 USA. [Heidel, David F.; Rodbell, Kenneth P.] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Hakey, Mark C.] IBM Syst & Technol Grp, Essex Jct, VT 05452 USA. [Dodd, Paul E.; Shaneyfelt, Marty R.; Schwank, James R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Sierawski, Brian D.; Black, Jeffrey D.; Reed, Robert A.; Schrimpf, Ronald D.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [Kim, Hak S.; Berg, Melanie D.; Campola, Michael J.; Friendlich, Mark R.; Perez, Christopher E.; Phan, Anthony M.; Seidleck, Christina M.] MEI Technol NASA GSFC, Greenbelt, MD USA. RP Pellish, JA (reprint author), NASA GSFC, Radiat Effects & Anal Grp, Code 561-4, Greenbelt, MD 20771 USA. EM jonathan.a.pellish@nasa.gov RI Schrimpf, Ronald/L-5549-2013 OI Schrimpf, Ronald/0000-0001-7419-2701 FU NASA; Defense Threat Reduction Agency [09-4587I, 09-4584I]; NASA/JSC; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported in part by the NASA Electronic Parts and Packaging program, the Space Radiation Element Human Research program at NASA/JSC, and the Defense Threat Reduction Agency Radiation Hardened Microelectronics Program under IACRO #09-4587I to NASA and #09-4584I to SNL. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 25 TC 5 Z9 5 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2010 VL 57 IS 5 BP 2948 EP 2954 DI 10.1109/TNS.2010.2066575 PN 3 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 670PS UT WOS:000283440400019 ER PT J AU Sparks, WB McGrath, M Hand, K Ford, HC Geissler, P Hough, JH Turner, EL Chyba, CF Carlson, R Turnbull, M AF Sparks, W. B. McGrath, M. Hand, K. Ford, H. C. Geissler, P. Hough, J. H. Turner, E. L. Chyba, C. F. Carlson, R. Turnbull, M. TI Hubble Space Telescope observations of Europa in and out of eclipse SO INTERNATIONAL JOURNAL OF ASTROBIOLOGY LA English DT Article; Proceedings Paper CT 4th Conference of the Astrobiology-Society-of-Britain CY APR 07-09, 2010 CL Egham, ENGLAND SP Astrobiol Soc Britain, STFC DE Europa; Hubble; satellites; spectroscopy ID H2O ICE; ATMOSPHERE; LUMINESCENCE; ULTRAVIOLET; SURFACE AB Europa is a prime target for astrobiology and has been prioritized as the next target for a National Aeronautics and Space Administration flagship mission. It is important, therefore, that we advance our understanding of Europa, its ocean and physical environment as much as possible. Here, we describe observations of Europa obtained during its orbital eclipse by Jupiter using the Hubble Space Telescope. We obtained Advanced Camera for Surveys Solar Blind Channel far ultraviolet low-resolution spectra that show oxygen line emission both in and out of eclipse. We also used the Wide-Field and Planetary Camera-2 and searched for broad-band optical emission from fluorescence of the surface material, arising from the very high level of incident energetic particle radiation on ices and potentially organic substances. The high-energy particle radiation at the surface of Europa is extremely intense and is responsible for the production of a tenuous oxygen atmosphere and associated FUV line emission. Approximately 50% of the oxygen emission lasts at least a few hours into the eclipse. We discuss the detection limits of the optical emission, which allow us to estimate the fraction of incident energy reradiated at optical wavelengths, through electron-excited emission, Cherenkov radiation in the ice and fluorescent processes. C1 [Sparks, W. B.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [McGrath, M.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Hand, K.; Carlson, R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ford, H. C.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Geissler, P.] US Geol Survey, Ctr Astrogeol, Flagstaff, AZ 86001 USA. [Hough, J. H.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Turner, E. L.; Chyba, C. F.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Turner, E. L.] Univ Tokyo, Tokyo 1138654, Japan. [Turnbull, M.] Global Sci Inst, Antigo, WI 54409 USA. RP Sparks, WB (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM sparks@stsci.edu RI Turner, Edwin/A-4295-2011 NR 19 TC 2 Z9 2 U1 1 U2 7 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1473-5504 J9 INT J ASTROBIOL JI Int. J. Astrobiol. PD OCT PY 2010 VL 9 IS 4 SI SI BP 265 EP 271 DI 10.1017/S1473550410000285 PG 7 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 674VU UT WOS:000283779200011 ER PT J AU Smith, RN Chao, Y Li, PP Caron, DA Jones, BH Sukhatme, GS AF Smith, Ryan N. Chao, Yi Li, Peggy P. Caron, David A. Jones, Burton H. Sukhatme, Gaurav S. TI Planning and Implementing Trajectories for Autonomous Underwater Vehicles to Track Evolving Ocean Processes Based on Predictions from a Regional Ocean Model SO INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH LA English DT Article DE Algal bloom; autonomous glider; autonomous underwater vehicles; feature tracking; ocean model predictions; path planning ID SOUTHERN CALIFORNIA BIGHT; SYSTEM; EXPLICIT; GLIDERS AB Path planning and trajectory design for autonomous underwater vehicles (AUVs) is of great importance to the oceanographic research community because automated data collection is becoming more prevalent. Intelligent planning is required to maneuver a vehicle to high-valued locations to perform data collection. In this paper, we present algorithms that determine paths for AUVs to track evolving features of interest in the ocean by considering the output of predictive ocean models. While traversing the computed path, the vehicle provides near-real-time, in situ measurements back to the model, with the intent to increase the skill of future predictions in the local region. The results presented here extend preliminary developments of the path planning portion of an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. This extension is the incorporation of multiple vehicles to track the centroid and the boundary of the extent of a feature of interest. Similar algorithms to those presented here are under development to consider additional locations for multiple types of features. The primary focus here is on algorithm development utilizing model predictions to assist in solving the motion planning problem of steering an AUV to high-valued locations, with respect to the data desired. We discuss the design technique to generate the paths, present simulation results and provide experimental data from field deployments for tracking dynamic features by use of an AUV in the Southern California coastal ocean. C1 [Smith, Ryan N.; Sukhatme, Gaurav S.] Univ So Calif, Robot Embedded Syst Lab, Los Angeles, CA 90089 USA. [Chao, Yi; Li, Peggy P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Caron, David A.; Jones, Burton H.] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA. RP Smith, RN (reprint author), Univ So Calif, Robot Embedded Syst Lab, Los Angeles, CA 90089 USA. EM ryannsmi@usc.edu FU NOAA [NA05NOS4781228]; NSF [CCR-0120778, N00014-09-1-1031, N00014-08-1-0693] FX This work was supported in part by the NOAA MERHAB program under grant NA05NOS4781228 and by NSF as part of the Center for Embedded Network Sensing (CENS) under grant CCR-0120778, by NSF grants CNS-0520305 and CNS-0540420, by the ONR MURI program (grants N00014-09-1-1031 and N00014-08-1-0693), by the ONR SoA program and by a gift from the Okawa Foundation. The ROMS ocean modeling research described in this paper was carried out by the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). NR 33 TC 56 Z9 57 U1 4 U2 34 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0278-3649 J9 INT J ROBOT RES JI Int. J. Robot. Res. PD OCT PY 2010 VL 29 IS 12 SI SI BP 1475 EP 1497 DI 10.1177/0278364910377243 PG 23 WC Robotics SC Robotics GA 659WE UT WOS:000282597000003 ER PT J AU Zuo, QH Disilvestro, D Richter, JD AF Zuo, Q. H. Disilvestro, D. Richter, J. D. TI A crack-mechanics based model for damage and plasticity of brittle materials under dynamic loading SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Article DE Continuum damage; Crack mechanics; Damage evolution; Brittle materials; Dynamic loading ID SILICON-CARBIDE; BORON-CARBIDE; INELASTIC DEFORMATION; CONSTITUTIVE MODEL; SHOCK RESPONSE; IMPACT; CONCRETE; BEHAVIOR; FRAGMENTATION; STRENGTH AB A rate-dependent model for damage and plastic deformation of brittle materials under dynamic loading is presented. The model improves upon a recently developed micromechanical damage model (Zuo et al., 2006) by incorporating plastic deformation of the material. The distribution of the microcracks in the material is assumed to remain isotropic, and the damage evolution is through the growth of the average crack size. Plasticity is considered through an additive decomposition of the total strain rate, and a rate-independent, von Mises model is used. The model was applied to simulate the response of a model material (SiC) under uniaxial strain loading. To further examine the behavior of the model, cyclic loading and large-strain compressive loading were considered. Numerical results of the model predictions are presented, and comparisons with those from a previous model are provided. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Zuo, Q. H.; Disilvestro, D.; Richter, J. D.] Univ Alabama, Dept Mech & Aerosp Engn, Huntsville, AL 35899 USA. [Richter, J. D.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Zuo, QH (reprint author), Univ Alabama, Dept Mech & Aerosp Engn, Huntsville, AL 35899 USA. EM zuo@eng.uah.edu RI Davidi, Gal/E-7089-2011 FU University Transportation Center for Alabama (UTCA) [09301]; National Science Foundation (NSF) [DBI-0923402]; University of Alabama in Huntsville FX The authors are grateful for technical discussions with F.L. Addessio, J.K. Dienes, J.A. Gilbert, R.M. Hackett, R.R. Little, Jeremy R. Rice and H.A. Toutanji, and for the contributions of M. Bailey to the work. The authors are also grateful to two anonymous reviewers for many constructive comments, including suggestion of the value for the yield stress for SiC used in the paper. The work was supported in part by University Transportation Center for Alabama (UTCA#: 09301), the National Science Foundation (NSF#: DBI-0923402), and a research startup fund from the University of Alabama in Huntsville. NR 47 TC 9 Z9 12 U1 1 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD OCT 1 PY 2010 VL 47 IS 20 BP 2790 EP 2798 DI 10.1016/j.ijsolstr.2010.06.009 PG 9 WC Mechanics SC Mechanics GA 642AT UT WOS:000281175800016 ER PT J AU Chamis, CC AF Chamis, Christos C. TI DYNAMIC BUCKLING AND POSTBUCKLING OF A COMPOSITE SHELL SO INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS LA English DT Article; Proceedings Paper CT 2nd International Conference on Bucking and Postbuckling Behaviour of Composite Laminated Shell Structures CY SEP 03-05, 2008 CL Braunschweig, GERMANY DE Finite element; updated Lagrangian; accelerations; velocities; displacements AB A computationally effective method for evaluating the dynamic buckling and postbuckling of thin composite shells is described. It is a judicious combination of available computer codes for finite element, composite mechanics and incremental structural analysis. The solution method is an incrementally updated Lagrangian. It is illustrated by applying it to a thin composite cylindrical shell subjected to dynamic loads. Buckling loads are evaluated to demonstrate the er effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different dynamic loading rates. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. They also show that the updated solution can be carried out in the postbuckling regime until the shell collapses completely. Comparisons with published literature indicate reasonable agreement. C1 NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Chamis, CC (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM Christos.C.Chamis@nasa.gov NR 11 TC 3 Z9 3 U1 0 U2 6 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0219-4554 J9 INT J STRUCT STAB DY JI Int. J. Struct. Stab. Dyn. PD OCT PY 2010 VL 10 IS 4 BP 791 EP 805 DI 10.1142/S0219455410003749 PG 15 WC Engineering, Civil; Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA 641CU UT WOS:000281103000013 ER PT J AU Zeng, XW He, CM Wilkinson, A AF Zeng, Xiangwu He, Chunmei Wilkinson, Allen TI Geotechnical Properties of NT-LHT-2M Lunar Highland Simulant SO JOURNAL OF AEROSPACE ENGINEERING LA English DT Article DE Exploration; Geotechnical; Lunar simulant ID SOIL; MECHANICS AB Future lunar explorations require a thorough understanding of the geotechnical properties of lunar soils. However, the small amount of lunar soil that was brought back to earth cannot satisfy the needs. A new lunar soil simulant, NU-LHT-2M, has been developed to simulate lunar regolith in the lunar highlands region. It is characterized to help the development of regolith-moving machines and vehicles that will be used in future missions to the moon. The simulant's particle size distribution, specific gravity, maximum and minimum densities, compaction characteristics, shear strength parameters and compressibility have been studied; and the results are compared with the information about lunar regolith provided in the Lunar Sourcebook. C1 [Zeng, Xiangwu; He, Chunmei] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Wilkinson, Allen] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Zeng, XW (reprint author), Case Western Reserve Univ, 10900 Euclid Ave, Cleveland, OH 44106 USA. EM xxz16@cwru.edu FU NASA [NNX07A078G] FX The work reported here was carried out with support from NASA Grant No. NNX07A078G. The writers would like to thank Steve Wilson and Doug Stoeser of USGS for providing the NU-LHT-2M sample used in this study. NR 19 TC 8 Z9 10 U1 1 U2 6 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0893-1321 EI 1943-5525 J9 J AEROSPACE ENG JI J. Aerosp. Eng. PD OCT PY 2010 VL 23 IS 4 BP 213 EP 218 DI 10.1061/(ASCE)AS.1943-5525.0000026 PG 6 WC Engineering, Aerospace; Engineering, Civil SC Engineering GA 650BY UT WOS:000281824000001 ER PT J AU Bender, LC Howden, SD Dodd, D Guinasso, NL AF Bender, L. C., III Howden, S. D. Dodd, D. Guinasso, N. L., Jr. TI Wave Heights during Hurricane Katrina: An Evaluation of PPP and PPK Measurements of the Vertical Displacement of the GPS Antenna SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID BUOY AB In August 2005 the eye of Hurricane Katrina passed 49 n mi to the west of a 3-m discus buoy operated by the Central Gulf of Mexico Ocean Observing System (CenGOOS). Buoy motions were measured with a strapped-down 6 degrees of freedom accelerometer, a three-axis magnetometer, and a survey-grade GPS receiver. The significant wave heights were computed from the buoy's accelerometer record and from the dual-frequency GPS measurements that were processed in two different ways. The first method was postprocessed kinematic (PPK) GPS, which requires another GPS receiver at a fixed known location, and the other was precise point positioning (PPP) GPS, which is another postprocessed positioning technique that yields absolute rather than differential positions. Unlike inertial measurement units, either GPS technique can be used to obtain both waves and water levels. The purpose of this note is to demonstrate the excellent reliability and accuracy of both methods for determining wave heights and periods from a GPS record. When the motion of the GPS antenna is properly understood as the motion of the buoy deck and not the true vertical motion of the sea surface, the GPS wave heights are as reliable as a strapped-down 1D accelerometer. C1 [Bender, L. C., III; Guinasso, N. L., Jr.] Texas A&M Univ, Geochem & Environm Res Grp, College Stn, TX 77845 USA. [Howden, S. D.; Dodd, D.] Univ So Mississippi, Stennis Space Ctr, Dept Marine Sci, Hattiesburg, MS 39406 USA. RP Bender, LC (reprint author), Texas A&M Univ, Geochem & Environm Res Grp, 833 Graham Rd, College Stn, TX 77845 USA. EM les@gerg.tamu.edu RI Guinasso, Norman/D-3567-2012 OI Guinasso, Norman/0000-0003-2271-8550 FU ONR [N00014-03-1-0546]; NOAA [NA05NOS4731077] FX The authors wish to thank the assistance of the NOAA National Data Buoy Center for calibration services, quality control, and quality assurance. The U.S. Coast Guard cutter Cypress deployed the buoy and the Canadian Coast Guard ship Sir William Alexander recovered the buoy for USM after Hurricane Katrina. We wish to thank the commanding officers and crews of these vessels for their exceptional work. This work was supported by the following contracts and grants: ONR N00014-03-1-0546 and NOAA NA05NOS4731077. NR 10 TC 5 Z9 5 U1 4 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD OCT PY 2010 VL 27 IS 10 BP 1760 EP 1768 DI 10.1175/2010JTECHO761.1 PG 9 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 665OB UT WOS:000283044100014 ER PT J AU Kennedy, AD Dong, XQ Xi, BK Minnis, P Del Genio, AD Wolf, AB Khaiyer, MM AF Kennedy, Aaron D. Dong, Xiquan Xi, Baike Minnis, Patrick Del Genio, Anthony D. Wolf, Audrey B. Khaiyer, Mandana M. TI Evaluation of the NASA GISS Single-Column Model Simulated Clouds Using Combined Surface and Satellite Observations SO JOURNAL OF CLIMATE LA English DT Article ID CLIMATE MODELS; PARAMETERIZATION; RADAR; SENSITIVITY; FRACTION; CERES AB Three years of surface and Geostationary Operational Environmental Satellite (GOES) data from the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are used to evaluate the NASA GISS Single Column Model (SCM) simulated clouds from January 1999 to December 2001. The GOES-derived total cloud fractions for both 0.58 degrees and 2.5 degrees grid boxes are in excellent agreement with surface observations, suggesting that ARM point observations can represent large areal observations. Low (< 2 km), middle (2-6 km), and high (> 6 km) levels of cloud fractions, however, have negative biases as compared to the ARM results due to multilayer cloud scenes that can either mask lower cloud layers or cause misidentifications of cloud tops. Compared to the ARM observations, the SCM simulated most midlevel clouds, overestimated low clouds (4%), and underestimated total and high clouds by 7% and 15%, respectively. To examine the dependence of the modeled high and low clouds on the large-scale synoptic patterns, variables such as relative humidity (RH) and vertical pressure velocity (omega) from North American Regional Reanalysis (NARR) data are included. The successfully modeled and missed high clouds are primarily associated with a trough and ridge upstream of the ARM SGP, respectively. The PDFs of observed high and low occurrence as a function of RH reveal that high clouds have a Gaussian-like distribution with mode RH values of similar to 40%-50%, whereas low clouds have a gammalike distribution with the highest cloud probability occurring at RH similar to 75%-85%. The PDFs of modeled low clouds are similar to those observed; however, for high clouds the PDFs are shifted toward higher values of RH. This results in a negative bias for the modeled high clouds because many of the observed clouds occur at RH values below the SCM-specified stratiform parameterization threshold RH of 60%. Despite many similarities between PDFs derived from the NARR and ARM forcing datasets for RH and omega, differences do exist. This warrants further investigation of the forcing and reanalysis datasets. C1 [Kennedy, Aaron D.; Dong, Xiquan; Xi, Baike] Univ N Dakota, Dept Atmospher Sci, Grand Forks, ND 58202 USA. [Minnis, Patrick] NASA Langley Res Ctr, Hampton, VA USA. [Del Genio, Anthony D.] NASA Goddard Inst Space Studies, New York, NY USA. [Wolf, Audrey B.] Columbia Univ, New York, NY USA. [Khaiyer, Mandana M.] Sci Syst & Applicat Inc, Hampton, VA USA. RP Kennedy, AD (reprint author), Univ N Dakota, Dept Atmospher Sci, Box 9006,4149 Campus Rd, Grand Forks, ND 58202 USA. EM aaron.kennedy@und.edu RI Del Genio, Anthony/D-4663-2012; Minnis, Patrick/G-1902-2010; OI Del Genio, Anthony/0000-0001-7450-1359; Minnis, Patrick/0000-0002-4733-6148; Dong, Xiquan/0000-0002-3359-6117 FU NASAMAP [NNG06GB59G]; University of North Dakota; North Dakota Space Grant Consortium; NASA [NNL04AA11G, NNX07AW05G]; NSF [ATM0649549] FX The authors thank a variety of individuals and organizations. Anonymous reviewers provided many helpful suggestions that led to a more concise and complete manuscript. The SGP continuous forcing dataset was kindly supplied by Shaocheng Xie and the ARM program. NARR reanalysis data were provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, from their Web site at (http://www.esrl.noaa.gov/psd/). This research was primarily supported by the NASAMAP project under Grant NNG06GB59G at the University of North Dakota. The first author was also supported by the North Dakota Space Grant Consortium fellowship. The University of North Dakota authors were also supported by the NASA CERES project under Grant NNL04AA11G, the NASA NEWS project under Grant NNX07AW05G, and NSF under Grant ATM0649549. NR 33 TC 20 Z9 21 U1 1 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD OCT PY 2010 VL 23 IS 19 BP 5175 EP 5192 DI 10.1175/2010JCLI3353.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 662RY UT WOS:000282830500008 ER PT J AU Romanou, A Tselioudis, G Zerefos, CS Clayson, CA Curry, JA Andersson, A AF Romanou, A. Tselioudis, G. Zerefos, C. S. Clayson, C. -A. Curry, J. A. Andersson, A. TI Evaporation-Precipitation Variability over the Mediterranean and the Black Seas from Satellite and Reanalysis Estimates SO JOURNAL OF CLIMATE LA English DT Article ID NORTH-ATLANTIC OSCILLATION; FRESH-WATER FLUX; CLIMATE-CHANGE; HEAT; PRODUCTS; PROJECT; BUDGET; TRENDS AB Satellite retrievals of surface evaporation and precipitation from the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS-3) dataset are used to document the distribution of evaporation, precipitation, and freshwater flux over the Mediterranean and Black Seas. An analysis is provided of the major scales of temporal and spatial variability of the freshwater budget and the atmospheric processes responsible for the water flux changes. The satellite evaporation fluxes are compared with fields from three different reanalysis datasets [40-yr ECMWF Re-Analysis (ERA-40), ERA-Interim, and NCEP]. The results show a water deficit in the Mediterranean region that averages to about 2.4 mm day(-1) but with a significant east-west asymmetry ranging from 3.5 mm day(-1) in the eastern part to about 1.1 mm day(-1) in the western part of the basin. The zonal asymmetry in the water deficit is driven by evaporation differences that are in turn determined by variability in the air-sea humidity difference in the different parts of the Mediterranean basin. The Black Sea freshwater deficit is 0.5 mm day(-1), with maxima off the northern coast (0.9 mm day(-1)) that are attributed to both evaporation maxima and precipitation minima there. The trend analysis of the freshwater budget shows that the freshwater deficit increases in the 1988-2005 period. The prominent increase in the eastern part of the basin is present in the satellite and all three reanalysis datasets. The water deficit is due to increases in evaporation driven by increasing sea surface temperature, while precipitation does not show any consistent trends in the period. Similarly, in the Black Sea, trends in the freshwater deficit are mainly due to evaporation, although year-to-year variability is due to precipitation patterns. C1 [Romanou, A.; Tselioudis, G.] Columbia Univ, Dept Appl Math & Appl Phys, New York, NY 10025 USA. [Romanou, A.; Tselioudis, G.] NASA GISS, New York, NY USA. [Romanou, A.; Tselioudis, G.] Acad Athens, Ctr Atmospher Phys & Climatol, Athens, Greece. [Zerefos, C. S.] Univ Athens, Dept Geol, Athens, Greece. [Zerefos, C. S.] Acad Athens, Ctr Atmospher Phys & Climatol, Athens, Greece. [Clayson, C. -A.] Florida State Univ, Dept Meteorol, Tallahassee, FL 32306 USA. [Curry, J. A.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Andersson, A.] Univ Hamburg, Inst Meteorol, D-2000 Hamburg, Germany. RP Romanou, A (reprint author), Columbia Univ, Dept Appl Math & Appl Phys, 2880 Broadway, New York, NY 10025 USA. EM ar2235@columbia.edu FU NASA [GIT G-35-C56-G1] FX The authors wish to thank the project groups at the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data Center, the European Centre for Medium-Range Weather Forecasts, and the NOAA National Center for Environmental Prediction for making their datasets readily available for this study, and Prof. D. A. Metaxas for useful discussions. NAO Index data were provided by the Climate Analysis Section, NCAR, Boulder, Colorado. A significant part of the work was carried out at the Centre of Atmospheric Physics and Climatology at the Academy of Athens in Greece. Funding was partially provided by the NASA Energy and Water Cycle Study program under NASA NEWS Grant GIT G-35-C56-G1. NCEP Reanalysis-derived data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, from their Web site (available online at http://www.esrl.noaa.gov/psd/). NR 29 TC 40 Z9 40 U1 0 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD OCT PY 2010 VL 23 IS 19 BP 5268 EP 5287 DI 10.1175/2010JCLI3525.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 662RY UT WOS:000282830500014 ER PT J AU Loeb, NG Su, WY AF Loeb, Norman G. Su, Wenying TI Direct Aerosol Radiative Forcing Uncertainty Based on a Radiative Perturbation Analysis SO JOURNAL OF CLIMATE LA English DT Article ID SKY RADIANCE MEASUREMENTS; OPTICAL-PROPERTIES; AERONET; CLOUDS; ASSESSMENTS; SCATTERING; RETRIEVAL; NETWORK; SUN AB To provide a lower bound for the uncertainty in measurement-based clear- and all-sky direct aerosol radiative forcing (DARF), a radiative perturbation analysis is performed for the ideal case in which the perturbations in global mean aerosol properties are given by published values of systematic uncertainty in Aerosol Robotic Network (AERONET) aerosol measurements. DARF calculations for base-state climatological cloud and aerosol properties over ocean and land are performed, and then repeated after perturbing individual aerosol optical properties (aerosol optical depth, single-scattering albedo, asymmetry parameter, scale height, and anthropogenic fraction) from their base values, keeping all other parameters fixed. The total DARF uncertainty from all aerosol parameters combined is 0.5-1.0 W m(-2), a factor of 2-4 greater than the value cited in the Intergovernmental Panel on Climate Change's (IPCC's) Fourth Assessment Report. Most of the total DARF uncertainty in this analysis is associated with single-scattering albedo uncertainty. Owing to the greater sensitivity to single-scattering albedo in cloudy columns, DARF uncertainty in all-sky conditions is greater than in clear- sky conditions, even though the global mean clear- sky DARF is more than twice as large as the all-sky DARF. C1 [Loeb, Norman G.] NASA Langley Res Ctr, Hampton, VA 23681 USA. [Su, Wenying] SSAI, Hampton, VA USA. RP Loeb, NG (reprint author), NASA Langley Res Ctr, Mail Stop 420, Hampton, VA 23681 USA. EM norman.g.loeb@nasa.gov FU NASA Research Opportunities in Space and Earth Sciences (ROSES) [NNH05ZDA001N-CCST] FX The work was supported by the NASA Research Opportunities in Space and Earth Sciences (ROSES) (NNH05ZDA001N-CCST). NR 30 TC 41 Z9 41 U1 2 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD OCT PY 2010 VL 23 IS 19 BP 5288 EP 5293 DI 10.1175/2010JCLI3543.1 PG 6 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 662RY UT WOS:000282830500015 ER PT J AU Butchart, N Cionni, I Eyring, V Shepherd, TG Waugh, DW Akiyoshi, H Austin, J Bruhl, C Chipperfield, MP Cordero, E Dameris, M Deckert, R Dhomse, S Frith, SM Garcia, RR Gettelman, A Giorgetta, MA Kinnison, DE Li, F Mancini, E McLandress, C Pawson, S Pitari, G Plummer, DA Rozanov, E Sassi, F Scinocca, JF Shibata, K Steil, B Tian, W AF Butchart, Neal Cionni, I. Eyring, V. Shepherd, T. G. Waugh, D. W. Akiyoshi, H. Austin, J. Bruehl, C. Chipperfield, M. P. Cordero, E. Dameris, M. Deckert, R. Dhomse, S. Frith, S. M. Garcia, R. R. Gettelman, A. Giorgetta, M. A. Kinnison, D. E. Li, F. Mancini, E. McLandress, C. Pawson, S. Pitari, G. Plummer, D. A. Rozanov, E. Sassi, F. Scinocca, J. F. Shibata, K. Steil, B. Tian, W. TI Chemistry-Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes SO JOURNAL OF CLIMATE LA English DT Article ID MIDDLE ATMOSPHERE MODEL; GRAVITY-WAVE DRAG; BREWER-DOBSON CIRCULATION; MIXED GREENHOUSE GASES; ANTARCTIC OZONE HOLE; METEOROLOGICAL ANALYSES; INTERACTIVE CHEMISTRY; TROPOSPHERE EXCHANGE; CLOUD FORMATION; WATER-VAPOR AB The response of stratospheric climate and circulation to increasing amounts of greenhouse gases (GHGs) and ozone recovery in the twenty-first century is analyzed in simulations of 11 chemistry-climate models using near-identical forcings and experimental setup. In addition to an overall global cooling of the stratosphere in the simulations (0.59 +/- 6 0.07 K decade(-1) at 10 hPa), ozone recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and, on average, changes from 0.8 to 0.48 K decade(-1) at 100 hPa as the rate of recovery declines from the first to the second half of the century. In the winter northern polar lower stratosphere the increased radiative cooling from the growing abundance of GHGs is, in most models, balanced by adiabatic warming from stronger polar downwelling. In the Antarctic lower stratosphere the models simulate an increase in low temperature extremes required for polar stratospheric cloud (PSC) formation, but the positive trend is decreasing over the twenty-first century in all models. In the Arctic, none of the models simulates a statistically significant increase in Arctic PSCs throughout the twenty-first century. The subtropical jets accelerate in response to climate change and the ozone recovery produces a westward acceleration of the lower-stratospheric wind over the Antarctic during summer, though this response is sensitive to the rate of recovery projected by the models. There is a strengthening of the Brewer-Dobson circulation throughout the depth of the stratosphere, which reduces the mean age of air nearly everywhere at a rate of about 0.05 yr decade(-1) in those models with this diagnostic. On average, the annual mean tropical upwelling in the lower stratosphere (similar to 70 hPa) increases by almost 2% decade(-1), with 59% of this trend forced by the parameterized orographic gravity wave drag in the models. This is a consequence of the eastward acceleration of the subtropical jets, which increases the upward flux of (parameterized) momentum reaching the lower stratosphere in these latitudes. C1 [Butchart, Neal] Hadley Ctr, Met Off, Exeter EX1 3PB, Devon, England. [Cionni, I.; Eyring, V.; Dameris, M.; Deckert, R.] Deutsch Zentrum Luft & Raumfahrt, Oberpfaffenhofen, Germany. [Shepherd, T. G.; McLandress, C.] Univ Toronto, Toronto, ON, Canada. [Waugh, D. W.] Johns Hopkins Univ, Baltimore, MD USA. [Akiyoshi, H.] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. [Austin, J.] Geophys Fluid Dynam Lab, Princeton, NJ USA. [Bruehl, C.; Steil, B.] Max Planck Inst Chem, D-55128 Mainz, Germany. [Chipperfield, M. P.; Dhomse, S.; Tian, W.] Univ Leeds, Leeds, W Yorkshire, England. [Cordero, E.] San Jose State Univ, San Jose, CA 95192 USA. [Frith, S. M.] Sci Syst & Applicat Inc, Lanham, MD USA. [Garcia, R. R.; Gettelman, A.; Kinnison, D. E.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Giorgetta, M. A.] Max Planck Inst Meteorol, Hamburg, Germany. [Li, F.] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. [Mancini, E.; Pitari, G.] Univ Aquila, I-67100 Laquila, Italy. [Pawson, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Plummer, D. A.] Environm Canada, Toronto, ON, Canada. [Rozanov, E.] World Radiat Ctr, Phys Meteorol Observ, Davos, Switzerland. [Rozanov, E.] Swiss Fed Inst Technol, Zurich, Switzerland. [Sassi, F.] USN, Res Lab, Washington, DC 20375 USA. [Scinocca, J. F.] Univ Victoria, Meteorol Serv Canada, Victoria, BC, Canada. [Shibata, K.] Meteorol Res Inst, Tsukuba, Ibaraki 305, Japan. RP Butchart, N (reprint author), Hadley Ctr, Met Off, FitzRoy Rd, Exeter EX1 3PB, Devon, England. EM neal.butchart@metoffice.gov.uk RI Dhomse, Sandip/C-8198-2011; Rozanov, Eugene/A-9857-2012; Li, Feng/H-2241-2012; Eyring, Veronika/O-9999-2016; Chipperfield, Martyn/H-6359-2013; Pawson, Steven/I-1865-2014; Waugh, Darryn/K-3688-2016; Pitari, Giovanni/O-7458-2016 OI Dhomse, Sandip/0000-0003-3854-5383; Rozanov, Eugene/0000-0003-0479-4488; Eyring, Veronika/0000-0002-6887-4885; Mancini, Eva/0000-0001-7071-0292; Sassi, Fabrizio/0000-0002-9492-7434; Chipperfield, Martyn/0000-0002-6803-4149; Pawson, Steven/0000-0003-0200-717X; Waugh, Darryn/0000-0001-7692-2798; Pitari, Giovanni/0000-0001-7051-9578 FU European Commission [505390-GOCE-CT-2004]; DECC [GA01101]; Defra [GA01101]; MoD [CBC/2B/0417_Annex C5]; SCOUT [O3]; Ministry of the Environment (MOE) of Japan [A-071]; Canadian Foundation for Climate and Atmospheric Sciences FX The authors acknowledge the Chemistry-Climate Model Validation Activity (CCMVal) of the WCRP's (World Climate Research Programme) SPARC (Stratospheric Processes and their Role in Climate) project for organizing and coordinating the model data analysis activity, and the British Atmospheric Data Centre (BADC) for collecting and archiving the CCMVal model output. The European groups acknowledge support of the EC Integrated Project SCOUT-O3 (505390-GOCE-CT-2004) funded by the European Commission. Dr. Butchart's research was supported by the Joint DECC, Defra, and MoD Integrated Climate Programme-DECC/Defra (GA01101), MoD (CBC/2B/0417_Annex C5), and SCOUT-O3. CCSR/NIES research was supported by the Global Environmental Research Fund (GERF) of the Ministry of the Environment (MOE) of Japan (A-071). The CMAM research was supported by the Canadian Foundation for Climate and Atmospheric Sciences through the C-SPARC project. GEOS CCM simulations were conducted on NASA's High-Performance computing resources at NASA Ames Research Center. The MRI simulation was made with the supercomputer at the National Institute for Environmental Studies, Japan. NR 81 TC 136 Z9 137 U1 4 U2 79 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD OCT PY 2010 VL 23 IS 20 BP 5349 EP 5374 DI 10.1175/2010JCLI3404.1 PG 26 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 681IW UT WOS:000284306200001 ER PT J AU Kalarus, M Schuh, H Kosek, W Akyilmaz, O Bizouard, C Gambis, D Gross, R Jovanovic, B Kumakshev, S Kutterer, H Cerveira, PJM Pasynok, S Zotov, L AF Kalarus, M. Schuh, H. Kosek, W. Akyilmaz, O. Bizouard, Ch. Gambis, D. Gross, R. Jovanovic, B. Kumakshev, S. Kutterer, H. Cerveira, P. J. Mendes Pasynok, S. Zotov, L. TI Achievements of the Earth orientation parameters prediction comparison campaign SO JOURNAL OF GEODESY LA English DT Article DE Earth orientation parameters; Predictions; Combined solution; Polar motion; UT1; Universal time AB Precise transformations between the international celestial and terrestrial reference frames are needed for many advanced geodetic and astronomical tasks including positioning and navigation on Earth and in space. To perform this transformation at the time of observation, that is for real-time applications, accurate predictions of the Earth orientation parameters (EOP) are needed. The Earth orientation parameters prediction comparison campaign (EOP PCC) that started in October 2005 was organized for the purpose of assessing the accuracy of EOP predictions. This paper summarizes the results of the EOP PCC after nearly two and a half years of operational activity. The ultra short-term (predictions to 10 days into the future), short-term (30 days), and medium-term (500 days) EOP predictions submitted by the participants were evaluated by the same statistical technique based on the mean absolute prediction error using the IERS EOP 05 C04 series as a reference. A combined series of EOP predictions computed as a weighted mean of all submissions available at a given prediction epoch was also evaluated. The combined series is shown to perform very well, as do some of the individual series, especially those using atmospheric angular momentum forecasts. A main conclusion of the EOP PCC is that no single prediction technique performs the best for all EOP components and all prediction intervals. C1 [Kalarus, M.; Kosek, W.] Polish Acad Sci, Space Res Ctr, PL-00716 Warsaw, Poland. [Schuh, H.; Cerveira, P. J. Mendes] Vienna Univ Technol, Inst Geodesy & Geophys, A-1040 Vienna, Austria. [Kosek, W.] Agr Univ Krakow, PL-30198 Krakow, Poland. [Akyilmaz, O.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Bizouard, Ch.; Gambis, D.] Observ Paris, F-75014 Paris, France. [Gross, R.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Jovanovic, B.] Astron Observ, Belgrade 11050, Serbia. [Kumakshev, S.] Russian Acad Sci, Inst Problems Mech, Moscow, Russia. [Kutterer, H.] Leibniz Univ Hannover, Hannover, Germany. [Pasynok, S.; Zotov, L.] Moscow MV Lomonosov State Univ, Moscow, Russia. RP Kalarus, M (reprint author), Polish Acad Sci, Space Res Ctr, Ul Bartycka 18A, PL-00716 Warsaw, Poland. EM kalma@cbk.waw.pl RI Kumakshev, Sergey/G-1736-2015; Kosek, Wieslaw/E-1962-2017 OI Kumakshev, Sergey/0000-0002-2395-4339; FU Advisory Board of the "Descartes-nutation project" FX Maciej Kalarus is grateful to the Advisory Board of the "Descartes-nutation project" for the financial support. The work of RG described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We are grateful to Editor-in-Chief for his comments on the manuscript. We also thank Jeff Freymeuller, Jim Ray, and one anonymous reviewer for helpful remarks which led to an improvement of the paper. NR 23 TC 22 Z9 38 U1 3 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-7714 J9 J GEODESY JI J. Geodesy PD OCT PY 2010 VL 84 IS 10 BP 587 EP 596 DI 10.1007/s00190-010-0387-1 PG 10 WC Geochemistry & Geophysics; Remote Sensing SC Geochemistry & Geophysics; Remote Sensing GA 652CZ UT WOS:000281980100001 ER PT J AU Eck, TF Holben, BN Sinyuk, A Pinker, RT Goloub, P Chen, H Chatenet, B Li, Z Singh, RP Tripathi, SN Reid, JS Giles, DM Dubovik, O O'Neill, NT Smirnov, A Wang, P Xia, X AF Eck, T. F. Holben, B. N. Sinyuk, A. Pinker, R. T. Goloub, P. Chen, H. Chatenet, B. Li, Z. Singh, R. P. Tripathi, S. N. Reid, J. S. Giles, D. M. Dubovik, O. O'Neill, N. T. Smirnov, A. Wang, P. Xia, X. TI Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SKY RADIANCE MEASUREMENTS; BLACK CARBON AEROSOLS; ACE-ASIA; LIGHT-ABSORPTION; WAVELENGTH DEPENDENCE; SIZE DISTRIBUTION; COLUMN CLOSURE; SOURCE REGIONS; DUST AEROSOLS; WATER-VAPOR AB Aerosol mixtures composed of coarse mode desert dust combined with fine mode combustion generated aerosols (from fossil fuel and biomass burning sources) were investigated at three locations that are in and/or downwind of major global aerosol emission source regions. Multiyear monitoring data at Aerosol Robotic Network sites in Beijing (central eastern China), Kanpur (Indo-Gangetic Plain, northern India), and Ilorin (Nigeria, Sudanian zone of West Africa) were utilized to study the climatological characteristics of aerosol optical properties. Multiyear climatological averages of spectral single scattering albedo (SSA) versus fine mode fraction (FMF) of aerosol optical depth at 675 nm at all three sites exhibited relatively linear trends up to similar to 50% FMF. This suggests the possibility that external linear mixing of both fine and coarse mode components (weighted by FMF) dominates the SSA variation, where the SSA of each component remains relatively constant for this range of FMF only. However, it is likely that a combination of other factors is also involved in determining the dynamics of SSA as a function of FMF, such as fine mode particles adhering to coarse mode dust. The spectral variation of the climatological averaged aerosol absorption optical depth (AAOD) was nearly linear in logarithmic coordinates over the wavelength range of 440-870 nm for both the Kanpur and Ilorin sites. However, at two sites in China (Beijing and Xianghe), a distinct nonlinearity in spectral AAOD in logarithmic space was observed, suggesting the possibility of anomalously strong absorption in coarse mode aerosols increasing the 870 nm AAOD. C1 [Eck, T. F.; Holben, B. N.; Sinyuk, A.; Giles, D. M.; Smirnov, A.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Eck, T. F.] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. [Sinyuk, A.; Giles, D. M.] Sigma Space Corp, Lanham, MD USA. [Pinker, R. T.; Li, Z.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Goloub, P.; Dubovik, O.] Univ Lille 1, Opt Atmospher Lab, F-59655 Villeneuve Dascq, France. [Chen, H.] Chinese Acad Sci, Div Middle Atmosphere & Remote Sensing, Beijing 100029, Peoples R China. [Chatenet, B.] Univ Paris Est Paris Diderot Paris 7, CNRS, LISA, F-94010 Creteil, France. [Singh, R. P.] Chapman Univ, Orange, CA 92866 USA. [Tripathi, S. N.] Indian Inst Technol, Dept Civil Engn, Kanpur 208016, Uttar Pradesh, India. [Reid, J. S.] USN, Res Lab, Marine Meteorol Div, Monterey, CA 93943 USA. [O'Neill, N. T.] Univ Sherbrooke, CARTEL, Sherbrooke, PQ J1K 2R1, Canada. [Wang, P.; Xia, X.] Chinese Acad Sci, Inst Atmospher Phys, LAGEO, Beijing 100029, Peoples R China. RP Eck, TF (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. EM thomas.f.eck@nasa.gov RI Pinker, Rachel/F-6565-2010; Smirnov, Alexander/C-2121-2009; ECK, THOMAS/D-7407-2012; Singh, Ramesh/G-7240-2012; Xia, Xiangao/G-5545-2011; Dubovik, Oleg/A-8235-2009; Reid, Jeffrey/B-7633-2014; Tripathi, Sachchida/J-4840-2016; Li, Zhanqing/F-4424-2010 OI Smirnov, Alexander/0000-0002-8208-1304; Xia, Xiangao/0000-0002-4187-6311; Dubovik, Oleg/0000-0003-3482-6460; Reid, Jeffrey/0000-0002-5147-7955; Li, Zhanqing/0000-0001-6737-382X FU NASA; Department of Science and Technology, ICRP; Indian Space Research Organisation; ISRO-GBP FX The AERONET project was supported by Michael D. King, retired in 2008 from the NASA EOS project office, and by Hal B. Maring, Radiation Sciences Program, NASA Headquarters. S. N. Tripathi acknowledges support from Department of Science and Technology, ICRP and Indian Space Research Organisation GBP programmes. S. N. Tripathi was also supported in part by appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. The authors are indebted to Harish Vishwakarma for his efforts in the operation of Kanpur AERONET instruments and to ISRO-GBP for financial support to R. P. Singh through a research project. NR 67 TC 153 Z9 154 U1 4 U2 35 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 1 PY 2010 VL 115 AR D19205 DI 10.1029/2010JD014002 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 658RQ UT WOS:000282507500011 ER PT J AU Reichle, RH Kumar, SV Mahanama, SPP Koster, RD Liu, Q AF Reichle, Rolf H. Kumar, Sujay V. Mahanama, Sarith P. P. Koster, Randal D. Liu, Q. TI Assimilation of Satellite-Derived Skin Temperature Observations into Land Surface Models SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID ENSEMBLE KALMAN FILTER; SOIL-MOISTURE; BRIGHTNESS TEMPERATURE; ENERGY BALANCE; SYSTEM; PERFORMANCE; EVAPORATION; ALGORITHM; RADIANCES; ERROR AB Land surface (or "skin'') temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. In this research LST retrievals from the International Satellite Cloud Climatology Project (ISCCP) are assimilated into the Noah land surface model and Catchment land surface model (CLSM) using an ensemble-based, offline land data assimilation system. LST is described very differently in the two models. A priori scaling and dynamic bias estimation approaches are applied because satellite and model LSTs typically exhibit different mean values and variabilities. Performance is measured against 27 months of in situ measurements from the Coordinated Energy and Water Cycle Observations Project at 48 stations. LST estimates from Noah and CLSM without data assimilation ("open loop'') are comparable to each other and superior to ISCCP retrievals. For LST, the RMSE values are 4.9 K (CLSM), 5.5 K(Noah), and 7.6 K(ISCCP), and the anomaly correlation coefficients (R) are 0.61 (CLSM), 0.63 (Noah), and 0.52 (ISCCP). Assimilation of ISCCP retrievals provides modest yet statistically significant improvements (over an open loop, as indicated by nonoverlapping 95% confidence intervals) of up to 0.7 K in RMSE and 0.05 in the anomaly R. The skill of the latent and sensible heat flux estimates from the assimilation integrations is essentially identical to the corresponding open loop skill. Noah assimilation estimates of ground heat flux, however, can be significantly worse than open loop estimates. Provided the assimilation system is properly adapted to each land model, the benefits from the assimilation of LST retrievals are comparable for both models. C1 [Reichle, Rolf H.; Mahanama, Sarith P. P.; Koster, Randal D.; Liu, Q.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Kumar, Sujay V.; Liu, Q.] Sci Applicat Int Corp, Beltsville, MD USA. [Kumar, Sujay V.] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA. [Mahanama, Sarith P. P.] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. RP Reichle, RH (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Mail Code 610-1,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM rolf.reichle@nasa.gov RI Reichle, Rolf/E-1419-2012; Koster, Randal/F-5881-2012; Kumar, Sujay/B-8142-2015 OI Koster, Randal/0000-0001-6418-6383; FU NASA [NNX08AH36G]; Air Force Weather Agency [F2BBBJ7080G001] FX Thanks to Michael Bosilovich, John Eylander, Peter Norris, and Christa Peters-Lidard for helpful comments. Partial support for this study was provided through NASA (NNX08AH36G) and the Air Force Weather Agency (F2BBBJ7080G001). We are grateful for access to the many datasets that supported this work, in particular the CEOP and ISCCP projects. Surface meteorological data were provided by H. Kato, J. Meng, and M. Rodell of the GLDAS project, with data contributions from the NOAA Earth System Research Laboratory. Computing was supported by the NASA High End Computing Program. NR 54 TC 54 Z9 55 U1 0 U2 13 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD OCT PY 2010 VL 11 IS 5 BP 1103 EP 1122 DI 10.1175/2010JHM1262.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 661DE UT WOS:000282702400003 ER PT J AU Bagge, L Epp, L Kaul, AR Kaul, AB AF Bagge, Leif Epp, Larry Kaul, Abdur R. Kaul, Anupama B. TI Modeling and In-Situ Observation of Mechanical Resonances in Single, Vertically-Oriented Carbon Nanofibers SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Article DE Mechanical Resonators; Carbon Nanostructures; Nanoelectronics; Nano-Electro-Mechanical-Systems (NEMS); 3D Electronics ID MEMS AB In this paper, we have analyzed mechanical resonances in carbon nanotubes (CNTs) based on single, vertically-oriented tubes for their potential application in high-frequency, high-Q, miniaturized resonators. The nano-electro-mechanical (NEM) resonators were modeled using a commercially available finite-element-simulator, where the electro-mechanical coupling of the CNT to an incoming AC signal on a probe in close proximity was examined. The modeling results confirmed that the mechanical resonance was maximized when the frequency of the input signal was equal to the first order harmonic of the CNT. An investigation of the resonance frequency was also performed for various geometrical parameters of our unique three-dimensional (3D) NEMS architecture. Finally, in-situ observations of mechanical resonance in single, vertically oriented tubes is also reported, where such measurements were conducted inside a scanning-electron-microscope. This work suggests that our vertically oriented tubes are potentially well-suited for resonator applications, such as filter banks in communication systems or for mass sensing applications. C1 [Bagge, Leif; Epp, Larry; Kaul, Abdur R.; Kaul, Anupama B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bagge, Leif] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA. [Kaul, Abdur R.] Univ So Calif, Keck Sch Med, Los Angeles, CA 90089 USA. RP Kaul, AB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU National Aeronautics and Space Administration FX We would like to thank Robert Kowalczyk for PECVD growth chamber support, and Bophan Chim for assistance with in-situ SEM measurements at the Kavli Nanoscience Institute, California Institute of Technology (Caltech). We would also like to acknowledge Krikor Megerian, Richard Baron, and Julia R. Greer and Andrew T. Jennings both of Caltech, for useful discussions. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and was funded through the internal Research and Technology Development (R&TD) program. NR 11 TC 1 Z9 1 U1 0 U2 3 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1533-4880 J9 J NANOSCI NANOTECHNO JI J. Nanosci. Nanotechnol. PD OCT PY 2010 VL 10 IS 10 BP 6388 EP 6394 DI 10.1166/jnn.2010.3134 PG 7 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 631QA UT WOS:000280361400015 PM 21137735 ER PT J AU Ray, CS Reis, ST Sen, S O'Dell, JS AF Ray, C. S. Reis, S. T. Sen, S. O'Dell, J. S. TI JSC-1A lunar soil simulant: Characterization, glass formation, and selected glass properties SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 12th International Conference on the Physics of Non-Crystalline Solids (PNCS12) CY SEP 06-09, 2009 CL Foz do Iguacu, BRAZIL DE Lunar soil simulant; Glass formation; XRD; DTA; Mossbauer AB The chemical composition of a volcanic ash deposited near Flagstaff, Arizona, USA closely resembles that of the soil from the Maria geological terrain of the Moon. After mining and processing, this volcanic ash was designated as JSC-1A lunar simulant, and made available by NASA to the scientific research community in support of its future exploration programs on the lunar surface. The present paper describes characterization of the JSC-1A lunar simulant using DTA, TGA, XRD, chemical analysis and Mossbauer spectroscopy and the feasibility of developing glass and ceramic materials using in-situ resources on the surface of the Moon. The overall chemical composition of the JSC-1A lunar simulant is close to that of the actual lunar soil collected by Apollo 17 mission, and the total iron content in the simulant and the lunar soil is nearly the same. The JSC-1A lunar simulant contains both Fe(2+) (similar to 76%) and Fe(3+) (similar to 24%) ions as opposed to the actual lunar soil which contains only Fe(2+) ions, as expected. The glass forming characteristics of the melt of this simulant as determined by measuring its critical cooling rate for glass formation suggests that the simulant easily forms glass when melted and cooled at nominal rates between 50 and 55 degrees C/min. The coefficient of thermal expansion of the glass measured by dilatometry is in close agreement with that of alumina or YSZ, which makes the glass suitable for use as a coating and sealing material on these ceramics. Potential applications envisaged up to this time of these glass/ceramics on the surface of the Moon are also discussed. (C) 2010 Elsevier B.V. All rights reserved. C1 [Ray, C. S.; Reis, S. T.] Missouri Univ Sci & Technol, Mat Res Ctr, Rolla, MO 65409 USA. [Sen, S.] NASA, BAE Syst, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [O'Dell, J. S.] Plasma Proc Inc, Huntsville, AL 35811 USA. RP Reis, ST (reprint author), Missouri Univ Sci & Technol, Mat Res Ctr, Rolla, MO 65409 USA. EM reis@mst.edu NR 16 TC 15 Z9 16 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD OCT 1 PY 2010 VL 356 IS 44-49 SI SI BP 2369 EP 2374 DI 10.1016/j.jnoncrysol.2010.04.049 PG 6 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 694GD UT WOS:000285282100017 ER PT J AU Volkov, DL Fu, LL AF Volkov, Denis L. Fu, Lee-Lueng TI On the Reasons for the Formation and Variability of the Azores Current SO JOURNAL OF PHYSICAL OCEANOGRAPHY LA English DT Article ID NORTH-ATLANTIC OCEAN; FRONT-CURRENT SYSTEM; EDDY KINETIC-ENERGY; SUBTROPICAL GYRE; MEDITERRANEAN OUTFLOW; CIRCULATION PATTERNS; SURFACE CIRCULATION; MEAN CIRCULATION; CANARY BASIN; GEOSAT DATA AB Recent studies have shown that the formation of the well-defined, zonally oriented Azores Current may be the result of water mass transformation associated with the Mediterranean outflow in the Gulf of Cadiz. As the denser Mediterranean water descends down the continental slope, it entrains overlying North Atlantic Central Water. It is believed that the Azores Current then forms as part of the horizontal recirculating gyre generated through the beta-plume mechanism. In this study, the authors further explore this hypothesis by performing a series of numerical experiments. These experiments are based on a high-resolution general circulation model that includes the Mediterranean Sea and that realistically simulates the water mass exchange through the Strait of Gibraltar and the transport and variability of the Azores Current. The authors show that the divergence of the relative vorticity flux and the planetary vorticity flux, associated with planetary waves, are the main factors determining the variability of the Azores Current. It is shown experimentally that the closure of the Strait of Gibraltar leads to a complete disappearance of the Azores Current. On the other hand, with the open Strait of Gibraltar, the Azores Current persists even when the wind forcing over the region is turned off. The atmospheric forcing is thus not responsible for the formation of the Azores Current, but it affects the variability of the current with a minor effect on its magnitude. Numerical experiments suggest that the strength and the variability of the Azores Current depend on the magnitude of the water mass exchange through the Strait of Gibraltar but not on its seasonal variability. C1 [Volkov, Denis L.; Fu, Lee-Lueng] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Volkov, Denis L.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. RP Volkov, DL (reprint author), CALTECH, Jet Prop Lab, MS 300-314,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM denis.volkov@jpl.nasa.gov RI Volkov, Denis/A-6079-2011 OI Volkov, Denis/0000-0002-9290-0502 FU National Aeronautics and Space Administration (NASA) FX This research was carried out at Jet Propulsion Laboratory, California Institute of Technology, within the framework of the ECCO2 project (available online at http://www.ecco2.org), sponsored by the National Aeronautics and Space Administration (NASA) Physical Oceanography program. We thank Michael Schodlok for helping with the model setup. The authors thank Lynne Talley and two anonymous reviewers for their constructive remarks that helped to improve the manuscript. NR 61 TC 17 Z9 17 U1 0 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-3670 EI 1520-0485 J9 J PHYS OCEANOGR JI J. Phys. Oceanogr. PD OCT PY 2010 VL 40 IS 10 BP 2197 EP 2220 DI 10.1175/2010JPO4326.1 PG 24 WC Oceanography SC Oceanography GA 665RO UT WOS:000283053400001 ER PT J AU Qu, TD Gao, S Fukumori, I Fine, RA Lindstrom, EJ AF Qu, Tangdong Gao, Shan Fukumori, Ichiro Fine, Rana A. Lindstrom, Eric J. TI The Obduction of Equatorial 13 degrees C Water in the Pacific Identified by a Simulated Passive Tracer SO JOURNAL OF PHYSICAL OCEANOGRAPHY LA English DT Article ID EASTERN TROPICAL PACIFIC; SEA-SURFACE TEMPERATURE; COSTA-RICA DOME; SUBSURFACE COUNTERCURRENTS; INDONESIAN THROUGHFLOW; TSUCHIYA JET; ANNUAL CYCLE; OCEAN; CIRCULATION; DYNAMICS AB The obduction of equatorial 13 degrees C Water in the Pacific is investigated using a simulated passive tracer of the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO). The result shows that the 13 degrees C Water initialized in the region 8 degrees N-8 degrees S, 130 degrees-90 degrees W enters the surface mixed layer in the eastern tropical Pacific, mainly through upwelling near the equator, in the Costa Rica Dome, and along the coast of Peru. Approximately two-thirds of this obduction occurs within 10 years after the 13 degrees C Water being initialized, with the upper portion of the water mass reaching the surface mixed layer in only about a month. The obduction of the 13 degrees C Water helps to maintain a cool sea surface temperature year-round, equivalent to a surface heat flux of about -6.0 W m(-2) averaged over the eastern tropical Pacific (15 degrees S-15 degrees N, 130 degrees W-eastern boundary) for the period of integration (1993-2006). During El Nino years, when the thermocline deepens as a consequence of the easterly wind weakening, the obduction of the 13 degrees C Water is suppressed, and the reduced vertical entrainment generates a warming anomaly of up to 10 W m(-2) in the eastern tropical Pacific and in particular along the coast of Peru, providing explanations for the warming of sea surface temperature that cannot be accounted for by local winds alone. The situation is reversed during La Nina years. C1 [Qu, Tangdong] Univ Hawaii Manoa, IPRC, SOEST, Honolulu, HI 96822 USA. [Gao, Shan] Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China. [Fukumori, Ichiro] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Fine, Rana A.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. [Lindstrom, Eric J.] NASA, Sci Miss Directorate, Washington, DC 20546 USA. RP Qu, TD (reprint author), Univ Hawaii Manoa, IPRC, SOEST, 1680 East West Rd, Honolulu, HI 96822 USA. EM tangdong@hawaii.edu RI Gao, Shan/H-7959-2013 OI Gao, Shan/0000-0003-4510-5028 FU National Science Foundation [OCE06-23533]; Japan Agency for Marine-Earth Science and Technology; National Aeronautics and Space Administration (NASA); National Ocean and Atmosphere Administration through their sponsorship of research activities at the International Pacific Research Center (IPRC); Chinese Academy of Sciences [KZCX3-SW-222]; National Science Foundation of China [40876011] FX This research was supported by the National Science Foundation through Grant OCE06-23533 and by the Japan Agency for Marine-Earth Science and Technology, the National Aeronautics and Space Administration (NASA), and the National Ocean and Atmosphere Administration through their sponsorship of research activities at the International Pacific Research Center (IPRC). S. Gao was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences through Grant KZCX3-SW-222 and the National Science Foundation of China through Grant 40876011. Work by I. Fukumori was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The authors are grateful to, R. Furue, Z. Yu, R. Lukas, and J. McCreary for useful discussions throughout the study; to W. S. Kessler and an anonymous reviewer for their thoughtful comments and constructive suggestions on an earlier version of this manuscript; and to Z. Xing, I.-L. Tang, O. Wang, and Y. Shen for their constant assistance in processing the ECCO outputs. NR 41 TC 2 Z9 2 U1 1 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-3670 J9 J PHYS OCEANOGR JI J. Phys. Oceanogr. PD OCT PY 2010 VL 40 IS 10 BP 2282 EP 2297 DI 10.1175/2010JPO4358.1 PG 16 WC Oceanography SC Oceanography GA 665RO UT WOS:000283053400005 ER PT J AU Parker, PA Vining, GG Wilson, SR Szarka, JL Johnson, NG AF Parker, Peter A. Vining, G. Geoffrey Wilson, Sara R. Szarka, John L., III Johnson, Nels G. TI The Prediction Properties of Classical and Inverse Regression for the Simple Linear Calibration Problem SO JOURNAL OF QUALITY TECHNOLOGY LA English DT Article DE Calibration Intervals; Mathematical Modeling; Measurement-Uncertainty Analysis; Response-Surface Methodology. AB The calibration of measurement systems is a fundamental but understudied problem within industrial statistics. In the classical context of this problem, standards produced by the National Institute of Standards and Technology (NIST) are used in chemical, mechanical, electrical, and materials-engineering analyses. Often, applications cast into this calibration framework do not provide "gold standards" such as the standards provided by NIST. This paper considers the classical calibration approach, in which the experiment treats the standards as the regressor and the observed values as the response to calibrate the instrument. The analyst then must invert the resulting regression model in order to use the instrument to make actual measurements in practice. This paper compares this classical approach to inverse regression, which treats the standards as the response and the observed measurements as the regressor in the calibration experiment. Such an approach is intuitively appealing because it is simple and easily implemented in most software. However, it violates some of the basic regression assumptions. In this paper, we study the properties of classical and inverse regression applied to calibration problems, compare their performance, and provide guidance to practitioners. C1 [Parker, Peter A.; Wilson, Sara R.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Vining, G. Geoffrey; Szarka, John L., III; Johnson, Nels G.] Virginia Tech, Dept Stat, Blacksburg, VA 24061 USA. [Vining, G. Geoffrey] ASQ, Blacksburg, VA 24061 USA. RP Parker, PA (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM peter.a.parker@nasa.gov; vining@vt.edu; sara.r.wilson@nasa.gov; szarkajl@vt.edu; nels@vt.edu FU NASA FX We appreciate the support of Mr. Ray Rhew, AirSTAR's project manager at NASA, for funding this research effort and providing guidance on its practical implications. In addition, we acknowledge our fruitful collaboration with Dr. Margaret Pippin and Dr. Mary Kleb of NASA Langley's Science Directorate in initially motivating this research with a satellite to ground measurement correlation study. Last, we appreciate the helpful suggestions and comments from the reviewers, which have greatly improved our paper. NR 17 TC 6 Z9 6 U1 0 U2 6 PU AMER SOC QUALITY CONTROL-ASQC PI MILWAUKEE PA 600 N PLANKINTON AVE, MILWAUKEE, WI 53203 USA SN 0022-4065 J9 J QUAL TECHNOL JI J. Qual. Technol. PD OCT PY 2010 VL 42 IS 4 BP 332 EP 347 PG 16 WC Engineering, Industrial; Operations Research & Management Science; Statistics & Probability SC Engineering; Operations Research & Management Science; Mathematics GA 656RN UT WOS:000282354400002 ER PT J AU Tennyson, J Bernath, PF Brown, LR Campargue, A Csaszar, AG Daumont, L Gamache, RR Hodges, JT Naumenko, OV Polyansky, OL Rothman, LS Toth, RA Vandaele, AC Zobov, NF Fally, S Fazliev, AZ Furtenbacher, T Gordon, IE Hu, SM Mikhailenko, SN Voronin, BA AF Tennyson, Jonathan Bernath, Peter F. Brown, Linda R. Campargue, Alain Csaszar, Attila G. Daumont, Ludovic Gamache, Robert R. Hodges, Joseph T. Naumenko, Olga V. Polyansky, Oleg L. Rothman, Laurence S. Toth, Robert A. Vandaele, Ann Carine Zobov, Nikolai F. Fally, Sophie Fazliev, Alexander Z. Furtenbacher, Tibor Gordon, Iouli E. Hu, Shui-Ming Mikhailenko, Semen N. Voronin, Boris A. TI IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part II Energy levels and transition wavenumbers for (HDO)-O-16, (HDO)-O-17, and (HDO)-O-18 SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Water vapor; Transition wavenumbers; Atmospheric physics; Energy levels; MARVEL; Information system; Database; W@DIS; Infrared spectra; Microwave spectra; (HDO)-O-16; (HDO)-O-17; (HDO)-O-18 ID FOURIER-TRANSFORM SPECTROSCOPY; LASER-ABSORPTION SPECTROSCOPY; BEAM-MASER SPECTROSCOPY; HETERODYNE FREQUENCY MEASUREMENTS; LORENTZ-BROADENING COEFFICIENTS; LINE-SHIFT COEFFICIENTS; HIGH-RESOLUTION; CM(-1) REGION; MU-M; HYPERFINE STRUCTURE AB This is the second of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, pressure dependences, and energy levels, with associated critically reviewed assignments and uncertainties, for all the main isotopologues of water. This article presents energy levels and line positions of the following singly deuterated isotopologues of water: (HDO)-O-16, (HDO)-O-17, and (HDO)-O-18. The MARVEL (measured active rotational-vibrational energy levels) procedure is used to determine the levels, the lines, and their self-consistent uncertainties for the spectral regions 0-22708, 0-1674, and 0-12 105 cm(-1) for (HDO)-O-16, (HDO)-O-17, and (HDO)-O-18, respectively. For (HDO)-O-16, 54 740 transitions were analyzed from 76 sources, the lines come from spectra recorded both at room temperature and from hot samples. These lines correspond to 36 690 distinct assignments and 8818 energy levels. For (HDO)-O-17, only 485 transitions could be analyzed from three sources; the lines correspond to 162 MARVEL energy levels. For (HDO)-O-18, 8729 transitions were analyzed from 11 sources and these lines correspond to 1864 energy levels. The energy levels are checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators. This comparison shows that the measured transitions account for about 86% of the anticipated absorbance of (HDO)-O-16 at 296 K and that the transitions predicted by the MARVEL energy levels account for essentially all the remaining absorbance. The extensive list of MARVEL lines and levels obtained are given in the Supplementary Material of this article, as well as in a distributed information system applied to water, W@DIS, where they can easily be retrieved. In addition, the transition and energy level information for (H2O)-O-17 and (H2O)-O-18, given in the first paper of this series [Tennyson, et al. J Quant Spectr Rad Transfer 2009;110:573-96], has been updated. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Tennyson, Jonathan; Polyansky, Oleg L.] Univ London Univ Coll, Dept Phys & Astron, London WC1E 6BT, England. [Bernath, Peter F.] Univ York, York YO10 5DD, N Yorkshire, England. [Brown, Linda R.; Toth, Robert A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Campargue, Alain] Univ Grenoble 1, Grenoble, France. [Csaszar, Attila G.; Furtenbacher, Tibor] Eotvos Lorand Univ, Budapest, Hungary. [Daumont, Ludovic] Univ Reims, Reims, France. [Gamache, Robert R.] Univ Massachusetts, Lowell, MA USA. [Hodges, Joseph T.] NIST, Gaithersburg, MD 20899 USA. [Naumenko, Olga V.; Fazliev, Alexander Z.; Mikhailenko, Semen N.; Voronin, Boris A.] Russian Acad Sci, VE Zuev Inst Atmospher Opt, Tomsk 634021, Russia. [Polyansky, Oleg L.; Zobov, Nikolai F.] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod, Russia. [Rothman, Laurence S.; Gordon, Iouli E.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Vandaele, Ann Carine] Inst Aeron Spatiale Belgique, B-1180 Brussels, Belgium. [Fally, Sophie] Univ Libre Bruxelles, Brussels, Belgium. [Hu, Shui-Ming] Univ Sci & Technol China, Lab Bond Select Chem, Hefei 230026, Peoples R China. RP Tennyson, J (reprint author), Univ London Univ Coll, Dept Phys & Astron, Gower St, London WC1E 6BT, England. EM j.tennyson@ucl.ac.UK RI Csaszar, Attila/A-5241-2009; Hu, Shuiming/C-4287-2008; Bernath, Peter/B-6567-2012; Tennyson, Jonathan/I-2222-2012; Voronin, Boris/A-3444-2014; OI Hu, Shuiming/0000-0002-1565-8468; Bernath, Peter/0000-0002-1255-396X; Tennyson, Jonathan/0000-0002-4994-5238; Voronin, Boris/0000-0002-8743-5554; Gordon, Iouli/0000-0003-4763-2841; Rothman, Laurence/0000-0002-3837-4847 FU International Union of Pure and Applied Chemistry [2004-035-1-100]; UK Natural Environment Research Council, the Royal Society [WWLC-008535-(reintegration) MCA FP6 EC]; Scientific Research Fund. of Hungary [OTKA K77825]; European Union; Russian Foundation for Basic Research; Belgian Federal Science Policy Office [EV/35/3A, SD/AT/01A, PRODEX 1514901NLSFe(IC)]; Communaute de Belgique (Action de Recherche Concertees); NASA [NNX08AD92G]; National Science Foundation [ATM-0803135]; CNRS (INSU) FX We all thank the International Union of Pure and Applied Chemistry for funding under project 2004-035-1-100 (A database of water transitions from experiment and theory). In addition, this work has received partial support from the UK Natural Environment Research Council, the Royal Society, Grant WWLC-008535-(reintegration) MCA FP6 EC, the Scientific Research Fund. of Hungary (Grant OTKA K77825), the European Union QUASAAR Marie Curie research training network, NATO, the Russian Foundation for Basic Research, the Belgian Federal Science Policy Office (contracts EV/35/3A, SD/AT/01A, PRODEX 1514901NLSFe(IC)), the Belgian National Fund for Scientific Research (FRFC contracts), the Communaute de Belgique (Action de Recherche Concertees), the NASA laboratory astrophysics program, NASA Earth Observing System (E0S), under Grant NNX08AD92G, the National Science Foundation, through Grant no. ATM-0803135, and the Programme National LEFE (CHAT) of CNRS (INSU). Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 150 TC 82 Z9 89 U1 8 U2 46 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD OCT PY 2010 VL 111 IS 15 SI SI BP 2160 EP 2184 DI 10.1016/j.jqsrt.2010.06.012 PG 25 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 643CE UT WOS:000281269800004 ER PT J AU Carpenter, MH Nordstrom, J Gottlieb, D AF Carpenter, Mark H. Nordstrom, Jan Gottlieb, David TI Revisiting and Extending Interface Penalties for Multi-domain Summation-by-Parts Operators SO JOURNAL OF SCIENTIFIC COMPUTING LA English DT Article DE Summation-by-parts (SBP); High-order finite difference; Finite element; DG; Numerical stability; Interface conditions; Conservation; Applied and numerical mathematics ID FINITE-DIFFERENCE APPROXIMATIONS; DISCONTINUOUS GALERKIN METHODS; NAVIER-STOKES EQUATIONS; BOUNDARY-VALUE-PROBLEMS; ELLIPTIC PROBLEMS; SPECTRAL METHODS; ORDER; DISSIPATION; ACCURACY; SYSTEMS AB A general interface procedure is presented for multi-domain collocation methods satisfying the summation-by-parts (SBP) spatial discretization convention. Unlike more traditional operators (e.g. FEM) applied to the advection-diffusion equation, the new procedure penalizes the solution and the first p derivatives across the interface. The combined interior/interface operators are proven to be pointwise stable, and conservative, although accuracy deteriorates for pa parts per thousand yen2. Penalties between two different sets of variables are compared (motivated by FEM primal and flux formulations), and are shown to be equivalent for certain choices of penalty parameters. Extensive validation studies are presented using two classes of high-order SBP operators: (1) central finite difference, and (2) Legendre spectral collocation. C1 [Carpenter, Mark H.] NASA, Langley Res Ctr, Computat Aerosci Branch, Hampton, VA 23681 USA. [Nordstrom, Jan] FOI, Computat Phys Dept, S-16490 Stockholm, Sweden. [Nordstrom, Jan] Dept Informat Technol, S-75105 Uppsala, Sweden. [Nordstrom, Jan] KTH Royal Inst Technol, Dept Aeronaut & Vehicle Engn, S-10044 Stockholm, Sweden. RP Carpenter, MH (reprint author), NASA, Langley Res Ctr, Computat Aerosci Branch, Hampton, VA 23681 USA. EM mark.h.carpenter@nasa.gov; Jan.Nordstrom@foi.se OI Nordstrom, Jan/0000-0002-7972-6183 NR 31 TC 28 Z9 28 U1 0 U2 3 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0885-7474 J9 J SCI COMPUT JI J. Sci. Comput. PD OCT PY 2010 VL 45 IS 1-3 BP 118 EP 150 DI 10.1007/s10915-009-9301-5 PG 33 WC Mathematics, Applied SC Mathematics GA 642WB UT WOS:000281250600007 ER PT J AU Schiller, NH Cabell, RH Fuller, CR AF Schiller, Noah H. Cabell, Randolph H. Fuller, Chris R. TI Decentralized control of sound radiation using iterative loop recovery SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID STRUCTURAL ACOUSTIC CONTROL; ACTIVE CONTROL; PANELS; NOISE AB A decentralized model-based control strategy is designed to reduce low-frequency sound radiation from periodically stiffened panels. While decentralized control systems tend to be scalable, performance can be limited due to modeling error introduced by the unmodeled interaction between neighboring control units. Since bounds on modeling error are not known in advance, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is evaluated numerically using a model of a stiffened aluminum panel that is representative of the sidewall of an aircraft. Simulations demonstrate that the iterative approach can achieve significant reductions in radiated sound power from the stiffened panel without destabilizing neighboring control units. (C) 2010 Acoustical Society of America. [DOI: 10.1121/1.3479541] C1 [Schiller, Noah H.; Cabell, Randolph H.] NASA, Langley Res Ctr, Struct Acoust Branch, Hampton, VA 23681 USA. [Fuller, Chris R.] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA. RP Schiller, NH (reprint author), NASA, Langley Res Ctr, Struct Acoust Branch, Mail Stop 463, Hampton, VA 23681 USA. EM noah.h.schiller@nasa.gov NR 24 TC 1 Z9 2 U1 1 U2 3 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD OCT PY 2010 VL 128 IS 4 BP 1729 EP 1737 DI 10.1121/1.3479541 PN 1 PG 9 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 669FA UT WOS:000283331100029 PM 20968346 ER PT J AU Tan, Y Longtin, JP Sampath, S Zhu, DM AF Tan, Yang Longtin, Jon P. Sampath, Sanjay Zhu, Dongming TI Temperature-Gradient Effects in Thermal Barrier Coatings: An Investigation Through Modeling, High Heat Flux Test, and Embedded Sensor SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID PLASMA-SPRAYED YSZ; STABILIZED CUBIC ZIRCONIA; REFRACTIVE-INDEX; CONDUCTIVITY; MICROSTRUCTURE; DELAMINATION; DIFFUSIVITY; YTTRIA AB The harsh thermal environment in gas turbines, including elevated temperatures and high heat fluxes, induces significant thermal gradients in ceramic thermal barrier coatings (TBCs), which are used to protect metallic components. However, the thermal conductivity of plasma-sprayed TBC increases with exposure at high temperatures mainly due to sintering phenomena and possible phase transformation, resulting in coating performance degradation and potential thermal runaway issues. An analytical thermal model and experimentally obtained coating thermal conductivity data are used to determine the coating through-thickness temperature profile and effective thermal conductivity under gradient conditions at high temperatures. High heat flux tests are then performed on TBCs to evaluate coating thermal behavior under temperature gradients close to service conditions. Coating internal temperature during the tests was also measured by thermally sprayed embedded thermocouples within the top coat. This combined approach provides a sintering map with a new model and allows for the assessment of temperature-gradient effects on the thermal performance of plasma-sprayed TBCs. C1 [Tan, Yang; Sampath, Sanjay] SUNY Stony Brook, Dept Mat Sci & Engn, Ctr Thermal Spray Res, Stony Brook, NY 11794 USA. [Tan, Yang; Longtin, Jon P.; Sampath, Sanjay] SUNY Stony Brook, Dept Mech Engn, Stony Brook, NY 11794 USA. [Zhu, Dongming] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Tan, Y (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Ctr Thermal Spray Res, Stony Brook, NY 11794 USA. EM yangtan@gmail.com FU U.S. National Science Foundation [DMI-0428708] FX This work was supported by the U.S. National Science Foundation under Award DMI-0428708. NR 33 TC 1 Z9 1 U1 3 U2 14 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD OCT PY 2010 VL 93 IS 10 BP 3418 EP 3426 DI 10.1111/j.1551-2916.2010.03889.x PG 9 WC Materials Science, Ceramics SC Materials Science GA 660JN UT WOS:000282637200096 ER PT J AU Jain, R Yeo, H Chopra, I AF Jain, Rohit Yeo, Hyeonsoo Chopra, Inderjit TI Computational Fluid Dynamics-Computational Structural Dynamics Analysis of Active Control of Helicopter Rotor for Performance Improvement SO JOURNAL OF THE AMERICAN HELICOPTER SOCIETY LA English DT Article; Proceedings Paper CT 65th Annual forum on American-Helicopter-Society CY MAY 27-29, 2009 CL Grapevine, TX SP Amer Helicopter Soc ID SMART STRUCTURES; PREDICTION; TECHNOLOGY; AIRLOADS; SYSTEMS AB Three morphing rotor concepts, namely trailing-edge deflection (TED), leading-edge deflection (LED), and active twist, are investigated to improve rotor performance. This is a simulation-based investigation using both computational fluid dynamics (CFD)-computational structural dynamics (CSD) coupling and lifting-line-based comprehensive analysis. Coupled aero-structural simulations are performed to account for blade structural response due to aerodynamic loading generated by rotor morphing and pilot control to maintain the rotor trim state. A full-scale UH-60A Blackhawk rotor at two key flight conditions high-speed forward flight and high-thrust forward flight is studied. Numerical experiments are conducted for harmonic and nonharmonic deployment strategies of the three morphing concepts. It is found that at high-speed forward flight TED and active twist are more effective than LED; the improvements in rotor lift-over-effective drag (L/D(e)) are about 8.4% and 7.3%, respectively. The improvements are due to the additional lift that is generated on the advancing side in the region of negative blade tip loading without any drag increase. They result from an increase in the blade angle of attack due to the pitch-up moments induced by the TED, and in the case of active twist direct change in blade pitch. At the high-thrust condition, LED performs better than the other two concepts the improvement in L/D(e) is about 18.2%. Retreating side stall alleviation is the main cause for this improvement. C1 [Jain, Rohit] HyPerComp Inc, Westlake Village, CA USA. [Chopra, Inderjit] Univ Maryland, Alfred Gessow Rotorcraft Ctr, College Pk, MD 20742 USA. [Yeo, Hyeonsoo] NASA, Ames Res Ctr, USA Res Dev & Engn Command, Aeroflightdynam Directorate AMRDEC, Moffett Field, CA 94035 USA. RP Jain, R (reprint author), HyPerComp Inc, Westlake Village, CA USA. EM rkj@hypercomp.net NR 35 TC 10 Z9 11 U1 1 U2 6 PU AMER HELICOPTER SOC INC PI ALEXANDRIA PA 217 N WASHINGTON ST, ALEXANDRIA, VA 22314 USA SN 0002-8711 J9 J AM HELICOPTER SOC JI J. Am. Helicopter Soc. PD OCT PY 2010 VL 55 IS 4 AR 042004 DI 10.4050/JAHS.55.042004 PG 14 WC Engineering, Aerospace SC Engineering GA 745TJ UT WOS:000289189100004 ER PT J AU Ameri, AA Rigby, DL Steinthorsson, E Heidmann, J Fabian, JC AF Ameri, Ali A. Rigby, David L. Steinthorsson, Erlendur Heidmann, James Fabian, John C. TI Unsteady Analysis of Blade and Tip Heat Transfer as Influenced by the Upstream Momentum and Thermal Wakes SO JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME LA English DT Article DE blades; cooling; engines; rotors; turbines; wakes ID TURBINE; EFFICIENCY; STAGE AB The effect of the upstream wake on the time averaged rotor blade heat transfer was numerically investigated. The geometry and flow conditions of the first stage turbine blade of GE's E(3) engine with a tip clearance equal to 2% of the span were utilized. The upstream wake had both a total pressure and temperature deficit. The rotor inlet conditions were determined from a steady analysis of the cooled upstream vane. Comparisons between the time average of the unsteady rotor blade heat transfer and the steady analysis, which used the average inlet conditions of unsteady cases, are made to illuminate the differences between the steady and unsteady calculations. To help in the understanding of the differences between steady and unsteady results on one hand and to evaluate the effect of the total temperature wake on the other, separate calculations were performed to obtain the rotor heat transfer and adiabatic wall temperatures. It was found that the Nusselt number distribution for the time average of unsteady heat transfer is invariant if normalized by the difference in the adiabatic and wall temperatures. It appeared though that near the endwalls the Nusselt number distribution did depend on the thermal wake strength. Differences between steady and time averaged unsteady heat transfer results of up to 20% were seen on the blade surface. Differences were less on the blade tip surface. [DOI: 10.1115/1.3213549] C1 [Ameri, Ali A.] Ohio State Univ, Dept Aerosp Engn, Columbus, OH 43210 USA. [Rigby, David L.] NASA, Glenn Res Ctr, ASRC Aerosp, Cleveland, OH 44135 USA. [Steinthorsson, Erlendur] A&E Consulting, Westlake, OH 44140 USA. RP Ameri, AA (reprint author), Ohio State Univ, Dept Aerosp Engn, Columbus, OH 43210 USA. NR 20 TC 1 Z9 1 U1 0 U2 0 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0889-504X J9 J TURBOMACH JI J. Turbomach.-Trans. ASME PD OCT PY 2010 VL 132 IS 4 AR 041007 DI 10.1115/1.3213549 PG 7 WC Engineering, Mechanical SC Engineering GA 594ZI UT WOS:000277580000007 ER PT J AU Kopasakis, G Connolly, JW Paxson, DE Ma, P AF Kopasakis, George Connolly, Joseph W. Paxson, Daniel E. Ma, Peter TI Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research SO JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME LA English DT Article DE aerospace components; aerospace propulsion; aircraft; compressors; elasticity; jet engines; vehicle dynamics AB Under the NASA Fundamental Aeronautics Program, the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long, slim body aircrafts with pronounced aeroservoelastic modes. These modes can potentially couple with propulsion system dynamics, leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena, an integrated model is needed that includes both airframe structural dynamics and the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle aeropropulsoservoelastic model and for propulsion efficiency studies. [DOI: 10.1115/1.3192148] C1 [Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Ma, Peter] Univ Florida, Gainesville, FL 32611 USA. RP Kopasakis, G (reprint author), NASA, Glenn Res Ctr, 21000 Brookpk Rd,Mail Stop 77-1, Cleveland, OH 44135 USA. EM gkopasakis@nasa.gov NR 8 TC 2 Z9 2 U1 0 U2 4 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0889-504X J9 J TURBOMACH JI J. Turbomach.-Trans. ASME PD OCT PY 2010 VL 132 IS 4 AR 041003 DI 10.1115/1.3192148 PG 8 WC Engineering, Mechanical SC Engineering GA 594ZI UT WOS:000277580000003 ER PT J AU Collinson, GA Kataria, DO AF Collinson, Glyn A. Kataria, Dhiren O. TI On variable geometric factor systems for top-hat electrostatic space plasma analyzers SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE variable geometric factor; space plasma analyzer; electrostatic analyzer; electron spectrometer ID MISSION; SPECTROMETER; CLUSTER AB Even in the relatively small region of space that is the Earth's magnetosphere, ion and electron fluxes can vary by several orders of magnitude. Top-hat electrostatic analyzers currently do not possess the dynamic range required to sample plasma under all conditions. The purpose of this study was to compare, through computer simulation, three new electrostatic methods that would allow the sensitivity of a sensor to be varied through control of its geometric factor (GF) (much like an aperture on a camera). The methods studied were inner filter plates, split hemispherical analyzer (SHA) and top-cap electrode. This is the first discussion of the filter plate concept and also the first study where all three systems are studied within a common analyzer design, so that their relative merits could be fairly compared. Filter plates were found to have the important advantage that they facilitate the reduction in instrument sensitivity whilst keeping all other instrument parameters constant. However, it was discovered that filter plates have numerous disadvantages that make such a system impracticable for a top-hat electrostatic analyzer. It was found that both the top-cap electrode and SHA are promising variable geometric factor system (VGFS) concepts for implementation into a top-hat electrostatic analyzer, each with distinct advantages over the other. C1 [Collinson, Glyn A.; Kataria, Dhiren O.] Mullard Space Sci Lab, Holmbury, England. [Collinson, Glyn A.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. RP Collinson, GA (reprint author), Mullard Space Sci Lab, Holmbury, England. EM gac@mssl.ucl.ac.uk RI Collinson, Glyn/D-5700-2012 FU UK Science and Technology Facilities Council FX This work was supported by UK Science and Technology Facilities Council studentship funding. The authors wish to thank Rudy Frahm for assistance in preparing the manuscript, and Robert Beddington for his input on optimizing our simulation method. NR 22 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD OCT PY 2010 VL 21 IS 10 AR 105903 DI 10.1088/0957-0233/21/10/105903 PG 16 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 649QG UT WOS:000281787100059 ER PT J AU Radcliffe, E Naguib, A Humphreys, WM AF Radcliffe, E. Naguib, A. Humphreys, W. M., Jr. TI A novel design of a feedback-controlled optical microphone for aeroacoustics research SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE aeroacoustics and atmospheric sound; acoustical measurements and instrumentation; control systems; fibre-optic instruments ID DISPLACEMENT DETECTION AB This study constitutes a proof of concept of a new feedback-controlled optical microphone for potential use in phased 'beam-forming' arrays utilized in aeroacoustics research. In the new microphone design, a fiber-optic lever sensor is employed as a means for measuring the center displacement of a stretched thin membrane caused by incident acoustic pressure. The membrane is constructed from polyvinylidene-fluoride which exhibits piezoelectric properties allowing actuation of the membrane in a feedback system to nullify the optically detected deflection. The feedback provision was used to actively modify sensor parameters, most notably membrane stiffness, resonant frequency and damping. Testing of a prototype microphone was performed using a plane wave tube calibrator. Using feedback control, the fundamental resonant frequency of the prototype capsule was increased from 3.61 to 5.1 kHz, a 41% increase. Also, feedback was used for dc attenuation, equivalent to 'stiffening' of the microphone membrane. The results demonstrate that feedback control is an effective method for improving the microphone's transient response, as well as for 'self-tuning' and matching of microphone parameters in sensing arrays. C1 [Radcliffe, E.; Naguib, A.] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA. [Humphreys, W. M., Jr.] NASA, Adv Sensing & Opt Measurement Branch, Langley Res Ctr, Hampton, VA 23681 USA. RP Radcliffe, E (reprint author), Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA. EM radcli14@msu.edu; naguib@egr.msu.edu; william.m.humphreys@nasa.gov FU NASA [NNX08AO07H] FX This work was generously supported by the NASA GSRP fellowship, grant no NNX08AO07H. Additionally, gratitude is extended toward Dr Allan Zuckerwar at NASA Langley Research Center for his shared expertise in fiber-optic sensing and microphone design. NR 28 TC 2 Z9 2 U1 2 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD OCT PY 2010 VL 21 IS 10 AR 105208 DI 10.1088/0957-0233/21/10/105208 PG 11 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 649QG UT WOS:000281787100017 ER PT J AU Atli, KC Karaman, I Noebe, RD Garg, A Chumlyakov, YI Kireeva, IV AF Atli, K. C. Karaman, I. Noebe, R. D. Garg, A. Chumlyakov, Y. I. Kireeva, I. V. TI Improvement in the Shape Memory Response of Ti50.5Ni24.5Pd25 High-Temperature Shape Memory Alloy with Scandium Microalloying SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID THERMOELASTIC MARTENSITIC TRANSFORMATIONS; TI-PD; THERMODYNAMIC ANALYSIS; SITE PREFERENCE; NITI ALLOY; ADDITIONS; BEHAVIOR; CU; MICROSTRUCTURE; HYSTERESIS AB A Ti50.5Ni24.5Pd25 high-temperature shape memory alloy (HTSMA) is microalloyed with 0.5 at. pct scandium (Sc) to enhance its shape-memory characteristics, in particular, dimensional stability under repeated thermomechanical cycles. For both Ti50.5Ni24.5Pd25 and the Sc-alloyed material, differential scanning calorimetry is conducted for multiple cycles to characterize cyclic stability of the transformation temperatures. The microstructure is evaluated using electron microscopy, X-ray diffractometry, and wavelength dispersive spectroscopy. Isobaric thermal cycling experiments are used to determine transformation temperatures, dimensional stability, and work output as a function of stress. The Sc-doped alloy displays more stable shape memory response with smaller irrecoverable strain and narrower thermal hysteresis than the baseline ternary alloy. This improvement in performance is attributed to the solid solution hardening effect of Sc. C1 [Atli, K. C.; Karaman, I.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Noebe, R. D.; Garg, A.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Chumlyakov, Y. I.; Kireeva, I. V.] Siberian Phy Tech Inst, Tomsk 634050, Russia. RP Atli, KC (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. EM ikaraman@tamu.edu RI Karaman, Ibrahim/E-7450-2010; yuriy, chumlyakov/C-6033-2009; Atli, Kadri/D-6978-2013; Kireeva, Irina/E-1817-2014; Chumlyakov, Yuriy/R-6496-2016 OI Karaman, Ibrahim/0000-0001-6461-4958; Atli, Kadri/0000-0002-4807-2113; FU NASA [NNX07AB56A] FX This study has been supported by the NASA Fundamental Aeronautics Program, Subsonic Fixed Wing Project, through Cooperative Agreement No. NNX07AB56A. The authors thank Dr. Ray Guillemette, Texas A&M University Geology & Geophysics Department, for the microprobe analyses and the Shape Memory Alloy and Active Structures Group, NASA Glenn Research Center, for insightful discussions. NR 41 TC 29 Z9 32 U1 6 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD OCT PY 2010 VL 41A IS 10 BP 2485 EP 2497 DI 10.1007/s11661-010-0245-z PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 643UD UT WOS:000281323900008 ER PT J AU Jenniskens, P Shaddad, MH AF Jenniskens, P. Shaddad, M. H. TI 2008 TC3: The small asteroid with an impact SO METEORITICS & PLANETARY SCIENCE LA English DT Editorial Material C1 [Jenniskens, P.] NASA Ames Res Ctr, Washington, DC USA. [Shaddad, M. H.] Univ Khartoum, Dept Phys, Khartoum, Sudan. NR 0 TC 6 Z9 6 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT-NOV PY 2010 VL 45 IS 10-11 BP 1553 EP 1556 DI 10.1111/j.1945-5100.2010.01156.x PG 4 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 700QP UT WOS:000285759700001 ER PT J AU Shaddad, MH Jenniskens, P Numan, D Kudoda, AM Elsir, S Riyad, IF Ali, AE Alameen, M Alameen, NM Eid, O Osman, AT AbuBaker, MI Yousif, M Chesley, SR Chodas, PW Albers, J Edwards, WN Brown, PG Kuiper, J Friedrich, JM AF Shaddad, Muawia H. Jenniskens, Peter Numan, Diyaa Kudoda, Ayman M. Elsir, Saadia Riyad, Ihab F. Ali, Awad Elkareem Alameen, Mohammed Alameen, Nada M. Eid, Omer Osman, Ahmed T. AbuBaker, Mohamed I. Yousif, Mohamed Chesley, Steven R. Chodas, Paul W. Albers, Jim Edwards, Wayne N. Brown, Peter G. Kuiper, Jacob Friedrich, Jon M. TI The recovery of asteroid 2008 TC3 SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID TAGISH LAKE METEORITE; FALL; DYNAMICS; ORBIT AB On October 7, 2008, asteroid 2008 TC3 impacted Earth and fragmented at 37 km altitude above the Nubian Desert in northern Sudan. The area surrounding the asteroid's approach path was searched, resulting in the first recovery of meteorites from an asteroid observed in space. This was also the first recovery of remains from a fragile "cometary" PE = IIIa/b type fireball. In subsequent searches, over 600 mostly small 0.2-379 g meteorites (named "Almahata Sitta") with a total mass 10.7 kg were recovered from a 30 x 7 km area. Meteorites fell along the track at 1.3 kg km-1, nearly independent of mass between 1 and 400 g, with a total fallen mass of 39 +/- 6 kg. The strewn field was shifted nearly 1.8 km south from the calculated approach path. The influence of winds on the distribution of the meteorites, and on the motion of the dust train, is investigated. The majority of meteorites are ureilites with densities around 2.8 g cm-3, some of an anomalous (porous, high in carbon) polymict ureilite variety with densities as low as 1.5 g cm-3. In addition, an estimated 20-30% (in mass) of recovered meteorites were ordinary, enstatite, and carbonaceous chondrites. Their fresh look and matching distribution of fragments in the strewn field imply that they were part of 2008 TC3. For that reason, they are all referred to as "Almahata Sitta." No ureilite meteorites were found that still held foreign clasts, suggesting that the asteroid's clasts were only loosely bound. C1 [Jenniskens, Peter; Albers, Jim] Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA. [Shaddad, Muawia H.; Numan, Diyaa; Kudoda, Ayman M.; Riyad, Ihab F.; Alameen, Mohammed; Alameen, Nada M.; Eid, Omer; Osman, Ahmed T.; AbuBaker, Mohamed I.; Yousif, Mohamed] Univ Khartoum, Dept Phys, Khartoum 11115, Sudan. [Elsir, Saadia] Juba Univ, Dept Phys, Khartoum 11115, Juba, Sudan. [Ali, Awad Elkareem] Univ Khartoum, Dept Chem, Khartoum 11115, Sudan. [Chesley, Steven R.; Chodas, Paul W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Edwards, Wayne N.; Brown, Peter G.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Edwards, Wayne N.] Nat Resources Canada, Canadian Hazards Informat Serv, Ottawa, ON K1A 0Y3, Canada. [Kuiper, Jacob] Royal Netherlands Meteorol Inst, NL-3732 GK De Bilt, Netherlands. [Friedrich, Jon M.] Fordham Univ, Dept Chem, Bronx, NY 10458 USA. [Friedrich, Jon M.] Amer Museum Nat Hist, Dept Earth & Planetary Sci, New York, NY 10025 USA. RP Jenniskens, P (reprint author), Carl Sagan Ctr, SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. EM petrus.m.jenniskens@nasa.gov FU University of Khartoum, Department of Physics; National Science Foundation-Earth Sciences [EAR-0622171]; Department of Energy-Geosciences [DE-FG02-94ER14466]; State of Illinois; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NASA [NNX09AD92, NNX08AO64G]; Faculty of Sciences FX We thank the many students and staff of the University of Khartoum for their support in recovering the meteorites. The University of Khartoum, Department of Physics and the Faculty of Sciences sponsored the search efforts. Portions of this work were performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), of Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences (EAR-0622171), Department of Energy-Geosciences (DE-FG02-94ER14466) and the State of Illinois. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors would like to thank the British Atmospheric Data Centre (BADC) for the UKMO meteorological data. J.M.F. is supported by NASA under the Planetary Geology and Geophysics program through grant NNX09AD92. P.J. is supported by NASA under the Planetary Astronomy program through grant NNX08AO64G. NR 22 TC 23 Z9 23 U1 0 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT-NOV PY 2010 VL 45 IS 10-11 BP 1557 EP 1589 DI 10.1111/j.1945-5100.2010.01116.x PG 33 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 700QP UT WOS:000285759700002 ER PT J AU Jenniskens, P Vaubaillon, J Binzel, RP DeMeo, FE Nesvorny, D Bottke, WF Fitzsimmons, A Hiroi, T Marchis, F Bishop, JL Vernazza, P Zolensky, ME Herrin, JS Welten, KC Meier, MMM Shaddad, MH AF Jenniskens, Peter Vaubaillon, Jeremie Binzel, Richard P. DeMeo, Francesca E. Nesvorny, David Bottke, William F. Fitzsimmons, Alan Hiroi, Takahiro Marchis, Franck Bishop, Janice L. Vernazza, Pierre Zolensky, Michael E. Herrin, Jason S. Welten, Kees C. Meier, Matthias M. M. Shaddad, Muawia H. TI Almahata Sitta (=asteroid 2008 TC3) and the search for the ureilite parent body SO METEORITICS & PLANETARY SCIENCE LA English DT Review ID NEAR-EARTH ASTEROIDS; DIGITAL SKY SURVEY; SOLAR-SYSTEM; MAIN-BELT; VISIBLE SPECTROSCOPY; ANTARCTIC UREILITES; TERRESTRIAL PLANETS; BASALTIC ASTEROIDS; THERMAL EVOLUTION; 3200 PHAETHON AB This article explores what the recovery of 2008 TC3 in the form of the Almahata Sitta meteorites may tell us about the source region of ureilites in the main asteroid belt. An investigation is made into what is known about asteroids with roughly the same spectroscopic signature as 2008 TC3. A population of low-inclination near-Earth asteroids is identified with spectra similar to 2008 TC3. Five asteroid families in the Main Belt, as well as a population of ungrouped asteroids scattered in the inner and central belts, are identified as possible source regions for this near-Earth population and 2008 TC3. Three of the families are ruled out on dynamical and spectroscopic grounds. New near-infrared spectra of 142 Polana and 1726 Hoffmeister, lead objects in the two other families, also show a poor match to Almahata Sitta. Thus, there are no Main Belt spectral analogs to Almahata Sitta currently known. Space weathering effects on ureilitic materials have not been investigated, so that it is unclear how the spectrum of the Main Belt progenitor may look different from the spectra of 2008 TC3 and the Almahata Sitta meteorites. Dynamical arguments are discussed, as well as ureilite petrogenesis and parent body evolution models, but these considerations do not conclusively point to a source region either, other than that 2008 TC3 probably originated in the inner asteroid belt. C1 [Jenniskens, Peter; Marchis, Franck; Bishop, Janice L.] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Vaubaillon, Jeremie] IMCCE, Observ Paris, FR-75014 Paris, France. [Binzel, Richard P.; DeMeo, Francesca E.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [DeMeo, Francesca E.] LESIA, Observ Paris, FR-92195 Meudon, France. [Nesvorny, David; Bottke, William F.] SW Res Inst, Dept Space Studies, Boulder, CO 80302 USA. [Fitzsimmons, Alan] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Hiroi, Takahiro] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Vernazza, Pierre] ESTEC, ESA, NL-2200 AG Noordwijk, Netherlands. [Zolensky, Michael E.; Herrin, Jason S.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Welten, Kees C.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Meier, Matthias M. M.] ETH, Dept Earth Sci, CH-8092 Zurich, Switzerland. [Shaddad, Muawia H.] Univ Khartoum, Dept Phys & Astron, Khartoum 11115, Sudan. RP Jenniskens, P (reprint author), SETI Inst, Carl Sagan Ctr, 189 Bernardo Ave, Mountain View, CA 94043 USA. EM pjenniskens@mail.arc.nasa.gov RI Marchis, Franck/H-3971-2012; OI Herrin, Jason/0000-0002-2452-244X; Meier, Matthias/0000-0002-7179-4173 FU National Science Foundation [0506716]; Hayabusa program; NASA FX This article was improved greatly from comments by referees Alberto Cellino, Edward Scott, David W. Mittlefehldt, and associate editor Cyrena Goodrich. We also thank Lucy McFadden for helpful discussions, and Beth E. Clark and Schelte J. Bus for sharing published data. We thank the many students and staff of the University of Khartoum for their support in recovering the meteorites. The near-IR spectra discussed in this article were measured at the IRTF telescope at Manua Kea, Hawaii in October and November of 2009, as part of the MIT-UH-IRTF Joint Campaign for NEO Spectral Reconnaissance. All of the data utilized in this publication (unless so specified) were obtained and made available by the MIT-UH-IRTF Joint Campaign for NEO Reconnaissance. The IRTF is operated by the University of Hawaii under Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration, Office of Space Science, Planetary Astronomy Program. The MIT component of this work is supported by the National Science Foundation under Grant No. 0506716. M. E. Z. acknowledges support from the Hayabusa program. P. J. is supported by a grant from the NASA Planetary Astronomy Program. NR 138 TC 24 Z9 24 U1 0 U2 9 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT-NOV PY 2010 VL 45 IS 10-11 BP 1590 EP 1617 DI 10.1111/j.1945-5100.2010.01153.x PG 28 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 700QP UT WOS:000285759700003 ER PT J AU Zolensky, M Herrin, J Mikouchi, T Ohsumi, K Friedrich, J Steele, A Rumble, D Fries, M Sandford, S Milam, S Hagiya, K Takeda, H Satake, W Kurihara, T Colbert, M Hanna, R Maisano, J Ketcham, R Goodrich, C Le, L Robinson, G Martinez, J Ross, K Jenniskens, P Shaddad, MH AF Zolensky, Michael Herrin, Jason Mikouchi, Takashi Ohsumi, Kazumasa Friedrich, Jon Steele, Andrew Rumble, Douglas Fries, Marc Sandford, Scott Milam, Stefanie Hagiya, Kenji Takeda, Hiroshi Satake, Wataru Kurihara, Taichi Colbert, Matthew Hanna, Romy Maisano, Jessie Ketcham, Richard Goodrich, Cyrena Le, Loan Robinson, GeorgAnn Martinez, James Ross, Kent Jenniskens, Peter Shaddad, Muawia H. TI Mineralogy and petrography of the Almahata Sitta ureilite SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID PARENT BODY; ANTARCTIC UREILITES; POLYMICT UREILITE; CRYSTAL-CHEMISTRY; ORIGIN; METEORITES; CHONDRITES; PIGEONITE; EVOLUTION; IMPACT AB We performed a battery of analyses on 17 samples of the Almahata Sitta meteorite, identifying three main lithologies and several minor ones present as clasts. The main lithologies are (1) a pyroxene-dominated, very porous, highly reduced lithology, (2) a pyroxene-dominated compact lithology, and (3) an olivine-dominated compact lithology. Although it seems possible that all three lithologies grade smoothly into each other at the kg-scale, at the g-scale this is not apparent. The meteorite is a polymict ureilite, with some intriguing features including exceptionally variable porosity and pyroxene composition. Although augite is locally present in Almahata Sitta, it is a minor phase in most (but not all) samples we have observed. Low-calcium pyroxene (< 5 mole% wollastonite) is more abundant than compositionally defined pigeonite; however, we found that even the low-Ca pyroxene in Almahata Sitta has the monoclinic pigeonite crystal structure, and thus is properly termed pigeonite. As the major pyroxene in Almahata Sitta is pigeonite, and the abundance of pigeonite is generally greater than that of olivine, this meteorite might be called a pigeonite-olivine ureilite, rather than the conventional olivine-pigeonite ureilite group. The wide variability of lithologies in Almahata Sitta reveals a complex history, including asteroidal igneous crystallization, impact disruption, reheating and partial vaporization, high-temperature reduction and carbon burning, and re-agglomeration. C1 [Zolensky, Michael] NASA, ARES, Johnson Space Ctr, Houston, TX 77058 USA. [Herrin, Jason; Le, Loan; Robinson, GeorgAnn; Martinez, James; Ross, Kent] ESCG Jacobs, Houston, TX 77058 USA. [Mikouchi, Takashi; Takeda, Hiroshi; Satake, Wataru; Kurihara, Taichi] Univ Tokyo, Dept Earth & Planetary Sci, Bunkyo Ku, Tokyo 1130033, Japan. [Friedrich, Jon] Fordham Univ, Dept Chem, Bronx, NY 10458 USA. [Ohsumi, Kazumasa] JASRI, Sayo, Hyogo 6795198, Japan. [Friedrich, Jon] Amer Museum Nat Hist, Dept Earth & Planetary Sci, New York, NY 10024 USA. [Steele, Andrew; Rumble, Douglas] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Fries, Marc] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Sandford, Scott] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Milam, Stefanie] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hagiya, Kenji] Univ Hyogo, Grad Sch Life Sci, Kamigori, Hyogo 6781297, Japan. [Colbert, Matthew; Hanna, Romy; Maisano, Jessie; Ketcham, Richard] Univ Texas Austin, Univ Texas High Resolut Xray CT Facil, Austin, TX 78712 USA. [Goodrich, Cyrena] Planetary Sci Inst, Tucson, AZ 85719 USA. [Jenniskens, Peter] SETI Inst, Mountain View, CA 94043 USA. [Shaddad, Muawia H.] Univ Khartoum, Dept Phys & Astron, Khartoum 11115, Sudan. RP Zolensky, M (reprint author), NASA, ARES, Johnson Space Ctr, Houston, TX 77058 USA. EM michael.e.zolensky@nasa.gov RI Ketcham, Richard/B-5431-2011; Milam, Stefanie/D-1092-2012; OI Ketcham, Richard/0000-0002-2748-0409; Milam, Stefanie/0000-0001-7694-4129; Herrin, Jason/0000-0002-2452-244X FU NASA [NNX07AI48G] FX We are happy to acknowledge the work of the many alert individuals who discovered, observed, tracked, predicted the asteroid landing site, and finally located asteroid 2008 TC3. We especially thank the many students of the University of Khartoum who worked hard to recover the final asteroid samples in a harsh environment. None of us had grant funding specifically to support study of Almahata Sitta, but fortunately our grant institutions were lenient for such a fascinating project. Reviews by and other discussions with Makoto Kimura and Paul Warren resulted in a greatly improved manuscript. M. Z. was supported by the Hayabusa Mission and the Stardust Sample Analysis Program. P. J. was supported by a grant from NASA's Planetary Astronomy Program. D. R. thanks NASA for grant NNX07AI48G which supported oxygen isotope analyses. NR 54 TC 31 Z9 31 U1 0 U2 8 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT-NOV PY 2010 VL 45 IS 10-11 BP 1618 EP 1637 DI 10.1111/j.1945-5100.2010.01128.x PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 700QP UT WOS:000285759700004 ER PT J AU Cloutis, EA Hudon, P Romanek, CS Bishop, JL Reddy, V Gaffey, MJ Hardersen, PS AF Cloutis, E. A. Hudon, Pierre Romanek, Christopher S. Bishop, Janice L. Reddy, Vishnu Gaffey, Michael J. Hardersen, Paul S. TI Spectral reflectance properties of ureilites SO METEORITICS & PLANETARY SCIENCE LA English DT Review ID NORTHWEST AFRICA 1500; ANTARCTIC UREILITES; COOLING HISTORY; ORTHO-PYROXENE; CARBONACEOUS CHONDRITES; ASTEROID 25143-ITOKAWA; ISOTOPIC COMPOSITION; OPTICAL-PROPERTIES; CRYSTAL-CHEMISTRY; METEORITE SPECTRA AB The 0.35-2.6 mu m reflectance spectra of 18 ureilites have been examined in order to improve our understanding of the spectral reflectance properties of this meteorite class. Across this spectral range, ureilite spectra are characterized by a steep rise in reflectance over the 0.3 to approximately 0.7 mu m range, low overall reflectance (< 25%) and weak mafic iron silicate absorption bands in the 1 and 2 mu m region. The weakness of these bands and the low reflectance are attributed to the presence of dispersed graphite and related carbonaceous phases, metal, and possibly shock. Wavelength positions of the mafic silicate absorption bands span a range of values, but are consistent with the presence of pyroxene and olivine. Ureilite spectra generally exhibit blue slopes across the 0.7-2.6 mu m interval and exhibit many overall similarities to some carbonaceous chondrites. The weak features and spectral diversity of ureilites make reflectance spectroscopy-based identification of a ureilite parent body challenging. As terrestrial alteration of ureilites is prevalent, spectral studies of falls are most useful for determining the spectral properties of likely parent bodies. C1 [Cloutis, E. A.] Univ Winnipeg, Dept Geog, Winnipeg, MB R3B 2E9, Canada. [Hudon, Pierre] NASA, Astromat Res & Explorat Sci Off, Johnson Space Ctr, Houston, TX 77058 USA. [Hudon, Pierre] McGill Univ, Dept Min & Mat Engn, Montreal, PQ H3A 2B2, Canada. [Romanek, Christopher S.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Romanek, Christopher S.] Univ Georgia, Dept Geol, Aiken, SC 29802 USA. [Bishop, Janice L.] NASA, Carl Sagan Ctr, SETI Inst, Ames Res Ctr, Mountain View, CA 94043 USA. [Reddy, Vishnu; Gaffey, Michael J.; Hardersen, Paul S.] Univ N Dakota, Dept Space Studies, Grand Forks, ND 58202 USA. RP Cloutis, EA (reprint author), Univ Winnipeg, Dept Geog, 515 Portage Ave, Winnipeg, MB R3B 2E9, Canada. EM e.cloutis@uwinnipeg.ca RI Hardersen, Paul/N-9343-2014; OI Hardersen, Paul/0000-0002-0440-9095; Reddy, Vishnu/0000-0002-7743-3491 FU National Research Council of the United States; NSERC; Canadian Space Agency; University of Winnipeg FX We are grateful to John E. Gruener for collecting the X-ray patterns and to David W. Mittlefehldt and Craig S. Schwandt for help with the electron probe microanalysis. We thank the Meteorite Research Group of the NASA Johnson Space Center, the National Museum of Natural History of the Smithsonian Institution, and the Antarctic Meteorite Research Center of the National Institute of Polar Research for the allocations of meteorites. Thanks also to Tom Burbine, Lucy McFadden, and Dale Cruikshank for their reviews of this study and excellent comments. P. Hudon was supported by a Research Associateship Award of the National Research Council of the United States. E. Cloutis was supported by research grants and contracts from NSERC, the Canadian Space Agency, and the University of Winnipeg. NR 139 TC 22 Z9 22 U1 1 U2 3 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT-NOV PY 2010 VL 45 IS 10-11 BP 1668 EP 1694 DI 10.1111/j.1945-5100.2010.01065.x PG 27 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 700QP UT WOS:000285759700007 ER PT J AU Glavin, DP Aubrey, AD Callahan, MP Dworkin, JP Elsila, JE Parker, ET Bada, JL Jenniskens, P Shaddad, MH AF Glavin, Daniel P. Aubrey, Andrew D. Callahan, Michael P. Dworkin, Jason P. Elsila, Jamie E. Parker, Eric T. Bada, Jeffrey L. Jenniskens, Peter Shaddad, Muawia H. TI Extraterrestrial amino acids in the Almahata Sitta meteorite SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID EARLY SOLAR SYSTEM; MURCHISON METEORITE; CARBONACEOUS CHONDRITES; LIQUID-CHROMATOGRAPHY; MONOCARBOXYLIC ACIDS; UREILITE METEORITES; CATALYTIC SYNTHESIS; MASS SPECTROMETRY; ALKANOIC ACIDS; ORGANIC MATTER AB Amino acid analysis of a meteorite fragment of asteroid 2008 TC(3) called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, beta-amino-n-butyric acid, 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (d/l similar to 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other nonprotein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2-methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five-carbon amino acids in Almahata Sitta compared to CI, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC(3) cooled to lower temperatures, or introduced as a contaminant from unrelated meteorite clasts and chemically altered by alpha-decarboxylation. C1 [Glavin, Daniel P.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Aubrey, Andrew D.] NASA, Jet Prop Lab, CALTECH, Pasadena, CA 91109 USA. [Parker, Eric T.; Bada, Jeffrey L.] Univ Calif San Diego, Scripps Inst Oceanog, Geosci Res Div, La Jolla, CA 92093 USA. [Jenniskens, Peter] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Shaddad, Muawia H.] Univ Khartoum, Dept Phys & Astron, Khartoum 11115, Sudan. RP Glavin, DP (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM daniel.p.glavin@nasa.gov RI Elsila, Jamie/C-9952-2012; Callahan, Michael/D-3630-2012; Glavin, Daniel/D-6194-2012; Dworkin, Jason/C-9417-2012 OI Glavin, Daniel/0000-0001-7779-7765; Dworkin, Jason/0000-0002-3961-8997 FU National Aeronautics and Space Administration (NASA) Astrobiology Institute; Goddard Center for Astrobiology; NASA; NASA at the Goddard Space Flight Center FX We thank the University of Khartoum and the students and staff of the Physics and Astronomy Department of the Faculty of Sciences for their efforts to recover the meteorites from the Nubian Desert; A. Lewis for optimizing the LC analytical separation conditions at GSFC. We are also grateful to C. Alexander and P. Ehrenfreund for providing helpful comments. D. P. G., J. P. D., and J. E. E. acknowledge funding support from the National Aeronautics and Space Administration (NASA) Astrobiology Institute and the Goddard Center for Astrobiology, and the NASA Cosmochemistry and Astrobiology: Exobiology and Evolutionary Biology Programs. The research carried out at the Jet Propulsion Laboratory, California Institute of Technology, was performed so under a contract with NASA and supported by an appointment to the NASA Postdoctoral Program at JPL, administered by Oak Ridge Associated Universities through a contract with NASA. M. P. C. also acknowledges support from the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 65 TC 24 Z9 25 U1 2 U2 15 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT-NOV PY 2010 VL 45 IS 10-11 BP 1695 EP 1709 DI 10.1111/j.1945-5100.2010.01094.x PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 700QP UT WOS:000285759700008 ER PT J AU Rumble, D Zolensky, ME Friedrich, JM Jenniskens, P Shaddad, MH AF Rumble, Douglas Zolensky, Michael E. Friedrich, Jon M. Jenniskens, Peter Shaddad, Muawia H. TI The oxygen isotope composition of Almahata Sitta SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID POLYMICT UREILITE; LASER; RATIOS; MINERALS; GARNET AB Eleven fragments of the meteorite Almahata Sitta (AHS) have been analyzed for oxygen isotopes. The fragments were separately collected as individual stones from the meteorite's linear strewn field in the Nubian Desert. Each of the fragments represents a sample of a different and distinct portion of asteroid 2008 TC(3). Ten of the fragments span the same range of values of delta 18O, delta 17O, and Delta 17O, and follow the same trend along the carbonaceous chondrite anhydrous minerals (CCAM) line as monomict and polymict members of the ureilite family of meteorites. The oxygen isotope composition of fragment #25 is consistent with its resemblance petrographically to an H5 ordinary chondrite. Our results demonstrate that a single small asteroidal parent body, asteroid 2008 TC(3), only 4 m in length, encompassed the entire range of variation in oxygen isotope compositions measured for monomict and polymict ureilites. C1 [Rumble, Douglas] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Zolensky, Michael E.] NASA, Johnson Space Flight Ctr, Houston, TX 77058 USA. [Friedrich, Jon M.] Fordham Univ, Dept Chem, Bronx, NY 10458 USA. [Jenniskens, Peter] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Shaddad, Muawia H.] Univ Khartoum, Dept Phys & Astron, Khartoum 11115, Sudan. RP Rumble, D (reprint author), Carnegie Inst Washington, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. EM rumble@gl.ciw.edu FU NASA [NNX07AI48G, NNX09AD92G] FX This study would have been impossible without hard work by students and staff of the University of Khartoum in collecting samples from the Nubian Desert strewn field. We are grateful to our Sudanese colleagues for making samples available for study. H. Downes, C. A. Goodrich, and N. T. Kita contributed to this study through helpful discussion and criticism. Rumble thanks NASA's Cosmochemistry program for support through grant NNX07AI48G. Portions of this work were supported by NASA under the Planetary Geology and Geophysics program through grant NNX09AD92G to Friedrich. Jenniskens is supported by a grant from NASA's Planetary Astronomy program. NR 17 TC 11 Z9 11 U1 0 U2 4 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT-NOV PY 2010 VL 45 IS 10-11 BP 1765 EP 1770 DI 10.1111/j.1945-5100.2010.01099.x PG 6 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 700QP UT WOS:000285759700014 ER PT J AU Herrin, JS Zolensky, ME Ito, M Le, L Mittlefehldt, DW Jenniskens, P Ross, AJ Shaddad, MH AF Herrin, Jason S. Zolensky, Michael E. Ito, Motoo Le, Loan Mittlefehldt, David W. Jenniskens, Peter Ross, Aidan J. Shaddad, Muawia H. TI Thermal and fragmentation history of ureilitic asteroids: Insights from the Almahata Sitta fall SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID POLYMICT UREILITE; PARENT BODY; NEBULAR PROCESSES; IRON-METEORITES; ORTHO-PYROXENE; NOBLE-GASES; ORIGIN; IMPACT; MESOSIDERITES; CONSTRAINTS AB The Almahata Sitta fall event provides a unique opportunity to gain insight into the nature of ureilitic objects in space and the delivery of ureilite meteorites to Earth. From thermal events recorded in the mineralogy, petrology, and chemistry of ureilites recovered from the fall area, we reconstruct a timeline of events that led to their genesis. This history is similar to that of other known ureilites and supportive of a disrupted ureilite parent body hypothesis. Temperatures of final mantle equilibrium were 1200-1300 degrees C, but this high-temperature history was abruptly terminated by rapid cooling and reduction associated with pressure loss. The onset of late reduction reactions and onset of rapid cooling must have been essentially simultaneous, most likely engendered by the same event. Cooling rates of 0.05-2 degrees C h-1 determined from reversely zoned olivines and pyroxenes in Almahata Sitta imply rapid disassembly into fragments tens meters in size or smaller. This phenomenon seems to have affected all known portions of the ureilite parent body mantle, implying an event of global significance rather than localized unroofing. Reaccretion of one or more daughter asteroids occurred only after significant heat loss at minimum time scales of weeks to months, during which time the debris cloud surrounding the disrupted parent was inefficient at retaining heat. Fragments initially dislodged from the ureilite parent body mantle underwent subsequent size reduction and mixed with various chondritic bodies, giving rise to polylithologic aggregate objects such as asteroid 2008 TC(3). C1 [Herrin, Jason S.; Zolensky, Michael E.; Ito, Motoo; Le, Loan; Mittlefehldt, David W.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Herrin, Jason S.; Le, Loan] ESCG Astromat Res Grp, Houston, TX 77058 USA. [Ito, Motoo] USRA, Lunar & Planetary Inst, Houston, TX 77058 USA. [Jenniskens, Peter] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Ross, Aidan J.] UCL, Birkbeck Res Sch Earth Sci, Ctr Planetary Sci, London WC1E 6BT, England. [Ross, Aidan J.] Nat Hist Museum, Dept Mineral, IARC, London SW7 5BD, England. [Shaddad, Muawia H.] Univ Khartoum, Dept Phys & Astron, Khartoum 11115, Sudan. RP Herrin, JS (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. EM jason.s.herrin@nasa.gov OI Herrin, Jason/0000-0002-2452-244X FU NASA; Hayabusa mission; NERC FX Thank you to the University of Khartoum, Department of Physics and Astronomy and all of the students from the University of Khartoum who aided in the recovery of Almahata Sitta, especially D. Aldhawi and R. Alderdeeri, as well as the various observers who tracked asteroid 2008 TC3. The ANSMET program and the U.S. Antarctic Meteorite Program provided recovery and allocation of other ureilites examined as part of this study. P. Abell, J. Jones, T. Mikouchi, J. Park, and P. Warren provided helpful discussion. H. Downes, S. Singletary, E. Scott, and T. Jull provided constructive comments and reviews. This work was supported in part by a grant from the NASA Cosmochemistry Program to D. W. M. M. E. Z. was supported by the Hayabusa mission. P. J. was supported by the NASA Planetary Astronomy program. A. J. R. was supported by a NERC CASE Studentship. NR 86 TC 21 Z9 21 U1 0 U2 7 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT-NOV PY 2010 VL 45 IS 10-11 BP 1789 EP 1803 DI 10.1111/j.1945-5100.2010.01136.x PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 700QP UT WOS:000285759700017 ER PT J AU Mikouchi, T Zolensky, ME Ohnishi, I Suzuki, T Takeda, H Jenniskens, P Shaddad, MH AF Mikouchi, Takashi Zolensky, Michael E. Ohnishi, Ichiro Suzuki, Toshiaki Takeda, Hiroshi Jenniskens, Peter Shaddad, Muawia H. TI Electron microscopy of pyroxene in the Almahata Sitta ureilite SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID ANTARCTIC UREILITES; PARENT BODY; METEORITES; MINERALOGY; ORIGIN; CLINOPYROXENE; PIGEONITES; IMPACT; TEM AB We performed scanning electron microscope-electron backscatter diffraction (SEM-EBSD) and focused ion beam-transmission electron microscopy (FIB-TEM) investigations of pyroxene in the Almahata Sitta ureilite (sample #7). The pyroxenes (mg# = similar to 0.92) are present as minute individual grains (10-20 mu m in size) showing a polycrystalline texture, and they are both low-Ca and high-Ca pyroxenes. Although their Ca contents are as low as Wo(2-3), the EBSD analysis shows that low-Ca pyroxenes are clinopyroxene (P2(1)/c). The obtained pyroxene equilibration temperature (1240-1280 degrees C) is consistent with the previous studies on many ureilites. In low-Ca pigeonite, (001) augite exsolution lamellae (10-15 nm wide) develop in the pigeonite host (20-45 nm wide), and a similar exsolution texture was observed in augite. The exsolution wavelength of pyroxene (typically 30-60 nm) gives the cooling rate of 0.2-5 degrees C h-1. Such a rapid cooling probably records quenching from high temperature (1240-1280 degrees C) down to 1000 degrees C (estimated from the exsolution pair) due to the breakup of the ureilite parent body (UPB) while it was still hot. The pyroxene microstructure of Almahata Sitta is within the range of known ureilites and is most similar to that of Allan Hills (ALH) A81101 with the affinity of polycrystalline texture. The coarser exsolution texture of ALHA81101 pyroxene suggests slower cooling history than Almahata Sitta. However, direct comparison is difficult because of different pyroxene compositions. Because ALHA77257 has a similar pyroxene composition to Almahata Sitta and does not show visible pyroxene exsolution, it should have cooled faster than Almahata Sitta. Rapid, albeit variable cooling rates observed in different ureilite samples may suggest that they originated from UPB fragments of different size. C1 [Mikouchi, Takashi; Takeda, Hiroshi] Univ Tokyo, Grad Sch Sci, Dept Earth & Planetary Sci, Bunkyo Ku, Tokyo 1130033, Japan. [Zolensky, Michael E.] NASA, ARES, Johnson Space Ctr, Houston, TX 77058 USA. [Ohnishi, Ichiro] JEOL Ltd, EM Business Unit, Tokyo 1968558, Japan. [Suzuki, Toshiaki] JEOL Ltd, SM Business Unit, Tokyo 1968558, Japan. [Jenniskens, Peter] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Shaddad, Muawia H.] Univ Khartoum, Dept Phys & Astron, Khartoum 11115, Sudan. RP Mikouchi, T (reprint author), Univ Tokyo, Grad Sch Sci, Dept Earth & Planetary Sci, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. EM mikouchi@eps.s.u-tokyo.ac.jp FU Japanese Ministry of Education, Culture, Sports, Science and Technology [20740305]; NIPR [P-8]; Ocean Research Institute [005]; University of Tokyo; JAXA-NASA Hayabusa Mission; NASA FX We thank the students and staff of the University of Khartoum who recovered the Almahata Sitta meteorites and the many astronomers that tracked the fall of asteroid 2008 TC3. We especially thank JEOL for offering us an opportunity to use their instruments with technical assistance. The insightful comments by referees Mario Tribaudino, David Mittlefehldt, Alan Rubin, and Christine Floss helped to improve the original manuscript and are greatly appreciated. This work was supported in part by the Grant-in-Aid for Young Scientists (B) by the Japanese Ministry of Education, Culture, Sports, Science and Technology No. 20740305 and by NIPR Research Project Funds, P-8 (evolution of the early solar system materials) (TM). This work is further supported in part by funds from the cooperative program (No. 005, 2007) provided by Ocean Research Institute, the University of Tokyo (HT) and by the JAXA-NASA Hayabusa Mission and the NASA Stardust Sample Analysis Program (MZ). P. J. is supported by NASA's Planetary Astronomy program. The SEM work was performed in the Electron Microbeam Analysis Facility for Mineralogy at the Department of Earth and Planetary Science, University of Tokyo. NR 36 TC 7 Z9 7 U1 1 U2 11 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD OCT-NOV PY 2010 VL 45 IS 10-11 BP 1812 EP 1820 DI 10.1111/j.1945-5100.2010.01111.x PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 700QP UT WOS:000285759700019 ER PT J AU Greenhall, CA AF Greenhall, Charles A. TI An approach to power-law phase-noise models through generalized functions SO METROLOGIA LA English DT Article ID FREQUENCY STABILITY; FLICKER-NOISE; VARIANCE; STATISTICS; SIMULATION; STANDARDS; FREEDOM AB This paper has two purposes: first, as a tutorial on the use of generalized autocovariances for deriving covariance properties of phase-noise models with power-law spectra; second, to connect the subject to the theory of generalized functions, also called tempered distributions. Proofs of theorems are available in an online supplement (stacks.iop.org/Met/47/605/mmedia). C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Greenhall, CA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 298, Pasadena, CA 91109 USA. EM cgreenhall@jpl.nasa.gov FU National Aeronautics and Space Administration FX This work was performed by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 36 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0026-1394 J9 METROLOGIA JI Metrologia PD OCT PY 2010 VL 47 IS 5 BP 605 EP 615 DI 10.1088/0026-1394/47/5/011 PG 11 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 653CB UT WOS:000282060200014 ER PT J AU Rastogi, G Osman, S Kukkadapu, R Engelhard, M Vaishampayan, PA Andersen, GL Sani, RK AF Rastogi, Gurdeep Osman, Shariff Kukkadapu, Ravi Engelhard, Mark Vaishampayan, Parag A. Andersen, Gary L. Sani, Rajesh K. TI Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota SO MICROBIAL ECOLOGY LA English DT Article ID 16S RIBOSOMAL-RNA; MOSSBAUER-SPECTROSCOPY; SUBSURFACE; DIVERSITY; DNA; MICROARRAY; COMMUNITY; SHEWANELLA; EXTRACTION; REDUCTION AB A microbial census on deep biosphere (1.34 km depth) microbial communities was performed in two soil samples collected from the Ross and number 6 Winze sites of the former Homestake gold mine, Lead, South Dakota using high-density 16S microarrays (PhyloChip). Soil mineralogical characterization was carried out using X-ray diffraction, X-ray photoelectron, and Mossbauer spectroscopic techniques which demonstrated silicates and iron minerals (phyllosilicates and clays) in both samples. Microarray data revealed extensive bacterial diversity in soils and detected the largest number of taxa in Proteobacteria phylum followed by Firmicutes and Actinobacteria. The archael communities in the deep gold mine environments were less diverse and belonged to phyla Euryarchaeota and Crenarchaeota. Both the samples showed remarkable similarities in microbial communities (1,360 common OTUs) despite distinct geochemical characteristics. Fifty-seven phylotypes could not be classified even at phylum level representing a hitherto unidentified diversity in deep biosphere. PhyloChip data also suggested considerable metabolic diversity by capturing several physiological groups such as sulfur-oxidizer, ammonia-oxidizers, iron-oxidizers, methane-oxidizers, and sulfate-reducers in both samples. High-density microarrays revealed the greatest prokaryotic diversity ever reported from deep subsurface habitat of gold mines. C1 [Rastogi, Gurdeep; Sani, Rajesh K.] S Dakota Sch Mines & Technol, Dept Chem & Biol Engn, Rapid City, SD 57701 USA. [Osman, Shariff; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Div Earth Sci, Berkeley, CA 94720 USA. [Kukkadapu, Ravi; Engelhard, Mark] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Vaishampayan, Parag A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Sani, RK (reprint author), S Dakota Sch Mines & Technol, Dept Chem & Biol Engn, Rapid City, SD 57701 USA. EM Rajesh.Sani@sdsmt.edu RI Engelhard, Mark/F-1317-2010; Andersen, Gary/G-2792-2015; OI Andersen, Gary/0000-0002-1618-9827; Engelhard, Mark/0000-0002-5543-0812 FU South Dakota Board of Regents [SDBOR/SDSMT 2010-09-05]; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory FX This research was funded by the South Dakota Board of Regents Competitive Research Grant (Award No. SDBOR/SDSMT 2010-09-05). Powder XRD, XPS, and Mossbauer spectroscopy measurements were conducted using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. We would like to acknowledge Colleen Russell (PNNL) for her help in XRD measurements and Mossbauer sample preparations. Authors appreciate the assistance provided by Dr. L. D. Stetler of Department of Geology and Geological Engineering, SDSM&T in sample collection. We also would like to thank the anonymous reviewers whose critiques were instrumental in improving the quality of manuscript. NR 42 TC 29 Z9 30 U1 0 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-3628 J9 MICROB ECOL JI Microb. Ecol. PD OCT PY 2010 VL 60 IS 3 BP 539 EP 550 DI 10.1007/s00248-010-9657-y PG 12 WC Ecology; Marine & Freshwater Biology; Microbiology SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Microbiology GA 664OK UT WOS:000282971400007 PM 20386898 ER PT J AU Hou, Z Banday, AJ Gorski, KM Elsner, F Wandelt, BD AF Hou, Zhen Banday, A. J. Gorski, Krzysztof M. Elsner, Franz Wandelt, Benjamin D. TI The primordial non-Gaussianity of local type (flocal(NL)) in the WMAP 5-year data: the length distribution of CMB skeleton SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; cosmic background radiation ID MICROWAVE BACKGROUND MAPS; LARGE-SCALE STRUCTURE; MINKOWSKI FUNCTIONALS; INFLATIONARY UNIVERSE; FOREGROUND EMISSION; PERTURBATION-THEORY; PROBE; TEMPERATURE; ANISOTROPIES AB We present skeleton studies of non-Gaussianity in the cosmic microwave background temperature anisotropy observed in the 5-yr Wilkinson Microwave Anisotropy Probe (WMAP) data. The local skeleton is traced on the 2D sphere by cubic spline interpolation which leads to more accurate estimation of the intersection positions between the skeleton and the secondary pixels than conventional linear interpolation. We demonstrate that the skeleton-based estimator of non-Gaussianity of the local type (flocal(NL)) - the departure of the length distribution from the corresponding Gaussian expectation - yields an unbiased and sufficiently converged likelihood function for flocal(NL). We analyse the skeleton statistics in the WMAP 5-yr combined V- and W-band data outside the Galactic base-mask determined from the KQ75 sky coverage. The results are consistent with Gaussian simulations of the best-fitting cosmological model, but deviate from the previous results determined using the WMAP 1-yr data. We show that it is unlikely that the improved skeleton tracing method, the omission of Q-band data, the modification of the foreground-template fitting method or the absence of six extended regions in the new mask contribute to such a deviation. However, the application of the Kp0 base-mask in data processing does improve the consistency with the WMAP1 results. The flocal(NL)-likelihood functions of the data are estimated at nine different smoothing levels. It is unexpected that the best-fitting values show positive correlation with the smoothing scales. Further investigation argues against a point source or goodness-of-fit explanation but finds that about 30 per cent of either Gaussian or f(NL) samples having better goodness-of-fit than the WMAP 5-yr data show a similar correlation. We present the estimate flocal(NL) = 47.3 +/- 34.9 (1 Sigma error) determined from the first four smoothing angles and flocal(NL) = 76.8 +/- 43.1 for the combination of all nine. The former result may be overestimated at the 0.21 Sigma level because of point sources. C1 [Hou, Zhen] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Hou, Zhen; Banday, A. J.; Elsner, Franz] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Hou, Zhen] Nanjing Univ, Purple Mt Observ, Joint Ctr Particle Nucl Phys & Cosmol, Nanjing 210093, Peoples R China. [Hou, Zhen] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China. [Banday, A. J.] Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Gorski, Krzysztof M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gorski, Krzysztof M.] CALTECH, Pasadena, CA 91125 USA. [Gorski, Krzysztof M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Wandelt, Benjamin D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Wandelt, Benjamin D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. RP Hou, Z (reprint author), Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. EM houzhen@pmo.ac.cn FU Max-Planck-Gesellschaft Chinese Academy of Sciences; NASA Office of Space Science FX ZH acknowledges the support by Max-Planck-Gesellschaft Chinese Academy of Sciences Joint Doctoral Promotion Programme (MPG-CAS-DPP), and some useful discussions with H. K. Eriksen, Jun Pan and Xi Kang. We give special thanks to Stephane Colombi for suggestions on improving the manuscript. The computations were performed at the Rechenzentrum Garching (RZG) of Max-Planck-Gesellschaft and the GPU cluster of the cosmology group in Purple Mountain Observatory (PMO). Some of the results in this paper have been derived using the HEALPix (Gorski et al. 2005) software and analysis package. We acknowledge use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA) supported by the NASA Office of Space Science. NR 35 TC 4 Z9 4 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 1 PY 2010 VL 407 IS 4 BP 2141 EP 2156 DI 10.1111/j.1365-2966.2010.17098.x PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 651ST UT WOS:000281948100009 ER PT J AU Nicholls, SD Mohr, KI AF Nicholls, Stephen D. Mohr, Karen I. TI An Analysis of the Environments of Intense Convective Systems in West Africa in 2003 SO MONTHLY WEATHER REVIEW LA English DT Article ID VERTICAL WIND SHEAR; LIVED SQUALL LINES; EASTERLY WAVES; PART I; SUMMER MONSOON; LIGHTNING CHARACTERISTICS; PRECIPITATION FEATURES; PASSIVE MICROWAVE; CONCEPTUAL-MODEL; TROPICAL OCEANS AB The local- and regional-scale environments associated with intense convective systems in West Africa during 2003 were diagnosed from soundings, operational analysis, and space-based datasets. Convective system cases were identified from the Tropical Rainfall Measuring Mission (TRMM) microwave imagery and classified by the system minimum 85-GHz brightness temperature and the estimated elapsed time of propagation from terrain greater than 500 m. The speed of the midlevel jet, the magnitude of the low-level shear, and the surface equivalent potential temperature theta(e) were greater for the intense cases compared to the nonintense cases, although the differences between the means tended to be small: less than 3 K for surface theta(e) and less than 2 x 10(-3) s(-1) for low-level wind shear. Hypothesis testing of a series of commonly used intensity prediction metrics resulted in significant results only for low-level metrics such as convective available potential energy and not for any of the mid-or upper-level metrics such as the 700-hPa theta(e). None of the environmental variables or intensity metrics by themselves or in combination appeared to be reliable direct predictors of intensity. In the regional-scale analysis, the majority of intense convective systems occurred in the surface baroclinic zone where surface theta(e) exceeded 344 K and the 700-hPa zonal wind speeds were less than -6 m s(-1). Fewer intense cases compared to nonintense cases were associated with African easterly wave troughs. Fewer than 25% of these cases occurred in environments with detectable Saharan dust loads, and the results for intense and nonintense cases were similar. Although the discrimination between the intense and nonintense environments was narrow, the results were robust and consistent with the seasonal movement of the West African monsoon, regional differences in topography, and African easterly wave energetics. C1 [Mohr, Karen I.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Nicholls, Stephen D.] SUNY Albany, Dept Earth & Atmospher Sci, Albany, NY 12222 USA. RP Nicholls, SD (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Code 613-1, Greenbelt, MD 20771 USA. EM karen.mohr-1@nasa.gov RI Mohr, Karen/E-4331-2012 FU NASA [NNX07AD45G]; NSF [ATM0538164] FX We obtained the ECMWF operational analysis from the NCAR Research Data Archive, the in situ sounding data from the University of Wyoming atmospheric sounding Web site (see online at http://weather.uwyo.edu/upperair/sounding.html), the TRMM 1B11 brightness temperature product from the NASA GSFC Distributed Active Archive (see online at http://mirador.gsfc.nasa.gov), and the MODIS aerosol optical depth product from the NASA-GSFC Level 2 and Atmosphere Archive and Distribution System(see online at http://ladsweb.nascom.nasa.gov/). R. Hucek assisted with the processing and interpretation of the MODIS product. G. Berry and A. Srock provided code and advice for the AEW analysis. We had important conversations with L. Oolman, P. Roundy, J.-S. Hsieh, R. Kahn, S. Braun, and M. Weisman. C. Thorncroft provided comments on the thesis from which this manuscript is derived. The work of M. LeMone and two anonymous reviewers greatly improved this manuscript. We had support from NASA Precipitation Measuring Mission Grant NNX07AD45G and NSF Grant ATM0538164. NR 93 TC 14 Z9 14 U1 2 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD OCT PY 2010 VL 138 IS 10 BP 3721 EP 3739 DI 10.1175/2010MWR3321.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 668JM UT WOS:000283264600002 ER PT J AU Suh, J LaHaye, MD Echternach, PM Schwab, KC Roukes, ML AF Suh, Junho LaHaye, Matthew D. Echternach, Pierre M. Schwab, Keith C. Roukes, Michael L. TI Parametric Amplification and Back-Action Noise Squeezing by a Qubit-Coupled Nanoresonator SO NANO LETTERS LA English DT Article DE NEMS; Cooper-pair-box qubit; dispersive coupling; parametric amplification; noise squeezing; squeezed state ID QUANTUM-NOISE; NANOMECHANICAL RESONATOR; SUPERCONDUCTING QUBIT; MECHANICAL RESONATOR; GROUND-STATE; PHOTON; CONVERSION; AMPLIFIERS; CIRCUIT; MOTION AB We demonstrate the parametric amplification and noise squeezing of nanomechanical motion utilizing dispersive coupling to a Cooper-pair box qubit By modulating the qubit bias and resulting mechanical resonance shift, we achieve gain of 30 dB and noise squeezing of 4 dB This qubit-mediatal effect is 3000 times more effective than that resulting from the weak nonlinearity of capacitance to a nearby electrode This technique may be used to prepare nanomechanical squeezed states C1 [Suh, Junho; Roukes, Michael L.] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA. [LaHaye, Matthew D.] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. [Echternach, Pierre M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Roukes, ML (reprint author), CALTECH, Kavli Nanosci Inst, MC 114-36, Pasadena, CA 91125 USA. OI Suh, Junho/0000-0002-0112-0499; LaHaye, Matthew/0000-0003-1911-0704 FU National Aeronautics and Space Administration FX The authors thank to M Cross, R Lifshitz and R Karabalin for discussions and R E Muller for electron beam lithography This research was partially carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration NR 35 TC 41 Z9 41 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD OCT PY 2010 VL 10 IS 10 BP 3990 EP 3994 DI 10.1021/nl101844r PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 661KQ UT WOS:000282727600032 PM 20843059 ER PT J AU Pallister, JS McCausland, WA Jonsson, S Lu, Z Zahran, HM El Hadidy, S Aburukbah, A Stewart, ICF Lundgren, PR White, RA Moufti, MRH AF Pallister, John S. McCausland, Wendy A. Jonsson, Sigurjon Lu, Zhong Zahran, Hani M. El Hadidy, Salah Aburukbah, Abdallah Stewart, Ian C. F. Lundgren, Paul R. White, Randal A. Moufti, Mohammed R. H. TI Broad accommodation of rift-related extension recorded by dyke intrusion in Saudi Arabia SO NATURE GEOSCIENCE LA English DT Article ID ALKALI BASALT PROVINCE; RED-SEA; WESTERN ARABIA; BENEATH; EARTHQUAKES; VOLCANO; AFAR; CONSTRAINTS; SEISMOLOGY; MAGNITUDE AB The extensive harrat lava province of Arabia formed during the past 30 million years in response to Red Sea rifting and mantle upwelling. The area was regarded as seismically quiet, but between April and June 2009 a swarm of more than 30,000 earthquakes struck one of the lava fields in the province, Harrat Lunayyir, northwest Saudi Arabia. Concerned that larger damaging earthquakes might occur, the Saudi Arabian government evacuated 40,000 people from the region. Here we use geologic, geodetic and seismic data to show that the earthquake swarm resulted from magmatic dyke intrusion. We document a surface fault rupture that is 8 km long with 91 cm of offset. Surface deformation is best modelled by the shallow intrusion of a north-west trending dyke that is about 10 km long. Seismic waves generated during the earthquakes exhibit overlapping very low-and high-frequency components. We interpret the low frequencies to represent intrusion of magma and the high frequencies to represent fracturing of the crystalline basement rocks. Rather than extension being accommodated entirely by the central Red Sea rift axis, we suggest that the broad deformation observed in Harrat Lunayyir indicates that rift margins can remain as active sites of extension throughout rifting. Our analyses allowed us to forecast the likelihood of a future eruption or large earthquake in the region and informed the decisions made by the Saudi Arabian government to return the evacuees. C1 [Pallister, John S.; McCausland, Wendy A.; Lu, Zhong; White, Randal A.] US Geol Survey, Volcano Disaster Assistance Program, Cascades Volcano Observ, Vancouver, WA 98683 USA. [Jonsson, Sigurjon] King Abdullah Univ Sci & Technol, Thuwal 23955, Saudi Arabia. [Zahran, Hani M.; El Hadidy, Salah; Aburukbah, Abdallah; Stewart, Ian C. F.] Natl Ctr Earthquakes & Volcanoes, Saudi Geol Survey, Jeddah 21514, Saudi Arabia. [Lundgren, Paul R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Moufti, Mohammed R. H.] King Abdulaziz Univ, Fac Earth Sci, Jeddah 21589, Saudi Arabia. RP Pallister, JS (reprint author), US Geol Survey, Volcano Disaster Assistance Program, Cascades Volcano Observ, 1300 SE Cardinal Court, Vancouver, WA 98683 USA. EM jpallist@usgs.gov RI Jonsson, Sigurjon/G-4353-2015 OI Jonsson, Sigurjon/0000-0001-5378-7079 FU USAID's Office of Foreign Disaster Assistance; USGS FX This work is the result of a joint effort of the Saudi Arabian Geological Survey (SGS), and the US Geological Survey (USGS), conducted with the assistance of the US Consulate, Jeddah, Saudi Arabia. We thank many SGS colleagues (too numerous to list individually here) who participated in field and laboratory work and contributed to the success of the crisis response. We also acknowledge support to the Volcano Disaster Assistance Program provided by USAID's Office of Foreign Disaster Assistance and the USGS Volcano Hazards Program, and we thank SGS President Z. Nawab for facilitating our work together. Original Envisat radar raw data are copyrighted by the European Space Agency (ESA) and were provided by ESA. We also acknowledge the Nature Geoscience reviewers and editor Whitchurch, whose contributions substantially improved this paper. NR 46 TC 76 Z9 76 U1 0 U2 15 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD OCT PY 2010 VL 3 IS 10 BP 705 EP 712 DI 10.1038/NGEO966 PG 8 WC Geosciences, Multidisciplinary SC Geology GA 657LJ UT WOS:000282413900014 ER PT J AU Ray, RD Byrne, DA AF Ray, Richard D. Byrne, Deirdre A. TI Bottom pressure tides along a line in the southeast Atlantic Ocean and comparisons with satellite altimetry SO OCEAN DYNAMICS LA English DT Article DE Oceanic tides; Satellite altimetry; Ocean bottom pressure ID INTERNAL TIDES; TOPEX/POSEIDON; EUROPE; MODELS AB Seafloor pressure records, collected at 11 stations aligned along a single ground track of the Topex/Poseidon and Jason satellites, are analyzed for their tidal content. With very low background noise levels and approximately 27 months of high-quality records, tidal constituents can be estimated with unusually high precision. This includes many high-frequency lines up through the seventh-diurnal band. The station deployment provides a unique opportunity to compare with tides estimated from satellite altimetry, point by point along the satellite track, in a region of moderately high mesoscale variability. That variability can significantly corrupt altimeter-based tide estimates, even with 17 years of data. A method to improve the along-track altimeter estimates by correcting the data for non-tidal variability is found to yield much better agreement with the bottom-pressure data. The technique should prove useful in certain demanding applications, such as altimetric studies of internal tides. C1 [Ray, Richard D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Byrne, Deirdre A.] Univ Maine, Sch Marine Sci, Orono, ME USA. RP Ray, RD (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM richard.ray@nasa.gov; dbyrne@umeoce.maine.edu RI Ray, Richard/D-1034-2012 FU US National Aeronautics and Space Administration; National Science Foundation [OCE-0099177]; CNES FX Brian Beckley is thanked for his help in processing Topex/Poseidon and Jason-1 altimeter data. Those data were obtained as Geophysical Data Records from PODAAC, Jet Propulsion Laboratory, Pasadena. The altimeter-based sea-level anomaly grids used here as a correction were produced by SSALTO/DUACS and distributed by AVISO with support from CNES. This work was supported by the Ocean Surface Topography program of the US National Aeronautics and Space Administration and by grant OCE-0099177 from the National Science Foundation. NR 28 TC 14 Z9 14 U1 0 U2 3 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1616-7341 EI 1616-7228 J9 OCEAN DYNAM JI Ocean Dyn. PD OCT PY 2010 VL 60 IS 5 BP 1167 EP 1176 DI 10.1007/s10236-010-0316-0 PG 10 WC Oceanography SC Oceanography GA 655AO UT WOS:000282213200008 ER PT J AU VanZwieten, TS VanZwieten, JH Balas, MJ Driscoll, FR AF VanZwieten, Tannen S. VanZwieten, James H., Jr. Balas, Mark J. Driscoll, Frederick R. TI Development of an adaptive disturbance rejection system for the rapidly deployable stable platform-Part 2 Controller design and closed loop response SO OCEAN ENGINEERING LA English DT Article DE Sea basing; Crane ship; SPAR; Disturbance rejection; Adaptive control; Saturation constraints; Rapidly deployable stable platform; RDSP; RDSC; MRAC AB Currently, both military and civilian operations that require at-sea cargo transfers are severely limited by environmental conditions and loading forces that induce vessel motions. To increase the robustness of at-sea cargo transfer to these environmental conditions and loading forces, efforts have recently been made toward an actively controlled, rapidly deployable stable platform (RDSP). The purpose of the research presented here is to implement an output feedback adaptive controller and adaptive disturbance rejection scheme that will mitigate the effect of environmental conditions and reject disturbances caused by various loading situations. Because of the controller's distinct ability to adapt to various operating conditions, anticipate and reject load disturbances of unknown magnitude, and adjust to stay within input saturation constraints, the framework is a good fit for the RDSP. Three missions are considered using a previously developed 3 degree of freedom simulation of a 1/10th scale RDSP prototype. Results show successful mitigation of load disturbances and a significant reduction in pitch motions using a control command that remains within the given amplitude and rate constraints. In the case of cargo transfer operations, the adaptive control system is able to significantly increase the cargo throughput by rejecting the disturbances before they are able to cause large pitching dynamics. (C) 2010 Elsevier Ltd. All rights reserved. C1 [VanZwieten, James H., Jr.] Florida Atlantic Univ, Ctr Ocean Energy Technol, Dania, FL 33004 USA. [VanZwieten, Tannen S.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Balas, Mark J.] Univ Wyoming, Dept Elect & Comp Engn, Laramie, WY 82071 USA. [Driscoll, Frederick R.] Natl Renewable Energy Lab, Natl Wind Technol Ctr, Golden, CO 80401 USA. RP VanZwieten, JH (reprint author), Florida Atlantic Univ, Ctr Ocean Energy Technol, 101 N Beach Rd, Dania, FL 33004 USA. EM tannen.s.vanzwieten@nasa.gov; jvanzwi@fau.edu; mbalas@uwyo.edu; frederick.driscoll@nrel.gov FU NASA; Office of Naval Research [N00014-06-1-0461] FX The authors would like to thank the NASA Graduate Student Researchers Program for providing partial funding for this research under the direction of Dr. Mark Whorton.; The authors gratefully acknowledge the Office of Naval Research, code 33, program manager Kelly Cooper for partially funding this work under Grant N00014-06-1-0461. NR 35 TC 1 Z9 1 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0029-8018 J9 OCEAN ENG JI Ocean Eng. PD OCT PY 2010 VL 37 IS 14-15 BP 1367 EP 1379 DI 10.1016/j.oceaneng.2010.07.005 PG 13 WC Engineering, Marine; Engineering, Civil; Engineering, Ocean; Oceanography SC Engineering; Oceanography GA 657ZW UT WOS:000282459200011 ER PT J AU Smialek, JL Humphrey, DL Noebe, RD AF Smialek, James L. Humphrey, Donald L. Noebe, Ronald D. TI Comparative Oxidation Kinetics of a NiPtTi High Temperature Shape Memory Alloy SO OXIDATION OF METALS LA English DT Article DE Isothermal oxidation; Parabolic rate constants; Activation energy; Ni-Ti alloys; Shape memory alloys; TiO(2) scales; NiO scales ID BEHAVIOR AB A high temperature shape memory alloy, Ni-30Pt-50Ti (at.%), with an Ms near 600 degrees C, was isothermally oxidized in air for 100 h over the temperature range of 500-900 degrees C. Nearly parabolic kinetics were observed in log-log and parabolic plots, with no indication of initial fast transient oxidation. On average the rates were about a factor of 4 lower than values measured here for a binary Ni-49Ti commercial SMA. The overall behavior could be best described by the Arrhenius relationships: NiPtTi: k(p) 1: 54 x 10(12) exp[(-250 kJ= mol_RT]mg(2) = cm(4)h NiTi: k(p) 6: 39 x 10(12) exp[(249 kJ/mol/RT]mg(2) /cm(4)h The activation energy was consistent with literature values for TiO2 scale growth measured for elemental Ti and some NiTi alloys, at similar to 210- 260 kJ/ol. However, a number of other studies produced activation energies in the range of 135-150 kJ/mol. This divergence may be related to various complex scale layers and depletion zones, however, no specific correlation can be identified at present. C1 [Smialek, James L.; Noebe, Ronald D.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Humphrey, Donald L.] ASRC Aerosp Corp, Cleveland, OH 44135 USA. RP Smialek, JL (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM james.l.smialek@nasa.gov FU NASA FX This work was supported by the NASA Fundamental Aeronautics Program, Supersonics Project, Dale Hopkins, Assoc. Principal Investigator. NR 26 TC 3 Z9 3 U1 0 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD OCT PY 2010 VL 74 IS 3-4 BP 125 EP 144 DI 10.1007/s11085-010-9202-x PG 20 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 648WO UT WOS:000281725300002 ER PT J AU Jacobson, N Hull, D AF Jacobson, Nathan Hull, David TI Characterization and Oxidation Behavior of Rayon-Derived Carbon Fibers SO OXIDATION OF METALS LA English DT Article DE Carbon; Carbon/carbon; Composite; Oxidation ID MATRIX COMPOSITES; CARBON/CARBON; REACTIVITY AB Rayon-derived fibers are the central constituent of reinforced carbon/carbon (RCC) composites. Optical, scanning electron, and transmission electron microscopy were used to characterize the as-fabricated fibers and the fibers after oxidation. Oxidation rates were measured with weight loss techniques in air and oxygen. The as-received fibers are similar to 10 mu m in diameter and characterized by grooves or crenulations around the edges. Below 800 A degrees C, in the reaction-controlled region, preferential attack began in the crenulations and appeared to occur down fissures in the fibers. C1 [Jacobson, Nathan; Hull, David] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. RP Jacobson, N (reprint author), NASA Glenn Res Ctr, Cleveland, OH 44135 USA. EM nathan.s.jacobson@nasa.gov RI Jacobson, Nathan/A-9411-2009 NR 17 TC 4 Z9 4 U1 1 U2 10 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD OCT PY 2010 VL 74 IS 3-4 BP 193 EP 203 DI 10.1007/s11085-010-9208-4 PG 11 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 648WO UT WOS:000281725300007 ER PT J AU Weber, RC Bills, BG Johnson, CL AF Weber, R. C. Bills, B. G. Johnson, C. L. TI A simple physical model for deep moonquake occurrence times SO PHYSICS OF THE EARTH AND PLANETARY INTERIORS LA English DT Article DE Moon; Moonquakes; Lunar interior; Lunar seismology ID TIDAL STRESSES; LUNAR SEISMICITY; MOON; CONSTITUTION; TECTONICS AB The physical process that results in moonquakes is not yet fully understood. The periodic occurrence times of events from individual clusters are clearly related to tidal stress, but also exhibit departures from the temporal regularity this relationship would seem to imply. Even simplified models that capture some of the relevant physics require a large number of variables. However, a single, easily accessible variable - the time interval I(n) between events - can be used to reveal behavior not readily observed using typical periodicity analyses (e.g., Fourier analyses). The delay-coordinate (DC) map, a particularly revealing way to display data from a time series, is a map of successive intervals: I(n + 1) plotted vs. I(n). We use a DC approach to characterize the dynamics of moonquake occurrence. Moonquake-like DC maps can be reproduced by combining sequences of synthetic events that occur with variable probability at tidal periods. Though this model gives a good description of what happens, it has little physical content, thus providing only little insight into why moonquakes occur. We investigate a more mechanistic model. In this study, we present a series of simple models of deep moonquake occurrence, with consideration of both tidal stress and stress drop during events. We first examine the behavior of inter-event times in a delay-coordinate context, and then examine the output, in that context, of a sequence of simple models of tidal forcing and stress relief. We find, as might be expected, that the stress relieved by moonquakes influences their occurrence times. Our models may also provide an explanation for the opposite-polarity events observed at some clusters. Published by Elsevier B.V. C1 [Weber, R. C.] USGS Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Bills, B. G.] NASA, Jet Prop Lab, Pasadena, CA USA. [Johnson, C. L.] UBC Dept Earth & Ocean Sci, Vancouver, BC, Canada. RP Weber, RC (reprint author), USGS Astrogeol Sci Ctr, 2255 N Gemini Dr, Flagstaff, AZ 86001 USA. EM rweber@usgs.gov FU NASA [NNH08AH55I, NNX08AL49G]; NSERC FX This work was supported by the Eugene M. Shoemaker Planetary Geology and Geophysics Fellowship awarded to RCW (Planetary Geology and Geophysics grant, NASA NNH08AH55I), and by a Planetary Geology and Geophysics grant, NASA NNX08AL49G, and NSERC grant to CLJ. NR 20 TC 1 Z9 1 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0031-9201 J9 PHYS EARTH PLANET IN JI Phys. Earth Planet. Inter. PD OCT PY 2010 VL 182 IS 3-4 BP 152 EP 160 DI 10.1016/j.pepi.2010.07.009 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 670GA UT WOS:000283408000003 ER PT J AU Stalport, F Guan, YY Audrey, N Coll, P Szopa, C Macari, F Person, A Chaput, D Raulin, F Cottin, H AF Stalport, Fabien Guan, Yuan Yong Audrey, Noblet Coll, Patrice Szopa, Cyril Macari, Frederique Person, Alain Chaput, Didier Raulin, Francois Cottin, Herve TI UVolution, a photochemistry experiment in low earth orbit: Investigation of the photostability of carbonates exposed to martian-like UV radiation conditions SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Mars; Astrobiology; UV radiation; Carbonates; Biominerals; Low Earth orbit ID EXPERIMENTAL SIMULATIONS; ORGANIC-COMPOUNDS; MERIDIANI-PLANUM; EARLY MARS; SEARCH; LIFE; CHEMISTRY; METHANE; SURFACE; IDENTIFICATION AB The detection and identification of carbonates on Mars are of prime importance to establish the evolution of its atmosphere, correlated to the history of the liquid water, or even to determine the existence of a possible ancient biological activity. Till date, no large deposits of carbonates have been found. In fact, their detection is specific to local areas and in very low amounts. The absence of such deposits is commonly attributed to the harsh environmental conditions at the surface of Mars. Additionally, the presence of UV radiation has been proposed to explain their photodecomposition and hence their absence. However, contradictory results from laboratory experiments mimicking Mars' surface UV radiation did not resolve the behaviour of carbonates in such an environment, which is why we exposed, in low Earth orbit and in laboratory experiments, both abiotic and biotic calcium carbonates to UV radiation of wavelength above 200 nm, the same spectral distribution as the one reaching the surface of Mars. For low Earth orbit (LEO) exposure, this was done for the UVolution experiment on board the BIOPAN ESA module, which was set outside a Russian Foton automated capsule, and exposed to space conditions for 12 days in September 2007. The targeted carbonates are biominerals and abiotic samples. Our laboratory results mainly show that the exposed carbonates appear to be stable to UV radiation if directly exposed to it. The LEO experiment results tend to the same conclusion, but the integrated exposition time to Solar UV during the experiment is not sufficient to be conclusive. However, the stability of the biominerals derived from the laboratory experiment could strengthen the interest to explore deeper their potential as life records at Mars. Hence, they should be considered as primary targets for in situ analyses during future missions. (c) 2010 Elsevier Ltd. All rights reserved. C1 [Stalport, Fabien] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Stalport, Fabien; Guan, Yuan Yong; Audrey, Noblet; Coll, Patrice; Macari, Frederique; Raulin, Francois; Cottin, Herve] Univ Paris 07, LISA, UMR 7583, CNRS,CMC, F-94010 Creteil, France. [Stalport, Fabien; Guan, Yuan Yong; Audrey, Noblet; Coll, Patrice; Macari, Frederique; Raulin, Francois; Cottin, Herve] Univ Paris 12, LISA, UMR 7583, CNRS,CMC, F-94010 Creteil, France. [Szopa, Cyril] Univ Versailles St Quentin, F-75005 Paris, France. [Szopa, Cyril] LATMOS IPSL, CNRS INSU, F-75005 Paris, France. [Person, Alain] Univ Paris 06, Lab Biomineralisat & Paleoenvironm, F-75005 Paris, France. [Chaput, Didier] Ctr Natl Etud Spatiales, F-31401 Toulouse 9, France. RP Stalport, F (reprint author), NASA, Goddard Space Flight Ctr, Code 699,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM Fabien.Stalport@lisa.univ-paris12.fr RI Cottin, Herve/H-5654-2013; szopa, cyril/C-6865-2015 OI Cottin, Herve/0000-0001-9170-5265; szopa, cyril/0000-0002-0090-4056 FU ESA; CNES; French Program for Planetology (PNP); COMAT aerospace (Toulouse, France); Kayser Threde (Munchen, Germany) FX This program has been selected by ESA in the frame of the AO Life and Physical Sciences and Applied Research Projects 2004. The authors would like to acknowledge the support of ESA (especially Rene Demets), CNES (especially Michel Viso for the human, financial, and technical supports), French Program for Planetology (PNP), COMAT aerospace (Toulouse, France), and Kayser Threde (Munchen, Germany). The authors also acknowledge Jennifer Stern and Amy Houghton for helpful comments. NR 50 TC 4 Z9 4 U1 0 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD OCT PY 2010 VL 58 IS 12 BP 1617 EP 1624 DI 10.1016/j.pss.2010.08.005 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 670GB UT WOS:000283408100009 ER PT J AU Daescu, DN Todling, R AF Daescu, Dacian N. Todling, Ricardo TI Adjoint sensitivity of the model forecast to data assimilation system error covariance parameters SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE state analysis; parameter estimation; forecast impact; covariance tuning ID VARIATIONAL DATA ASSIMILATION; ENSEMBLE KALMAN FILTER; ATMOSPHERIC DATA ASSIMILATION; 4D-VAR DATA ASSIMILATION; OBSERVATION IMPACT; BACKGROUND-ERROR; STATISTICS; DIAGNOSIS; APPROXIMATIONS; FORMULATION AB The development of the adjoint of the forecast model and of the adjoint of the data assimilation system (adjoint-DAS) makes feasible the evaluation of the local sensitivity of a model forecast aspect with respect to a large number of parameters in the DAS. In this study it is shown that, by exploiting sensitivity properties that are intrinsic to the analyses derived from a minimization principle, the adjoint-DAS software tools developed at numerical weather prediction centres for observation and background sensitivity may be used to estimate the forecast sensitivity to observation-and background-error covariance parameters and for forecast impact assessment. All-at-once sensitivity to error covariance weighting coefficients and first-order impact estimates are derived as a particular case of the error covariance perturbation analysis. The use of the sensitivity information as a DAS diagnostic tool and for implementing gradient-based error covariance tuning algorithms is illustrated in idealized data assimilation experiments with the Lorenz 40-variable model. Preliminary results of forecast sensitivity to observation-and background-error covariance weight parameters are presented using the fifth-generation NASA Goddard Earth Observing System (GEOS-5) atmospheric DAS and its adjoint developed at the Global Modeling and Assimilation Office. Copyright (C) 2010 Royal Meteorological Society C1 [Daescu, Dacian N.] Portland State Univ, Portland, OR 97207 USA. [Todling, Ricardo] NASA, Global Modeling & Assimilat Off, GSFC, Greenbelt, MD USA. RP Daescu, DN (reprint author), Portland State Univ, POB 751, Portland, OR 97207 USA. EM daescu@pdx.edu FU NASA [NNG06GC67G]; National Science Foundation [DMS-0914937] FX The work of D. N. Daescu was supported by the NASA Modeling, Analysis, and Prediction Program under award NNG06GC67G and by the National Science Foundation under award DMS-0914937. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Computational Sciences (NCCS) at Goddard Space Flight Center. NR 55 TC 12 Z9 12 U1 0 U2 10 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0035-9009 J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD OCT PY 2010 VL 136 IS 653 BP 2000 EP 2012 DI 10.1002/qj.693 PN B PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 694QO UT WOS:000285312900006 ER PT J AU Tong, JJ Velicogna, I AF Tong, Jinjun Velicogna, Isabella TI A Comparison of AMSR-E/Aqua Snow Products with in situ Observations and MODIS Snow Cover Products in the Mackenzie River Basin, Canada SO REMOTE SENSING LA English DT Article DE snow water equivalent; snow cover extent; AMSR-E; MODIS; Mackenzie River Basin AB Since 2002, global snow water equivalent (SWE) estimates have been generated using Advanced Microwave Scanning Radiometer (AMSR-E)/Aqua data. Accurate estimates of SWE are important to improve monitoring and managing of water resources in specific regions. SWE and snow map product accuracy are functions of topography and of land cover type because landscape characteristics have a strong influence on redistribution and physical properties of snow cover, and influence the microwave properties of the surface. Here we evaluate the AMSR-E SWE and derived snow map products in the Mackenzie River Basin (MRB), Canada, which is characterized by complex topography and varying land cover types from tundra to boreal forest. We compare in situ snow depth observations and Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover maps from January 2003 to December 2007 with passive microwave remotely sensed SWE from AMSR-E and derived snow cover maps. In the MRB the mean absolute error ranges from 12 mm in the early winter season to 50 mm in the late winter season and overestimations of snow cover maps based on a 1 mm threshold of AMSR-E SWE varies from 4% to 8%. The optimal threshold for AMSR-E SWE to classify the pixels as snow ranges from 6 mm to 9 mm. The overall accuracy of new snow cover maps from AMSR-E varies from 91% to 94% in different sub-basins in the MRB. C1 [Tong, Jinjun; Velicogna, Isabella] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Velicogna, Isabella] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Tong, JJ (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. EM jinjunt@uci.edu; isabella.velicogna@gmail.com FU NASA FX This work is supported by grants from NASA's Cryospheric Science Program, Solid Earth and Natural Hazards Program, Terrestrial Hydrology Program. The authors also thank Ross Brown and Chris Derksen in Environment Canada for supplying the snow density data and their constructive comments. Comments by three anonymous referees greatly improved the paper. NR 17 TC 8 Z9 10 U1 1 U2 8 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD OCT PY 2010 VL 2 IS 10 BP 2313 EP 2322 DI 10.3390/rs2102313 PG 10 WC Remote Sensing SC Remote Sensing GA V24HR UT WOS:000208402000001 ER PT J AU Kurtoglu, T Tumer, IY Jensen, DC AF Kurtoglu, Tolga Tumer, Irem Y. Jensen, David C. TI A functional failure reasoning methodology for evaluation of conceptual system architectures SO RESEARCH IN ENGINEERING DESIGN LA English DT Article DE Conceptual design; Functional failure reasoning; Failure-informed trade-off analysis; System architecture design; Model-based reasoning; Behavioral simulation ID FAULT-DIAGNOSIS; EVENT TREES; DESIGN; BEHAVIOR AB In this paper, we introduce a new methodology for reasoning about the functional failures during early design of complex systems. The proposed approach is based on the notion that a failure happens when a functional element in the system does not perform its intended task. Accordingly, a functional criticality is defined depending on the role of functionality in accomplishing designed tasks. A simulation-based failure analysis tool is then used to analyze functional failures and reason about their impact on overall system functionality. The analysis results are then integrated into an early stage system architecture analysis framework that analyzes the impact of functional failures and their propagation to guide system-level architectural design decisions. With this method, a multitude of failure scenarios can be quickly analyzed to determine the effects of architectural design decisions on overall system functionality. Using this framework, design teams can systematically explore risks and vulnerabilities during the early (functional design) stage of system development prior to the selection of specific components. Application of the presented method to the design of a representative aerospace electrical power system (EPS) testbed demonstrates these capabilities. C1 [Tumer, Irem Y.; Jensen, David C.] Oregon State Univ, Complex Engn Syst Design Lab, Corvallis, OR 97331 USA. [Kurtoglu, Tolga] NASA, Ames Res Ctr, Intelligent Syst Div, Moffett Field, CA 94035 USA. RP Tumer, IY (reprint author), Oregon State Univ, Complex Engn Syst Design Lab, Corvallis, OR 97331 USA. EM tolga.kurtoglu@nasa.gov; irem.tumer@oregonstate.edu; jensend@onid.orst.edu FU Air Force Office of Scientific Research [AFOSR FA9550-08-1-0158] FX This research is supported by the Air Force Office of Scientific Research under Grant Number AFOSR FA9550-08-1-0158. Any opinions or findings of this work are the responsibility of the authors and do not necessarily reflect the views of the sponsors or collaborators. NR 51 TC 47 Z9 48 U1 0 U2 5 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0934-9839 J9 RES ENG DES JI Res. Eng. Design PD OCT PY 2010 VL 21 IS 4 BP 209 EP 234 DI 10.1007/s00163-010-0086-1 PG 26 WC Engineering, Multidisciplinary; Engineering, Industrial; Engineering, Manufacturing SC Engineering GA 655AD UT WOS:000282212100002 ER PT J AU Beiersdorfer, P Brown, GV Clementson, J Dunn, J Morris, K Wang, E Kelley, RL Kilbourne, CA Porter, FS Bitter, M Feder, R Hill, KW Johnson, D Barnsley, R AF Beiersdorfer, P. Brown, G. V. Clementson, J. Dunn, J. Morris, K. Wang, E. Kelley, R. L. Kilbourne, C. A. Porter, F. S. Bitter, M. Feder, R. Hill, K. W. Johnson, D. Barnsley, R. TI The ITER core imaging x-ray spectrometer: X-ray calorimeter performance SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 18th Topical Conference on High-Temperature Plasma Diagnostics CY MAY 16-20, 2010 CL Wildwood, NJ ID MICROCALORIMETER SPECTROMETER; XRS MICROCALORIMETER; RESOLUTION AB We describe the anticipated performance of an x-ray microcalorimeter instrument on ITER. As part of the core imaging x-ray spectrometer, the instrument will augment the imaging crystal spectrometers by providing a survey of the concentration of heavy ion plasma impurities in the core and possibly ion temperature values from the emission lines of different elemental ions located at various radial positions. (C) 2010 American Institute of Physics. [doi:10.1063/1.3495789] C1 [Beiersdorfer, P.; Brown, G. V.; Clementson, J.; Dunn, J.; Morris, K.; Wang, E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bitter, M.; Feder, R.; Hill, K. W.; Johnson, D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Barnsley, R.] Cadarache Ctr, ITER Cadarache JWS, F-13108 St Paul Les Durance, France. RP Beiersdorfer, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012 OI Porter, Frederick/0000-0002-6374-1119; NR 13 TC 11 Z9 11 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2010 VL 81 IS 10 AR 10E323 DI 10.1063/1.3495789 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 674NQ UT WOS:000283754000220 PM 21034021 ER PT J AU Magee, EW Dunn, J Brown, GV Cone, KV Park, J Porter, FS Kilbourne, CA Kelley, RL Beiersdorfer, P AF Magee, E. W. Dunn, J. Brown, G. V. Cone, K. V. Park, J. Porter, F. S. Kilbourne, C. A. Kelley, R. L. Beiersdorfer, P. TI Calibration of a high resolution grating soft x-ray spectrometer SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 18th Topical Conference on High-Temperature Plasma Diagnostics CY MAY 16-20, 2010 CL Wildwood, NJ ID BEAM ION-TRAP; PLASMAS AB The calibration of the soft x-ray spectral response of a large radius of curvature, high resolution grating spectrometer (HRGS) with a back-illuminated charge-coupled device detector is reported. The instrument is cross-calibrated for the 10-50 angstrom waveband at the Lawrence Livermore National Laboratory electron beam ion trap (EBIT) x-ray source with the EBIT calorimeter spectrometer. The HRGS instrument is designed for laser-produced plasma experiments and is important for making high dynamic range measurements of line intensities, line shapes, and x-ray sources. (C) 2010 American Institute of Physics. [doi:10.1063/1.3494276] C1 [Magee, E. W.; Dunn, J.; Brown, G. V.; Cone, K. V.; Park, J.; Beiersdorfer, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Cone, K. V.; Park, J.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Porter, F. S.; Kilbourne, C. A.; Kelley, R. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. RP Dunn, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM dunn6@llnl.gov RI Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012 OI Porter, Frederick/0000-0002-6374-1119; NR 14 TC 3 Z9 3 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2010 VL 81 IS 10 AR 10E314 DI 10.1063/1.3494276 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 674NQ UT WOS:000283754000211 PM 21034013 ER PT J AU Park, J Brown, GV Schneider, MB Baldis, HA Beiersdorfer, P Cone, KV Kelley, RL Kilbourne, CA Magee, EW May, MJ Porter, FS AF Park, J. Brown, G. V. Schneider, M. B. Baldis, H. A. Beiersdorfer, P. Cone, K. V. Kelley, R. L. Kilbourne, C. A. Magee, E. W. May, M. J. Porter, F. S. TI Calibration of a flat field soft x-ray grating spectrometer for laser produced plasmas SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 18th Topical Conference on High-Temperature Plasma Diagnostics CY MAY 16-20, 2010 CL Wildwood, NJ AB We have calibrated the x-ray response of a variable line spaced grating spectrometer, known as the VSG, at the Fusion and Astrophysics Data and Diagnostic Calibration Facility at the Lawrence Livermore National Laboratory (LLNL). The VSG has been developed to diagnose laser produced plasmas, such as those created at the Jupiter Laser Facility and the National Ignition Facility at LLNL and at both the Omega and Omega EP lasers at the University of Rochester's Laboratory for Laser Energetics. The bandwidth of the VSG spans the range of similar to 6-60 angstrom. The calibration results presented here include the VSG's dispersion and quantum efficiency. The dispersion is determined by measuring the x rays emitted from the hydrogenlike and heliumlike ions of carbon, nitrogen, oxygen, neon, and aluminum. The quantum efficiency is calibrated to an accuracy of 30% or better by normalizing the x-ray intensities recorded by the VSG to those simultaneously recorded by an x-ray microcalorimeter spectrometer. (C) 2010 American Institute of Physics. [doi:10.1063/1.3495790] C1 [Park, J.; Brown, G. V.; Schneider, M. B.; Beiersdorfer, P.; Cone, K. V.; Magee, E. W.; May, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Park, J.; Baldis, H. A.; Cone, K. V.] Univ Calif Davis, Davis, CA 95616 USA. [Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. RP Park, J (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM park29@llnl.gov RI Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012 OI Porter, Frederick/0000-0002-6374-1119; NR 16 TC 10 Z9 10 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2010 VL 81 IS 10 AR 10E319 DI 10.1063/1.3495790 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 674NQ UT WOS:000283754000216 PM 21034017 ER PT J AU Holman, MJ Fabrycky, DC Ragozzine, D Ford, EB Steffen, JH Welsh, WF Lissauer, JJ Latham, DW Marcy, GW Walkowicz, LM Batalha, NM Jenkins, JM Rowe, JF Cochran, WD Fressin, F Torres, G Buchhave, LA Sasselov, DD Borucki, WJ Koch, DG Basri, G Brown, TM Caldwell, DA Charbonneau, D Dunham, EW Gautier, TN Geary, JC Gilliland, RL Haas, MR Howell, SB Ciardi, DR Endl, M Fischer, D Furesz, G Hartman, JD Isaacson, H Johnson, JA MacQueen, PJ Moorhead, AV Morehead, RC Orosz, JA AF Holman, Matthew J. Fabrycky, Daniel C. Ragozzine, Darin Ford, Eric B. Steffen, Jason H. Welsh, William F. Lissauer, Jack J. Latham, David W. Marcy, Geoffrey W. Walkowicz, Lucianne M. Batalha, Natalie M. Jenkins, Jon M. Rowe, Jason F. Cochran, William D. Fressin, Francois Torres, Guillermo Buchhave, Lars A. Sasselov, Dimitar D. Borucki, William J. Koch, David G. Basri, Gibor Brown, Timothy M. Caldwell, Douglas A. Charbonneau, David Dunham, Edward W. Gautier, Thomas N., III Geary, John C. Gilliland, Ronald L. Haas, Michael R. Howell, Steve B. Ciardi, David R. Endl, Michael Fischer, Debra Fueresz, Gabor Hartman, Joel D. Isaacson, Howard Johnson, John A. MacQueen, Phillip J. Moorhead, Althea V. Morehead, Robert C. Orosz, Jerome A. TI Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star, Confirmed by Timing Variations SO SCIENCE LA English DT Article ID EXTRA-SOLAR PLANETS; SUPER-EARTHS; SOLID EXOPLANETS; HARPS SEARCH; MASS; RESONANCES; DYNAMICS; MOTION; PERFORMANCE; STABILITY AB The Kepler spacecraft is monitoring more than 150,000 stars for evidence of planets transiting those stars. We report the detection of two Saturn-size planets that transit the same Sun-like star, based on 7 months of Kepler observations. Their 19.2- and 38.9-day periods are presently increasing and decreasing at respective average rates of 4 and 39 minutes per orbit; in addition, the transit times of the inner body display an alternating variation of smaller amplitude. These signatures are characteristic of gravitational interaction of two planets near a 2: 1 orbital resonance. Six radial-velocity observations show that these two planets are the most massive objects orbiting close to the star and substantially improve the estimates of their masses. After removing the signal of the two confirmed giant planets, we identified an additional transiting super-Earth-size planet candidate with a period of 1.6 days. C1 [Holman, Matthew J.; Fabrycky, Daniel C.; Ragozzine, Darin; Latham, David W.; Fressin, Francois; Torres, Guillermo; Buchhave, Lars A.; Sasselov, Dimitar D.; Charbonneau, David; Geary, John C.; Fueresz, Gabor; Hartman, Joel D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ford, Eric B.; Moorhead, Althea V.; Morehead, Robert C.] Univ Florida, Gainesville, FL 32611 USA. [Steffen, Jason H.] Fermilab Ctr Particle Astrophys, Batavia, IL 60510 USA. [Welsh, William F.; Orosz, Jerome A.] San Diego State Univ, San Diego, CA 92182 USA. [Lissauer, Jack J.; Jenkins, Jon M.; Rowe, Jason F.; Borucki, William J.; Koch, David G.; Caldwell, Douglas A.; Haas, Michael R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Lissauer, Jack J.] Stanford Univ, Stanford, CA 94305 USA. [Marcy, Geoffrey W.; Walkowicz, Lucianne M.; Basri, Gibor; Isaacson, Howard] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Batalha, Natalie M.] San Jose State Univ, San Jose, CA 95192 USA. [Jenkins, Jon M.; Caldwell, Douglas A.] SETI Inst, Mountain View, CA 94043 USA. [Cochran, William D.; Endl, Michael; MacQueen, Phillip J.] Univ Texas Austin, Austin, TX 78712 USA. [Buchhave, Lars A.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Ciardi, David R.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Brown, Timothy M.] Global Telescope, Las Cumbres Observ, Goleta, CA 93117 USA. [Dunham, Edward W.] Lowell Observ, Flagstaff, AZ 86001 USA. [Gautier, Thomas N., III] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gilliland, Ronald L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Howell, Steve B.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Fischer, Debra] Yale Univ, New Haven, CT 06510 USA. [Brown, Timothy M.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. RP Holman, MJ (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM mholman@cfa.harvard.edu RI Steffen, Jason/A-4320-2013; Ragozzine, Darin/C-4926-2013; Caldwell, Douglas/L-7911-2014; OI Caldwell, Douglas/0000-0003-1963-9616; Buchhave, Lars A./0000-0003-1605-5666; Ciardi, David/0000-0002-5741-3047; Fabrycky, Daniel/0000-0003-3750-0183 FU NASA's Science Mission Directorate; NASA [NCC2-1390]; NSF [0707203] FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. We acknowledge NASA Cooperative Agreement NCC2-1390. D. C. F. acknowledges support from the Michelson Fellowship, supported by NASA and administered by the NASA Exoplanet Science Institute. This material is based on work supported by the NSF under grant no. 0707203. This work is based, in part, on observations obtained at the W. M. Keck Observatory, which is operated by the Univ. of California and the California Institute of Technology. Some of the observations in this paper were obtained at Kitt Peak National Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy under cooperative agreement with the NSF. J.F.R. is a NASA postdoctoral program fellow. We are grateful to N. Haghighipour for many helpful comments and suggestions. NR 44 TC 213 Z9 213 U1 1 U2 11 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 1 PY 2010 VL 330 IS 6000 BP 51 EP 54 DI 10.1126/science.1195778 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 656KW UT WOS:000282334500030 PM 20798283 ER PT J AU Nishimura, Y Bortnik, J Li, W Thorne, RM Lyons, LR Angelopoulos, V Mende, SB Bonnell, JW Le Contel, O Cully, C Ergun, R Auster, U AF Nishimura, Y. Bortnik, J. Li, W. Thorne, R. M. Lyons, L. R. Angelopoulos, V. Mende, S. B. Bonnell, J. W. Le Contel, O. Cully, C. Ergun, R. Auster, U. TI Identifying the Driver of Pulsating Aurora SO SCIENCE LA English DT Article ID SOURCE REGION; THEMIS; CHORUS; ELECTRONS AB Pulsating aurora, a spectacular emission that appears as blinking of the upper atmosphere in the polar regions, is known to be excited by modulated, downward-streaming electrons. Despite its distinctive feature, identifying the driver of the electron precipitation has been a long-standing problem. Using coordinated satellite and ground-based all-sky imager observations from the THEMIS mission, we provide direct evidence that a naturally occurring electromagnetic wave, lower-band chorus, can drive pulsating aurora. Because the waves at a given equatorial location in space correlate with a single pulsating auroral patch in the upper atmosphere, our findings can also be used to constrain magnetic field models with much higher accuracy than has previously been possible. C1 [Nishimura, Y.; Bortnik, J.; Li, W.; Thorne, R. M.; Lyons, L. R.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Nishimura, Y.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Angelopoulos, V.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Angelopoulos, V.; Mende, S. B.; Bonnell, J. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Angelopoulos, V.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Le Contel, O.] UPMC Paris Sud 11, Ecole Polytech, CNRS, Lab Phys Plasmas, F-94107 St Maur Des Fosses, France. [Cully, C.] Swedish Inst Space Phys, SE-98128 Uppsala, Sweden. [Ergun, R.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. [Auster, U.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. RP Nishimura, Y (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. EM toshi@atmos.ucla.edu RI Li, Wen/F-3722-2011; Cully, Christopher/P-2539-2016 FU NASA [NAS5-02099, 9F007-046101]; NSF [ATM-0802843, AGS-0840178]; Japan Society for the Promotion of Science; CNES; CNRS FX This work was supported by NASA contract NAS5-02099, 9F007-046101; NSF grants ATM-0802843 and AGS-0840178; and a Research Fellowship from the Japan Society for the Promotion of Science. The French involvement (Search-coil magnetometer) on THEMIS is supported by CNES and CNRS. NR 29 TC 89 Z9 90 U1 1 U2 12 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 1 PY 2010 VL 330 IS 6000 BP 81 EP 84 DI 10.1126/science.1193186 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 656KW UT WOS:000282334500038 PM 20929809 ER PT J AU Canal, C Pasareanu, CS AF Canal, Carlos Pasareanu, Corina S. TI Special Issue on Selected papers of the 5th International Workshop on Formal Aspects of Component Software (FACS'08) Preface SO SCIENCE OF COMPUTER PROGRAMMING LA English DT Editorial Material C1 [Canal, Carlos] Univ Malaga, E-29071 Malaga, Spain. [Pasareanu, Corina S.] Carnegie Mellon Univ, NASA Ames, Pittsburgh, PA 15213 USA. RP Canal, C (reprint author), Univ Malaga, E-29071 Malaga, Spain. EM canal@lcc.uma.es; Corina.S.Pasareanu@nasa.gov RI Canal, Carlos/H-4782-2015 OI Canal, Carlos/0000-0002-8002-0372 NR 0 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6423 J9 SCI COMPUT PROGRAM JI Sci. Comput. Program. PD OCT 1 PY 2010 VL 75 IS 10 SI SI BP 809 EP 810 DI 10.1016/j.scico.2010.03.001 PG 2 WC Computer Science, Software Engineering SC Computer Science GA 638SZ UT WOS:000280917600001 ER PT J AU Wolff, CL Patrone, PN AF Wolff, Charles L. Patrone, Paul N. TI A New Way that Planets Can Affect the Sun SO SOLAR PHYSICS LA English DT Article DE Convection; Solar activity; Solar interior motions; Sun - planet interactions ID SOLAR CONVECTION ZONE; G-MODES; SUNSPOTS; MOTION; TACHOCLINE; ROTATION; CYCLE AB We derive a perturbation inside a rotating star that occurs when the star is accelerated by orbiting bodies. If a fluid element has rotational and orbital components of angular momentum with respect to the inertially fixed point of a planetary system that are of opposite sign, then the element may have potential energy that could be released by a suitable flow. We demonstrate the energy with a very simple model in which two fluid elements of equal mass exchange positions, calling to mind a turbulent field or natural convection. The exchange releases potential energy that, with a minor exception, is available only in the hemisphere facing the barycenter of the planetary system. We calculate its strength and spatial distribution for the strongest case ("vertical") and for weaker horizontal cases whose motions are all perpendicular to gravity. The vertical cases can raise the kinetic energy of a few well positioned convecting elements in the Sun's envelope by a factor a parts per thousand currency sign7. This is the first physical mechanism by which planets can have a nontrivial effect on internal solar motions. Occasional small mass exchanges near the solar center and in a recently proposed mixed shell centered at 0.16R (s) would carry fresh fuel to deeper levels. This would cause stars like the Sun with appropriate planetary systems to burn somewhat more brightly and have shorter lifetimes than identical stars without planets. The helioseismic sound speed and the long record of sunspot activity offer several bits of evidence that the effect may have been active in the Sun's core, its envelope, and in some vertically stable layers. Additional proof will require direct evidence from helioseismology or from transient waves on the solar surface. C1 [Wolff, Charles L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Patrone, Paul N.] Univ Maryland, College Pk, MD 20742 USA. RP Wolff, CL (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM charles.wolff@nasa.gov; ppatrone@umd.edu OI Wolff, Charles/0000-0001-8854-507X FU Heliophysics Science Division of Goddard Space Flight Center FX We appreciate support from the Heliophysics Science Division of Goddard Space Flight Center. NR 29 TC 22 Z9 24 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD OCT PY 2010 VL 266 IS 2 BP 227 EP 246 DI 10.1007/s11207-010-9628-y PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 655EO UT WOS:000282228700001 ER PT J AU Sych, RA Nakariakov, VM Anfinogentov, SA Ofman, L AF Sych, R. A. Nakariakov, V. M. Anfinogentov, S. A. Ofman, L. TI Web-Based Data Processing System for Automated Detection of Oscillations with Applications to the Solar Atmosphere SO SOLAR PHYSICS LA English DT Article DE Coronal oscillations; Coronal waves; EUV ID LONGITUDINAL INTENSITY OSCILLATIONS; SLOW MAGNETOACOUSTIC WAVES; CORONAL LOOPS; MEASURED PARAMETERS; ACTIVE-REGION; TRACE; EUV; EIT AB A web-based, interactive system for the remote processing of imaging data sets (i.e., EUV, X-ray, and microwave) and the automated interactive detection of wave and oscillatory phenomena in the solar atmosphere is presented. The system targets localized, but spatially resolved, phenomena such as kink, sausage, and longitudinal propagating and standing waves. The system implements the methods of Periodmapping for pre-analysis, and Pixelized Wavelet Filtering for detailed analysis of the imaging data cubes. The system is implemented on the dedicated data-processing server http://pwf.iszf.irk.ru, which is situated at the Institute of Solar-Terrestrial Physics, Irkutsk, Russia. Input data in the .sav, .fits, or .txt formats can be submitted via the local and/or global network (the Internet). The output data can be in the png, jpeg, and binary formats, on the user's request. The output data are periodmaps; narrowband amplitude, power, phase and correlation maps of the wave's sources at significant harmonics and in the chosen spectral intervals, and mpeg movies of their evolution. The system was tested by the analysis of the EUV and microwave emission from the active region NOAA 10756 on 4 May 2005 observed with TRACE and the Nobeyama Radioheliograph. The similarity of the spatial localization of three-minute propagating waves, near the footpoint of locally open magnetic-field lines determined by the potential-field extrapolation, in both the transition region and the corona was established. In the transition region the growth of the three-minute amplitude was found to be accompanied by the decrease in the line-of-sight angle to the wave-propagation direction. C1 [Sych, R. A.; Anfinogentov, S. A.] Inst Solar Terr Phys, Irkutsk, Russia. [Nakariakov, V. M.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Ofman, L.] Catholic Univ, Washington, DC USA. [Ofman, L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Sych, RA (reprint author), Inst Solar Terr Phys, 126 Lermontov St, Irkutsk, Russia. EM sych@iszf.irk.ru; V.Nakariakov@warwick.ac.uk; Leon.Ofman@nasa.gov RI Nakariakov, Valery/E-2375-2013; Sych, Robert/D-1499-2013; Lee, SungHwan/O-2563-2013; Anfinogentov, Sergey/A-6836-2014 OI Nakariakov, Valery/0000-0001-6423-8286; Sych, Robert/0000-0003-4693-0660; Anfinogentov, Sergey/0000-0002-1107-7420 FU Royal Society UK-Russian International; RFBR [10-02-00153a, 08-02-13633-ofi-c, 08-02-91860-KO-a, 08-02-92204-GFEN-a]; NASA; NRL FX The work was supported by the Royal Society UK-Russian International Joint Project, the grants RFBR 10-02-00153a, 08-02-13633-ofi-c, 08-02-91860-KO-a and 08-02-92204-GFEN-a. LO was supported by NASA and NRL grants to Catholic University of America. The TRACE and NoRH data were obtained from the TRACE and NoRH database. The authors acknowledge the TRACE and NoRH consortia for operating the instruments and performing the basic data reduction, and especially for the open data policy. Wavelet software was provided by C. Torrence and G. Compo and is available at URL: http://paos.colorado.edu/research/wavelets/. NR 28 TC 13 Z9 14 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD OCT PY 2010 VL 266 IS 2 BP 349 EP 367 DI 10.1007/s11207-010-9616-2 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 655EO UT WOS:000282228700009 ER PT J AU Petrosyan, A Balogh, A Goldstein, ML Leorat, J Marsch, E Petrovay, K Roberts, B von Steiger, R Vial, JC AF Petrosyan, A. Balogh, A. Goldstein, M. L. Leorat, J. Marsch, E. Petrovay, K. Roberts, B. von Steiger, R. Vial, J. C. TI Turbulence in the Solar Atmosphere and Solar Wind SO SPACE SCIENCE REVIEWS LA English DT Review DE Turbulence in the sun and heliosphere; Observations of turbulence in the solar corona and solar wind; Models of magnetohydrodynamic turbulence; Numerical simulations of turbulence; Cascading and scaling; Observations and models of intermittency ID CORONAL LOOP OSCILLATIONS; MAGNETIC-FLUX TUBES; LARGE-EDDY SIMULATION; COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE; ELECTROMAGNETIC PROTON/PROTON INSTABILITIES; INTERPLANETARY ALFVENIC FLUCTUATIONS; LONGITUDINAL INTENSITY OSCILLATIONS; EUV TRANSIENT BRIGHTENINGS; SLOW MAGNETOACOUSTIC WAVES; FULLY-DEVELOPED TURBULENCE AB The objective of this review article is to critically analyze turbulence and its role in the solar atmosphere and solar wind, as well as to provide a tutorial overview of topics worth clarification. Although turbulence is a ubiquitous phenomenon in the sun and its heliosphere, many open questions exist concerning the physical mechanisms of turbulence generation in solar environment. Also, the spatial and temporal evolution of the turbulence in the solar atmosphere and solar wind are still poorly understood. We limit the scope of this paper (leaving out the solar interior and convection zone) to the magnetized plasma that reaches from the photosphere and chromosphere upwards to the corona and inner heliosphere, and place particular emphasis on the magnetic field structures and fluctuations and their role in the dynamics and radiation of the coronal plasma. To attract the attention of scientists from both the fluid-dynamics and space-science communities we give in the first two sections a phenomenological overview of turbulence-related processes, in the context of solar and heliospheric physics and with emphasis on the photosphere-corona connection and the coupling between the solar corona and solar wind. We also discuss the basic tools and standard concepts for the empirical analysis and theoretical description of turbulence. The last two sections of this paper give a concise review of selected aspects of oscillations and waves in the solar atmosphere and related fluctuations in the solar wind. We conclude with some recommendations and suggest topics for future research. C1 [Petrosyan, A.] Russian Acad Sci, Space Res Inst, Moscow, Russia. [Balogh, A.; von Steiger, R.] ISSI, Bern, Switzerland. [Balogh, A.] Univ London Imperial Coll Sci Technol & Med, London, England. [Goldstein, M. L.] NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Greenbelt, MD 20771 USA. [Leorat, J.] Observ Paris, LUTH, F-92195 Meudon, France. [Marsch, E.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Petrovay, K.] Eotvos Lorand Univ, Dept Astron, H-1518 Budapest, Hungary. [Petrovay, K.] ASIAA Natl Tsing Hua Univ TIARA, Hsinchu, Taiwan. [Roberts, B.] Univ St Andrews, Math Inst, St Andrews KY16 9SS, Fife, Scotland. [Vial, J. C.] Univ Paris, F-75252 Paris, France. RP Petrosyan, A (reprint author), Russian Acad Sci, Space Res Inst, Moscow, Russia. EM apetrosy@iki.rssi.ru RI Goldstein, Melvyn/B-1724-2008; Von Steiger, Rudolf/F-6822-2011; OI Von Steiger, Rudolf/0000-0002-3350-0023; Petrovay, Kristof/0000-0002-1714-2027 FU National Science Council in Taiwan [NSC95-2752-M-007-006-PAE]; Hungarian Science Research Fund (OTKA) [K67746]; European Commission [MRTN-CT-2006-035484] FX K. Petrovay's work on this project was supported by the Theoretical Institute for Advanced Research in Astrophysics (TIARA) operated under Academia Sinica and the National Science Council Excellence Projects program in Taiwan administered through grant number NSC95-2752-M-007-006-PAE, as well as by the Hungarian Science Research Fund (OTKA) under grant No. K67746.; The collaboration of several of the authors of this paper has been facilitated by the European Commission through the RTN programme SOLAIRE (contract MRTN-CT-2006-035484). NR 421 TC 33 Z9 33 U1 3 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD OCT PY 2010 VL 156 IS 1-4 BP 135 EP 238 DI 10.1007/s11214-010-9694-3 PG 104 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 726WX UT WOS:000287758700005 ER PT J AU Gizon, L Schunker, H Baldner, CS Basu, S Birch, AC Bogart, RS Braun, DC Cameron, R Duvall, TL Hanasoge, SM Jackiewicz, J Roth, M Stahn, T Thompson, MJ Zharkov, S AF Gizon, L. Schunker, H. Baldner, C. S. Basu, S. Birch, A. C. Bogart, R. S. Braun, D. C. Cameron, R. Duvall, T. L., Jr. Hanasoge, S. M. Jackiewicz, J. Roth, M. Stahn, T. Thompson, M. J. Zharkov, S. TI Helioseismology of Sunspots: A Case Study of NOAA Region 9787 (vol 144, pg 249, 2009) SO SPACE SCIENCE REVIEWS LA English DT Correction C1 [Gizon, L.; Schunker, H.; Cameron, R.; Hanasoge, S. M.; Stahn, T.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Baldner, C. S.; Basu, S.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Birch, A. C.; Braun, D. C.] Colorado Res Associates, NWRA, Boulder, CO 80301 USA. [Bogart, R. S.] Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Duvall, T. L., Jr.] NASA, Goddard Space Flight Ctr, Lab Solar Phys, Greenbelt, MD 20771 USA. [Jackiewicz, J.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Roth, M.] Kiepenheuer Inst Sonnenphys, D-79104 Freiburg, Germany. [Thompson, M. J.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Zharkov, S.] Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. RP Gizon, L (reprint author), Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. EM gizon@mps.mpg.de RI Duvall, Thomas/C-9998-2012; Gizon, Laurent/B-9457-2008; Basu, Sarbani/B-8015-2014 OI Basu, Sarbani/0000-0002-6163-3472 NR 1 TC 6 Z9 6 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD OCT PY 2010 VL 156 IS 1-4 BP 257 EP 258 DI 10.1007/s11214-010-9688-1 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 726WX UT WOS:000287758700008 ER PT J AU Daigle, MJ Koutsoukos, XD Biswas, G AF Daigle, Matthew J. Koutsoukos, Xenofon D. Biswas, Gautam TI An event-based approach to integrated parametric and discrete fault diagnosis in hybrid systems SO TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL LA English DT Article DE discrete-event systems; electrical power distribution systems; hybrid bond graphs; hybrid systems; model-based diagnosis ID MODELS AB Fault diagnosis is crucial for ensuring the safe operation of complex engineering systems. These systems often exhibit hybrid behaviours, therefore, model-based diagnosis methods have to be based on hybrid system models. Most previous work in hybrid systems diagnosis has focused either on parametric or discrete faults. In this paper, we develop an integrated approach for hybrid diagnosis of parametric and discrete faults by incorporating the effects of both types of faults into our event-based qualitative fault signature framework. The framework allows for systematic design of event-based diagnosers that facilitate diagnosability analysis. Experimental results from a case study performed on an electrical power distribution system demonstrate the effectiveness of the approach. C1 [Daigle, Matthew J.] NASA, Ames Res Ctr, Moffett Field, CA 94025 USA. [Daigle, Matthew J.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Koutsoukos, Xenofon D.; Biswas, Gautam] Vanderbilt Univ, Dept EECS, Inst Software Integrated Syst, Nashville, TN USA. RP Daigle, MJ (reprint author), NASA, Ames Res Ctr, M-S 269-1, Moffett Field, CA 94025 USA. EM matthew.j.daigle@nasa.gov OI Daigle, Matthew/0000-0002-4616-3302 FU NSF [CNS-0615214, CNS-0347440]; NASA [USRA 08020-013, NRA NNX07AD12A] FX This work was supported in part by grants NSF CNS-0615214, NASA USRA 08020-013, NASA NRA NNX07AD12A, and NSF CNS-0347440. NR 18 TC 14 Z9 14 U1 0 U2 7 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0142-3312 J9 T I MEAS CONTROL JI Trans. Inst. Meas. Control PD OCT PY 2010 VL 32 IS 5 BP 487 EP 510 DI 10.1177/0142331208097840 PG 24 WC Automation & Control Systems; Instruments & Instrumentation SC Automation & Control Systems; Instruments & Instrumentation GA 656HZ UT WOS:000282321200004 ER PT J AU Pirtle, JL Stoner, AW AF Pirtle, Jodi L. Stoner, Allan W. TI Red king crab (Paralithodes camtschaticus) early post-settlement habitat choice: Structure, food, and ontogeny SO JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY LA English DT Article DE Biogenic habitat; King crab; Nursery habitat; Paralithodes camtschaticus ID CARIBBEAN SPINY LOBSTER; AMERICAN LOBSTER; DUNGENESS CRAB; CANCER-MAGISTER; RECRUITMENT; ALASKA; GLAUCOTHOE; JUVENILES; SUBSTRATE; SURVIVAL AB Little is known about nursery habitat function for red king crab (Paralithodes camtschaticus), a commercially important species that associates with complex benthic habitats from settlement through the first two years of life. During settlement, the red king crab actively seeks complex benthic habitats, with high availability of vertical structure and crevice space. Habitat choice for early juvenile red king crab may be driven by habitat complexity, or a function of several potential mechanisms, including foraging requirements, and shifting ontogeny. We established habitat preference and foraging behavior for two size classes of age-0 red king crab (small 2-4 mm, and large 7.5-9 mm carapace length) with laboratory experiments using habitat treatments composed of individual complex substrates that were living, biogenic substrates, including structural invertebrates, bryozoans and hydroids, and macroalgae in branched and blade forms. Non-living structural mimics of the biogenic substrates were presented to crabs as clean and fouled mimic treatments. We quantified the proportion of crab associations and foraging activity with single habitat treatments within a 24 h period. Substrates that were statistically attractive to small crabs were paired to test small crab foraging behavior. A variety of substrates were statistically attractive to red king crab. Small crabs associated with complex biogenic habitats and fouled mimics (group mean +/- SE 64% +/- 4%) more often than clean mimics (29% +/- 4%), and preferred to forage on the structural invertebrates (foraging frequency 81%) when presented with paired biogenic and fouled mimic substrates. Large crabs associated with habitats composed of structural invertebrates (group mean +/- SE 78% +/- 2%) statistically more often than macroalgae and fouled and clean mimics (32% +/- 5%). Strong attraction to structural invertebrates by early juvenile red king crab is likely driven by foraging opportunities. Our experiments demonstrate that biological habitat features may be functionally more important to early juvenile red king crab than complex physical structure alone. Habitats formed by structural invertebrates, in particular, may enhance growth and survival of early post-settlement stage red king crab in excess of other highly structured habitats, including macroalgae and complex physical substrates. (C) 2010 Elsevier B.V. All rights reserved. C1 [Pirtle, Jodi L.] Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, Juneau, AK 99801 USA. NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Fisheries Behav Ecol Program, Newport, OR 97365 USA. RP Pirtle, JL (reprint author), Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, 17101 Point Lena Loop Rd, Juneau, AK 99801 USA. EM jlpirtle@alaska.edu; al.stoner@noaa.gov FU Alaska Sea Grant Program; North Pacific Research Board; NOAA FX Funding for the dissertation research of J. Pirtle at the University Alaska Fairbanks, School of Fisheries and Ocean Sciences, Juneau, AK, was provided by the Alaska Sea Grant Program and the North Pacific Research Board. The Alutiiq Pride Shellfish Hatchery, Seward, AK, provided crabs for this study as a part of the AKCRRAB Program (Alaska King Crab Research, Rehabilitation, and Biology) funded by the NOAA Aquaculture Program and the Alaska Sea Grant Program. Crabs were produced, cared for, and shipped by B. Daly and J. Swingle, who provided advice on crab husbandry with M. Westphal. G. Eckert, D. Okamoto, and S. Tamone assisted with biogenic substrate collection near Juneau. S. Haines, J. Unrein, and L Loegers cared for the crabs in Newport, and assisted with the laboratory trials. M. Ottmar assisted with providing seawater systems in Newport. C. Leroux, AKCRRAB, provided the photo for Fig. 1. G. Eckert, T. Quinn, J. Reynolds, C. Ryer, B. Tissot, M. Westphal, and D. Woodby provided helpful criticisms of the manuscript. [SS] NR 44 TC 25 Z9 25 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0981 J9 J EXP MAR BIOL ECOL JI J. Exp. Mar. Biol. Ecol. PD SEP 30 PY 2010 VL 393 IS 1-2 BP 130 EP 137 DI 10.1016/j.jembe.2010.07.012 PG 8 WC Ecology; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA 657ER UT WOS:000282396500017 ER PT J AU Stoner, AW Ottmar, ML Copeman, LA AF Stoner, Allan W. Ottmar, Michele L. Copeman, Louise A. TI Temperature effects on the molting, growth, and lipid composition of newly-settled red king crab SO JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY LA English DT Article DE Bioenergetics; Culture; Fatty acid; Growth; Lipid; Paralithodes camtschaticus; Temperature ID FATTY-ACID COMPOSITION; EASTERN BERING-SEA; PARALITHODES-CAMTSCHATICUS; CLIMATE-CHANGE; BLUE CRABS; CALLINECTES-SAPIDUS; OXYGEN-CONSUMPTION; LITHODES-SANTOLLA; STOCK ENHANCEMENT; SCYLLA-SERRATA AB Red king crab (RKC) (Paralithodes camtschaticus Tilesius, 1815) is one of the most important fishery resource species in Alaska. It is threatened by heavy fishing pressure and changing climate conditions, yet little is known about the species' first year of post-settlement life. This study was undertaken to explore how temperature mediates growth and energy allocation in newly metamorphosed juveniles. RKC were reared using four temperature treatments ranging from 1.5 degrees to 12 degrees C for a period of 60 days, both individually and in low-density populations. Temperature had no significant effect on survival of RKC, and there was no consistent difference in survival between individually cultured crabs and those in populations. Growth was very slow at 1.5 degrees C, and increased rapidly with temperature with both a contracted intermolt period and small increase in growth increment. Twenty percent of the crabs held at 1.5 degrees C never molted, while more than 90% of the crabs in 12 degrees C reached juvenile stage 4 or higher. Overall growth increased as an exponential function of temperature, with slightly higher growth rates observed in populations than for isolated individuals. Growth records for individuals revealed an inverse exponential relationship between water temperature and intermolt period. There was also a small increase in growth increment from juvenile stage 1 to stage 2 with increasing temperature that appeared to be linear. Lipid class analysis revealed a trend towards higher proportions of storage lipids in larger crabs cultured at 12 degrees C than in crabs cultured at low temperatures. High proportions of essential fatty acids in all crab groups coupled with elevated levels of triacylglycerols in 12 degrees C animals, indicate that rapid growth does not negatively affect condition in juvenile RKC. Data provided by this study will help to model temperature-dependent growth and survival in the field, and assist in designing the best possible temperatures and diets for hatchery production of seed stock intended for enhancement of depleted RKC stocks. Published by Elsevier B.V. C1 [Stoner, Allan W.; Ottmar, Michele L.] Natl Ocean & Atmospher Adm, Fisheries Behav Ecol Program, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Newport, OR 97365 USA. [Copeman, Louise A.] Oregon State Univ, Cooperat Inst Marine Resources Studies, Hatfield Marine Sci Ctr, Newport, OR 97365 USA. RP Stoner, AW (reprint author), Natl Ocean & Atmospher Adm, Fisheries Behav Ecol Program, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2030 S Marine Sci Dr, Newport, OR 97365 USA. EM al.stoner@noaa.gov FU NOAA; Alaska Sea Grant College Program FX This study was conducted as part of the AKCRRAB Program (Alaska King Crab Research, Rehabilitation, and Biology) funded by the NOAA Aquaculture Program and the Alaska Sea Grant College Program. Crabs were provided by the Alutiiq Pride Shellfish Hatchery, Seward, AK, with special thanks to B. Daly and J. Swingle who cared for and shipped the experimental animals, and offered advice on crab husbandry. S. Haines helped care for the crabs in Newport, and J. Unrein assisted in building the experimental apparatus. We are grateful to J. Wells and T. Hooper as well as all the technical staff in Dr. Christopher Parrish's lab (Ocean Sciences Centre, Memorial University, Newfoundland, Canada) for the chromatography of lipid classes and fatty acids. B. Stevens offered advice on the topic of crustacean growth and biology. M. Westphal and T. Hurst provided helpful comments on the manuscript. [SS] NR 63 TC 27 Z9 30 U1 2 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0981 EI 1879-1697 J9 J EXP MAR BIOL ECOL JI J. Exp. Mar. Biol. Ecol. PD SEP 30 PY 2010 VL 393 IS 1-2 BP 138 EP 147 DI 10.1016/j.jembe.2010.07.011 PG 10 WC Ecology; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA 657ER UT WOS:000282396500018 ER PT J AU Arvidson, RE Bell, JF Bellutta, P Cabrol, NA Catalano, JG Cohen, J Crumpler, LS Marais, DJD Estlin, TA Farrand, WH Gellert, R Grant, JA Greenberger, RN Guinness, EA Herkenhoff, KE Herman, JA Iagnemma, KD Johnson, JR Klingelhofer, G Li, R Lichtenberg, KA Maxwell, SA Ming, DW Morris, RV Rice, MS Ruff, SW Shaw, A Siebach, KL de Souza, PA Stroupe, AW Squyres, SW Sullivan, RJ Talley, KP Townsend, JA Wang, A Wright, JR Yen, AS AF Arvidson, R. E. Bell, J. F., III Bellutta, P. Cabrol, N. A. Catalano, J. G. Cohen, J. Crumpler, L. S. Marais, D. J. Des Estlin, T. A. Farrand, W. H. Gellert, R. Grant, J. A. Greenberger, R. N. Guinness, E. A. Herkenhoff, K. E. Herman, J. A. Iagnemma, K. D. Johnson, J. R. Klingelhoefer, G. Li, R. Lichtenberg, K. A. Maxwell, S. A. Ming, D. W. Morris, R. V. Rice, M. S. Ruff, S. W. Shaw, A. Siebach, K. L. de Souza, P. A. Stroupe, A. W. Squyres, S. W. Sullivan, R. J. Talley, K. P. Townsend, J. A. Wang, A. Wright, J. R. Yen, A. S. TI Spirit Mars Rover Mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID THERMODYNAMIC BEHAVIOR; THEORETICAL PREDICTION; AQUEOUS ELECTROLYTES; HIGH PRESSURES; TEMPERATURES; DEPOSITS; LIFE AB This paper summarizes Spirit Rover operations in the Columbia Hills, Gusev crater, from sol 1410 (start of the third winter campaign) to sol 2169 (when extrication attempts from Troy stopped to winterize the vehicle) and provides an overview of key scientific results. The third winter campaign took advantage of parking on the northern slope of Home Plate to tilt the vehicle to track the sun and thus survive the winter season. With the onset of the spring season, Spirit began circumnavigating Home Plate on the way to volcanic constructs located to the south. Silica-rich nodular rocks were discovered in the valley to the north of Home Plate. The inoperative right front wheel drive actuator made climbing soil-covered slopes problematical and led to high slip conditions and extensive excavation of subsurface soils. This situation led to embedding of Spirit on the side of a shallow, 8 m wide crater in Troy, located in the valley to the west of Home Plate. Examination of the materials exposed during embedding showed that Spirit broke through a thin sulfate-rich soil crust and became embedded in an underlying mix of sulfate and basaltic sands. The nature of the crust is consistent with dissolution and precipitation in the presence of soil water within a few centimeters of the surface. The observation that sulfate-rich deposits in Troy and elsewhere in the Columbia Hills are just beneath the surface implies that these processes have operated on a continuing basis on Mars as landforms have been shaped by erosion and deposition. C1 [Arvidson, R. E.; Catalano, J. G.; Greenberger, R. N.; Guinness, E. A.; Lichtenberg, K. A.; Shaw, A.; Siebach, K. L.; Wang, A.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Bell, J. F., III; Rice, M. S.; Squyres, S. W.; Sullivan, R. J.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Bellutta, P.; Estlin, T. A.; Herman, J. A.; Maxwell, S. A.; Stroupe, A. W.; Talley, K. P.; Townsend, J. A.; Wright, J. R.; Yen, A. S.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Cabrol, N. A.; Marais, D. J. Des] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Cabrol, N. A.] SETI Inst, Mountain View, CA USA. [Cohen, J.] Honeybee Robot Spacecraft Mech Corp, New York, NY 10001 USA. [Crumpler, L. S.] New Mexico Museum Nat Hist & Sci, Albuquerque, NM 87104 USA. [Farrand, W. H.] Space Sci Inst, Boulder, CO 80301 USA. [Gellert, R.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Grant, J. A.] Smithsonian Inst, Ctr Earth & Planetary Studies, Washington, DC 20013 USA. [Herkenhoff, K. E.; Johnson, J. R.] US Geol Survey, Flagstaff, AZ 86001 USA. [Iagnemma, K. D.] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Klingelhoefer, G.] Johannes Gutenberg Univ Mainz, Inst Anorgan & Analyt Chem, D-55099 Mainz, Germany. [Li, R.] Ohio State Univ, Dept Civil & Environm Engn & Geodet Sci, Columbus, OH 43210 USA. [Ming, D. W.; Morris, R. V.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Ruff, S. W.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [de Souza, P. A.] CSIRO, Informat & Commun Technol Ctr, Hobart, Tas 7001, Australia. RP Arvidson, RE (reprint author), Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. EM arvidson@rsmail.wustl.edu RI de Souza, Paulo/B-8961-2008; Centre, TasICT/D-1212-2011; Catalano, Jeffrey/A-8322-2013; Johnson, Jeffrey/F-3972-2015; OI de Souza, Paulo/0000-0002-0091-8925; Catalano, Jeffrey/0000-0001-9311-977X; Siebach, Kirsten/0000-0002-6628-6297; Greenberger, Rebecca/0000-0003-1583-0261 FU NASA FX We thank the capable team of engineers and scientists at the Jet Propulsion Laboratory and elsewhere who made the Spirit mission possible. We also thank support from NASA for the science team. NR 34 TC 40 Z9 41 U1 1 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD SEP 30 PY 2010 VL 115 AR E00F03 DI 10.1029/2010JE003633 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 658TF UT WOS:000282511600003 ER PT J AU Greeley, R Waller, DA Cabrol, NA Landis, GA Lemmon, MT Neakrase, LDV Hoffer, MP Thompson, SD Whelley, PL AF Greeley, Ronald Waller, Devin A. Cabrol, Nathalie A. Landis, Geoffrey A. Lemmon, Mark T. Neakrase, Lynn D. V. Hoffer, Mary Pendleton Thompson, Shane D. Whelley, Patrick L. TI Gusev Crater, Mars: Observations of three dust devil seasons SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID CONVECTIVE VORTICES; PATHFINDER; CAMERA AB Spirit began operations in Gusev Crater in January 2004 and has returned data on three seasons of dust devil (DD) activity. Total DDs observed were 533 in season one, 101 in season two, and 127 in season three. Their general characteristics are the same within factors of 2 among the seasons, with median diameters of 19 m in season one, 24 m in season two, and 39 m in season three, and dust flux values for individual vortices ranging from 4.0 x 10(-9) to 4.6 x 10(-4) kg m(-2) s(-1) in season one, 5.2 x 10(-7) to 6.2 x 10(-5) kg m(-2) s(-1) in season two, and 1.5 x 10(-7) to 1.6 x 10(-4) kg m(-2) s(-1) in season three. All three seasons were initiated with the onset of southern Martian spring within 14 sols of the same L-s (181 degrees) and their frequency increased to the period corresponding to late southern spring. The occurrences decreased monotonically in seasons one and three but apparently ended abruptly in season two when a large dust storm occurred; although the dusty atmosphere might have precluded the detection of active DDs, the abrupt cessation could result from conditions such as thermal stability of the atmosphere due to the presence of dust which could halt DD formation. Dust devils can contribute significant quantities of dust to the atmosphere, although it is unclear as to whether this dust stays locally or is injected into higher-altitude winds and is distributed elsewhere. In the three DD seasons observed through Spirit, DDs in Gusev Crater injected a minimum average of similar to 18 x 10(6) kg of material into the atmosphere each season. C1 [Greeley, Ronald; Waller, Devin A.; Neakrase, Lynn D. V.; Hoffer, Mary Pendleton; Thompson, Shane D.; Whelley, Patrick L.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Cabrol, Nathalie A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Landis, Geoffrey A.] NASA, John Glenn Res Ctr, Cleveland, OH 44135 USA. [Lemmon, Mark T.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. RP Greeley, R (reprint author), Arizona State Univ, Sch Earth & Space Explorat, Box 871404, Tempe, AZ 85287 USA. EM greeley@asu.edu; devin.waller@asu.edu; Nathalie.A.Cabrol@nasa.gov; geoffrey.landis@nasa.gov; lemmon@tamu.edu; neakrase@gmail.com; pwhelley@buffalo.edu RI Lemmon, Mark/E-9983-2010; Whelley, Patrick/B-9560-2012 OI Lemmon, Mark/0000-0002-4504-5136; Whelley, Patrick/0000-0003-3266-9772 FU NASA FX This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by NASA. Support was provided through NASA's Mars Exploration Rover project and the planetary Geology and Geophysics Program. We thank the diligent work of the entire MER science and engineering team for the continued success in the operation of the rovers. We also acknowledge the ASU Space Photography Laboratory for data analysis facilities, Sue Selkirk for graphics support, and Stephanie Holaday for preparation of the final manuscript. The report benefited from helpful comments by two anonymous reviewers. NR 49 TC 34 Z9 34 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD SEP 30 PY 2010 VL 115 AR E00F02 DI 10.1029/2010JE003608 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 658TF UT WOS:000282511600002 ER PT J AU Forbes, KF St Cyr, OC AF Forbes, Kevin F. St Cyr, O. C. TI An anatomy of space weather's electricity market impact: Case of the PJM power grid and the performance of its 500 kV transformers SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID GEOMAGNETICALLY INDUCED CURRENTS; SEMIANNUAL VARIATION AB The PJM Interconnection is a regional electricity transmission organization which as of 30 April 2004 coordinated the dispatch of electricity over 320,000 km of transmission lines. The backbone of PJM's transmission system is a series of 500 kilovolt (kV) transmission lines and transformers. PJM operates both hourly real-time and day-ahead markets for energy. The differences between PJM's real-time and day-ahead prices reflect unexpected operating conditions. Using ground-based magnetometer data as a proxy for geomagnetically induced currents (GICs), we present evidence that the differences between PJM's real-time and day-ahead prices are statistically related with the GIC proxy. Extra high voltage energy losses and a measure of real-time congestion costs are also shown to be statistically related with the GIC proxy. The paper investigates these statistical linkages by examining the incidence of declared constraints in the 500 kV transformers. The relationship between the GIC proxy and the incidence of declared constraints in the transformers is examined using a multivariate regression model with a dependent variable that is binary. The model is estimated using hourly data over the period 1 April 2002 through 30 April 2004. The results indicate that GICs can contribute to conditions in which the system operator declares one or more of the 500 kV transformers to be constrained. This finding takes into account forecasted load, load forecasting errors, ambient temperature, a proxy for known transmission constraints, and scheduled flows with other power grids. The results are also consistent with published findings that GICs can contribute to overheating problems in transformers. C1 [Forbes, Kevin F.] Catholic Univ Amer, Dept Econ & Business, Washington, DC 20064 USA. [St Cyr, O. C.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [St Cyr, O. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Forbes, KF (reprint author), Catholic Univ Amer, Dept Econ & Business, Washington, DC 20064 USA. EM forbes@cua.edu FU National Science Foundation [0318582, 0921964] FX This research was made possible by grants from the National Science Foundation (awards 0318582 and 0921964). We thank the editor and an anonymous reviewer for their helpful comments and suggestions. We thank Michael A. Forbes for writing the software that processed the geomagnetic data used in this study and the staff of PJM Interconnection for providing access to their data series and for answering our many questions. We also thank Michael Shields, Anna Galati, and Cynthia Schmitt for their excellent research assistance. We have also benefited from discussions with Antti Pulkkinen and Mark Lively. We thank the United States Geological Survey for making its geomagnetic data available. We also thank Intermagnet (www.intermagnet.org) for promoting high standards of magnetic observatory practice and for providing an efficient mechanism for the distribution of the data. Any errors are the full responsibility of the authors. NR 35 TC 7 Z9 7 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD SEP 30 PY 2010 VL 8 AR S09004 DI 10.1029/2009SW000498 PG 24 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 657TN UT WOS:000282436600001 ER PT J AU Drouin, BJ Pearson, JC Dick, MJ AF Drouin, Brian J. Pearson, John C. Dick, Michael J. TI Reply to "Comment on 'Collisional cooling investigation of THz rotational transitions of water' " SO PHYSICAL REVIEW A LA English DT Article ID CARBON-MONOXIDE AB This response describes the authors' reaction to a critique of recent work on the ultracold physics of water. The possibility of spin-selective adsorption occurring in the context of the collisional cooling experiment is discussed. C1 [Drouin, Brian J.; Pearson, John C.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Dick, Michael J.] Bubble Technol Ind, Chalk River, ON, Canada. RP Drouin, BJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM brian.j.drouin@jpl.nasa.gov NR 7 TC 3 Z9 3 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD SEP 29 PY 2010 VL 82 IS 3 AR 036704 DI 10.1103/PhysRevA.82.036704 PG 2 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 655SF UT WOS:000282269100024 ER PT J AU Gettelman, A Liu, X Ghan, SJ Morrison, H Park, S Conley, AJ Klein, SA Boyle, J Mitchell, DL Li, JLF AF Gettelman, A. Liu, X. Ghan, S. J. Morrison, H. Park, S. Conley, A. J. Klein, S. A. Boyle, J. Mitchell, D. L. Li, J. -L. F. TI Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID PHASE STRATIFORM CLOUDS; GENERAL-CIRCULATION MODELS; LARGE-SCALE MODELS; MICROPHYSICS SCHEME; VERSION-3 CAM3; CIRRUS CLOUDS; ARCTIC CLOUD; WATER-VAPOR; PART II; RELATIVE-HUMIDITY AB A process-based treatment of ice supersaturation and ice nucleation is implemented in the National Center for Atmospheric Research Community Atmosphere Model (CAM). The new scheme is designed to allow (1) supersaturation with respect to ice, (2) ice nucleation by aerosol particles, and (3) ice cloud cover consistent with ice microphysics. The scheme is implemented with a two-moment microphysics code and is used to evaluate ice cloud nucleation mechanisms and supersaturation in CAM. The new model is able to reproduce field observations of ice mass and mixed phase cloud occurrence better than previous versions. The model is able to reproduce observed patterns and frequency of ice supersaturation. Simulations indicate homogeneous freezing of sulfate and heterogeneous freezing on dust are both important ice nucleation mechanisms, in different regions. Simulated cloud forcing and climate is sensitive to different formulations of the ice microphysics. Arctic surface radiative fluxes are sensitive to the parameterization of ice clouds. These results indicate that ice clouds are potentially an important part of understanding cloud forcing and potential cloud feedbacks, particularly in the Arctic. C1 [Gettelman, A.; Morrison, H.; Park, S.; Conley, A. J.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80305 USA. [Liu, X.; Ghan, S. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Klein, S. A.; Boyle, J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Mitchell, D. L.] Desert Res Inst, Reno, NV 89512 USA. [Li, J. -L. F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Gettelman, A (reprint author), Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80305 USA. EM andrew@ucar.edu RI Liu, Xiaohong/E-9304-2011; Ghan, Steven/H-4301-2011; Klein, Stephen/H-4337-2016 OI Liu, Xiaohong/0000-0002-3994-5955; Ghan, Steven/0000-0001-8355-8699; Klein, Stephen/0000-0002-5476-858X FU National Science Foundation (NSF); NSF Science and Technology Center for MultiScale Modeling of Atmospheric; Colorado State University [ATM-0425247] FX The National Center for Atmospheric Research is sponsored by the U. S. National Science Foundation (NSF). H. Morrison is partially supported by the NSF Science and Technology Center for MultiScale Modeling of Atmospheric Processes, managed by Colorado State University under cooperative agreement ATM-0425247. Support for S. A. Klein and J. S. Boyle was provided by the Atmospheric Radiation Measurement and Climate Change Prediction Programs of the Office of Science at the U. S. Department of Energy. The contribution of S. A. Klein and J. S. Boyle to this work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Amy Solomon is thanked for providing selected M-PACE cloud property retrieval data. X. Liu and S. J. Ghan were funded by the U. S. Department of Energy, Office of Science, Atmospheric Radiation Measurement, Scientific Discovery through Advanced Computing (SciDAC) program and by the NASA Interdisciplinary Science Program under grant NNX07AI56G. The Pacific Northwest National Laboratory is operated for Department of Energy by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. A. Conley was supported by the SciDAC project from the Department of Energy. We thank J. Kay, S. Massie, and two anonymous reviewers for their comments. NR 85 TC 155 Z9 157 U1 1 U2 40 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 28 PY 2010 VL 115 AR D18216 DI 10.1029/2009JD013797 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 658RJ UT WOS:000282506800006 ER PT J AU Jethva, H Satheesh, SK Srinivasan, J Levy, RC AF Jethva, H. Satheesh, S. K. Srinivasan, J. Levy, R. C. TI Improved retrieval of aerosol size-resolved properties from moderate resolution imaging spectroradiometer over India: Role of aerosol model and surface reflectance SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SULFUR-DIOXIDE EMISSIONS; COMBUSTION; INVENTORY; ALGORITHM; ASIA AB We have compared the total as well as fine mode aerosol optical depth (tau and tau(fine)) retrieved by Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua (2001-2005) with the equivalent parameters derived by Aerosol Robotic Network (AERONET) at Kanpur (26.45 degrees N, 80.35 degrees E), northern India. MODIS Collection 005 (C005)-derived tau(0.55) was found to be in good agreement with the AERONET measurements. The tau(fine) and eta (tau(fine)/tau) were, however, biased low significantly in most matched cases. A new set of retrieval with the use of absorbing aerosol model (SSA similar to 0.87) with increased visible surface reflectance provided improved tau and tau(fine) at Kanpur. The new derivation of eta also compares well qualitatively with an independent set of in situ measurements of accumulation mass fraction over much of the southern India. This suggests that though MODIS land algorithm has limited information to derive size properties of aerosols over land, more accurate parameterization of aerosol and surface properties within the existing C005 algorithm may improve the accuracy of size-resolved aerosol optical properties. The results presented in this paper indicate that there is a need to reconsider the surface parameterization and assumed aerosol properties in MODIS C005 algorithm over the Indian region in order to retrieve more accurate aerosol optical and size properties, which are essential to quantify the impact of human-made aerosols on climate. C1 [Jethva, H.] Hampton Univ, Dept Atmospher & Planetary Sci, Hampton, VA 23668 USA. [Satheesh, S. K.] Indian Inst Sci, Ctr Atmospher & Ocean Sci, Bangalore 560012, Karnataka, India. [Srinivasan, J.] Indian Inst Sci, Divecha Ctr Climate Change, Bangalore 560012, Karnataka, India. [Levy, R. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Jethva, H (reprint author), Hampton Univ, Dept Atmospher & Planetary Sci, 21 E Tyler St, Hampton, VA 23668 USA. EM hiren.jethva@hamptonu.edu; satheesh@caos.iisc.ernet.in; jayes@caos.iisc.ernet.in; robert.c.levy@nasa.gov RI Jethva, Hiren/H-2258-2012; Levy, Robert/M-7764-2013 OI Jethva, Hiren/0000-0002-5408-9886; Levy, Robert/0000-0002-8933-5303 NR 26 TC 11 Z9 11 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 28 PY 2010 VL 115 AR D18213 DI 10.1029/2009JD013218 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 658RJ UT WOS:000282506800002 ER PT J AU Su, WY Loeb, NG Xu, KM Schuster, GL Eitzen, ZA AF Su, Wenying Loeb, Norman G. Xu, Kuan-Man Schuster, Gregory L. Eitzen, Zachary A. TI An estimate of aerosol indirect effect from satellite measurements with concurrent meteorological analysis SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID STRATIFORM CLOUDS; GLOBAL SURVEY; WATER CLOUDS; REFLECTANCE; PARAMETERS; RETRIEVAL; POLLUTION; IMPACT; ALBEDO; ISCCP AB Many studies have used satellite retrievals to investigate the effect of aerosols on cloud properties, but these retrievals are subject to artifacts that can confound interpretation. Additionally, large-scale meteorological differences over a study region dominate cloud dynamics and must be accounted for when studying aerosol and cloud interactions. We have developed an analysis method which minimizes the effect of retrieval artifacts and large-scale meteorology on the assessment of the aerosol indirect effect. The method divides an oceanic study region into 1 degrees x 1 degrees grid boxes and separates the grid boxes into two populations according to back trajectory analysis: one population contains aerosols of oceanic origin, and the other population contains aerosols of continental origin. We account for variability in the large-scale dynamical and thermodynamical conditions by stratifying these two populations according to vertical velocity (at 700 hPa) and estimated inversion strength and analyze differences in the aerosol optical depths, cloud properties, and top of atmosphere (TOA) albedos. We also stratify the differences by cloud liquid water path (LWP) in order to quantify the first aerosol indirect effect. We apply our method to a study region off the west coast of Africa and only consider single-layer low-level clouds. We find that grid boxes associated with aerosols of continental origin have higher cloud fraction than those associated with oceanic origin. Additionally, we limit our analysis to those grid boxes with cloud fractions larger than 80% to ensure that the two populations have similar retrieval biases. This is important for eliminating the retrieval biases in our difference analysis. We find a significant reduction in cloud droplet effective radius associated with continental aerosols relative to that associated with oceanic aerosols under all LWP ranges; the overall reduction is about 1.0 mu m, when cloud fraction is not constrained, and is about 0.5 mu m, when cloud fraction is constrained to be larger than 80%. We also find significant increases in cloud optical depth and TOA albedo associated with continental aerosols relative to those associated with oceanic aerosols under all LWP ranges. The overall increase in cloud optical depth is about 0.6, and the overall increase in TOA albedo is about 0.021, when we do not constrained cloud fraction. The overall increases in cloud optical depth and TOA albedo are 0.4 and 0.008, when we only use grid boxes with cloud fraction larger than 80%. C1 [Su, Wenying; Eitzen, Zachary A.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Loeb, Norman G.; Xu, Kuan-Man; Schuster, Gregory L.] NASA, Langley Res Ctr, Hampton, VA 23666 USA. RP Su, WY (reprint author), Sci Syst & Applicat Inc, Hampton, VA 23666 USA. EM wenying.su-1@nasa.gov RI Xu, Kuan-Man/B-7557-2013 OI Xu, Kuan-Man/0000-0001-7851-2629 FU NASA FX This research has been supported by NASA Interdisciplinary Research in Earth Science, Aerosol Impacts on Clouds, Precipitation, and the Hydrologic Cycle, and by the NASA CALIPSO project. The CERES SSF data were obtained from the Atmospheric Sciences Data Center at the NASA Langley Research Center. ECMWF ERA-Interim data used in this study have been obtained from the ECMWF data server. W. Su would like to thank Roland Draxler for his help with HYSPLIT. We thank Patrick Minnis and Sunny Sun-Mack for helpful discussions. NR 47 TC 11 Z9 11 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 28 PY 2010 VL 115 AR D18219 DI 10.1029/2010JD013948 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 658RJ UT WOS:000282506800008 ER PT J AU Anderson, MS AF Anderson, Mark S. TI Nonplasmonic surface enhanced Raman spectroscopy using silica microspheres SO APPLIED PHYSICS LETTERS LA English DT Article ID SILVER ELECTRODE; MICROCAVITIES; RESONATORS; SCATTERING; PYRIDINE; SPECTRA; WAVES AB Surface enhanced Raman spectroscopy is presented using a nonplasmonic mechanism based on whispering gallery modes in silica microspheres. Sensitive Raman analysis of molecular films is demonstrated by using 5-10 mu m sized silica spheres. The advantages of this nonplasmonic approach are the active substrate is chemically inert, thermally stable, and relatively simple to fabricate. Applications include trace organic analysis particularly for in situ planetary instruments that require robust sensors with consistent response. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3493657] C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Anderson, MS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 125-109, Pasadena, CA 91109 USA. EM mark.s.anderson@jpl.nasa.gov NR 21 TC 12 Z9 12 U1 2 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 27 PY 2010 VL 97 IS 13 AR 131116 DI 10.1063/1.3493657 PG 3 WC Physics, Applied SC Physics GA 657UU UT WOS:000282443800016 ER PT J AU Sutton, A McKenzie, K Ware, B Shaddock, DA AF Sutton, Andrew McKenzie, Kirk Ware, Brent Shaddock, Daniel A. TI Laser ranging and communications for LISA SO OPTICS EXPRESS LA English DT Article AB The Laser Interferometer Space Antenna (LISA) will use Time Delay Interferometry (TDI) to suppress the otherwise dominant laser frequency noise. The technique uses sub-sample interpolation of the recorded optical phase measurements to form a family of interferometric combinations immune to frequency noise. This paper reports on the development of a Pseudo-Random Noise laser ranging system used to measure the sub-sample interpolation time shifts required for TDI operation. The system also includes an optical communication capability that meets the 20 kbps LISA requirement. An experimental demonstration of an integrated LISA phase measurement and ranging system achieved a approximate to 0.19 m rms absolute range error with a 0.5Hz signal bandwidth, surpassing the 1 m rms LISA specification. The range measurement is limited by mutual interference between the ranging signals exchanged between spacecraft and the interaction of the ranging code with the phase measurement. C1 [Sutton, Andrew; Shaddock, Daniel A.] Australian Natl Univ, Ctr Gravitat Phys, Canberra, ACT 0200, Australia. [McKenzie, Kirk; Ware, Brent; Shaddock, Daniel A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Sutton, A (reprint author), Australian Natl Univ, Ctr Gravitat Phys, GPO Box 4, Canberra, ACT 0200, Australia. EM andrew.sutton@anu.edu.au RI Shaddock, Daniel/A-7534-2011 OI Shaddock, Daniel/0000-0002-6885-3494 FU Australian Research Council [DP0986003]; National Aeronautics and Space Administration (NASA) FX This research was supported under Australian Research Council's Discovery Projects funding scheme (project number DP0986003). Part of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). NR 17 TC 14 Z9 14 U1 0 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 27 PY 2010 VL 18 IS 20 BP 20759 EP 20773 DI 10.1364/OE.18.020759 PG 15 WC Optics SC Optics GA 673QX UT WOS:000283679200023 PM 20940971 ER PT J AU Josset, D Zhai, PW Hu, YX Pelon, J Lucker, PL AF Josset, Damien Zhai, Peng-Wang Hu, Yongxiang Pelon, Jacques Lucker, Patricia L. TI Lidar equation for ocean surface and subsurface SO OPTICS EXPRESS LA English DT Article ID BIDIRECTIONAL REFLECTANCE; CLOUDS; RADIANCE; WATER; BACKSCATTER; CALIBRATION; WHITECAPS; AEROSOLS; MISSION; LAYERS AB The lidar equation for ocean at optical wavelengths including subsurface signals is revisited using the recent work of the radiative transfer and ocean color community for passive measurements. The previous form of the specular and subsurface echo term are corrected from their heritage, which originated from passive remote sensing of whitecaps, and is improved for more accurate use in future lidar research. A corrected expression for specular and subsurface lidar return is presented. The previous formalism does not correctly address angular dependency of specular lidar return and overestimates the subsurface term by a factor ranging from 89% to 194% for a nadir pointing lidar. Suggestions for future improvements to the lidar equation are also presented. (C) 2010 Optical Society of America C1 [Josset, Damien] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Josset, Damien; Zhai, Peng-Wang] SSAI, Hampton, VA 23666 USA. [Hu, Yongxiang] NASA, Langley Res Ctr, MS 475, Hampton, VA 23681 USA. [Pelon, Jacques] Univ Paris 06, LATMOS, CNRS, UMR 8190, F-75252 Paris 05, France. [Lucker, Patricia L.] NASA, Langley Res Ctr, SSAI, MS 475, Hampton, VA 23681 USA. RP Josset, D (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM damien.josset@aero.jussieu.fr RI Hu, Yongxiang/K-4426-2012 FU NASA at NASA Langley Research Center; Science Systems and Applications Inc. (SSAI) FX This work has been supported by NASA Postdoctoral Program (NPP) at NASA Langley Research Center administered by Oak Ridge Associated Universities. Science Systems and Applications Inc. (SSAI) is greatly acknowledged for their support. We would like to thank the two anonymous reviewers for suggesting corrections and improvements to the manuscript. NR 31 TC 5 Z9 6 U1 1 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 27 PY 2010 VL 18 IS 20 BP 20862 EP 20875 DI 10.1364/OE.18.020862 PG 14 WC Optics SC Optics GA 673QX UT WOS:000283679200033 PM 20940981 ER PT J AU Sayres, DS Pfister, L Hanisco, TF Moyer, EJ Smith, JB St Clair, JM O'Brien, AS Witinski, MF Legg, M Anderson, JG AF Sayres, D. S. Pfister, L. Hanisco, T. F. Moyer, E. J. Smith, J. B. St Clair, J. M. O'Brien, A. S. Witinski, M. F. Legg, M. Anderson, J. G. TI Influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TROPOSPHERE EXCHANGE; VAPOR; TRANSPORT; OZONE; DEHYDRATION; AIRCRAFT; AIR AB [1] We present the first in situ measurements of HDO across the tropical tropopause, obtained by the integrated cavity output spectroscopy (ICOS) and Hoxotope water isotope instruments during the Costa Rica Aura Validation Experiment (CR-AVE) and Tropical Composition, Cloud and Climate Coupling (TC4) aircraft campaigns out of Costa Rica in winter and summer, respectively. We use these data to explore the role convection plays in delivering water to the tropical tropopause layer (TTL) and stratosphere. We find that isotopic ratios within the TTL are inconsistent with gradual ascent and dehydration by in-situ cirrus formation and suggest that convective ice lofting and evaporation play a strong role throughout the TTL. We use a convective influence model and a simple parameterized model of dehydration along back trajectories to demonstrate that the convective injection of isotopically heavy water can account for the predominant isotopic profile in the TTL. Air parcels with significantly enhanced water vapor and isotopic composition can be linked via trajectory analysis to specific convective events in the Western Tropical Pacific, Southern Pacific Ocean, and South America. Using a simple model of dehydration and hydration along trajectories we show that convection during the summertime TC4 campaign moistened the upper part of the TTL by as much as 2.0 ppmv water vapor. The results suggest that deep convection is significant for the moisture budget of the tropical near-tropopause region and must be included to fully model the dynamics and chemistry of the TTL and lower stratosphere. C1 [Sayres, D. S.; Hanisco, T. F.; Moyer, E. J.; Smith, J. B.; St Clair, J. M.; O'Brien, A. S.; Witinski, M. F.; Anderson, J. G.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Pfister, L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Legg, M.] BAERI, Sonoma, CA 95476 USA. RP Sayres, DS (reprint author), Harvard Univ, Sch Engn & Appl Sci, 12 Oxford St, Cambridge, MA 02138 USA. EM sayres@huarp.harvard.edu FU NASA [NNG05G056G, NNG05GJ81G] FX The authors wish to thank the WB-57 pilots and crew for their hard work and dedication without which these measurements would not be possible. We also wish to thank A.E. Dessler for his comments and suggestions on this manuscript. Support from NASA grants NNG05G056G and NNG05GJ81G is gratefully acknowledged. NR 40 TC 33 Z9 33 U1 1 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 25 PY 2010 VL 115 AR D00J20 DI 10.1029/2009JD013100 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 656IF UT WOS:000282322100005 ER PT J AU Fisher, K Chang, CI AF Fisher, Kevin Chang, Chein-I TI Progressive band selection for satellite hyperspectral data compression and transmission SO JOURNAL OF APPLIED REMOTE SENSING LA English DT Article DE Backward progressive band selection (BPBS); Forward progressive band selection (FPBS); Progressive band selection; Virtual dimensionality (VD) ID SUBSPACE PROJECTION; CLASSIFICATION; IMAGERY AB Efficient data transmission is an important part of satellite communication, particularly when large data volumes need to be downlinked to the Earth. One general approach to dealing with this dilemma is data compression, either lossless or lossy. For hyperspectral data, compression is specifically crucial due to its high inter-band spectral correlation, resulting from the use of hundreds of high spectral resolution bands for data collection. This paper develops a new approach, called progressive band selection (PBS), to achieve both data compression and data transmission, in the sense that data can be compressed and transmitted progressively. First, PBS prioritizes each spectral band by assigning a priority score based on its information content measured by a certain criterion. Then, bands are selected progressively according to the priority scores assigned to each spectral band. Consequently, data can be compressed and transmitted in a progressive fashion to meet the application's requirements; this task cannot be accomplished by most data compression techniques. Most importantly, PBS can be implemented in two opposite manners. One is forward progressive band selection (FPBS), which starts with a low number of bands and gradually improves data quality by including more bands progressively, based on their priority scores, until data quality is satisfactory. The other is backward progressive band selection (BPBS), which begins with a high number of spectral bands and progressively removes them in accordance with their priority scores, until data quality falls below a given tolerance level. In order to determine the lower and upper bounds on the number of bands used for FPBS and BPBS, we use a recently developed concept called virtual dimensionality (VD). We demonstrate the utility of PBS in compression and transmission for satellite communication with an experiment in land use and cover classification, which uses a dataset collected by the Hyperion instrument aboard NASA's EO-1 satellite. C1 [Fisher, Kevin] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Chang, Chein-I] Univ Maryland, Dept Comp Sci & Elect Engn, Baltimore, MD 21250 USA. RP Fisher, K (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. NR 18 TC 1 Z9 1 U1 1 U2 4 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1931-3195 J9 J APPL REMOTE SENS JI J. Appl. Remote Sens. PD SEP 24 PY 2010 VL 4 AR 041770 DI 10.1117/1.3502036 PG 17 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 704RG UT WOS:000286069500001 ER PT J AU Di Girolamo, L Liang, LS Platnick, S AF Di Girolamo, Larry Liang, Lusheng Platnick, Steven TI A global view of one-dimensional solar radiative transfer through oceanic water clouds SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID INDEPENDENT PIXEL APPROXIMATION; OPTICAL DEPTH AB Solar radiative transfer through a cloudy atmosphere is commonly computed assuming clouds to be one-dimensional, i.e., plane-parallel. Here we provide a global perspective on how often and with what degree oceanic water clouds may be considered plane-parallel by fusing multi-view-angle and multi-spectral satellite data. We show that the view-angular distribution of the retrieved reflectance, spherical albedo and cloud optical thickness measured at 1 km resolution are indistinguishable from plane-parallel clouds 24%, 25% and 79% of the time, respectively, at the 95% confidence level of our measurement method. These plane-parallel clouds occur most frequently within regions dominated by stratiform clouds under solar zenith angles <60 degrees. For all other regions or sun-angles, the frequency in which clouds are indistinguishable from plane-parallel drops sharply to as low as a few percent. Our results provide a basis for interpreting space-time variability within many satellite-retrieved variables and reveal a need for continued efforts to handle three-dimensional radiative transfer in environmental modeling and monitoring systems. Citation: Di Girolamo, L., L. Liang, and S. Platnick (2010), A global view of one-dimensional solar radiative transfer through oceanic water clouds, Geophys. Res. Lett., 37, L18809, doi:10.1029/2010GL044094. C1 [Di Girolamo, Larry; Liang, Lusheng] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61801 USA. [Platnick, Steven] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. RP Di Girolamo, L (reprint author), Univ Illinois, Dept Atmospher Sci, 105 S Gregory Ave, Urbana, IL 61801 USA. EM larry@atmos.uiuc.edu RI liang, lusheng/E-1538-2014; Platnick, Steven/J-9982-2014 OI Platnick, Steven/0000-0003-3964-3567 FU NASA FX We are grateful to the NASA Langley Research Center Atmospheric Sciences Data Center and the NASA Goddard Space Flight Center Atmosphere Archive Distribution System for archiving and distributing the MISR and MODIS datasets. Funding was provided by NASA through the New Investigator Program and the Earth and Space Science Fellowship Program, as well as through the MISR project managed by the Jet Propulsion Laboratory of the California Institute of Technology. NR 14 TC 18 Z9 18 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 24 PY 2010 VL 37 AR L18809 DI 10.1029/2010GL044094 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 656HL UT WOS:000282319500001 ER PT J AU Liu, CX Liu, Y Cai, ZN Gao, ST Bian, JC Liu, XO Chance, K AF Liu, Chuanxi Liu, Yi Cai, Zhaonan Gao, Shouting Bian, Jianchun Liu, Xiong Chance, Kelly TI Dynamic formation of extreme ozone minimum events over the Tibetan Plateau during northern winters 1987-2001 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MADDEN-JULIAN OSCILLATION; TROPOSPHERIC OZONE; LOWER STRATOSPHERE; CLIMATOLOGY; TROPOPAUSE; HEMISPHERE; PACIFIC; HOLES AB Wintertime extreme ozone minima in the total column ozone over the Tibetan Plateau (TP) between 1978 and 2001 are analyzed using observations from the Total Ozone Mapping Spectrometer (TOMS), Global Ozone Monitoring Experiment (GOME), and reanalysis data from both National Centers for Environmental Prediction and European Centre for Medium-Range Weather Forecasts. Results show that total column ozone reduction in nine persistent (lasting for at least 2 days) and four transient events can be substantially attributed to ozone reduction in the upper troposphere and lower stratosphere region (below 25 km). This reduction is generally caused by uplift of the local tropopause and northward transport of tropical ozone-poor air associated with an anomalous anticyclone in the upper troposphere. These anticyclonic anomalies are closely related to anomalous tropical deep convective heating, which is, however, not necessarily phase locked with the tropical Madden-Julian Oscillation as in our earlier case study. Considering stratospheric processes, the selected 13 events can be combined into nine independent events. Moreover, five of the nine independent events, especially the persistent events, are coupled with contributions from stratospheric dynamics between 25 and 40 km, i.e., 15%-40% derived from GOME observations for events in November 1998, February 1999, and December 2001. On the basis of these events, stratospheric column ozone reduction over the TP region can be attributed to the dynamics (development and/or displacement) of the two main stratospheric systems, namely, the polar vortex and the Aleutian High. The effect of a "low-ozone pocket" inside the Aleutian High on the total column ozone in East Asia requires further study. C1 [Liu, Chuanxi; Liu, Yi; Cai, Zhaonan; Bian, Jianchun] Chinese Acad Sci, Inst Atmospher Phys, Key Lab Middle Atmosphere & Global Environm Obser, Beijing 100029, Peoples R China. [Liu, Xiong; Chance, Kelly] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Gao, Shouting] Chinese Acad Sci, Inst Atmospher Phys, LACS, Beijing 100029, Peoples R China. [Liu, Xiong] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Liu, Chuanxi; Cai, Zhaonan] Chinese Acad Sci, Grad Univ, Beijing 100029, Peoples R China. RP Liu, CX (reprint author), Chinese Acad Sci, Inst Atmospher Phys, Key Lab Middle Atmosphere & Global Environm Obser, Beijing 100029, Peoples R China. RI Liu, Xiong/P-7186-2014; OI Liu, Xiong/0000-0003-2939-574X; Chance, Kelly/0000-0002-7339-7577 FU National Basic Research Program of China [2010CB428604]; National Science Foundation of China [40633015]; Dragon 2 Programme [5311]; NASA; Smithsonian Institution FX This work was funded by the National Basic Research Program of China (grant 2010CB428604), National Science Foundation of China (grant 40633015), and the Dragon 2 Programme (ID: 5311). We thank the European Space Agency and the German Aerospace Center for their ongoing cooperation in the GOME program. The meteorological analysis was kindly provided by ECMWF and NCEP. Research at SAO was funded by NASA and the Smithsonian Institution. NR 46 TC 6 Z9 7 U1 0 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 24 PY 2010 VL 115 AR D18311 DI 10.1029/2009JD013130 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 656ID UT WOS:000282321800001 ER PT J AU France, K McCray, R Heng, K Kirshner, RP Challis, P Bouchet, P Crotts, A Dwek, E Fransson, C Garnavich, PM Larsson, J Lawrence, SS Lundqvist, P Panagia, N Pun, CSJ Smith, N Sollerman, J Sonneborn, G Stocke, JT Wang, LF Wheeler, JC AF France, Kevin McCray, Richard Heng, Kevin Kirshner, Robert P. Challis, Peter Bouchet, Patrice Crotts, Arlin Dwek, Eli Fransson, Claes Garnavich, Peter M. Larsson, Josefin Lawrence, Stephen S. Lundqvist, Peter Panagia, Nino Pun, Chun S. J. Smith, Nathan Sollerman, Jesper Sonneborn, George Stocke, John T. Wang, Lifan Wheeler, J. Craig TI Observing Supernova 1987A with the Refurbished Hubble Space Telescope SO SCIENCE LA English DT Article ID BALMER-DOMINATED SHOCKS; SNR 1987A; REVERSE SHOCK; CIRCUMSTELLAR RING; OPTICAL-EMISSION; LINE EMISSION; SN-1987A; ULTRAVIOLET; REMNANTS; NEBULA AB Observations with the Hubble Space Telescope (HST), conducted since 1990, now offer an unprecedented glimpse into fast astrophysical shocks in the young remnant of supernova 1987A. Comparing observations taken in 2010 with the use of the refurbished instruments on HST with data taken in 2004, just before the Space Telescope Imaging Spectrograph failed, we find that the Ly alpha and H alpha lines from shock emission continue to brighten, whereas their maximum velocities continue to decrease. We observe broad, blueshifted Ly alpha, which we attribute to resonant scattering of photons emitted from hot spots on the equatorial ring. We also detect N v lambda lambda 1239, 1243 angstrom line emission, but only to the red of Ly alpha. The profiles of the N v lines differ markedly from that of H alpha, suggesting that the N(4+) ions are scattered and accelerated by turbulent electromagnetic fields that isotropize the ions in the collisionless shock. C1 [Heng, Kevin] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [France, Kevin; Stocke, John T.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [McCray, Richard] Univ Colorado, JILA, Boulder, CO 80309 USA. [Heng, Kevin] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. [Kirshner, Robert P.; Challis, Peter] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bouchet, Patrice] Commissariat Energie Atom & Energies Alternat, Serv Astrophys, FR-91191 Gif Sur Yvette, France. [Crotts, Arlin] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Dwek, Eli; Sonneborn, George] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fransson, Claes; Larsson, Josefin; Sollerman, Jesper] Stockholm Univ, Oskar Klein Ctr, Dept Astron, S-10691 Stockholm, Sweden. [Garnavich, Peter M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Lawrence, Stephen S.] Hofstra Univ, Dept Phys & Astron, Hempstead, NY 11549 USA. [Panagia, Nino] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Panagia, Nino] Osserv Astrofis Catania, Inst Nazl Astrofis, I-95123 Catania, Italy. [Pun, Chun S. J.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Smith, Nathan] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Wang, Lifan] Texas A&M Univ, Dept Phys & Astron, College Stn, TX USA. [Wheeler, J. Craig] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. RP Heng, K (reprint author), ETH, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. EM kheng@phys.ethz.ch RI Dwek, Eli/C-3995-2012; Sonneborn, George/D-5255-2012; OI Sollerman, Jesper/0000-0003-1546-6615; /0000-0003-0065-2933 FU Space Telescope Science Institute [GO-11181]; NASA [NAS5-26555] FX K.F. thanks M. Beasley for enjoyable discussions. Support for this research was provided by NASA through grant GO-11181 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, under NASA contract NAS5-26555. NR 25 TC 12 Z9 12 U1 0 U2 12 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 24 PY 2010 VL 329 IS 5999 BP 1624 EP 1627 DI 10.1126/science.1192134 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 653NK UT WOS:000282098100034 PM 20813921 ER PT J AU Heavens, NG Benson, JL Kass, DM Kleinbohl, A Abdou, WA McCleese, DJ Richardson, MI Schofield, JT Shirley, JH Wolkenberg, PM AF Heavens, N. G. Benson, J. L. Kass, D. M. Kleinboehl, A. Abdou, W. A. McCleese, D. J. Richardson, M. I. Schofield, J. T. Shirley, J. H. Wolkenberg, P. M. TI Water ice clouds over the Martian tropics during northern summer SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GENERAL-CIRCULATION MODEL; INTERANNUAL VARIABILITY; MARS; ATMOSPHERE; TES AB Atmospheric models suggest that infrared heating due to water ice clouds over the tropics of Mars during early northern summer has a significant impact on the thermal structure of the tropics at cloud level and of the middle atmosphere near the south pole. Retrievals from limb observations by the Mars Climate Sounder on Mars Reconnaissance Orbiter during early northern summer show that water ice clouds over the northern tropics are thinner and higher than in published model results. Later in this season, the latitudinal extent, apparent mass mixing ratio (and infrared heating rate), and altitude of nighttime tropical clouds significantly increase, reaching a maximum just before northern fall equinox. Published model results do not show this transition. By underestimating the altitude at which water ice clouds form, models also may underestimate the intensity of the meridional circulation at higher altitudes in the tropics during northern summer. Citation: Heavens, N. G., J. L. Benson, D. M. Kass, A. Kleinbohl, W. A. Abdou, D. J. McCleese, M. I. Richardson, J. T. Schofield, J. H. Shirley, and P. M. Wolkenberg (2010), Water ice clouds over the Martian tropics during northern summer, Geophys. Res. Lett., 37, L18202, doi: 10.1029/2010GL044610. C1 [Heavens, N. G.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91109 USA. [Benson, J. L.; Kass, D. M.; Kleinboehl, A.; Abdou, W. A.; McCleese, D. J.; Schofield, J. T.; Shirley, J. H.; Wolkenberg, P. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Richardson, M. I.] Ashima Res, Pasadena, CA 91106 USA. RP Heavens, NG (reprint author), Cornell Univ, Dept Earth & Atmospher Sci, 1118 Bradfield Hall, Ithaca, NY 14850 USA. EM heavens@cornell.edu OI Heavens, Nicholas/0000-0001-7654-503X FU Jet Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration FX We thank John Wilson and an anonymous reviewer for helpful comments on this manuscript. We also thank Bob Haberle for useful discussion. This work was funded by and performed in part at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration as part of the Mars Reconnaissance Orbiter project. NR 18 TC 19 Z9 19 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 23 PY 2010 VL 37 AR L18202 DI 10.1029/2010GL044610 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 656HG UT WOS:000282318900002 ER PT J AU Smith, AK Marsh, DR Mlynczak, MG Mast, JC AF Smith, Anne K. Marsh, Daniel R. Mlynczak, Martin G. Mast, Jeffrey C. TI Temporal variations of atomic oxygen in the upper mesosphere from SABER SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID HYDROXYL AIRGLOW; TERRESTRIAL ATMOSPHERE; SEMIANNUAL OSCILLATION; SEMIDIURNAL TIDE; BAND EMISSION; DENSITIES; PROFILES; MODEL; RATES AB One of the atmospheric constituents that can be retrieved from observations by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is atomic oxygen in the upper mesosphere. Atomic oxygen can be determined during both day and night using two different techniques that both rely on ozone chemistry. The O concentrations retrieved from SABER data are higher by a factor of 2-5 compared to concentrations determined from other measurements and techniques and compiled in current empirical models. This paper presents variability of atomic oxygen with a focus on the diurnal cycle in low latitudes and the seasonal cycle of daily mean atomic oxygen globally. The results show a large diurnal variation, ranging from a factor of 2 to more than a factor of 10, of atomic oxygen near the equator. The relative magnitude varies with season (larger near the equinoxes) and with altitude (largest near 85 km). Vertical transport by the migrating diurnal tide explains the observed variation. The semiannual variation in tidal amplitude affects the seasonal variation of daily average atomic oxygen, which likely indicates that there is irreversible transport by the tides. At high latitudes, the atomic oxygen variation is characterized by wintertime maxima over the altitude range 80-95 km and summertime maxima above. The wintertime peaks are associated with the downwelling from the mean circulation and are particularly strong in late winter of 2004, 2006, and 2009, responding to the unusual dynamical situations in those years. C1 [Smith, Anne K.; Marsh, Daniel R.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Mlynczak, Martin G.] NASA Langley Res Ctr, Hampton, VA 23681 USA. [Mast, Jeffrey C.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. RP Smith, AK (reprint author), Natl Ctr Atmospher Res, Div Atmospher Chem, POB 3000, Boulder, CO 80307 USA. EM aksmith@ucar.edu RI Mlynczak, Martin/K-3396-2012; Marsh, Daniel/A-8406-2008 OI Marsh, Daniel/0000-0001-6699-494X FU NASA; National Science Foundation FX The authors gratefully acknowledge the SABER science, algorithm, and data support teams. Support for this work was provided by the NASA Heliospheric Guest Investigator Program. The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings, and conclusions or recommendations expressed in the publication are those of the authors and do not necessarily reflect the views of the National Science Foundation. NR 60 TC 55 Z9 55 U1 3 U2 23 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 23 PY 2010 VL 115 AR D18309 DI 10.1029/2009JD013434 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 656IB UT WOS:000282321500004 ER PT J AU Tilmes, S Pan, LL Hoor, P Atlas, E Avery, MA Campos, T Christensen, LE Diskin, GS Gao, RS Herman, RL Hintsa, EJ Loewenstein, M Lopez, J Paige, ME Pittman, JV Podolske, JR Proffitt, MR Sachse, GW Schiller, C Schlager, H Smith, J Spelten, N Webster, C Weinheimer, A Zondlo, MA AF Tilmes, S. Pan, L. L. Hoor, P. Atlas, E. Avery, M. A. Campos, T. Christensen, L. E. Diskin, G. S. Gao, R. -S. Herman, R. L. Hintsa, E. J. Loewenstein, M. Lopez, J. Paige, M. E. Pittman, J. V. Podolske, J. R. Proffitt, M. R. Sachse, G. W. Schiller, C. Schlager, H. Smith, J. Spelten, N. Webster, C. Weinheimer, A. Zondlo, M. A. TI An aircraft-based upper troposphere lower stratosphere O-3, CO, and H2O climatology for the Northern Hemisphere (vol 115, D14303, 2010) SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Correction C1 [Avery, M. A.; Diskin, G. S.; Sachse, G. W.] NASA Langley Res Ctr, Hampton, VA 23681 USA. RI hoor, peter/G-5421-2010; Schiller, Cornelius/B-1004-2013; Gao, Ru-Shan/H-7455-2013; Atlas, Elliot/J-8171-2015; Zondlo, Mark/R-6173-2016 OI hoor, peter/0000-0001-6582-6864; Zondlo, Mark/0000-0003-2302-9554 NR 2 TC 0 Z9 0 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 23 PY 2010 VL 115 AR D18310 DI 10.1029/2010JD014867 PG 1 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 656IB UT WOS:000282321500007 ER PT J AU Hayes, AG Wolf, AS Aharonson, O Zebker, H Lorenz, R Kirk, RL Paillou, P Lunine, J Wye, L Callahan, P Wall, S Elachi, C AF Hayes, A. G. Wolf, A. S. Aharonson, O. Zebker, H. Lorenz, R. Kirk, R. L. Paillou, P. Lunine, J. Wye, L. Callahan, P. Wall, S. Elachi, C. TI Bathymetry and absorptivity of Titan's Ontario Lacus SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID LAKES; ETHANE AB [1] Ontario Lacus is the largest and best characterized lake in Titan's south polar region. In June and July 2009, the Cassini RADAR acquired its first Synthetic Aperture Radar (SAR) images of the area. Together with closest approach altimetry acquired in December 2008, these observations provide a unique opportunity to study the lake's nearshore bathymetry and complex refractive properties. Average radar backscatter is observed to decrease exponentially with distance from the local shoreline. This behavior is consistent with attenuation through a deepening layer of liquid and, if local topography is known, can be used to derive absorptive dielectric properties. Accordingly, we estimate nearshore topography from a radar altimetry profile that intersects the shoreline on the East and West sides of the lake. We then analyze SAR backscatter in these regions to determine the imaginary component of the liquid's complex index of refraction (kappa). The derived value, kappa = (6.1(-1.3)(+1.7)) x 10(-4), Corresponds to a loss tangent of tan Delta = (9.2(-2.0)(+2.5)) x 10(-4) and is consistent with a composition dominated by liquid hydrocarbons. This value can be used to test compositional models once the microwave optical properties of candidate materials have been measured. In areas that do not intersect altimetry profiles, relative slopes can be calculated assuming the index of refraction is constant throughout the liquid. Accordingly, we construct a coarse bathymetry map for the nearshore region by measuring bathymetric slopes for eleven additional areas around the lake. These slopes vary by a factor of similar to 5 and correlate well with observed shoreline morphologies. C1 [Hayes, A. G.; Wolf, A. S.; Aharonson, O.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Callahan, P.; Wall, S.; Elachi, C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kirk, R. L.] US Geol Survey, Astrogeol Team, Flagstaff, AZ 86001 USA. [Lorenz, R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Lunine, J.] Univ Rome, Dept Phys, I-00173 Rome, Italy. [Paillou, P.] Univ Bordeaux 2, Aquitaine Sci Ctr, F-33270 Floirac, France. [Zebker, H.; Wye, L.] Stanford Univ, Stanford, CA 94305 USA. [Paillou, P.] Univ Bordeaux, Aquitaine Sci Ctr, Floirac, France. RP Hayes, AG (reprint author), CALTECH, Div Geol & Planetary Sci, MC 150-21, Pasadena, CA 91125 USA. EM hayes@gps.caltech.edu RI Hayes, Alexander/P-2024-2014; Lorenz, Ralph/B-8759-2016 OI Hayes, Alexander/0000-0001-6397-2630; Lorenz, Ralph/0000-0001-8528-4644 FU Cassini Project; NASA; NASA's Graduate Student Researchers Program; NSF Graduate Research Fellowship Program FX The authors would like to thank Bryan Stiles for helpful discussions and the Cassini engineering team, without whom the data presented here would not have been possible. This work was supported by the Cassini Project, managed by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA as well as by NASA's Graduate Student Researchers Program and the NSF Graduate Research Fellowship Program. NR 37 TC 34 Z9 34 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD SEP 23 PY 2010 VL 115 AR E09009 DI 10.1029/2009JE003557 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 656JD UT WOS:000282326000002 ER PT J AU Searls, ML Mellon, MT Cull, S Hansen, CJ Sizemore, HG AF Searls, M. L. Mellon, M. T. Cull, S. Hansen, C. J. Sizemore, H. G. TI Seasonal defrosting of the Phoenix landing site SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID SUBLIMATION-DRIVEN ACTIVITY; GROUND ICE; HIRISE OBSERVATIONS; POLAR-REGION; MARS; SURFACE; CAP; TES; STABILITY; DEPOSITS AB [1] The retreat of the seasonal polar cap at the Phoenix landing site is analyzed through observations of high resolution images and thermal modeling of the CO(2) frost mass. Numerical simulations indicate that the onset of CO(2) frost formation occurs around L(s) = 220 degrees at 68 degrees N; however, the polar hood prevented imaging of the surface during this time. In the late winter/early spring a continuous layer of frost coated the surface obscuring the underlying polygonal patterns; however, rocks are clearly evident indicating that the frost depth was relatively shallow. Rare dark fans originating from rocks are also observed in an image from early spring. Frost dissipated from the polygon centers first and lingered longer in polygon troughs. Polygon centers were first exposed on L(s) = 13.9 degrees, and the polygon troughs were frost free by L(s) similar to 57 degrees. Frost distributions varied slightly between geologic units; however, in general, global observations at similar latitudes are consistent with what is seen in the Phoenix region. A series of hypotheses is also explored to explain the preference for the CO(2) frost to linger in the troughs: lower thermal inertia material in the troughs, aeolian redistribution of frost, burial of the ice table via aeolian redistribution of dust, and shadowing. Each of these hypotheses has drawbacks to explaining this phenomenon as stand-alone components. Shadows do play a role in keeping the CO(2) frost on the surface; however, this effect is small and cannot alone account for the observations. C1 [Searls, M. L.; Mellon, M. T.; Sizemore, H. G.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Hansen, C. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cull, S.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63112 USA. RP Searls, ML (reprint author), Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. EM mindi.searls@lasp.colorado.edu RI Mellon, Michael/C-3456-2016 FU NASA [NNX08AE33G] FX We wish to thank the HiRISE, MRO, and Phoenix teams for their dedicated hard work which resulted in two successful missions. Numerical modeling was supported in part by NASA grant NNX08AE33G. We would also like to thank the reviewers for their thoughtful and constructive comments and Kim Seelos for providing a geologic map of the Phoenix landing region. NR 38 TC 4 Z9 4 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD SEP 23 PY 2010 VL 115 AR E00E24 DI 10.1029/2009JE003438 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 656JD UT WOS:000282326000001 ER PT J AU Sahraoui, F Goldstein, ML Belmont, G Canu, P Rezeau, L AF Sahraoui, F. Goldstein, M. L. Belmont, G. Canu, P. Rezeau, L. TI Three Dimensional Anisotropic k Spectra of Turbulence at Subproton Scales in the Solar Wind SO PHYSICAL REVIEW LETTERS LA English DT Article ID WEAKLY COLLISIONAL PLASMAS; DISSIPATION RANGE; MAGNETIC FLUCTUATIONS; DYNAMICS; MAGNETOSHEATH; CASCADE; MHD AB We show the first three dimensional (3D) dispersion relations and k spectra of magnetic turbulence in the solar wind at subproton scales. We used the Cluster data with short separations and applied the k-filtering technique to the frequency range where the transition to subproton scales occurs. We show that the cascade is carried by highly oblique kinetic Alfven waves with omega(plas) <= 0.1 omega(ci) down to k(perpendicular to)rho(i) similar to 2. Each k spectrum in the direction perpendicular to B(0) shows two scaling ranges separated by a breakpoint (in the interval [0.4, 1]k(perpendicular to)rho(i)): a Kolmogorov scaling k(perpendicular to)(-1.7) followed by a steeper scaling similar to k(perpendicular to)(-4.5). We conjecture that the turbulence undergoes a transition range, where part of the energy is dissipated into proton heating via Landau damping and the remaining energy cascades down to electron scales where electron Landau damping may predominate. C1 [Sahraoui, F.] CNRS Ecole Polytech UPMC, Observ St Maur, Lab Phys Plasmas, F-94107 St Maur Des Fosses, France. [Goldstein, M. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Belmont, G.; Canu, P.; Rezeau, L.] CNRS Ecole Polytech UPMC, Lab Phys Plasmas, F-91128 Palaiseau, France. RP Sahraoui, F (reprint author), CNRS Ecole Polytech UPMC, Observ St Maur, Lab Phys Plasmas, 4 Ave Neptune, F-94107 St Maur Des Fosses, France. EM fouad.sahraoui@lpp.polytechnique.fr RI Goldstein, Melvyn/B-1724-2008 FU NASA/GSFC FX The FGM and cluster ion spectrometry experiment data come from the CAA (ESA) and AMDA (CESR, France). We thank A. Vinas for providing the electron data. F. Sahraoui is funded partly by the NPP program at NASA/GSFC. NR 32 TC 203 Z9 204 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 23 PY 2010 VL 105 IS 13 AR 131101 DI 10.1103/PhysRevLett.105.131101 PG 4 WC Physics, Multidisciplinary SC Physics GA 653YZ UT WOS:000282136600002 PM 21230758 ER PT J AU Cohen, MB Inan, US Said, RK Briggs, MS Fishman, GJ Connaughton, V Cummer, SA AF Cohen, M. B. Inan, U. S. Said, R. K. Briggs, M. S. Fishman, G. J. Connaughton, V. Cummer, S. A. TI A lightning discharge producing a beam of relativistic electrons into space SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GAMMA-RAY FLASHES; SPRITES AB Strong electric fields associated with lightning generate brief (similar to 1 ms) but intense Terrestrial Gamma-ray Flashes (TGFs), detected by spacecrafts. A few events are thought to be the signature of a relativistic electron beam escaping the atmosphere, which is distinguishable from a TGF since the lightning discharge is along the geomagnetic field line from the spacecraft, rather than below. We refer to this event herein as a 'Terrestrial Energetic-electron Flash' (TEF), and present the first TEF with associated discharge. The TEF was detected by the Gamma-ray Burst Monitor aboard the Fermi satellite, and is correlated with a lightning discharge detected by three Stanford University AWESOME ELF/VLF receivers, a Duke University ULF receiver, and by the GLD360 lightning geolocation network. The discharge, nearly simultaneous with the generated electrons, was of intense peak current and of positive polarity, and with a modest total charge transfer, similar to TGF-associated discharges. Citation: Cohen, M. B., U. S. Inan, R. K. Said, M. S. Briggs, G. J. Fishman, V. Connaughton, and S. A. Cummer (2010), A lightning discharge producing a beam of relativistic electrons into space, Geophys. Res. Lett., 37, L18806, doi: 10.1029/2010GL044481. C1 [Cohen, M. B.; Inan, U. S.; Said, R. K.] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Inan, U. S.] Koc Univ, Dept Elect Engn, Istanbul, Turkey. [Briggs, M. S.] Univ Alabama, CSPAR, Huntsville, AL 35805 USA. [Fishman, G. J.; Connaughton, V.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. [Cummer, S. A.] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA. RP Cohen, MB (reprint author), Stanford Univ, Dept Elect Engn, 350 Sierra Mall, Stanford, CA 94305 USA. EM mcohen@stanford.edu RI Cummer, Steven/A-6118-2008; Cohen, Morris/A-3684-2012 OI Cummer, Steven/0000-0002-0002-0613; Cohen, Morris/0000-0002-7920-5759 FU NSF [OPP-0233955, ATM-0642757]; DARPA [HR0011-10-1-0058]; NASA FX This work was supported by NSF grant OPP-0233955 to Stanford University, and also by the DARPA NIMBUS program under grant HR0011-10-1-0058. GLD360 lightning discharge data are provided under a cooperative agreement with Vaisala, Inc. The Fermi satellite is supported by NASA. Duke University effort is supported by NSF grant ATM-0642757. We thank Brant Carlson and Nikolai Lehtinen for helpful discussions. NR 25 TC 17 Z9 17 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 22 PY 2010 VL 37 AR L18806 DI 10.1029/2010GL044481 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 656HB UT WOS:000282318200008 ER PT J AU Feofilov, AG Petelina, SV AF Feofilov, A. G. Petelina, S. V. TI Relation between mesospheric ice clouds, temperature, and water vapor determined from Odin/OSIRIS and TIMED/SABER data SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID NONLOCAL THERMODYNAMIC-EQUILIBRIUM; ACCELERATED LAMBDA ITERATION; NOCTILUCENT CLOUDS; PLANETARY-ATMOSPHERES; NORTHERN-HEMISPHERE; SUMMER MESOSPHERE; MIDDLE ATMOSPHERE; MU-M; SPACECRAFT; PARTICLES AB Altitude, brightness, and occurrence rate of polar mesospheric clouds (PMCs) with respect to kinetic temperature, pressure, and water vapor volume mixing ratio (VMR) in the ice formation area are studied. Cloud and atmospheric parameters are measured by the Optical Spectrograph and Infrared Imager System and by the Sounding of the Atmosphere using Broadband Emission Radiometry satellite instruments, correspondingly. The analysis has been done for all northern and southern PMC seasons of 2002-2008 for both zonal averages and nearly simultaneous common volume measurements performed by two instruments. It has been found that PMC peak altitudes correlate well with mesopause altitudes, although the former experience lower seasonal variability. Mesopause temperatures anticorrelate with PMC occurrence rates and, in the Northern Hemisphere, show larger seasonal variability at high latitudes poleward of 75 degrees N compared to 55 degrees N-65 degrees N. OSIRIS PMC brightness correlates with the vertical extent of the frost area and water vapor VMR below PMC (hydration effect) and anticorrelates with the mesopause temperature and water vapor VMR in the frost area (freeze-drying effect). C1 [Feofilov, A. G.] Catholic Univ Amer, Washington, DC 20064 USA. [Feofilov, A. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Petelina, S. V.] La Trobe Univ, Melbourne, Vic 3086, Australia. RP Feofilov, AG (reprint author), Catholic Univ Amer, Washington, DC 20064 USA. EM artem-feofilov@cua-nasa-gsfc.info RI Feofilov, Artem/A-2271-2015 OI Feofilov, Artem/0000-0001-9924-4846 FU NASA [NNX08AG41G]; Sweden (SNSB); Canada (CSA); France (CNES); Finland (Tekes) FX This research was partially supported under NASA grant NNX08AG41G. The authors are grateful to the SABER science, data processing, and flight operations for their ongoing support of this work. Odin is a Swedish-led satellite project funded jointly by Sweden (SNSB), Canada (CSA), France (CNES), and Finland (Tekes). Odin is presently a third party mission for the European Space Agency (ESA) and the OSIRIS data are provided by ESA. NR 53 TC 3 Z9 3 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 22 PY 2010 VL 115 AR D18305 DI 10.1029/2009JD013619 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 656IA UT WOS:000282321400006 ER PT J AU Gerber, EP Baldwin, MP Akiyoshi, H Austin, J Bekki, S Braesicke, P Butchart, N Chipperfield, M Dameris, M Dhomse, S Frith, SM Garcia, RR Garny, H Gettelman, A Hardiman, SC Karpechko, A Marchand, M Morgenstern, O Nielsen, JE Pawson, S Peter, T Plummer, DA Pyle, JA Rozanov, E Scinocca, JF Shepherd, TG Smale, D AF Gerber, Edwin P. Baldwin, Mark P. Akiyoshi, Hideharu Austin, John Bekki, Slimane Braesicke, Peter Butchart, Neal Chipperfield, Martyn Dameris, Martin Dhomse, Sandip Frith, Stacey M. Garcia, Rolando R. Garny, Hella Gettelman, Andrew Hardiman, Steven C. Karpechko, Alexey Marchand, Marion Morgenstern, Olaf Nielsen, J. Eric Pawson, Steven Peter, Tom Plummer, David A. Pyle, John A. Rozanov, Eugene Scinocca, John F. Shepherd, Theodore G. Smale, Dan TI Stratosphere-troposphere coupling and annular mode variability in chemistry-climate models SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID NORTH-ATLANTIC OSCILLATION; ZONAL INDEX; DOWNWARD PROPAGATION; ARCTIC OSCILLATION; TIME-SCALE; REANALYSIS; FEEDBACK; CIRCULATION; PERSISTENCE; HEMISPHERE AB The internal variability and coupling between the stratosphere and troposphere in CCMVal-2 chemistry-climate models are evaluated through analysis of the annular mode patterns of variability. Computation of the annular modes in long data sets with secular trends requires refinement of the standard definition of the annular mode, and a more robust procedure that allows for slowly varying trends is established and verified. The spatial and temporal structure of the models' annular modes is then compared with that of reanalyses. As a whole, the models capture the key features of observed intraseasonal variability, including the sharp vertical gradients in structure between stratosphere and troposphere, the asymmetries in the seasonal cycle between the Northern and Southern hemispheres, and the coupling between the polar stratospheric vortices and tropospheric midlatitude jets. It is also found that the annular mode variability changes little in time throughout simulations of the 21st century. There are, however, both common biases and significant differences in performance in the models. In the troposphere, the annular mode in models is generally too persistent, particularly in the Southern Hemisphere summer, a bias similar to that found in CMIP3 coupled climate models. In the stratosphere, the periods of peak variance and coupling with the troposphere are delayed by about a month in both hemispheres. The relationship between increased variability of the stratosphere and increased persistence in the troposphere suggests that some tropospheric biases may be related to stratospheric biases and that a well-simulated stratosphere can improve simulation of tropospheric intraseasonal variability. C1 [Gerber, Edwin P.] NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY 10016 USA. [Baldwin, Mark P.] NW Res Associates, Redmond, WA 98052 USA. [Akiyoshi, Hideharu] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Austin, John] Princeton Univ, GFDL, Princeton, NJ 08540 USA. [Bekki, Slimane; Marchand, Marion] UPMC, IPSL, UVSQ, LATMOS,INSU,CNRS, F-75231 Paris, France. [Braesicke, Peter; Pyle, John A.] Univ Cambridge, Ctr Atmospher Sci, Dept Chem, Cambridge CB2 1EW, England. [Chipperfield, Martyn; Dhomse, Sandip] Univ Leeds, Inst Climate & Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England. [Dameris, Martin; Garny, Hella] Inst Phys Atmosphare, Deutsch Zentrum Luft & Raumfaht, D-82234 Wessling, Germany. [Frith, Stacey M.] NASA, GSFC, Atmospher Chem & Dynam Branch, Greenbelt, MD 20071 USA. [Garcia, Rolando R.; Gettelman, Andrew] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Karpechko, Alexey] Finnish Meteorol Inst, FI-00101 Helsinki, Finland. [Morgenstern, Olaf; Smale, Dan] Natl Inst Water & Atmospher Res, Lauder, New Zealand. [Nielsen, J. Eric; Pawson, Steven] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Peter, Tom; Rozanov, Eugene] WRC, PMOD, CH-8092 Zurich, Switzerland. [Plummer, David A.; Scinocca, John F.] Univ Victoria, Canadian Ctr Climate Modelling & Anal, Victoria, BC V8W 3V6, Canada. [Shepherd, Theodore G.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. RP Gerber, EP (reprint author), NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY 10016 USA. EM gerber@cims.nyu.edu RI Dhomse, Sandip/C-8198-2011; Rozanov, Eugene/A-9857-2012; Baldwin, Mark/J-6720-2012; Chipperfield, Martyn/H-6359-2013; bekki, slimane/J-7221-2015; Braesicke, Peter/D-8330-2016; Pawson, Steven/I-1865-2014; OI Dhomse, Sandip/0000-0003-3854-5383; Rozanov, Eugene/0000-0003-0479-4488; Chipperfield, Martyn/0000-0002-6803-4149; bekki, slimane/0000-0002-5538-0800; Braesicke, Peter/0000-0003-1423-0619; Pawson, Steven/0000-0003-0200-717X; Gerber, Edwin/0000-0002-6010-6638; Morgenstern, Olaf/0000-0002-9967-9740 FU National Science Foundation (NSF); Joint DECC [GA01101]; Office of Science, U. S. Department of Energy; Ministry of the Environment of Japan [A-071] FX We thank Judith Perlwitz and two anonymous reviewers for constructive comments on earlier manuscript. E.P.G. acknowledges support from the National Science Foundation (NSF) under the Atmospheric and Geospace Sciences program. M.P.B. was funded by the NSF under the US CLIVAR program and the Office of Polar Programs. N.B. and S.H. were supported by the Joint DECC and Defra Integrated Climate Programme-DECC/Defra (GA01101). We acknowledge the modeling groups for making their simulations available for this analysis, the CCMVal Activity for WCRP's SPARC (Stratospheric Processes and their Role in Climate) project for organizing and coordinating the CCM data analysis activity, the British Atmospheric Data Center (BADC) for collecting and archiving the CCMVal model output, and the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP's Working Group on Coupled Modeling (WGCM) for their roles in making available the WCRP CMIP3 multimodel data set. Support for the CMIP3 data set is provided by the Office of Science, U. S. Department of Energy. CCSRNIES research was supported by the Global Environmental Research Fund of the Ministry of the Environment of Japan (A-071), and simulations were completed with the super computer at CGER, NIES. NR 45 TC 48 Z9 48 U1 0 U2 25 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 22 PY 2010 VL 115 AR D00M06 DI 10.1029/2009JD013770 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 656IA UT WOS:000282321400007 ER PT J AU Verkhoglyadova, OP Tsurutani, BT Lakhina, GS AF Verkhoglyadova, Olga P. Tsurutani, Bruce T. Lakhina, Gurbax S. TI Properties of obliquely propagating chorus SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID DRIVEN ELECTRON ACCELERATION; WHISTLER-MODE CHORUS; STORM-TIME CHORUS; RELATIVISTIC ENERGIES; RADIATION BELT; EMISSIONS; MAGNETOSPHERE AB We discuss chorus wave magnetic and electric field polarizations as functions on angle of propagation relative to the ambient magnetic field B(0). For the first time, it is shown using a cold plasma approximation that the general whistler wave has circularly polarized magnetic fields for oblique propagation. This theoretical result is verified by observations. The electric field polarization plane is not orthogonal to the wave vector k and is in general highly elliptically polarized. Both the magnetic and the electric polarizations have important consequences for cyclotron resonant electron pitch angle scattering and for electron energization, respectively. A special case of the whistler wave called the Gendrin mode is discussed. C1 [Verkhoglyadova, Olga P.; Tsurutani, Bruce T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lakhina, Gurbax S.] India Inst Geomagnetism, Navi Mumbai 410218, Maharashtra, India. [Verkhoglyadova, Olga P.] Univ Alabama, Ctr Space Plasma & Aeronom Res, Huntsville, AL 35899 USA. RP Verkhoglyadova, OP (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM olga.verkhoglyadova@jpl.nasa.gov RI Lakhina, Gurbax /C-9295-2012; OI Lakhina, Gurbax /0000-0002-8956-486X; Verkhoglyadova, Olga/0000-0002-9295-9539 FU NASA; Indian National Science Academy, New Delhi FX Portions of this research were done at the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA. G.S.L. thanks the Indian National Science Academy, New Delhi, for support under the Senior Scientist Scheme. NR 32 TC 22 Z9 22 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP 22 PY 2010 VL 115 AR A00F19 DI 10.1029/2009JA014809 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 656JN UT WOS:000282327100001 ER PT J AU Cohen, MI Cutler, C Vallisneri, M AF Cohen, Michael I. Cutler, Curt Vallisneri, Michele TI Searches for cosmic-string gravitational-wave bursts in Mock LISA Data SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article ID MONTE-CARLO METHODS; RADIATION; EFFICIENT; BINARIES AB A network of observable, macroscopic cosmic (super-)strings may well have formed in the early Universe. If so, the cusps that generically develop on cosmic-string loops emit bursts of gravitational radiation that could be detectable by gravitational-wave interferometers, such as the ground-based LIGO/Virgo detectors and the planned, space-based LISA detector. Here we report on two versions of a LISA-oriented string-burst search pipeline that we have developed and tested within the context of the Mock LISA Data Challenges. The two versions rely on the publicly available MultiNest and PyMC software packages, respectively. To reduce the effective dimensionality of the search space, our implementations use the F-statistic to analytically maximize over the signal's amplitude and polarization, A and psi, and use the FFT to search quickly over burst arrival times t(C). The standard F-statistic is essentially a frequentist statistic that maximizes the likelihood; we also demonstrate an approximate, Bayesian version of the F-statistic that incorporates realistic priors on A and psi. We calculate how accurately LISA can expect to measure the physical parameters of string-burst sources, and compare to results based on the Fisher-matrix approximation. To understand LISA's angular resolution for string-burst sources, we draw maps of the waveform fitting factor (maximized over (A, psi, t(C))) as a function of the sky position; these maps dramatically illustrate why (for LISA) inferring the correct sky location of the emitting string loop will often be practically impossible. In addition, we identify and elucidate several symmetries that are imbedded in this search problem, and we derive the distribution of cut-off frequencies f(max) for observable bursts. C1 [Cohen, Michael I.; Cutler, Curt; Vallisneri, Michele] CALTECH, Pasadena, CA 91125 USA. [Cutler, Curt; Vallisneri, Michele] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Cohen, MI (reprint author), CALTECH, Pasadena, CA 91125 USA. EM Curt.J.Cutler@jpl.nasa.gov FU National Aeronautics and Space Administration; NASA [NNX07AM80G] FX This research relied crucially on the hard work of the developers of open-source scientific software: we thank the authors and maintainers the of NumPy and SciPy Python libraries, and especially F Feroz and colleagues (MultiNest) and C Fonnesbeck and colleagues (PyMC). We thank J Gair, N Cornish and J Shapiro Key for useful interactions. The numerical computation for this work was performed primarily with computing resources from the Caltech Center for Advanced Computing Research. Much of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. MC, CC and MV also gratefully acknowledge support from the NASA grant NNX07AM80G. NR 35 TC 6 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD SEP 21 PY 2010 VL 27 IS 18 AR 185012 DI 10.1088/0264-9381/27/18/185012 PG 27 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 638UR UT WOS:000280923100013 ER PT J AU Fujiwara, M Vomel, H Hasebe, F Shiotani, M Ogino, SY Iwasaki, S Nishi, N Shibata, T Shimizu, K Nishimoto, E Canossa, JMV Selkirk, HB Oltmans, SJ AF Fujiwara, M. Voemel, H. Hasebe, F. Shiotani, M. Ogino, S-Y. Iwasaki, S. Nishi, N. Shibata, T. Shimizu, K. Nishimoto, E. Valverde Canossa, J. M. Selkirk, H. B. Oltmans, S. J. TI Seasonal to decadal variations of water vapor in the tropical lower stratosphere observed with balloon-borne cryogenic frost point hygrometers SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID HALOGEN OCCULTATION EXPERIMENT; TROPOPAUSE TEMPERATURES; QBO VARIATIONS; REANALYSIS; DEHYDRATION; AIR; TROPOSPHERE; TRANSPORT; PACIFIC; BOULDER AB We investigated water vapor variations in the tropical lower stratosphere on seasonal, quasi-biennial oscillation (QBO), and decadal time scales using balloon-borne cryogenic frost point hygrometer data taken between 1993 and 2009 during various campaigns including the Central Equatorial Pacific Experiment (March 1993), campaigns once or twice annually during the Soundings of Ozone and Water in the Equatorial Region (SOWER) project in the eastern Pacific (1998-2003) and in the western Pacific and Southeast Asia (2001-2009), and the Ticosonde campaigns and regular sounding at Costa Rica (2005-2009). Quasi-regular sounding data taken at Costa Rica clearly show the tape recorder signal. The observed ascent rates agree well with the ones from the Halogen Occultation Experiment (HALOE) satellite sensor. Average profiles from the recent five SOWER campaigns in the equatorial western Pacific in northern winter and from the three Ticosonde campaigns at Costa Rica (10 N) in northern summer clearly show two effects of the QBO. One is the vertical displacement of water vapor profiles associated with the QBO meridional circulation anomalies, and the other is the concentration variations associated with the QBO tropopause temperature variations. Time series of cryogenic frost point hygrometer data averaged in a lower stratospheric layer together with HALOE and Aura Microwave Limb Sounder data show the existence of decadal variations: The mixing ratios were higher and increasing in the 1990s, lower in the early 2000s, and probably slightly higher again or recovering after 2004. Thus linear trend analysis is not appropriate to investigate the behavior of the tropical lower stratospheric water vapor. C1 [Fujiwara, M.; Hasebe, F.; Shimizu, K.] Hokkaido Univ, Grad Sch Environm Sci, Sapporo, Hokkaido 0600810, Japan. [Iwasaki, S.] Natl Def Acad, Yokosuka, Kanagawa 2398686, Japan. [Nishi, N.] Kyoto Univ, Grad Sch Sci, Kyoto 6068502, Japan. [Ogino, S-Y.] Japan Agcy Marine Earth Sci & Technol, Yokosuka, Kanagawa 2370061, Japan. [Oltmans, S. J.] NOAA, Global Monitoring Div, Earth Syst Res Lab, Boulder, CO 80305 USA. [Selkirk, H. B.] Univ Maryland Baltimore Cty, Goddard Space Flight Ctr, Goddard Earth Sci & Technol Ctr, NASA, Greenbelt, MD 20771 USA. [Shibata, T.] Nagoya Univ, Grad Sch Environm Studies, Nagoya, Aichi 4648601, Japan. [Shiotani, M.; Nishimoto, E.] Kyoto Univ, Res Inst Sustainable Humanosphere, Uji, Kyoto 6110011, Japan. [Valverde Canossa, J. M.] Univ Nacl, Heredia 863000, Costa Rica. [Voemel, H.] Deutsch Wetterdienst, Meteorol Observ Lindenberg, D-15848 Tauche Lindenberg, Germany. [Shimizu, K.] Meisei Elect Co Ltd, Isesaki, Japan. RP Fujiwara, M (reprint author), Hokkaido Univ, Grad Sch Environm Sci, N10 W5, Sapporo, Hokkaido 0600810, Japan. EM fuji@ees.hokudai.ac.jp RI Fujiwara, Masatomo/F-7852-2012; Selkirk, Henry/H-2021-2012 FU Sumitomo Foundation; Asahi Breweries Foundation; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) [10041103, 11219201, 15204043, 18204041, 19740283]; Ministry of the Environment [A-1, A-071]; RISH, Kyoto University FX The balloon-borne water vapor measurements presented in this paper have been conducted with strong, long-term support from the Instituto Nacional de Meteorologia e Hidrologia (INAMHI), Ecuador, the Indonesian National Institute of Aeronautics and Space (LAPAN), Indonesia, the National Hydro-Meteorological Service, Ministry of Natural Resources and Environment, Vietnam, the Kiribati Meteorological Service, Kiribati, and Universidad Nacional, Costa Rica. The SOWER project has been financially supported by the Sumitomo Foundation, the Asahi Breweries Foundation, the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) through Grants-in-Aid for Scientific Research (10041103, 11219201, 15204043, 18204041, and 19740283), the Ministry of the Environment through the Global Environment Research Fund (A-1 and A-071), and RISH, Kyoto University. Support for the sounding program in Costa Rica has been provided by the NASA Upper Atmosphere Research Program, the Radiation Sciences Program, and the Aura Satellite Project. The HALOE data were provided by GATS, Inc., through their Web site. The EOS Aura MLS data were provided by the NASA/JPL through their Web site. The ERA40 and ERA-Interim data were provided by the ECMWF through their Web site (the ERA40 data were actually obtained through an authorized Web site at RISH, Kyoto University). The JRA25/JCDAS data were provided by the JMA and CRIEPI. The NCEP1 and NCEP2 reanalysis data were provided by the NOAA/OAR/ESRL PSD. We thank Takashi Imamura, Masanori Niwano, and Takatoshi Sakazaki for valuable discussion. We also thank Stephan Fueglistaler and two anonymous reviewers for valuable comments. All figures were produced using the GFD-DENNOU Library. NR 52 TC 29 Z9 29 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 21 PY 2010 VL 115 AR D18304 DI 10.1029/2010JD014179 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 656HW UT WOS:000282320900006 ER PT J AU Selkirk, HB Vomel, H Canossa, JMV Pfister, L Diaz, JA Fernandez, W Amador, J Stolz, W Peng, GS AF Selkirk, Henry B. Voemel, Holger Valverde Canossa, Jessica Maria Pfister, Leonhard Andres Diaz, Jorge Fernandez, Walter Amador, Jorge Stolz, Werner Peng, Grace S. TI Detailed structure of the tropical upper troposphere and lower stratosphere as revealed by balloon sonde observations of water vapor, ozone, temperature, and winds during the NASA TCSP and TC4 campaigns SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID LOW-LEVEL JET; CIRRUS CLOUDS; AIRCRAFT MEASUREMENTS; TROPOPAUSE LAYER; DEEP CONVECTION; ANNUAL CYCLE; DEHYDRATION; TRANSPORT; PACIFIC; CLIMATOLOGY AB We report on balloon sonde measurements of water vapor and ozone using the cryogenic frost point hygrometer and electrochemical concentration cell ozonesondes made at Alajuela, Costa Rica (10.0 degrees N, 84.2 degrees W) during two NASA airborne campaigns: the Tropical Convective Systems and Processes (TCSP) mission in July 2005 and the Tropical Composition, Clouds, and Climate Coupling Experiment (TC4), July-August 2007. In both campaigns we found an upper troposphere that was frequently supersaturated but no evidence that deep convection had reached the tropopause. The balloon sondes were complemented by campaigns of 4 times daily high-resolution radiosondes from mid-June through mid-August in both years. The radiosonde data reveal vertically propagating equatorial waves that caused a large increase in the variability of temperature in the tropical tropopause layer (TTL). These waves episodically produced cold point tropopauses (CPTs) above 18 km, yet in neither campaign was saturation observed above similar to 380 K or 17 km. The averages of the water vapor minima below this level were 5.2 ppmv in TCSP and 4.8 ppmv in TC4, and the individual profile minima all lay at or above similar to 360 K. The average minima in this 360-380 K layer provide a better estimate of the effective stratospheric entry value than the average mixing ratio at the CPT. We refer to this upper portion of the TTL as the tropopause saturation layer and consider it to be the locus of the final dehydration of nascent stratospheric air. As such, it is the local equivalent to the tape head of the water vapor tape recorder. C1 [Amador, Jorge] Univ Costa Rica, Ctr Geophys Res, San Jose 2060, Costa Rica. [Andres Diaz, Jorge; Fernandez, Walter; Amador, Jorge] Univ Costa Rica, Sch Phys, San Jose 2060, Costa Rica. [Peng, Grace S.] Aerosp Corp, Los Angeles, CA 90009 USA. [Pfister, Leonhard] NASA, Ames Res Ctr, Div Earth Sci, Moffett Field, CA 94035 USA. [Stolz, Werner] Natl Meteorol Inst, San Jose, Costa Rica. [Valverde Canossa, Jessica Maria] Natl Univ, Sch Environm Sci, Heredia 3000, Costa Rica. [Voemel, Holger] Meteorol Observ, Deutsch Wetterdienst, D-15848 Lindenburg, Germany. [Selkirk, Henry B.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. RP Selkirk, HB (reprint author), NASA, Goddard Space Flight Ctr, Code 613-3, Greenbelt, MD 20771 USA. EM henry.b.selkirk@nasa.gov RI Selkirk, Henry/H-2021-2012; OI Fernandez Rojas, Walter/0000-0001-5329-5410 FU NASA; Upper Atmosphere Research Project; Atmospheric Chemistry Modeling and Analysis; Climate Dynamics; Johns Hopkins University; University of Maryland, Baltimore County; Hal Maring of the Radiation Sciences; Costa Rica-USA Foundation (CRUSA) in Costa Rica; National Science Foundation; NOAA Office FX Funding for the Ticosonde project since 2004 at NASA has been provided through the Radiation Sciences Program, the Upper Atmosphere Research Project, the Atmospheric Chemistry Modeling and Analysis Program, and the Climate Dynamics Program. Donald Anderson (now at Johns Hopkins University), Michael Kurylo (now at the University of Maryland, Baltimore County), and Hal Maring of the Radiation Sciences Program were early advocates for and continuing supporters of this scientific collaboration between Costa Rica and the United States. The authors are grateful to Mark Schoeberl and Anne Douglass of the NASA Aura Science Team without whose support the CFH/SHADOZ Costa Rica launch program would never have become a reality. We would like to acknowledge the Costa Rica-USA Foundation (CRUSA) in Costa Rica, the National Science Foundation, and the NOAA Office for Global Programs for their support of the Ticosonde/NAME program and Ramesh Kakar of the NASA Atmospheric Dynamics program for his support of Ticosonde/TCSP. The Ticosonde data sets are a tribute to the enthusiasm and dedication of the launch teams from UNA, UCR, and IMN. In this regard, we are especially grateful to Victor Hernandez at IMN; Victor Beita, Karla Cerna, Diana Gonzales, and Jose Pablo Sibaja at UNA; and Kristel Heinrich, Marcial Garbanzo, and Gustavo Garbanzo at UCR. The Earth Science Project Office at NASA Ames Research Center has generously assisted the Ticosonde effort from the beginning and wish to thank Mike Gaunce, Mike Craig, and Marilyn Vasquez in particular. We also wish to acknowledge the important contributions in the field by Ticosonde Co-Investigators Jimena Lopez, formerly of the Bay Area Environmental Research (BAER) Institute, Sonoma, CA; Robert Bergstrom of the BAER Institute; Patrick Hamill of the San Jose State University, San Jose, CA; and Eladio Zarate, formerly of the National Meteorological Institute of Costa Rica and now at the Regional Committee on Hydrological Resources (CRRH). We are also thankful for the programming support at NASA Ames Research Center by Marion Legg and administrative support by Marion Williams and Mark Sittloh, all of the BAER Institute. We wish to thank Pedro Leon (now at Earth University) and Gustavo Otarola and their staff at the Costa Rican National Center for High Technology (CeNAT) who provided critical administrative and logistical support, as was also provided by the Regional Environmental Hub at the United States Embassy in San Jose and CRRH whose director is Max Campos. We thank Joan Alexander of Colorado Research Associates for useful suggestions and assistance in the crossspectral analysis. Finally, we wish to thank the anonymous reviewers for very constructive critiques. NR 64 TC 29 Z9 29 U1 0 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 21 PY 2010 VL 115 AR D00J19 DI 10.1029/2009JD013209 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 656HW UT WOS:000282320900002 ER PT J AU Yang, K Liu, XO Bhartia, PK Krotkov, NA Carn, SA Hughes, EJ Krueger, AJ Spurr, RJD Trahan, SG AF Yang, Kai Liu, Xiong Bhartia, Pawan K. Krotkov, Nickolay A. Carn, Simon A. Hughes, Eric J. Krueger, Arlin J. Spurr, Robert J. D. Trahan, Samuel G. TI Direct retrieval of sulfur dioxide amount and altitude from spaceborne hyperspectral UV measurements: Theory and application SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID OZONE MONITORING INSTRUMENT; VOLCANIC-ERUPTIONS; SO2; CLOUDS; SATELLITE; ALGORITHM; DOAS; GOME; TRANSPORT; TRACKING AB We describe the physical processes by which a vertically localized absorber perturbs the top-of-atmosphere solar backscattered ultraviolet (UV) radiance. The distinct spectral responses to perturbations of an absorber in its column amount and layer altitude provide the basis for a practical satellite retrieval technique, the Extended Iterative Spectral Fitting (EISF) algorithm, for the simultaneous retrieval of these quantities of a SO2 plume. In addition, the EISF retrieval provides an improved UV aerosol index for quantifying the spectral contrast of apparent scene reflectance at the bottom of atmosphere bounded by the surface and/or cloud; hence it can be used for detection of the presence or absence of UV absorbing aerosols. We study the performance and characterize the uncertainties of the EISF algorithm using synthetic backscattered UV radiances, retrievals from which can be compared with those used in the simulation. Our findings indicate that the presence of aerosols (both absorbing and nonabsorbing) does not cause large errors in EISF retrievals under most observing conditions when they are located below the SO2 plume. The EISF retrievals assuming a homogeneous field of view can provide accurate column amounts for inhomogeneous scenes, but they always underestimate the plume altitudes. The EISF algorithm reduces systematic errors present in existing linear retrieval algorithms that use prescribed SO2 plume heights. Applying the EISF algorithm to Ozone Monitoring Instrument satellite observations of the recent Kasatochi volcanic eruption, we demonstrate the successful retrieval of effective plume altitude of volcanic SO2, and we also show the improvement in accuracy in the corresponding SO2 columns. C1 [Yang, Kai; Liu, Xiong; Bhartia, Pawan K.; Krotkov, Nickolay A.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Carn, Simon A.] Michigan Technol Univ, Houghton, MI 49931 USA. [Hughes, Eric J.; Krueger, Arlin J.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Spurr, Robert J. D.] RT Solut Inc, Cambridge, MA 02138 USA. [Trahan, Samuel G.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21228 USA. [Yang, Kai; Krotkov, Nickolay A.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. RP Yang, K (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Mail Code 613-3, Greenbelt, MD 20771 USA. EM kai.yang-1@nasa.gov; xliu@umbc.edu; pawan.bhartia@nasa.gov; nickolay.a.krotkov@nasa.gov; scarn@mtu.edu; eric.hughes@noaa.gov; akrueger@umbc.edu; rtsolutions@verizon.net RI Krotkov, Nickolay/E-1541-2012; Liu, Xiong/P-7186-2014; Bhartia, Pawan/A-4209-2016 OI Krotkov, Nickolay/0000-0001-6170-6750; Liu, Xiong/0000-0003-2939-574X; Bhartia, Pawan/0000-0001-8307-9137 FU NASA [NNX10AG60G]; U.S. OMI Science Team FX This work was supported in part by NASA under grant NNX10AG60G (A Combined EOS Data and GEOS-Chem Modeling Study of the Direct Radiative Forcing of Volcanic Sulfate Aerosols) and by the U.S. OMI Science Team. NR 42 TC 40 Z9 40 U1 1 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 21 PY 2010 VL 115 AR D00L09 DI 10.1029/2010JD013982 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 656HW UT WOS:000282320900005 ER PT J AU Christoffersen, P Tulaczyk, S Behar, A AF Christoffersen, Poul Tulaczyk, Slawek Behar, Alberto TI Basal ice sequences in Antarctic ice stream: Exposure of past hydrologic conditions and a principal mode of sediment transfer SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article ID PLEISTOCENE-HOLOCENE RETREAT; LAST GLACIAL MAXIMUM; WEST ANTARCTICA; ROSS SEA; CONTINENTAL-SHELF; SUBGLACIAL SEDIMENTS; DEBRIS ENTRAINMENT; FREEZE-ON; TILL DEFORMATION; GROUNDING-LINE AB The brightness distribution of sequentially extracted borehole camera imagery shows two distinct sequences of basal ice in Kamb Ice Stream. The upper sequence (7.3 m) comprises clear ice and layers with dispersed and stratified debris. The lower sequence (8.2 m) consists of accretion ice with alternating layers of stratified and solid debris. The two sequences have volumetric debris contents of about 5% and 20%, respectively. We infer that the upper sequence formed in a tributary where subglacial meltwater was abundant and that the lower sequence formed on the Siple Coast plain where basal freezing currently dominates the basal thermal regime. The basal ice layer contains the equivalent of 2.1 +/- 0.4 m of frozen sediment. The high volume of sediment is a result of debris-rich layers interpreted to have formed by accretion in the stagnant phase of ice stream on/off cycles. Fast ice streaming punctuated by entrainment of debris during stagnation episodes is consistent with inferred past flow of adjacent ice streams and geologic features in the Ross Sea. Our results show that sediment wedges near grounding lines may form by melt out of basal ice debris. This is different from previous studies where it was assumed that sediment transfer occurs through sediment deformation within layers of subglacial till. Cumulative freezing in recurring ice stream cycles shows that entrainment of sediment by basal freeze-on is an important erosion mechanism and that high sediment fluxes can occur when ice streams override Coulomb-plastic substrates. C1 [Christoffersen, Poul] Univ Cambridge, Scott Polar Res Inst, Cambridge CB2 1ER, England. [Behar, Alberto] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tulaczyk, Slawek] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. RP Christoffersen, P (reprint author), Univ Cambridge, Scott Polar Res Inst, Cambridge CB2 1ER, England. EM pc350@cam.ac.uk RI Christoffersen, Poul/C-7328-2013 OI Christoffersen, Poul/0000-0003-2643-8724 FU Natural Environment Research Council (NERC); National Science Foundation Office of Polar Programs (NSF-OPP); NASA FX Support for this study was provided by grants to Poul Christoffersen and Slawek Tulaczyk from the Natural Environment Research Council (NERC) and the National Science Foundation Office of Polar Programs (NSF-OPP). Alberto Behar performed his contribution at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Acquisition of borehole imagery took place as part of a larger study funded by NSF OPP grants to Barclay Kamb and Hermann Engelhardt. We are grateful to both of them for their kind support. Editorial comments from Bryn Hubbard and reviews by Denis Samyn, Michael Hambrey, Simon Cook, and one anonymous person were helpful. NR 100 TC 28 Z9 28 U1 2 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9003 EI 2169-9011 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD SEP 21 PY 2010 VL 115 AR F03034 DI 10.1029/2009JF001430 PG 12 WC Geosciences, Multidisciplinary SC Geology GA 656IK UT WOS:000282322700001 ER PT J AU Martins, F Donati, JF Marcolino, WLF Bouret, JC Wade, GA Escolano, C Howarth, ID AF Martins, F. Donati, J. -F. Marcolino, W. L. F. Bouret, J. -C. Wade, G. A. Escolano, C. Howarth, I. D. CA MiMeS Collaboration TI Detection of a magnetic field on HD 108: clues to extreme magnetic braking and the Of?p phenomenon SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: magnetic field; stars: massive; stars: winds; outflows ID DRIVEN STELLAR WINDS; O-TYPE STARS; DYNAMICAL SIMULATIONS; CONFINED WIND; ORION NEBULA; EVOLUTION; HD-191612; ROTATION; EMISSION; VARIABILITY AB We report the detection of a magnetic field on the Of? p star HD 108. Spectropolarimetric observations conducted in 2007, 2008 and 2009, respectively, with NARVAL@ Telescope Bernard Lyot (TBL) and Echelle SpectroPolarimetric Device for the Observation of Stars at Canada-France-Hawaii Telescope (ESPaDOnS@CFHT) reveal a clear Zeeman signature in the average Stokes V profile, stable on time-scales of days to months and slowly increasing in amplitude on time-scales of years. We speculate that this time-scale is the same as that on which Ha emission is varying and is equal to the rotation period of the star. The corresponding longitudinal magnetic field, measured during each of the three seasons, increases slowly from 100 to 150 G, implying that the polar strength of the putatively dipolar large-scale magnetic field of HD 108 is at least 0.5 kG and most likely of the order of 1-2 kG. The stellar and wind properties are derived through a quantitative spectroscopic analysis with the code CMFGEN. The effective temperature is difficult to constrain because of the unusually strong He lambda lambda 4471, 5876 lines. Values in the range of 33 000-37 000K are preferred. A mass-loss rate of about 10(-7) M(circle dot) yr(-1) (with a clumping factor f = 0.01) and a wind terminal velocity of 2000 km s(-1) are derived. The wind confinement parameter. eta(star) is larger than 100, implying that the wind of HD 108 is magnetically confined. Stochastic short-term variability is observed in the wind-sensitive lines but not in the photospheric lines, excluding the presence of pulsations. Material infall in the confined wind is the most likely origin for lines formed in the inner wind. Wind clumping also probably causes part of the Ha variability. The projected rotational velocity of HD 108 is lower than 50 km s-1, consistent with the spectroscopic and photometric variation time-scales of a few decades. Overall, HD 108 is very similar to the magnetic O star HD 191612 except for an even slower rotation. C1 [Martins, F.] CNRS, GRAAL, UMR5024, F-34095 Montpellier 05, France. [Martins, F.] Univ Montpellier 2, F-34095 Montpellier 05, France. [Donati, J. -F.] CNRS, LATT, UMR 5572, F-31400 Toulouse, France. [Donati, J. -F.] Univ Toulouse, F-31400 Toulouse, France. [Marcolino, W. L. F.; Bouret, J. -C.; Escolano, C.] CNRS, LAM, UMR 6110, F-13388 Marseille 13, France. [Marcolino, W. L. F.; Bouret, J. -C.; Escolano, C.] Univ Provence, F-13388 Marseille 13, France. [Marcolino, W. L. F.] Observ Nacl MCT, BR-20921400 Rio De Janeiro, Brazil. [Bouret, J. -C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wade, G. A.] Royal Mil Coll Canada, Dept Phys, Stn Forces, Kingston, ON K7K 7B4, Canada. [Howarth, I. D.] UCL, Dept Phys & Astron, London WC1E 6BT, England. RP Martins, F (reprint author), CNRS, GRAAL, UMR5024, Pl Eugene Bataillon, F-34095 Montpellier 05, France. EM martins@graal.univ-montp2.fr RI 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; Marcolino, Wagner/M-7428-2014 FU Natural Science and Engineering Research Council of Canada (NSERC); French National Research Agency (ANR) [ANR-06-BLAN-0105] FX We thank John Hillier for making his code CMFGEN available and for constant help with it. We also thank the generous time allocation from the TBL TAC and the MagIcS initiative under which MiMeS is carried out. We acknowledge the help of the TBL and CFHT staff for service and QSO observing, respectively. GAW acknowledges Discovery Grant support from the Natural Science and Engineering Research Council of Canada (NSERC). JCB and WLFM acknowledge financial support from the French National Research Agency (ANR) through programme number ANR-06-BLAN-0105. NR 43 TC 54 Z9 54 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 21 PY 2010 VL 407 IS 3 BP 1423 EP 1432 DI 10.1111/j.1365-2966.2010.17005.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 649TX UT WOS:000281797900005 ER PT J AU Nurge, MA Perusich, SA AF Nurge, Mark A. Perusich, Stephen A. TI In-line capacitance sensor for real-time water absorption measurements SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Capacitance; Sensor; Water; Absorbent; Desiccant; Dielectric constant AB A capacitance/dielectric sensor was designed, constructed. and used to measure in real time the in situ water concentration in a desiccant water bed. Measurements were carried out with two experimental setups. (1) passing nitrogen through a humidity generator and allowing the gas stream to become saturated at a measured temperature and pressure, and (2) injecting water via a syringe pump Into a nitrogen stream. Both water vapor generating devices were attached to a downstream vertically mounted water capture bed filled with 19 5 g of Moisture Gone (TM) desiccant The sensor consisted of two electrodes (1) a 1/8 in dia stainless steel rod placed in the middle of the bed and (2) the outer shell of the stainless steel bed concentric with the rod All phases of the water capture process (background, heating, absorption. desorption, and cooling) were monitored with capacitance The measured capacitance was found to vary linearly with the water content in the bed at frequencies above 100 kHz indicating dipolar motion dominated the signal: below this frequency, ionic motion caused nonlinearities in the water concentration/capacitance relationship The desiccant exhibited a dielectric relaxation whose activation energy was lowered upon addition of water indicating either a less hindered rotational motion or crystal reorientation. (C) 2010 Elsevier B V All rights reserved C1 [Perusich, Stephen A.] ASRC Aerosp Corp, Appl Sci & Technol, John F Kennedy Space Ctr, Kennedy Space Ctr, FL 32899 USA. [Nurge, Mark A.] NASA, Appl Phys Lab, John F Kennedy Space Ctr, Kennedy Space Ctr, FL 32899 USA. RP Perusich, SA (reprint author), ASRC Aerosp Corp, Appl Sci & Technol, John F Kennedy Space Ctr, Mail Code ASRC-24, Kennedy Space Ctr, FL 32899 USA. EM Stephen.A.Perusich@nasa.gov FU KSC NASA FX The authors wish to thank Dr. Steve Trigwell for using his XPS expertise to uncover critical information concerning the desiccant composition In addition, thanks to many NASA and ASRC Aerospace personnel involved with the Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) project for their insightful comments throughout this project. Financial support was graciously provided by the KSC NASA ISRU program. NR 7 TC 3 Z9 4 U1 2 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD SEP 21 PY 2010 VL 150 IS 1 BP 105 EP 111 DI 10.1016/j.snb.2010.07.035 PG 7 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 661KC UT WOS:000282726200015 ER PT J AU Brodwin, M Ruel, J Ade, PAR Aird, KA Andersson, K Ashby, MLN Bautz, M Bazin, G Benson, BA Bleem, LE Carlstrom, JE Chang, CL Crawford, TM Crites, AT De Haan, T Desai, S Dobbs, MA Dudley, JP Fazio, GG Foley, RJ Forman, WR Garmire, G George, EM Gladders, MD Gonzalez, AH Halverson, NW High, FW Holder, GP Holzapfel, WL Hrubes, JD Jones, C Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Lueker, M Marrone, DP McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Murray, SS Padin, S Plagge, T Pryke, C Reichardt, CL Rest, A Ruhl, JE Schaffer, KK Shaw, L Shirokoff, E Song, J Spieler, HG Stalder, B Stanford, SA Staniszewski, Z Stark, AA Stubbs, CW Vanderlinde, K Vieira, JD Vikhlinin, A Williamson, R Yang, Y Zahn, O Zenteno, A AF Brodwin, M. Ruel, J. Ade, P. A. R. Aird, K. A. Andersson, K. Ashby, M. L. N. Bautz, M. Bazin, G. Benson, B. A. Bleem, L. E. Carlstrom, J. E. Chang, C. L. Crawford, T. M. Crites, A. T. De Haan, T. Desai, S. Dobbs, M. A. Dudley, J. P. Fazio, G. G. Foley, R. J. Forman, W. R. Garmire, G. George, E. M. Gladders, M. D. Gonzalez, A. H. Halverson, N. W. High, F. W. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Jones, C. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Lueker, M. Marrone, D. P. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Murray, S. S. Padin, S. Plagge, T. Pryke, C. Reichardt, C. L. Rest, A. Ruhl, J. E. Schaffer, K. K. Shaw, L. Shirokoff, E. Song, J. Spieler, H. G. Stalder, B. Stanford, S. A. Staniszewski, Z. Stark, A. A. Stubbs, C. W. Vanderlinde, K. Vieira, J. D. Vikhlinin, A. Williamson, R. Yang, Y. Zahn, O. Zenteno, A. TI SPT-CL J0546-5345: A MASSIVE z > 1 GALAXY CLUSTER SELECTED VIA THE SUNYAEV-ZEL'DOVICH EFFECT WITH THE SOUTH POLE TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: individual (SPT-CL J0546-5345); galaxies: distances and redshifts; galaxies: evolution ID IRAC SHALLOW SURVEY; X-RAY; VELOCITY DISPERSIONS; PHOTOMETRIC REDSHIFTS; TEMPERATURE RELATION; COSMOLOGY; CHANDRA; PROFILES; SAMPLE; GAS AB We report the spectroscopic confirmation of SPT-CL J0546-5345 at < z > = 1.067. To date this is the most distant cluster to be spectroscopically confirmed from the 2008 South Pole Telescope (SPT) catalog, and indeed the first z > 1 cluster discovered by the Sunyaev-Zel'dovich Effect (SZE). We identify 21 secure spectroscopic members within 0.9 Mpc of the SPT cluster position, 18 of which are quiescent, early-type galaxies. From these quiescent galaxies we obtain a velocity dispersion of 1179-(+232)(167) km s(-1), ranking SPT-CL J0546-5345 as the most dynamically massive cluster yet discovered at z > 1. Assuming that SPT-CL J0546-5345 is virialized, this implies a dynamical mass of M(200) = 1.0(-0.4)(+0.6) x 10(15) M(circle dot), in agreement with the X-ray and SZE mass measurements. Combining masses from several independent measures leads to a best-estimate mass of M(200) = (7.95 +/- 0.92) x 10(14) M(circle dot). The spectroscopic confirmation of SPT-CL J0546-5345, discovered in the wide-angle, mass-selected SPT cluster survey, marks the onset of the high-redshift SZE-selected galaxy cluster era. C1 [Brodwin, M.; Ashby, M. L. N.; Fazio, G. G.; Foley, R. J.; Forman, W. R.; Jones, C.; Murray, S. S.; Stalder, B.; Stark, A. A.; Stubbs, C. W.; Vikhlinin, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ruel, J.; High, F. W.; Rest, A.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Ade, P. A. R.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Aird, K. A.; Hrubes, J. D.; Marrone, D. P.] Univ Chicago, Chicago, IL 60637 USA. [Andersson, K.; Bautz, M.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Bazin, G.; Mohr, J. J.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Bazin, G.; Mohr, J. J.; Zenteno, A.] Excellence Cluster Univ, D-85758 Garching, Germany. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; Keisler, R.; Leitch, E. M.; Marrone, D. P.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Padin, S.; Pryke, C.; Schaffer, K. K.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; McMahon, J. J.; Meyer, S. S.; Pryke, C.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Padin, S.; Plagge, T.; Pryke, C.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [De Haan, T.; Dobbs, M. A.; Dudley, J. P.; Holder, G. P.; Shaw, L.; Vanderlinde, K.] McGill Univ, Dept Phys, Quebec City, PQ H3A 2T8, Canada. [Desai, S.; Song, J.; Yang, Y.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Garmire, G.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [George, E. M.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Plagge, T.; Reichardt, C. L.; Shirokoff, E.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Joy, M.] NASA Marshall Space Flight Ctr, Dept Space Sci, Huntsville, AL 35812 USA. [Knox, L.; Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, CERCA, Cleveland, OH 44106 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. RP Brodwin, M (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RI Stubbs, Christopher/C-2829-2012; Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Stark, Antony/0000-0002-2718-9996; Stubbs, Christopher/0000-0003-0347-1724; Williamson, Ross/0000-0002-6945-2975; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169 FU National Science Foundation [ANT-0638937]; NSF Physics Frontier Center [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; NASA; Chandra Xray Observatory [SV4-74018, A31]; W. M. Keck Foundation; Brinson Foundation FX Visiting astronomer, Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, under contract with the National Science Foundation; The SPT is supported by the National Science Foundation through grant ANT-0638937. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile. This work is based in part on observations obtained with the Chandra Xray Observatory, under contract SV4-74018, A31 with the Smithsonian Astrophysical Observatory which operates the Chandra for NASA. We are very grateful for the efforts of the Spitzer, Chandra, Magellan, and CTIO support staff without whom this paper would not be possible. Support for M. B. was provided by the W. M. Keck Foundation. B. S. acknowledges support from the Brinson Foundation. NR 60 TC 74 Z9 75 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2010 VL 721 IS 1 BP 90 EP 97 DI 10.1088/0004-637X/721/1/90 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TI UT WOS:000282192900007 ER PT J AU Bally, J Aguirre, J Battersby, C Bradley, ET Cyganowski, C Dowell, D Drosback, M Dunham, MK Evans, NJ Ginsburg, A Glenn, J Harvey, P Mills, E Merello, M Rosolowsky, E Schlingman, W Shirley, YL Stringfellow, GS Walawender, J Williams, J AF Bally, John Aguirre, James Battersby, Cara Bradley, Eric Todd Cyganowski, Claudia Dowell, Darren Drosback, Meredith Dunham, Miranda K. Evans, Neal J., II Ginsburg, Adam Glenn, Jason Harvey, Paul Mills, Elisabeth Merello, Manuel Rosolowsky, Erik Schlingman, Wayne Shirley, Yancy L. Stringfellow, Guy S. Walawender, Josh Williams, Jonathan TI THE BOLOCAM GALACTIC PLANE SURVEY: lambda = 1.1 AND 0.35 mm DUST CONTINUUM EMISSION IN THE GALACTIC CENTER REGION SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; Galaxy: center; ISM: clouds; stars: formation; surveys ID CENTER MOLECULAR CLOUDS; SUPERMASSIVE BLACK-HOLE; GAMMA-RAY EMISSION; STAR-FORMATION; MILKY-WAY; ARCHES CLUSTER; SAGITTARIUS B2; X-RAY; STATISTICAL PROPERTIES; INTERSTELLAR-MEDIUM AB The Bolocam Galactic Plane Survey (BGPS) data for a 6 deg(2) region of the Galactic plane containing the Galactic center are analyzed and compared to infrared and radio continuum data. The BGPS 1.1 mm emission consists of clumps interconnected by a network of fainter filaments surrounding cavities, a few of which are filled with diffuse near-IR emission indicating the presence of warm dust or with radio continuum characteristic of H II regions or supernova remnants. New 350 mu m images of the environments of the two brightest regions, Sgr A and B, are presented. Sgr B2 is the brightest millimeter-emitting clump in the Central Molecular Zone (CMZ) and may be forming the closest analog to a super star cluster in the Galaxy. The CMZ contains the highest concentration of millimeter- and submillimeter-emitting dense clumps in the Galaxy. Most 1.1 mm features at positive longitudes are seen in silhouette against the 3.6-24 mu m background observed by the Spitzer Space Telescope. However, only a few clumps at negative longitudes are seen in absorption, confirming the hypothesis that positive longitude clumps in the CMZ tend to be on the near side of the Galactic center, consistent with the suspected orientation of the central bar in our Galaxy. Some 1.1 mm cloud surfaces are seen in emission at 8 mu m, presumably due to polycyclic aromatic hydrocarbons. A similar to 0 degrees.2 (similar to 30 pc) diameter cavity and infrared bubble between l approximate to 0 degrees.0 and 0 degrees.2 surround the Arches and Quintuplet clusters and Sgr A. The bubble contains several clumpy dust filaments that point toward Sgr A*; its potential role in their formation is explored. Bania's Clump 2, a feature near l = 3 degrees-3 degrees.5 which exhibits extremely broad molecular emission lines (Delta V > 150 km s(-1)), contains dozens of 1.1 mm clumps. These clumps are deficient in near-and mid-infrared emission in the Spitzer images when compared to both the inner Galactic plane and the CMZ. Thus, Bania's Clump 2 is either inefficient in forming stars or is in a pre-stellar phase of clump evolution. The Bolocat catalog of 1.1 mm clumps contains 1428 entries in the Galactic center between l = 358 degrees.5 and l = 4 degrees.5 of which about 80% are likely to be within about 500 pc of the center. The mass spectrum above about 80 M(circle dot) can be described by a power-law Delta N/Delta M = N(0)M(-2.14(+ 0.1,-0.4)). The power-law index is somewhat sensitive to systematic grain temperature variations, may be highly biased by source confusion, and is very sensitive to the spatial filtering inherent in the data acquisition and reduction. C1 [Bally, John; Battersby, Cara; Ginsburg, Adam; Glenn, Jason; Harvey, Paul; Stringfellow, Guy S.] Univ Colorado, CASA, UCB 389, Boulder, CO 80309 USA. [Aguirre, James] Univ Penn, Dept Phys & Astron, Philadelphia, PA USA. [Bradley, Eric Todd] Univ Cent Florida, Dept Phys & Astron, Orlando, FL 32816 USA. [Cyganowski, Claudia] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Dowell, Darren] CALTECH, Jet Prop Lab, Pasadena, CA 91104 USA. [Drosback, Meredith] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Dunham, Miranda K.; Evans, Neal J., II; Merello, Manuel] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Mills, Elisabeth] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Rosolowsky, Erik] Univ British Columbia, Dept Phys & Astron, Kelowna, BC V1V 1V7, Canada. [Schlingman, Wayne; Shirley, Yancy L.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Walawender, Josh] Univ Hawaii, Inst Astron IfA, Hilo, HI 96720 USA. [Williams, Jonathan] Univ Hawaii, Inst Astron IfA, Honolulu, HI 96822 USA. RP Bally, J (reprint author), Univ Colorado, CASA, UCB 389, Boulder, CO 80309 USA. EM John.Bally@casa.colorado.edu; jaguirre@sas.upenn.edu; Cara.Battersby@colorado.edu; tbradley@physics.ucf.edu; ccyganow@astro.wisc.edu; cdd@submm.caltech.edu; drosback@virginia.edu; nordhaus@astro.as.utexas.edu; nje@astro.as.utexas.edu; Adam.Ginsburg@colorado.edu; Jason.Glenn@colorado.edu; pmh@astro.as.utexas.edu; millsb@astro.ucla.edu; manuel@astro.as.utexas.edu; erik.rosolowsky@ubc.ca; wschlingman@as.arizona.edu; yshirley@as.arizona.edu; Guy.Stringfellow@colorado.edu; joshw@ifa.hawaii.edu; jpw@ifa.hawaii.edu RI Ginsburg, Adam/E-6413-2011 FU National Science Foundation [AST-0708403, AST-9980846, AST-0206158, AST-0607793, AST-05-40882, AST-0838261]; National Radio Astronomy Observatory (NRAO) FX The BGPS project is supported in part by the National Science Foundation through NSF grant AST-0708403. J.A. was supported by a Jansky Fellowship from the National Radio Astronomy Observatory (NRAO). The first observing runs for BGPS were supported by travel funds provided by NRAO. Support for the development of Bolocam was provided by NSF grants AST-9980846 and AST-0206158. N.J.E. and M. K. D. were supported by NSF grant AST-0607793. This research was performed at the Caltech Submillimeter Observatory (CSO), supported by NSF grants AST-05-40882 and AST-0838261. C. B. and C. C. were supported by a National Science Foundation Graduate Research Fellowship. We thank Farhad Yusef-Zadeh for providing his 20 cm radio image. We thank an anonymous referee for very helpful comments that improved the manuscript. NR 111 TC 48 Z9 48 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2010 VL 721 IS 1 BP 137 EP 163 DI 10.1088/0004-637X/721/1/137 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TI UT WOS:000282192900010 ER PT J AU Zemcov, M Blain, A Halpern, M Levenson, L AF Zemcov, Michael Blain, Andrew Halpern, Mark Levenson, Louis TI CONTRIBUTION OF LENSED SCUBA GALAXIES TO THE COSMIC INFRARED BACKGROUND SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; gravitational lensing: strong; submillimeter: galaxies ID DEEP SUBMILLIMETER SURVEY; DEGREE EXTRAGALACTIC SURVEY; 14 HOUR FIELD; NUMBER COUNTS; VELOCITY DISPERSIONS; HIGH-REDSHIFT; LENSING CLUSTERS; ABELL CLUSTERS; STAR-FORMATION; EVOLUTION AB The surface density of submillimeter (sub-mm) galaxies as a function of flux, usually termed the source number counts, constrains models of the evolution of the density and luminosity of starburst galaxies. At the faint end of the distribution, direct detection and counting of galaxies are not possible. However, gravitational lensing by clusters of galaxies allows detection of sources which would otherwise be too dim to study. We have used the largest catalog of sub-mm-selected sources along the line of sight to galaxy clusters to estimate the faint end of the 850 mu m number counts; integrating to S = 0.10 mJy, the equivalent flux density at 850 mu m is nu I(nu) = 0.24 +/- 0.03 nW m(-2) sr(-1). This provides a lower limit to the extragalactic far-infrared background and is consistent with direct estimates of the full intensity from the FIRAS. The results presented here can help to guide strategies for upcoming surveys carried out with single-dish sub-mm instruments. C1 [Zemcov, Michael; Blain, Andrew; Levenson, Louis] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Zemcov, Michael] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Halpern, Mark] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. RP Zemcov, M (reprint author), CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. FU NASA FX M.Z.'s research was supported in part by a NASA Postdoctoral Fellowship. Many thanks to K. Coppin for the kind sharing of many of the data used in Figures 2 and 3, E. Jullo for help with LENSTOOL and other useful discussions, E. Valiante for valuable insights which improved this paper, and A. Conley for catching problems quickly. Thanks also to an anonymous referee whose comments and suggestions substantially improved this work. This work made use of the Canadian Astronomy Data Centre, which is operated by the Herzberg Institute of Astrophysics, National Research Council of Canada. NR 56 TC 22 Z9 22 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2010 VL 721 IS 1 BP 424 EP 430 DI 10.1088/0004-637X/721/1/424 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TI UT WOS:000282192900028 ER PT J AU Juhasz, A Bouwman, J Henning, T Acke, B van den Ancker, ME Meeus, G Dominik, C Min, M Tielens, AGGM Waters, LBFM AF Juhasz, A. Bouwman, J. Henning, Th. Acke, B. van den Ancker, M. E. Meeus, G. Dominik, C. Min, M. Tielens, A. G. G. M. Waters, L. B. F. M. TI DUST EVOLUTION IN PROTOPLANETARY DISKS AROUND HERBIG Ae/Be STARS-THE SPITZER VIEW SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; infrared: planetary systems; infrared: stars; stars: formation; stars: pre-main sequence ID INTERSTELLAR SILICATE MINERALOGY; INFRARED-ABSORPTION SPECTRA; MILLIMETER-WAVE PROPERTIES; MAIN-SEQUENCE STARS; VEGA-LIKE SYSTEMS; T-TAURI STARS; COMPOSITIONAL DEPENDENCE; CRYSTALLINE SILICATES; MAGNESIUM SILICATES; REFLECTION SPECTRA AB In this paper, we present mid-infrared spectra of a comprehensive set of Herbig Ae/Be stars observed with the Spitzer Space Telescope. The signal-to-noise ratio of these spectra is very high, ranging between about a hundred and several hundreds. During the analysis of these data we tested the validity of standardized protoplanetary dust models and studied grain growth and crystal formation. On the basis of the analyzed spectra, the major constituents of protoplanetary dust around Herbig Ae/Be stars are amorphous silicates with olivine and pyroxene stoichiometry, crystalline forsterite, and enstatite and silica. No other solid-state features, indicating other abundant dust species, are present in the Spitzer spectra. Deviations of the synthetic spectra from the observations are most likely related to grain shape effects and uncertainties in the iron content of the dust grains. Our analysis revealed that larger grains are more abundant in the disk atmosphere of flatter disks than in that of flared disks, indicating that grain growth and sedimentation decrease the disk flaring. We did not find, however, correlations between the value of crystallinity and any of the investigated system parameters. Our analysis shows that enstatite is more concentrated toward the warm inner disk than forsterite, in contrast to predictions of equilibrium condensation models. None of the three crystal formation mechanisms proposed so far can alone explain all our findings. It is very likely that all three play at least some role in the formation of crystalline silicates. C1 [Juhasz, A.; Bouwman, J.; Henning, Th.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Acke, B.; Waters, L. B. F. M.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [van den Ancker, M. E.] European So Observ, D-85748 Garching, Germany. [Meeus, G.; Min, M.; Waters, L. B. F. M.] Astrophys Inst Potsdam, D-14482 Potsdam, Germany. [Dominik, C.] Univ Amsterdam, Astron Inst, NL-1098 AJ Amsterdam, Netherlands. [Tielens, A. G. G. M.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Tielens, A. G. G. M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Juhasz, A (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. NR 73 TC 81 Z9 83 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2010 VL 721 IS 1 BP 431 EP 455 DI 10.1088/0004-637X/721/1/431 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TI UT WOS:000282192900029 ER PT J AU Hosokawa, T Yorke, HW Omukai, K AF Hosokawa, Takashi Yorke, Harold W. Omukai, Kazuyuki TI EVOLUTION OF MASSIVE PROTOSTARS VIA DISK ACCRETION SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; stars: early-type; stars: evolution; stars: formation; stars: pre-main sequence ID MAIN-SEQUENCE STARS; 1ST STARS; MOLECULAR CLOUDS; CIRCLE-DOT; CORES; FRAGMENTATION; CANDIDATES; TURBULENT; EMISSION; SYSTEMS AB Mass accretion onto (proto-)stars at high accretion rates (M) over dot(*) > 10(-4) M(circle dot) yr(-1) is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of "cold" disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10(-3) M(circle dot) yr(-1), the radius of a protostar is initially small, R(*) similar or equal to a few R(circle dot). After several solar masses have accreted, the protostar begins to bloat up and for M* similar or equal to 10 M(circle dot) the stellar radius attains its maximum of 30-400 R(circle dot). The large radius similar to 100 R(circle dot) is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M(*) similar or equal to 30 M(circle dot), independent of the accretion geometry. For accretion rates exceeding several 10(-3) M(circle dot) yr(-1), the protostar never contracts to the ZAMS. The very large radius of several hundreds R(circle dot) results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions. C1 [Hosokawa, Takashi; Omukai, Kazuyuki] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Hosokawa, Takashi; Yorke, Harold W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hosokawa, Takashi; Omukai, Kazuyuki] Natl Astron Observ, Div Theoret Astron, Tokyo 1818588, Japan. RP Hosokawa, T (reprint author), Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. EM hosokawa@tap.scphys.kyoto-u.ac.jp; Harold.Yorke@jpl.nasa.gov; omukai@tap.scphys.kyoto-u.ac.jp FU Japan Society for the Promotion of Science for Young Scientists; Ministry of Education, Science and Culture of Japan [18740117, 18026008, 19047004] FX We thank Peter Bodenheimer for a careful critique of the manuscript. We also thank Neal Turner for fruitful comments and discussions. This study is supported in part by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists (T. H.) and by the Grants-in-Aid by the Ministry of Education, Science and Culture of Japan (18740117, 18026008, 19047004: KO). Portions of this work were conducted at the Jet Propulsion Laboratory, California Institute of Technology, operating under a contract with the National Aeronautics and Space Administration (NASA). NR 47 TC 82 Z9 82 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2010 VL 721 IS 1 BP 478 EP 492 DI 10.1088/0004-637X/721/1/478 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TI UT WOS:000282192900032 ER PT J AU Pineda, JL Goldsmith, PF Chapman, N Snell, RL Li, D Cambresy, L Brunt, C AF Pineda, Jorge L. Goldsmith, Paul F. Chapman, Nicholas Snell, Ronald L. Li, Di Cambresy, Laurent Brunt, Chris TI THE RELATION BETWEEN GAS AND DUST IN THE TAURUS MOLECULAR CLOUD SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; ISM: molecules; ISM: structure ID INTER-STELLAR CLOUDS; DARK CLOUD; CARBON-MONOXIDE; COLUMN DENSITY; PROBABILITY-DISTRIBUTION; INTERSTELLAR-MEDIUM; STAR-FORMATION; ULTRAVIOLET SURVEY; HIGH-RESOLUTION; MILKY-WAY AB We report a study of the relation between dust and gas over a 100 deg(2) area in the Taurus molecular cloud. We compare the H-2 column density derived from dust extinction with the CO column density derived from the (CO)-C-12 and (CO)-C-13 J = 1 -> 0 lines. We derive the visual extinction from reddening determined from 2MASS data. The comparison is done at an angular size of 200 '' corresponding to 0.14 pc at a distance of 140 pc. We find that the relation between visual extinction AV and N(CO) is linear between A(V) similar or equal to 3 and 10 mag in the region associated with the B213-L1495 filament. In other regions, the linear relation is flattened for A(V) greater than or similar to 4 mag. We find that the presence of temperature gradients in the molecular gas affects the determination of N(CO) by similar to 30%-70% with the largest difference occurring at large column densities. Adding a correction for this effect and accounting for the observed relation between the column density of CO and CO2 ices and A(V), we find a linear relationship between the column of carbon monoxide and dust for observed visual extinctions up to the maximum value in our data similar or equal to 23 mag. We have used these data to study a sample of dense cores in Taurus. Fitting an analytical column density profile to these cores we derive an average volume density of about 1.4 x 10(4) cm(-3) and a CO depletion age of about 4.2 x 10(5) yr. At visual extinctions smaller than similar to 3 mag, we find that the CO fractional abundance is reduced by up to two orders of magnitude. The data show a large scatter suggesting a range of physical conditions of the gas. We estimate the H-2 mass of Taurus to be about 1.5 x 10(4) M-circle dot, independently derived from the A(V) and N(CO) maps. We derive a CO integrated intensity to H-2 conversion factor of about 2.1 x 10(20) cm(-2) (K km s(-1))(-1), which applies even in the region where the [CO]/[H-2] ratio is reduced by up to two orders of magnitude. The distribution of column densities in our Taurus maps resembles a log-normal function but shows tails at large and low column densities. The length scale at which the high column density tail starts to be noticeable is about 0.4 pc. C1 [Pineda, Jorge L.; Goldsmith, Paul F.; Chapman, Nicholas; Li, Di] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Snell, Ronald L.] Univ Massachusetts, Dept Astron, LGRT 619, Amherst, MA 01003 USA. [Cambresy, Laurent] Observ Astron, F-67000 Strasbourg, France. [Brunt, Chris] Univ Exeter, Astrophys Grp, Sch Phys, Exeter EX4 4QL, Devon, England. RP Pineda, JL (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Jorge.Pineda@jpl.nasa.gov RI Goldsmith, Paul/H-3159-2016 FU NASA at the Jet Propulsion Laboratory, California Institute of Technology; National Science Foundation FX We thank Douglas Whittet for the idea to add the column density of CO-ices to the gas-phase CO column densities, Jonathan Foster for providing sample extinction maps that were used to test the implementation of the NICER algorithm used here, John Black, Edwine van Dishoeck, and Ruud Visser for helpful discussions about the formation/destruction processes affecting CO at low column densities, specially Ruud Visser for providing results of his recent calculations, Kostas Tassis for discussions about the nature of column density distributions in molecular clouds, and Marko Krco for sharing his Hi map of Taurus. J.L.P was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by Oak Ridge Associated Universities through a contract with NASA. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology and was supported by a grant from the National Science Foundation. This research has made use of NASA's Astrophysics Data System Abstract Service. NR 75 TC 84 Z9 84 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2010 VL 721 IS 1 BP 686 EP 708 DI 10.1088/0004-637X/721/1/686 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TI UT WOS:000282192900050 ER PT J AU Osten, RA Godet, O Drake, S Tueller, J Cummings, J Krimm, H Pye, J Pal'shin, V Golenetskii, S Reale, F Oates, SR Page, MJ Melandri, A AF Osten, Rachel A. Godet, Olivier Drake, Stephen Tueller, Jack Cummings, Jay Krimm, Hans Pye, John Pal'shin, Valentin Golenetskii, Sergei Reale, Fabio Oates, Samantha R. Page, Mat J. Melandri, Andrea TI THE MOUSE THAT ROARED: A SUPERFLARE FROM THE dMe FLARE STAR EV LAC DETECTED BY SWIFT AND KONUS-WIND SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: activity; stars: coronae; stars: flare; stars: individual (EV Lac); stars: late-type; X-rays: stars ID X-RAY FLARE; K-ALPHA EMISSION; RADIATIVE HYDRODYNAMIC MODELS; SOLAR-FLARES; EV-LACERTAE; ULTRAVIOLET EMISSION; MAGNETIC-FIELDS; STELLAR FLARES; M-DWARFS; IMPULSIVE PHASE AB We report on a large stellar flare from the nearby dMe flare star EV Lac observed by the Swift and Konus-Wind satellites and the Liverpool Telescope. It is the first large stellar flare from a dMe flare star to result in a Swift trigger based on its hard X-ray intensity. Its peak f(X) from 0.3 to 100 keV of 5.3 x 10(-8) erg cm(-2) s(-1) is nearly 7000 times larger than the star's quiescent coronal flux, and the change in magnitude in the white filter is >= 4.7. This flare also caused a transient increase in EV Lac's bolometric luminosity (L-bol) during the early stages of the flare, with a peak estimated L-X/L-bol similar to 3.1. We apply flare loop hydrodynamic modeling to the plasma parameter temporal changes to derive a loop semi-length of l/R-star = 0.37 +/- 0.07. The soft X-ray spectrum of the flare reveals evidence of iron K alpha emission at 6.4 keV. We model the K alpha emission as fluorescence from the hot flare source irradiating the photospheric iron, and derive loop heights of h/R-star = 0.1, consistent within factors of a few with the heights inferred from hydrodynamic modeling. The K alpha emission feature shows variability on timescales of similar to 200 s which is difficult to interpret using the pure fluorescence hypothesis. We examine K alpha emission produced by collisional ionization from accelerated particles, and find parameter values for the spectrum of accelerated particles which can accommodate the increased amount of K alpha flux and the lack of observed nonthermal emission in the 20-50 keV spectral region. C1 [Osten, Rachel A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Godet, Olivier] Univ Toulouse, UPS, CESR, F-31028 Toulouse 9, France. [Drake, Stephen; Tueller, Jack; Cummings, Jay; Krimm, Hans] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Pye, John] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Pal'shin, Valentin; Golenetskii, Sergei] AF Ioffe Phys Tech Inst, Expt Astrophys Lab, St Petersburg 194021, Russia. [Reale, Fabio] Univ Palermo, Sez Astron, Dip Sci Fis & Astron, I-90134 Palermo, Italy. [Oates, Samantha R.; Page, Mat J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Melandri, Andrea] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. RP Osten, RA (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM osten@stsci.edu; Olivier.Godet@cesr.fr RI Tueller, Jack/D-5334-2012; Pal'shin, Valentin/F-3973-2014; Golenetskii, Sergey/B-3818-2015; OI Reale, Fabio/0000-0002-1820-4824 FU Russian Space Agency; RFBR [09-02-00166a] FX This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. The Konus-Wind experiment is supported by a Russian Space Agency contract and RFBR grant 09-02-00166a. We thank the Swift team for the ToO on Swift similar to 1 year after the flare to determine the quiescent level of EV Lac in several UVOT filters. NR 68 TC 39 Z9 39 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2010 VL 721 IS 1 BP 785 EP 801 DI 10.1088/0004-637X/721/1/785 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TI UT WOS:000282192900058 ER PT J AU Pott, JU Woillez, J Ragland, S Wizinowich, PL Eisner, JA Monnier, JD Akeson, RL Ghez, AM Graham, JR Hillenbrand, LA Millan-Gabet, R Appleby, E Berkey, B Colavita, MM Cooper, A Felizardo, C Herstein, J Hrynevych, M Medeiros, D Morrison, D Panteleeva, T Smith, B Summers, K Tsubota, K Tyau, C Wetherell, E AF Pott, J. -U. Woillez, J. Ragland, S. Wizinowich, P. L. Eisner, J. A. Monnier, J. D. Akeson, R. L. Ghez, A. M. Graham, J. R. Hillenbrand, L. A. Millan-Gabet, R. Appleby, E. Berkey, B. Colavita, M. M. Cooper, A. Felizardo, C. Herstein, J. Hrynevych, M. Medeiros, D. Morrison, D. Panteleeva, T. Smith, B. Summers, K. Tsubota, K. Tyau, C. Wetherell, E. TI PROBING LOCAL DENSITY INHOMOGENEITIES IN THE CIRCUMSTELLAR DISK OF A Be STAR USING THE NEW SPECTRO-ASTROMETRY MODE AT THE KECK INTERFEROMETER SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; infrared: stars; stars: emission-line, Be; stars: individual (48 Lib); techniques: interferometric; techniques: spectroscopic ID ONE-ARMED OSCILLATIONS; ZETA TAURI; INFRARED INTERFEROMETRY; CYCLIC VARIABILITY; GAMMA-CASSIOPEIAE; NEAR-IR; LINES; CONSTRAINTS; GEOMETRY; ENVELOPE AB We report on the successful science verification phase of a new observing mode at the Keck Interferometer, which provides a line-spread function width and sampling of 150 km s(-1) at the K '-band, at a current limiting magnitude of K ' similar to 7 mag with a spatial resolution of lambda/2B approximate to 2.7 mas and a measured differential phase stability of unprecedented precision (3 mrad at K = 5 mag, which represents 3 mu as on the sky or a centroiding precision of 10(-3)). The scientific potential of this mode is demonstrated by the presented observations of the circumstellar disk of the evolved Be-star 48 Lib. In addition to indirect methods such as multi-wavelength spectroscopy and polarimetry, the spectro-interferometric astrometry described here provides a new tool to directly constrain the radial density structure in the disk. For the first time, we resolve several Pfund emission lines, in addition to Br gamma, in a single interferometric spectrum, with adequate spatial and spectral resolution and precision to analyze the radial disk structure in 48 Lib. The data suggest that the continuum and Pf-emission originates in significantly more compact regions, inside the Br gamma-emission zone. Thus, spectro-interferometric astrometry opens the opportunity to directly connect the different observed line profiles of Br gamma and Pfund in the total and correlated flux to different disk radii. The gravitational potential of a rotationally flattened Be star is expected to induce a one-armed density perturbation in the circumstellar disk. Such a slowly rotating disk oscillation has been used to explain the well-known periodic V/R spectral profile variability in these stars, as well as the observed V/R cycle phase shifts between different disk emission lines. The differential line properties and linear constraints set by our data are consistent with theoretical models and lend direct support to the existence of a radius-dependent disk density perturbation. The data also show decreasing gas rotation velocities at increasing stellocentric radii as expected for Keplerian disk rotation, assumed by those models. C1 [Pott, J. -U.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Pott, J. -U.; Woillez, J.; Ragland, S.; Wizinowich, P. L.; Appleby, E.; Berkey, B.; Cooper, A.; Hrynevych, M.; Medeiros, D.; Morrison, D.; Panteleeva, T.; Smith, B.; Summers, K.; Tsubota, K.; Tyau, C.; Wetherell, E.] Calif Assoc Res Astron, WM Keck Observ, Kamuela, HI 96743 USA. [Pott, J. -U.; Ghez, A. M.] Univ Calif Los Angeles, Div Astron & Astrophys, Los Angeles, CA 90095 USA. [Eisner, J. A.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Monnier, J. D.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Akeson, R. L.; Millan-Gabet, R.; Felizardo, C.; Herstein, J.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Ghez, A. M.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Graham, J. R.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Colavita, M. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Pott, JU (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM jpott@mpia.de FU NSF MRI [AST-0619965]; W. M. Keck Foundation; National Aeronautics and Space Administration FX We are grateful to W. D. Vacca and A. Seifahrt for many useful discussions and contributions to this work. The excellent support of the KI team at WMKO and NExScI helped to make these observations a success. The realization of the KI-ASTRA upgrade is supported by the NSF MRI grant AST-0619965. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. The Keck Interferometer is funded by the National Aeronautics and Space Administration as part of its Exoplanet Exploration program. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This research has made use of NASA's Astrophysics Data System Bibliographic Services. This work has made use of the BeSS database, operated at GEPI, Observatoire de Meudon, France. NR 40 TC 18 Z9 18 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2010 VL 721 IS 1 BP 802 EP 808 DI 10.1088/0004-637X/721/1/802 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654TI UT WOS:000282192900059 ER PT J AU Gopalswamy, N Makela, P AF Gopalswamy, Nat Makela, Pertti TI LONG-DURATION LOW-FREQUENCY TYPE III BURSTS AND SOLAR ENERGETIC PARTICLE EVENTS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: coronal mass ejections (CMEs); Sun: flares; Sun: particle emission; Sun: radio radiation ID CORONAL MASS EJECTIONS; RADIO-BURSTS; SEP EVENTS; SHOCKS; FLARES AB We analyzed the coronal mass ejections (CMEs), flares, and type II radio bursts associated with a set of three complex, long-duration, low-frequency (<14 MHz) type III bursts from active region 10588 in 2004 April. The durations were measured at 1 and 14 MHz using data from Wind/WAVES and were well above the threshold value (>15 minutes) normally used to define these bursts. One of the three type III bursts was not associated with a type II burst, which also lacked a solar energetic particle (SEP) event at energies >25 MeV. The 1 MHz duration of the type III burst (28 minutes) for this event was near the median value of type III durations found for gradual SEP events and ground level enhancement events. Yet, there was no sign of an SEP event. On the other hand, the other two type III bursts from the same active region had similar duration but were accompanied by WAVES type II bursts; these bursts were also accompanied by SEP events detected by SOHO/ERNE. The CMEs for the three events had similar speeds, and the flares also had similar size and duration. This study suggests that the occurrence of a complex, long-duration, low-frequency type III burst is not a good indicator of an SEP event. C1 [Gopalswamy, Nat; Makela, Pertti] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Makela, Pertti] Catholic Univ Amer, Washington, DC 20064 USA. RP Gopalswamy, N (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Gopalswamy, Nat/D-3659-2012 FU NASA FX This work was supported by NASA's LWS TR&T program. We thank Roger Hess for providing high-resolution Wind/WAVES data and the anonymous referee for helpful comments. SOHO is a project of international cooperation between ESA and NASA. NR 19 TC 10 Z9 10 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 20 PY 2010 VL 721 IS 1 BP L62 EP L66 DI 10.1088/2041-8205/721/1/L62 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647HY UT WOS:000281610300014 ER PT J AU Robinson, TD Meadows, VS Crisp, D AF Robinson, Tyler D. Meadows, Victoria S. Crisp, David TI DETECTING OCEANS ON EXTRASOLAR PLANETS USING THE GLINT EFFECT SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE astrobiology; Earth; planets and satellites: composition; radiative transfer; scattering; techniques: photometric ID DISK-AVERAGED SPECTRA; WEBB-SPACE-TELESCOPE; EARTHS ALBEDO; LIGHT-CURVES; DETECTABILITY; MODEL AB Glint, the specular reflection of sunlight off Earth's oceans, may reveal the presence of oceans on an extrasolar planet. As an Earth-like planet nears crescent phases, the size of the ocean glint spot increases relative to the fraction of the illuminated disk, while the reflectivity of this spot increases. Both effects change the planet's visible reflectivity as a function of phase. However, strong forward scattering of radiation by clouds can also produce increases in a planet's reflectivity as it approaches crescent phases, and surface glint can be obscured by Rayleigh scattering and atmospheric absorption. Here, we explore the detectability of glint in the presence of an atmosphere and realistic phase-dependent scattering from oceans and clouds. We use the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model to simulate Earth's broadband visible brightness and reflectivity over an orbit. Our validated simulations successfully reproduce phase-dependent Earthshine observations. We find that the glinting Earth can be as much as 100% brighter at crescent phases than simulations that do not include glint, and that the effect is dependent on both orbital inclination and wavelength, where the latter dependence is caused by Rayleigh scattering limiting sensitivity to the surface. We show that this phenomenon may be observable using the James Webb Space Telescope paired with an external occulter. C1 [Robinson, Tyler D.; Meadows, Victoria S.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Crisp, David] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David] NASA, Astrobiol Inst, Washington, DC USA. RP Robinson, TD (reprint author), Univ Washington, Dept Astron, Seattle, WA 98195 USA. EM robinson@astro.washington.edu FU NASA Astrobiology Institute's Virtual Planetary Laboratory [NNH05ZDA001C] FX This work was performed by the NASA Astrobiology Institute's Virtual Planetary Laboratory, supported under solicitation no. NNH05ZDA001C. NR 25 TC 32 Z9 32 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 20 PY 2010 VL 721 IS 1 BP L67 EP L71 DI 10.1088/2041-8205/721/1/L67 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647HY UT WOS:000281610300015 ER PT J AU Fiedler, J Feiveson, AH Hayat, MJ Vaksman, Z Boyd, JL Putcha, L AF Fiedler, James Feiveson, Alan H. Hayat, Matthew J. Vaksman, Zalman Boyd, Jason L. Putcha, Lakshmi TI Joint modeling of performance and subjective reporting to assess sensitivity to drug-induced sleepiness SO STATISTICS IN MEDICINE LA English DT Article DE Bayesian analysis; latent variable; WinBUGS; ordered probit; hierarchical Bayesian modeling ID MEASUREMENT ERROR; BINARY AB In an NASA ground study, two forms of cognitive tests were evaluated in terms of their sensitivity to sleepiness induced by the drug promethazine (PMZ). Performance for the two test modes (Y(1) and Y(2)), PMZ concentration, and a self-reported sleepiness using the Karolinska Sleepiness Scale (KSS) were monitored for 12 h post dose. A problem arises when using KSS to establish an association between true sleepiness and performance because KSS scores are discrete and also because they tend to concentrate on certain values. Therefore, we define a latent sleepiness measure X* as an unobserved continuous random variable describing a subject's actual state of sleepiness. Under the assumption that drug concentration affects X*, which then affects Y(1), Y(2), and KSS, we use Bayesian methods to estimate joint equations that permit unbiased comparison of the performance measures' sensitivity to X*. The equations incorporate subject random effects and include a negativity constraint on subject-specific slopes of performance with respect to sleepiness. Published in 2010 by John Wiley & Sons, Ltd. C1 [Feiveson, Alan H.; Putcha, Lakshmi] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Fiedler, James] Natl Space Biomed Res Inst, Houston, TX 77030 USA. [Fiedler, James; Hayat, Matthew J.; Boyd, Jason L.] Univ Space Res Assoc, Div Space Life Sci, Houston, TX 77058 USA. [Hayat, Matthew J.] Johns Hopkins Univ, Sch Nursing, Baltimore, MD 21205 USA. [Vaksman, Zalman] Univ Texas HMC, Dept Microbiol & Mol Genet, Houston, TX 77021 USA. RP Feiveson, AH (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 Nasa Pkwy,Mail Code SK3, Houston, TX 77058 USA. EM alan.h.feiveson@nasa.gov NR 22 TC 0 Z9 0 U1 0 U2 1 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0277-6715 J9 STAT MED JI Stat. Med. PD SEP 20 PY 2010 VL 29 IS 21 BP 2246 EP 2259 DI 10.1002/sim.3973 PG 14 WC Mathematical & Computational Biology; Public, Environmental & Occupational Health; Medical Informatics; Medicine, Research & Experimental; Statistics & Probability SC Mathematical & Computational Biology; Public, Environmental & Occupational Health; Medical Informatics; Research & Experimental Medicine; Mathematics GA 646AC UT WOS:000281506300008 PM 20564417 ER PT J AU Shen, BW Tao, WK Wu, MLC AF Shen, Bo-Wen Tao, Wei-Kuo Wu, Man-Li C. TI African easterly waves in 30-day high-resolution global simulations: A case study during the 2006 NAMMA period SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID 3-DIMENSIONAL STRUCTURE; ATLANTIC HURRICANES; JET; DISTURBANCES; MAINTENANCE; DYNAMICS; INTENSE AB In this study, extended-range (30-day) high-resolution simulations with the NASA global mesoscale model are conducted to simulate the initiation and propagation of six consecutive African easterly waves (AEWs) from late August to September 2006 and their association with hurricane formation. It is shown that the statistical characteristics of individual AEWs are realistically simulated with larger errors in the 5th and 6th AEWs. Remarkable simulations of a mean African easterly jet (AEJ) are also obtained. Nine additional 30-day experiments suggest that although land surface processes might contribute to the predictability of the AEJ and AEWs, the initiation and detailed evolution of AEWs still depend on the accurate representation of dynamic and land surface initial conditions and their time-varying nonlinear interactions. Of interest is the potential to extend the lead time for predicting hurricane formation (e. g., a lead time of up to 22 days) as the 4th AEW is realistically simulated. Citation: Shen, B.-W., W.-K. Tao, and M.-L. C. Wu (2010), African easterly waves in 30-day high-resolution global simulations: A case study during the 2006 NAMMA period, Geophys. Res. Lett., 37, L18803, doi: 10.1029/2010GL044355. C1 [Shen, Bo-Wen] UMCP, ESSIC, College Pk, MD USA. [Shen, Bo-Wen; Tao, Wei-Kuo; Wu, Man-Li C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Shen, BW (reprint author), UMCP, ESSIC, College Pk, MD USA. EM bo-wen.shen-1@nasa.gov FU NASA ESTO; AIST; MAP Program; NEWS; NSF STC FX We would like to thank reviewers for their valuable suggestions, which have substantially improved the manuscript. We are grateful for the following organizations for supporting this study: NASA ESTO; AIST Program; MAP Program; NEWS and NSF STC. We would also like to thank Steve Lang for reviewing this manuscript and Karen More for helpful discussion. Acknowledgment is also made to the NASA HEC Program, the NASA NAS and NCCS for the computer time used in this research. NR 18 TC 6 Z9 6 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 18 PY 2010 VL 37 AR L18803 DI 10.1029/2010GL044355 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 652MD UT WOS:000282009900004 ER PT J AU Smith, DE Zuber, MT Neumann, GA Lemoine, FG Mazarico, E Torrence, MH McGarry, JF Rowlands, DD Head, JW Duxbury, TH Aharonson, O Lucey, PG Robinson, MS Barnouin, OS Cavanaugh, JF Sun, XL Liiva, P Mao, DD Smith, JC Bartels, AE AF Smith, David E. Zuber, Maria T. Neumann, Gregory A. Lemoine, Frank G. Mazarico, Erwan Torrence, Mark H. McGarry, Jan F. Rowlands, David D. Head, James W., III Duxbury, Thomas H. Aharonson, Oded Lucey, Paul G. Robinson, Mark S. Barnouin, Olivier S. Cavanaugh, John F. Sun, Xiaoli Liiva, Peter Mao, Dan-dan Smith, James C. Bartels, Arlin E. TI Initial observations from the Lunar Orbiter Laser Altimeter (LOLA) SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SCALE ROUGHNESS; MISSION; TOPOGRAPHY; REGION; MOON; MARS AB As of June 19, 2010, the Lunar Orbiter Laser Altimeter, an instrument on the Lunar Reconnaissance Orbiter, has collected over 2.0 x 10(9) measurements of elevation that collectively represent the highest resolution global model of lunar topography yet produced. These altimetric observations have been used to improve the lunar geodetic grid to similar to 10 m radial and similar to 100 m spatial accuracy with respect to the Moon's center of mass. LOLA has also provided the highest resolution global maps yet produced of slopes, roughness and the 1064-nm reflectance of the lunar surface. Regional topography of the lunar polar regions allows precise characterization of present and past illumination conditions. LOLA's initial global data sets as well as the first high-resolution digital elevation models (DEMs) of polar topography are described herein. Citation: Smith, D. E., et al. (2010), Initial observations from the Lunar Orbiter Laser Altimeter (LOLA), Geophys. Res. Lett., 37, L18204, doi: 10.1029/2010GL043751. C1 [Smith, David E.; Zuber, Maria T.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Smith, David E.; Neumann, Gregory A.; Lemoine, Frank G.; Mazarico, Erwan; McGarry, Jan F.; Rowlands, David D.; Sun, Xiaoli] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD USA. [Torrence, Mark H.] SGT Inc, Greenbelt, MD 20770 USA. [Head, James W., III] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Duxbury, Thomas H.] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA. [Aharonson, Oded] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Lucey, Paul G.] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Robinson, Mark S.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Barnouin, Olivier S.] Johns Hopkins Univ, Appl Phys Lab, Dept Space, Laurel, MD 20723 USA. [Cavanaugh, John F.; Smith, James C.; Bartels, Arlin E.] NASA, Goddard Space Flight Ctr, Adv Engn & Technol Directorate, Greenbelt, MD 20771 USA. [Liiva, Peter; Mao, Dan-dan] Sigma Space Corp, Lanham, MD 20706 USA. RP Smith, DE (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. EM zuber@mit.edu RI Rowlands, David/D-2751-2012; Mazarico, Erwan/N-6034-2014; Barnouin, Olivier/I-7475-2015; Sun, Xiaoli/B-5120-2013; McGarry, Jan/C-4109-2013; Lemoine, Frank/D-1215-2013; Neumann, Gregory/I-5591-2013 OI Mazarico, Erwan/0000-0003-3456-427X; Barnouin, Olivier/0000-0002-3578-7750; Neumann, Gregory/0000-0003-0644-9944 FU NASA Exploration Systems Mission Directorate FX The LOLA investigation is supported by the LRO Project under contract from the NASA Exploration Systems Mission Directorate. We thank Patrick McGovern and Hiroshi Araki for helpful reviews. LOLA data and products are downloadable from http://pds-geosciences.wustl.edu/missions/lro/lola.htm. NR 20 TC 146 Z9 164 U1 1 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 18 PY 2010 VL 37 AR L18204 DI 10.1029/2010GL043751 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 652MD UT WOS:000282009900001 ER PT J AU Jenkins, G Kucera, P Joseph, E Fuentes, J Gaye, A Gerlach, J Roux, F Viltard, N Papazzoni, M Protat, A Bouniol, D Reynolds, A Arnault, J Badiane, D Kebe, F Camara, M Sall, S Ndiaye, SA Deme, A AF Jenkins, G. Kucera, P. Joseph, E. Fuentes, J. Gaye, A. Gerlach, J. Roux, F. Viltard, N. Papazzoni, M. Protat, A. Bouniol, D. Reynolds, A. Arnault, J. Badiane, D. Kebe, F. Camara, M. Sall, S. Ndiaye, S. A. Deme, A. TI Coastal observations of weather features in Senegal during the African Monsoon Multidisciplinary Analysis Special Observing Period 3 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TROPICAL SQUALL-LINE; WEST-AFRICAN; ICE-SCATTERING; RADAR; PRECIPITATION; RAINFALL; CLOUDS; SCHEME; COPT-81; PROJECT AB During 15 August through 30 September 2006 (Special Observing Period 3, SOP3), key weather measurements are obtained from ground and aircraft platforms during the African Monsoon Multidisciplinary Analysis campaign. Key measurements are aimed at investigating African easterly waves (AEWs) and mesoscale convective systems in a coastal environment as they transition to the eastern Atlantic Ocean. Ground and aircraft instruments include polarimetric radar, a coarse and a high-density rain gauge network, surface chemical measurements, 12 m meteorological measurement, broadband IR, solar and microwave measurements, rawinsonde, aircraft dropsonde, lidar, and cloud radar measurements. Ground observations during SOP3 show that Senegal was influenced by 5 squall lines, 6 Saharan air layer intrusions, and 10 AEWs. Downstream tropical cyclones developed were associated with the passage of four AEWs. FA-20 aircraft measurements of microphysical aspects of 22 September squall line and several nondeveloping AEWs over the extreme eastern Atlantic Ocean are presented. C1 [Jenkins, G.; Joseph, E.] Howard Univ, Dept Phys & Astron, Washington, DC 20059 USA. [Kucera, P.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Fuentes, J.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Gaye, A.; Badiane, D.; Kebe, F.; Sall, S.; Ndiaye, S. A.; Deme, A.] Cheikh Anta Diop Univ, Lab Atmospher Ocean Simeon Fongang LPAO SF, Dakar, Senegal. [Gerlach, J.] NASA, Wallops Flight Facil, Wallops Isl, VA 23337 USA. [Viltard, N.; Papazzoni, M.; Protat, A.] Observat Spatiales, LATMOS Lab Atmospheres Milieux, Velizy Villacoublay, France. [Protat, A.] CAWCR, Melbourne, Vic, Australia. [Bouniol, D.] CNRS Meteo France, GAME CNRM, Toulouse, France. [Roux, F.; Arnault, J.] Observ Midi Pyrenees, Lab Aerol, F-31400 Toulouse, France. [Reynolds, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Camara, M.] Univ Ziguinchor, Dept Phys, Ziguinchor, Senegal. RP Jenkins, G (reprint author), Howard Univ, Dept Phys & Astron, Washington, DC 20059 USA. EM gregory.s.jenkins@gmail.com FU NASA [NNX06AC78G] FX We are thank U. S. and Senegalese students Nyasha George, Deanne Grant, Marcia DeLonge, Aaron Pratt, Stephen Chan, Daniel Robertson, Segayle Walford, Tamara Battle, Christopher Foltz, Aaron Pratt, Andrew Newmann, Samo Diatta, and Thioro Fall for their extraordinary efforts during SOP3. We also thank D. Tanre for use of the Mbour AERONET data. This work was funded by NASA grant NNX06AC78G. NR 46 TC 6 Z9 6 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 18 PY 2010 VL 115 AR D18108 DI 10.1029/2009JD013022 PG 29 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 652MZ UT WOS:000282012400001 ER PT J AU Spinei, E Carn, SA Krotkov, NA Mount, GH Yang, K Krueger, A AF Spinei, Elena Carn, Simon A. Krotkov, Nickolay A. Mount, George H. Yang, Kai Krueger, Arlin TI Validation of ozone monitoring instrument SO2 measurements in the Okmok volcanic cloud over Pullman, WA, July 2008 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TRANSFORM INFRARED-SPECTROSCOPY; SOUFRIERE-HILLS VOLCANO; SULFUR-DIOXIDE; EL-CHICHON; EMISSIONS; STRATOSPHERE; ERUPTIONS; SCIAMACHY; RETRIEVAL; SPECTRA AB The ozone monitoring instrument (OMI), launched on the EOS/Aura satellite in July 2004, makes daily global observations of natural and anthropogenic SO2 emissions with unprecedented spatial resolution. Here we present the first robust comparison of OMI volcanic SO2 retrievals with ground-based instrumentation, using direct Sun observations of the Okmok volcanic cloud from Washington State University (WSU) in Pullman, WA on 18-20 July 2008. These measurements were made by the multifunction differential optical absorption spectroscopy (MFDOAS) instrument developed at WSU, as the Okmok cloud drifted over Pullman in the upper troposphere and lower stratosphere (UTLS). Observation conditions were favorable with cloud-free skies and a relatively homogeneous volcanic cloud distribution on OMI ground pixel scales (similar to 20-50 km). Movement of the Okmok cloud north and south of Pullman over a period of several days permitted comparison with three OMI overpasses with SO2 column amounts above the SO2 background level. The total SO2 columns measured by MFDOAS during OMI overpasses were 3.11 +/- 0.23 Dobson units (DU), 1.75 +/- 0.16 DU and 1.22 +/- 0.18 DU (1 DU = 2.69 x 10(16) molecules/cm(2) = 0.029 g/m(2)). Comparison of ground-based direct Sun and operational and off-line OMI retrievals show an excellent agreement, providing the first validation of OMI measurements of volcanic SO2 in the UTLS. C1 [Spinei, Elena; Mount, George H.] Washington State Univ, Lab Atmospher Res, Dept Civil & Environm Engn, Pullman, WA 99164 USA. [Carn, Simon A.] Michigan Technol Univ, Dept Geol & Min Engn & Sci, Houghton, MI 49931 USA. [Krotkov, Nickolay A.; Yang, Kai] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Krueger, Arlin] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. RP Spinei, E (reprint author), Washington State Univ, Lab Atmospher Res, Dept Civil & Environm Engn, Pullman, WA 99164 USA. EM espinei@wsu.edu; scarn@mtu.edu; krotkov@chescat.gsfc.nasa.gov; gmount@wsu.edu; Kai.Yang.1@gsfc.nasa.gov; akrueger@umbc.edu RI Krotkov, Nickolay/E-1541-2012 OI Krotkov, Nickolay/0000-0001-6170-6750 FU U.S. OMI operational team; NASA [NNG06GI00G, NNG06GJ02G, NNS06AA05G, NNG05GR56G] FX The Dutch-Finnish built OMI instrument is part of the NASA EOS Aura satellite payload. The OMI project is managed by NIVR and KNMI in Netherlands. The authors would like to thank the KNMI OMI team for producing L1B radiance data and the U.S. OMI operational team for SO2 analysis and continuing support. Nickolay Krotkov, Arlin Krueger, and Simon Carn acknowledge NASA funding of OMI SO2 research and validation (grants NNG06GI00G and NNG06GJ02G); Arlin Krueger, Simon Carn, and Kai Yang also acknowledge NASA CAN (NNS06AA05G) funding. The WSU instrument and field activities were supported by grant NNG05GR56G from NASA to Washington State University. The MFDOAS instrument was built in the WSU instrument shop by Kurt Hutchinson and Gary Held. NR 93 TC 30 Z9 31 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 18 PY 2010 VL 115 AR D00L08 DI 10.1029/2009JD013492 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 652MZ UT WOS:000282012400004 ER PT J AU Zhang, K Kimball, JS Nemani, RR Running, SW AF Zhang, Ke Kimball, John S. Nemani, Ramakrishna R. Running, Steven W. TI A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006 SO WATER RESOURCES RESEARCH LA English DT Article ID CARBON-DIOXIDE EXCHANGE; ECOSYSTEM CO2 EXCHANGE; ELEVATED ATMOSPHERIC CO2; ENERGY-BALANCE CLOSURE; NORTHERN GREAT-PLAINS; BOREAL FOREST; STREAM TEMPERATURE; PASSIVE MICROWAVE; DECIDUOUS FOREST; AIR-TEMPERATURE AB We applied a satellite remote sensing-based evapotranspiration ( ET) algorithm to assess global terrestrial ET from 1983 to 2006. The algorithm quantifies canopy transpiration and soil evaporation using a modified Penman-Monteith approach with biome-specific canopy conductance determined from the normalized difference vegetation index (NDVI) and quantifies open water evaporation using a Priestley-Taylor approach. These algorithms were applied globally using advanced very high resolution radiometer (AVHRR) GIMMS NDVI, NCEP/NCAR Reanalysis (NNR) daily surface meteorology, and NASA/GEWEX Surface Radiation Budget Release-3.0 solar radiation inputs. We used observations from 34 FLUXNET tower sites to parameterize an NDVI-based canopy conductance model and then validated the global ET algorithm using measurements from 48 additional, independent flux towers. Two sets of monthly ET estimates at the tower level, driven by in situ meteorological measurements and meteorology interpolated from coarse resolution NNR meteorology reanalysis, agree favorably ( root mean square error (RMSE) = 13.0-15.3 mm month(-1); R-2 = 0.80-0.84) with observed tower fluxes from globally representative land cover types. The global ET results capture observed spatial and temporal variations at the global scale and also compare favorably ( RMSE = 186.3 mm yr(-1); R-2 = 0.80) with ET inferred from basin-scale water balance calculations for 261 basins covering 61% of the global vegetated area. The results of this study provide a relatively long term global ET record with well-quantified accuracy for assessing ET climatologies, terrestrial water, and energy budgets and long-term water cycle changes. C1 [Zhang, Ke; Kimball, John S.] Univ Montana, Flathead Lake Biol Stn, Polson, MT 59860 USA. [Nemani, Ramakrishna R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Zhang, Ke; Kimball, John S.; Running, Steven W.] Univ Montana, Numer Terradynam Simulat Grp, Missoula, MT 59812 USA. RP Zhang, K (reprint author), Univ Montana, Flathead Lake Biol Stn, 32125 Bio Stn Lane, Polson, MT 59860 USA. EM zhang@ntsg.umt.edu RI Zhang, Ke/B-3227-2012 OI Zhang, Ke/0000-0001-5288-9372 FU NASA; Terrestrial Ecology; Earth System Science Fellowship FX This work was supported by the NASA Hydrology, Terrestrial Ecology, and Earth System Science Fellowship programs. The flux tower measurement data were provided by AmeriFlux, ORNL-DAAC, and individual tower site principal investigators. We gratefully acknowledge all tower site principle investigators and their teams for providing the evaporation and meteorological data used in this study. The NASA/GEWEX solar radiation data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. We also gratefully acknowledge MATLAB code developed by Hiekki Haario and associates, Lappeenranta U. of Technology, Helsinki, Finland, and their work in adaptive MCMC methods. NR 140 TC 121 Z9 129 U1 6 U2 63 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD SEP 18 PY 2010 VL 46 AR W09522 DI 10.1029/2009WR008800 PG 21 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 652XF UT WOS:000282044800002 ER PT J AU Han, SC Yeo, IY Alsdorf, D Bates, P Boy, JP Kim, H Oki, T Rodell, M AF Han, Shin-Chan Yeo, In-Young Alsdorf, Doug Bates, Paul Boy, Jean-Paul Kim, Hyungjun Oki, Taikan Rodell, Matthew TI Movement of Amazon surface water from time-variable satellite gravity measurements and implications for water cycle parameters in land surface models SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE Amazon basin; hydrology; GRACE; time-variable gravity; land surface model; runoff routing ID GLOBAL-SCALE; RIVER-BASIN; REGIONAL EVAPOTRANSPIRATION; CONTINENTAL-SCALE; CLIMATE MODELS; SCHEMES; FLOW; EVAPORATION; DISCHARGE; RUNOFF AB The large-scale observations of terrestrial water storage from GRACE satellites over the Amazon are analyzed with land surface model (LSM) outputs of runoff and soil moisture. A simple yet effective runoff routing method based on a continuity equation is implemented to model horizontal transport of surface water within the Amazon basin. The GRACE observations are analyzed separately for soil moisture and surface water storages (generated from runoff), relying on their distinct spatial patterns, being disperse for soil moisture and localized for surface water. Various effective velocities for storage transport are tested against the GRACE observations. When the model runoff is routed with an uniform velocity of 30 cm/s, the annual variation of the resulting surface water storage is generally found to be larger than the satellite measurements and ground gauge data by a factor of 1.5 or higher. The peak annual anomaly of surface water storage is observed around the midstream of the Amazon main stem. However, the runoff routing simulations present the peak amplitude consistently around the delta (downstream), unless the increasing velocity in a downstream region is used. As complements to the ground gauge data, the satellite observations provide unique 'spatial' information of water cycle parameters. Our analysis indicates possible shortcomings in the certain LSM mass transport scheme between atmosphere and land surface, particularly the production of too large seasonal variations in runoff (and maybe too little variations in evapotranspiration), and the dynamic characteristics of surface water transport within the Amazon basins. C1 [Han, Shin-Chan; Boy, Jean-Paul] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. [Han, Shin-Chan] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Yeo, In-Young] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Alsdorf, Doug] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. [Bates, Paul] Univ Bristol, Sch Geog Sci, Bristol BS8 1SS, Avon, England. [Boy, Jean-Paul] UdS, IPGS, UMR 7516, EOST,CNRS, F-67084 Strasbourg, France. [Kim, Hyungjun; Oki, Taikan] Univ Tokyo, Inst Ind Sci, Meguro Ku, Tokyo 1538505, Japan. [Rodell, Matthew] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA. RP Han, SC (reprint author), NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, 8300 Greenbelt Rd, Greenbelt, MD 20771 USA. EM shin-chan.han@nasa.gov RI Oki, Taikan/E-5778-2010; Rodell, Matthew/E-4946-2012; Han, Shin-Chan/A-2022-2009; Bates, Paul/C-8026-2012; KIM, HYUNGJUN/I-5099-2014; Boy, Jean-Paul/E-6677-2017 OI Oki, Taikan/0000-0003-4067-4678; Rodell, Matthew/0000-0003-0106-7437; Bates, Paul/0000-0001-9192-9963; KIM, HYUNGJUN/0000-0003-1083-8416; Boy, Jean-Paul/0000-0003-0259-209X FU NASA; Earth Surface and Interior program; NASA Goddard Space Flight Center [PIOF-GA2008-221753] FX This work was supported by NASA GRACE projects and the Earth Surface and Interior program. Scott Luthcke and David Rowlands are acknowledged for computing the precise orbits of the GRACE satellites. We would like to thank the German Space Operations Center of the German Aerospace Center, DLR, for providing continuously and nearly 100% of the raw telemetry data of the twin GRACE satellites. JPB is currently visiting NASA Goddard Space Flight Center with a Marie Curie International Outgoing Fellowship (PIOF-GA2008-221753). The comments from anonymous reviewers helped to improve the manuscript. NR 37 TC 9 Z9 9 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD SEP 17 PY 2010 VL 11 AR Q09007 DI 10.1029/2010GC003214 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 652LV UT WOS:000282009100001 ER PT J AU Head, JW Fassett, CI Kadish, SJ Smith, DE Zuber, MT Neumann, GA Mazarico, E AF Head, James W., III Fassett, Caleb I. Kadish, Seth J. Smith, David E. Zuber, Maria T. Neumann, Gregory A. Mazarico, Erwan TI Global Distribution of Large Lunar Craters: Implications for Resurfacing and Impactor Populations SO SCIENCE LA English DT Article ID INNER SOLAR-SYSTEM; MARE BASALTS; AGES; STRATIGRAPHY; VOLCANISM AB By using high-resolution altimetric measurements of the Moon, we produced a catalog of all impact craters >= 20 kilometers in diameter on the lunar surface and analyzed their distribution and population characteristics. The most-densely cratered portion of the highlands reached a state of saturation equilibrium. Large impact events, such as Orientale Basin, locally modified the prebasin crater population to similar to 2 basin radii from the basin center. Basins such as Imbrium, Orientale, and Nectaris, which are important stratigraphic markers in lunar history, are temporally distinguishable on the basis of crater statistics. The characteristics of pre- and postmare crater populations support the hypothesis that there were two populations of impactors in early solar system history and that the transition occurred near the time of the Orientale Basin event. C1 [Head, James W., III; Fassett, Caleb I.; Kadish, Seth J.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Smith, David E.; Zuber, Maria T.; Mazarico, Erwan] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02129 USA. [Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Mazarico, Erwan] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. RP Head, JW (reprint author), Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. EM james_head@brown.edu RI Neumann, Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014; OI Neumann, Gregory/0000-0003-0644-9944; Mazarico, Erwan/0000-0003-3456-427X; Fassett, Caleb/0000-0001-9155-3804 FU NASA [NNX09AM54G] FX We thank the LRO and LOLA mission teams for their efforts, which made the observations in this study possible, and T. Kneissl for developing the CraterTools extension to ArcMap. Funding was provided by NASA grant NNX09AM54G for LOLA. NR 19 TC 65 Z9 65 U1 1 U2 8 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 17 PY 2010 VL 329 IS 5998 BP 1504 EP 1507 DI 10.1126/science.1195050 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 650RK UT WOS:000281869000035 PM 20847265 ER PT J AU Greenhagen, BT Lucey, PG Wyatt, MB Glotch, TD Allen, CC Arnold, JA Bandfield, JL Bowles, NE Hanna, KLD Hayne, PO Song, E Thomas, IR Paige, DA AF Greenhagen, Benjamin T. Lucey, Paul G. Wyatt, Michael B. Glotch, Timothy D. Allen, Carlton C. Arnold, Jessica A. Bandfield, Joshua L. Bowles, Neil E. Hanna, Kerri L. Donaldson Hayne, Paul O. Song, Eugenie Thomas, Ian R. Paige, David A. TI Global Silicate Mineralogy of the Moon from the Diviner Lunar Radiometer SO SCIENCE LA English DT Article ID PLANETARY SURFACES; SPECTROSCOPY; EMISSION; EVOLUTION; VOLCANISM; FEATURES; CRUST; TES AB We obtained direct global measurements of the lunar surface using multispectral thermal emission mapping with the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Most lunar terrains have spectral signatures that are consistent with known lunar anorthosite and basalt compositions. However, the data have also revealed the presence of highly evolved, silica-rich lunar soils in kilometer-scale and larger exposures, expanded the compositional range of the anorthosites that dominate the lunar crust, and shown that pristine lunar mantle is not exposed at the lunar surface at the kilometer scale. Together, these observations provide compelling evidence that the Moon is a complex body that has experienced a diverse set of igneous processes. C1 [Greenhagen, Benjamin T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lucey, Paul G.] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Wyatt, Michael B.; Hanna, Kerri L. Donaldson] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Glotch, Timothy D.; Arnold, Jessica A.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Allen, Carlton C.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Bandfield, Joshua L.; Song, Eugenie] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Bowles, Neil E.; Thomas, Ian R.] Univ Oxford, Dept Atmospher Ocean & Planetary Phys, Oxford OX1 3PU, England. [Hayne, Paul O.; Paige, David A.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. RP Greenhagen, BT (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM benjamin.t.greenhagen@jpl.nasa.gov RI Greenhagen, Benjamin/C-3760-2016 FU NASA; Diviner science budget FX This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was funded by the Diviner science budget and the NASA LRO Participating Scientist program. NR 36 TC 55 Z9 55 U1 1 U2 8 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 17 PY 2010 VL 329 IS 5998 BP 1507 EP 1509 DI 10.1126/science.1192196 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 650RK UT WOS:000281869000036 PM 20847266 ER PT J AU Glotch, TD Lucey, PG Bandfield, JL Greenhagen, BT Thomas, IR Elphic, RC Bowles, N Wyatt, MB Allen, CC Hanna, KD Paige, DA AF Glotch, Timothy D. Lucey, Paul G. Bandfield, Joshua L. Greenhagen, Benjamin T. Thomas, Ian R. Elphic, Richard C. Bowles, Neil Wyatt, Michael B. Allen, Carlton C. Hanna, Kerri Donaldson Paige, David A. TI Highly Silicic Compositions on the Moon SO SCIENCE LA English DT Article ID LUNAR RED SPOTS; VOLCANISM; SURFACE; SPECTROSCOPY; GRUITHUISEN; SEPARATION; REGION; DOMES AB Using data from the Diviner Lunar Radiometer Experiment, we show that four regions of the Moon previously described as "red spots" exhibit mid-infrared spectra best explained by quartz, silica-rich glass, or alkali feldspar. These lithologies are consistent with evolved rocks similar to lunar granites in the Apollo samples. The spectral character of these spots is distinct from surrounding mare and highlands material and from regions composed of pure plagioclase feldspar. The variety of landforms associated with the silicic spectral character suggests that both extrusive and intrusive silicic magmatism occurred on the Moon. Basaltic underplating is the preferred mechanism for silicic magma generation, leading to the formation of extrusive landforms. This mechanism or silicate liquid immiscibility could lead to the formation of intrusive bodies. C1 [Glotch, Timothy D.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Lucey, Paul G.] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Bandfield, Joshua L.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Greenhagen, Benjamin T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Thomas, Ian R.; Bowles, Neil] Univ Oxford, Dept Phys, Oxford, England. [Elphic, Richard C.; Hanna, Kerri Donaldson] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Wyatt, Michael B.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Allen, Carlton C.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Paige, David A.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. RP Glotch, TD (reprint author), SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. EM tglotch@notes.cc.sunysb.edu RI Greenhagen, Benjamin/C-3760-2016 FU Diviner science budget; NASA FX This work was funded in part by the Diviner science budget. T. D. G., J.L.B., M. B. W., and R. C. E. were supported by the NASA Lunar Reconnaissance Orbiter Participating Scientist program. NR 29 TC 67 Z9 68 U1 3 U2 16 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 17 PY 2010 VL 329 IS 5998 BP 1510 EP 1513 DI 10.1126/science.1192148 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 650RK UT WOS:000281869000037 PM 20847267 ER PT J AU Badavi, FF Adams, DO Wilson, JW AF Badavi, Francis F. Adams, Daniel O. Wilson, John W. TI On the validity of the aluminum equivalent approximation in space radiation shielding applications SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Aluminum equivalent approximation; GCR; ISS; HZETRN AB The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range 1 <= Z <= 28 (H-Ni) and secondary neutrons through selected target materials. The coupling of the GCR extremes to HZETRN allows for the examination of the induced environment within the interior of an idealized spacecraft as approximated by a spherical shell shield, and the effects of the aluminum equivalent approximation for a good polymeric shield material such as generic polyethylene (PE). The shield thickness is represented by a 25 g/cm(2) spherical shell. Although, one could imagine the progression to greater thickness, the current range will be sufficient to evaluate the qualitative usefulness of the aluminum equivalent approximation. Upon establishing the inaccuracies of the aluminum equivalent approximation through numerical simulations of the GCR radiation field attenuation for PE and aluminum equivalent PE spherical shells, we further present results for a limited set of commercially available, hydrogen rich, multifunctional polymeric constituents to assess the effect of the aluminum equivalent approximation on their radiation attenuation response as compared to the generic PE. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Badavi, Francis F.] Christopher Newport Univ, Newport News, VA 23606 USA. [Adams, Daniel O.] Univ Utah, Salt Lake City, UT 84112 USA. [Wilson, John W.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Badavi, FF (reprint author), Christopher Newport Univ, 1 Univ Pl, Newport News, VA 23606 USA. EM francis.f.badavi@nasa.gov; adams@mech.utah.edu; jwilson61@cox.net NR 18 TC 5 Z9 5 U1 3 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD SEP 15 PY 2010 VL 46 IS 6 BP 719 EP 727 DI 10.1016/j.asr.2010.04.006 PG 9 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 643KZ UT WOS:000281296600006 ER PT J AU Thomas, EA Weislogel, MM Klaus, DM AF Thomas, Evan A. Weislogel, Mark M. Klaus, David M. TI Design considerations for sustainable spacecraft water management systems SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Sustainable; Life support; Wastewater; Fouling AB It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable over time. This paper presents design strategies and testing considerations for improving the reliability of water handling technologies. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence. Two representative boundary applications are presented. The first is a short term application where reduced gravity flight tests demonstrated a static phase separator prototype that achieved nearly 100% separation of gas from liquids under widely varying wetting conditions correlated to anticipated ranges of wastewater fouling. The second is a design concept for a lunar outpost water recovery system where wastewater is allowed to age and form biofilms and precipitates that can be filtered through lunar regolith media as the water is reclaimed. Both applications are supported by similar underlying principles of facilitating sustainable fluid handling in the presence of fouled surfaces. Published by Elsevier Ltd. on behalf of COSPAR. C1 [Thomas, Evan A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Weislogel, Mark M.] Portland State Univ, Dept Mech & Mat Engn, Portland, OR 97207 USA. [Klaus, David M.] Univ Colorado, Boulder, CO 80309 USA. RP Thomas, EA (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy,Mailcode EC3, Houston, TX 77058 USA. EM evan.a.thomas@nasa.gov; mmw@mme.pdx.edu; Klaus@colorado.edu NR 13 TC 6 Z9 6 U1 2 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD SEP 15 PY 2010 VL 46 IS 6 BP 761 EP 767 DI 10.1016/j.asr.2010.04.005 PG 7 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 643KZ UT WOS:000281296600011 ER PT J AU Slaba, TC Blattnig, SR Clowdsley, MS Walker, SA Badavi, FF AF Slaba, T. C. Blattnig, S. R. Clowdsley, M. S. Walker, S. A. Badavi, F. F. TI An improved neutron transport algorithm for HZETRN SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Neutron transport; Radiation constraints; Space radiation; Dose; Space radiation transport; HZETRN AB Long-term human presence in space requires the inclusion of radiation constraints in mission planning and the design of shielding materials, structures and vehicles. It is necessary to expose the numerical tools commonly used in radiation analyses to extensive verification, validation and uncertainty quantification. In this paper, the numerical error associated with energy discretization in HZETRN is addressed. An inadequate numerical integration scheme in the transport algorithm is shown to produce large errors in the low energy portion of the neutron and light ion fluence spectra. It is further shown that the errors result from the narrow energy domain of the neutron elastic cross section spectral distributions and that an extremely fine energy grid is required to resolve the problem under the current formulation. Since adding a sufficient number of energy points will render the code computationally inefficient, we revisit the light ion and neutron transport theory developed for HZETRN and focus on neutron elastic interactions. Two numerical methods (average value and collocation) are developed to provide adequate resolution in the energy domain and more accurately resolve the neutron elastic interactions. An energy grid convergence study is conducted to demonstrate the improved stability of the new methods. Based on the results of the convergence study and the ease of implementation, the average value method with a 100 point energy grid is found to be suitable for future use in HZETRN. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Slaba, T. C.; Walker, S. A.] Old Dominion Univ, Norfolk, VA 23529 USA. [Blattnig, S. R.; Clowdsley, M. S.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Badavi, F. F.] Christopher Newport Univ, Newport News, VA 23607 USA. RP Slaba, TC (reprint author), Old Dominion Univ, E&CS Bldg,Elkhorn Ave, Norfolk, VA 23529 USA. EM Tony.C.Slaba@nasa.gov; Steve.R.Blattnig@nasa.gov; Martha.S.Clowdsley@nasa.gov; Steven.A.Walker@nasa.gov; Francis.F.Badavi@nasa.gov NR 13 TC 12 Z9 12 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD SEP 15 PY 2010 VL 46 IS 6 BP 800 EP 810 DI 10.1016/j.asr.2010.03.005 PG 11 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 643KZ UT WOS:000281296600016 ER PT J AU Kminek, G Rummel, JD Cockell, CS Atlas, R Barlow, N Beaty, D Boynton, W Carr, M Clifford, S Conley, CA Davila, AF Debus, A Doran, P Hecht, M Heldmann, J Helbert, J Hipkin, V Horneck, G Kieft, TL Klingelhoefer, G Meyer, M Newsom, H Ori, GG Parnell, J Prieur, D Raulin, F Schulze-Makuch, D Spry, JA Stabekis, PE Stackebrandt, E Vago, J Viso, M Voytek, M Wells, L Westall, F AF Kminek, G. Rummel, J. D. Cockell, C. S. Atlas, R. Barlow, N. Beaty, D. Boynton, W. Carr, M. Clifford, S. Conley, C. A. Davila, A. F. Debus, A. Doran, P. Hecht, M. Heldmann, J. Helbert, J. Hipkin, V. Horneck, G. Kieft, T. L. Klingelhoefer, G. Meyer, M. Newsom, H. Ori, G. G. Parnell, J. Prieur, D. Raulin, F. Schulze-Makuch, D. Spry, J. A. Stabekis, P. E. Stackebrandt, E. Vago, J. Viso, M. Voytek, M. Wells, L. Westall, F. TI Report of the COSPAR Mars Special Regions Colloquium SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Special regions; Mars; Planetary protection; Forward contamination; Low temperature; Water activity ID UPPER MARTIAN SURFACE; SOUTH-POLE SNOW; SEA-ICE; GROUND ICE; BACTERIAL-ACTIVITY; WATER-VAPOR; SPACECRAFT SURFACES; HIGH OBLIQUITY; NEAR-SURFACE; LIQUID WATER AB In this paper we present the findings of a COSPAR Mars Special Regions Colloquium held in Rome in 2007. We review and discuss the definition of Mars Special Regions, the physical parameters used to define Mars Special Regions, and physical features on Mars that can be interpreted as Mars Special Regions. We conclude that any region experiencing temperatures > -25 degrees C for a few hours a year and a water activity > 0.5 can potentially allow the replication of terrestrial microorganisms. Physical features on Mars that can be interpreted as meeting these conditions constitute a Mars Special Region. Based on current knowledge of the martian environment and the conservative nature of planetary protection, the following features constitute Mars Special regions: Gullies and bright streaks associated with them, pasted-on terrain, deep subsurface, dark streaks only on a case-by-case basis, others to be determined. The parameter definition and the associated list of physical features should be re-evaluated on a regular basis. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Cockell, C. S.] Open Univ, Milton Keynes MK7 6AA, Bucks, England. [Kminek, G.; Vago, J.] ESA, Estec, NL-2200 Noordwijk, Netherlands. [Rummel, J. D.] E Carolina Univ, Greenville, NC 27858 USA. [Atlas, R.] Univ Louisville, Louiseville, KY 40292 USA. [Barlow, N.] No Arizona Univ, Flagstaff, AZ 86011 USA. [Beaty, D.; Hecht, M.; Spry, J. A.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Boynton, W.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Carr, M.] US Geol Survey, Pacific Sci Ctr, Santa Cruz, CA 95060 USA. [Clifford, S.] Lunar & Planetary Inst, Houston, TX 77058 USA. [Conley, C. A.; Meyer, M.; Stabekis, P. E.; Voytek, M.] NASA Headquarters, Washington, DC 20546 USA. [Davila, A. F.; Heldmann, J.] NASA, Ames Res Ctr, Mountain View, CA 94043 USA. [Debus, A.; Viso, M.] Agence Franaise Espace, CNES, F-31401 Toulouse 9, France. [Doran, P.] Univ Illinois, Chicago, IL 60607 USA. [Helbert, J.] DLR, Inst Planetenforsch, Berlin, Germany. [Hipkin, V.] Canadian Space Agcy, St Hubert, PQ J3Y 8Y9, Canada. [Horneck, G.] DLR, D-51147 Cologne, Germany. [Kieft, T. L.] New Mexico Inst Min & Technol, Socorro, NM 87801 USA. [Klingelhoefer, G.] Johannes Gutenberg Univ Mainz, D-55131 Mainz, Germany. [Newsom, H.] Univ New Mexico, Albuquerque, NM 87131 USA. [Ori, G. G.] Univ Annunzio, IRSPS, I-65127 Pescara, Italy. [Parnell, J.] Univ Aberdeen, Aberdeen AB24 3UE, Scotland. [Prieur, D.] Univ Brest, Brest, France. [Raulin, F.] CNRS, F-94010 Creteil, France. [Raulin, F.] Univ Paris, F-94010 Creteil, France. [Schulze-Makuch, D.] Washington State Univ, Pullman, WA 99164 USA. [Stackebrandt, E.] Deutsch Sammlung Mikroorganism Zellkultur GmbH, D-38124 Braunschweig, Germany. [Wells, L.] Univ Penn, Philadelphia, PA 19014 USA. [Westall, F.] CNRS, F-45100 Orleans, France. RP Cockell, CS (reprint author), Open Univ, Milton Keynes MK7 6AA, Bucks, England. EM c.s.cockell@open.ac.uk RI Davila, Alfonso/A-2198-2013; Atlas, Robert/A-5963-2011; OI Davila, Alfonso/0000-0002-0977-9909; Atlas, Robert/0000-0002-0706-3560; Helbert, Jorn/0000-0001-5346-9505; ORI, Gian Gabriele/0000-0002-6460-1476 NR 114 TC 25 Z9 25 U1 0 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD SEP 15 PY 2010 VL 46 IS 6 BP 811 EP 829 DI 10.1016/j.asr.2010.04.039 PG 19 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 643KZ UT WOS:000281296600017 ER PT J AU Crochet, AP Kabir, MM Francis, MB Paavola, CD AF Crochet, Amanda P. Kabir, Mohiuddin M. Francis, Matthew B. Paavola, Chad D. TI Site-selective dual modification of periplasmic binding proteins for sensing applications SO BIOSENSORS & BIOELECTRONICS LA English DT Article DE Periplasmic binding proteins (PBPs); Glutamine binding protein; Reagentless sensor; Fluorescence resonance energy transfer (FRET); Transamination ID RESONANCE ENERGY-TRANSFER; FLUORESCENT NANOSENSORS; TRANSPORT-SYSTEMS; CELLS; TRANSAMINATION; CONSTRUCTION; BIOSENSOR; RELEASE; SENSORS; FAMILY AB We have developed three sensitive and specific amino acid sensors based on bacterial periplasmic solute binding proteins A site-specific amino-terminal transamination reaction provides a useful complement to cysteine chemistry for the covalent modification of biomolecules in this application. We demonstrate this combination to attach two different chromophores to a single biomolecule in two locations The periplasmic glutamine binding protein from E colt was modified with a pair of dyes suitable for fluorescence resonance energy transfer, and this conjugate exhibited an L-glutamine dependent optical response Two periplasmic binding proteins from the thermophilic organism Thermotoga maritima, for arginine and aliphatic amino acids, were modified and evaluated similarly. All three conjugates manifested signal changes mediated by resonant energy transfer upon binding their respective ligands, with nanomolar dissociation constants and stereochemical specificity This represents a readily generalizable method for construction of reagentless biosensors The double-labeling strategy was also exploited for the surface attachment of a dye-labeled glutamine binding protein via a biotin-streptavidin interaction. Published by Elsevier B.V. C1 [Paavola, Chad D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Crochet, Amanda P.; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Crochet, Amanda P.; Francis, Matthew B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kabir, Mohiuddin M.] SETI Inst, Mountain View, CA 94043 USA. RP Paavola, CD (reprint author), NASA, Ames Res Ctr, Mail Stop 239-15, Moffett Field, CA 94035 USA. FU National Aeronautics and Space Administration [ASTID04-0000-0108, 07-ASTID07-0092] FX This work was supported by National Aeronautics and Space Administration, Astrobiology Science and Technology Instrument Development program grants ASTID04-0000-0108 and 07-ASTID07-0092. NR 32 TC 8 Z9 9 U1 0 U2 6 PU ELSEVIER ADVANCED TECHNOLOGY PI OXFORD PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0956-5663 J9 BIOSENS BIOELECTRON JI Biosens. Bioelectron. PD SEP 15 PY 2010 VL 26 IS 1 BP 55 EP 61 DI 10.1016/j.bios.2010.05.012 PG 7 WC Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical; Electrochemistry; Nanoscience & Nanotechnology SC Biophysics; Biotechnology & Applied Microbiology; Chemistry; Electrochemistry; Science & Technology - Other Topics GA 659IP UT WOS:000282560500009 PM 20541393 ER PT J AU Luck, M Maumenee, N Whited, D Lucotch, J Chilcote, S Lorang, M Goodman, D McDonald, K Kimball, J Stanford, J AF Luck, Matthew Maumenee, Niels Whited, Diane Lucotch, John Chilcote, Samantha Lorang, Mark Goodman, Daniel McDonald, Kyle Kimball, John Stanford, Jack TI Remote sensing analysis of physical complexity of North Pacific Rim rivers to assist wild salmon conservation SO EARTH SURFACE PROCESSES AND LANDFORMS LA English DT Article DE physical complexity; rivers; ranking; geomorphology; salmon ID FALL CHINOOK SALMON; COHO SALMON; SOCKEYE-SALMON; ONCORHYNCHUS-KISUTCH; BRITISH-COLUMBIA; LANDSCAPE CHARACTERISTICS; SPAWNING HABITAT; JUVENILE CHINOOK; CLIMATE; LEVEL AB Salmon populations are highly variable in both space and time. Accurate forecasting of the productivity of salmon stocks makes effective management and conservation of the resource extremely challenging. Furthermore, widespread and consistent data on the productivity of species-specific and total salmon stocks in a river are almost nonexistent. Ranking rivers based on physical complexity derived from remote sensing allows rivers to be objectively compared. Our approach considered rivers with great geomorphic complexity (e.g. having expansive, multichanneled floodplains and/or on-channel lakes) as likely to have greater productivity of salmon than rivers flowing in constrained or canyon-bound channels. Our objective was to develop a database of landscape metrics that could be used to rank the rivers in relation to potential salmon productivity. We then examined the rankings in relation to existing empirical (monitoring) data describing productivity of salmon stocks. To extract the metrics for each river basin we used a digital elevation model and multispectral satellite imagery. We developed procedures to extract channel networks, floodplains, on-channel lakes and other catchment features; variables such as catchment area, channel elevation, main channel length, floodplain area, and density of hydrojunctions (nodes) were measured. We processed 1509 catchments in the North Pacific Rim including the Kamchatka Peninsula in Russia and western North America. Overall, catchments were most physically complex in western Kamchatka and western Alaska, and particularly on the Arctic North Slope of Alaska. We could not directly examine coherence between potential and measured productivity except for a few rivers, but the expected relationship generally held. The resulting database and systematic ranking are objective tools that can be used to address questions about landscape structure and biological productivity at regional to continental extents, and provide a way to begin to efficiently prioritize the allocation of funding and resources towards salmon management and conservation. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Luck, Matthew; Maumenee, Niels; Whited, Diane; Lucotch, John; Chilcote, Samantha; Lorang, Mark; Kimball, John; Stanford, Jack] Univ Montana, Flathead Lake Biol Stn, Polson, MT 59860 USA. [Goodman, Daniel] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA. [McDonald, Kyle] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Stanford, J (reprint author), Univ Montana, Flathead Lake Biol Stn, 32125 Bio Stn Lane Polson, Polson, MT 59860 USA. EM jack.stanford@umontana.edu OI Luck, Matt/0000-0003-0691-6100 NR 51 TC 12 Z9 12 U1 2 U2 17 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0197-9337 J9 EARTH SURF PROC LAND JI Earth Surf. Process. Landf. PD SEP 15 PY 2010 VL 35 IS 11 BP 1330 EP 1343 DI 10.1002/esp.2044 PG 14 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 652VH UT WOS:000282038300007 ER PT J AU Zheng, X Albrecht, B Minnis, P Ayers, K Jonson, HH AF Zheng, Xue Albrecht, Bruce Minnis, Patrick Ayers, Kirk Jonson, Haflidi H. TI Observed aerosol and liquid water path relationships in marine stratocumulus SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CLOUDS AB The stratocumulus-topped marine boundary layer (BL), aerosol, and cloud properties observed on research flights made off the coast of northern Chile in the Southeastern Pacific (20 degrees S, 72 degrees W) during the VAMOS Ocean-Cloud-Atmosphere-Land Study-Regional Experiment (VOCALS-REx) were used to examine the variation of liquid water path (LWP) and cloud condensation nuclei (CCN). Ten flights were made under similar meteorological conditions where the BL structure was well-mixed, clouds were solid, and the conditions at the surface and at the top of the BL were similar. A strong positive correlation between the LWP, which varied from 15 to 73 gm(-2), and the BL CCN, which ranged from 190 to 565 cm(-3), was observed. Analysis of the highest and the lowest CCN concentration cases confirms that the differences in the thermodynamic jumps at the top of the BL and the turbulent fluxes at the surface cannot explain the observed differences in the LWP. Cloud properties from satellite retrievals combined with a back trajectories analysis demonstrated that the LWP differences observed at the time of the aircraft flights are also prevalent during the night-time hours prior to the aircraft observations. These results provide evidence for CCN and LWP relationships that are not fully explained by current hypotheses from numerical modeling. Citation: Zheng, X., B. Albrecht, P. Minnis, K. Ayers, and H. Jonson (2010), Observed aerosol and liquid water path relationships in marine stratocumulus, Geophys. Res. Lett., 37, L17803, doi: 10.1029/2010GL044095. C1 [Zheng, Xue; Albrecht, Bruce] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Div Meteorol & Phys Oceanog, Miami, FL 33149 USA. [Minnis, Patrick; Ayers, Kirk] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Jonson, Haflidi H.] USN, Postgrad Sch, Monterey, CA 93933 USA. RP Zheng, X (reprint author), Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Div Meteorol & Phys Oceanog, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. EM xzheng@rsmas.miami.edu RI Minnis, Patrick/G-1902-2010; Zheng, Xue/F-9988-2016 OI Minnis, Patrick/0000-0002-4733-6148; Zheng, Xue/0000-0002-9372-1776 FU ONR [N000140810465]; Department of Energy [DE-A102-07ER64546] FX We are grateful for the dedicated efforts of several individuals in making the observations from the CIRPAS Twin Otter during VOCALS-REx. Graham Feingold and Patrick Chuang provided key scientific input on the observing strategies employed and interpretation of the initial results. Shaunna Donaher, Dione Rossiter, and Virendra Ghate, provided critical support as airborne scientists. Djamal Khelif kindly provided the high temporal resolution observations for estimating turbulence quantities. Pilots Mike Hubble and Chris McGuire skillfully executed the flight plans and endured the long ferry of the Twin Otter aircraft to Iquique Chile and back. This research was supported by ONR grant N000140810465. Patrick Minnis and Kirk Ayers were supported by the Department of Energy ARM Program through DE-A102-07ER64546. NR 15 TC 5 Z9 5 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 15 PY 2010 VL 37 AR L17803 DI 10.1029/2010GL044095 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 652MA UT WOS:000282009600001 ER PT J AU Saba, VS Friedrichs, MAM Carr, ME Antoine, D Armstrong, RA Asanuma, I Aumont, O Bates, NR Behrenfeld, MJ Bennington, V Bopp, L Bruggeman, J Buitenhuis, ET Church, MJ Ciotti, AM Doney, SC Dowell, M Dunne, J Dutkiewicz, S Gregg, W Hoepffner, N Hyde, KJW Ishizaka, J Kameda, T Karl, DM Lima, I Lomas, MW Marra, J McKinley, GA Melin, F Moore, JK Morel, A O'Reilly, J Salihoglu, B Scardi, M Smyth, TJ Tang, SL Tjiputra, J Uitz, J Vichi, M Waters, K Westberry, TK Yool, A AF Saba, Vincent S. Friedrichs, Marjorie A. M. Carr, Mary-Elena Antoine, David Armstrong, Robert A. Asanuma, Ichio Aumont, Olivier Bates, Nicholas R. Behrenfeld, Michael J. Bennington, Val Bopp, Laurent Bruggeman, Jorn Buitenhuis, Erik T. Church, Matthew J. Ciotti, Aurea M. Doney, Scott C. Dowell, Mark Dunne, John Dutkiewicz, Stephanie Gregg, Watson Hoepffner, Nicolas Hyde, Kimberly J. W. Ishizaka, Joji Kameda, Takahiko Karl, David M. Lima, Ivan Lomas, Michael W. Marra, John McKinley, Galen A. Melin, Frederic Moore, J. Keith Morel, Andre O'Reilly, John Salihoglu, Baris Scardi, Michele Smyth, Tim J. Tang, Shilin Tjiputra, Jerry Uitz, Julia Vichi, Marcello Waters, Kirk Westberry, Toby K. Yool, Andrew TI Challenges of modeling depth-integrated marine primary productivity over multiple decades: A case study at BATS and HOT SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID ATLANTIC SUBTROPICAL GYRE; OCEAN PRIMARY PRODUCTION; NORTH PACIFIC-OCEAN; TIME-SERIES; OCEANOGRAPHIC CONDITIONS; INTERANNUAL VARIABILITY; SATELLITE CHLOROPHYLL; GENERALIZED-MODEL; SKILL ASSESSMENT; SARGASSO SEA AB The performance of 36 models (22 ocean color models and 14 biogeochemical ocean circulation models (BOGCMs)) that estimate depth-integrated marine net primary productivity (NPP) was assessed by comparing their output to in situ C-14 data at the Bermuda Atlantic Time series Study (BATS) and the Hawaii Ocean Time series (HOT) over nearly two decades. Specifically, skill was assessed based on the models' ability to estimate the observed mean, variability, and trends of NPP. At both sites, more than 90% of the models underestimated mean NPP, with the average bias of the BOGCMs being nearly twice that of the ocean color models. However, the difference in overall skill between the best BOGCM and the best ocean color model at each site was not significant. Between 1989 and 2007, in situ NPP at BATS and HOT increased by an average of nearly 2% per year and was positively correlated to the North Pacific Gyre Oscillation index. The majority of ocean color models produced in situ NPP trends that were closer to the observed trends when chlorophyll-alpha was derived from high-performance liquid chromatography (HPLC), rather than fluorometric or SeaWiFS data. However, this was a function of time such that average trend magnitude was more accurately estimated over longer time periods. Among BOGCMs, only two individual models successfully produced an increasing NPP trend (one model at each site). We caution against the use of models to assess multiannual changes in NPP over short time periods. Ocean color model estimates of NPP trends could improve if more high quality HPLC chlorophyll-alpha time series were available. C1 [Antoine, David; Morel, Andre] Univ Paris 06, Lab Oceanog Villefranche, UMR 7093, CNRS, F-06238 Villefranche Sur Mer, France. [Armstrong, Robert A.] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. [Asanuma, Ichio] Tokyo Univ Informat Sci, Chiba 2658501, Japan. [Aumont, Olivier] UPMC, Lab Oceanog Experimentat & Approche Numer, IPSL, IRD,CNRS,Ctr IRD Bretagne, F-29280 Plouzane, France. [Bates, Nicholas R.; Lomas, Michael W.] Bermuda Inst Ocean Sci, St Georges GE01, Bermuda. [Behrenfeld, Michael J.; Westberry, Toby K.] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA. [Bennington, Val; McKinley, Galen A.] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI 53706 USA. [Bopp, Laurent] UVSQ, Lab Sci Climat & Environm, IPSL, CEA,CNRS,CEN Saclay, F-91191 Gif Sur Yvette, France. [Bruggeman, Jorn] Vrije Univ Amsterdam, Dept Theoret Biol, Fac Earth & Life Sci, NL-1081 HV Amsterdam, Netherlands. [Buitenhuis, Erik T.] Univ E Anglia, Lab Global Marine & Atmospher Chem, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England. [Carr, Mary-Elena] Columbia Univ, Columbia Climate Ctr, Earth Inst, New York, NY 10027 USA. [Church, Matthew J.; Karl, David M.] Univ Hawaii Manoa, Dept Oceanog, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA. [Ciotti, Aurea M.] Univ Estadual Paulista, BR-11330900 Sao Paulo, Brazil. [Doney, Scott C.; Lima, Ivan] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA. [Dowell, Mark; Hoepffner, Nicolas; Melin, Frederic] Commiss European Communities, Joint Res Ctr, I-21020 Ispra, Italy. [Dunne, John] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA. [Dutkiewicz, Stephanie] MIT, Cambridge, MA 02139 USA. [Saba, Vincent S.; Friedrichs, Marjorie A. M.] Virginia Inst Marine Sci, Coll William & Mary, Gloucester Point, VA 23062 USA. [Gregg, Watson] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hyde, Kimberly J. W.; O'Reilly, John] NOAA, Natl Marine Fisheries Serv, Narragansett Lab, Narragansett, RI 02882 USA. [Ishizaka, Joji] Nagoya Univ, Hydrospher Atmospher Res Ctr, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [Kameda, Takahiko] Natl Res Inst Far Seas Fisheries, Grp Oceanog, Shizuoka 4248633, Japan. [Marra, John] CUNY Brooklyn Coll, Dept Geol, Brooklyn, NY 11210 USA. [Moore, J. Keith] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. Middle E Tech Univ, Inst Marine Sci, TR-33731 Erdemli Mersin, Turkey. [Scardi, Michele] Univ Roma Tor Vergata, Dept Biol, I-00133 Rome, Italy. [Smyth, Tim J.] Plymouth Marine Lab, Plymouth PL1 3DH, Devon, England. [Tang, Shilin] Fisheries & Oceans Canada, Inst Freshwater, Winnipeg, MB R3T 2N6, Canada. [Tjiputra, Jerry] Univ Bergen, Inst Geophys, N-5007 Bergen, Norway. [Uitz, Julia] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Vichi, Marcello] Ctr Euro Mediterraneo & Cambiamenti Climatici, Ist Nazl Geofis & Vulcanol, I-40127 Bologna, Italy. [Waters, Kirk] NOAA, Coastal Serv Ctr, Charleston, SC 29405 USA. [Yool, Andrew] Natl Oceanog Ctr, Southampton SO14 3ZH, Hants, England. RP Saba, VS (reprint author), Princeton Univ, Atmospher & Ocean Sci Program, 300 Forrestal Rd,Sayre Hall, Princeton, NJ 08544 USA. EM vsaba@princeton.edu RI Doney, Scott/F-9247-2010; Ciotti, Aurea Maria/B-7188-2011; Buitenhuis, Erik/A-7692-2012; Yool, Andrew/B-4799-2012; Dunne, John/F-8086-2012; Westberry, Toby/A-9871-2013; Antoine, David/C-3817-2013; Lima, Ivan/A-6823-2016; Salihoglu, Baris/D-1376-2010; Smyth, Tim/D-2008-2012; Vichi, Marcello/B-8719-2008; OI Doney, Scott/0000-0002-3683-2437; Ciotti, Aurea Maria/0000-0001-7163-8819; Buitenhuis, Erik/0000-0001-6274-5583; Yool, Andrew/0000-0002-9879-2776; Dunne, John/0000-0002-8794-0489; Antoine, David/0000-0002-9082-2395; Lima, Ivan/0000-0001-5345-0652; Salihoglu, Baris/0000-0002-7510-7713; Bruggeman, Jorn/0000-0003-2493-2323; Vichi, Marcello/0000-0002-0686-9634; Friedrichs, Marjorie/0000-0003-2828-7595; Lomas, Michael/0000-0003-1209-3753; Tjiputra, Jerry/0000-0002-4600-2453 FU National Aeronautics and Space Agency [NNG06GA03G] FX This research was supported by a grant from the National Aeronautics and Space Agency Ocean Biology and Biogeochemistry program (NNG06GA03G). We are also grateful for the hard work of the many scientists who helped acquire the BATS and HOT database. We also thank Richard Barber and an anonymous reviewer for helpful comments that improved the quality of this paper. This is Contribution 3083 of the Virginia Institute of Marine Science, College of William and Mary. NR 68 TC 68 Z9 70 U1 1 U2 63 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 EI 1944-9224 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD SEP 15 PY 2010 VL 24 AR GB3020 DI 10.1029/2009GB003655 PG 21 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA 652MG UT WOS:000282010300001 ER PT J AU Balasubramaniam, R Gokoglu, S Hegde, U AF Balasubramaniam, R. Gokoglu, S. Hegde, U. TI The reduction of lunar regolith by carbothermal processing using methane SO INTERNATIONAL JOURNAL OF MINERAL PROCESSING LA English DT Article DE Carbothermal processing; Lunar regolith; Pyrolysis; Kinetics AB The processing of lunar regolith for the production of oxygen is a key component of the In-Situ Resource Utilization plans currently being developed by NASA. In the carbothermal process, a portion of the surface of the regolith in a container is heated by exposure to a heat source so that a small zone of molten regolith is established. A continuous flow of methane is maintained over the molten regolith zone. In this paper, we discuss the development of a chemical conversion model of the carbothermal process to predict the rate of production of carbon monoxide. Our model is based on a mechanism where methane pyrolyzes when it comes in contact with the surface of the hot molten regolith to form solid carbon and hydrogen gas. Carbon is deposited on the surface of the melt, and hydrogen is released into the gas stream above the melt surface. We assume that the deposited carbon mixes in the molten regolith and reacts with metal oxides in a reduction reaction by which gaseous carbon monoxide is liberated. Carbon monoxide bubbles through the melt and is released into the gas stream. It is further processed downstream to ultimately produce oxygen. (C) 2010 Elsevier B.V. All rights reserved. C1 [Balasubramaniam, R.; Hegde, U.] NCSER, Cleveland, OH 44135 USA. [Gokoglu, S.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. RP Balasubramaniam, R (reprint author), NCSER, Cleveland, OH 44135 USA. EM bala@grc.nasa.gov; suleyman.gokoglu@nasa.gov; uday.g.hegde@nasa.gov FU NASA FX The authors would like to thank K. Sacksteder and D. Linne of NASA Glenn Research Center and R. Gustafson and B. White of Orbitec, Madison, Wisconsin, for discussions and comments during the course of the investigation. Support for this work was obtained from the In-Situ Resource Utilization (ISRU) project which is a part of the NASA Exploration Technology Development Program, for which we are grateful. NR 10 TC 5 Z9 5 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-7516 J9 INT J MINER PROCESS JI Int. J. Miner. Process. PD SEP 15 PY 2010 VL 96 IS 1-4 BP 54 EP 61 DI 10.1016/j.minpro.2010.06.001 PG 8 WC Engineering, Chemical; Mineralogy; Mining & Mineral Processing SC Engineering; Mineralogy; Mining & Mineral Processing GA 650VZ UT WOS:000281883200006 ER PT J AU Kindel, BC Schmidt, KS Pilewskie, P Baum, BA Yang, P Platnick, S AF Kindel, Bruce C. Schmidt, K. Sebastian Pilewskie, Peter Baum, Bryan A. Yang, Ping Platnick, Steven TI Observations and modeling of ice cloud shortwave spectral albedo during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4) SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SINGLE-SCATTERING PROPERTIES; SATELLITE RADIANCE MEASUREMENTS; REMOTE-SENSING PROBLEMS; EARTH RADIATION BUDGET; CIRRUS CLOUD; OPTICAL-THICKNESS; MULTIPLE-SCATTERING; PHOTON TRANSPORT; LIGHT-SCATTERING; EFFECTIVE RADIUS AB Ice cloud optical thickness and effective radius have been retrieved from hyperspectral irradiance and discrete spectral radiance measurements for four ice cloud cases during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4) over a range of solar zenith angle (23 degrees-53 degrees) and high (46-90) and low (5-15) optical thicknesses. The retrieved optical thickness and effective radius using measurements at only two wavelengths from the Solar Spectral Flux Radiometer (SSFR) irradiance and the Moderate Resolution Imaging Spectroradiometer Airborne Simulator (MAS) were input to a radiative transfer model using two libraries of ice crystal single-scattering optical properties to reproduce spectral albedo over the spectral range from 400 to 2130 nm. The two commonly used ice single-scattering models were evaluated by examining the residuals between observed spectral and predicted spectral albedo. The SSFR and MAS retrieved optical thickness and effective radius were found to be in close agreement for the low to moderately optically thick clouds with a mean difference of 3.42 in optical thickness (SSFR lower relative to MAS) and 3.79 mu m in effective radius (MAS smaller relative to SSFR). The higher optical thickness case exhibited a larger difference in optical thickness (40.5) but nearly identical results for effective radius. The single-scattering libraries were capable of reproducing the spectral albedo in most cases examined to better than 0.05 for all wavelengths. Systematic differences between the model and measurements increased with increasing optical thickness and approached 0.10 between 400 and 600 nm and selected wavelengths between 1200 and 1300 nm. Differences between radiance and irradiance based retrievals of optical thickness and effective radius error sources in the modeling of ice single-scattering properties are examined. C1 [Kindel, Bruce C.; Pilewskie, Peter] Univ Colorado, Atmospher & Space Phys Lab, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Baum, Bryan A.] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. [Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Platnick, Steven] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Kindel, BC (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Dept Atmospher & Ocean Sci, CB 392, Boulder, CO 80309 USA. EM kindel@lasp.colorado.edu RI Yang, Ping/B-4590-2011; SCHMIDT, KONRAD SEBASTIAN/C-1258-2013; Baum, Bryan/B-7670-2011; Platnick, Steven/J-9982-2014 OI SCHMIDT, KONRAD SEBASTIAN/0000-0003-3899-228X; Baum, Bryan/0000-0002-7193-2767; Platnick, Steven/0000-0003-3964-3567 FU NASA [NNX07AL12G, NNX08AF81G]; SSFR FX Bruce Kindel was supported through a NASA grant (NNX07AL12G). Bryan Baum acknowledges support through a NASA grant (NNX08AF81G). MAS analysis was made possible with support from various elements of the NASA Radiation Sciences Program. The authors wish to thank Warren Gore and Tony Trias (NASA Ames Research Center) for their support of SSFR during TC4, and Tom Arnold and Galina Wind (NASA Goddard Research Center) for their help with MAS data analysis. NR 66 TC 10 Z9 10 U1 2 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 15 PY 2010 VL 115 AR D00J18 DI 10.1029/2009JD013127 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 652MQ UT WOS:000282011500003 ER PT J AU Goldsby, JC AF Goldsby, Jon C. TI Temperature-dependent electrical and micromechanical properties of lanthanum titanate with additions of yttria SO MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS LA English DT Article DE Ceramics; Oxides; Electron states; Ionic conduction; Grain boundary ID LA2TI2O7; BEHAVIOR; CRYSTAL; ALUMINA AB Temperature-dependent elastic properties were determined by establishing continuous flexural vibrations in the material at its lowest resonance frequency of 3 kHz. The imaginary part of the complex impedance plotted as a function of frequency and temperature reveals a thermally activated peak, which decreases in magnitude as the temperature increases. Additions of yttria do not degrade the electromechanical in particularly the elastic and anelastic properties of lanthanum titanate. Y(2)O(3)/La(2)Ti(2)O(7) exhibits extremely low internal friction and hence may be more mechanical fatigue-resistant at low strains. Published by Elsevier B.V. C1 [Goldsby, Jon C.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Goldsby, JC (reprint author), NASA, Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH 44135 USA. EM Jon.C.Goldsby@nasa.gov NR 11 TC 0 Z9 0 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-5107 J9 MATER SCI ENG B-ADV JI Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. PD SEP 15 PY 2010 VL 172 IS 3 BP 248 EP 252 DI 10.1016/j.mseb.2010.05.025 PG 5 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 639PP UT WOS:000280987000007 ER PT J AU Bera, PP Nuevo, M Milam, SN Sandford, SA Lee, TJ AF Bera, Partha P. Nuevo, Michel Milam, Stefanie N. Sandford, Scott A. Lee, Timothy J. TI Mechanism for the abiotic synthesis of uracil via UV-induced oxidation of pyrimidine in pure H2O ices under astrophysical conditions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID POLYCYCLIC AROMATIC-HYDROCARBONS; MIDINFRARED LABORATORY SPECTRA; FOCK PERTURBATION-THEORY; SIDE-GROUP ADDITION; CYTOSINE BASE-PAIR; ULTRAVIOLET-IRRADIATION; MURCHISON METEORITE; PROTON-TRANSFER; SOLID H2O; INTERSTELLAR AB The UV photoirradiation of pyrimidine in pure H2O ices has been explored using second-order Moller-Plesset perturbation theory and density functional theory methods, and compared with experimental results. Mechanisms studied include those starting with neutral pyrimidine or cationic pyrimidine radicals, and reacting with OH radical. The ab initio calculations reveal that the formation of some key species, including the nucleobase uracil, is energetically favored over others. The presence of one or several water molecules is necessary in order to abstract a proton which leads to the final products. Formation of many of the photoproducts in UV-irradiated H2O:pyrimidine = 20:1 ice mixtures was established in a previous experimental study. Among all the products, uracil is predicted by quantum chemical calculations to be the most favored, and has been identified in experimental samples by two independent chromatography techniques. The results of the present study strongly support the scenario in which prebiotic molecules, such as the nucleobase uracil, can be formed under abiotic processes in astrophysically relevant environments, namely in condensed phase on the surface of icy, cold grains before being delivered to the telluric planets, like Earth. (c) 2010 American Institute of Physics. [doi:10.1063/1.3478524] C1 [Bera, Partha P.; Nuevo, Michel; Milam, Stefanie N.; Sandford, Scott A.; Lee, Timothy J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. [Milam, Stefanie N.] SETI Inst, Mountain View, CA 94043 USA. RP Bera, PP (reprint author), NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. EM partha.p.bera@nasa.gov; timothy.j.lee@nasa.gov RI Milam, Stefanie/D-1092-2012; Lee, Timothy/K-2838-2012; Bera, Partha /K-8677-2012 OI Milam, Stefanie/0000-0001-7694-4129; FU NASA [08-APRA08-0050]; Origins of Solar Systems and Astrobiology Programs; Oak Ridge Associated Universities FX P.P.B. and M.N. gratefully acknowledge fellowship awards by the NASA Postdoctoral Program administered by Oak Ridge Associated Universities. T.J.L. gratefully acknowledges support from NASA (Grant No. 08-APRA08-0050) and S.A.S. gratefully acknowledges support from NASA grants from the Origins of Solar Systems and Astrobiology Programs. NR 45 TC 14 Z9 14 U1 0 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 14 PY 2010 VL 133 IS 10 AR 104303 DI 10.1063/1.3478524 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 658FH UT WOS:000282475400017 PM 20849168 ER PT J AU Matteini, L Landi, S Velli, M Hellinger, P AF Matteini, Lorenzo Landi, Simone Velli, Marco Hellinger, Petr TI Kinetics of parametric instabilities of Alfven waves: Evolution of ion distribution functions SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SOLAR-WIND; MODULATIONAL INSTABILITY; FINITE-AMPLITUDE; NONLINEAR EVOLUTION; DECAY INSTABILITY; MAGNETIC-FIELD; PLASMA; SIMULATIONS; PARALLEL; FLUCTUATIONS AB Using numerical simulations in a hybrid regime, we studied the evolution of large-amplitude Alfven waves subject to modulational and decay instabilities, including the effects of ion kinetics. We considered both a monochromatic and incoherent spectrum of waves, different wave polarizations and amplitudes, and different plasma regimes, ranging from beta < 1 to beta > 1. We found in all cases that ion dynamics affects the instability evolution and saturation; as a feedback, wave-particle interactions provide a nonlinear trapping of resonant particles that importantly change the properties of the ion velocity distribution functions. In particular, we observed a proton acceleration along the magnetic field and in some cases the formation of a parallel velocity beam traveling faster than the rest of the distribution. For the range of parameters used in our simulations, the fundamental ingredient in generating an ion beam is observed to be the parallel electric field carried by the density fluctuations driven by the ion-acoustic modes generated by the parametric instabilities. C1 [Matteini, Lorenzo] LESIA, Observ Paris, F-92195 Meudon, France. [Landi, Simone] Univ Florence, Dipartimento Astron & Sci Spazio, I-50125 Florence, Italy. [Velli, Marco] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hellinger, Petr] Acad Sci Czech Republic, Astron Inst, Prague, Czech Republic. RP Matteini, L (reprint author), LESIA, Observ Paris, 5 Pl Jules Janssen, F-92195 Meudon, France. EM matteini@arcetri.astro.it RI Hellinger, Petr/F-5267-2014; Landi, Simone/G-7282-2015 OI Hellinger, Petr/0000-0002-5608-0834; Landi, Simone/0000-0002-1322-8712 FU National Aeronautics and Space Administration; Italian Space Agency [ASI I/015/07/0] FX The research described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. It was also supported by the Italian Space Agency contract ASI I/015/07/0 "Solar System Exploration." We thank Luca Del Zanna and Andre Mangeney for useful discussions during the preparation of the manuscript. NR 48 TC 40 Z9 40 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP 14 PY 2010 VL 115 AR A09106 DI 10.1029/2009JA014987 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 652OL UT WOS:000282016900002 ER PT J AU Qian, LY Burns, AG Chamberlin, PC Solomon, SC AF Qian, Liying Burns, Alan G. Chamberlin, Phillip C. Solomon, Stanley C. TI Flare location on the solar disk: Modeling the thermosphere and ionosphere response SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID GENERAL-CIRCULATION MODEL; TOTAL ELECTRON-CONTENT; ELECTRODYNAMICS; ATMOSPHERE AB Solar flare enhancements to the soft X-ray (XUV) and extreme ultraviolet (EUV) spectral irradiance depend on the location of the flare on the solar disk. Most emission lines in the XUV region (similar to 0.1 to similar to 25 nm) are optically thin and are weakly dependent on the location of the flare, but in the EUV region (similar to 25 to similar to 120 nm), many important lines and continua are optically thick, so enhancements are relatively smaller for flares located near the solar limb, due to absorption by the solar atmosphere. The flare irradiance spectral model (FISM) was used to illustrate these location effects, assuming two X17 flares that are identical except that one occurs near disk center and the other near the limb. FISM spectra of these two flares were used as solar input to the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) to investigate the ionosphere/thermosphere (I/T) response. Model simulations showed that in the E region ionosphere, where XUV dominates ionization, flare location does not affect I/T response. However, flare-driven changes in the F region ionosphere, total electron content (TEC), and neutral density in the upper thermosphere, are 2-3 times stronger for a disk-center flare than for a limb flare, due to the importance of EUV enhancement. Flare location did not affect the timing of the ionospheric response, but the thermospheric response was similar to 20 min faster for the disk-center flare. Model simulations of I/T responses to an X17 flare on 28 October 2003 were consistent with measurements of TEC and neutral density changes. C1 [Qian, Liying; Burns, Alan G.; Solomon, Stanley C.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80301 USA. [Chamberlin, Phillip C.] NASA Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD 20771 USA. RP Qian, LY (reprint author), Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80301 USA. EM lqian@ucar.edu RI Chamberlin, Phillip/C-9531-2012; Solomon, Stanley/J-4847-2012; Qian, Liying/D-9236-2013; Burns, Alan/L-1547-2013 OI Chamberlin, Phillip/0000-0003-4372-7405; Solomon, Stanley/0000-0002-5291-3034; Qian, Liying/0000-0003-2430-1388; FU NASA [NNX07AC61G, NNX08AQ31G, NNX09AJ60G]; Center for Integrated Space Weather Modeling (CISM); National Science Foundation FX The authors thank Anthea Coster for helping with the GPS TEC data. This research was supported by NASA grants NNX07AC61G, NNX08AQ31G, and NNX09AJ60G to the National Center for Atmospheric Research (NCAR), and by the Center for Integrated Space Weather Modeling (CISM). NCAR and CISM are supported by the National Science Foundation. NR 34 TC 30 Z9 30 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP 14 PY 2010 VL 115 AR A09311 DI 10.1029/2009JA015225 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 652OL UT WOS:000282016900004 ER PT J AU Gribakin, GF Young, JA Surko, CM AF Gribakin, G. F. Young, J. A. Surko, C. M. TI Positron-molecule interactions: Resonant attachment, annihilation, and bound states SO REVIEWS OF MODERN PHYSICS LA English DT Article ID SCHWINGER MULTICHANNEL METHOD; LOW-ENERGY POSITRONS; VIBRATIONAL FESHBACH RESONANCES; KOHN VARIATIONAL METHOD; GALACTIC-CENTER REGION; QUANTUM MONTE-CARLO; GAMMA-RAY SPECTRA; NOBLE-GAS ATOMS; TRAP-BASED BEAM; CONFIGURATION-INTERACTION AB This article presents an overview of current understanding of the interaction of low-energy positrons with molecules with emphasis on resonances, positron attachment, and annihilation. Measurements of annihilation rates resolved as a function of positron energy reveal the presence of vibrational Feshbach resonances (VFRs) for many polyatomic molecules. These resonances lead to strong enhancement of the annihilation rates. They also provide evidence that positrons bind to many molecular species. A quantitative theory of VFR-mediated attachment to small molecules is presented. It is tested successfully for selected molecules (e.g., methyl halides and methanol) where all modes couple to the positron continuum. Combination and overtone resonances are observed and their role is elucidated. Molecules that do not bind positrons and hence do not exhibit such resonances are discussed. In larger molecules, annihilation rates from VFR far exceed those explicable on the basis of single-mode resonances. These enhancements increase rapidly with the number of vibrational degrees of freedom, approximately as the fourth power of the number of atoms in the molecule. While the details are as yet unclear, intramolecular vibrational energy redistribution (IVR) to states that do not couple directly to the positron continuum appears to be responsible for these enhanced annihilation rates. In connection with IVR, experimental evidence indicates that inelastic positron escape channels are relatively rare. Downshifts of the VFR from the vibrational mode energies, obtained by measuring annihilate rates as a function of incident positron energy, have provided binding energies for 30 species. Their dependence upon molecular parameters and their relationship to positron-atom and positron-molecule binding-energy calculations are discussed. Feshbach resonances and positron binding to molecules are compared with the analogous electron-molecule (negative-ion) cases. The relationship of VFR-mediated annihilation to other phenomena such as Doppler broadening of the gamma-ray annihilation spectra, annihilation of thermalized positrons in gases, and annihilation-induced fragmentation of molecules is discussed. Possible areas for future theoretical and experimental investigation are also discussed. C1 [Gribakin, G. F.] Queens Univ Belfast, Dept Appl Math & Theoret Phys, Belfast BT7 1NN, Antrim, North Ireland. [Young, J. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Surko, C. M.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Gribakin, GF (reprint author), Queens Univ Belfast, Dept Appl Math & Theoret Phys, Belfast BT7 1NN, Antrim, North Ireland. EM g.gribakin@qub.ac.uk; jyoung@physics.ucsd.edu; csurko@ucsd.edu FU NSF [PHY 07-55809] FX We are indebted to many colleagues for their contributions to the topics reviewed here. In particular, we acknowledge the collaboration of L. D. Barnes, J. R. Danielson, L. Dunlop, P. Gill, R. G. Greaves, D. Green, K. Iwata, C. Kurz, C. M. R. Lee, M. Leventhal, J. Ludlow, J. Marler, T. J. Murphy, A. Passner, and J. P. Sullivan. We also gladly acknowledge helpful conversations with M. Allan, M. Bromley, S. Buckman, M. Charlton, P. Coleman, I. Fabrikant, F. Gianturco, H. Hotop, and M. Lima. G. F. G. is grateful to V. Flambaum for arousing his interest in the problem of low-energy positron interaction with atoms and molecules and for much of what he learned during seven years at UNSW (Sydney, Australia). The experimental work at UCSD was supported by the NSF, Grant No. PHY 07-55809. The work at UCSD benefited greatly from the technical assistance of E. A. Jerzewski. NR 243 TC 108 Z9 108 U1 2 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD SEP 14 PY 2010 VL 82 IS 3 BP 2557 EP 2607 DI 10.1103/RevModPhys.82.2557 PG 51 WC Physics, Multidisciplinary SC Physics GA 650RN UT WOS:000281869500001 ER PT J AU Mishchenko, MI AF Mishchenko, Michael I. TI Poynting-Stokes tensor and radiative transfer in discrete random media: The microphysical paradigm SO OPTICS EXPRESS LA English DT Article ID MULTIPLE-SCATTERING; TRANSFER EQUATION; PARTICLES AB This paper solves the long-standing problem of establishing the fundamental physical link between the radiative transfer theory and macroscopic electromagnetics in the case of elastic scattering by a sparse discrete random medium. The radiative transfer equation (RTE) is derived directly from the macroscopic Maxwell equations by computing theoretically the appropriately defined so-called Poynting-Stokes tensor carrying information on both the direction, magnitude, and polarization characteristics of local electromagnetic energy flow. Our derivation from first principles shows that to compute the local Poynting vector averaged over a sufficiently long period of time, one can solve the RTE for the direction-dependent specific intensity column vector and then integrate the direction-weighted specific intensity over all directions. Furthermore, we demonstrate that the specific intensity (or specific intensity column vector) can be measured with a well-collimated radiometer (photopolarimeter), which provides the ultimate physical justification for the use of such instruments in radiation-budget and particle-characterization applications. However, the specific intensity cannot be interpreted in phenomenological terms as signifying the amount of electromagnetic energy transported in a given direction per unit area normal to this direction per unit time per unit solid angle. Also, in the case of a densely packed scattering medium the relation of the measurement with a well-collimated radiometer to the time-averaged local Poynting vector remains uncertain, and the theoretical modeling of this measurement is likely to require a much more complicated approach than solving an RTE. (C) 2010 Optical Society of America C1 NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Mishchenko, MI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM mmishchenko@giss.nasa.gov RI Mishchenko, Michael/D-4426-2012 FU NASA FX The author thanks Brian Cairns, Joop Hovenier, Nikolai Khlebtsov, Daniel Mackowski, Pinar Menguc, and Victor Tishkovets for numerous illuminating discussions. This research was supported by the NASA Radiation Sciences Program managed by Hal Maring and by the NASA Glory Mission project. NR 44 TC 14 Z9 14 U1 1 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 13 PY 2010 VL 18 IS 19 BP 19770 EP 19791 DI 10.1364/OE.18.019770 PG 22 WC Optics SC Optics GA 693ZI UT WOS:000285263500020 PM 20940872 ER PT J AU Santamaria, L Ohme, F Ajith, P Brugmann, B Dorband, N Hannam, M Husa, S Mosta, P Pollney, D Reisswig, C Robinson, EL Seiler, J Krishnan, B AF Santamaria, L. Ohme, F. Ajith, P. Bruegmann, B. Dorband, N. Hannam, M. Husa, S. Moesta, P. Pollney, D. Reisswig, C. Robinson, E. L. Seiler, J. Krishnan, B. TI Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries SO PHYSICAL REVIEW D LA English DT Article ID INSPIRALING COMPACT BINARIES; GRAVITATIONAL-RADIATION; SPIN; COALESCENCE; EQUATIONS; ORDER; FIELD AB We present a new phenomenological gravitational waveform model for the inspiral and coalescence of nonprecessing spinning black hole binaries. Our approach is based on a frequency-domain matching of post-Newtonian inspiral waveforms with numerical relativity based binary black hole coalescence waveforms. We quantify the various possible sources of systematic errors that arise in matching post-Newtonian and numerical relativity waveforms, and we use a matching criteria based on minimizing these errors; we find that the dominant source of errors are those in the post-Newtonian waveforms near the merger. An analytical formula for the dominant mode of the gravitational radiation of nonprecessing black hole binaries is presented that captures the phenomenology of the hybrid waveforms. Its implementation in the current searches for gravitational waves should allow cross-checks of other inspiral-merger-ringdown waveform families and improve the reach of gravitational-wave searches. C1 [Santamaria, L.; Ohme, F.; Dorband, N.; Robinson, E. L.; Krishnan, B.] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Golm, Germany. [Ajith, P.] CALTECH, LIGO Lab, Pasadena, CA 91125 USA. [Bruegmann, B.] Univ Jena, Theoret Phys Inst, D-07743 Jena, Germany. [Hannam, M.] Univ Vienna, Fac Phys, A-1090 Vienna, Austria. [Husa, S.; Pollney, D.] Univ Illes Balears, Dept Fis, E-07122 Palma De Mallorca, Spain. [Seiler, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Santamaria, L (reprint author), Albert Einstein Inst, Max Planck Inst Gravitat Phys, Muhlenberg 1, D-14476 Golm, Germany. RI Santamaria, Lucia/A-7269-2012; OI Seiler, Jennifer/0000-0003-2855-3945; Husa, Sascha/0000-0002-0445-1971; Santamaria, Lucia/0000-0002-5986-0449; Reisswig, Christian/0000-0001-6855-9351 FU DAAD [A/06/12630]; FWF Lise-Meitner at the University of Vienna [M1178-N16]; Spanish Ministry of Science [D/07/13385, FPA-2007-60220, CSD-2007-00042]; Bundesministerium fur Bildung und Forschung, Germany FX We thank Doreen Muller for carrying out some of the BAH simulations, and Stas Babak, Vitor Cardoso, Steve Fairhurst, Ian Hinder, Doreen Muller, Dirk Putzfeld, Bangalore Sathyaprakash and Bernard Schutz for useful comments and discussions. L. S. has been partially supported by DAAD Grant No. A/06/12630. M. H. was supported by FWF Lise-Meitner Project No. M1178-N16 at the University of Vienna. S. H. was supported by DAAD Grant No. D/07/13385 and Grant No. FPA-2007-60220 from the Spanish Ministry of Science. D. P. has been supported by Grant No. CSD-2007-00042 of the Spanish Ministry of Science. D. P. and C. R. received support from the Bundesministerium fur Bildung und Forschung, Germany. BAH simulations were performed at computer centers LRZ Munich, ICHEC Dublin, VSC Vienna, CESGA Santiago the Compostela and at MareNostrum at Barcelona Supercomputing Center-Centro Nacional de Supercomputacion (Spanish National Supercomputing Center). This work was supported in part by the DFG Grant No. SFB/Transregio 7 "Gravitational-wave astronomy'' and by the DLR (Deutsches Zentrum fur Luft- und Raumfahrttechnik). NR 113 TC 151 Z9 151 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 13 PY 2010 VL 82 IS 6 AR 064016 DI 10.1103/PhysRevD.82.064016 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 649RS UT WOS:000281791300004 ER PT J AU Cohen, J Foster, J Barlow, M Saito, K Jones, J AF Cohen, Judah Foster, James Barlow, Mathew Saito, Kazuyuki Jones, Justin TI Winter 2009-2010: A case study of an extreme Arctic Oscillation event SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SNOW COVER; VARIABILITY; ANOMALIES AB Winter 2009-2010 made headlines for extreme cold and snow in most of the major population centers of the industrialized countries of the Northern Hemisphere (NH). The major teleconnection patterns of the Northern Hemisphere, El Nino/Southern Oscillation (ENSO) and the Arctic Oscillation (AO) were of moderate to strong amplitude, making both potentially key players during the winter of 2009-2010. The dominant NH winter circulation pattern can be shown to have originated with a two-way stratosphere-troposphere interaction forced by Eurasian land surface and lower tropospheric atmospheric conditions during autumn. This cycle occurred twice in relatively quick succession contributing to the record low values of the AO observed. Using a skillful winter temperature forecast, it is shown that the AO explained a greater variance of the observed temperature pattern across the extratropical landmasses of the NH than did ENSO. Citation: Cohen, J., J. Foster, M. Barlow, K. Saito, and J. Jones (2010), Winter 2009-2010: A case study of an extreme Arctic Oscillation event, Geophys. Res. Lett., 37, L17707, doi:10.1029/2010GL044256. C1 [Cohen, Judah; Jones, Justin] Atmospher & Environm Res Inc, Lexington, MA 02421 USA. [Barlow, Mathew] Univ Massachusetts, Lowell, MA 01854 USA. [Foster, James] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Saito, Kazuyuki] Univ Alaska, Int Arctic Res Ctr, Fairbanks, AK 99775 USA. [Saito, Kazuyuki] Japan Agcy Marine Earth Sci & Technol, Res Inst Global Change, Kanagawa, Japan. RP Cohen, J (reprint author), Atmospher & Environm Res Inc, 131 Hartwell Ave, Lexington, MA 02421 USA. EM jcohen@aer.com FU National Science Foundation [ARC-0909459, ARC-0909457, 0909272] FX JC is supported by the National Science Foundation grants ARC-0909459 and ARC-0909457. Barlow was supported by NSF 0909272. NR 17 TC 90 Z9 93 U1 0 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 11 PY 2010 VL 37 AR L17707 DI 10.1029/2010GL044256 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 649GB UT WOS:000281755000004 ER PT J AU Jackson, B Miller, N Barnes, R Raymond, SN Fortney, JJ Greenberg, R AF Jackson, Brian Miller, Neil Barnes, Rory Raymond, Sean N. Fortney, Jonathan J. Greenberg, Richard TI The roles of tidal evolution and evaporative mass loss in the origin of CoRoT-7 b SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE celestial mechanics; planets and satellites: atmospheres; planets and satellites: individual: CoRoT-7 b ID SOLAR GIANT PLANETS; HOT-JUPITERS; EXTRASOLAR PLANETS; SUPER-EARTH; TERRESTRIAL PLANETS; HYDRODYNAMIC ESCAPE; ATMOSPHERIC LOSS; GJ 1214B; EXOPLANETS; HYDROGEN AB CoRoT-7 b is the first confirmed rocky exoplanet, but, with an orbital semimajor axis of 0.0172 au, its origins may be unlike any rocky planet in our Solar system. In this study, we consider the roles of tidal evolution and evaporative mass loss in CoRoT-7 b's history, which together have modified the planet's mass and orbit. If CoRoT-7 b has always been a rocky body, evaporation may have driven off almost half its original mass, but the mass loss may depend sensitively on the extent of tidal decay of its orbit. As tides caused CoRoT-7 b's orbit to decay, they brought the planet closer to its host star, thereby enhancing the mass loss rate. Such a large mass loss also suggests the possibility that CoRoT-7 b began as a gas giant planet and had its original atmosphere completely evaporated. In this case, we find that CoRoT-7 b's original mass probably did not exceed 200 Earth masses (about two-third of a Jupiter mass). Tides raised on the host star by the planet may have significantly reduced the orbital semimajor axis, perhaps causing the planet to migrate through mean-motion resonances with the other planet in the system, CoRoT-7 c. The coupling between tidal evolution and mass loss may be important not only for CoRoT-7 b but also for other close-in exoplanets, and future studies of mass loss and orbital evolution may provide insight into the origin and fate of close-in planets, both rocky and gaseous. C1 [Jackson, Brian] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Miller, Neil; Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Barnes, Rory] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Raymond, Sean N.] Univ Bordeaux, Observ Aquitain Sci Univers, F-33271 Floirac, France. [Raymond, Sean N.] CNRS, Lab Astrophys Bordeaux, UMR 5804, F-75700 Paris, France. [Greenberg, Richard] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. RP Jackson, B (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM brian.k.jackson@nasa.gov OI Fortney, Jonathan/0000-0002-9843-4354 FU NASA [NNH05ZDA001C, NNG05GH65G]; NASA Astrobiology Institute's Virtual Planetary Laboratory lead team FX We thank Doug Hamilton, Dan Fabrycky, Maki Hattori, Diana Valencia, Marc Kuchner and John Debes for useful conversations and suggestions. We also thank our referee for a helpful and thorough review. BJ acknowledges support from the NASA Post-doctoral Program. RB acknowledges funding from NASA Astrobiology Institute's Virtual Planetary Laboratory lead team, supported by NASA under Cooperative Agreement No. NNH05ZDA001C. RG acknowledges support from NASA's Planetary Geology and Geophysics program, grant no. NNG05GH65G. NR 66 TC 46 Z9 46 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 11 PY 2010 VL 407 IS 2 BP 910 EP 922 DI 10.1111/j.1365-2966.2010.17012.x PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646OG UT WOS:000281551300014 ER PT J AU Zhekov, SA Park, S McCray, R Racusin, JL Burrows, DN AF Zhekov, Svetozar A. Park, Sangwook McCray, Richard Racusin, Judith L. Burrows, David N. TI Evolution of the Chandra CCD spectra of SNR 1987A: probing the reflected-shock picture SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE supernovae: individual (SNR 1987A); ISM: supernova remnants; X-rays: ISM ID SUPERNOVA REMNANT 1987A; X-RAY-EMISSION; SPACE-TELESCOPE OBSERVATIONS; LARGE-MAGELLANIC-CLOUD; TRIPLE-RING NEBULA; CIRCUMSTELLAR RING; RADIO REMNANT; LINE EMISSION; REVERSE SHOCK; HOT-SPOTS AB We continue to explore the validity of the reflected-shock structure (RSS) picture in SNR 1987A that was proposed in our previous analyses of the X-ray emission from this object. We used an improved version of our RSS model in a global analysis of 14 CCD spectra from the monitoring program with Chandra. In the framework of the RSS picture, we are able to match both the expansion velocity curve deduced from the analysis of the X-ray images and light curve. Using a simplified analysis, we also show that the X-rays and the non-thermal radio emission may originate from the same shock structure (the blast wave). We believe that using the RSS model in the analysis of grating data from the Chandra monitoring program of SNR 1987A that cover a long enough time interval will allow us to build a more realistic physical picture and model of SNR 1987A. C1 [Zhekov, Svetozar A.; McCray, Richard] Univ Colorado, JILA, Boulder, CO 80309 USA. [Park, Sangwook; Burrows, David N.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Racusin, Judith L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Zhekov, SA (reprint author), Univ Colorado, JILA, Boulder, CO 80309 USA. EM zhekovs@colorado.edu; park@astro.psu.edu; richard.mccray@colorado.edu; judith.racusin@nasa.gov; burrows@astro.psu.edu RI Racusin, Judith/D-2935-2012 FU Bulgarian National Science Fund [DO-02-85] FX SAZ acknowledges financial support from Bulgarian National Science Fund grant DO-02-85. The authors thank an anonymous referee for valuable comments and criticism. NR 78 TC 12 Z9 12 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 11 PY 2010 VL 407 IS 2 BP 1157 EP 1169 DI 10.1111/j.1365-2966.2010.16967.x PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 646OG UT WOS:000281551300034 ER PT J AU Blacksberg, J Rossman, GR Gleckler, A AF Blacksberg, Jordana Rossman, George R. Gleckler, Anthony TI Time-resolved Raman spectroscopy for in situ planetary mineralogy SO APPLIED OPTICS LA English DT Article ID FT-RAMAN; FLUORESCENCE BANDS; MERIDIANI-PLANUM; MARS; VENUS; SPECTROMETER; EXCITATION; SPECTRA; PHOBOS; WATER AB Planetary mineralogy can be revealed through a variety of remote sensing and in situ investigations that precede any plans for eventual sample return. We briefly review those techniques and focus on the capabilities for on-surface in situ examination of Mars, Venus, the Moon, asteroids, and other bodies. Over the past decade, Raman spectroscopy has continued to develop as a prime candidate for the next generation of in situ planetary instruments, as it provides definitive structural and compositional information of minerals in their natural geological context. Traditional continuous-wave Raman spectroscopy using a green laser suffers from fluorescence interference, which can be large (sometimes saturating the detector), particularly in altered minerals, which are of the greatest geophysical interest. Taking advantage of the fact that fluorescence occurs at a later time than the instantaneous Raman signal, we have developed a time-resolved Raman spectrometer that uses a streak camera and pulsed miniature microchip laser to provide picosecond time resolution. Our ability to observe the complete time evolution of Raman and fluorescence spectra in minerals makes this technique ideal for exploration of diverse planetary environments, some of which are expected to contain strong, if not overwhelming, fluorescence signatures. We discuss performance capability and present time-resolved pulsed Raman spectra collected from several highly fluorescent and Mars-relevant minerals. In particular, we have found that conventional Raman spectra from fine grained clays, sulfates, and phosphates exhibited large fluorescent signatures, but high quality spectra could be obtained using our time-resolved approach. (C) 2010 Optical Society of America C1 [Blacksberg, Jordana] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rossman, George R.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Gleckler, Anthony] GEOST Inc, Tucson, AZ 85741 USA. RP Blacksberg, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM jordana.blacksberg@jpl.nasa.gov OI Rossman, George/0000-0002-4571-6884 FU National Aeronautics and Space Administration (NASA) FX We acknowledge invaluable discussions on Mars 2018 with Sabrina Feldman at the Jet Propulsion Laboratory (JPL). The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Continuous-wave Raman measurements were performed at the Mineral Spectroscopy Laboratory in the Department of Geological and Planetary Sciences at the California Institute of Technology, and time-resolved experiments at the JPL. NR 39 TC 16 Z9 16 U1 3 U2 27 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD SEP 10 PY 2010 VL 49 IS 26 BP 4951 EP 4962 DI 10.1364/AO.49.004951 PG 12 WC Optics SC Optics GA 648PN UT WOS:000281706500014 PM 20830184 ER PT J AU Bulbul, GE Hasler, N Bonamente, M Joy, M AF Bulbul, G. Esra Hasler, Nicole Bonamente, Massimiliano Joy, Marshall TI AN ANALYTIC MODEL OF THE PHYSICAL PROPERTIES OF GALAXY CLUSTERS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: individual (Abell 1835, Abell 2204); X-rays: galaxies: clusters ID X-RAY MEASUREMENTS; ZELDOVICH EFFECT DATA; DARK ENERGY; CHANDRA OBSERVATIONS; INTRACLUSTER MEDIUM; PROFILES; GAS; CONSTRAINTS; TEMPERATURE; MASS AB We introduce an analytic model of the diffuse intergalactic medium in galaxy clusters based on a polytropic equation of state for the gas in hydrostatic equilibrium with the cluster gravitational potential. This model is directly applicable to the analysis of X-ray and Sunyaev-Zel'dovich effect observations from the cluster core to the virial radius, with five global parameters and three parameters describing the cluster core. We validate the model using Chandra X-ray observations of two polytropic clusters, MS 1137.5+6625 and CL J1226.9+3332, and two cool core clusters, 1835 and A2204. We show that the model accurately describes the spatially resolved spectroscopic and imaging data, including the cluster core region where significant cooling of the plasma is observed. C1 [Bulbul, G. Esra; Hasler, Nicole; Bonamente, Massimiliano] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. [Bonamente, Massimiliano; Joy, Marshall] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. RP Bulbul, GE (reprint author), Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. NR 39 TC 21 Z9 21 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1038 EP 1044 DI 10.1088/0004-637X/720/2/1038 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300007 ER PT J AU Andersson, BG Potter, SB AF Andersson, B-G Potter, S. B. TI OBSERVATIONS OF ENHANCED RADIATIVE GRAIN ALIGNMENT NEAR HD 97300 SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; ISM: individual objects (Chamaeleon I) ID I DARK CLOUD; INTERSTELLAR LINEAR-POLARIZATION; NEARBY MOLECULAR CLOUDS; STAR-FORMING REGION; CHAMELEON-I; INFRARED POLARIMETRY; WAVELENGTH DEPENDENCE; MAGNETIC-FIELDS; DUST; EXTINCTION AB We have obtained optical multi-band polarimetry toward sightlines through the Chamaeleon I cloud, particularly in the vicinity of the young B9/A0 star HD 97300. We show, in agreement with earlier studies, that the radiation field impinging on the cloud in the projected vicinity of the star is dominated by the flux from the star, as evidenced by a local enhancement in the grain heating. By comparing the differential grain heating with the differential change in the location of the peak of the polarization curve, we show that the grain alignment is enhanced by the increase in the radiation field. We also find a weak, but measurable, variation in the grain alignment with the relative angle between the radiation field anisotropy and the magnetic field direction. Such an anisotropy in the grain alignment is consistent with a unique prediction of modern radiative alignment torque theory and provides direct support for radiatively driven grain alignment. C1 [Andersson, B-G] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Potter, S. B.] S African Astron Observ, ZA-7935 Cape Town, South Africa. RP Andersson, BG (reprint author), NASA, Ames Res Ctr, SOFIA Sci Ctr, MS N211-3, Moffett Field, CA 94035 USA. EM bg@sofia.usra.edu; sbp@saao.ac.za OI Andersson, B-G/0000-0001-6717-0686 NR 59 TC 20 Z9 20 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1045 EP 1054 DI 10.1088/0004-637X/720/2/1045 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300008 ER PT J AU Gould, A Dong, S Gaudi, BS Udalski, A Bond, IA Greenhill, J Street, RA Dominik, M Sumi, T Szymanski, MK Han, C Allen, W Bolt, G Bos, M Christie, GW Depoy, DL Drummond, J Eastman, JD Gal-Yam, A Higgins, D Janczak, J Kaspi, S Kozlowski, S Lee, CU Mallia, F Maury, A Maoz, D McCormick, J Monard, LAG Moorhouse, D Morgan, N Natusch, T Ofek, EO Park, BG Pogge, RW Polishook, D Santallo, R Shporer, A Spector, O Thornley, G Yee, JC Kubiak, M Pietrzynski, G Soszynski, I Szewczyk, O Wyrzykowski, E Ulaczyk, K Poleski, R Abe, F Bennett, DP Botzler, CS Douchin, D Freeman, M Fukui, A Furusawa, K Hearnshaw, JB Hosaka, S Itow, Y Kamiya, K Kilmartin, PM Korpela, A Lin, W Ling, CH Makita, S Masuda, K Matsubara, Y Miyake, N Muraki, Y Nagaya, M Nishimoto, K Ohnishi, K Okumura, T Perrott, YC Philpott, L Rattenbury, N Saito, T Sako, T Sullivan, DJ Sweatman, WL Tristram, PJ von Seggern, E Yock, PCM Albrow, M Batista, V Beaulieu, JP Brillant, S Caldwell, J Calitz, JJ Cassan, A Cole, A Cook, K Coutures, C Dieters, S Prester, DD Donatowicz, J Fouque, P Hill, K Hoffman, M Jablonski, F Kane, SR Kains, N Kubas, D Marquette, JB Martin, R Martioli, E Meintjes, P Menzies, J Pedretti, E Pollard, K Sahu, KC Vinter, C Wambsganss, J Watson, R Williams, A Zub, M Allan, A Bode, MF Bramich, DM Burgdorf, MJ Clay, N Fraser, S Hawkins, E Horne, K Kerins, E Lister, TA Mottram, C Saunders, ES Snodgrass, C Steele, IA Tsapras, Y Jorgensen, UG Anguita, T Bozza, V Novati, SC Harpsoe, K Hinse, TC Hundertmark, M Kjaergaard, P Liebig, C Mancini, L Masi, G Mathiasen, M Rahvar, S Ricci, D Scarpetta, G Southworth, J Surdej, J Thone, CC AF Gould, A. Dong, Subo Gaudi, B. S. Udalski, A. Bond, I. A. Greenhill, J. Street, R. A. Dominik, M. Sumi, T. Szymanski, M. K. Han, C. Allen, W. Bolt, G. Bos, M. Christie, G. W. DePoy, D. L. Drummond, J. Eastman, J. D. Gal-Yam, A. Higgins, D. Janczak, J. Kaspi, S. Kozlowski, S. Lee, C. -U. Mallia, F. Maury, A. Maoz, D. McCormick, J. Monard, L. A. G. Moorhouse, D. Morgan, N. Natusch, T. Ofek, E. O. Park, B. -G. Pogge, R. W. Polishook, D. Santallo, R. Shporer, A. Spector, O. Thornley, G. Yee, J. C. Kubiak, M. Pietrzynski, G. Soszynski, I. Szewczyk, O. Wyrzykowski, E. Ulaczyk, K. Poleski, R. Abe, F. Bennett, D. P. Botzler, C. S. Douchin, D. Freeman, M. Fukui, A. Furusawa, K. Hearnshaw, J. B. Hosaka, S. Itow, Y. Kamiya, K. Kilmartin, P. M. Korpela, A. Lin, W. Ling, C. H. Makita, S. Masuda, K. Matsubara, Y. Miyake, N. Muraki, Y. Nagaya, M. Nishimoto, K. Ohnishi, K. Okumura, T. Perrott, Y. C. Philpott, L. Rattenbury, N. Saito, To. Sako, T. Sullivan, D. J. Sweatman, W. L. Tristram, P. J. von Seggern, E. Yock, P. C. M. Albrow, M. Batista, V. Beaulieu, J. P. Brillant, S. Caldwell, J. Calitz, J. J. Cassan, A. Cole, A. Cook, K. Coutures, C. Dieters, S. Prester, D. Dominis Donatowicz, J. Fouque, P. Hill, K. Hoffman, M. Jablonski, F. Kane, S. R. Kains, N. Kubas, D. Marquette, J. -B. Martin, R. Martioli, E. Meintjes, P. Menzies, J. Pedretti, E. Pollard, K. Sahu, K. C. Vinter, C. Wambsganss, J. Watson, R. Williams, A. Zub, M. Allan, A. Bode, M. F. Bramich, D. M. Burgdorf, M. J. Clay, N. Fraser, S. Hawkins, E. Horne, K. Kerins, E. Lister, T. A. Mottram, C. Saunders, E. S. Snodgrass, C. Steele, I. A. Tsapras, Y. Jorgensen, U. G. Anguita, T. Bozza, V. Novati, S. Calchi Harpsoe, K. Hinse, T. C. Hundertmark, M. Kjaergaard, P. Liebig, C. Mancini, L. Masi, G. Mathiasen, M. Rahvar, S. Ricci, D. Scarpetta, G. Southworth, J. Surdej, J. Thone, C. C. CA FUN Collaboration OGLE Collaboration MOA Collaboration PLANET Collaboration RoboNet Collaboration MiNDSTEp Consortium TI FREQUENCY OF SOLAR-LIKE SYSTEMS AND OF ICE AND GAS GIANTS BEYOND THE SNOW LINE FROM HIGH-MAGNIFICATION MICROLENSING EVENTS IN 2005-2008 SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational lensing: micro; planetary systems ID GRAVITATIONAL LENSING EXPERIMENT; EXTRASOLAR PLANETS; GALACTIC BULGE; MASS PLANET; EARTH-MASS; JUPITER/SATURN ANALOG; COMPANIONS; SEARCH; CONSTRAINTS; STELLAR AB We present the first measurement of the planet frequency beyond the "snow line," for the planet-to-star mass-ratio interval -4.5 < log q < -2, corresponding to the range of ice giants to gas giants. We find d(2)N(pl)/d log q d log s = (0.36 +/- 0.15) dex(-2) at the mean mass ratio q = 5 x 10(-4) with no discernible deviation from a flat (Opik's law) distribution in log-projected separation s. The determination is based on a sample of six planets detected from intensive follow-up observations of high-magnification (A > 200) microlensing events during 2005-2008. The sampled host stars have a typical mass M(host) similar to 0.5M(circle dot), and detection is sensitive to planets over a range of planet-star-projected separations (s(max)(-1)R(E), s(max)R(E)), where R(E) similar to 3.5 AU(M(host)/M(circle dot))(1/2) is the Einstein radius and s(max) similar to (q/10(-4.3))(1/3). This corresponds to deprojected separations roughly three times the " snow line." We show that the observations of these events have the properties of a "controlled experiment," which is what permits measurement of absolute planet frequency. High-magnification events are rare, but the survey-plus-follow-up high-magnification channel is very efficient: half of all high-mag events were successfully monitored and half of these yielded planet detections. The extremely high sensitivity of high-mag events leads to a policy of monitoring them as intensively as possible, independent of whether they show evidence of planets. This is what allows us to construct an unbiased sample. The planet frequency derived from microlensing is a factor 8 larger than the one derived from Doppler studies at factor similar to 25 smaller star-planet separations (i.e., periods 2-2000 days). However, this difference is basically consistent with the gradient derived from Doppler studies (when extrapolated well beyond the separations from which it is measured). This suggests a universal separation distribution across 2 dex in planet-star separation, 2 dex in mass ratio, and 0.3 dex in host mass. Finally, if all planetary systems were "analogs" of the solar system, our sample would have yielded 18.2 planets (11.4 "Jupiters," 6.4 "Saturns," 0.3 "Uranuses," 0.2 "Neptunes") including 6.1 systems with two or more planet detections. This compares to six planets including one twoplanet system in the actual sample, implying a first estimate of 1/6 for the frequency of solar-like systems. C1 [Gould, A.; Gaudi, B. S.; Eastman, J. D.; Janczak, J.; Kozlowski, S.; Morgan, N.; Pogge, R. W.; Yee, J. C.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Dong, Subo] Inst Adv Study, Princeton, NJ 08540 USA. [Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Ulaczyk, K.; Poleski, R.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Bond, I. A.; Lin, W.; Ling, C. H.; Sweatman, W. L.] Massey Univ, Inst Informat & Math Sci, N Shore Mail Ctr, Auckland, New Zealand. [Greenhill, J.; Cole, A.; Hill, K.; Watson, R.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. [Street, R. A.; Hawkins, E.; Lister, T. A.; Saunders, E. S.; Tsapras, Y.] Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Street, R. A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Dominik, M.; Kains, N.; Pedretti, E.; Horne, K.; Liebig, C.] Univ St Andrews, SUPA Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Sumi, T.; Abe, F.; Fukui, A.; Furusawa, K.; Hosaka, S.; Itow, Y.; Kamiya, K.; Makita, S.; Masuda, K.; Matsubara, Y.; Miyake, N.; Nagaya, M.; Nishimoto, K.; Okumura, T.; Sako, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Han, C.] Chungbuk Natl Univ, Inst Basic Sci Res, Dept Phys, Chonju 361763, South Korea. [Allen, W.] Vintage Lane Observ, Blenheim, New Zealand. [Bolt, G.] Craigie Observ, Perth, WA, Australia. [Bos, M.] Molehill Astron Observ, Auckland, New Zealand. [Christie, G. W.] Auckland Observ, Auckland, New Zealand. [DePoy, D. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX USA. [Drummond, J.] Possum Observ, Patutahi, New Zealand. [Gal-Yam, A.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Higgins, D.] Hunters Hill Observ, Canberra, ACT, Australia. [Kaspi, S.; Maoz, D.; Polishook, D.; Shporer, A.; Spector, O.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Kaspi, S.; Maoz, D.; Polishook, D.; Shporer, A.; Spector, O.] Tel Aviv Univ, Wise Observ, IL-69978 Tel Aviv, Israel. [Kaspi, S.] Dept Phys, IL-32000 Haifa, Israel. [Lee, C. -U.; Park, B. -G.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Mallia, F.; Maury, A.] Campo Catino Austral Observ, San Pedro, Chile. [McCormick, J.] Ctr Backyard Astrophys, Farm Cove Observ, Auckland, New Zealand. [Monard, L. A. G.] Ctr Backyard Astrophys, Bronberg Observ, Pretoria, South Africa. [Moorhouse, D.; Thornley, G.] Kumeu Observ, Kumeu, New Zealand. [Natusch, T.] AUT Univ, Auckland, New Zealand. [Santallo, R.] So Stars Observ, Tahiti, Fr Polynesia. [Pietrzynski, G.; Szewczyk, O.] Univ Concepcion, Dept Fis, Concepcion, Chile. [Wyrzykowski, E.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Bennett, D. P.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Botzler, C. S.; Douchin, D.; Freeman, M.; Perrott, Y. C.; Philpott, L.; Rattenbury, N.; von Seggern, E.; Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland, New Zealand. [Hearnshaw, J. B.; Albrow, M.; Pollard, K.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Kilmartin, P. M.; Tristram, P. J.] Mt John Observ, Lake Tekapo 8780, New Zealand. [Korpela, A.; Sullivan, D. J.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand. [Muraki, Y.] Konan Univ, Dept Phys, Kobe, Hyogo 6588501, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Saito, To.] Tokyo Metropolitan Coll Ind Technol, Tokyo 1168523, Japan. [Batista, V.; Beaulieu, J. P.; Cassan, A.; Dieters, S.; Marquette, J. -B.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Brillant, S.; Kubas, D.; Snodgrass, C.] European So Observ, Santiago 19, Chile. [Caldwell, J.] McDonald Observ, Ft Davis, TX 79734 USA. [Calitz, J. J.; Hoffman, M.; Meintjes, P.] Univ Orange Free State, Dept Phys, Fac Nat & Agr Sci, ZA-9300 Bloemfontein, South Africa. [Cook, K.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [Coutures, C.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Prester, D. Dominis] Univ Rijeka, Dept Phys, Omladinska 51000, Rijeka, Croatia. [Donatowicz, J.] Vienna Univ Technol, A-1040 Vienna, Austria. [Fouque, P.] Univ Toulouse, CNRS, LATT, Toulouse, France. [Jablonski, F.; Martioli, E.] Inst Nacl Pesquisas Espaciais, Sao Jose Dos Campos, SP, Brazil. [Kane, S. R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Martin, R.; Williams, A.] Perth Observ, Perth, WA 6076, Australia. [Menzies, J.] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Sahu, K. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Vinter, C.; Jorgensen, U. G.; Harpsoe, K.; Hinse, T. C.; Kjaergaard, P.; Mathiasen, M.; Thone, C. C.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Wambsganss, J.; Zub, M.; Anguita, T.; Liebig, C.] Univ Heidelberg, Zent Astron, Astronom Rechen Inst, D-69120 Heidelberg, Germany. [Zub, M.] Univ Zielona Gora, Inst Astron, PL-66265 Zielona Gora, Poland. [Allan, A.; Saunders, E. S.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Bode, M. F.; Clay, N.; Fraser, S.; Mottram, C.; Steele, I. A.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool CH41 1LD, Merseyside, England. [Bramich, D. M.] European So Observ, D-85748 Garching, Germany. [Burgdorf, M. J.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Burgdorf, M. J.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Kerins, E.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Snodgrass, C.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Tsapras, Y.] Univ London, Sch Math Sci, Astron Unit, London E1 4NS, England. [Jorgensen, U. G.] Univ Copenhagen, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Anguita, T.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago, Chile. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] Univ Salerno, Dipartimento Fis E R Caianiello, I-84085 Fisciano, SA, Italy. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] Ist Nazl Fis Nucl, Gruppo Collegato Salerno, Sez Napoli, Milan, Italy. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] IIASS, I-84019 Vietri Sul Mare, SA, Italy. [Hinse, T. C.] Armagh Observ, Armagh BT61 9DG, North Ireland. [Hundertmark, M.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Mancini, L.] Univ Sannio, Dipartimento Ingn, I-82100 Benevento, Italy. [Masi, G.] Bellatrix Astron Observ, I-03023 Ceccano, FR, Italy. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran 111559161, Iran. [Ricci, D.; Surdej, J.] Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Southworth, J.] Univ Keele, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Thone, C. C.] INAF, Osservatorio Astron Brera, I-23806 Merate, LC, Italy. EM gould@astronomy.ohio-state.edu; dong@ias.edu; gaudi@astronomy.ohio-state.edu; udalski@astrouw.edu.pl; i.a.bond@massey.ac.nz; John.Greenhill@utas.edu.au; md35@st-andrews.ac.uk; sumi@stelab.nagoya-u.ac.jp; msz@astrouw.edu; cheongho@astroph.chungbuk.ac.kr; whallen@xtra.co.nz; gbolt@iinet.net.au; molehill@ihug.co.nz; gwchristie@christie.org.nz; depoy@physics.tamu.edu; john_drummond@xtra.co.nz; jdeast@astronomy.ohio-state.edu; avishay.gal-yam@weizmann.ac.il; dhi67540@bigpond.net.au; shai@wise.tau.ac.il; simkoz@astronomy.ohio-state.edu; leecu@kasi.re.kr; francomallia@campocatinobservatory.org; alain@spaceobs.com; dani@wise.tau.ac.il; farmcoveobs@xtra.co; lagmonar@nmisa.org; acrux@orcon.net.nz; nick.morgan@alum.mit.edu; tim.natusch@aut.ac.nz; eran@astro.caltech.edu; bgpark@kasi.re.kr; pogge@astronomy.ohio-state.edu; david@wise.tau.ac.il; obs930@southernstars-observatory.org; shporer@wise.tau.ac.il; odedspec@wise.tau.ac; guy.thornley@gmail.com; jyee@astronomy.ohio-state.edu; mk@astrouw.edu.pl; pietrzyn@astrouw.edu.pl; soszynsk@astrouw.edu.pl; szewczyk@astro-udec.cl; wyrzykow@ast.cam.ac.uk; kulaczyk@astrouw.edu.pl; rpoleski@astrouw.edu.pl; abe@stelab.nagoya-u.ac.jp; bennett@nd.edu; c.botzler@auckland.ac.nz; afukui@stelab.nagoya-u.ac.jp; furusawa@stelab.nagoya-u.ac.jp; itow@stelab.nagoya-u.ac.jp; kkamiya@stelab.nagoya-u.ac.jp; a.korpela@niwa.co.nz; w.lin@massey.ac.nz; c.h.ling@massey.ac.nz; kmasuda@stelab.nagoya-u.ac.jp; ymatsu@stelab.nagoya-u.ac.jp; nmiyake@stelab.nagoya-u.ac.jp; nmiyake@stelab.nagya-u.ac.jp; mnagaya@stelab.nagoya-u.ac.jp; okumurat@stelab.nagoya-u.ac.jp; yper006@aucklanduni.ac.nz; sako@stelab.nagoya-u.ac.jp; denis.sullivan@vuw.ac.nz; w.sweatman@massey.ac.nz; p.yock@auckland.ac.nz; beaulieu@iap.fr; sbrillan@eso.org; caldwell@astro.as.utexas.edu; HoffmaMJ.SCI@mail.uovs.ac.za; Andrew.Cole@utas.edu.au; kcook@llnl.gov; coutures@iap.fr; donatowicz@tuwien.ac.at; pfouque@ast.obs-mip.fr; skane@ipac.caltech.edu; nk87@st-andrews.ac.uk; dkubas@eso.org; marquett@iap.fr; rmartin@physics.uwa.edu.au; ep41@st-andrews.ac.uk; andrew@physics.uwa.edu.au; kdh1@st-andrews.ac.uk; Eamonn.Kerins@manchester.ac.uk RI Gaudi, Bernard/I-7732-2012; Dong, Subo/J-7319-2012; Kane, Stephen/B-4798-2013; Greenhill, John/C-8367-2013; Kozlowski, Szymon/G-4799-2013; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; Williams, Andrew/K-2931-2013; Hundertmark, Markus/C-6190-2015; Rahvar, Sohrab/A-9350-2008; OI Cole, Andrew/0000-0003-0303-3855; Eastman, Jason/0000-0003-3773-5142; Thone, Christina/0000-0002-7978-7648; Ricci, Davide/0000-0002-9790-0552; Snodgrass, Colin/0000-0001-9328-2905; Dominik, Martin/0000-0002-3202-0343; Kozlowski, Szymon/0000-0003-4084-880X; Williams, Andrew/0000-0001-9080-0105; Hundertmark, Markus/0000-0003-0961-5231; Rahvar, Sohrab/0000-0002-7084-5725; Philpott, Lydia/0000-0002-5286-8528 FU NSF [AST 0757888, AST-0708890]; NASA [1277721]; Polish MNiSW [N20303032/4275]; Marsden Fund of New Zealand; JSPS; MEXT of Japan; PPARC (Particle Physics and Astronomy Research Council); STFC (Science and Technology Facilities Council); National Research Foundation of Korea [2009-0081561]; EU; Minerva Foundation, Benoziyo Center for Astrophysics; Weizmann Institute; Technion; Israel-Niedersachsen collaboration program; [JSPS18749004]; [JSPS20740104]; [MEXT19015005] FX Work by A. G. was supported in part by NSF grant AST 0757888 and in part by NASA grant 1277721 issued by JPL/Caltech. Work by S. D. was performed under contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program. This work was supported in part by an allocation of computing time from the Ohio Supercomputer Center. The OGLE project is partially supported by the Polish MNiSW grant N20303032/4275 to AU. The MOA collaboration was supported by the Marsden Fund of New Zealand. The MOA collaboration and a part of authors are supported by the Grant-in-Aid for Scientific Research, JSPS Research fellowships and the Global COE Program "Quest for Fundamental Principles in the Universe" from JSPS and MEXT of Japan. T. S. acknowledges support from grants JSPS18749004, JSPS20740104, and MEXT19015005. The RoboNet project acknowledges support from PPARC (Particle Physics and Astronomy Research Council) and STFC (Science and Technology Facilities Council). C. H. was supported by Creative Research Initiative Program (2009-0081561) of National Research Foundation of Korea. AGY's activity is supported by a Marie Curie IRG grant from the EU, and by the Minerva Foundation, Benoziyo Center for Astrophysics, a research grant from Peter and Patricia Gruber Awards, and the William Z. and Eda Bess Novick New Scientists Fund at the Weizmann Institute. D. P. B. was supported by grants AST-0708890 from the NSF and NNX07AL71G from NASA. Work by S. K. was supported at the Technion by the Kitzman Fellowship and by a grant from the Israel-Niedersachsen collaboration program. Mt Canopus observatory is financially supported by Dr. David Warren. NR 62 TC 152 Z9 152 U1 2 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1073 EP 1089 DI 10.1088/0004-637X/720/2/1073 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300011 ER PT J AU Beccari, G Spezzi, L De Marchi, G Paresce, F Young, E Andersen, M Panagia, N Balick, B Bond, H Calzetti, D Carollo, CM Disney, MJ Dopita, MA Frogel, JA Hall, DNB Holtzman, JA Kimble, RA McCarthy, PJ O'Connell, RW Saha, A Silk, JI Trauger, JT Walker, AR Whitmore, BC Windhorst, RA AF Beccari, Giacomo Spezzi, Loredana De Marchi, Guido Paresce, Francesco Young, Erick Andersen, Morten Panagia, Nino Balick, Bruce Bond, Howard Calzetti, Daniela Carollo, C. Marcella Disney, Michael J. Dopita, Michael A. Frogel, Jay A. Hall, Donald N. B. Holtzman, Jon A. Kimble, Randy A. McCarthy, Patrick J. O'Connell, Robert W. Saha, Abhijit Silk, Joseph I. Trauger, John T. Walker, Alistair R. Whitmore, Bradley C. Windhorst, Rogier A. TI PROGRESSIVE STAR FORMATION IN THE YOUNG GALACTIC SUPER STAR CLUSTER NGC 3603 SO ASTROPHYSICAL JOURNAL LA English DT Article DE open clusters and associations: individual (NGC 3603); stars: pre-main sequence ID INITIAL MASS FUNCTION; NEAREST STARBURST CLUSTER; MAIN-SEQUENCE STARS; H II REGIONS; GLOBULAR-CLUSTERS; MAGELLANIC-CLOUD; STELLAR CONTENT; NGC-3603; EVOLUTION; ACCRETION AB Early Release Science observations of the cluster NGC 3603 with the WFC3 on the refurbished Hubble Space Telescope allow us to study its recent star formation history. Our analysis focuses on stars with H alpha excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with H alpha excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate. C1 [Beccari, Giacomo; Spezzi, Loredana; De Marchi, Guido; Andersen, Morten] European Space Agcy, Dept Space Sci, NL-2200 AG Noordwijk, Netherlands. [Paresce, Francesco] INAF Ist Astrofis Spaziale & Fis Cosm, I-40129 Bologna, Italy. [Young, Erick] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Panagia, Nino; Bond, Howard; Whitmore, Bradley C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Panagia, Nino] Osserv Astrofis Catania, INAF CT, I-95123 Catania, Italy. [Balick, Bruce] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Calzetti, Daniela] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Carollo, C. Marcella] ETH, Dept Phys, CH-8093 Zurich, Switzerland. [Disney, Michael J.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Dopita, Michael A.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Frogel, Jay A.] Assoc Univ Res Astron, Washington, DC 20005 USA. [Hall, Donald N. B.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Holtzman, Jon A.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Kimble, Randy A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCarthy, Patrick J.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [O'Connell, Robert W.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Saha, Abhijit] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Silk, Joseph I.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Trauger, John T.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Walker, Alistair R.] Cerro Tololo Interamer Observ, La Serena, Chile. [Windhorst, Rogier A.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. RP Beccari, G (reprint author), European Space Agcy, Dept Space Sci, Keplerlaan 1, NL-2200 AG Noordwijk, Netherlands. RI Kimble, Randy/D-5317-2012; Dopita, Michael/P-5413-2014; OI Dopita, Michael/0000-0003-0922-4986; silk, joe/0000-0002-1566-8148 FU Space Telescope Science Institute FX We are indebted to an anonymous referee for valuable comments and suggestions that have helped us to improve the presentation of our work. We thank Vera Kozhurina-Platais for providing FORTRAN codes for WFC3 geometric distortion corrections and Max Mutchler for producing the drizzled images shown in Figures 1 and 7. This paper is based on Early Release Science observations made by the WFC3 Scientific Oversight Committee. We are grateful to the Director of the Space Telescope Science Institute for awarding Director's Discretionary time for this program. Finally, we are deeply indebted to the brave astronauts of STS-125 for rejuvenating HST. NR 50 TC 46 Z9 46 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1108 EP 1117 DI 10.1088/0004-637X/720/2/1108 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300014 ER PT J AU Thejappa, G MacDowall, RJ AF Thejappa, G. MacDowall, R. J. TI LOCALIZATION OF A TYPE III RADIO BURST OBSERVED BY THE STEREO SPACECRAFT SO ASTROPHYSICAL JOURNAL LA English DT Article DE solar wind; Sun: flares; Sun: radio radiation ID SOLAR CORONA; EMISSION; DIRECTIVITY; OCCULTATION; REFLECTION; MISSION; DENSITY; WIND; SUN AB Ray tracing calculations show that (1) emissions from a localized source escape as direct and reflected waves along different paths, (2) the reflected waves experience higher attenuation and group delay because they travel longer path lengths in regions of reduced refractive index, and (3) widely separated spacecraft "A" and "B" can detect the direct as well as reflected emissions escaping along different directions. It is proposed that the source of a radio burst observed by twin spacecraft "A" and "B" can be localized if at a given frequency the emission at one of them is identified as the direct emission and is identified at the other as the reflected emission by comparing the observed time delays Delta T, as well as intensity ratios I(B)/I(A) with the corresponding values of the direct and reflected emissions obtained for a given coronal model. A type III event observed by the STEREO spacecraft "A" and "B" shows that its characteristics are consistent with direct and reflected emissions by being less intense and delayed at "A" in comparison to that at "B." By applying the proposed technique to this event, the location of its source is found to lie between the turning point of the ray and the harmonic layer corresponding to f(pe) = f/2, where f and f(pe) are the frequency of the emission and the electron plasma frequency, respectively. The comparisons of the widths of the fundamental and harmonic emission cones with the angular separation of spacecraft "A" and "B" indicate that the mode of the observed emission is probably the harmonic. C1 [Thejappa, G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [MacDowall, R. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Thejappa, G (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM thejappa@astro.umd.edu; Robert.MacDowall@nasa.gov RI MacDowall, Robert/D-2773-2012 FU NASA [NNX08AO02G, NNX09AB19G] FX The research of T.G. is supported by the NASA Grants NNX08AO02G and NNX09AB19G. NR 32 TC 6 Z9 6 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1395 EP 1404 DI 10.1088/0004-637X/720/2/1395 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300040 ER PT J AU Lamb, DA DeForest, CE Hagenaar, HJ Parnell, CE Welsch, BT AF Lamb, D. A. DeForest, C. E. Hagenaar, H. J. Parnell, C. E. Welsch, B. T. TI SOLAR MAGNETIC TRACKING. III. APPARENT UNIPOLAR FLUX EMERGENCE IN HIGH-RESOLUTION OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: granulation; Sun: photosphere; Sun: surface magnetism ID OPTICAL TELESCOPE; QUIET-SUN; FIELD; PATTERNS; MISSION; REGIONS AB Understanding the behavior of weak magnetic fields near the detection limit of current instrumentation is important for determining the flux budget of the solar photosphere at small spatial scales. Using 0 ''.3-resolution magnetograms from the Solar Optical Telescope's Narrowband Filter Imager (NFI) on the Hinode spacecraft, we confirm that the previously reported apparent unipolar magnetic flux emergence seen in intermediate-resolution magnetograms is indeed the coalescence of previously existing flux. We demonstrate that similar but smaller events seen in NFI magnetograms are also likely to correspond to the coalescence of previously existing weak fields. The uncoalesced flux, detectable only in the ensemble average of hundreds of these events, accounts for 50% of the total flux within 3 Mm of the detected features. The spatial scale at which apparent unipolar emergence can be directly observed as coalescence remains unknown. The polarity of the coalescing flux is more balanced than would be expected given the imbalance of the data set, however without further study we cannot speculate whether this implies that the flux in the apparent unipolar emergence events is produced by a granulation-scale dynamo or is recycled from existing field. C1 [Lamb, D. A.] Catholic Univ Amer, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [DeForest, C. E.] SW Res Inst, Boulder, CO 80302 USA. [Hagenaar, H. J.] Org ADBS, Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. [Parnell, C. E.] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland. [Welsch, B. T.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Lamb, DA (reprint author), Catholic Univ Amer, NASA, Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA. EM dlamb@spd.aas.org OI Lamb, Derek/0000-0002-6061-6443 FU NASA [NX08AJ06G] FX The authors thank T. Tarbell for discussions regarding the NFI calibration and help in selecting suitable data sets. This work was supported by NASA grant NX08AJ06G (SHP-GI program). The authors thank the SOHO-MDI and Hinode teams for making their data publicly available. SOHO is a project of international collaboration between ESA and NASA. Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in co-operation with ESA and NSC (Norway). NR 22 TC 26 Z9 27 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1405 EP 1416 DI 10.1088/0004-637X/720/2/1405 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300041 ER PT J AU Brosius, JW Holman, GD AF Brosius, Jeffrey W. Holman, Gordon D. TI EARLY CHROMOSPHERIC RESPONSE DURING A SOLAR MICROFLARE OBSERVED WITH SOHO's CDS AND RHESSI SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: activity; Sun: corona; Sun: flares; Sun: transition region; Sun: UV radiation; Sun: X-rays, gamma rays ID CORONAL DIAGNOSTIC SPECTROMETER; LOOP RADIATIVE HYDRODYNAMICS; HIGH TIME RESOLUTION; BRAGG CRYSTAL SPECTROMETER; X-RAY SPECTROSCOPY; EXTREME-ULTRAVIOLET; IMPULSIVE PHASE; CA-XIX; FLARE; EVAPORATION AB We observed a solar microflare with RHESSI and SOHO's Coronal Diagnostic Spectrometer (CDS) on 2009 July 5. With CDS we obtained rapid cadence (7 s) stare spectra within a narrow field of view toward the center of AR 11024. The spectra contain emission lines from ions that cover a wide range of temperature, including He I (<0.025 MK), O V (0.25 MK), Si XII (2 MK), and Fe XIX (8 MK). The start of a precursor burst of He I and O V line emission preceded the steady increase of Fe XIX line emission by about 1 minute and the emergence of 3-12 keV X-ray emission by about 4 minutes. Thus, the onset of the microflare was observed in upper chromospheric (He I) and transition region (O V) line emission before it was detected in high-temperature flare plasma emission. Redshifted O V emission during the precursor suggests explosive chromospheric evaporation, but no corresponding blueshifts were found with either Fe XIX (which was very weak) or Si XII. Similarly, in subsequent microflare brightenings the O V and He I intensities increased (between 49 s and almost 2 minutes) before emissions from the hot flare plasma. Although these time differences likely indicate heating by a nonthermal particle beam, the RHESSI spectra provide no additional evidence for such a beam. In intervals lasting up to about 3 minutes during several bursts, the He I and O V emission line profiles showed secondary, highly blueshifted (similar to-200 km s(-1)) components; during intervals lasting nearly 1 minute the velocities of the primary and secondary components were oppositely directed. Combined with no corresponding blueshifts in either Fe XIX or Si XII, this indicates that explosive chromospheric evaporation occurred predominantly at either comparatively cool temperatures (<2 MK) or within a hot temperature range to which our observations were not sensitive (e.g., between 2 and 8 MK). C1 [Brosius, Jeffrey W.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Catholic Univ Amer, Greenbelt, MD 20771 USA. RP Brosius, JW (reprint author), NASA, Goddard Space Flight Ctr, Solar Phys Lab, Catholic Univ Amer, Code 671, Greenbelt, MD 20771 USA. EM Jeffrey.W.Brosius@nasa.gov; Gordon.D.Holman@nasa.gov RI Holman, Gordon/C-9548-2012 FU NASA [NNX07AI09G]; RHESSI Project FX J.W.B. acknowledges NASA support through SR&T grant NNX07AI09G. G.D.H. acknowledges partial support from SR&T grant NNX07AI09G and the RHESSI Project. We thank the referee for comments that helped to improve the manuscript. NR 56 TC 15 Z9 15 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1472 EP 1482 DI 10.1088/0004-637X/720/2/1472 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300045 ER PT J AU Kann, DA Klose, S Zhang, B Malesani, D Nakar, E Pozanenko, A Wilson, AC Butler, NR Jakobsson, P Schulze, S Andreev, M Antonelli, LA Bikmaev, IF Biryukov, V Bottcher, M Burenin, RA Ceron, JMC Castro-Tirado, AJ Chincarini, G Cobb, BE Covino, S D'Avanzo, P D'Elia, V Della Valle, M Postigo, AD Efimov, Y Ferrero, P Fugazza, D Fynbo, JPU Galfalk, M Grundahl, F Gorosabel, J Gupta, S Guziy, S Hafizov, B Hjorth, J Holhjem, K Ibrahimov, M Im, M Israel, GL Jelinek, M Jensen, BL Karimov, R Khamitov, IM Kiziloglu, U Klunko, E Kubanek, P Kutyrev, AS Laursen, P Levan, AJ Mannucci, F Martin, CM Mescheryakov, A Mirabal, N Norris, JP Ovaldsen, JE Paraficz, D Pavlenko, E Piranomonte, S Rossi, A Rumyantsev, V Salinas, R Sergeev, A Sharapov, D Sollerman, J Stecklum, B Stella, L Tagliaferri, G Tanvir, NR Telting, J Testa, V Updike, AC Volnova, A Watson, D Wiersema, K Xu, D AF Kann, D. A. Klose, S. Zhang, B. Malesani, D. Nakar, E. Pozanenko, A. Wilson, A. C. Butler, N. R. Jakobsson, P. Schulze, S. Andreev, M. Antonelli, L. A. Bikmaev, I. F. Biryukov, V. Boettcher, M. Burenin, R. A. Castro Ceron, J. M. Castro-Tirado, A. J. Chincarini, G. Cobb, B. E. Covino, S. D'Avanzo, P. D'Elia, V. Della Valle, M. Postigo, A. de Ugarte Efimov, Yu. Ferrero, P. Fugazza, D. Fynbo, J. P. U. Galfalk, M. Grundahl, F. Gorosabel, J. Gupta, S. Guziy, S. Hafizov, B. Hjorth, J. Holhjem, K. Ibrahimov, M. Im, M. Israel, G. L. Jelinek, M. Jensen, B. L. Karimov, R. Khamitov, I. M. Kiziloglu, Ue Klunko, E. Kubanek, P. Kutyrev, A. S. Laursen, P. Levan, A. J. Mannucci, F. Martin, C. M. Mescheryakov, A. Mirabal, N. Norris, J. P. Ovaldsen, J. -E. Paraficz, D. Pavlenko, E. Piranomonte, S. Rossi, A. Rumyantsev, V. Salinas, R. Sergeev, A. Sharapov, D. Sollerman, J. Stecklum, B. Stella, L. Tagliaferri, G. Tanvir, N. R. Telting, J. Testa, V. Updike, A. C. Volnova, A. Watson, D. Wiersema, K. Xu, D. TI THE AFTERGLOWS OF SWIFT-ERA GAMMA-RAY BURSTS. I. COMPARING PRE-SWIFT AND SWIFT-ERA LONG/SOFT (TYPE II) GRB OPTICAL AFTERGLOWS SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; gamma-ray burst: general ID HIGH-RESOLUTION SPECTROSCOPY; COSMIC CHEMICAL EVOLUTION; BAND SPECTRAL EVOLUTION; FOLLOW-UP OBSERVATIONS; STAR-FORMATION RATE; HIGH-REDSHIFT GRBS; EARLY X-RAY; HOST-GALAXY; LIGHT CURVES; MG-II AB We have gathered optical photometry data from the literature on a large sample of Swift-era gamma-ray burst (GRB) afterglows including GRBs up to 2009 September, for a total of 76 GRBs, and present an additional three pre-Swift GRBs not included in an earlier sample. Furthermore, we publish 840 additional new photometry data points on a total of 42 GRB afterglows, including large data sets for GRBs 050319, 050408, 050802, 050820A, 050922C, 060418, 080413A, and 080810. We analyzed the light curves of all GRBs in the sample and derived spectral energy distributions for the sample with the best data quality, allowing us to estimate the host-galaxy extinction. We transformed the afterglow light curves into an extinction-corrected z = 1 system and compared their luminosities with a sample of pre-Swift afterglows. The results of a former study, which showed that GRB afterglows clustered and exhibited a bimodal distribution in luminosity space, are weakened by the larger sample. We found that the luminosity distribution of the two afterglow samples (Swift-era and pre-Swift) is very similar, and that a subsample for which we were not able to estimate the extinction, which is fainter than the main sample, can be explained by assuming a moderate amount of line-of-sight host extinction. We derived bolometric isotropic energies for all GRBs in our sample, and found only a tentative correlation between the prompt energy release and the optical afterglow luminosity at 1 day after the GRB in the z = 1 system. A comparative study of the optical luminosities of GRB afterglows with echelle spectra (which show a high number of foreground absorbing systems) and those without, reveals no indication that the former are statistically significantly more luminous. Furthermore, we propose the existence of an upper ceiling on afterglow luminosities and study the luminosity distribution at early times, which was not accessible before the advent of the Swift satellite. Most GRBs feature afterglows that are dominated by the forward shock from early times on. Finally, we present the first indications of a class of long GRBs, which form a bridge between the typical high-luminosity, high-redshift events and nearby low-luminosity events (which are also associated with spectroscopic supernovae) in terms of energetics and observed redshift distribution, indicating a continuous distribution overall. C1 [Kann, D. A.; Klose, S.; Schulze, S.; Ferrero, P.; Rossi, A.; Stecklum, B.] Thuringer Landessternwarte Tautenburg, D-07778 Tautenburg, Germany. [Zhang, B.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. [Malesani, D.; Castro Ceron, J. M.; Fynbo, J. P. U.; Hjorth, J.; Jensen, B. L.; Laursen, P.; Paraficz, D.; Sollerman, J.; Watson, D.; Xu, D.] Univ Copenhagen, Dark Cosmol Ctr, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Nakar, E.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Nakar, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Pozanenko, A.; Burenin, R. A.; Mescheryakov, A.] Space Res Inst IKI, Moscow 117997, Russia. [Wilson, A. C.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Butler, N. R.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Butler, N. R.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Jakobsson, P.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Jakobsson, P.; Schulze, S.] Univ Iceland, Inst Sci, Ctr Astrophys & Cosmol, IS-107 Reykjavik, Iceland. [Andreev, M.; Sergeev, A.] RAS, Terskol Branch, Inst Astron, Kabardino Balkaria Repub 361605, Russia. [Andreev, M.; Sergeev, A.] NASU, Int Ctr Astron & Medicoecol Res, UA-03680 Kiev, Ukraine. [Antonelli, L. A.; D'Elia, V.; Israel, G. L.; Piranomonte, S.; Stella, L.; Testa, V.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, RM, Italy. [Bikmaev, I. F.] Kazan VI Lenin State Univ, Kazan 420008, Russia. [Bikmaev, I. F.] Acad Sci Tatarstan, Kazan, Russia. [Biryukov, V.; Pavlenko, E.; Rumyantsev, V.] SRI Crimean Astrophys Observ, UA-98409 Nauchnyi, Crimea, Ukraine. [Boettcher, M.; Gupta, S.] Ohio Univ, Inst Astrophys, Dept Phys & Astron, Athens, OH 45701 USA. [Biryukov, V.; Efimov, Yu.] Sternberg Astron Inst, Crimean Lab, UA-98409 Nauchnyi, Crimea, Ukraine. [Castro Ceron, J. M.; Kubanek, P.] European Space Agcy, European Space Astron Ctr, Madrid 28691, Spain. [Castro-Tirado, A. J.; Gorosabel, J.; Guziy, S.; Jelinek, M.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Chincarini, G.; Covino, S.; Postigo, A. de Ugarte; Fugazza, D.; Tagliaferri, G.] Osserv Astron Brera, INAF, I-23807 Merate, LC, Italy. [Chincarini, G.; D'Avanzo, P.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Cobb, B. E.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Cobb, B. E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [D'Avanzo, P.] Univ Insubria, Dipartimento Matemat & Fis, I-22100 Como, Italy. [D'Elia, V.] ASI Sci Data Ctr, I-00044 Frascati, Italy. [Della Valle, M.] Osserv Astron Capodimonte, INAF, I-80131 Naples, Italy. [Della Valle, M.] European So Observ, D-85748 Garching, Germany. [Della Valle, M.] Int Ctr Relativist Astrophys Network, Pescara, Abruzzo, Italy. [Ferrero, P.] Inst Astrofis Canarias, E-38205 San Cristobal la Laguna, Tenerife, Spain. [Galfalk, M.; Sollerman, J.] Stockholm Univ, AlbaNova Univ Ctr, Stockholm Observ, Dept Astron, S-10691 Stockholm, Sweden. [Grundahl, F.] Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Hafizov, B.; Ibrahimov, M.; Karimov, R.; Sharapov, D.; Telting, J.] Ulugh Beg Astron Inst, Tashkent 700052, Uzbekistan. [Holhjem, K.] Nord Opt Telescope, Santa Cruz De La Palma, Spain. [Holhjem, K.] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Im, M.] Seoul Natl Univ, CEOU, Astron Program, Dept Phys & Astron, Seoul, South Korea. [Khamitov, I. M.] TUBITAK Natl Observ, Antalya, Turkey. [Kiziloglu, Ue] Middle E Tech Univ, TR-06531 Ankara, Turkey. [Klunko, E.] Inst Solar Terr Phys, Irkutsk 664033, Russia. [Kutyrev, A. S.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Levan, A. J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Mannucci, F.] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Martin, C. M.] Loyola Coll, Baltimore, MD 21210 USA. [Mirabal, N.] Univ Complutense Madrid, Dpto Fis Atom Mol & Nucl, Madrid, Spain. [Norris, J. P.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ovaldsen, J. -E.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Salinas, R.] Univ Concepcion, Astron Grp, Fac Ciencias Fis & Matemat, Concepcion, Chile. [Tanvir, N. R.; Wiersema, K.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Updike, A. C.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Volnova, A.] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow 119992, Russia. [Wiersema, K.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. RP Kann, DA (reprint author), Thuringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg, Germany. RI Im, Myungshin/B-3436-2013; Kubanek, Petr/G-7209-2014; Fynbo, Johan/L-8496-2014; Hjorth, Jens/M-5787-2014; Watson, Darach/E-4521-2015; Jensen, Brian Lindgren/E-1275-2015; Jakobsson, Pall/L-9950-2015; Jelinek, Martin/E-5290-2016; Rossi, Andrea/N-4674-2015; OI de Ugarte Postigo, Antonio/0000-0001-7717-5085; Covino, Stefano/0000-0001-9078-5507; Tagliaferri, Gianpiero/0000-0003-0121-0723; Testa, Vincenzo/0000-0003-1033-1340; Castro-Tirado, A. J./0000-0003-2999-3563; D'Elia, Valerio/0000-0002-7320-5862; Della Valle, Massimo/0000-0003-3142-5020; Sollerman, Jesper/0000-0003-1546-6615; Rumyantsev, Vasilij/0000-0003-1894-7019; Salinas, Ricardo/0000-0002-1206-1930; Israel, GianLuca/0000-0001-5480-6438; Schulze, Steve/0000-0001-6797-1889; Im, Myungshin/0000-0002-8537-6714; Fynbo, Johan/0000-0002-8149-8298; Hjorth, Jens/0000-0002-4571-2306; Watson, Darach/0000-0002-4465-8264; Jensen, Brian Lindgren/0000-0002-0906-9771; Jakobsson, Pall/0000-0002-9404-5650; Jelinek, Martin/0000-0003-3922-7416; Rossi, Andrea/0000-0002-8860-6538; mannucci, filippo/0000-0002-4803-2381 FU DFG [Kl 766/13-2]; NASA [NNG 05GC22G, NNG06GH62G]; Spanish research programs [ESP2005-07714-C03-03, AYA2004-01515]; Instrument Center for Danish Astrophysics; Danish National Science Fundation [G2007101421517916]; CRDF [RP1-2394-MO-02]; TUBITAK; IKI; KSU [RTT150, 998,999]; Korea government (MEST) [2010-0000712]; [NSh-4224.2008.2]; [RFBR-09-02-97013-p-povolzh'e-a] FX We thank the anonymous referee for helpful comments that improved this paper. D. A. K. thanks C. Guidorzi for helpful comments as well as the GRB 061007 calibration, D. A. Perley for "better-late-than-never" comments, and A. Zeh for the fitting scripts. D.A.K., S.K., and P.F. acknowledge financial support by DFG grant Kl 766/13-2. B.Z. acknowledges NASA NNG 05GC22G and NNG06GH62G for support. The research activity of J.G. is supported by Spanish research programs ESP2005-07714-C03-03 and AYA2004-01515. D. M. thanks the Instrument Center for Danish Astrophysics for support. The Dark Cosmology Centre is funded by the Danish National Science Fundation. A.U. acknowledges travel grant Sigma Xi Grant G2007101421517916. We are grateful to K. Antoniuk (CrAO) for observation of the GRB 060927. A.P. acknowledges the CRDF grant RP1-2394-MO-02 which supported observations in CrAO in 2003-2005. S. S. acknowledges support by a Grant of Excellence from the Icelandic Research Fund. I.B., R.B., I.K. and A.G. express thanks to TUBITAK, IKI, and KSU for partial support in using RTT150 (Russian-Turkish 1.5-m telescope in Antalya) with project number 998,999. I.B. and A.G. are grateful for partial support by grants "NSh-4224.2008.2" and "RFBR-09-02-97013-p-povolzh'e-a." M. I. acknowledges the support from the Creative Research Initiative program, No. 2010-0000712, of the Korea Science and Engineering Foundation (KOSEF) funded by the Korea government (MEST). Furthermore, we thank Scott Barthelmy, NASA, for the upkeep of the GCN Circulars, Jochen Greiner, Garching, for the "GRB Big List," Robert Quimby et al. for GRBlog and D. A. Perley et al. for GRBOX. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. NR 702 TC 147 Z9 149 U1 1 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1513 EP 1558 DI 10.1088/0004-637X/720/2/1513 PG 46 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300049 ER PT J AU Dauphas, N Remusat, L Chen, JH Roskosz, M Papanastassiou, DA Stodolna, J Guan, Y Ma, C Eiler, JM AF Dauphas, N. Remusat, L. Chen, J. H. Roskosz, M. Papanastassiou, D. A. Stodolna, J. Guan, Y. Ma, C. Eiler, J. M. TI NEUTRON-RICH CHROMIUM ISOTOPE ANOMALIES IN SUPERNOVA NANOPARTICLES SO ASTROPHYSICAL JOURNAL LA English DT Article DE meteorites, meteors, meteoroids; nuclear reactions, nucleosynthesis, abundances; protoplanetary disks; supernovae: general ID EARLY SOLAR-SYSTEM; X-RAY-MICROANALYSIS; IA SUPERNOVAE; MASSIVE STARS; PRESOLAR GRAINS; ABUNDANCE STRATIFICATION; CARBONACEOUS CHONDRITES; S-PROCESS; NUCLEOSYNTHESIS; ALLENDE AB Neutron-rich isotopes with masses near that of iron are produced in Type Ia and II supernovae (SNeIa and SNeII). Traces of such nucleosynthesis are found in primitive meteorites in the form of variations in the isotopic abundance of (54)Cr, the most neutron-rich stable isotope of chromium. The hosts of these isotopic anomalies must be presolar grains that condensed in the outflows of SNe, offering the opportunity to study the nucleosynthesis of iron-peak nuclei in ways that complement spectroscopic observations and can inform models of stellar evolution. However, despite almost two decades of extensive search, the carrier of (54)Cr anomalies is still unknown, presumably because it is fine grained and is chemically labile. Here, we identify in the primitive meteorite Orgueil the carrier of (54)Cr anomalies as nanoparticles (<100 nm), most likely spinels that show large enrichments in (54)Cr relative to solar composition ((54)Cr/(52)Cr ratio >3.6 x solar). Such large enrichments in (54)Cr can only be produced in SNe. The mineralogy of the grains supports condensation in the O/Ne-O/C zones of an SNII, although a Type Ia origin cannot be excluded. We suggest that planetary materials incorporated different amounts of these nanoparticles, possibly due to late injection by a nearby SN that also delivered (26)Al and (60)Fe to the solar system. This idea explains why the relative abundance of (54)Cr and other neutron-rich isotopes vary between planets and meteorites. We anticipate that future isotopic studies of the grains identified here will shed new light on the birth of the solar system and the conditions in SNe. C1 [Dauphas, N.] Univ Chicago, Dept Geophys Sci, Origins Lab, Chicago, IL 60637 USA. [Dauphas, N.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Dauphas, N.; Remusat, L.; Papanastassiou, D. A.; Guan, Y.; Ma, C.; Eiler, J. M.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Remusat, L.] Museum Natl Hist Nat, CNRS, Lab Mineral & Cosmochim Museum, UMR 7202, F-75231 Paris, France. [Chen, J. H.; Papanastassiou, D. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Roskosz, M.; Stodolna, J.] Univ Lille 1, CNRS, Unite Mat & Transformat, UMR 8207, F-59655 Villeneuve Dascq, France. RP Dauphas, N (reprint author), Univ Chicago, Dept Geophys Sci, Origins Lab, 5734 S Ellis Ave, Chicago, IL 60637 USA. EM dauphas@uchicago.edu RI Dauphas, Nicolas/E-4568-2011; Remusat, Laurent/A-8298-2016; IMPMC, Geobio/F-8819-2016 FU Conseil Regional du Nord-Pas de Calais; European Regional Development Fund (ERDF); Institut National des Sciences de l'Univers (INSU, CNRS); NASA Cosmochemistry; Packard fellowship; France Chicago Center; California Institute of Technology; NASA; NSF [NNX09AG59G, EAR-0820807] FX Discussions with B. S. Meyer, F. K. Thielemann, T. Rauscher, R. Yokochi, A. M. Davis, and P. R. Craddock were appreciated. We thank T. Stephan and F.J. Stadermann for their help in our attempt to acquire Auger data on the 54Cr-rich grains. Constructive comments from an anonymous referee greatly improved the manuscript. The TEM national facility in Lille (France) is supported by the Conseil Regional du Nord-Pas de Calais, the European Regional Development Fund (ERDF), and the Institut National des Sciences de l'Univers (INSU, CNRS). J.H.C. and the laboratories at JPL were supported by NASA Cosmochemistry. This work was supported by a Packard fellowship, the France Chicago Center, a Moore Distinguished Scholarship at the California Institute of Technology, and NASA and NSF through grants NNX09AG59G and EAR-0820807 to N.D. NR 73 TC 67 Z9 69 U1 1 U2 23 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1577 EP 1591 DI 10.1088/0004-637X/720/2/1577 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300052 ER PT J AU Hathi, NP Ryan, RE Cohen, SH Yan, H Windhorst, RA McCarthy, PJ O'Connell, RW Koekemoer, AM Rutkowski, MJ Balick, B Bond, HE Calzetti, D Disney, MJ Dopita, MA Frogel, JA Hall, DNB Holtzman, JA Kimble, RA Paresce, F Saha, A Silk, JI Trauger, JT Walker, AR Whitmore, BC Young, ET AF Hathi, N. P. Ryan, R. E., Jr. Cohen, S. H. Yan, H. Windhorst, R. A. McCarthy, P. J. O'Connell, R. W. Koekemoer, A. M. Rutkowski, M. J. Balick, B. Bond, H. E. Calzetti, D. Disney, M. J. Dopita, M. A. Frogel, Jay A. Hall, D. N. B. Holtzman, J. A. Kimble, R. A. Paresce, F. Saha, A. Silk, J. I. Trauger, J. T. Walker, A. R. Whitmore, B. C. Young, E. T. TI UV-DROPOUT GALAXIES IN THE GOODS-SOUTH FIELD FROM WFC3 EARLY RELEASE SCIENCE OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: high-redshift; galaxies: luminosity function, mass function ID LYMAN-BREAK GALAXIES; ULTRA DEEP FIELD; HIGH-REDSHIFT GALAXIES; STAR-FORMING GALAXIES; STELLAR MASS DENSITY; TO 8 GALAXIES; LUMINOSITY FUNCTION; FORMATION HISTORY; SPECTROSCOPY; ULTRAVIOLET AB We combine new high sensitivity ultraviolet (UV) imaging from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) with existing deep HST/Advanced Camera for Surveys optical images from the Great Observatories Origins Deep Survey (GOODS) program to identify UV-dropouts, which are Lyman break galaxy (LBG) candidates at z similar or equal to 1-3. These new HST/WFC3 observations were taken over 50 arcmin(2) in the GOODS-South field as a part of the Early Release Science program. The uniqueness of these new UV data is that they are observed in three UV/optical (WFC3 UVIS) channel filters (F225W, F275W, and F336W), which allows us to identify three different sets of UV-dropout samples. We apply Lyman break dropout selection criteria to identify F225W-, F275W-, and F336W-dropouts, which are z similar or equal to 1.7, 2.1, and 2.7 LBG candidates, respectively. We use multi-wavelength imaging combined with available spectroscopic and photometric redshifts to carefully access the validity of our UV-dropout candidates. Our results are as follows: (1) these WFC3 UVIS filters are very reliable in selecting LBGs with z similar or equal to 2.0, which helps to reduce the gap between the well-studied z greater than or similar to 3 and z similar to 0 regimes; (2) the combined number counts with average redshift z similar or equal to 2.2 agree very well with the observed change in the surface densities as a function of redshift when compared with the higher redshift LBG samples; and (3) the best-fit Schechter function parameters from the rest-frame UV luminosity functions at three different redshifts fit very well with the evolutionary trend of the characteristic absolute magnitude, M*, and the faint-end slope, alpha, as a function of redshift. This is the first study to illustrate the usefulness of the WFC3 UVIS channel observations to select z less than or similar to 3 LBGs. The addition of the new WFC3 on the HST has made it possible to uniformly select LBGs from z similar or equal to 1 to z similar or equal to 9 and significantly enhance our understanding of these galaxies using HST sensitivity and resolution. C1 [Hathi, N. P.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Ryan, R. E., Jr.] Univ Calif Davis, Dept Phys & Astron, Davis, CA 92616 USA. [Cohen, S. H.; Windhorst, R. A.; Rutkowski, M. J.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Yan, H.] Ohio State Univ, Ctr Cosmol & AstroParticle Phys, Columbus, OH 43210 USA. [McCarthy, P. J.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [O'Connell, R. W.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Koekemoer, A. M.; Bond, H. E.; Whitmore, B. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Balick, B.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Calzetti, D.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Disney, M. J.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Dopita, M. A.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Frogel, Jay A.] Assoc Univ Res Astron, Washington, DC 20005 USA. [Hall, D. N. B.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Holtzman, J. A.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Kimble, R. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Paresce, F.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-40129 Bologna, Italy. [Saha, A.] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Silk, J. I.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Trauger, J. T.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Walker, A. R.] Cerro Tololo Interamer Observ, La Serena, Chile. [Young, E. T.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Hathi, NP (reprint author), Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. EM Nimish.Hathi@ucr.edu RI Kimble, Randy/D-5317-2012; Dopita, Michael/P-5413-2014; Hathi, Nimish/J-7092-2014; OI Koekemoer, Anton/0000-0002-6610-2048; Dopita, Michael/0000-0003-0922-4986; Hathi, Nimish/0000-0001-6145-5090; silk, joe/0000-0002-1566-8148 FU Space Telescope Science Institute; Space Telescope Science Institute [11359]; NASA [NAS 5-26555] FX We thank the referee for helpful comments and suggestions that significantly improved this paper. We thank M. Nonino, C. Ly, and their collaborators for providing their LBG number counts. This paper is based on Early Release Science observations made by the WFC3 Scientific Oversight Committee. We are grateful to the Director of the Space Telescope Science Institute for awarding Director's Discretionary time for this program. Finally, we are deeply indebted to the brave astronauts of STS-125 for rejuvenating HST. Support for program 11359 was provided by the NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS 5-26555. NR 44 TC 45 Z9 45 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 10 PY 2010 VL 720 IS 2 BP 1708 EP 1716 DI 10.1088/0004-637X/720/2/1708 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647ND UT WOS:000281624300063 ER PT J AU Champion, DJ Hobbs, GB Manchester, RN Edwards, RT Backer, DC Bailes, M Bhat, NDR Burke-Spolaor, S Coles, W Demorest, PB Ferdman, RD Folkner, WM Hotan, AW Kramer, M Lommen, AN Nice, DJ Purver, MB Sarkissian, JM Stairs, IH van Straten, W Verbiest, JPW Yardley, DRB AF Champion, D. J. Hobbs, G. B. Manchester, R. N. Edwards, R. T. Backer, D. C. Bailes, M. Bhat, N. D. R. Burke-Spolaor, S. Coles, W. Demorest, P. B. Ferdman, R. D. Folkner, W. M. Hotan, A. W. Kramer, M. Lommen, A. N. Nice, D. J. Purver, M. B. Sarkissian, J. M. Stairs, I. H. van Straten, W. Verbiest, J. P. W. Yardley, D. R. B. TI MEASURING THE MASS OF SOLAR SYSTEM PLANETS USING PULSAR TIMING SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planets and satellites: general; planets and satellites: individual (Jupiter); pulsars: general ID GRAVITY-FIELD; TRACKING DATA; EPHEMERIS; PACKAGE; TEMPO2; MODEL AB High-precision pulsar timing relies on a solar system ephemeris in order to convert times of arrival (TOAs) of pulses measured at an observatory to the solar system barycenter. Any error in the conversion to the barycentric TOAs leads to a systematic variation in the observed timing residuals; specifically, an incorrect planetary mass leads to a predominantly sinusoidal variation having a period and phase associated with the planet's orbital motion about the Sun. By using an array of pulsars (PSRs J0437-4715, J1744-1134, J1857+0943, J1909-3744), the masses of the planetary systems from Mercury to Saturn have been determined. These masses are consistent with the best-known masses determined by spacecraft observations, with the mass of the Jovian system, 9.547921(2) x 10(-4) M(circle dot), being significantly more accurate than the mass determined from the Pioneer and Voyager spacecraft, and consistent with but less accurate than the value from the Galileo spacecraft. While spacecraft are likely to produce the most accurate measurements for individual solar system bodies, the pulsar technique is sensitive to planetary system masses and has the potential to provide the most accurate values of these masses for some planets. C1 [Champion, D. J.; Hobbs, G. B.; Manchester, R. N.; Edwards, R. T.; Burke-Spolaor, S.; Sarkissian, J. M.; Yardley, D. R. B.] Australia Telescope Natl Facil, CSIRO Astron & Space Sci, Epping, NSW 1710, Australia. [Champion, D. J.; Kramer, M.; Verbiest, J. P. W.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Edwards, R. T.] Kilmore Int Sch, Kilmore, Vic 3764, Australia. [Backer, D. C.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Backer, D. C.] Univ Calif Berkeley, Radio Astron Lab, Berkeley, CA 94720 USA. [Bailes, M.; Bhat, N. D. R.; Burke-Spolaor, S.; van Straten, W.] Swinburne Univ Technol, Hawthorn, Vic 3122, Australia. [Coles, W.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Demorest, P. B.] Natl Radio Astron Observ, Charlottesville, VA 22901 USA. [Ferdman, R. D.; Purver, M. B.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Folkner, W. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hotan, A. W.] Curtin Univ, Curtin Inst Radio Astron, Bentley, WA 6102, Australia. [Lommen, A. N.] Franklin & Marshall Coll, Lancaster, PA 17604 USA. [Nice, D. J.] Lafayette Coll, Dept Phys, Easton, PA 18042 USA. [Stairs, I. H.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Yardley, D. R. B.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. RP Champion, DJ (reprint author), Australia Telescope Natl Facil, CSIRO Astron & Space Sci, POB 76, Epping, NSW 1710, Australia. EM champion@pulsarastronomy.net RI Bhat, Ramesh/B-7396-2013; OI Champion, David/0000-0003-1361-7723; Nice, David/0000-0002-6709-2566; van Straten, Willem/0000-0003-2519-7375 FU Australian Research Council Federation [FF0348478]; Australian Research Council [DP0878388]; NSF [AST-0647820, AST-0748580]; Commonwealth of Australia FX We thank R. A. Jacobson for useful information about the planetary mass determinations, and F. A. Jenet, S. Oslowski, E. Splaver, K. Xilouris, and X. P. You for assistance with the observations and analysis. We also thank the referee for constructive comments. This work is undertaken as part of the Parkes Pulsar Timing Array project which was supported by R.N.M.'s Australian Research Council Federation Fellowship (FF0348478). G. H. is the recipient of an Australian Research Council QEII Fellowship (DP0878388), D.N. is the recipient of an NSF grant (AST-0647820) and A. L. is the recipient of a National Science Foundation CAREER award (AST-0748580). Pulsar research at UBC is funded by an NSERC Discovery Grant. The Parkes radio telescope is part of the Australia Telescope, which is funded by the Commonwealth of Australia for operation as a National Facility managed by the Commonwealth Scientific and Industrial Research Organisation. NR 21 TC 38 Z9 39 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 10 PY 2010 VL 720 IS 2 BP L201 EP L205 DI 10.1088/2041-8205/720/2/L201 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647HX UT WOS:000281610200015 ER PT J AU Matranga, M Drake, JJ Kashyap, VL Marengo, M Kuchner, MJ AF Matranga, M. Drake, J. J. Kashyap, V. L. Marengo, M. Kuchner, M. J. TI CLOSE BINARIES WITH INFRARED EXCESS: DESTROYERS OF WORLDS? SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: close; circumstellar matter; infrared: stars; stars: individual (AR Psc, II Peg, UX Ari) ID RS CANUM-VENATICORUM; SUN-LIKE; DEBRIS DISKS; PHOTOMETRIC-OBSERVATIONS; RESONANT SIGNATURES; PLANETARY SYSTEMS; ACTIVE STARS; SPITZER MIPS; WARM DUST; II PEGASI AB We present the results of a Spitzer photometric investigation into the IR excesses of close binary systems. In a sample of 10 objects, excesses in Infrared Array Camera and MIPS24 bands implying the presence of warm dust are found for 3. For two objects, we do not find excesses reported in earlier IRAS studies. We discuss the results in the context of the scenario suggested by Rhee and co-workers, in which warm dust is continuously created by destructive collisions between planetary bodies. A simple numerical model for the steady-state distribution of dust in one IR excess system shows a central clearing of radius 0.22 AU caused by dynamical perturbations from the binary star. This is consistent with the size of the central clearing derived from the Spitzer spectral energy distribution. We conclude that close binaries could be efficient "destroyers of worlds" and lead to destabilization of the orbits of their planetary progeny by magnetically driven angular momentum loss and secular shrinkage of the binary separation. C1 [Matranga, M.; Drake, J. J.; Kashyap, V. L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Marengo, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kuchner, M. J.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab Greenbelt, Greenbelt, MD 20771 USA. RP Matranga, M (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RI Kuchner, Marc/E-2288-2012 FU Spitzer [1279130]; NASA [NAS8-39073, 1407] FX M. Matranga was supported by Spitzer contract 1279130. J.J.D. and V. L. K. were funded by the NASA contract NAS8-39073 to the Chandra X-ray Center. Observations were made with Spitzer, operated by JPL under the NASA contract 1407. NR 47 TC 5 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 10 PY 2010 VL 720 IS 2 BP L164 EP L168 DI 10.1088/2041-8205/720/2/L164 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647HX UT WOS:000281610200008 ER PT J AU Sada, PV Deming, D Jackson, B Jennings, DE Peterson, SW Haase, F Bays, K O'Gorman, E Lundsford, A AF Sada, Pedro V. Deming, Drake Jackson, Brian Jennings, Donald E. Peterson, Steven W. Haase, Flynn Bays, Kevin O'Gorman, Eamon Lundsford, Alan TI RECENT TRANSITS OF THE SUPER-EARTH EXOPLANET GJ 1214b SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE eclipses; infrared: planetary systems; planets and satellites: fundamental parameters; techniques: photometric ID PLANET AB We report recent ground-based photometry of the transiting super-Earth exoplanet GJ 1214b at several wavelengths, including the infrared near 1.25 mu m (J band). We observed a J-band transit with the FLAMINGOS infrared imager and the 2.1 m telescope on Kitt Peak, and we observed several optical transits using a 0.5 m telescope on Kitt Peak and the 0.36 m Universidad de Monterrey Observatory telescope. Our high-precision J-band observations exploit the brightness of the M dwarf host star at this infrared wavelength as compared with the optical and are significantly less affected by stellar activity and limb darkening. We fit the J-band transit to obtain an independent determination of the planetary and stellar radii. Our radius for the planet (2.61(-0.11)(+0.30)R(circle plus)) is in excellent agreement with the discovery value reported by Charbonneau et al. based on optical data. We demonstrate that the planetary radius is insensitive to degeneracies in the fitting process. We use all of our observations to improve the transit ephemeris, finding P = 1.5804043 +/- 0.0000005 days and T(0) = 2454964.94390 +/- 0.00006 BJD. C1 [Sada, Pedro V.] Univ Monterrey, Monterrey, Mexico. [Deming, Drake; Jackson, Brian; Jennings, Donald E.] NASA, Goddard Space Flight Ctr, Planetary Syst Lab, Greenbelt, MD 20771 USA. [Peterson, Steven W.; Haase, Flynn; Bays, Kevin] Kitt Peak Natl Observ, Natl Opt Astron Observ, Tucson, AZ 85719 USA. [O'Gorman, Eamon] Univ Dublin Trinity Coll, Dublin 2, Ireland. [Lundsford, Alan] Catholic Univ, Amer & Planetary Syst Lab, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Sada, PV (reprint author), Univ Monterrey, Monterrey, Mexico. RI Jennings, Donald/D-7978-2012 NR 9 TC 20 Z9 21 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 10 PY 2010 VL 720 IS 2 BP L215 EP L218 DI 10.1088/2041-8205/720/2/L215 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647HX UT WOS:000281610200018 ER PT J AU Snow, TP Destree, JD Burgh, EB Ferguson, RM Danforth, CW Cordiner, M AF Snow, Theodore P. Destree, Joshua D. Burgh, Eric B. Ferguson, Ryan M. Danforth, Charles W. Cordiner, Martin TI COSMIC ORIGINS SPECTROGRAPH OBSERVATIONS OF TRANSLUCENT CLOUDS: Cyg OB2 8A SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE dust, extinction; ISM: abundances; ISM: atoms; ISM: molecules; ultraviolet: ISM ID RESONANCE-ABSORPTION LINES; INTERSTELLAR-MEDIUM; WAVELENGTHS LONGWARD; MOLECULAR CLOUDS; LYMAN LIMIT; ATOMIC DATA; STARS; TEMPERATURES; EMISSION; ELEMENTS AB Data from the Cosmic Origins Spectrograph ( COS) are presented for the first highly reddened target (Cyg OB2 8A) under the COS Science Team's guaranteed time allocation. Column densities of ionic, atomic, and molecular species are reported and implications are discussed. Data from Cyg OB2 8A demonstrate the ability to analyze highly reddened interstellar sight lines with the COS that were unavailable to previous UV instruments. Measured column densities indicate that the Cyg OB2 8A line of sight contains multiple diffuse clouds rather than a dominant translucent cloud. C1 [Snow, Theodore P.; Destree, Joshua D.; Burgh, Eric B.; Ferguson, Ryan M.; Danforth, Charles W.] Univ Colorado, Ctr Astrophys & Space Astron, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Cordiner, Martin] NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, Greenbelt, MD 20771 USA. RP Snow, TP (reprint author), Univ Colorado, Ctr Astrophys & Space Astron, Dept Astrophys & Planetary Sci, Campus Box 391, Boulder, CO 80309 USA. EM tsnow@casa.colorado.edu; destree@colorado.edu; eric.burgh@colorado.edu; ryan.m.ferguson@colorado.edu; danforth@casa.colorado.edu; martin.cordiner@nasa.gov FU NASA [NNX08AC14G] FX This research was supported by NASA grant NNX08AC14G. We thank the other members of the COS Science Team for developing data co-addition techniques. We thank Kevin France for his helpful comments, George Herbig for providing the raw Keck HIRES data, and Rachel Destree for her constant editing help.; Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. NR 25 TC 2 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 10 PY 2010 VL 720 IS 2 BP L190 EP L194 DI 10.1088/2041-8205/720/2/L190 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647HX UT WOS:000281610200013 ER PT J AU Davis, S Hlavka, D Jensen, E Rosenlof, K Yang, QO Schmidt, S Borrmann, S Frey, W Lawson, P Voemel, H Bui, TP AF Davis, Sean Hlavka, Dennis Jensen, Eric Rosenlof, Karen Yang, Qiong Schmidt, Sebastian Borrmann, Stephan Frey, Wiebke Lawson, Paul Voemel, Holger Bui, T. P. TI In situ and lidar observations of tropopause subvisible cirrus clouds during TC4 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID STRATOSPHERIC WATER-VAPOR; TROPICAL TROPOPAUSE; MICROPHYSICAL PROPERTIES; RADIATIVE PROPERTIES; ACCURATE PARAMETERIZATION; CLIMATE MODELS; ICE CRYSTALS; NASA ER-2; PART I; AIRCRAFT AB During the Tropical Composition, Clouds, and Climate Coupling (TC4) experiment in July-August 2007, the NASA WB-57F and ER-2 aircraft made coordinated flights through a tropopause subvisible cirrus (SVC) layer off the Pacific Coast of Central America. The ER-2 aircraft was equipped with a remote sensing payload that included the cloud physics lidar (CPL). The WB-57F payload included cloud microphysical and trace gas measurements, and the aircraft made four vertical profiles through the SVC layer shortly after the ER-2 flew over. The in situ and remotely sensed data are used to quantify the meteorological and microphysical properties of the SVC layer, and these data are compared to the limited set of SVC measurements that have previously been made. It is found that the layer encountered was particularly tenuous, with optical depths (tau) between about 10(-4) and 10(-3). From the in situ and other meteorological data, radiative heating rate perturbations of similar to 0.05-0.1 K day(-1) are calculated. These heating rates are smaller than previous estimates for tropopause SVC, consistent with the smaller tau in the present study. Coverage statistics based on CPL data from other TC4 flights indicate that this cloud was not an outlier among the sampled population. SVC with properties similar to the one presented here are below the detection limit of space-based lidars such as CALIPSO, and a comparison with the TC4 statistics suggests that a majority (> 50%) of tropopause SVC (with tau < 0.01) could be unaccounted for in studies using CALIPSO data. C1 [Davis, Sean; Rosenlof, Karen] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO 80305 USA. [Davis, Sean] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Hlavka, Dennis] NASA, Goddard Space Flight Ctr, Sci Syst & Applicat Inc, Greenbelt, MD 20771 USA. [Jensen, Eric; Bui, T. P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Yang, Qiong] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Schmidt, Sebastian] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. [Borrmann, Stephan; Frey, Wiebke] Johannes Gutenberg Univ Mainz, Inst Phys Atmosphere, D-55099 Mainz, Germany. [Borrmann, Stephan] Max Planck Inst Chem, Particle Chem Dept, D-55128 Mainz, Germany. [Lawson, Paul] Stratton Pk Engn Co Inc, Boulder, CO 80301 USA. [Voemel, Holger] Deutsch Wetterdienst, Meteorol Observ Lindenberg, Richard Assmann Observ, D-15848 Tauche, Lindenberg, Germany. RP Davis, S (reprint author), NOAA, Div Chem Sci, Earth Syst Res Lab, 325 S Broadway, Boulder, CO 80305 USA. EM sean.davis@colorado.edu RI Borrmann, Stephan/E-3868-2010; Davis, Sean/C-9570-2011; Rosenlof, Karen/B-5652-2008; Frey, Wiebke/G-2058-2014; SCHMIDT, KONRAD SEBASTIAN/C-1258-2013; Manager, CSD Publications/B-2789-2015; OI Davis, Sean/0000-0001-9276-6158; Rosenlof, Karen/0000-0002-0903-8270; Frey, Wiebke/0000-0003-4282-1264; SCHMIDT, KONRAD SEBASTIAN/0000-0003-3899-228X; Hlavka, Dennis/0000-0002-2976-7243 FU NASA [NNX07AL20G]; NOAA FX The authors would like to acknowledge the efforts of the TC4 mission planners and instrument investigators, as well as the pilots and staff of the WB-57F and ER-2 aircraft. The authors would also like to acknowledge the CPL instrument team, led by P. I. Matt McGill. S. M. D. would like to thank Karl Froyd, Bob Portmann, and Anthony Bucholtz for helpful discussions and reviews. S. M. D. acknowledges support from Linnea Avallone under NASA Radiation Sciences Program grant NNX07AL20G, and the NOAA atmospheric composition and climate program. NR 53 TC 34 Z9 34 U1 2 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 10 PY 2010 VL 115 AR D00J17 DI 10.1029/2009JD013093 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 649GH UT WOS:000281755600002 ER PT J AU Gautam, R Hsu, NC Lau, KM AF Gautam, Ritesh Hsu, N. Christina Lau, K. -M. TI Premonsoon aerosol characterization and radiative effects over the Indo-Gangetic Plains: Implications for regional climate warming SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID BLACK CARBON AEROSOLS; ASIAN SUMMER MONSOON; ENERGY SYSTEM CERES; OPTICAL-PROPERTIES; TIBETAN PLATEAU; INDIAN MONSOON; ATMOSPHERIC AEROSOLS; TEMPERATURE TRENDS; HYDROLOGICAL CYCLE; DUST AB The Himalayas have a profound effect on the South Asian climate and the regional hydrological cycle, as it forms a barrier for the strong monsoon winds and serves as an elevated heat source, thus controlling the onset and distribution of precipitation during the Indian summer monsoon. Recent studies have suggested that radiative heating by absorbing aerosols, such as dust and black carbon over the Indo-Gangetic Plains (IGP) and slopes of the Himalayas, may significantly accelerate the seasonal warming of the Hindu Kush-Himalayas-Tibetan Plateau (HKHT) and influence the subsequent evolution of the summer monsoon. This paper presents a detailed characterization of aerosols over the IGP and their radiative effects during the premonsoon season (April-May-June) when dust transport constitutes the bulk of the regional aerosol loading, using ground radiometric and spaceborne observations. During the dust-laden period, there is a strong response of surface shortwave flux to aerosol absorption indicated by the diurnally averaged forcing efficiency of -70 Wm(-2) per unit optical depth. The simulated aerosol single-scattering albedo, constrained by surface flux and aerosol measurements, is estimated to be 0.89 +/- 0.01 (at similar to 550 nm) with diurnal mean surface and top-of-atmosphere forcing values ranging from -11 to -79.8 Wm(-2) and + 1.4 to + 12 Wm(-2), respectively, for the premonsoon period. The model-simulated solar heating rate profile peaks in the lower troposphere with enhanced heating penetrating into the middle troposphere (5-6 km), caused by vertically extended aerosols over the IGP with peak altitude of similar to 5 km as indicated by spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization observations. On a long-term climate scale, our analysis, on the basis of microwave satellite measurements of tropospheric temperatures from 1979 to 2007, indicates accelerated annual mean warming rates found over the Himalayan-Hindu Kush region (0.21 degrees C/decade +/- 0.08 degrees C/decade) and underscores the potential role of enhanced aerosol solar absorption in the maximum warming localized over the western Himalayas (0.26 degrees C/decade +/- 0.09 degrees C/decade) that significantly exceed the entire HKHT and global warming rates. We believe the accelerated warming rates reported here are critical to both the South Asian summer monsoon and hydro-glaciological resource variability in the Himalayan-Hindu Kush snowpack and therefore to the densely populated downstream regions. C1 [Gautam, Ritesh] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Gautam, Ritesh; Hsu, N. Christina; Lau, K. -M.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. RP Gautam, R (reprint author), Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. EM ritesh.gautam@nasa.gov RI Gautam, Ritesh/E-9776-2010; Hsu, N. Christina/H-3420-2013; Lau, William /E-1510-2012 OI Gautam, Ritesh/0000-0002-2177-9346; Lau, William /0000-0002-3587-3691 FU NASA FX This work is supported by grant from the NASA EOS Program, managed by Hal Maring. We thank the various agencies, portals, and science teams for making the ground and satellite data used in this study available in public domain, namely, AERONET, CALIPSO, CERES, MODIS, and MSU/RSS. Efforts of the AERONET PIs (B. Holben and R. Singh) in establishing and maintaining the Kanpur site are also acknowledged. We thank the anonymous reviewers for the useful comments in improving an earlier version of the manuscript. NR 85 TC 81 Z9 81 U1 2 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 10 PY 2010 VL 115 AR D17208 DI 10.1029/2010JD013819 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 649GH UT WOS:000281755600007 ER PT J AU Petropavlovskikh, I Ray, E Davis, SM Rosenlof, K Manney, G Shetter, R Hall, SR Ullmann, K Pfister, L Hair, J Fenn, M Avery, M Thompson, AM AF Petropavlovskikh, I. Ray, E. Davis, S. M. Rosenlof, K. Manney, G. Shetter, R. Hall, S. R. Ullmann, K. Pfister, L. Hair, J. Fenn, M. Avery, M. Thompson, A. M. TI Low-ozone bubbles observed in the tropical tropopause layer during the TC4 campaign in 2007 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID COUNTERFLOW VIRTUAL IMPACTOR; AIR-MASS CHARACTERISTICS; MONITORING INSTRUMENT; TRAJECTORY CALCULATIONS; DEEP CONVECTION; PACIFIC-OCEAN; POLAR VORTEX; SATELLITE; CLIMATOLOGY; OZONESONDES AB In the summer of 2007, the NASA DC-8 aircraft took part in the Tropical Composition, Cloud and Climate Coupling campaign based in San Jose, Costa Rica. During this campaign, multiple in situ and remote-sensing instruments aboard the aircraft measured the atmospheric composition of the tropical tropopause layer (TTL) in the equatorial region around Central and South America. During the 17 July flight off the Ecuadorian coast, well-defined "bubbles" of anomalously low-ozone concentration (less than 75 ppbv) were detected above the aircraft in the TTL at the altitude near 365 K (between 14 and 16 km) and at similar to 3 degrees S and similar to 82 degrees W. Backward trajectories from meteorological analyses and the aircraft in situ measurements suggest that the ozone-depleted air mass originated from deep convection in the equatorial eastern Pacific and/or Panama Bight regions at least 5 days before observation by the DC-8; this was not a feature produced by local convection. Given uncertainties known in regard to trajectories calculated from global reanalysis, it is not possible to identify the exact convective system that produced this particular low-ozone anomaly, but only the general origin from a region of high convective activity. However, the fact that the feature apparently maintained its coherency for at least 5 days suggests a significant contribution to the chemical composition of the tropical upper troposphere portion of the TTL from convective systems followed by quasi-horizontal transport. It also suggests that mixing time scales for these relatively small spatial features are greater than 5 days. C1 [Petropavlovskikh, I.; Ray, E.; Davis, S. M.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Petropavlovskikh, I.; Ray, E.; Davis, S. M.; Rosenlof, K.] NOAA, Earth Syst Res Lab, GMD, Boulder, CO 80303 USA. [Manney, G.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Manney, G.] New Mexico Inst Min & Technol, Socorro, NM 87801 USA. [Shetter, R.; Hall, S. R.; Ullmann, K.] Natl Ctr Atmospher Res, Div Atmospher Chem, ESSL, Boulder, CO 80303 USA. [Pfister, L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Hair, J.; Avery, M.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Fenn, M.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Thompson, A. M.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. RP Petropavlovskikh, I (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. EM irina.petro@noaa.gov; anne@met.psu.edu RI Davis, Sean/C-9570-2011; Manager, CSD Publications/B-2789-2015; Rosenlof, Karen/B-5652-2008; Ray, Eric/D-5941-2013; Thompson, Anne /C-3649-2014 OI Davis, Sean/0000-0001-9276-6158; Rosenlof, Karen/0000-0002-0903-8270; Ray, Eric/0000-0001-8727-9849; Thompson, Anne /0000-0002-7829-0920 FU NASA; Radiation Science Program; Tropospheric Chemistry Program FX This work was supported by the NASA Headquarters Atmospheric Composition Focus Area including the Upper Atmospheric Research Program (Michael Kurylo, program manager), the Radiation Science Program (Hal Maring, program manager), and the Tropospheric Chemistry Program (Jim Crawford, program manager). We gratefully acknowledge helpful discussions with R. McPeters (NASA, Goddard), K. Chance (Harvard University), and E. Hilsenrath (NASA Headquarters). We also emphasize the crucial contributions of the pilots and crew of the NASA DC-8 aircrafts. We extend our gratitude to mission scientists (Brian Toon and Dave Starr) and DC-8 platform scientists (Mark Schoeberl and Paul Wennberg) for planning and successfully executing the TC4 campaign. We greatly appreciate support from the Aura HIRDLS, OMI, and MLS teams for providing us with the coincident data. We extend our special thanks to J. Gille and S. Karol (HIRDLS, NCAR) for help with data quality, analysis, and discussion. We also thank Marc Kroon (OMI, KNMI) for help with the OMI DOAS data analysis, updates, and conscientious figures. The OMI-TOMS and OMI-DOAS total ozone data were obtained from the NASA Goddard Earth Sciences (GES) Data and Information Services Center, home of the GES Distributed Active Archive Center. Work at the Jet Propulsion Laboratory, California Institute of Technology, was done under contract with NASA. We extend special thanks to Kurt Severance (NASA, Langley) and William Daffer (NASA, JPL) for help preparing the 3-D graphics in record short time. Finally, we acknowledge the hard work by Gary A. Morris (Valparaiso University) and Alex Bryan and David Lutz (Valparaiso University undergraduates), who were responsible for all 25 ozonesonde launches from Las Tablas. Without their effort, we would have no balloon data from Panama. NR 58 TC 6 Z9 6 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 10 PY 2010 VL 115 AR D00J16 DI 10.1029/2009JD012804 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 649GH UT WOS:000281755600001 ER PT J AU Hofmann, DC AF Hofmann, Douglas C. TI Shape Memory Bulk Metallic Glass Composites SO SCIENCE LA English DT Editorial Material ID TENSILE DUCTILITY; MATRIX COMPOSITES; SCIENCE C1 CALTECH, Jet Prop Lab, Engn & Sci Directorate, Pasadena, CA 91109 USA. RP Hofmann, DC (reprint author), CALTECH, Jet Prop Lab, Engn & Sci Directorate, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM dch@jpl.nasa.gov NR 14 TC 85 Z9 86 U1 16 U2 111 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 10 PY 2010 VL 329 IS 5997 BP 1294 EP 1295 DI 10.1126/science.1193522 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 647YR UT WOS:000281657300023 PM 20829474 ER PT J AU Niles, PB Boynton, WV Hoffman, JH Ming, DW Hamara, D AF Niles, Paul B. Boynton, William V. Hoffman, John H. Ming, Douglas W. Hamara, Dave TI Stable Isotope Measurements of Martian Atmospheric CO2 at the Phoenix Landing Site SO SCIENCE LA English DT Article ID ALLAN HILLS 84001; SNC METEORITES; WEATHERING PRODUCTS; VOLATILE EVOLUTION; CALCIUM-CARBONATE; MARS; OXYGEN; EETA-79001; ALH84001; RATIOS AB Carbon dioxide is a primary component of the martian atmosphere and reacts readily with water and silicate rocks. Thus, the stable isotopic composition of CO2 can reveal much about the history of volatiles on the planet. The Mars Phoenix spacecraft measurements of carbon isotopes [referenced to the Vienna Pee Dee belemnite (VPDB)] [delta C-13(VPDB) = -2.5 +/- 4.3 per mil (parts per thousand)] and oxygen isotopes [referenced to the Vienna standard mean ocean water (VSMOW)] (delta O-18(VSMOW) = 31.0 +/- 5.7 parts per thousand), reported here, indicate that CO2 is heavily influenced by modern volcanic degassing and equilibration with liquid water. When combined with data from the martian meteorites, a general model can be constructed that constrains the history of water, volcanism, atmospheric evolution, and weathering on Mars. This suggests that low-temperature water-rock interaction has been dominant throughout martian history, carbonate formation is active and ongoing, and recent volcanic degassing has played a substantial role in the composition of the modern atmosphere. C1 [Niles, Paul B.; Ming, Douglas W.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Boynton, William V.; Hamara, Dave] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Hoffman, John H.] Univ Texas Dallas, Dept Phys, Dallas, TX 75080 USA. RP Niles, PB (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. EM paul.b.niles@nasa.gov NR 30 TC 30 Z9 32 U1 1 U2 15 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD SEP 10 PY 2010 VL 329 IS 5997 BP 1334 EP 1337 DI 10.1126/science.1192863 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 647YR UT WOS:000281657300036 PM 20829484 ER PT J AU Yu, FQ Luo, G Bates, TS Anderson, B Clarke, A Kapustin, V Yantosca, RM Wang, YX Wu, SL AF Yu, Fangqun Luo, Gan Bates, Timothy S. Anderson, Bruce Clarke, Antony Kapustin, Vladimir Yantosca, Robert M. Wang, Yuxuan Wu, Shiliang TI Spatial distributions of particle number concentrations in the global troposphere: Simulations, observations, and implications for nucleation mechanisms SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ION-MEDIATED NUCLEATION; ACID-WATER NUCLEATION; SULFURIC-ACID; AEROSOL CONCENTRATIONS; ULTRAFINE PARTICLES; SIZE DISTRIBUTION; BOUNDARY-LAYER; MODEL; RATES; EMISSIONS AB Particle number concentration in the troposphere is an important parameter controlling the climate and health impacts of atmospheric aerosols. We show that nucleation rates and total particle number concentrations in the troposphere, predicted by different nucleation schemes, differ significantly. Our extensive comparisons of simulated results with land-, ship-, and aircraft-based measurements indicate that, among six widely used nucleation schemes involving sulfuric acid, only the ion-mediated nucleation (IMN) scheme can reasonably account for both absolute values (within a factor of similar to 2) and spatial distributions of particle number concentrations in the whole troposphere. Binary homogeneous nucleation (BHN) schemes significantly underpredict particle number concentration in the lower troposphere (below similar to 500 mbar), especially in the boundary layer over major continents (by a factor of up to similar to 10). BHN is also insignificant in the upper troposphere based on a recent kinetically self-consistent nucleation model constrained by multiple independent laboratory data. Previous conclusions about the importance of BHN in the upper troposphere should be revisited. Empirical activation and kinetic nucleation formulas significantly overpredict the particle number concentrations over tropical and subtropical oceans (by a factor of up to similar to 10 in the boundary layer), and the overpredictions extend from ocean surface to around similar to 400 mbar. This study represents the first comprehensive comparison of global particle number simulations with relevant measurements that have a 3-D global spatial coverage. Our results suggest that ion-mediated H2SO4-H2O nucleation appears to dominate over neutral H2SO4-H2O nucleation, not only in the lower troposphere but also in the middle and upper troposphere. C1 [Yu, Fangqun; Luo, Gan] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12203 USA. [Anderson, Bruce] NASA, Langley Res Ctr, Sci Directorate, Chem & Dynam Branch, Hampton, VA 23681 USA. [Bates, Timothy S.] Natl Ocean & Atmospher Adm, Pacific Marine Environm Lab, Seattle, WA 98115 USA. [Clarke, Antony; Kapustin, Vladimir] Univ Hawaii Manoa, Dept Oceanog, Honolulu, HI 96822 USA. [Wang, Yuxuan] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. [Wu, Shiliang] Michigan Technol Univ, Dept Geol & Min Engn & Sci, Houghton, MI 49931 USA. [Wu, Shiliang] Michigan Technol Univ, Dept Civil & Environm Engn, Houghton, MI 49931 USA. [Yantosca, Robert M.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. RP Yu, FQ (reprint author), SUNY Albany, Atmospher Sci Res Ctr, 251 Fuller Rd, Albany, NY 12203 USA. EM yfq@asrc.cestm.albany.edu RI Yu, Fangqun/F-3708-2011; Wang, Yuxuan/C-6902-2014; Yantosca, Robert/F-7920-2014; Bates, Timothy/L-6080-2016 OI Yu, Fangqun/0000-0003-0874-4883; Wang, Yuxuan/0000-0002-1649-6974; Yantosca, Robert/0000-0003-3781-1870; FU NSF [AGS-0942106]; NASA [NNX08AK48G]; EPA [R83428601] FX This study is supported by the NSF under grant AGS-0942106 and by NASA under grant NNX08AK48G. S.W. acknowledges funding support from EPA grant R83428601. The GEOS-Chem model is managed by the Atmospheric Chemistry Modeling Group at Harvard University with support from the NASA Atmospheric Chemistry Modeling and Analysis Program. NR 60 TC 63 Z9 63 U1 6 U2 23 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 9 PY 2010 VL 115 AR D17205 DI 10.1029/2009JD013473 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 649GG UT WOS:000281755500006 ER PT J AU O'Byrne, G Martin, RV van Donkelaar, A Joiner, J Celarier, EA AF O'Byrne, G. Martin, R. V. van Donkelaar, A. Joiner, J. Celarier, E. A. TI Surface reflectivity from the Ozone Monitoring Instrument using the Moderate Resolution Imaging Spectroradiometer to eliminate clouds: Effects of snow on ultraviolet and visible trace gas retrievals SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID NORTHERN-HEMISPHERE; SPECTRAL ALBEDO; GOME MEASUREMENTS; TROPOSPHERIC NO2; COVERED SURFACES; MODIS; PRODUCTS; SPACE; UV; ALGORITHM AB Satellite retrievals of tropospheric composition from measurements of solar backscatter require accurate information about surface reflectivity. We use clear-sky data from the Ozone Monitoring Instrument (OMI) to determine global surface reflectivity under both snow-covered and snow-free conditions at 354 nm. Clear-sky scenes are determined using cloud and aerosol data from the Moderate Resolution Imaging Spectroradiometer/Aqua satellite instrument that flies 12 min ahead of OMI/Aura. The result is a database of OMI-observed Lambertian equivalent reflectivity (LER) that does not rely on statistical methods to eliminate cloud and aerosol contamination. We apply this database to evaluate previous climatologies of surface reflectivity. Except for regions of seasonal snow cover, agreement is best with a climatology from OMI, which selects the surface reflectivity from a histogram of observed LER (mean difference, 0.0002; standard deviation, 0.011). Three other climatologies of surface reflectivity from Total Ozone Mapping Spectrometer, Global Ozone Monitoring Experiment, and OMI, based on minimum observed LER, are less consistent with our cloud-and aerosol-filtered data set (mean difference, -0.008, 0.012, and -0.002; standard deviation, 0.022, 0.026, and 0.033). Snow increases the sensitivity of solar backscatter measurements at ultraviolet and visible wavelengths to trace gases in the lower troposphere. However, all four existing LER climatologies poorly represent seasonal snow. Surface reflectivity over snow-covered lands depends strongly on the vegetation type covering the surface. The monthly variation of snow-covered reflectivity varies by less than 0.1 in fall and winter. Applying our snow-covered surface reflectivity database to OMI NO2 retrievals could change the retrieved NO2 column by 20%-50% over large regions with seasonal snow cover. C1 [O'Byrne, G.; Martin, R. V.; van Donkelaar, A.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada. [Martin, R. V.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Joiner, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celarier, E. A.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. RP O'Byrne, G (reprint author), Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada. EM randall.martin@dal.ca RI Joiner, Joanna/D-6264-2012; Martin, Randall/C-1205-2014 OI Martin, Randall/0000-0003-2632-8402 FU NASA; Canadian Foundation for Climate and Atmospheric Science FX Terry O'Byrne and two anonymous reviewers provided helpful comments that improved this manuscript. We thank the OMI and MODIS teams as well as Environment Canada for making their data publicly available. This research was supported by NASA and the Canadian Foundation for Climate and Atmospheric Science. NR 57 TC 10 Z9 10 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 8 PY 2010 VL 115 AR D17305 DI 10.1029/2009JD013079 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 649GF UT WOS:000281755400002 ER PT J AU Abadie, J Abbott, BP Abbott, R Abernathy, M Accadia, T Acerneseac, F Adams, C Adhikari, R Ajith, P Allen, B Allen, G Ceron, EA Amin, RS Anderson, SB Anderson, WG Antonuccia, F Aoudiaa, S Arain, MA Araya, M Aronsson, M Arun, KG Aso, Y Aston, S Astonea, P Atkinson, DE Aufmuth, P Aulbert, C Babak, S Baker, P Ballardin, G Ballmer, S Barker, D Barnum, S Baroneac, F Barr, B Barriga, P Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Bauchrowitz, J Bauera, TS Behnke, B Beker, MG Benacquista, M Bertolini, A Betzwieser, J Beveridge, N Beyersdorf, PT Bigottaab, S Bilenko, IA Billingsley, G Birch, J Birindellia, S Biswas, R Bitossi, M Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Bloma, M Blomberg, A Boccara, C Bock, O Bodiya, TP Bondarescu, R Bondu, F Bonelli, L Bork, R Born, M Bose, S Bosi, L Boyle, M Braccini, S Bradaschia, C Brady, PR Braginsky, VB Brau, JE Breyer, J Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Budzynski, R Bulik, T Bulten, HJ Buonanno, A Burguet-Castell, J Burmeister, O Buskulic, D Byer, RL Cadonati, L Cagnoli, G Calloni, E Camp, JB Campagna, E Campsie, P Cannizzo, J Cannon, KC Canuel, B Cao, J Capano, C Carbognani, F Caride, S Caudill, S Cavagli, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chalermsongsak, T Chalkley, E Charlton, P Mottin, EC Chelkowski, S Chen, Y Chincarini, A Christensen, N Chua, SSY Chung, CTY Clark, D Clark, J Clayton, JH Cleva, F Coccia, E Colacino, CN Colas, J Colla, A Colombini, M Conte, R Cook, D Corbitt, TR Corda, C Cornish, N Corsi, A Costa, CA Coulon, JP Coward, D Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Culter, RM Cumming, A Cunningham, L Cuoco, E Dahl, K Danilishin, SL Dannenberg, R D'Antonio, S Danzmann, K Dari, A Das, K Dattilo, V Daudert, B Davier, M Davies, G Davis, A Daw, EJ Day, R Dayanga, T De Rosa, R Debra, D Degallaix, J Del Prete, M Dergachev, V DeRosa, R DeSalvo, R Devanka, P Dhurandhar, S Fiore, L Di Lieto, A Di Palma, I Emilio, MD Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Doomes, EE Dorsher, S Douglas, ESD Dragocd, M Drever, RWP Driggers, JC Dueck, J Dumas, JC Eberle, T Edgar, M Edwards, M Effler, A Ehrens, P Engel, R Etzel, T Evans, M Evans, T Fafone, V Fairhurst, S Fan, Y Farr, BF Fazi, D Fehrmann, H Feldbaum, D Ferrante, I Fidecaro, F Finn, LS Fiori, I Flaminio, R Flanigan, M Flasch, K Foley, S Forrest, C Forsi, E Fotopoulos, N Fournier, JD Franc, J Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fulda, P Fyffe, M Gammaitoni, L Garofoli, JA Garufiab, F Gemme, G Genin, E Gennai, A Gholami, I Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Gill, C Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Graef, C Granata, M Grant, A Gras, S Gray, C Greenhalgh, RJS Gretarsson, AM Greveriea, C Grosso, R Grote, H Grunewald, S Guidi, GM Gustafson, EK Gustafson, R Hage, B Hall, P Hallam, JM Hammer, D Hammond, G Hanks, J Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Haughian, K Hayama, K Heefner, J Heitmann, H Hello, P Heng, IS Heptonstall, A Hewitson, M Hild, S Hirose, E Hoak, D Hodge, KA Holt, K Hosken, DJ Hough, J Howell, E Hoyland, D Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Ingram, DR Inta, R Isogai, T Ivanov, A Jaranowski, P Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kanner, J Katsavounidis, E Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Khalaidovski, A Khalili, FY Khazanov, EA Kim, C Kim, H King, PJ Kinzel, DL Kissel, JS Klimenko, S Kondrashov, V Kopparapu, R Koranda, S Kowalska, I Kozak, D Krause, T Kringel, V Krishnamurthy, S Krishnan, B Krolak, A Kuehn, G Kullman, J Kumar, R Kwee, P Landry, M Lang, M Lantz, B Lastzka, N Lazzarini, A Leaci, P Leong, J Leonor, I Leroy, N Letendre, N Li, J Li, TGF Lin, H Lindquist, PE Lockerbie, NA Lodhia, D Lorenzinia, M Lorietteb, V Lormand, M Losurdo, G Lu, P Luan, J Lubinski, M Lucianetti, A Luck, H Lundgren, A Machenschalk, B MacInnis, M Mackowski, JM Mageswaran, M Mailand, K Majoranaa, E Mak, C Man, N Mandel, I Mandic, V Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McIntyre, G McIvor, G McKechan, DJA Meadors, G Mehmet, M Meier, T Melatos, A Melissinos, AC Mendell, G Menendez, DF Mercer, RA Merill, L Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mino, Y Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moe, B Mohan, M Mohanty, SD Mohapatra, SRP Moraru, D Moreau, J Moreno, G Morgado, N Morgia, A Morioka, T Mors, K Mosca, S Moscatelli, V Mossavi, K Mours, B MowLowry, C Mueller, G Mukherjee, S Mullavey, A Muller-Ebhardt, H Munch, J Murray, PG Nash, T Nawrodt, R Nelson, J Neri, I Newton, G Nishizawa, A Nocera, F Nolting, D Ochsner, E O'Dell, J Ogin, GH Oldenburg, RG O'Reilly, B O'Shaughnessy, R Osthelder, C Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pagliaroli, G Palladino, L Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Pardi, S Pareja, M Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pedraza, M Pekowsky, L Penn, S Peralta, C Perreca, A Persichetti, G Pichot, M Pickenpack, M Piergiovanni, F Pietkae, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Postiglione, F Prato, M Predoi, V Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, L Puncken, O Punturoa, M Puppo, P Quetschke, V Raab, FJ Rabaste, O Rabeling, DS Radke, T Radkins, H Raffai, P Rakhmanov, M Rankins, B Rapagnani, P Raymond, V Re, V Reed, CM Reed, T Regimbau, T Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Roberts, P Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rover, C Rogstad, S Rolland, L Rollins, J Romano, JD Romano, R Romie, JH Rosinskag, D Rowan, S Udiger, AR Ruggi, P Ryan, K Sakata, S Sakosky, M Salemi, F Sammut, L de la Jordana, LS Sandberg, V Sannibale, V Santamaria, L Santostasi, G Saraf, S Sassolas, B Sathyaprakash, BS Sato, S Satterthwaite, M Saulson, PR Savage, R Schilling, R Schnabel, R Schofield, R Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Seifert, F Sellers, D Sengupta, AS Sentenac, D Sergeev, A Shaddock, DA Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Singer, A Sintes, AM Skelton, G Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Somiya, K Sorazu, B Speirits, FC Stein, AJ Stein, LC Steinlechner, S Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, A Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thomas, P Thorne, KA Thorne, KS Thrane, E Thuering, A Titsler, C Tokmakov, KV Toncelli, A Tonelli, M Torres, C Torrie, CI Tournefier, E Travasso, F Traylor, G Trias, M Trummer, J Tseng, K Ugolini, D Urbanek, K Vahlbruch, H Vaishnav, B Vajente, G Vallisneri, M van den Branda, JFJ Van den Broeck, C Van der Puttena, S van der Sluys, MV van Veggel, AA Vass, S Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G Veitch, J Veitch, PJ Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, A Vineta, JY Vocca, H Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Wanner, A Ward, RL Wasa, M Wei, P Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wessels, P West, M Westphal, T Wette, K Whelan, JT EWhitcomb, S White, DJ Whiting, BF Wilkinson, C Willems, PA Williams, L Willke, B Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Yakushin, I Yamamoto, H Yamamoto, K Yeaton-Massey, D Yoshida, S Yu, PP Yvert, M Zanolin, M Zhang, L Zhang, Z Zhao, C Zotov, N Zucker, ME Zweizig, J Belczynski, K AF Abadie, J. Abbott, B. P. Abbott, R. Abernathy, M. Accadia, T. Acerneseac, F. Adams, C. Adhikari, R. Ajith, P. Allen, B. Allen, G. Ceron, E. Amador Amin, R. S. Anderson, S. B. Anderson, W. G. Antonuccia, F. Aoudiaa, S. Arain, M. A. Araya, M. Aronsson, M. Arun, K. G. Aso, Y. Aston, S. Astonea, P. Atkinson, D. E. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barker, D. Barnum, S. Baroneac, F. Barr, B. Barriga, P. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Bauchrowitz, J. Bauera, Th S. Behnke, B. Beker, M. G. Benacquista, M. Bertolini, A. Betzwieser, J. Beveridge, N. Beyersdorf, P. T. Bigottaab, S. Bilenko, I. A. Billingsley, G. Birch, J. Birindellia, S. Biswas, R. Bitossi, M. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Bloma, M. Blomberg, A. Boccara, C. Bock, O. Bodiya, T. P. Bondarescu, R. Bondu, F. Bonelli, L. Bork, R. Born, M. Bose, S. Bosi, L. Boyle, M. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Brau, J. E. Breyer, J. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Budzynski, R. Bulik, T. Bulten, H. J. Buonanno, A. Burguet-Castell, J. Burmeister, O. Buskulic, D. Byer, R. L. Cadonati, L. Cagnoli, G. Calloni, E. Camp, J. B. Campagna, E. Campsie, P. Cannizzo, J. Cannon, K. C. Canuel, B. Cao, J. Capano, C. Carbognani, F. Caride, S. Caudill, S. Cavagli, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chalermsongsak, T. Chalkley, E. Charlton, P. Mottin, E. Chassande Chelkowski, S. Chen, Y. Chincarini, A. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Clark, D. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, R. Cook, D. Corbitt, T. R. Corda, C. Cornish, N. Corsi, A. Costa, C. A. Coulon, J. P. Coward, D. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Culter, R. M. Cumming, A. Cunningham, L. Cuoco, E. Dahl, K. Danilishin, S. L. Dannenberg, R. D'Antonio, S. Danzmann, K. Dari, A. Das, K. Dattilo, V. Daudert, B. Davier, M. Davies, G. Davis, A. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. Debra, D. Degallaix, J. Del Prete, M. Dergachev, V. DeRosa, R. DeSalvo, R. Devanka, P. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Di Palma, I. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Doomes, E. E. Dorsher, S. Douglas, E. S. D. Dragocd, M. Drever, R. W. P. Driggers, J. C. Dueck, J. Dumas, J. C. Eberle, T. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Engel, R. Etzel, T. Evans, M. Evans, T. Fafone, V. Fairhurst, S. Fan, Y. Farr, B. F. Fazi, D. Fehrmann, H. Feldbaum, D. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Flaminio, R. Flanigan, M. Flasch, K. Foley, S. Forrest, C. Forsi, E. Fotopoulos, N. Fournier, J. D. Franc, J. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Gammaitoni, L. Garofoli, J. A. Garufiab, F. Gemme, G. Genin, E. Gennai, A. Gholami, I. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Gill, C. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Graef, C. Granata, M. Grant, A. Gras, S. Gray, C. Greenhalgh, R. J. S. Gretarsson, A. M. Greveriea, C. Grosso, R. Grote, H. Grunewald, S. Guidi, G. M. Gustafson, E. K. Gustafson, R. Hage, B. Hall, P. Hallam, J. M. Hammer, D. Hammond, G. Hanks, J. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Haughian, K. Hayama, K. Heefner, J. Heitmann, H. Hello, P. Heng, I. S. Heptonstall, A. Hewitson, M. Hild, S. Hirose, E. Hoak, D. Hodge, K. A. Holt, K. Hosken, D. J. Hough, J. Howell, E. Hoyland, D. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Ingram, D. R. Inta, R. Isogai, T. Ivanov, A. Jaranowski, P. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kanner, J. Katsavounidis, E. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, C. Kim, H. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kondrashov, V. Kopparapu, R. Koranda, S. Kowalska, I. Kozak, D. Krause, T. Kringel, V. Krishnamurthy, S. Krishnan, B. Krolak, A. Kuehn, G. Kullman, J. Kumar, R. Kwee, P. Landry, M. Lang, M. Lantz, B. Lastzka, N. Lazzarini, A. Leaci, P. Leong, J. Leonor, I. Leroy, N. Letendre, N. Li, J. Li, T. G. F. Lin, H. Lindquist, P. E. Lockerbie, N. A. Lodhia, D. Lorenzinia, M. Lorietteb, V. Lormand, M. Losurdo, G. Lu, P. Luan, J. Lubinski, M. Lucianetti, A. Lueck, H. Lundgren, A. Machenschalk, B. MacInnis, M. Mackowski, J. M. Mageswaran, M. Mailand, K. Majoranaa, E. Mak, C. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McIvor, G. McKechan, D. J. A. Meadors, G. Mehmet, M. Meier, T. Melatos, A. Melissinos, A. C. Mendell, G. Menendez, D. F. Mercer, R. A. Merill, L. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mino, Y. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moe, B. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moraru, D. Moreau, J. Moreno, G. Morgado, N. Morgia, A. Morioka, T. Mors, K. Mosca, S. Moscatelli, V. Mossavi, K. Mours, B. MowLowry, C. Mueller, G. Mukherjee, S. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murray, P. G. Nash, T. Nawrodt, R. Nelson, J. Neri, I. Newton, G. Nishizawa, A. Nocera, F. Nolting, D. Ochsner, E. O'Dell, J. Ogin, G. H. Oldenburg, R. G. O'Reilly, B. O'Shaughnessy, R. Osthelder, C. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pagliaroli, G. Palladino, L. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Pardi, S. Pareja, M. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pedraza, M. Pekowsky, L. Penn, S. Peralta, C. Perreca, A. Persichetti, G. Pichot, M. Pickenpack, M. Piergiovanni, F. Pietkae, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Postiglione, F. Prato, M. Predoi, V. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturoa, M. Puppo, P. Quetschke, V. Raab, F. J. Rabaste, O. Rabeling, D. S. Radke, T. Radkins, H. Raffai, P. Rakhmanov, M. Rankins, B. Rapagnani, P. Raymond, V. Re, V. Reed, C. M. Reed, T. Regimbau, T. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Roberts, P. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Roever, C. Rogstad, S. Rolland, L. Rollins, J. Romano, J. D. Romano, R. Romie, J. H. Rosinskag, D. Rowan, S. Udiger, A. R. Ruggi, P. Ryan, K. Sakata, S. Sakosky, M. Salemi, F. Sammut, L. Sancho de la Jordana, L. Sandberg, V. Sannibale, V. Santamaria, L. Santostasi, G. Saraf, S. Sassolas, B. Sathyaprakash, B. S. Sato, S. Satterthwaite, M. Saulson, P. R. Savage, R. Schilling, R. Schnabel, R. Schofield, R. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Seifert, F. Sellers, D. Sengupta, A. S. Sentenac, D. Sergeev, A. Shaddock, D. A. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Singer, A. Sintes, A. M. Skelton, G. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Somiya, K. Sorazu, B. Speirits, F. C. Stein, A. J. Stein, L. C. Steinlechner, S. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Thuering, A. Titsler, C. Tokmakov, K. V. Toncelli, A. Tonelli, M. Torres, C. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Trias, M. Trummer, J. Tseng, K. Ugolini, D. Urbanek, K. Vahlbruch, H. Vaishnav, B. Vajente, G. Vallisneri, M. van den Branda, J. F. J. Van den Broeck, C. Van der Puttena, S. van der Sluys, M. V. van Veggel, A. A. Vass, S. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. Vineta, J-Y Vocca, H. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Wanner, A. Ward, R. L. Wasa, M. Wei, P. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. EWhitcomb, S. White, D. J. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, L. Willke, B. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yeaton-Massey, D. Yoshida, S. Yu, P. P. Yvert, M. Zanolin, M. Zhang, L. Zhang, Z. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. Belczynski, K. CA LIGO Sci Collaboration & Virgo TI Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors SO CLASSICAL AND QUANTUM GRAVITY LA English DT Review ID GAMMA-RAY BURSTS; MASS BLACK-HOLES; NEUTRON-STAR BINARIES; CONSTRAINING POPULATION; GLOBULAR-CLUSTERS; SYNTHESIS MODELS; SUPERNOVA RATES; MERGERS; COMPANIONS; RADIATION AB We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo. Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters and are still uncertain. Themost confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our galaxy. These yield a likely coalescence rate of 100 Myr(-1) per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 Myr(-1) MWEG(-1) to 1000 Myr(-1) MWEG(-1) (Kalogera et al 2004 Astrophys. J. 601 L179; Kalogera et al 2004 Astrophys. J. 614 L137 ( erratum)). We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our advanced detectors. Using the detector sensitivities derived from these data, we find a likely detection rate of 0.02 per year for Initial LIGO-Virgo interferometers, with a plausible range between 2 x 10(-4) and 0.2 per year. The likely binary neutron-star detection rate for the Advanced LIGO-Virgo network increases to 40 events per year, with a range between 0.4 and 400 per year. C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Araya, M.; Aronsson, M.; Aso, Y.; Ballmer, S.; Bertolini, A.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cannon, K. C.; Cepeda, C.; Chalermsongsak, T.; Coyne, D. C.; Dannenberg, R.; Daudert, B.; Dergachev, V.; DeSalvo, R.; Driggers, J. C.; Ehrens, P.; Engel, R.; Etzel, T.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Kozak, D.; Lazzarini, A.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Mak, C.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Mitra, S.; Ochsner, E.; Ogin, G. H.; Osthelder, C.; Patel, P.; Pedraza, M.; Privitera, S.; Robertson, N. A.; Sannibale, V.; Searle, A. C.; Seifert, F.; Sengupta, A. S.; Singer, A.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Vass, S.; Villar, A.; Wallace, L.; Ward, R. L.; Weinstein, A. J.; EWhitcomb, S.; Willems, P. A.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Beveridge, N.; Campsie, P.; Chalkley, E.; Cumming, A.; Cunningham, L.; Edgar, M.; Gill, C.; Grant, A.; Hammond, G.; Haughian, K.; Heng, I. S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Martin, I. W.; Miller, J.; Murray, P. G.; Nash, T.; Nelson, J.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Scott, J.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Tokmakov, K. V.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Accadia, T.; Buskulic, D.; Dietz, A.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Trummer, J.; Verkindt, D.; Yvert, M.] Univ Savoie, Lab Annecy Le Vieux Phys Particules LAPP, IN2P3, CNRS, F-74941 Annecy Le Vieux, France. [Acerneseac, F.; Baroneac, F.; Calloni, E.; De Rosa, R.; Di Fiore, L.; Garufiab, F.; Milano, L.; Mosca, S.; Pardi, S.; Persichetti, G.; Romano, R.] Univ Naples Federico 2, Sez Napolia, I-80126 Naples, Italy. [Acerneseac, F.; Baroneac, F.; Romano, R.] Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Adams, C.; Birch, J.; Bridges, D. O.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Hild, S.; Holt, K.; Huynh-Dinh, T.; Kinzel, D. L.; Lormand, M.; Meyer, M. S.; Nishizawa, A.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] LIGO, Livingston Observ, Livingston, LA 70754 USA. [Allen, B.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Burmeister, O.; Dahl, K.; Danzmann, K.; Di Palma, I.; Dueck, J.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Giampanis, S.; Gossler, S.; Graef, C.; Grote, H.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kullman, J.; Lastzka, N.; Leaci, P.; Leong, J.; Lueck, H.; Machenschalk, B.; Mehmet, M.; Messenger, C.; Mors, K.; Mossavi, K.; Mueller-Ebhardt, H.; Pareja, M.; Pickenpack, M.; Pletsch, H. J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Udiger, A. R.; Salemi, F.; Schilling, R.; Schnabel, R.; Schulz, B.; Steinlechner, S.; Taylor, J. R.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Allen, B.; Ceron, E. Amador; Biswas, R.; Brady, P. R.; Burguet-Castell, J.; Clayton, J. H.; Creighton, J. D. E.; Flasch, K.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Moe, B.; Oldenburg, R. G.; Papa, M. A.; Price, L. R.; Siemens, X.; Skelton, G.; Vaulin, R.; Wiseman, A. G.; Yu, P. P.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, G.; Byer, R. L.; Clark, D.; Debra, D.; Lantz, B.; Lu, P.; Tseng, K.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Amin, R. S.; Caudill, S.; Costa, C. A.; DeRosa, R.; Effler, A.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Kissel, J. S.; Slutsky, J.; Sung, M.; Wen, S.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Antonuccia, F.; Astonea, P.; Colla, A.; Corsi, A.; Frasca, S.; Majoranaa, E.; Moscatelli, V.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] INFN, Sez Roma, I-00185 Rome, Italy. [Colla, A.; Colombini, M.; Frasca, S.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Aoudiaa, S.; Birindellia, S.; Bondu, F.; Brillet, A.; Cleva, F.; Coulon, J. P.; Fournier, J. D.; Greveriea, C.; Heitmann, H.; Man, N.; Pichot, M.; Regimbau, T.; Vineta, J-Y] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France. [Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Arain, M. A.; Das, K.; Dooley, K. L.; Feldbaum, D.; Klimenko, S.; Lin, H.; Lucianetti, A.; Martin, R. M.; Mitselmakher, G.; Mueller, G.; Ottens, R. S.; Pankow, C.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Wasa, M.] Univ Paris 11, LAL, IN2P3, CNRS, F-91898 Orsay, France. [Boccara, C.; Lorietteb, V.; Moreau, J.] CNRS, ESPCI, F-75005 Paris, France. [Aston, S.; Chelkowski, S.; Cruise, A. M.; Culter, R. M.; Freise, A.; Fulda, P.; Hallam, J. M.; Hoyland, D.; Lodhia, D.; Page, A.; Perreca, A.; Vecchio, A.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Atkinson, D. E.; Barker, D.; Barton, M. A.; Bland, B.; Cook, D.; Douglas, E. S. D.; Flanigan, M.; Gray, C.; Hanks, J.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sakosky, M.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO, Hanford Observ, Richland, WA 99352 USA. [Aufmuth, P.; Bizouard, M. A.; Danzmann, K.; Hage, B.; Kwee, P.; Lueck, H.; Meier, T.; Thuering, A.; Vahlbruch, H.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Anderson, W. G.; Babak, S.; Behnke, B.; Gholami, I.; Grunewald, S.; Krishnan, B.; Papa, M. A.; Peralta, C.; Radke, T.; Robinson, E. L.; Santamaria, L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.; Ingram, D. R.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Huet, D.; Marque, J.; Mohan, M.; Newton, G.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.] European Gravitat Observ, I-56021 Cascina, Pi, Italy. [Barnum, S.; Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Barriga, P.; Blair, D.; Coward, D.; Dumas, J. C.; Fan, Y.; Gras, S.; Howell, E.; Ju, L.; Merill, L.; Miao, H.; Susmithan, S.; Wen, L.; Zhang, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Corbitt, T. R.; Donovan, F.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Stein, A. J.; Stein, L. C.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Barsuglia, M.; Mottin, E. Chassande; Granata, M.; Rabaste, O.] Univ Denis Diderot Paris 7, APC, CNRS, UMR7164 IN2P3,Observ Paris, Paris, France. [Bartos, I.; Marka, S.; Marka, Z.; Matone, L.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Bauera, Th S.; Beker, M. G.; Bloma, M.; Bulten, H. J.; Li, T. G. F.; Rabeling, D. S.; van den Branda, J. F. J.; Van der Puttena, S.] NIKHEF H, Natl Inst Subat Phys, NL-1009 DB Amsterdam, Netherlands. [Bulten, H. J.; Rabeling, D. S.; van den Branda, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Benacquista, M.; Creighton, T. D.; Diaz, M.; Grosso, R.; Li, J.; Mohanty, S. D.; Mukherjee, S.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Vaishnav, B.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Bigottaab, S.; Bonelli, L.; Corda, C.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Bigottaab, S.; Bitossi, M.; Bonelli, L.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; Corda, C.; Del Prete, M.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] INFN, Sez Pisa, I-56127 Pisa, Italy. [Del Prete, M.; Mantovani, M.] Univ Siena, I-53100 Siena, Italy. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Tarabrin, S. P.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Blomberg, A.; Cadonati, L.; Hoak, D.; Mohapatra, S. R. P.; Rogstad, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Bondarescu, R.; Finn, L. S.; Kopparapu, R.; Lang, M.; Menendez, D. F.; O'Shaughnessy, R.; Owen, B. J.; Titsler, C.] Penn State Univ, University Pk, PA 16802 USA. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Dari, A.; Gammaitoni, L.; Marchesoni, F.; Nawrodt, R.; Punturoa, M.; Travasso, F.; Vocca, H.] INFN, Sez Perugia, I-6123 Perugia, Italy. [Dari, A.; Gammaitoni, L.; Nawrodt, R.; Travasso, F.] Univ Perugia, I-6123 Perugia, Italy. [Bertolini, A.; Boyle, M.; Chen, Y.; Luan, J.; Mino, Y.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Wen, L.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Schofield, R.] Univ Oregon, Eugene, OR 97403 USA. [Brown, D. A.; Capano, C.; Garofoli, J. A.; Hirose, E.; Lundgren, A.; Pekowsky, L.; Saulson, P. R.; Wei, P.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Budzynski, R.] Univ Warsaw, PL-00681 Warsaw, Poland. [Bulik, T.; Kowalska, I.] Univ Warsaw, Astron Observ, PL-00681 Warsaw, Poland. [Bulik, T.] CAMK PAN, PL-00716 Warsaw, Poland. [Jaranowski, P.; Pietkae, M.] Bialystok Univ, PL-15424 Bialystok, Poland. [Krolak, A.] IPJ, PL-05400 Otwock, Poland. [Rosinskag, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Buonanno, A.; Kanner, J.; Nocera, F.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Cagnoli, G.; Campagna, E.; Guidi, G. M.; Lorenzinia, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] INFN, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Campagna, E.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino, I-61029 Urbino, Italy. [Camp, J. B.; Cannizzo, J.; Stroeer, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cao, J.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Goetz, E.; Gustafson, R.; Meadors, G.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Cavagli, M.; Rankins, B.] Univ Mississippi, University, MS 38677 USA. [Charlton, P.] Charles Sturt Univ, Wagga, NSW 2678, Australia. [Chincarini, A.; Gemme, G.; Prato, M.] INFN, Sez Genova, I-16146 Genoa, Italy. [Christensen, N.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Chua, S. S. Y.; Inta, R.; McClelland, D. E.; MowLowry, C.; Mullavey, A.; Satterthwaite, M.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wette, K.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Melbourne, Vic 3010, Australia. [Clark, J.; Davies, G.; Devanka, P.; Edwards, M.; Fairhurst, S.; Hall, P.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Van den Broeck, C.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Minenkov, Y.; Morgia, A.; Pagliaroli, G.; Palladino, L.; Rocchi, A.] INFN, Sez Roma Tor Vergata, I-67100 Laquila, Italy. [Coccia, E.; Fafone, V.; Morgia, A.] Univ Roma Tor Vergata, I-67100 Laquila, Italy. [Emilio, M. Di Paolo; Pagliaroli, G.; Palladino, L.] Univ Aquila, I-67100 Laquila, Italy. [Conte, R.; Postiglione, F.] Univ Salerno, I-84084 Salerno, Italy. [Davis, A.; Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Daw, E. J.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Dhurandhar, S.] Inter Univ, Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Doomes, E. E.; McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [Doomes, E. E.; McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Dorsher, S.; Harms, J.; Kandhasamy, S.; Mandic, V.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA. [Prodi, G. A.; Re, V.] INFN, Grp Collegato Trento, I-38050 Padua, Italy. [Prodi, G. A.; Re, V.] Univ Trent, I-38050 Padua, Italy. [Dragocd, M.; Vedovato, G.] INFN, Sez Padova, I-35131 Padua, Italy. [Dragocd, M.] Univ Padua, I-35131 Padua, Italy. [Drever, R. W. P.] CALTECH, Pasadena, CA 91125 USA. [Farr, B. F.; Fazi, D.; Kalogera, V.; Krishnamurthy, S.; Mandel, I.; Raymond, V.; van der Sluys, M. V.] Northwestern Univ, Evanston, IL 60208 USA. [Flaminio, R.; Franc, J.; Mackowski, J. M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] Univ Lyon 1, CNRS, Lab Mat Avancs, IN2P3, F-69622 Villeurbanne, France. [Forrest, C.; Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Frei, M.; Krause, T.; Matzner, R. A.; McIvor, G.] Univ Texas Austin, Austin, TX 78712 USA. [Frei, Z.; Raffai, P.] Eotvos Lorand Univ, ELTE, H-1053 Budapest, Hungary. [Greenhalgh, R. J. S.; Nolting, D.; O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Hayama, K.; Kawamura, S.; Morioka, T.; Neri, I.; Sakata, S.; Sato, S.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Husa, S.; Sancho de la Jordana, L.; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Khazanov, E. A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Kim, C.] Lund Observ, SE-22100 Lund, Sweden. [Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [Belczynski, K.] Los Alamos Natl Lab, CCS 2, ISR Grp 1, Los Alamos, NM USA. [Belczynski, K.] Univ Warsaw, Astron Observ, PL-00478 Warsaw, Poland. RP Abadie, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. EM ilyamandel@chgk.info RI Mitrofanov, Valery/D-8501-2012; Puppo, Paola/J-4250-2012; Colla, Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Punturo, Michele/I-3995-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Parisi, Maria/D-2817-2013; Bondu, Francois/A-2071-2012; Toncelli, Alessandra/A-5352-2012; Vocca, Helios/F-1444-2010; Prato, Mirko/D-8531-2012; Hild, Stefan/A-3864-2010; prodi, giovanni/B-4398-2010; Santamaria, Lucia/A-7269-2012; Costa, Cesar/G-7588-2012; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; Kawabe, Keita/G-9840-2011; Neri, Igor/F-1482-2010; Hammond, Giles/B-7861-2009; Shaddock, Daniel/A-7534-2011; Gammaitoni, Luca/B-5375-2009; McClelland, David/E-6765-2010; Strain, Kenneth/D-5236-2011; Martin, Iain/A-2445-2010; Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; Freise, Andreas/F-8892-2011; Abernathy, Matthew/G-1113-2011; Marchesoni, Fabio/A-1920-2008; Ferrante, Isidoro/F-1017-2012; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Ward, Robert/I-8032-2014; Mow-Lowry, Conor/F-8843-2015; Finn, Lee Samuel/A-3452-2009; Ottaway, David/J-5908-2015; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Gehring, Tobias/A-8596-2016; Howell, Eric/H-5072-2014; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Sigg, Daniel/I-4308-2015; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Steinlechner, Sebastian/D-5781-2013; Re, Virginia /F-6403-2013; Pitkin, Matthew/I-3802-2013; Vyatchanin, Sergey/J-2238-2012; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Lucianetti, Antonio/G-7383-2014; Losurdo, Giovanni/K-1241-2014; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Khalili, Farit/D-8113-2012; Vecchio, Alberto/F-8310-2015 OI Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Punturo, Michele/0000-0001-8722-4485; Allen, Bruce/0000-0003-4285-6256; Zhao, Chunnong/0000-0001-5825-2401; Veitch, John/0000-0002-6508-0713; Garufi, Fabio/0000-0003-1391-6168; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Kanner, Jonah/0000-0001-8115-0577; Bondu, Francois/0000-0001-6487-5197; Toncelli, Alessandra/0000-0003-4400-8808; Vocca, Helios/0000-0002-1200-3917; Prato, Mirko/0000-0002-2188-8059; prodi, giovanni/0000-0001-5256-915X; Gorodetsky, Michael/0000-0002-5159-2742; Vicere, Andrea/0000-0003-0624-6231; Neri, Igor/0000-0002-9047-9822; Shaddock, Daniel/0000-0002-6885-3494; Gammaitoni, Luca/0000-0002-4972-7062; McClelland, David/0000-0001-6210-5842; Strain, Kenneth/0000-0002-2066-5355; Lueck, Harald/0000-0001-9350-4846; Marchesoni, Fabio/0000-0001-9240-6793; Granata, Massimo/0000-0003-3275-1186; Aulbert, Carsten/0000-0002-1481-8319; Di Paolo Emilio, Maurizio/0000-0002-9558-3610; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Sorazu, Borja/0000-0002-6178-3198; Zweizig, John/0000-0002-1521-3397; O'Shaughnessy, Richard/0000-0001-5832-8517; Pathak, Devanka/0000-0002-1768-8353; Husa, Sascha/0000-0002-0445-1971; Pinto, Innocenzo M./0000-0002-2679-4457; Guidi, Gianluca/0000-0002-3061-9870; Coccia, Eugenio/0000-0002-6669-5787; Vetrano, Flavio/0000-0002-7523-4296; Nishizawa, Atsushi/0000-0003-3562-0990; calloni, enrico/0000-0003-4819-3297; Swinkels, Bas/0000-0002-3066-3601; Drago, Marco/0000-0002-3738-2431; Hallam, Jonathan Mark/0000-0002-7087-0461; Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; Fairhurst, Stephen/0000-0001-8480-1961; Matichard, Fabrice/0000-0001-8982-8418; Ferrante, Isidoro/0000-0002-0083-7228; Travasso, Flavio/0000-0002-4653-6156; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Stein, Leo/0000-0001-7559-9597; Milano, Leopoldo/0000-0001-9487-5876; Santamaria, Lucia/0000-0002-5986-0449; Ward, Robert/0000-0001-5503-5241; Finn, Lee Samuel/0000-0002-3937-0688; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Gehring, Tobias/0000-0002-4311-2593; Howell, Eric/0000-0001-7891-2817; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Sigg, Daniel/0000-0003-4606-6526; Steinlechner, Sebastian/0000-0003-4710-8548; Pitkin, Matthew/0000-0003-4548-526X; Miao, Haixing/0000-0003-4101-9958; Losurdo, Giovanni/0000-0003-0452-746X; Danilishin, Stefan/0000-0001-7758-7493; Vecchio, Alberto/0000-0002-6254-1617 FU Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation and the Alfred P Sloan Foundation; European Commission FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation and the Alfred P Sloan Foundation. One of us (CK) would like to acknowledge the European Commission. NR 60 TC 619 Z9 619 U1 20 U2 137 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD SEP 7 PY 2010 VL 27 IS 17 AR 173001 DI 10.1088/0264-9381/27/17/173001 PG 25 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 631AC UT WOS:000280317700001 ER PT J AU Chembo, YK Yu, N AF Chembo, Yanne K. Yu, Nan TI Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators SO PHYSICAL REVIEW A LA English DT Article ID MICROWAVE-OSCILLATORS; CALCIUM-FLUORIDE; MIE SCATTERING; NOBEL LECTURE; RAMAN LASER; WAVE-GUIDES; RESONANCES; MICRORESONATORS; MICROCAVITIES; MICROSPHERES AB We describe a general framework based on modal expansion for the study of optical-frequency combs generated with monolithic whispering-gallery-mode resonators. We obtain a set of time-domain rate equations describing the dynamics of each mode as a function of the main characteristics of the cavity, namely, Kerr nonlinearity, absorption, coupling losses, and cavity dispersion (geometrical and material). A stability analysis of the various side modes is performed, which finds analytically the threshold power needed for comb generation. We show that the various whispering gallery modes are excited in a nontrivial way, strongly dependent on the value of the overall cavity dispersion. We demonstrate that the combs are not simply generated through a direct transfer of energy from the pumped mode to all their neighbors but rather through complex intermediate interactions. Anomalous cavity dispersion is also demonstrated to be critical for these cascading processes, and comb generation is thereby unambiguously linked to modulational instability. This theory accurately describes the emergence of spectral modulation and free spectral-range tunability in the comb. It also enables a clear understanding of the various phenomena responsible for the spectral span limitation. Our theoretical predictions are in excellent agreement with the numerical simulations, and they successfully explain the internal mechanisms responsible for the generation of hundreds of Kerr modes in monolithic whispering-gallery-mode resonators. C1 [Chembo, Yanne K.; Yu, Nan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Chembo, YK (reprint author), Univ Franche Comte, Phys Mol Lab, CNRS, Opt Dept,FEMTO ST Inst,UMR 6174, 16 Route Gray, F-25030 Besancon, France. EM yanne.chembo@jpl.nasa.gov FU NASA FX This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Y.K.C. acknowledges support from the NASA postdoctoral program, administered by Oak Ridge Associated Universities (ORAU). The authors would also like to acknowledge logistic support from the JPL Supercomputing and Visualization Facility. NR 49 TC 135 Z9 136 U1 6 U2 65 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD SEP 7 PY 2010 VL 82 IS 3 AR 033801 DI 10.1103/PhysRevA.82.033801 PG 18 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 647TK UT WOS:000281642000004 ER PT J AU Leduc, HG Bumble, B Day, PK Eom, BH Gao, JS Golwala, S Mazin, BA McHugh, S Merrill, A Moore, DC Noroozian, O Turner, AD Zmuidzinas, J AF Leduc, Henry G. Bumble, Bruce Day, Peter K. Eom, Byeong Ho Gao, Jiansong Golwala, Sunil Mazin, Benjamin A. McHugh, Sean Merrill, Andrew Moore, David C. Noroozian, Omid Turner, Anthony D. Zmuidzinas, Jonas TI Titanium nitride films for ultrasensitive microresonator detectors SO APPLIED PHYSICS LETTERS LA English DT Article ID KINETIC INDUCTANCE DETECTORS; SUPERCONDUCTORS; LIFETIMES; TIN AB Titanium nitride (TiN(x)) films are ideal for use in superconducting microresonator detectors for the following reasons: (a) the critical temperature varies with composition (0 < T(c) <5 K); (b) the normal-state resistivity is large, p(n) similar to 100 mu Omega cm, facilitating efficient photon absorption and providing a large kinetic inductance and detector responsivity; and (c) TiN films are very hard and mechanically robust. Resonators using reactively sputtered TiN films show remarkably low loss (Q(i)>10(7)) and have noise properties similar to resonators made using other materials, while the quasiparticle lifetimes are reasonably long, 10-200 mu s. TiN microresonators should therefore reach sensitivities well below 10(-19) W Hz(-1/2). (C) 2010 American Institute of Physics. [doi: 10.1063/1.3480420] C1 [Eom, Byeong Ho; Golwala, Sunil; Moore, David C.; Noroozian, Omid; Zmuidzinas, Jonas] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Leduc, Henry G.; Bumble, Bruce; Day, Peter K.; Turner, Anthony D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gao, Jiansong] Natl Inst Stand & Technol, Boulder, CO 80305 USA. [Mazin, Benjamin A.; McHugh, Sean; Merrill, Andrew] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. RP Zmuidzinas, J (reprint author), CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. EM jonas@caltech.edu RI Mazin, Ben/B-8704-2011; Noroozian, Omid/G-3519-2011 OI Mazin, Ben/0000-0003-0526-1114; Noroozian, Omid/0000-0002-9904-1704 FU National Aeronautics and Space Administration (NASA) [NNG06GC71G, NNX10AC83G]; Jet Propulsion Laboratory (JPL); Gordon and Betty Moore Foundation FX This research was carried out in part at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The devices used in this work were fabricated at the JPL Microdevices Laboratory. This work was supported in part by NASA grants NNG06GC71G and NNX10AC83G, JPL, and the Gordon and Betty Moore Foundation. NR 27 TC 99 Z9 99 U1 3 U2 37 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 6 PY 2010 VL 97 IS 10 AR 102509 DI 10.1063/1.3480420 PG 3 WC Physics, Applied SC Physics GA 658GP UT WOS:000282478800031 ER PT J AU Bedka, KM Minnis, P AF Bedka, Kristopher M. Minnis, Patrick TI GOES 12 observations of convective storm variability and evolution during the Tropical Composition, Clouds and Climate Coupling Experiment field program SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID STRATOSPHERIC WATER-VAPOR; SATELLITE-OBSERVATIONS; DEEP CONVECTION; THUNDERSTORM; TROPOPAUSE; CIRRUS; TEMPERATURE; TRANSPORT; METEOSAT; FLORIDA AB This study characterizes convective clouds that occurred during the Tropical Composition, Clouds and Climate Coupling Experiment as observed within GOES imagery. Overshooting deep convective cloud tops (OT) that penetrate through the tropical tropopause layer and into the stratosphere are of particular interest in this study. The results show that there were clear differences in the areal coverage of anvil cloud, deep convection, and OT activity over land and water and also throughout the diurnal cycle. The offshore waters of Panama, northwest Colombia, and El Salvador were the most active regions for OT-producing convection. A cloud object tracking system is used to monitor the duration and areal coverage of convective cloud complexes as well as the time evolution of their cloud-top microphysical properties. The mean lifetime for these complexes is 5 hours, with some existing for longer than 16 hours. Deep convection is found within the anvil cloud during 60% of the storm lifetime and covered 24% of the anvil cloud. The cloud-top height and optical depth at the storm core followed a reasonable pattern, with maximum values occurring 20% into the storm lifetime. The values in the surrounding anvil cloud peaked at a relative age of 20%-50% before decreasing as the convective cloud complex decayed. Ice particle diameter decreased with distance from the core but generally increased with storm age. These results, which characterize the average convective system during the experiment, should be valuable for formulating and validating convective cloud process models. C1 [Bedka, Kristopher M.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Minnis, Patrick] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Bedka, KM (reprint author), Sci Syst & Applicat Inc, Hampton, VA 23666 USA. EM kristopher.m.bedka@nasa.gov RI Minnis, Patrick/G-1902-2010 OI Minnis, Patrick/0000-0002-4733-6148 FU NASA; Department of Energy [DE-AI02-07ER64546] FX This research was supported by the NASA Radiation Science Program TC4 project, the NASA Applied Sciences Program, and the Department of Energy Atmospheric Radiation Measurement Program through interagency agreement DE-AI02-07ER64546. The authors thank Kirk Ayers for processing the TC4 VIST microphysical retrievals and the University of Wisconsin Space Science and Engineering Center for providing the GOES 12 data and McIDAS software support. NR 45 TC 6 Z9 6 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 3 PY 2010 VL 115 AR D00J13 DI 10.1029/2009JD013227 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 646WE UT WOS:000281574000001 ER PT J AU Parodi, A Tanelli, S AF Parodi, Antonio Tanelli, Simone TI Influence of turbulence parameterizations on high-resolution numerical modeling of tropical convection observed during the TC4 field campaign SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SCALE THERMODYNAMIC FORCINGS; DEEP MOIST CONVECTION; PART I; HORIZONTAL RESOLUTION; VERTICAL DIFFUSION; SIMULATION; SYSTEMS; FORECASTS; CLOUDS; MICROPHYSICS AB In this work, deep moist convective processes, observed during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4) over the East Pacific Intertropical Convergence Zone, were modeled by means of high-resolution numerical simulations with the Weather Research and Forecasting model. Three different turbulence parameterizations and two microphysical parameterizations are used. Their impact on the spatio-temporal structure of predicted convective fields is compared to TC4 observations from a geostationary imager, airborne precipitation radar, and dropsondes. It is found that the large-eddy simulation turbulence closure "upscaled" to the terra incognita range of grid spacings (i.e., 0.1-1 km) is best suited to model the deep convective processes under examination. C1 [Parodi, Antonio] CIMA Res Fdn, I-17100 Savona, Italy. [Tanelli, Simone] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Parodi, A (reprint author), CIMA Res Fdn, Via A Magliotto 2, I-17100 Savona, Italy. EM antonio.parodi@cimafoundation.org FU NASA; Italian Civil Protection Department FX This work was performed at Jet Propulsion Laboratory under contract with NASA, in collaboration with the CIMA Research Foundation with the support of the Italian Civil Protection Department. Support from the NASA Cloud and Radiation Program, Precipitation Measurement Missions Program, and Earth Sciences New Investigator Program is gratefully acknowledged. We are grateful to W.-K. Tao, F. Siccardi, R. Rotunno, Z. S. Haddad, K. A. Emanuel, S. L. Durden, and M. Antonelli for enlightening discussions and useful comments. NR 52 TC 8 Z9 8 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 3 PY 2010 VL 115 AR D00J14 DI 10.1029/2009JD013302 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 646WE UT WOS:000281574000003 ER PT J AU Zhang, ZB Platnick, S Yang, P Heidinger, AK Comstock, JM AF Zhang, Zhibo Platnick, Steven Yang, Ping Heidinger, Andrew K. Comstock, Jennifer M. TI Effects of ice particle size vertical inhomogeneity on the passive remote sensing of ice clouds SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID DROPLET EFFECTIVE RADIUS; BULK SCATTERING PROPERTIES; MU-M WINDOW; CIRRUS CLOUDS; RADIATIVE PROPERTIES; TROPICAL CIRRUS; RESOLUTION; RETRIEVAL; MODIS; PARAMETERIZATION AB The solar reflectance bi-spectral (SRBS) and infrared split-window (IRSpW) methods are two of the most popular techniques for passive ice cloud property retrievals from multispectral imagers. Ice clouds are usually assumed to be vertically homogeneous in global operational algorithms based on these methods, although significant vertical variations of ice particle size are typically observed in ice clouds. In this study we investigate uncertainties in retrieved optical thickness, effective particle size, and ice water path introduced by a homogeneous cloud assumption in both the SRBS and IRSpW methods, and focus on whether the assumption can lead to significant discrepancies between the two methods. The study simulates the upwelling spectral radiance associated with vertically structured clouds and passes the results through representative SRBS and IRSpW retrieval algorithms. Cloud optical thickness is limited to values for which IRSpW retrievals are possible (optical thickness less than about 7). When the ice cloud is optically thin and yet has a significant ice particle size vertical variation, it is found that both methods tend to underestimate the effective radius and ice water path. The reason for the underestimation is the nonlinear dependence of ice particle scattering properties (extinction and single scattering albedo) on the effective radius. Because the nonlinearity effect is stronger in the IRSpW than the SRBS method, the IRSpW-based IWP tends to be smaller than the SRBS counterpart. When the ice cloud is moderately optically thick, the IRSpW method is relatively insensitive to cloud vertical structure and effective radius retrieval is weighted toward smaller ice particle size, while the weighting function makes the SRBS method more sensitive to the ice particle size in the upper portion of the cloud. As a result, when ice particle size increases monotonically toward cloud base, the two methods are in qualitative agreement; in the event that ice particle size decreases toward cloud base, the effective radius and ice water path retrievals based on the SRBS method are substantially larger than those from the IRSpW. The main findings of this study suggest that the homogenous cloud assumption can affect the SRBS and IRSpW methods to different extents and, consequently, can lead to significantly different retrievals. Therefore caution should be taken when comparing and combining the ice cloud property retrievals from these two methods. C1 [Zhang, Zhibo] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Comstock, Jennifer M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Heidinger, Andrew K.] Natl Environm Satellite Data & Informat Serv, Ctr Satellite Applicat & Res, NOAA, Madison, WI 53706 USA. [Platnick, Steven] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. RP Zhang, ZB (reprint author), Univ Maryland, Goddard Earth Sci & Technol Ctr, 5523 Res Pk Dr,Ste 320, Baltimore, MD 21228 USA. EM zzbatmos@umbc.edu RI Yang, Ping/B-4590-2011; Zhang, Zhibo/D-1710-2010; Platnick, Steven/J-9982-2014; Heidinger, Andrew/F-5591-2010 OI Zhang, Zhibo/0000-0001-9491-1654; Platnick, Steven/0000-0003-3964-3567; Heidinger, Andrew/0000-0001-7631-109X FU NASA [NNX08AP57G]; DOE FX This work was funded in part by NASA's Radiation Sciences Program. P. Yang acknowledges NASA support (NNX08AP57G). The contribution from J. M. Comstock was supported by the DOE Atmospheric Radiation Measurement Program. The authors thank the two reviewers for their insightful comments, questions, and suggestions, which have helped to improve this manuscript. NR 72 TC 27 Z9 27 U1 2 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 3 PY 2010 VL 115 AR D17203 DI 10.1029/2010JD013835 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 646WE UT WOS:000281574000006 ER PT J AU Selvans, MM Plaut, JJ Aharonson, O Safaeinili, A AF Selvans, M. M. Plaut, J. J. Aharonson, O. Safaeinili, A. TI Internal structure of Planum Boreum, from Mars advanced radar for subsurface and ionospheric sounding data SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID POLAR LAYERED DEPOSITS; REGION; STRATIGRAPHY; SURFACE; HISTORY; ORIGIN AB An investigation of the internal structure of the ice-rich Planum Boreum (PB) deposit at the north pole of Mars is presented, using 178 orbits of Mars advanced radar for subsurface and ionospheric sounding data. For each radargram, bright, laterally extensive surface and subsurface reflectors are identified and the time delay between them is converted to unit thicknesses, using a real dielectric constant of 3. Results include maps of unit thickness, for PB and its two constituent units, the stratigraphically older basal unit (BU) and the stratigraphically younger north polar layered deposits (NPLD). Maps of the individual units' surface elevation are also provided. Estimates of water ice volume in each unit are (1.3 +/- 0.2) x 10(6) km(3) in PB, (7.8 +/- 1.2) x 10(5) km(3) in the NPLD, and (4.5 +/- 1.0) x 10(5) km(3) in the BU. No lithospheric deflection is apparent under PB, in agreement with previous findings for only the Gemina Lingula lobe, which suggests that a thick elastic lithosphere has existed at the north pole of Mars since before the emplacement of the BU. The extent of BU material in the Olympia Planum lobe of PB is directly detected, providing a more accurate map of BU extent than previously available from imagery and topography. A problematic area for mapping the BU extent and thickness is in the distal portion of the 290 degrees E-300 degrees E region, where MARSIS data show no subsurface reflectors, even though the BU is inferred to be present from other lines of evidence. C1 [Selvans, M. M.; Aharonson, O.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Plaut, J. J.; Safaeinili, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Selvans, MM (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM selvans@gps.caltech.edu FU NASA FX We dedicate this paper to the late Ali Safaeinili, whose passion, skill, and support were both inspiring and essential for the completion of this study. Part of the research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support from the NASA-Mars Express project is gratefully acknowledged. NR 28 TC 13 Z9 13 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD SEP 3 PY 2010 VL 115 AR E09003 DI 10.1029/2009JE003537 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 647QE UT WOS:000281632900001 ER PT J AU Lohn, AJ Onishi, T Kobayashi, NP AF Lohn, Andrew J. Onishi, Takehiro Kobayashi, Nobuhiko P. TI Optical properties of indium phosphide nanowire ensembles at various temperatures SO NANOTECHNOLOGY LA English DT Article ID INP NANOWIRES; DEPENDENT PHOTOLUMINESCENCE; TWINNING SUPERLATTICES; BAND-GAP; NANONEEDLES; SURFACES AB Ensembles that contain two types (zincblende and wurtzite) of indium phosphide nanowires grown on non-single crystalline surfaces were studied by micro-photoluminescence and micro-Raman spectroscopy at various low temperatures. The obtained spectra are discussed with the emphasis on the effects of differing lattice types, geometries, and crystallographic orientations present within an ensemble of nanowires grown on non-single crystalline surfaces. In the photoluminescence spectra, a typical Varshni dependence of band gap energy on temperature was observed for emissions from zincblende nanowires and in the high temperature regime energy transfer from excitonic transitions and band-edge transitions was identified. In contrast, the photoluminescence emissions associated with wurtzite nanowires were rather insensitive to temperature. Raman spectra were collected simultaneously from zincblende and wurtzite nanowires coexisting in an ensemble. Raman peaks of the wurtzite nanowires are interpreted as those related to the zincblende nanowires by a folding of the phonon dispersion. C1 [Lohn, Andrew J.] Univ Calif Santa Cruz, Baskin Sch Engn, Santa Cruz, CA 95064 USA. Univ Calif Santa Cruz, Adv Studies Labs, NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Lohn, AJ (reprint author), Univ Calif Santa Cruz, Baskin Sch Engn, Santa Cruz, CA 95064 USA. RI Kobayashi, Nobuhiko/E-3834-2012 NR 22 TC 14 Z9 14 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD SEP 3 PY 2010 VL 21 IS 35 AR 355702 DI 10.1088/0957-4484/21/35/355702 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 636MY UT WOS:000280742000018 PM 20689159 ER PT J AU Hill, CJ Soibel, A Keo, SA Mumolo, M Ting, DZ Gunapala, SD AF Hill, C. J. Soibel, A. Keo, S. A. Mumolo, M. Ting, D. Z. Gunapala, S. D. TI Mid-infrared quantum dot barrier photodetectors with extended cutoff wavelengths SO ELECTRONICS LETTERS LA English DT Article AB A method to extend the cutoff wavelength of mid-infrared barrier photodetectors by incorporating self-assembled InSb quantum dots into the active area of the detector is demonstrated. This approach enables the extension of the cutoff wavelength of barrier photodetectors from 4.2 to 6 mu m, demonstrating infrared response at temperatures up to 225 K. C1 [Hill, C. J.; Soibel, A.; Keo, S. A.; Mumolo, M.; Ting, D. Z.; Gunapala, S. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hill, CJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Alexander.Soibel@jpl.nasa.gov RI Soibel, Alexander/A-1313-2007 FU National Aeronautics and Space Administration FX This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the National Aeronautics and Space Administration. NR 5 TC 28 Z9 28 U1 2 U2 9 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 0013-5194 J9 ELECTRON LETT JI Electron. Lett. PD SEP 2 PY 2010 VL 46 IS 18 BP 1286 EP U71 DI 10.1049/el.2010.1844 PG 2 WC Engineering, Electrical & Electronic SC Engineering GA 648KY UT WOS:000281693800029 ER PT J AU Tsurutani, BT Horne, RB Pickett, JS Santolik, O Schriver, D Verkhoglyadova, OP AF Tsurutani, Bruce T. Horne, Richard B. Pickett, Jolene S. Santolik, Ondrej Schriver, David Verkhoglyadova, Olga P. TI Introduction to the special section on Chorus: Chorus and its role in space weather SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Editorial Material AB Chorus, a naturally occurring magnetospheric electromagnetic wave, is believed to be the result of a long chain of physical processes starting with supergranular circulation at the sun. The interaction of chorus with energetic electrons produces similar to MeV "killer" electrons that can disable Earth orbiting spacecraft. C1 [Tsurutani, Bruce T.; Verkhoglyadova, Olga P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tsurutani, Bruce T.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys Extraterr Phys, Braunschweig, Germany. [Horne, Richard B.] British Antarctic Survey, NERC, Cambridge CB3 0ET, England. [Pickett, Jolene S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Santolik, Ondrej] Inst Atmospher Phys, Dept Space Phys, Prague 14131 4, Czech Republic. [Santolik, Ondrej] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Schriver, David] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Verkhoglyadova, Olga P.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. RP Tsurutani, BT (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM bruce.tsurutani@jpl.nasa.gov RI Santolik, Ondrej/F-7766-2014; OI Verkhoglyadova, Olga/0000-0002-9295-9539; Horne, Richard/0000-0002-0412-6407 NR 2 TC 7 Z9 7 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP 2 PY 2010 VL 115 AR A00F01 DI 10.1029/2010JA015870 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647QL UT WOS:000281633600007 ER PT J AU Jones, B Matsyutenko, P Su, NC Chang, AHH Kaiser, RI AF Jones, Brant Matsyutenko, Pavlo Su, Nung C. Chang, Agnes H. H. Kaiser, Ralf I. TI Crossed Molecular Beam Study on the Ground State Reaction of Atomic Boron [B(P-2(j))] with Hydrogen Cyanide [HCN(X-1 Sigma(+))] SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID C-N NANOTUBES; DENSITY-FUNCTIONAL THERMOCHEMISTRY; LASER-ABLATION; AB-INITIO; INTERSTELLAR BORON; ORION ASSOCIATION; BONDING STRUCTURE; MASS-SPECTRUM; BCN; FILMS AB The linear boronisocyanide species, [BNC(X-1 Sigma(+))], represents the simplest triatomic molecule with three distinct, neighboring main group atoms of the second row of the periodic table of the elements: boron, carbon, and nitrogen. This makes boronisocyanide a crucial benchmark system to understand the chemical bonding and the electronic structure of small molecules, in particular when compared to the isoelectronic tricarbon molecule, [CCC(X-1 Sigma(+))]. However, a clean, directed synthesis of boronisocyanide a crucial prerequisite to study the properties of this molecule has remained elusive so far. Here, we combine crossed molecular beam experiments of ground state boron atoms (P-2(j)) with hydrogen cyanide with electronic structure calculations and reveal that the boronisocyanide molecule, [BNC(X-1 Sigma(+))], is formed as the exclusive product under gas phase single collision conditions. We also show that higher energy isomers such as the hitherto unnoticed, ring-strained cyclic BNC(X(3)A') structure, which is isoelectronic to the triplet, cyclic tricarbon molecule, [C-3(X(3)A(2)')], do exist as local minima. Our studies present the first directed synthesis and observation of gas phase boronisocyanide providing a doorway for further fundamental studies on one of the simplest triatomic molecules composed solely of group III-V elements. C1 [Jones, Brant; Matsyutenko, Pavlo; Kaiser, Ralf I.] Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. [Jones, Brant] Univ Hawaii Manoa, NASA Astrobiol Inst, Honolulu, HI 96822 USA. [Chang, Agnes H. H.] Natl Dong Hwa Univ, Dept Chem, Shoufeng 974, Hualien, Taiwan. RP Kaiser, RI (reprint author), Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. EM ralfk@hawaii.edu FU Air Force Office of Scientific Research [A9550-09-1-0177] FX This work was supported by the Air Force Office of Scientific Research (A9550-09-1-0177) (PM, RIK). B. J. thanks the NASA Postdoctoral Program at the NASA Astrobiology Institute, administered by Oak Ridge Associated Universities. NR 85 TC 0 Z9 0 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 2 PY 2010 VL 114 IS 34 BP 8999 EP 9006 DI 10.1021/jp104426f PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 641LW UT WOS:000281128900009 PM 20681533 ER PT J AU Peslier, AH Woodland, AB Bell, DR Lazarov, M AF Peslier, Anne H. Woodland, Alan B. Bell, David R. Lazarov, Marina TI Olivine water contents in the continental lithosphere and the longevity of cratons SO NATURE LA English DT Article ID UPPER-MANTLE BENEATH; SOUTHERN AFRICA; PERIDOTITE XENOLITHS; THERMAL EVOLUTION; SINGLE-CRYSTALS; KAAPVAAL CRATON; OXYGEN FUGACITY; EARTHS MANTLE; VISCOSITY; MINERALS AB Cratons, the ancient cores of continents, contain the oldest crust and mantle on the Earth (>2 Gyr old)(1). They extend laterally for hundreds of kilometres, and are underlain to depths of 180-250 km by mantle roots that are chemically and physically distinct from the surrounding mantle(2-4). Forming the thickest lithosphere on our planet, they act as rigid keels isolated from the flowing asthenosphere(5); however, it has remained an open question how these large portions of the mantle can stay isolated for so long from mantle convection. Key physical properties thought to contribute to this longevity include chemical buoyancy due to high degrees of melt-depletion and the stiffness imparted by the low temperatures of a conductive thermal gradient(2,6,7). Geodynamic calculations, however, suggest that these characteristics are not sufficient to prevent the lithospheric mantle from being entrained during mantle convection over billions of years(6,7). Differences in water content are a potential source of additional viscosity contrast between cratonic roots and ambient mantle owing to the well-established hydrolytic weakening effect in olivine(8-10), the most abundant mineral of the upper mantle. However, the water contents of cratonic mantle roots have to date been poorly constrained. Here we show that olivine in peridotite xenoliths from the lithosphere-asthenosphere boundary region of the Kaapvaal craton mantle root are water-poor and provide sufficient viscosity contrast with underlying asthenosphere to satisfy the stability criteria required by geodynamic calculations(9). Our results provide a solution to a puzzling mystery of plate tectonics, namely why the oldest continents, in contrast to short-lived oceanic plates, have resisted recycling into the interior of our tectonically dynamic planet. C1 [Peslier, Anne H.] ESCG, Houston, TX 77058 USA. [Peslier, Anne H.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Woodland, Alan B.; Lazarov, Marina] Goethe Univ Frankfurt, Inst Geosci, D-60438 Frankfurt, Germany. [Bell, David R.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. RP Peslier, AH (reprint author), ESCG, Mail Code JE23,2224 Bay Area Blvd, Houston, TX 77058 USA. EM anne.h.peslier@nasa.gov RI Lazarov, Marina/A-9592-2010; Peslier, Anne/F-3956-2010 FU NSF [EAR0802652] FX We thank M. Kurosawa for providing unpublished mineral data so that we could recalculate pressure-temperature conditions for his samples. We also thank C.-T. Lee, Z.-X. A. Li, F. Niu and A. D. Brandon for discussions. Earlier versions of this manuscript were improved by the comments of D. E. James. This work was supported by NSF grant EAR0802652. NR 49 TC 104 Z9 114 U1 4 U2 42 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD SEP 2 PY 2010 VL 467 IS 7311 BP 78 EP U108 DI 10.1038/nature09317 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 645MB UT WOS:000281461200038 PM 20811455 ER PT J AU Olivas, JD Wright, MC Christoffersen, R Cone, DM McDanels, SJ AF Olivas, J. D. Wright, M. C. Christoffersen, R. Cone, D. M. McDanels, S. J. TI Crystallographic oxide phase identification of char deposits obtained from space shuttle Columbia window debris SO ACTA ASTRONAUTICA LA English DT Article DE Transmission electron microscopy (TEM); Combustion; Titanium; Focused ion beam (FIB); Space shuttle ID PLASMA-SPRAYED COATINGS; MICROSTRUCTURE; ALLOY; SOLIDIFICATION; MORPHOLOGY; ZIRCONIA AB Char deposits on recovered fragments of space shuttle Columbia windowpanes were analyzed to further understand the events that occurred during orbiter reentry and breakup. The TEM analysis demonstrated that oxides of aluminum and titanium mixed with silicon oxides to preserve a history of thermal conditions to which portions of the vehicle were exposed. The presence of Ti during the beginning of the deposition process, along with the thermodynamic phase precipitation upon cool down, indicated that temperatures well above the Ti melt point were experienced. The stratified observations implied that additional exothermic reactions, expectedly metal combustion of a Ti-6Al-4V structure, had to occur for oxide formation. Results are significant for aerospace vehicles, where thermal protection system (TPS) breaches could cause material originally designed for substructural applications to be in direct path with reentry plasma. Published by Elsevier Ltd. C1 [Wright, M. C.; McDanels, S. J.] NASA, Kennedy Space Ctr, FL 32899 USA. [Olivas, J. D.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Christoffersen, R.] Sci Applicat Int Corp, Lyndon B Johnson Space Ctr, Houston, TX USA. RP Wright, MC (reprint author), NASA, Kennedy Space Ctr, FL 32899 USA. EM m.clara.wright@nasa.gov FU National Aeronautics and Space Administration FX This document was prepared under the sponsorship of the National Aeronautics and Space Administration. Neither the United States government nor any person acting on behalf of the United States government assumes any liability resulting from the use of the information contained in this document, or warrants that such use will be free from privately owned rights. NR 27 TC 0 Z9 0 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD SEP-OCT PY 2010 VL 67 IS 5-6 BP 553 EP 560 DI 10.1016/j.actaastro.2010.04.019 PG 8 WC Engineering, Aerospace SC Engineering GA 620AT UT WOS:000279472100005 ER PT J AU Parker, JS Davis, KE Born, GH AF Parker, Jeffrey S. Davis, Kathryn E. Born, George H. TI Chaining periodic three-body orbits in the Earth-Moon system SO ACTA ASTRONAUTICA LA English DT Article DE Earth-Moon orbits; Three-body trajectories; Low-energy; Mission design; Dynamical systems; Manifolds; Orbit transfers ID HETEROCLINIC CONNECTIONS; EXPLORATION NUMERIQUE; PROBLEME RESTREINT; HALO ORBITS; STABILITY AB In this paper, we describe methods to construct complex chains of orbit transfers in the planar circular restricted Earth-Moon three-body system using the invariant manifolds of unstable three-body orbits. It is shown that the Poincare map is a useful tool to identify and construct transfer trajectories from one orbit to another, i.e., homoclinic and heteroclinic orbit connections, with applications to practical spacecraft mission design. A multiple-shooting differential corrector is used to construct complex orbit chains and complex periodic orbits. The resulting complex periodic orbits are shown to be members of continuous families of such orbits, where the characteristics of each orbit in the family vary continuously from one end of the family to the other. Finally, we characterize the cost of constructing an orbit transfer between any two points along two libration orbits using a single maneuver. It is shown that a spacecraft requires substantially less AV to perform such single-maneuver transfers if the transfers are near heteroclinic connections in the corresponding phase space. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Parker, Jeffrey S.; Davis, Kathryn E.; Born, George H.] Univ Colorado, Colorado Ctr Astrodynam Res, Boulder, CO 80309 USA. RP Parker, JS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM parkerjs@gmail.com; katedavis22@gmail.com; george.born@colorado.edu FU NASA; National Science Foundation; Zonta International Amelia Earhart; Alliance for Graduate Education and the Professoriate FX This work has been completed under partial funding by a NASA Graduate Student Researchers Program (GSRP) Fellowship by the National Aeronautics and Space Administration through the Jet Propulsion Laboratory, California Institute of Technology, by a National Science Foundation Graduate Research Fellowship, by a Zonta International Amelia Earhart Fellowship, and by funds from the Alliance for Graduate Education and the Professoriate. NR 43 TC 8 Z9 8 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD SEP-OCT PY 2010 VL 67 IS 5-6 BP 623 EP 638 DI 10.1016/j.actaastro.2010.04.003 PG 16 WC Engineering, Aerospace SC Engineering GA 620AT UT WOS:000279472100012 ER PT J AU Sen, S Carranza, S Pillay, S AF Sen, S. Carranza, S. Pillay, S. TI Multifunctional Martian habitat composite material synthesized from in situ resources SO ADVANCES IN SPACE RESEARCH LA English DT Article DE In situ resources; Martian habitat structures; Multifunctional composites; Radiation shielding; Mechanical properties; Micrometeoroid impact resistance ID HUMAN EXPLORATION; MARS AB The two primary requirements for a Martian habitat structure include effective radiation shielding against the Galactic Cosmic Ray (GCR) environment and sufficient structural and thermal integrity. To significantly reduce the cost associated with transportation of such materials and structures from earth, it is imperative that such building materials should be synthesized primarily from Martian in situ resources. This paper illustrates the feasibility of such an approach. Experimental results are discussed to demonstrate the synthesis of polyethylene (PE) from a simulated Martian atmosphere and the fabrication of a composite material using simulated Martian regolith with PE as the binding material. The radiation shielding effectiveness of the proposed composites is analyzed using results from radiation transport codes and exposure of the samples to high-energy beams that serve as a terrestrial proxy for the GCR environment. Mechanical and ballistic impact resistance properties of the proposed composite as a function of composition, processing parameters, and thermal variations are also discussed to evaluate the multifunctionality of such in situ synthesized composite materials. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Sen, S.] NASA, George C Marshall Space Flight Ctr, BAE Syst, EM 30, Huntsville, AL 35812 USA. [Carranza, S.] Makel Engn Inc, Chico, CA 95973 USA. [Pillay, S.] Univ Alabama, Dept Mat Sci & Engn, Birmingham, AL 35294 USA. RP Sen, S (reprint author), NASA, George C Marshall Space Flight Ctr, BAE Syst, EM 30, Bldg 4464, Huntsville, AL 35812 USA. EM Subhayu.Sen-1@nasa.gov FU NASA FX The authors wish to acknowledge the NASA SBIR program for funding this effort. The authors are extremely grateful to Prof. S. Guetersloh of Texas A&M University, College Station, TX and the personnel at Plasma Processes Inc., Huntsville, Al and HIMAC, Chiba, Japan without whose assistance exposure of the samples to heavy ion beam would not be possible. The authors also wish to express their gratitude to Dr. M. Bhattacharya of Siemens Medical Solutions USA Inc., Chicago, IL for many insightful discussions on deep space radiation environment and experimental nuclear physics. The technical assistance received from Mr. William Seymour for composite sample fabrication is also acknowledged. NR 27 TC 1 Z9 1 U1 1 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD SEP 1 PY 2010 VL 46 IS 5 BP 582 EP 592 DI 10.1016/j.asr.2010.04.009 PG 11 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 640DL UT WOS:000281028000003 ER PT J AU Canan, J Bigelow, RT AF Canan, James Bigelow, Robert T. TI Robert T. Bigelow SO AEROSPACE AMERICA LA English DT Editorial Material C1 [Bigelow, Robert T.] NASA, Washington, DC USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0740-722X J9 AEROSPACE AM JI Aerosp. Am. PD SEP PY 2010 VL 48 IS 8 BP 10 EP 13 PG 4 WC Engineering, Aerospace SC Engineering GA V24JW UT WOS:000208407700009 ER PT J AU Park, MA Darmofal, DL AF Park, Michael A. Darmofal, David L. TI Validation of an Output-Adaptive, Tetrahedral Cut-Cell Method for Sonic Boom Prediction SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT AIAA 26th Applied Aerodynamics Conference CY AUG 18-21, 2008 CL Honolulu, HI SP Amer Inst Aeronaut & Astronaut ID UNSTRUCTURED GRIDS; TURBULENT FLOWS; FLUID-DYNAMICS; ALGORITHM; EQUATIONS; IMPLICIT; MESHES AB A cut-cell approach to computational fluid dynamics that uses the median dual of a tetrahedral background grid is described. The discrete adjoint is also calculated for an adaptive method to control error in a specified Output. The adaptive method is applied to sonic boom prediction by specifying an integral of offbody pressure signature as the output. These predicted signatures are compared to wind-tunnel measurements to validate the method for sonic boom prediction. Accurate midfield sonic boom pressure signatures are calculated with the Euler equations without the use of hybrid grid or signature propagation methods. Highly refined, shock-aligned anisotropic grids are produced by this method from coarse isotropic grids created without prior knowledge of shock locations. A heuristic reconstruction limiter provides stable flow and adjoint solution schemes while producing similar signatures to Barth-Jespersen and Venkatakrishnan limiters. The use of cut cells with an output-based adaptive scheme automates the volume grid generation task after a triangular mesh is generated for the cut surface. C1 [Park, Michael A.] NASA, Langley Res Ctr, Computat Aerosci Branch, Hampton, VA 23681 USA. [Darmofal, David L.] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA. RP Park, MA (reprint author), NASA, Langley Res Ctr, Computat Aerosci Branch, Mail Stop 128, Hampton, VA 23681 USA. NR 67 TC 7 Z9 8 U1 0 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD SEP PY 2010 VL 48 IS 9 BP 1928 EP 1945 DI 10.2514/1.J050111 PG 18 WC Engineering, Aerospace SC Engineering GA 646NK UT WOS:000281548100007 ER PT J AU Lee, BJ Liou, MS Kim, C AF Lee, Byung Joon Liou, Mena-Sing Kim, Chongam TI Optimizing a Boundary-Layer-Ingestion Offset Inlet by Discrete Adjoint Approach SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT 19th AIAA Computational Fluid Dynamics Conference CY JUN 22-25, 2009 CL San Antonio, TX SP Amer Inst Aeronaut & Astronaut ID AUTOMATED DESIGN; DIFFUSER; FLOW AB A large amount of low-momentum boundary-layer flow ingesting into a flush-mounted inlet can cause significant total pressure loss and distortion to the extent beyond operability of a fan/compressor. To improve the quality of incoming flow into the engine, shape optimization of the surface geometry at the inlet entrance has been carried out using the discrete adjoint method; the inlet-floor shape is parameterized by the use of control points on B-spline surface patches. To resolve the complicated geometry flexibly and wall-bounded turbulent flow accurately, an overset mesh system is well-suited for integrating the flow analysis code, sensitivity analysis code, and grid modification tools. To enhance the convergence characteristics of the sensitivity analysis code, additional numerical dissipation for the discrete adjoint formulation is introduced. After using this optimization procedure, the new inlet yields a significant improvement in performance: a more than 50% reduction in flow distortion kind a 3% increase in total pressure recovery. High performance at off-design conditions is also realized with only slight degradation, confirming the capability of the adjoin( method for a practical design problem. Finally, the physical meaning and implication of the performance improvement are elaborated upon in relation to the flow characteristics resulting from the new design. C1 [Lee, Byung Joon; Liou, Mena-Sing] NASA, John H Glenn Res Ctr Lewis Field, Aeroprop Div, Cleveland, OH 44135 USA. [Kim, Chongam] Seoul Natl Univ, Sch Mech & Aerosp Engn, Seoul 151742, South Korea. RP Lee, BJ (reprint author), NASA, John H Glenn Res Ctr Lewis Field, Aeroprop Div, Cleveland, OH 44135 USA. NR 28 TC 8 Z9 8 U1 1 U2 7 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD SEP PY 2010 VL 48 IS 9 BP 2008 EP 2016 DI 10.2514/1.J050222 PG 9 WC Engineering, Aerospace SC Engineering GA 646NK UT WOS:000281548100013 ER PT J AU Nishino, T Shariff, K AF Nishino, Takafumi Shariff, Karim TI Numerical Study of Wind-Tunnel Sidewall Effects on Circulation Control Airfoil Flows SO AIAA JOURNAL LA English DT Article AB Two- and three-dimensional numerical simulations are performed of the flow around a circulation control airfoil (using a Coanda jet blowing over a rounded trailing edge) placed in a rectangular wind-tunnel test section. The airfoil model spans the entire tunnel and the span-to-chord ratio of the model is 3.26. The objective of this numerical study, in which we solve the compressible Reynolds-averaged Navier-Stokes equations in a time-resolved manner (but the solutions eventually converge to steady states), is to investigate the physical mechanisms of wind-tunnel sidewall effects on the flow, especially in the midspan region. The three-dimensional simulations predict that the Coanda jet flow is quasi-two-dimensional until the flow separates from the trailing edge of the airfoil; however, the spanwise ends of this Coanda jet sheet then three-dimensionally roll up on the side walls of the wind tunnel to form two large streamwise vortices downstream. Careful comparisons between the two- and three-dimensional simulations reveal that the wind-tunnel stream goes below the airfoil more in the three-dimensional cases than in the two-dimensional cases due to the presence of these two streamwise vortices downstream. This results in smaller lift and larger drag being produced at the midspan of the airfoil in the three-dimensional cases than in the two-dimensional cases. C1 [Nishino, Takafumi; Shariff, Karim] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Nishino, T (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RI Nishino, Takafumi/A-2685-2012; OI Nishino, Takafumi/0000-0001-6306-7702; Shariff, Karim/0000-0002-7256-2497 FU NASA FX The present work was supported by NASA's Fundamental Act mimics Program (Subsonic Fixed Wing Project). and T Nishino has been supported by the NASA Postdoctoral Program administrated by Oak Ridge Associated Universities The authors would like to thank S Hahn of the Center for Turbulence Research at Stanford University for providing the computational code, G Jones and B Allan of NASA Langley Research Center for providing the airfoil geometry. and M Rogers and N Madavan of NASA Ames Research Center for many valuable discussions NR 20 TC 6 Z9 7 U1 0 U2 7 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD SEP PY 2010 VL 48 IS 9 BP 2123 EP 2132 DI 10.2514/1.J050328 PG 10 WC Engineering, Aerospace SC Engineering GA 646NK UT WOS:000281548100022 ER PT J AU Danks, R AF Danks, Richard TI O&M for Green Buildings SO ASHRAE JOURNAL LA English DT Editorial Material C1 NASA, Glenn Res Ctr, Facil Div, Cleveland, OH USA. RP Danks, R (reprint author), NASA, Glenn Res Ctr, Facil Div, Cleveland, OH USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD SEP PY 2010 VL 52 IS 9 BP 92 EP 92 PG 1 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 651LL UT WOS:000281929100024 ER PT J AU Grant, JA Westall, F Beaty, DW Vago, JL AF Grant, John A. Westall, Frances Beaty, David W. Vago, Jorge L. TI Two Rovers to the Same Site on Mars, 2018: Possibilities for Cooperative Science SO ASTROBIOLOGY LA English DT Article ID SAMPLE RETURN; MISSION; EXPLORATION; SURFACE; LIFE C1 [Grant, John A.] Smithsonian Inst, Ctr Earth & Planetary Studies, Natl Air & Space Museum, MRC 315, Washington, DC 20013 USA. [Westall, Frances] CNRS, Ctr Biophys Mol, F-45071 Orleans 2, France. [Beaty, David W.] CALTECH, Mars Program Off, Jet Prop Lab, Pasadena, CA 91109 USA. [Vago, Jorge L.] European Space Agcy, ESA ESTEC HME ME, NL-2201 AZ Noordwijk, Netherlands. RP Grant, JA (reprint author), Smithsonian Inst, Ctr Earth & Planetary Studies, Natl Air & Space Museum, MRC 315, POB 37012, Washington, DC 20013 USA. EM grantj@si.edu; frances.westall@cnrs-orleans.fr; David.Beaty@jpl.nasa.gov; Jorge.Vago@esa.int FU National Aeronautics and Space Administration FX An early draft of the list of possible options for collaborative science and their priorities (Table 2 of this report) was discussed with multiple colleagues within the Mars exploration community, including the leaders of MRR-SAG; ExoMars project leadership; the ExoMars Science Working Group; ExoMars instrument science colleagues; the JPL Mars Program Office science team; similar to 8-10 MER scientists; and professional colleagues of several team members. This resulted in the addition of several new ideas, valuable clarification of others, and refinement of our perception of their relative priorities. Chad Edwards (Chief Telecommunications Engineer, Mars Program Office, JPL) provided extensive input to the telecommunications analysis. Gerhard Kminek (Planetary Protection Officer, ESA) provided input to the section on planetary protection. An early draft of this report was presented orally on March 17, 2010, at the MEPAG meeting in Monrovia, and the ensuing discussion was very helpful in refining the ideas contained in this report. A portion of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 40 TC 4 Z9 4 U1 0 U2 7 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD SEP PY 2010 VL 10 IS 7 BP 663 EP 685 DI 10.1089/ast.2010.0526 PG 23 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 671EM UT WOS:000283483100001 ER PT J AU Michalski, JR Bibring, JP Poulet, F Loizeau, D Mangold, N Dobrea, EN Bishop, JL Wray, JJ McKeown, NK Parente, M Hauber, E Altieri, F Carrozzo, FG Niles, PB AF Michalski, Joseph R. Bibring, Jean-Pierre Poulet, Francois Loizeau, Damien Mangold, Nicolas Dobrea, Eldar Noe Bishop, Janice L. Wray, James J. McKeown, Nancy K. Parente, Mario Hauber, Ernst Altieri, Francesca Carrozzo, F. Giacomo Niles, Paul B. TI The Mawrth Vallis Region of Mars: A Potential Landing Site for the Mars Science Laboratory (MSL) Mission SO ASTROBIOLOGY LA English DT Article DE Clays; Planetary science; Habitability; Infrared spectroscopy; Mars ID MORPHOLOGICAL BIOSIGNATURES; CONTINENTAL-CRUST; MERIDIANI PLANUM; CLAY-MINERALS; LIFE; CRATER; EARTH; OPPORTUNITY; DIVERSITY; EVOLUTION AB The primary objective of NASA's Mars Science Laboratory (MSL) mission, which will launch in 2011, is to characterize the habitability of a site on Mars through detailed analyses of the composition and geological context of surface materials. Within the framework of established mission goals, we have evaluated the value of a possible landing site in the Mawrth Vallis region of Mars that is targeted directly on some of the most geologically and astrobiologically enticing materials in the Solar System. The area around Mawrth Vallis contains a vast (>1x10(6)km(2)) deposit of phyllosilicate-rich, ancient, layered rocks. A thick (>150 m) stratigraphic section that exhibits spectral evidence for nontronite, montmorillonite, amorphous silica, kaolinite, saponite, other smectite clay minerals, ferrous mica, and sulfate minerals indicates a rich geological history that may have included multiple aqueous environments. Because phyllosilicates are strong indicators of ancient aqueous activity, and the preservation potential of biosignatures within sedimentary clay deposits is high, martian phyllosilicate deposits are desirable astrobiological targets. The proposed MSL landing site at Mawrth Vallis is located directly on the largest and most phyllosilicate-rich deposit on Mars and is therefore an excellent place to explore for evidence of life or habitability. C1 [Michalski, Joseph R.; Bibring, Jean-Pierre; Poulet, Francois; Loizeau, Damien] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Michalski, Joseph R.; Dobrea, Eldar Noe] Planetary Sci Inst, Tucson, AZ USA. [Mangold, Nicolas] Univ Nantes, CNRS, LPGN, Nantes, France. [Bishop, Janice L.] SETI Inst, Mountain View, CA USA. [Bishop, Janice L.] NASA, Ames Res Ctr, Mountain View, CA USA. [Wray, James J.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [McKeown, Nancy K.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Parente, Mario] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Hauber, Ernst] DLR, Inst Planetary Res, Berlin, Germany. [Altieri, Francesca; Carrozzo, F. Giacomo] INAF, IFSI, Rome, Italy. [Niles, Paul B.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Michalski, JR (reprint author), Univ Paris 11, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. EM Michalski@psi.edu RI Wray, James/B-8457-2008; OI Wray, James/0000-0001-5559-2179; Carrozzo, Filippo Giacomo/0000-0002-0391-6407 NR 71 TC 21 Z9 21 U1 2 U2 21 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD SEP PY 2010 VL 10 IS 7 BP 687 EP 703 DI 10.1089/ast.2010.0491 PG 17 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 671EM UT WOS:000283483100002 PM 20950170 ER PT J AU Davila, AF Skidmore, M Fairen, AG Cockell, C Schulze-Makuch, D AF Davila, Alfonso F. Skidmore, Mark Fairen, Alberto G. Cockell, Charles Schulze-Makuch, Dirk TI New Priorities in the Robotic Exploration of Mars: The Case for In Situ Search for Extant Life SO ASTROBIOLOGY LA English DT Article ID MICROBIAL LIFE; ATACAMA DESERT; GROUND ICE; LAYERED DEPOSITS; POLAR-REGIONS; BASAL ICE; PERMAFROST; GLACIER; METHANE; SOILS C1 [Davila, Alfonso F.; Fairen, Alberto G.] SETI Inst, Mountain View, CA 94043 USA. [Davila, Alfonso F.; Fairen, Alberto G.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Skidmore, Mark] Montana State Univ, Dept Earth Sci, Bozeman, MT 59717 USA. [Cockell, Charles] Open Univ, Geomicrobiol Res Grp, PSSRI, Milton Keynes MK7 6AA, Bucks, England. [Schulze-Makuch, Dirk] Washington State Univ, Sch Earth & Environm Sci, Pullman, WA 99164 USA. RP Davila, AF (reprint author), SETI Inst, 515 N Whisman Rd, Mountain View, CA 94043 USA. EM adavila@seti.org RI Davila, Alfonso/A-2198-2013; OI Davila, Alfonso/0000-0002-0977-9909; Schulze-Makuch, Dirk/0000-0002-1923-9746 NR 49 TC 9 Z9 9 U1 0 U2 17 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD SEP PY 2010 VL 10 IS 7 BP 705 EP 710 DI 10.1089/ast.2010.0538 PG 6 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 671EM UT WOS:000283483100003 PM 20929400 ER PT J AU Roberts, LC Gies, DR Parks, JR Grundstrom, ED McSwain, MV Berger, DH Mason, BD ten Brummelaar, TA Turner, NH AF Roberts, Lewis C., Jr. Gies, Douglas R. Parks, J. Robert Grundstrom, Erika D. McSwain, M. Virginia Berger, David H. Mason, Brian D. ten Brummelaar, Theo A. Turner, Nils H. TI THE MEMBERSHIP AND DISTANCE OF THE OPEN CLUSTER COLLINDER 419 SO ASTRONOMICAL JOURNAL LA English DT Article DE open clusters and associations: individual (Collinder 419); stars: early-type; stars: individual (HD 193322, IRAS 20161+4035) ID STAR-FORMATION; SPECTRAL CLASSIFICATION; INTERSTELLAR EXTINCTION; HIPPARCOS PARALLAXES; MODEL ATMOSPHERES; OB STARS; CALIBRATION; ISOCHRONES; CATALOG; GIANTS AB The young open cluster Collinder 419 surrounds the massive O star, HD 193322, that is itself a remarkable multiple star system containing at least four components. Here we present a discussion of the cluster distance based upon new spectral classifications of the brighter members, UBV photometry, and an analysis of astrometric and photometric data from the third U. S. Naval Observatory CCD Astrograph Catalog and Two Micron All Sky Survey Catalog. We determine an average cluster reddening of E(B - V) = 0.37+/-0.05 mag and a cluster distance of 741+/-36 pc. The cluster probably contains some very young stars that may include a reddened M3 III star, IRAS 20161+4035. C1 [Roberts, Lewis C., Jr.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gies, Douglas R.; Parks, J. Robert] Georgia State Univ, Dept Phys & Astron, Ctr High Angular Resolut Astron, Atlanta, GA 30302 USA. [Grundstrom, Erika D.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [McSwain, M. Virginia] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA. [Berger, David H.] Syst Planning Corp, Arlington, VA 22201 USA. [Mason, Brian D.] USN Observ, Washington, DC 20392 USA. [ten Brummelaar, Theo A.; Turner, Nils H.] Georgia State Univ, Ctr High Angular Resolut Astron, Mt Wilson, CA 91023 USA. RP Roberts, LC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM lewis.c.roberts@jpl.nasa.gov; gies@chara.gsu.edu; parksj@chara.gsu.edu; erika.grundstrom@vanderbilt.edu; mcswain@lehigh.edu; dberger@sysplan.com; bdm@usno.navy.mil; theo@chara-array.org; nils@chara-array.org OI Grundstrom, Erika/0000-0002-5130-0260 FU National Aeronautics and Space Administration; National Science Foundation; GSU College of Arts and Sciences FX We thank Todd Henry, Adric Riedel, and Russel White for helpful comments about M-star spectra, and we also thank Bill Binkert of the KPNO staff for his assistance at the KPNO Coude Feed Telescope. We are grateful to David Turner for discussions about field contamination by distant massive stars. This publication made use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. It also used images from the Second Palomar Observatory Sky Survey (POSS-II), which was made by the California Institute of Technology with funds from the National Science Foundation, the National Geographic Society, the Sloan Foundation, the Samuel Oschin Foundation, and the Eastman Kodak Corporation. We also made use of the Washington Double Star Catalog, maintained at the U. S. Naval Observatory, and the SIMBADdatabase, operated by theCDS in Strasbourg, France. This material is based upon work supported by the National Science Foundation under grant AST-0606861. Institutional support has been provided from the GSU College of Arts and Sciences and from the Research Program Enhancement Fund of the Board of Regents of the University System of Georgia, administered through the GSU Office of the Vice President for Research. Aportion of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 54 TC 4 Z9 4 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD SEP PY 2010 VL 140 IS 3 BP 744 EP 752 DI 10.1088/0004-6256/140/3/744 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 638GT UT WOS:000280882300008 ER PT J AU Trilling, DE Mueller, M Hora, JL Harris, AW Bhattacharya, B Bottke, WF Chesley, S Delbo, M Emery, JP Fazio, G Mainzer, A Penprase, B Smith, HA Spahr, TB Stansberry, JA Thomas, CA AF Trilling, D. E. Mueller, M. Hora, J. L. Harris, A. W. Bhattacharya, B. Bottke, W. F. Chesley, S. Delbo, M. Emery, J. P. Fazio, G. Mainzer, A. Penprase, B. Smith, H. A. Spahr, T. B. Stansberry, J. A. Thomas, C. A. TI EXPLORENEOs. I. DESCRIPTION AND FIRST RESULTS FROM THE WARM SPITZER NEAR-EARTH OBJECT SURVEY SO ASTRONOMICAL JOURNAL LA English DT Article DE minor planets, asteroids: general; infrared: planetary systems; surveys ID THERMAL INFRARED SPECTROPHOTOMETRY; KUIPER-BELT OBJECTS; SPACE-TELESCOPE; ASTEROID BELT; ARRAY CAMERA; RA-SHALOM; ORIGIN; POPULATION; MAGNITUDES; YARKOVSKY AB We have begun the ExploreNEOs project in which we observe some 700 Near-Earth Objects (NEOs) at 3.6 and 4.5 mu m with the Spitzer Space Telescope in its Warm Spitzer mode. From these measurements and catalog optical photometry we derive albedos and diameters of the observed targets. The overall goal of our ExploreNEOs program is to study the history of near-Earth space by deriving the physical properties of a large number of NEOs. In this paper, we describe both the scientific and technical construction of our ExploreNEOs program. We present our observational, photometric, and thermal modeling techniques. We present results from the first 101 targets observed in this program. We find that the distribution of albedos in this first sample is quite broad, probably indicating a wide range of compositions within the NEO population. Many objects smaller than 1 km have high albedos (greater than or similar to 0.35), but few objects larger than 1 km have high albedos. This result is consistent with the idea that these larger objects are collisionally older, and therefore possess surfaces that are more space weathered and therefore darker, or are not subject to other surface rejuvenating events as frequently as smaller NEOs. C1 [Trilling, D. E.; Thomas, C. A.] No Arizona Univ, Dept Phys & Astron, Flagstaff, AZ 86001 USA. [Mueller, M.; Delbo, M.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice 4, France. [Hora, J. L.; Fazio, G.; Smith, H. A.; Spahr, T. B.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Harris, A. W.] DLR Inst Planetary Res, D-12489 Berlin, Germany. [Bhattacharya, B.] CALTECH, NASA Herschel Sci Ctr, Pasadena, CA 91125 USA. [Bottke, W. F.] SW Res Inst, Boulder, CO 80302 USA. [Chesley, S.; Mainzer, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Emery, J. P.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Penprase, B.] Pomona Coll, Dept Phys & Astron, Claremont, CA 91711 USA. [Stansberry, J. A.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. RP Trilling, DE (reprint author), No Arizona Univ, Dept Phys & Astron, Flagstaff, AZ 86001 USA. EM david.trilling@nau.edu OI Mueller, Michael/0000-0003-3217-5385; Hora, Joseph/0000-0002-5599-4650; Thomas, Cristina/0000-0003-3091-5757 FU NASA FX We acknowledge the thorough and prompt hard work of the staff at the Spitzer Science Center, without whom the execution of this program would not be possible. We thank Michael Mommert (DLR) for help in checking the modeling results given in the data tables. We thank an anonymous referee for making a number of useful suggestions. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by JPL/Caltech under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. NR 68 TC 29 Z9 29 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD SEP PY 2010 VL 140 IS 3 BP 770 EP 784 DI 10.1088/0004-6256/140/3/770 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 638GT UT WOS:000280882300010 ER PT J AU Ade, PAR Savini, G Sudiwala, R Tucker, C Catalano, A Church, S Colgan, R Desert, FX Gleeson, E Jones, WC Lamarre, JM Lange, A Longval, Y Maffei, B Murphy, JA Noviello, F Pajot, F Puget, JL Ristorcelli, I Woodcraft, A Yurchenko, V AF Ade, P. A. R. Savini, G. Sudiwala, R. Tucker, C. Catalano, A. Church, S. Colgan, R. Desert, F. X. Gleeson, E. Jones, W. C. Lamarre, J. -M. Lange, A. Longval, Y. Maffei, B. Murphy, J. A. Noviello, F. Pajot, F. Puget, J. -L. Ristorcelli, I. Woodcraft, A. Yurchenko, V. TI Planck pre-launch status: The optical architecture of the HFI SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; space vehicles: instruments; instrumentation: detectors; instrumentation: polarimeters; submillimeter: general; techniques: photometric AB The Planck High Frequency Instrument, HFI, has been designed to allow a clear unobscured view of the CMB sky through an off-axis Gregorian telescope. The prime science target is to measure the polarized anisotropy of the CMB with a sensitivity of 1 part in 10(6) with a maximum spatial resolution of 5 arcmin (C(l) similar to 3000) in four spectral bands with two further high-frequency channels measuring total power for foreground removal. These requirements place critical constraints on both the telescope configuration and the receiver coupling and require precise determination of the spectral and spatial characteristics at the pixel level, whilst maintaining control of the polarisation. To meet with the sensitivity requirements, the focal plane needs to be cooled with the optics at a few Kelvin and detectors at 100 mK. To limit inherent instrumental thermal emission and diffraction effects, there is no vacuum window, so the detector feedhorns view the telescope secondary directly. This requires that the instrument is launched warm with the cooler chain only being activated during its cruise to L2. Here we present the novel optical configuration designed to meet with all the above criteria. C1 [Ade, P. A. R.; Savini, G.; Sudiwala, R.; Tucker, C.] Cardiff Univ, Astron & Instrumentat Grp, Cardiff, S Glam, Wales. [Savini, G.] UCL, Opt Sci Lab, London WC1E 6BT, England. [Catalano, A.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Church, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Colgan, R.; Gleeson, E.; Murphy, J. A.; Yurchenko, V.] NUI, Dept Expt Phys, Maynooth, Kildare, Ireland. [Desert, F. X.] CNRS, Astrophys Lab, Observ Grenoble LOAG, F-38041 Grenoble 9, France. [Jones, W. C.; Lange, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lange, A.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Longval, Y.; Noviello, F.; Pajot, F.; Puget, J. -L.] Univ Paris 11, CNRS, IAS, Inst Astrophys Spatiale, F-91405 Orsay, France. [Maffei, B.] Univ Manchester, JBCA, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Ristorcelli, I.] CNRS, CESR, F-31038 Toulouse 4, France. [Woodcraft, A.] Univ Edinburgh, SUPA, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Yurchenko, V.] NAS Ukraine, Inst Radiophys & Elect, UA-61085 Kharkov, Ukraine. RP Ade, PAR (reprint author), Cardiff Univ, Astron & Instrumentat Grp, Cardiff, S Glam, Wales. EM gs@star.ucl.ac.uk OI Savini, Giorgio/0000-0003-4449-9416 FU ESA; UK STFC; CNES; NASA; Enterprise Ireland; Science Foundation Ireland FX Planck (http://www.esa.int/Planck) is an ESA project with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.; The authors would like to acknowledge the support from the UK STFC, CNES, NASA, Enterprise Ireland and Science Foundation Ireland. The authors extend their gratitude to numerous engineers and scientists who have somehow contributed to the design, development, construction or evaluation of HFI. NR 12 TC 18 Z9 18 U1 0 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A11 DI 10.1051/0004-6361/200913039 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200012 ER PT J AU Bersanelli, M Mandolesi, N Butler, RC Mennella, A Villa, F Aja, B Artal, E Artina, E Baccigalupi, C Balasini, M Baldan, G Banday, A Bastia, P Battaglia, P Bernardino, T Blackhurst, E Boschini, L Burigana, C Cafagna, G Cappellini, B Cavaliere, F Colombo, F Crone, G Cuttaia, F D'Arcangelo, O Danese, L Davies, RD Davis, RJ De Angelis, L De Gasperis, GC De La Fuente, L De Rosa, A De Zotti, G Falvella, MC Ferrari, F Ferretti, R Figini, L Fogliani, S Franceschet, C Franceschi, E Gaier, T Garavaglia, S Gomez, F Gorski, K Gregorio, A Guzzi, P Herreros, JM Hildebrandt, SR Hoyland, R Hughes, N Janssen, M Jukkala, P Kettle, D Kilpia, VH Laaninen, M Lapolla, PM Lawrence, CR Lawson, D Leahy, JP Leonardi, R Leutenegger, P Levin, S Lilje, PB Lowe, SR Lubin, PM Maino, D Malaspina, M Maris, M Marti-Canales, J Martinez-Gonzalez, E Mediavilla, A Meinhold, P Miccolis, M Morgante, G Natoli, P Nesti, R Pagan, L Paine, C Partridge, B Pascual, JP Pasian, F Pearson, D Pecora, M Perrotta, F Platania, P Pospieszalski, M Poutanen, T Prina, M Rebolo, R Roddis, N Rubino-Martin, JA Salmon, MJ Sandri, M Seiffert, M Silvestri, R Simonetto, A Sjoman, P Smoot, GF Sozzi, C Stringhetti, L Taddei, E Tauber, J Terenzi, L Tomasi, M Tuovinen, J Valenziano, L Varis, J Vittorio, N Wade, LA Wilkinson, A Winder, F Zacchei, A Zonca, A AF Bersanelli, M. Mandolesi, N. Butler, R. C. Mennella, A. Villa, F. Aja, B. Artal, E. Artina, E. Baccigalupi, C. Balasini, M. Baldan, G. Banday, A. Bastia, P. Battaglia, P. Bernardino, T. Blackhurst, E. Boschini, L. Burigana, C. Cafagna, G. Cappellini, B. Cavaliere, F. Colombo, F. Crone, G. Cuttaia, F. D'Arcangelo, O. Danese, L. Davies, R. D. Davis, R. J. De Angelis, L. De Gasperis, G. C. De La Fuente, L. De Rosa, A. De Zotti, G. Falvella, M. C. Ferrari, F. Ferretti, R. Figini, L. Fogliani, S. Franceschet, C. Franceschi, E. Gaier, T. Garavaglia, S. Gomez, F. Gorski, K. Gregorio, A. Guzzi, P. Herreros, J. M. Hildebrandt, S. R. Hoyland, R. Hughes, N. Janssen, M. Jukkala, P. Kettle, D. Kilpia, V. H. Laaninen, M. Lapolla, P. M. Lawrence, C. R. Lawson, D. Leahy, J. P. Leonardi, R. Leutenegger, P. Levin, S. Lilje, P. B. Lowe, S. R. Lubin, P. M. Maino, D. Malaspina, M. Maris, M. Marti-Canales, J. Martinez-Gonzalez, E. Mediavilla, A. Meinhold, P. Miccolis, M. Morgante, G. Natoli, P. Nesti, R. Pagan, L. Paine, C. Partridge, B. Pascual, J. P. Pasian, F. Pearson, D. Pecora, M. Perrotta, F. Platania, P. Pospieszalski, M. Poutanen, T. Prina, M. Rebolo, R. Roddis, N. Rubino-Martin, J. A. Salmon, M. J. Sandri, M. Seiffert, M. Silvestri, R. Simonetto, A. Sjoman, P. Smoot, G. F. Sozzi, C. Stringhetti, L. Taddei, E. Tauber, J. Terenzi, L. Tomasi, M. Tuovinen, J. Valenziano, L. Varis, J. Vittorio, N. Wade, L. A. Wilkinson, A. Winder, F. Zacchei, A. Zonca, A. TI Planck pre-launch status: Design and description of the Low Frequency Instrument SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; cosmology: observations; space vehicles: instruments ID MICROWAVE BACKGROUND ANISOTROPY; 1/F NOISE; LFI INSTRUMENT; RADIOMETERS; FLUCTUATIONS; TEMPERATURE; PERFORMANCE; MISSION AB In this paper we present the Low Frequency Instrument (LFI), designed and developed as part of the Planck space mission, the ESA programme dedicated to precision imaging of the cosmic microwave background (CMB). Planck-LFI will observe the full sky in intensity and polarisation in three frequency bands centred at 30, 44 and 70 GHz, while higher frequencies (100-850 GHz) will be covered by the HFI instrument. The LFI is an array of microwave radiometers based on state-of-the-art indium phosphide cryogenic HEMT amplifiers implemented in a differential system using blackbody loads as reference signals. The front end is cooled to 20 K for optimal sensitivity and the reference loads are cooled to 4 K to minimise low-frequency noise. We provide an overview of the LFI, discuss the leading scientific requirements, and describe the design solutions adopted for the various hardware subsystems. The main drivers of the radiometric, optical, and thermal design are discussed, including the stringent requirements on sensitivity, stability, and rejection of systematic effects. Further details on the key instrument units and the results of ground calibration are provided in a set of companion papers. C1 [Bersanelli, M.; Mennella, A.; Cappellini, B.; Cavaliere, F.; Franceschet, C.; Maino, D.; Perrotta, F.; Tomasi, M.; Zonca, A.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bersanelli, M.; Mennella, A.; Cappellini, B.; Zonca, A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Mandolesi, N.; Butler, R. C.; Villa, F.; Burigana, C.; Cuttaia, F.; De Rosa, A.; Franceschi, E.; Malaspina, M.; Morgante, G.; Sandri, M.; Stringhetti, L.; Terenzi, L.; Valenziano, L.] INAF Ist Astrofis Spaziale & Fis Cosm, I-40129 Bologna, Italy. [Aja, B.; Artal, E.; De La Fuente, L.; Mediavilla, A.; Pascual, J. P.] Univ Cantabria, Dept Ingn Comunicac, E-39005 Santander, Spain. [Artina, E.; Balasini, M.; Baldan, G.; Bastia, P.; Battaglia, P.; Boschini, L.; Cafagna, G.; Colombo, F.; Ferrari, F.; Ferretti, R.; Guzzi, P.; Lapolla, P. M.; Leutenegger, P.; Miccolis, M.; Pagan, L.; Pecora, M.; Perrotta, F.; Silvestri, R.; Taddei, E.] Thales Alenia Space Italia SpA, I-20090 Milan, Italy. [Baccigalupi, C.; Danese, L.; Perrotta, F.] SISSA ISAS, Astrophys Sector, I-34014 Trieste, Italy. [Banday, A.] Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Bernardino, T.; Martinez-Gonzalez, E.; Salmon, M. J.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Blackhurst, E.; Davies, R. D.; Davis, R. J.; Kettle, D.; Lawson, D.; Leahy, J. P.; Lowe, S. R.; Roddis, N.; Wilkinson, A.; Winder, F.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Crone, G.; Marti-Canales, J.] Sci Projects Dpt ESA, Herschel Planck Project, NL-2200 AG Noordwijk, Netherlands. [D'Arcangelo, O.; Figini, L.; Garavaglia, S.; Platania, P.; Simonetto, A.; Sozzi, C.] CNR, Ist Fis Plasma, I-20125 Milan, Italy. [De Angelis, L.; Falvella, M. C.] ASI, I-00198 Rome, Italy. [De Gasperis, G. C.; Natoli, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [De Zotti, G.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Baccigalupi, C.; Fogliani, S.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Gaier, T.; Gorski, K.; Janssen, M.; Lawrence, C. R.; Levin, S.; Paine, C.; Pearson, D.; Prina, M.; Seiffert, M.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gomez, F.; Herreros, J. M.; Hildebrandt, S. R.; Hoyland, R.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Hughes, N.; Jukkala, P.; Kilpia, V. H.; Sjoman, P.] DA Design Oy, Jokioinen 31600, Finland. [Laaninen, M.] Ylinen Elect Oy, Kauniainen 02700, Finland. [Leonardi, R.; Lubin, P. M.; Meinhold, P.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Nesti, R.] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Partridge, B.] Haverford Coll, Haverford, PA 19041 USA. [Pospieszalski, M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. [Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Poutanen, T.] Helsinki Univ Technol, Metsahovi Radio Observ, Kylmala 02540, Finland. [Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Tauber, J.] European Space Agcy, Div Astrophys, NL-2201AZ Noordwijk, Netherlands. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo 02044, Finland. [Banday, A.] MPA Max Planck Inst Astrophys, D-85741 Garching, Germany. RP Bersanelli, M (reprint author), Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. EM marco.bersanelli@unimi.it RI Lilje, Per/A-2699-2012; de Gasperis, Giancarlo/C-8534-2012; Sozzi, Carlo/F-4158-2012; Pascual, Juan Pablo/K-5066-2014; Martinez-Gonzalez, Enrique/E-9534-2015; de la Fuente, Luisa/J-5142-2012; Artal, Eduardo/H-5546-2015; Tomasi, Maurizio/I-1234-2016; Aja, Beatriz/H-5573-2015; OI Zonca, Andrea/0000-0001-6841-1058; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Lowe, Stuart/0000-0002-2975-9032; Stringhetti, Luca/0000-0002-3961-9068; Pasian, Fabio/0000-0002-4869-3227; Gregorio, Anna/0000-0003-4028-8785; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; de Gasperis, Giancarlo/0000-0003-2899-2171; Sozzi, Carlo/0000-0001-8951-0071; Pascual, Juan Pablo/0000-0003-2123-0502; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; de la Fuente, Luisa/0000-0003-1403-1660; Artal, Eduardo/0000-0002-2569-1894; Tomasi, Maurizio/0000-0002-1448-6131; Aja, Beatriz/0000-0002-4229-2334; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Nesti, Renzo/0000-0003-0303-839X; Burigana, Carlo/0000-0002-3005-5796; Villa, Fabrizio/0000-0003-1798-861X; GARAVAGLIA, SAUL FRANCESCO/0000-0002-8433-1901; TERENZI, LUCA/0000-0001-9915-6379; Zacchei, Andrea/0000-0003-0396-1192; Lilje, Per/0000-0003-4324-7794 FU Italian Space Agency (ASI); Academy of Finland [205800, 214598, 121703, 121962]; Waldemar von Frenckells Stiftelse; Magnus Ehrnrooth Foundation; Vaisala Foundation; NASA LTSA [NNG04CG90G] FX The Planck-LFI project is developed by an International Consortium led by Italy and involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK, USA. The Italian contribution to Planck is supported by the Italian Space Agency (ASI). T.P.'s work was supported in part by the Academy of Finland grants 205800, 214598, 121703, and 121962. T. P. thanks the Waldemar von Frenckells Stiftelse, Magnus Ehrnrooth Foundation, and Vaisala Foundation for financial support. We acknowledge partial support from the NASA LTSA Grant NNG04CG90G. NR 53 TC 97 Z9 97 U1 2 U2 14 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A4 DI 10.1051/0004-6361/200912853 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200005 ER PT J AU Butters, OW West, RG Anderson, DR Cameron, AC Clarkson, WI Enoch, B Haswell, CA Hellier, C Horne, K Joshi, Y Kane, SR Lister, TA Maxted, PFL Parley, N Pollacco, D Smalley, B Street, RA Todd, I Wheatley, PJ Wilson, DM AF Butters, O. W. West, R. G. Anderson, D. R. Cameron, A. Collier Clarkson, W. I. Enoch, B. Haswell, C. A. Hellier, C. Horne, K. Joshi, Y. Kane, S. R. Lister, T. A. Maxted, P. F. L. Parley, N. Pollacco, D. Smalley, B. Street, R. A. Todd, I. Wheatley, P. J. Wilson, D. M. TI The first WASP public data release SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE catalogs; planets and satellites: general; stars: general ID SUPERWASP AB The WASP (wide angle search for planets) project is an exoplanet transit survey that has been automatically taking wide field images since 2004. Two instruments, one in La Palma and the other in South Africa, continually monitor the night sky, building up light curves of millions of unique objects. These light curves are used to search for the characteristics of exoplanetary transits. This first public data release (DR1) of the WASP archive makes available all the light curve data and images from 2004 up to 2008 in both the Northern and Southern hemispheres. A web interface (www.wasp.le.ac.uk/public/) to the data allows easy access over the Internet. The data set contains 3 631 972 raw images and 17 970 937 light curves. In total the light curves have 119 930 299 362 data points available between them. C1 [Butters, O. W.; West, R. G.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Anderson, D. R.; Hellier, C.; Maxted, P. F. L.; Smalley, B.; Wilson, D. M.] Keele Univ, Sch Phys & Geog Sci, Astrophys Grp, Lennard Jones Labs, Keele ST5 5BG, Staffs, England. [Cameron, A. Collier; Enoch, B.; Horne, K.; Parley, N.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Clarkson, W. I.] STScI, Baltimore, MD 21218 USA. [Haswell, C. A.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Joshi, Y.; Pollacco, D.; Todd, I.] Queens Univ Belfast, Astrophys Res Ctr, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. [Kane, S. R.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Lister, T. A.; Street, R. A.] Las Cumbres Observ, Goleta, CA 93117 USA. [Wheatley, P. J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. RP Butters, OW (reprint author), Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. EM oliver.butters@star.le.ac.uk RI Kane, Stephen/B-4798-2013; OI Butters, Olly/0000-0003-0354-8461; Cameron, Andrew/0000-0002-8863-7828; Wheatley, Peter/0000-0003-1452-2240 FU Consortium Universities; UK's Science and Technology Facilities Council FX The WASP Consortium consists of astronomers primarily from the Queen's University Belfast, Keele, Leicester, The Open University, St Andrews, the Isaac Newton Group (La Palma), the Instituto de Astrofisica de Canarias (Tenerife) and the South African Astronomical Observatory. The WASP-N and WASP-S Cameras were constructed and are operated with funds made available from Consortium Universities and the UK's Science and Technology Facilities Council. NR 7 TC 58 Z9 58 U1 0 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR L10 DI 10.1051/0004-6361/201015655 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200024 ER PT J AU Delsanti, A Merlin, F Guilbert-Lepoutre, A Bauer, J Yang, B Meech, KJ AF Delsanti, A. Merlin, F. Guilbert-Lepoutre, A. Bauer, J. Yang, B. Meech, K. J. TI Methane, ammonia, and their irradiation products at the surface of an intermediate-size KBO? A portrait of Plutino (90482) Orcus SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Kuiper belt objects: individual: (90482) Orcus; methods: observational; methods: numerical; techniques: photometric; techniques: spectroscopic; radiative transfer ID KUIPER-BELT OBJECTS; NEAR-INFRARED SPECTROSCOPY; TRANS-NEPTUNIAN OBJECTS; CRYSTALLINE WATER ICE; 50000 QUAOAR; 2003 EL61; ION IRRADIATION; PHOTOMETRIC-OBSERVATIONS; COLLISIONAL FAMILY; OPTICAL-CONSTANTS AB Orcus is an intermediate-size 1000 km-scale Kuiper belt object (KBO) in 3:2 mean-motion resonance with Neptune, in an orbit very similar to that of Pluto. It has a water-ice dominated surface with solar-like visible colors. We present visible and near-infrared photometry and spectroscopy obtained with the Keck 10 m-telescope (optical) and the Gemini 8 m-telescope (near-infrared). We confirm the unambiguous detection of crystalline water ice as well as absorption in the 2.2 mu m region. These spectral properties are close to those observed for Pluto's larger satellite Charon, and for Plutino (208996) 2003 AZ(84). Both in the visible and near-infrared Orcus' spectral properties appear to be homogeneous over time (and probably rotation) at the resolution available. From Hapke radiative transfer models involving intimate mixtures of various ices we find for the first time that ammonium (NH4+) and traces of ethane (C2H6), which are most probably solar irradiation products of ammonia and methane, and a mixture of methane and ammonia (diluted or not) are the best candidates to improve the description of the data with respect to a simple water ice mixture (Haumea type surface). The possible more subtle structure of the 2.2 mu m band(s) should be investigated thoroughly in the future for Orcus and other intermediate size Plutinos to better understand the methane and ammonia chemistry at work, if any. We investigated the thermal history of Orcus with a new 3D thermal evolution model. Simulations over 4.5x10(9) yr with an input 10% porosity, bulk composition of 23% amorphous water ice and 77% dust (mass fraction), and cold accretion show that even with the action of long-lived radiogenic elements only, Orcus should have a melted core and most probably suffered a cryovolcanic event in its history which brought large amounts of crystalline ice to the surface. The presence of ammonia in the interior would strengthen the melting process. A surface layer of a few hundred meters to a few tens of kilometers of amorphous water ice survives, while most of the remaining volume underneath contains crystalline ice. The crystalline water ice possibly brought to the surface by a past cryovolcanic event should still be detectable after several billion years despite the irradiation effects, as demonstrated by recent laboratory experiments. C1 [Delsanti, A.] Univ Aix Marseille 1, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Delsanti, A.] Observ Paris, F-92190 Meudon, France. [Merlin, F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Guilbert-Lepoutre, A.] Univ Calif Los Angeles, Earth & Space Sci Dept, Los Angeles, CA 90095 USA. [Bauer, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Yang, B.; Meech, K. J.] NASA, Astrobiol Inst Manoa, Inst Astron, Honolulu, HI 96822 USA. RP Delsanti, A (reprint author), Univ Aix Marseille 1, CNRS, Lab Astrophys Marseille, 38 Rue Frederic Joliot Curie, F-13388 Marseille 13, France. EM Audrey.Delsanti@oamp.fr; merlin@astro.umd.edu; aguilbert@ucla.edu; bauer@scn.jpl.nasa.gov; yangbin@ifa.hawaii.edu; meech@ifa.hawaii.edu FU National Aeronautics and Space Administration through the NASA Astrobiology Institute [NNA04CC08A]; NASA FX We thank D. Jewitt for fruitful suggestions and are grateful to J.C. Cook for kindly sharing with us estimated optical constants of ammonium, to S. Fornasier et al. for providing us with their Orcus visible spectra, and to S. Spjuth for the computation of the visible geometric albedo of Charon. This material is based upon work supported by the National Aeronautics and Space Administration through the NASA Astrobiology Institute under Cooperative Agreement No. NNA04CC08A issued through the Office of Space Science. B. Yang acknowledges support from a NASA Origins grant and A. Guilbert-Lepoutre from a NASA Herschel grant, both to D. Jewitt. Part of the data presented here were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and NASA. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. NR 83 TC 21 Z9 21 U1 1 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A40 DI 10.1051/0004-6361/201014296 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200106 ER PT J AU Lamarre, JM Puget, JL Ade, PAR Bouchet, F Guyot, G Lange, AE Pajot, F Arondel, A Benabed, K Beney, JL Benoit, A Bernard, JP Bhatia, R Blanc, Y Bock, JJ Breelle, E Bradshaw, TW Camus, P Catalano, A Charra, J Charra, M Church, SE Couchot, F Coulais, A Crill, BP Crook, MR Dassas, K de Bernardis, P Delabrouille, J de Marcillac, P Delouis, JM Desert, FX Dumesnil, C Dupac, X Efstathiou, G Eng, P Evesque, C Fourmond, JJ Ganga, K Giard, M Gispert, R Guglielmi, L Haissinski, J Henrot-Versille, S Hivon, E Holmes, WA Jones, WC Koch, TC Lagardere, H Lami, P Lande, J Leriche, B Leroy, C Longval, Y Macias-Perez, JF Maciaszek, T Maffei, B Mansoux, B Marty, C Masi, S Mercier, C Miville-Deschenes, MA Moneti, A Montier, L Murphy, JA Narbonne, J Nexon, M Paine, CG Pahn, J Perdereau, O Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Pons, R Ponthieu, N Prunet, S Rambaud, D Recouvreur, G Renault, C Ristorcelli, I Rosset, C Santos, D Savini, G Serra, G Stassi, P Sudiwala, RV Sygnet, JF Tauber, JA Torre, JP Tristram, M Vibert, L Woodcraft, A Yurchenko, V Yvon, D AF Lamarre, J. -M. Puget, J. -L. Ade, P. A. R. Bouchet, F. Guyot, G. Lange, A. E. Pajot, F. Arondel, A. Benabed, K. Beney, J. -L. Benoit, A. Bernard, J. -Ph. Bhatia, R. Blanc, Y. Bock, J. J. Breelle, E. Bradshaw, T. W. Camus, P. Catalano, A. Charra, J. Charra, M. Church, S. E. Couchot, F. Coulais, A. Crill, B. P. Crook, M. R. Dassas, K. de Bernardis, P. Delabrouille, J. de Marcillac, P. Delouis, J. -M. Desert, F. -X. Dumesnil, C. Dupac, X. Efstathiou, G. Eng, P. Evesque, C. Fourmond, J. -J. Ganga, K. Giard, M. Gispert, R. Guglielmi, L. Haissinski, J. Henrot-Versille, S. Hivon, E. Holmes, W. A. Jones, W. C. Koch, T. C. Lagardere, H. Lami, P. Lande, J. Leriche, B. Leroy, C. Longval, Y. Macias-Perez, J. F. Maciaszek, T. Maffei, B. Mansoux, B. Marty, C. Masi, S. Mercier, C. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Murphy, J. A. Narbonne, J. Nexon, M. Paine, C. G. Pahn, J. Perdereau, O. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Pons, R. Ponthieu, N. Prunet, S. Rambaud, D. Recouvreur, G. Renault, C. Ristorcelli, I. Rosset, C. Santos, D. Savini, G. Serra, G. Stassi, P. Sudiwala, R. V. Sygnet, J. -F. Tauber, J. A. Torre, J. -P. Tristram, M. Vibert, L. Woodcraft, A. Yurchenko, V. Yvon, D. TI Planck pre-launch status: The HFI instrument, from specification to actual performance SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; space vehicles: instruments; submillimeter: general; techniques: photometric; techniques: polarimetric ID HIGH-FREQUENCY INSTRUMENT; MICROWAVE BACKGROUND ANISOTROPIES; THERMAL ARCHITECTURE; DESIGN; BOLOMETERS; MILLIMETER; SYSTEM; BOOMERANG; RECEIVER; NOISE AB Context. The High Frequency Instrument (HFI) is one of the two focal instruments of the Planck mission. It will observe the whole sky in six bands in the 100 GHz-1 THz range. Aims. The HFI instrument is designed to measure the cosmic microwave background (CMB) with a sensitivity limited only by fundamental sources: the photon noise of the CMB itself and the residuals left after the removal of foregrounds. The two high frequency bands will provide full maps of the submillimetre sky, featuring mainly extended and point source foregrounds. Systematic effects must be kept at negligible levels or accurately monitored so that the signal can be corrected. This paper describes the HFI design and its characteristics deduced from ground tests and calibration. Methods. The HFI instrumental concept and architecture are feasible only by pushing new techniques to their extreme capabilities, mainly: (i) bolometers working at 100 mK and absorbing the radiation in grids; (ii) a dilution cooler providing 100 mK in microgravity conditions; (iii) a new type of AC biased readout electronics and (iv) optical channels using devices inspired from radio and infrared techniques. Results. The Planck-HFI instrument performance exceeds requirements for sensitivity and control of systematic effects. During ground-based calibration and tests, it was measured at instrument and system levels to be close to or better than the goal specification. C1 [Lamarre, J. -M.; Catalano, A.; Coulais, A.; Recouvreur, G.] UCP, UPMC, CNRS, Observ Paris,ENS,LERMA, F-75014 Paris, France. [Puget, J. -L.; Guyot, G.; Pajot, F.; Arondel, A.; Charra, J.; Charra, M.; Dassas, K.; de Marcillac, P.; Dumesnil, C.; Eng, P.; Evesque, C.; Fourmond, J. -J.; Gispert, R.; Lagardere, H.; Lami, P.; Leriche, B.; Leroy, C.; Longval, Y.; Mercier, C.; Miville-Deschenes, M. -A.; Ponthieu, N.; Torre, J. -P.; Vibert, L.] CNRS, IAS, Inst Astrophys Spatiale, F-91405 Orsay, France. [Puget, J. -L.; Guyot, G.; Pajot, F.; Arondel, A.; Charra, J.; Charra, M.; Dassas, K.; de Marcillac, P.; Dumesnil, C.; Eng, P.; Evesque, C.; Fourmond, J. -J.; Gispert, R.; Lagardere, H.; Lami, P.; Leriche, B.; Leroy, C.; Longval, Y.; Mercier, C.; Miville-Deschenes, M. -A.; Ponthieu, N.; Torre, J. -P.; Vibert, L.] Univ Paris 11, F-91405 Orsay, France. [Ade, P. A. R.; Savini, G.; Sudiwala, R. V.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bouchet, F.; Benabed, K.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Bouchet, F.; Benabed, K.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.] Univ Paris 06, F-75014 Paris, France. [Lange, A. E.; Bock, J. J.; Crill, B. P.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Lange, A. E.; Bock, J. J.; Crill, B. P.; Holmes, W. A.; Jones, W. C.; Koch, T. C.; Paine, C. G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bhatia, R.; Tauber, J. A.] European Space Agcy ESTEC, Div Astrophys, NL-2201 AZ Noordwijk, Netherlands. [Beney, J. -L.; Couchot, F.; Haissinski, J.; Henrot-Versille, S.; Mansoux, B.; Perdereau, O.; Plaszczynski, S.; Rosset, C.; Tristram, M.] CNRS, LAL, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Beney, J. -L.; Couchot, F.; Haissinski, J.; Henrot-Versille, S.; Mansoux, B.; Perdereau, O.; Plaszczynski, S.; Rosset, C.; Tristram, M.] Univ Paris 11, F-91898 Orsay, France. [Benoit, A.; Camus, P.] Univ Grenoble 1, CNRS, Inst Neel, F-38042 Grenoble 9, France. [Bernard, J. -Ph.; Giard, M.; Lande, J.; Marty, C.; Montier, L.; Narbonne, J.; Nexon, M.; Pointecouteau, E.; Pons, R.; Rambaud, D.; Ristorcelli, I.; Serra, G.] CNRS, CESR, Ctr Etud Spatiale Rayonnements, F-31038 Toulouse 4, France. [Blanc, Y.; Maciaszek, T.; Pahn, J.] CNES, F-31401 Toulouse 9, France. [Breelle, E.; Catalano, A.; Delabrouille, J.; Ganga, K.; Guglielmi, L.; Piat, M.; Rosset, C.] CNRS, Lab Astroparticule & Cosmol APC, F-75205 Paris 13, France. [Breelle, E.; Catalano, A.; Delabrouille, J.; Ganga, K.; Guglielmi, L.; Piat, M.; Rosset, C.] Univ Paris 07, F-75205 Paris 13, France. [Bradshaw, T. W.; Crook, M. R.] STFC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Church, S. E.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Church, S. E.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [de Bernardis, P.; Masi, S.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Desert, F. -X.] CNRS, LAOG, F-38041 Grenoble 9, France. [Dupac, X.] European Space Agcy ESAC, Madrid 28691, Spain. [Efstathiou, G.] Univ Cambridge, Inst Astron, Cambridge CB3 OHA, England. [Jones, W. C.] Princeton Univ, Dept Phys, Joseph Henry Lab, Princeton, NJ 08544 USA. RP Lamarre, JM (reprint author), UCP, UPMC, CNRS, Observ Paris,ENS,LERMA, 61 Ave Observ, F-75014 Paris, France. EM jean-michel.lamarre@obspm.fr RI Bouchet, Francois/B-5202-2014; Yvon, Dominique/D-2280-2015; Piacentini, Francesco/E-7234-2010; OI Piacentini, Francesco/0000-0002-5444-9327; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Bouchet, Francois/0000-0002-8051-2924; Hivon, Eric/0000-0003-1880-2733; Savini, Giorgio/0000-0003-4449-9416 FU ESA; CNES; CNES, CNRS; NASA; STFC; ASI FX Planck (http://www.esa.int/Planck) is a project of the European Space Agency - ESA - with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.; The Planck-HFI instrument (http://hfi.planck.fr/) was designed and built by an international consortium of laboratories, universities and institutes, with important contributions from the industry, under the leadership of the PI institute, IAS at Orsay, France. It was funded in particular by CNES, CNRS, NASA, STFC and ASI. The authors extend their gratitude to the numerous engineers and scientists, who have contributed to the design, development, construction or evaluation of the HFI instrument. The authors are pleased to thank the referee for his/her very useful remarks. NR 58 TC 142 Z9 143 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A9 DI 10.1051/0004-6361/200912975 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200010 ER PT J AU Leahy, JP Bersanelli, M D'Arcangelo, O Ganga, K Leach, SM Moss, A Keihanen, E Keskitalo, R Kurki-Suonio, H Poutanen, T Sandri, M Scott, D Tauber, J Valenziano, L Villa, F Wilkinson, A Zonca, A Baccigalupi, C Borrill, J Butler, RC Cuttaia, F Davis, RJ Frailis, M Francheschi, E Galeotta, S Gregorio, A Leonardi, R Mandolesi, N Maris, M Meinhold, P Mendes, L Mennella, A Morgante, G Prezeau, G Rocha, G Stringhetti, L Terenzi, L Tomasi, M AF Leahy, J. P. Bersanelli, M. D'Arcangelo, O. Ganga, K. Leach, S. M. Moss, A. Keihanen, E. Keskitalo, R. Kurki-Suonio, H. Poutanen, T. Sandri, M. Scott, D. Tauber, J. Valenziano, L. Villa, F. Wilkinson, A. Zonca, A. Baccigalupi, C. Borrill, J. Butler, R. C. Cuttaia, F. Davis, R. J. Frailis, M. Francheschi, E. Galeotta, S. Gregorio, A. Leonardi, R. Mandolesi, N. Maris, M. Meinhold, P. Mendes, L. Mennella, A. Morgante, G. Prezeau, G. Rocha, G. Stringhetti, L. Terenzi, L. Tomasi, M. TI Planck pre-launch status: Expected LFI polarisation capability SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE polarization; instrumentation: polarimeters; space vehicles: instruments; techniques: polarimetric; cosmic microwave background ID UNDERSTANDING RADIO POLARIMETRY; PROBE WMAP OBSERVATIONS; MAP-MAKING METHOD; 30 GHZ DATA; POWER SPECTRUM; CRAB-NEBULA; MICROWAVE; ANISOTROPY; DEFINITIONS; CALIBRATION AB We present a system-level description of the Low Frequency Instrument (LFI) considered as a differencing polarimeter, and evaluate its expected performance. The LFI is one of the two instruments on board the ESA Planck mission to study the cosmic microwave background. It consists of a set of 22 radiometers sensitive to linear polarisation, arranged in orthogonally-oriented pairs connected to 11 feed horns operating at 30, 44 and 70 GHz. In our analysis, the generic Jones and Mueller-matrix formulations for polarimetry are adapted to the special case of the LFI. Laboratory measurements of flight components are combined with optical simulations of the telescope to investigate the values and uncertainties in the system parameters affecting polarisation response. Methods of correcting residual systematic errors are also briefly discussed. The LFI has beam-integrated polarisation efficiency >99% for all detectors, with uncertainties below 0.1%. Indirect assessment of polarisation position angles suggests that uncertainties are generally less than 0 degrees.5, and this will be checked in flight using observations of the Crab nebula. Leakage of total intensity into the polarisation signal is generally well below the thermal noise level except for bright Galactic emission, where the dominant effect is likely to be spectral-dependent terms due to bandpass mismatch between the two detectors behind each feed, contributing typically 1-3% leakage of foreground total intensity. Comparable leakage from compact features occurs due to beam mismatch, but this averages to < 5 x 10(-4) for large-scale emission. An inevitable feature of the LFI design is that the two components of the linear polarisation are recovered from elliptical beams which differ substantially in orientation. This distorts the recovered polarisation and its angular power spectrum, and several methods are being developed to correct the effect, both in the power spectrum and in the sky maps. The LFI will return a high-quality measurement of the CMB polarisation, limited mainly by thermal noise. To meet our aspiration of measuring polarisation at the 1% level, further analysis of flight and ground data is required. We are still researching the most effective techniques for correcting subtle artefacts in polarisation; in particular the correction of bandpass mismatch effects is a formidable challenge, as it requires multi-band analysis to estimate the spectral indices that control the leakage. C1 [Leahy, J. P.; Wilkinson, A.; Davis, R. J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Leahy, J. P.; Frailis, M.; Galeotta, S.; Maris, M.] Osservatorio Astron Trieste INAF, I-34143 Trieste, Italy. [Bersanelli, M.; Zonca, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, I-20122 Milan, Italy. [Bersanelli, M.; Zonca, A.; Mennella, A.] INAF, IASF Sez Milano, Milan, Italy. [D'Arcangelo, O.] Ist Fis Plasma CNR, I-20125 Milan, Italy. [Ganga, K.] CNRS, Lab APC, F-75205 Paris 13, France. [Leach, S. M.; Baccigalupi, C.] SISSA, ISAS, Astrophys Sect, I-34014 Trieste, Italy. [Leach, S. M.; Baccigalupi, C.] Ist Nazl Fis Nucl, Sez Trieste, I-34014 Trieste, Italy. [Moss, A.; Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. [Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Helsinki Inst Phys, Helsinki 00014, Finland. [Poutanen, T.] Helsinki Univ Technol, Metsahovi Radio Observ, TKK, Kylmala 02540, Finland. [Sandri, M.; Valenziano, L.; Villa, F.; Butler, R. C.; Cuttaia, F.; Francheschi, E.; Mandolesi, N.; Morgante, G.; Stringhetti, L.; Terenzi, L.] INAF, Ist Astrofis Spaziale & Fis Cosm, Sez Bologna, Bologna, Italy. [Tauber, J.] European Space Agcy, Div Astrophys, NL-2201 AZ Noordwijk, Netherlands. [Baccigalupi, C.] INAF Trieste, I-34131 Trieste, Italy. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Gregorio, A.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Leonardi, R.; Meinhold, P.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93110 USA. [Mendes, L.] European Space Astron Ctr, European Space Agcy, Planck Sci Off, Madrid 28691, Spain. [Prezeau, G.; Rocha, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rocha, G.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. RP Leahy, JP (reprint author), Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. EM j.p.leahy@manchester.ac.uk RI Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; OI Cuttaia, Francesco/0000-0001-6608-5017; Frailis, Marco/0000-0002-7400-2135; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Maris, Michele/0000-0001-9442-2754; Zonca, Andrea/0000-0001-6841-1058; Morgante, Gianluca/0000-0001-9234-7412; Valenziano, Luca/0000-0002-1170-0104; Stringhetti, Luca/0000-0002-3961-9068; Scott, Douglas/0000-0002-6878-9840; Gregorio, Anna/0000-0003-4028-8785; Sandri, Maura/0000-0003-4806-5375 FU Italian Space Agency (ASI); Science and Technology Facilities Council (STFC); Finnish Funding Agency for Technology and Innovation (Tekes); Academy of Finland; Canadian Space Agency; NASA LTSA [NNG04CG90G]; ESA FX Planck (http://www.esa.int/Planck) is a project of the European Space Agency - ESA - with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.; J.P.L. thanks Johan Hamaker for a fruitful collaboration (Hamaker & Leahy 2004) which has significantly influenced the presentation in this paper. J.P.L. also thanks the Osservatorio Astronomico di Trieste for hospitality while much of this paper was written. We thank the referee for a perceptive review. The Planck-LFI project is developed by an International Consortium led by Italy and involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK, USA. The Italian contribution to Planck is supported by the Italian Space Agency (ASI). The UK contribution is supported by the Science and Technology Facilities Council (STFC). The Finnish contribution is supported by the Finnish Funding Agency for Technology and Innovation (Tekes) and the Academy of Finland. The Canadian contribution is supported by the Canadian Space Agency. We wish to thank people of the Herschel/Planck Project of ESA, ASI, THALES Alenia Space Industries, and the LFI Consortium that are involved in activities related to optical simulations and the measurement and modelling of the radiometer performance. We acknowledge the use of the Planck sky model, developed by the Component Separation Working Group (WG2) of the Planck Collaboration. We thank the members of the Planck CTP working group for the preparation and validation of the Trieste simulations. Some of the results in this paper have been derived using the HEALPix (Gorski et al. 1999). We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. This research has made use of NASA's Astrophysics Data System. We acknowledge partial support of the NASA LTSA Grant NNG04CG90G. NR 55 TC 60 Z9 60 U1 0 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A8 DI 10.1051/0004-6361/200912855 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200009 ER PT J AU Mandolesi, N Bersanelli, M Butler, RC Artal, E Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartelmann, M Bennett, K Bhandari, P Bonaldi, A Borrill, J Bremer, M Burigana, C Bowman, RC Cabella, P Cantalupo, C Cappellini, B Courvoisier, T Crone, G Cuttaia, F Danese, L D'Arcangelo, O Davies, RD Davis, RJ De Angelis, L de Gasperis, G De Rosa, A De Troia, G de Zotti, G Dick, J Dickinson, C Diego, JM Donzelli, S Dorl, U Dupac, X Ensslin, TA Eriksen, HK Falvella, MC Finelli, F Frailis, M Franceschi, E Gaier, T Galeotta, S Gasparo, F Giardino, G Gomez, F Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, F Hell, R Herranz, D Herreros, JM Hildebrandt, S Hovest, W Hoyland, R Huffenberger, K Janssen, M Jaffe, T Keihanen, E Keskitalo, R Kisner, T Kurki-Suonio, H Lahteenmaki, A Lawrence, CR Leach, SM Leahy, JP Leonardi, R Levin, S Lilje, PB Lopez-Caniego, M Lowe, SR Lubin, PM Maino, D Malaspina, M Maris, M Marti-Canales, J Martinez-Gonzalez, E Massardi, M Matarrese, S Matthai, F Meinhold, P Melchiorri, A Mendes, L Mennella, A Morgante, G Morigi, G Morisset, N Moss, A Nash, A Natoli, P Nesti, R Paine, C Partridge, B Pasian, F Passvogel, T Pearson, D Perez-Cuevas, L Perrotta, F Polenta, G Popa, LA Poutanen, T Prezeau, G Prina, M Rachen, JP Rebolo, R Reinecke, M Ricciardi, S Riller, T Rocha, G Roddis, N Rohlfs, R Rubino-Martin, JA Salerno, E Sandri, M Scott, D Seiffert, M Silk, J Simonetto, A Smoot, GF Sozzi, C Sternberg, J Stivoli, F Stringhetti, L Tauber, J Terenzi, L Tomasi, M Tuovinen, J Turler, M Valenziano, L Varis, J Vielva, P Villa, F Vittorio, N Wade, L White, M White, S Wilkinson, A Zacchei, A Zonca, A AF Mandolesi, N. Bersanelli, M. Butler, R. C. Artal, E. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartelmann, M. Bennett, K. Bhandari, P. Bonaldi, A. Borrill, J. Bremer, M. Burigana, C. Bowman, R. C. Cabella, P. Cantalupo, C. Cappellini, B. Courvoisier, T. Crone, G. Cuttaia, F. Danese, L. D'Arcangelo, O. Davies, R. D. Davis, R. J. De Angelis, L. de Gasperis, G. De Rosa, A. De Troia, G. de Zotti, G. Dick, J. Dickinson, C. Diego, J. M. Donzelli, S. Doerl, U. Dupac, X. Ensslin, T. A. Eriksen, H. K. Falvella, M. C. Finelli, F. Frailis, M. Franceschi, E. Gaier, T. Galeotta, S. Gasparo, F. Giardino, G. Gomez, F. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. Hell, R. Herranz, D. Herreros, J. M. Hildebrandt, S. Hovest, W. Hoyland, R. Huffenberger, K. Janssen, M. Jaffe, T. Keihanen, E. Keskitalo, R. Kisner, T. Kurki-Suonio, H. Lahteenmaki, A. Lawrence, C. R. Leach, S. M. Leahy, J. P. Leonardi, R. Levin, S. Lilje, P. B. Lopez-Caniego, M. Lowe, S. R. Lubin, P. M. Maino, D. Malaspina, M. Maris, M. Marti-Canales, J. Martinez-Gonzalez, E. Massardi, M. Matarrese, S. Matthai, F. Meinhold, P. Melchiorri, A. Mendes, L. Mennella, A. Morgante, G. Morigi, G. Morisset, N. Moss, A. Nash, A. Natoli, P. Nesti, R. Paine, C. Partridge, B. Pasian, F. Passvogel, T. Pearson, D. Perez-Cuevas, L. Perrotta, F. Polenta, G. Popa, L. A. Poutanen, T. Prezeau, G. Prina, M. Rachen, J. P. Rebolo, R. Reinecke, M. Ricciardi, S. Riller, T. Rocha, G. Roddis, N. Rohlfs, R. Rubino-Martin, J. A. Salerno, E. Sandri, M. Scott, D. Seiffert, M. Silk, J. Simonetto, A. Smoot, G. F. Sozzi, C. Sternberg, J. Stivoli, F. Stringhetti, L. Tauber, J. Terenzi, L. Tomasi, M. Tuovinen, J. Tuerler, M. Valenziano, L. Varis, J. Vielva, P. Villa, F. Vittorio, N. Wade, L. White, M. White, S. Wilkinson, A. Zacchei, A. Zonca, A. TI Planck pre-launch status: The Planck-LFI programme SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; space vehicles: instruments; instrumentation: detectors; instrumentation: polarimeters; submillimeter: general; telescopes ID MICROWAVE BACKGROUND MAPS; LOW-FREQUENCY INSTRUMENT; DATA-PROCESSING CENTERS; ANGULAR POWER SPECTRA; LARGE-AREA TELESCOPE; DMR SKY MAPS; NON-GAUSSIANITY; STRAYLIGHT CONTAMINATION; GALACTIC FOREGROUNDS; COMPONENT SEPARATION AB This paper provides an overview of the Low Frequency Instrument (LFI) programme within the ESA Planck mission. The LFI instrument has been developed to produce high precision maps of the microwave sky at frequencies in the range 27-77 GHz, below the peak of the cosmic microwave background (CMB) radiation spectrum. The scientific goals are described, ranging from fundamental cosmology to Galactic and extragalactic astrophysics. The instrument design and development are outlined, together with the model philosophy and testing strategy. The instrument is presented in the context of the Planck mission. The LFI approach to ground and inflight calibration is described. We also describe the LFI ground segment. We present the results of a number of tests demonstrating the capability of the LFI data processing centre (DPC) to properly reduce and analyse LFI flight data, from telemetry information to calibrated and cleaned time ordered data, sky maps at each frequency (in temperature and polarization), component emission maps (CMB and diffuse foregrounds), catalogs for various classes of sources (the Early Release Compact Source Catalogue and the Final Compact Source Catalogue). The organization of the LFI consortium is briefly presented as well as the role of the core team in data analysis and scientific exploitation. All tests carried out on the LFI flight model demonstrate the excellent performance of the instrument and its various subunits. The data analysis pipeline has been tested and its main steps verified. In the first three months after launch, the commissioning, calibration, C1 [Mandolesi, N.; Butler, R. C.; Burigana, C.; Cuttaia, F.; De Rosa, A.; Finelli, F.; Gruppuso, A.; Malaspina, M.; Morgante, G.; Morigi, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Stringhetti, L.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Ist Nazl Astrofis, Ist Astrofis Spaziale & Fis Cosm Bologna, I-40129 Bologna, Italy. [Bersanelli, M.; Cappellini, B.; Maino, D.; Mennella, A.; Tomasi, M.; Zonca, A.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bonaldi, A.; de Zotti, G.; Massardi, M.] INAF OAPd, Ist Nazl Astrofis, Osservatorio Astron Padova, I-35122 Padua, Italy. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; De Troia, G.; Natoli, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Baccigalupi, C.; Frailis, M.; Galeotta, S.; Gasparo, F.; Maris, M.; Pasian, F.; Zacchei, A.] INAF OATs, Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34131 Trieste, Italy. [Artal, E.] Univ Cantabria, Dep Ing Comunicac DICOM, E-39005 Santander, Spain. [Baccigalupi, C.; Danese, L.; Dick, J.; Gonzalez-Nuevo, J.; Leach, S. M.; Perrotta, F.] SISSA, ISAS, Astrophys Sect, Sez Trieste, I-34014 Trieste, Italy. [Banday, A. J.; Bartelmann, M.; Doerl, U.; Ensslin, T. A.; Hell, R.; Hovest, W.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.; White, S.] MPA Max Planck Inst Astrophys, D-85741 Garching, Germany. [Bhandari, P.; Bowman, R. C.; Gaier, T.; Gorski, K. M.; Janssen, M.; Lahteenmaki, A.; Levin, S.; Nash, A.; Paine, C.; Pearson, D.; Prezeau, G.; Prina, M.; Rocha, G.; Seiffert, M.; Wade, L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Courvoisier, T.; Morisset, N.; Rohlfs, R.; Tuerler, M.] Univ Geneva, ISDC Data Ctr Astrophys, CH-1290 Versoix, Switzerland. [Crone, G.; Marti-Canales, J.; Passvogel, T.; Perez-Cuevas, L.] ESA, Sci Projects Dpt, Herschel Planck Project, NL-2200 AG Noordwijk, Netherlands. [D'Arcangelo, O.; Simonetto, A.; Sozzi, C.] IFP CNR, Ist Fis Plasma, Consiglio Nazl Ric, I-20125 Milan, Italy. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Jaffe, T.; Leahy, J. P.; Lowe, S. R.; Roddis, N.; Wilkinson, A.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [De Angelis, L.; Falvella, M. C.] ASI, Agenzia Spaziale Italiana, I-00198 Rome, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Barreiro, R. B.; Diego, J. M.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Gomez, F.; Herreros, J. M.; Hildebrandt, S.; Hoyland, R.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. [Poutanen, T.] Helsinki Univ Technol, Metsahovi Radio Observ, TKK, Kylmala 02540, Finland. [Leonardi, R.; Lubin, P. M.; Meinhold, P.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Donzelli, S.; Eriksen, H. K.; Hansen, F.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Donzelli, S.; Eriksen, H. K.; Hansen, F.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway. [Mendes, L.] ESA ESAC RSSD, European Space Agcy, European Space Astron Ctr, Res & Sci Support Dept, Madrid 28691, Spain. [Nesti, R.] Osserv Astrofis Arcetri, I-50125 Florence, Italy. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Bennett, K.; Bremer, M.; Giardino, G.; Sternberg, J.; Tauber, J.] Estec, ESA, Res & Sci Support Dept, NL-2201 AZ Noordwijk, Netherlands. [Popa, L. A.] Inst Space Sci, RO-077125 Bucharest, Romania. [Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Phys, Berkeley, CA 94720 USA. [Smoot, G. F.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA. [Moss, A.; Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Silk, J.] Univ Oxford, Oxford OX1 3RH, England. [Smoot, G. F.] Univ Paris 07, APC, Case 7020, F-75205 Paris 13, France. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo 02044, Finland. [Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Helsinki Inst Phys, Helsinki 00014, Finland. [Finelli, F.] INAF OABo, Ist Nazl Astrofis, Osservatorio Astron Bologna, I-40127 Bologna, Italy. [Baccigalupi, C.; Leach, S. M.] Ist Nazl Fis Nucl, Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Natoli, P.; Vittorio, N.] Ist Nazl Fis Nucl, Ist Nazl Fis Nucl, Sez Tor Vergata, I-00133 Rome, Italy. [Borrill, J.; Ricciardi, S.; Stivoli, F.] Univ Calif Berkeley, Berkeley Space Sci Lab, Berkeley, CA 94720 USA. [Borrill, J.; Cantalupo, C.; Kisner, T.; Ricciardi, S.; Stivoli, F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Banday, A. J.] CESR, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Dupac, X.] ESA, ESAC, European Space Agcy, European Space Astron Ctr, Madrid 28080, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Lopez-Caniego, M.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Huffenberger, K.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Natoli, P.; Polenta, G.] ASI, Agenzia Spaziale Italiana, Sci Data Ctr, I-00044 Frascati, Italy. [Cabella, P.; Melchiorri, A.; Polenta, G.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Polenta, G.] INAF OARo, Ist Nazl Astrofis, Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Salerno, E.] CNR, Consiglio Nazl Ric, Area Ric Pisa, Ist Scie & Technol Informaz Alessandro Faedo, I-56124 Pisa, Italy. [White, M.] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. RP Mandolesi, N (reprint author), INAF IASF Bologna, Ist Nazl Astrofis, Ist Astrofis Spaziale & Fis Cosm Bologna, Via Gobetti 101, I-40129 Bologna, Italy. EM mandolesi@iasfbo.inaf.it RI Butler, Reginald/N-4647-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; White, Martin/I-3880-2015; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; popa, lucia/B-4718-2012; Martinez-Gonzalez, Enrique/E-9534-2015; Artal, Eduardo/H-5546-2015; Lilje, Per/A-2699-2012; Salerno, Emanuele/A-2137-2010; de Gasperis, Giancarlo/C-8534-2012; Sozzi, Carlo/F-4158-2012; Gregorio, Anna/J-1632-2012; Lopez-Caniego, Marcos/M-4695-2013; Bartelmann, Matthias/A-5336-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Herranz, Diego/K-9143-2014; Barreiro, Rita Belen/N-5442-2014; OI Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Frailis, Marco/0000-0002-7400-2135; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Matarrese, Sabino/0000-0002-2573-1243; Lowe, Stuart/0000-0002-2975-9032; Stringhetti, Luca/0000-0002-3961-9068; Pasian, Fabio/0000-0002-4869-3227; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Nesti, Renzo/0000-0003-0303-839X; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; White, Martin/0000-0001-9912-5070; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Melchiorri, Alessandro/0000-0001-5326-6003; Morgante, Gianluca/0000-0001-9234-7412; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Artal, Eduardo/0000-0002-2569-1894; Salerno, Emanuele/0000-0002-3433-3634; de Gasperis, Giancarlo/0000-0003-2899-2171; Sozzi, Carlo/0000-0001-8951-0071; Vielva, Patricio/0000-0003-0051-272X; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; silk, joe/0000-0002-1566-8148; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Zacchei, Andrea/0000-0003-0396-1192; Lilje, Per/0000-0003-4324-7794; Bowman, Robert/0000-0002-2114-1713 FU ESA; Bundesministerium fur Wirtschaft und Technologie through the Raumfahrt-Agentur of the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) [FKZ: 50 OP 0901]; Max-Planck-Gesellschaft (MPG); Finnish Funding Agency for Technology and Innovation (Tekes); Academy of Finland; Ministerio de Ciencia e Innovacion [ESP2004-07067-C03, AYA2007-68058-C03]; Science and Technology Facilities Council (STFC); NASA LTSA [NNG04CG90G]; NASA Office of Space Science; Canadian Space Agency FX Planck is a project of the European Space Agency with instruments funded by ESA member states, and with special contributions from Denmark and NASA (USA). The Planck-LFI project is developed by an International Consortium led by Italy and involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK and USA. The Italian contribution to Planck is supported by the Agenzia Spaziale Italiana (ASI) and INAF. We also wish to thank the many people of the Herschel/Planck Project and RSSD of ESA, ASI, THALES Alenia Space Industries and the LFI Consortium that have contributed to the realization of LFI. We are grateful to our HFI colleagues for such a fruitful collaboration during so many years of common work. The German participation at the Max-Planck-Institut fur Astrophysik is funded by the Bundesministerium fur Wirtschaft und Technologie through the Raumfahrt-Agentur of the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) [FKZ: 50 OP 0901] and by the Max-Planck-Gesellschaft (MPG). The Finnish contribution is supported by the Finnish Funding Agency for Technology and Innovation (Tekes) and the Academy of Finland. The Spanish participation is funded by Ministerio de Ciencia e Innovacion through the project ESP2004-07067-C03 and AYA2007-68058-C03. The UK contribution is supported by the Science and Technology Facilities Council (STFC). C. Baccigalupi and F. Perrotta acknowledge partial support of the NASA LTSA Grant NNG04CG90G. We acknowledge the use of the BCX cluster at CINECA under the agreement INAF/CINECA. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. We acknowledge use of the HEALPix (Gorski et al. 2005) software and analysis package for deriving some of the results in this paper. The Canadian participation is supported by the Canadian Space Agency. NR 135 TC 74 Z9 74 U1 1 U2 14 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A3 DI 10.1051/0004-6361/200912837 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200004 ER PT J AU Martin, SR Booth, AJ AF Martin, S. R. Booth, A. J. TI Demonstration of exoplanet detection using an infrared telescope array SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE techniques: interferometric; planets and satellites: detection ID TERRESTRIAL ATMOSPHERES; NULLING INTERFEROMETER; STARLIGHT SUPPRESSION; EXTRASOLAR PLANETS; BROAD-BAND; SEARCH; SPACE; SINGLE; CONFIGURATIONS; FIBERS AB Context. Technology is being developed for the characterization and detection of small, Earth-size exoplanets by nulling interferometry in the mid-infrared waveband. While high-performance nulling experiments have shown the possibility of using the technique, to achieve these goals, nulling has to be done on multiple beams, with high stability over periods of hours. To address the issues of the perceived complexity and difficulty of the method, a testbed was developed for the Terrestrial Planet Finder Interferometer (TPF-I) project which would demonstrate four beam nulling and faint exoplanet signal extraction at levels traceable to flight requirements. Containing star and planet sources, the testbed would demonstrate the principal functional processes of the TPF-I beam-combiner by generating four input beams of star and planet light, and recovering the planet signature at the output. Aims. Here we report on experiments designed with traceability to a flight system, showing faint exoplanet signal detection in the presence of strong starlight. The experiments were designed to show nulling at the flight level of approximate to 10 (5), starlight suppression of 10 (7) or better, and detection of an exoplanet at a contrast of 10(-6) compared to the star. This performance level meets the flight requirements for the parts of the detection process that can be demonstrated using a monochromatic source. To achieve these results, the testbed would have to operate stably for several hours, showing control of disturbances at levels equivalent to the flight requirements. Methods. A test process was designed which would show that the necessary performance could be achieved. To show reproducibility, the tests were run on three separate occasions, separated by several days. The tests were divided into three main parts which would show first, starlight suppression, second, a realistic faint exoplanet signal production, and finally, exoplanet signal detection in the presence of the starlight. Results. A number of data sets were acquired showing the achievement of the required performance. The data reported here show nulling at levels between about 5.5 and 8.5 x 10(-6), starlight suppression between 8.4 x 10(-9) and 1.4 x 10(-8), and detection of planet signals with contrast to the star between 3.8 x 10(-7) and 4.4 x 10(-7). The signal to noise ratios for the detections were between 14.0 and 26.9. These data met all the criteria of the demonstration, showing reproducible stable performance over several hours of operation. Conclusions. These data show the successful execution, at flight-like performance levels, of almost the whole exoplanet detection process using a four beam, nulling beam-combiner. C1 [Martin, S. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Booth, A. J.] Sigma Space Corp, Lanham, MD 20706 USA. RP Martin, SR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM stefan.r.martin@jpl.nasa.gov FU NASA FX Kurt Liewer assisted with testbed development and operation. Frank Loya developed the software control system and several electronics systems. Oliver Lay assisted with development of the data analysis techniques and the traceability to flight. Hong Tang developed the testbed metrology system. Numerous others participated in testbed development over several years including Nasrat Raouf (optics), Piotr Szwaykowski (optical engineering), Randall Bartos (engineering), Boris Lurie (controls systems), Santos "Felipe" Fregoso (software), Francisco Aguayo (engineering), Martin Marcin (optical engineering), Ray Lam (software), Andrew Lowman (optical engineering), Steve Monacos (electronics engineering), Robert Peters (optical engineering) and Muthu Jeganathan (optical engineering). The authors are also grateful to Mike Devirian and to Peter Lawson for their unflagging support of the testbed. The work reported here was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The mention of any commercial product herein does not constitute an endorsement. (C) 2010. All rights reserved. NR 35 TC 4 Z9 4 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A96 DI 10.1051/0004-6361/201014942 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200120 ER PT J AU Mennella, A Bersanelli, M Butler, RC Cuttaia, F D'Arcangelo, O Davis, RJ Frailis, M Galeotta, S Gregorio, A Lawrence, CR Leonardi, R Lowe, SR Mandolesi, N Maris, M Meinhold, P Mendes, L Morgante, G Sandri, M Stringhetti, L Terenzi, L Tomasi, M Valenziano, L Villa, F Zacchei, A Zonca, A Balasini, M Franceschet, C Battaglia, P Lapolla, PM Leutenegger, P Miccolis, M Pagan, L Silvestri, R Aja, B Artal, E Baldan, G Bastia, P Bernardino, T Boschini, L Cafagna, G Cappellini, B Cavaliere, F Colombo, F de La Fuente, L Edgeley, J Falvella, MC Ferrari, F Fogliani, S Franceschi, E Gaier, T Gomez, F Herreros, JM Hildebrandt, S Hoyland, R Hughes, N Jukkala, P Kettle, D Laaninen, M Lawson, D Leahy, P Levin, S Lilje, PB Maino, D Malaspina, M Manzato, P Marti-Canales, J Martinez-Gonzalez, E Mediavilla, A Pasian, F Pascual, JP Pecora, M Peres-Cuevas, L Platania, P Pospieszalsky, M Poutanen, T Rebolo, R Roddis, N Salmon, M Seiffert, M Simonetto, A Sozzi, C Tauber, J Tuovinen, J Varis, J Wilkinson, A Winder, F AF Mennella, A. Bersanelli, M. Butler, R. C. Cuttaia, F. D'Arcangelo, O. Davis, R. J. Frailis, M. Galeotta, S. Gregorio, A. Lawrence, C. R. Leonardi, R. Lowe, S. R. Mandolesi, N. Maris, M. Meinhold, P. Mendes, L. Morgante, G. Sandri, M. Stringhetti, L. Terenzi, L. Tomasi, M. Valenziano, L. Villa, F. Zacchei, A. Zonca, A. Balasini, M. Franceschet, C. Battaglia, P. Lapolla, P. M. Leutenegger, P. Miccolis, M. Pagan, L. Silvestri, R. Aja, B. Artal, E. Baldan, G. Bastia, P. Bernardino, T. Boschini, L. Cafagna, G. Cappellini, B. Cavaliere, F. Colombo, F. de La Fuente, L. Edgeley, J. Falvella, M. C. Ferrari, F. Fogliani, S. Franceschi, E. Gaier, T. Gomez, F. Herreros, J. M. Hildebrandt, S. Hoyland, R. Hughes, N. Jukkala, P. Kettle, D. Laaninen, M. Lawson, D. Leahy, P. Levin, S. Lilje, P. B. Maino, D. Malaspina, M. Manzato, P. Marti-Canales, J. Martinez-Gonzalez, E. Mediavilla, A. Pasian, F. Pascual, J. P. Pecora, M. Peres-Cuevas, L. Platania, P. Pospieszalsky, M. Poutanen, T. Rebolo, R. Roddis, N. Salmon, M. Seiffert, M. Simonetto, A. Sozzi, C. Tauber, J. Tuovinen, J. Varis, J. Wilkinson, A. Winder, F. TI Planck pre-launch status: Low Frequency Instrument calibration and expected scientific performance SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; telescopes; space vehicles: instruments; instrumentation: detectors; instrumentation: polarimeters; submillimeter: general ID RADIOMETERS; TELESCOPE AB We present the calibration and scientific performance parameters of the Planck Low Frequency Instrument (LFI) measured during the ground cryogenic test campaign. These parameters characterise the instrument response and constitute our optimal pre-launch knowledge of the LFI scientific performance. The LFI shows excellent 1/f stability and rejection of instrumental systematic effects; its measured noise performance shows that LFI is the most sensitive instrument of its kind. The calibration parameters will be updated during flight operations until the end of the mission. C1 [Mennella, A.; Bersanelli, M.; Tomasi, M.; Franceschet, C.; Cavaliere, F.; Maino, D.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Butler, R. C.; Cuttaia, F.; Mandolesi, N.; Morgante, G.; Sandri, M.; Stringhetti, L.; Terenzi, L.; Valenziano, L.; Villa, F.; Franceschi, E.; Malaspina, M.] INAF IASF, Sez Bologna, I-40129 Bologna, Italy. [D'Arcangelo, O.; Platania, P.; Simonetto, A.; Sozzi, C.] CNR, Ist Fis Plasma, I-20125 Milan, Italy. [Davis, R. J.; Lowe, S. R.; Edgeley, J.; Kettle, D.; Lawson, D.; Leahy, P.; Roddis, N.; Wilkinson, A.; Winder, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Frailis, M.; Galeotta, S.; Maris, M.; Zacchei, A.; Fogliani, S.; Manzato, P.; Pasian, F.] INAF, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Lawrence, C. R.; Gaier, T.; Seiffert, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Leonardi, R.; Meinhold, P.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Mendes, L.] ESAC, Planck Sci Off, European Space Agcy, Madrid 28691, Spain. [Zonca, A.; Cappellini, B.] INAF IASF, Sez Milano, I-20133 Milan, Italy. [Balasini, M.; Battaglia, P.; Lapolla, P. M.; Leutenegger, P.; Miccolis, M.; Pagan, L.; Silvestri, R.; Baldan, G.; Bastia, P.; Boschini, L.; Cafagna, G.; Colombo, F.; Ferrari, F.; Pecora, M.] Thales Alenia Space Italia, I-20090 Milan, Italy. [Aja, B.; Artal, E.; de La Fuente, L.; Mediavilla, A.; Pascual, J. P.] Univ Cantabria, Dept Ingeniera Comunicac, E-39005 Santander, Spain. [Bernardino, T.; Martinez-Gonzalez, E.; Salmon, M.] Univ Cantabria, Inst Fis Cantabria, Consejo Super Invest Cient, E-39005 Santander, Spain. [Falvella, M. C.] Agenzia Spaziale Italiana, I-00198 Rome, Italy. [Gomez, F.; Herreros, J. M.; Hildebrandt, S.; Hoyland, R.; Levin, S.] Inst Astrofis Canarias, San Cristobal la Laguna 38200, Tenerife, Spain. [Hughes, N.; Jukkala, P.; Rebolo, R.] DA Design Oy, Jokioinen 31600, Finland. [Laaninen, M.] Ylinen Elect Oy, Kauniainen 02700, Finland. [Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Marti-Canales, J.] Joint ALMA Observ, Santiago, Chile. [Peres-Cuevas, L.; Tauber, J.] ESTEC, European Space Agcy, Res & Sci Support Dpt, Noordwijk, Netherlands. [Pospieszalsky, M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. [Poutanen, T.] Helsinki Inst Phys, Helsinki 00014, Finland. [Poutanen, T.] Helsinki Univ Technol, Metsahovi Radio Observ, Kylmala 02540, Finland. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. RP Mennella, A (reprint author), Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. EM aniello.mennella@fisica.unimi.it RI Butler, Reginald/N-4647-2015; Lilje, Per/A-2699-2012; Sozzi, Carlo/F-4158-2012; Martinez-Gonzalez, Enrique/E-9534-2015; de la Fuente, Luisa/J-5142-2012; Artal, Eduardo/H-5546-2015; Tomasi, Maurizio/I-1234-2016; Aja, Beatriz/H-5573-2015; Pascual, Juan Pablo/K-5066-2014 OI Frailis, Marco/0000-0002-7400-2135; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Zacchei, Andrea/0000-0003-0396-1192; Lilje, Per/0000-0003-4324-7794; Maris, Michele/0000-0001-9442-2754; Valenziano, Luca/0000-0002-1170-0104; Lowe, Stuart/0000-0002-2975-9032; Stringhetti, Luca/0000-0002-3961-9068; Pasian, Fabio/0000-0002-4869-3227; Gregorio, Anna/0000-0003-4028-8785; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Sozzi, Carlo/0000-0001-8951-0071; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; de la Fuente, Luisa/0000-0003-1403-1660; Artal, Eduardo/0000-0002-2569-1894; Tomasi, Maurizio/0000-0002-1448-6131; Aja, Beatriz/0000-0002-4229-2334; Franceschi, Enrico/0000-0002-0585-6591; Zonca, Andrea/0000-0001-6841-1058; Morgante, Gianluca/0000-0001-9234-7412; Pascual, Juan Pablo/0000-0003-2123-0502 FU Italian Space Agency (ASI); NASA Science Mission Directorate; Finnish Funding Agency for Technology and Innovation (Tekes); ESA FX The Planck-LFI project is developed by an Interntional Consortium lead by Italy and involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK, USA. The Italian contribution to Planck is supported by the Italian Space Agency (ASI). The work in this paper has been supported by in the framework of the ASI-E2 phase of the Planck contract. The US Planck Project is supported by the NASA Science Mission Directorate. In Finland, the Planck-LFI 70 GHz work was supported by the Finnish Funding Agency for Technology and Innovation (Tekes).; Planck http://www.esa.int/Planck is a project of the European Space Agency - ESA - with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark. NR 24 TC 20 Z9 20 U1 0 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A5 DI 10.1051/0004-6361/200912849 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200006 ER PT J AU Pajot, F Ade, PAR Beney, JL Breelle, E Broszkiewicz, D Camus, P Carabetian, C Catalano, A Chardin, A Charra, M Charra, J Cizeron, R Couchot, F Coulais, A Crill, BP Dassas, K Daubin, J de Bernardis, P de Marcillac, P Delouis, JM Desert, FX Duret, P Eng, P Evesque, C Fourmond, JJ Francois, S Giard, M Giraud-Heraud, Y Guglielmi, L Guyot, G Haissinski, J Henrot-Versille, S Hervier, V Holmes, W Jones, WC Lamarre, JM Lami, P Lange, AE Lefebvre, M Leriche, B Leroy, C Macias-Perez, J Maciaszek, T Maffei, B Mahendran, A Mansoux, B Marty, C Masi, S Mercier, C Miville-Deschenes, MA Montier, L Nicolas, C Noviello, F Perdereau, O Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Pons, R Ponthieu, N Puget, JL Rambaud, D Renault, C Renault, JC Rioux, C Ristorcelli, I Rosset, C Savini, G Sudiwala, R Torre, JP Tristram, M Vallee, D Veneziani, M Yvon, D AF Pajot, F. Ade, P. A. R. Beney, J. -L. Breelle, E. Broszkiewicz, D. Camus, P. Carabetian, C. Catalano, A. Chardin, A. Charra, M. Charra, J. Cizeron, R. Couchot, F. Coulais, A. Crill, B. P. Dassas, K. Daubin, J. de Bernardis, P. de Marcillac, P. Delouis, J. -M. Desert, F. -X. Duret, P. Eng, P. Evesque, C. Fourmond, J. -J. Francois, S. Giard, M. Giraud-Heraud, Y. Guglielmi, L. Guyot, G. Haissinski, J. Henrot-Versille, S. Hervier, V. Holmes, W. Jones, W. C. Lamarre, J. -M. Lami, P. Lange, A. E. Lefebvre, M. Leriche, B. Leroy, C. Macias-Perez, J. Maciaszek, T. Maffei, B. Mahendran, A. Mansoux, B. Marty, C. Masi, S. Mercier, C. Miville-Deschenes, M. -A. Montier, L. Nicolas, C. Noviello, F. Perdereau, O. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Pons, R. Ponthieu, N. Puget, J. -L. Rambaud, D. Renault, C. Renault, J. -C. Rioux, C. Ristorcelli, I. Rosset, C. Savini, G. Sudiwala, R. Torre, J. -P. Tristram, M. Vallee, D. Veneziani, M. Yvon, D. TI Planck pre-launch status: HFI ground calibration SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; space vehicles: instruments; submillimeter: general ID HIGH-FREQUENCY INSTRUMENT; POLARIZATION; DESIGN; FIRAS AB Context. The Planck satellite was successfully launched on May 14th 2009. We have completed the pre-launch calibration measurements of the High Frequency Instrument (HFI) on board Planck and their processing. Aims. We present the results ot the pre-launch calibration of HFI in which we have multiple objectives. First, we determine instrumental parameters that cannot be measured in-flight and predict parameters that can. Second, we take the opportunity to operate and understand the instrument under a wide range of anticipated operating conditions. Finally, we estimate the performance of the instrument built. Methods. We obtained our pre-launch calibration results by characterising the component and subsystems, then by calibrating the focal plane at IAS (Orsay) in the Saturne simulator, and later from the tests at the satellite level carried out in the CSL (Liege) cryogenic vacuum chamber. We developed models to estimate the instrument pre-launch parameters when no measurement could be performed. Results. We reliably measure the Planck-HFI instrument characteristics and behaviour, and determine the flight nominal setting of all parameters. The expected in-flight performance exceeds the requirements and is close or superior to the goal specifications. C1 [Pajot, F.; Carabetian, C.; Chardin, A.; Charra, M.; Charra, J.; Dassas, K.; de Marcillac, P.; Duret, P.; Eng, P.; Evesque, C.; Fourmond, J. -J.; Francois, S.; Guyot, G.; Hervier, V.; Lami, P.; Lefebvre, M.; Leriche, B.; Leroy, C.; Mahendran, A.; Mercier, C.; Miville-Deschenes, M. -A.; Nicolas, C.; Noviello, F.; Ponthieu, N.; Puget, J. -L.; Rioux, C.; Torre, J. -P.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Ade, P. A. R.; Sudiwala, R.] Cardiff Univ, Astron & Instrumentat Grp, Cardiff, S Glam, Wales. [Beney, J. -L.; Cizeron, R.; Couchot, F.; Daubin, J.; Haissinski, J.; Henrot-Versille, S.; Mansoux, B.; Perdereau, O.; Plaszczynski, S.; Rosset, C.; Tristram, M.] Univ Paris 11, Lab Accelerateur Lineaire, F-91405 Orsay, France. [Breelle, E.; Broszkiewicz, D.; Catalano, A.; Giraud-Heraud, Y.; Guglielmi, L.; Piat, M.; Vallee, D.; Veneziani, M.] CNRS, Lab Astroparticule & Cosmol APC, UMR 7164, F-75205 Paris 13, France. [Breelle, E.; Broszkiewicz, D.; Catalano, A.; Giraud-Heraud, Y.; Guglielmi, L.; Piat, M.; Vallee, D.; Veneziani, M.] Univ Paris 07, F-75205 Paris 13, France. [Camus, P.] CNRS UJF, Inst Neel, F-38042 Grenoble 9, France. [Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Crill, B. P.; Lange, A. E.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Crill, B. P.; Holmes, W.; Jones, W. C.; Lange, A. E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [de Bernardis, P.; Masi, S.; Piacentini, F.] Univ Roma La Sapienza, Grp Cosmol Sperimentale, Dipart Fis, I-00185 Rome, Italy. [Delouis, J. -M.; Renault, J. -C.] CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France. [Delouis, J. -M.; Renault, J. -C.] Univ Paris 06, F-75014 Paris, France. [Desert, F. -X.] Obs Grenoble, Lab Astrophys, F-38041 Grenoble 9, France. [Giard, M.; Marty, C.; Montier, L.; Pointecouteau, E.; Pons, R.; Rambaud, D.; Ristorcelli, I.] CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse, France. [Jones, W. C.] Princeton Univ, Dept Phys, Joseph Henry Lab, Princeton, NJ 08544 USA. [Macias-Perez, J.; Renault, C.] Univ Grenoble 1, LPSC, CNRS IN2P3, Inst Natl Polytech Grenoble, F-38026 Grenoble, France. [Maciaszek, T.] CNES, Ctr Spatial Toulouse, F-31401 Toulouse 9, France. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Savini, G.] UCL, Opt Sci Lab, London WC1E 6BT, England. [Yvon, D.] CEA CE Saclay, DAPNIA, Serv Phys Particules, F-91191 Gif Sur Yvette, France. RP Pajot, F (reprint author), Univ Paris 11, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. EM francois.pajot@ias.u-psud.fr RI Yvon, Dominique/D-2280-2015; Piacentini, Francesco/E-7234-2010; OI Piacentini, Francesco/0000-0002-5444-9327; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Savini, Giorgio/0000-0003-4449-9416 FU CSL team; ESA FX Planck (http://www.esa.int/Planck) is an ESA project with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in collaboration between ESA and a scientific Consortium led and funded by Denmark.; The authors would like to express their gratitude to the CSL team for its contributions and support to the Planck cryogenic test campaigns. NR 25 TC 16 Z9 16 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A10 DI 10.1051/0004-6361/200913203 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200011 ER PT J AU Rosset, C Tristram, M Ponthieu, N Ade, P Aumont, J Catalano, A Conversi, L Couchot, F Crill, BP Desert, FX Ganga, K Giard, M Giraud-Heraud, Y Haissinski, J Henrot-Versille, S Holmes, W Jones, WC Lamarre, JM Lange, A Leroy, C Macias-Perez, J Maffei, B de Marcillac, P Miville-Deschenes, MA Montier, L Noviello, F Pajot, F Perdereau, O Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Puget, JL Ristorcelli, I Savini, G Sudiwala, R Veneziani, M Yvon, D AF Rosset, C. Tristram, M. Ponthieu, N. Ade, P. Aumont, J. Catalano, A. Conversi, L. Couchot, F. Crill, B. P. Desert, F. -X. Ganga, K. Giard, M. Giraud-Heraud, Y. Haissinski, J. Henrot-Versille, S. Holmes, W. Jones, W. C. Lamarre, J. -M. Lange, A. Leroy, C. Macias-Perez, J. Maffei, B. de Marcillac, P. Miville-Deschenes, M. -A. Montier, L. Noviello, F. Pajot, F. Perdereau, O. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Puget, J. -L. Ristorcelli, I. Savini, G. Sudiwala, R. Veneziani, M. Yvon, D. TI Planck pre-launch status: High Frequency Instrument polarization calibration SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE space vehicles: instruments; techniques: polarimetric; instrumentation: polarimeters; instrumentation: detectors; cosmic microwave background; submillimeter: general ID PROBE WMAP OBSERVATIONS; POWER SPECTRA; MICROWAVE; TEMPERATURE; PARAMETERS AB The High Frequency Instrument of Planck will map the entire sky in the millimeter and sub-millimeter domain from 100 to 857 GHz with unprecedented sensitivity to polarization (Delta P/T-cmb similar to 4 x 10(-6) for P either Q or U and T-cmb similar or equal to 2.7 K) at 100, 143, 217 and 353 GHz. It will lead to major improvements in our understanding of the cosmic microwave background anisotropies and polarized foreground signals. Planck will make high resolution measurements of the E-mode spectrum (up to l similar to 1500) and will also play a prominent role in the search for the faint imprint of primordial gravitational waves on the CMB polarization. This paper addresses the effects of calibration of both temperature (gain) and polarization (polarization efficiency and detector orientation) on polarization measurements. The specific requirements on the polarization parameters of the instrument are set and we report on their pre-flight measurement on HFI bolometers. We present a semi-analytical method that exactly accounts for the scanning strategy of the instrument as well as the combination of different detectors. We use this method to propagate errors through to the CMB angular power spectra in the particular case of Planck-HFI, and to derive constraints on polarization parameters. We show that in order to limit the systematic error to 10% of the cosmic variance of the E-mode power spectrum, uncertainties in gain, polarization efficiency and detector orientation must be below 0.15%, 0.3% and 1 degrees respectively. Pre-launch ground measurements reported in this paper already fulfill these requirements. C1 [Rosset, C.; Tristram, M.; Couchot, F.; Haissinski, J.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.] Univ Paris 11, CNRS, LAL, Lab Accelerateur Lineaire, F-91405 Orsay, France. [Ponthieu, N.; Aumont, J.; Leroy, C.; de Marcillac, P.; Miville-Deschenes, M. -A.; Noviello, F.; Pajot, F.; Puget, J. -L.] Univ Paris 11, CNRS, IAS, Inst Astrophys Spatiale, F-91405 Orsay, France. [Ade, P.; Savini, G.; Sudiwala, R.] Cardiff Univ, Astron & Instrumentat Grp, Cardiff, S Glam, Wales. [Catalano, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Rosset, C.; Catalano, A.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Veneziani, M.] Univ Paris Diderot, APC Astroparticule & Cosmol, F-75205 Paris 13, France. [Crill, B. P.; Jones, W. C.; Lange, A.] CALTECH, Observat Cosmol, Pasadena, CA 91125 USA. [Desert, F. -X.; Macias-Perez, J.] CNRS, LAOG, Astrophys Lab, Observ Grenoble, Grenoble, France. [Giard, M.; Leroy, C.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, CESR, F-31038 Toulouse 4, France. [Crill, B. P.; Holmes, W.; Jones, W. C.; Lange, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Maffei, B.] Univ Manchester, JBCA, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Tristram, M.; Aumont, J.] CNRS, LPSC, Lab Phys Subatom & Cosmol, Grenoble, France. [Piacentini, F.; Veneziani, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Yvon, D.] CEA, Serv Phys Particules, Saclay, France. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Savini, G.] UCL, Opt Sci Lab, London WC1E 6BT, England. [Conversi, L.] European Space Astron Ctr, Villanueava De La Canada 28691, Madrid, Spain. RP Rosset, C (reprint author), Univ Paris 11, CNRS, LAL, Lab Accelerateur Lineaire, Batiment 200, F-91405 Orsay, France. EM cyrille.rosset@apc.univ-paris-diderot.fr RI Yvon, Dominique/D-2280-2015; Piacentini, Francesco/E-7234-2010; OI Piacentini, Francesco/0000-0002-5444-9327; Savini, Giorgio/0000-0003-4449-9416 FU ESA; CNES; CNRS; NASA; STFC; ASI FX Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.; The Planck-HFI instrument (http://hfi.planck.fr/) was designed and built by an international consortium of laboratories, universities and institutes, with important contributions from the industry, under the leadership of the PI institute, IAS at Orsay, France. It was funded in particular by CNES, CNRS, NASA, STFC and ASI. The authors extend their gratitude to the numerous engineers and scientists, who have contributed to the design, development, construction or evaluation of the HFI instrument. The authors are pleased to thank the referee for his/her very useful remarks. NR 35 TC 59 Z9 59 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A13 DI 10.1051/0004-6361/200913054 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200014 ER PT J AU Sandri, M Villa, F Bersanelli, M Burigana, C Butler, RC D'Arcangelo, O Figini, L Gregorio, A Lawrence, CR Maino, D Mandolesi, N Maris, M Nesti, R Perrotta, F Platania, P Simonetto, A Sozzi, C Tauber, J Valenziano, L AF Sandri, M. Villa, F. Bersanelli, M. Burigana, C. Butler, R. C. D'Arcangelo, O. Figini, L. Gregorio, A. Lawrence, C. R. Maino, D. Mandolesi, N. Maris, M. Nesti, R. Perrotta, F. Platania, P. Simonetto, A. Sozzi, C. Tauber, J. Valenziano, L. TI Planck pre-launch status: Low Frequency Instrument optics SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; space vehicles: instruments; instrumentation: detectors; submillimeter: general; telescopes ID MICROWAVE BACKGROUND ANISOTROPY; DIPOLE STRAYLIGHT CONTAMINATION; ANGULAR RESOLUTION; TRADE-OFF AB We describe the optical design and optimisation of the Low Frequency Instrument (LFI), one of two instruments onboard the Planck satellite, which will survey the cosmic microwave background with unprecedented accuracy. The LFI covers the 30-70 GHz frequency range with an array of cryogenic radiometers. Stringent optical requirements on angular resolution, sidelobes, main beam symmetry, polarization purity, and feed orientation have been achieved. The optimisation process was carried out by assuming an ideal telescope according to the Planck design and by using both physical optics and multi-reflector geometrical theory of diffraction. This extensive study led to the flight design of the feed horns, their characteristics, arrangement, and orientation, while taking into account the opto-mechanical constraints imposed by complex interfaces in the Planck focal surface. C1 [Sandri, M.; Villa, F.; Burigana, C.; Butler, R. C.; Mandolesi, N.; Valenziano, L.] INAF IASF Bologna, I-40129 Bologna, Italy. [Bersanelli, M.; Maino, D.] Univ Milan, I-20133 Milan, Italy. [D'Arcangelo, O.; Figini, L.; Platania, P.; Simonetto, A.; Sozzi, C.] IFP CNR, Milan, Italy. [Gregorio, A.; Maris, M.] INAF OATs, I-34143 Trieste, Italy. [Gregorio, A.] Univ Trieste, Dept Phys, I-34127 Trieste, Italy. [Lawrence, C. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Nesti, R.] INAF, Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Perrotta, F.] SISSA, I-34014 Trieste, Italy. [Tauber, J.] ESA ESTEC, NL-2200 AG Noordwijk, Netherlands. RP Sandri, M (reprint author), INAF IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy. EM sandri@iasfbo.inaf.it; villa@iasfbo.inaf.it; marco.bersanelli@mi.infn.it; burigana@iasfbo.inaf.it; butler@iasfbo.inaf.it; darcangelo@ifp.cnr.it; anna.gregorio@ts.infn.it; Charles.R.Lawrence@jpl.nasa.gov; davide.maino@mi.infn.it; mandolesi@iasfbo.inaf.it; maris@oats.inaf.it; nesti@arcetri.astro.it; perrotta@sissa.it; platania@ifp.cnr.it; simonetto@ifp.cnr.it; sozzi@ifp.cnr.it; jtauber@rssd.esa.int; valenziano@iasfbo.inaf.it RI Sozzi, Carlo/F-4158-2012; Butler, Reginald/N-4647-2015; OI Nesti, Renzo/0000-0003-0303-839X; Gregorio, Anna/0000-0003-4028-8785; Sandri, Maura/0000-0003-4806-5375; Burigana, Carlo/0000-0002-3005-5796; Villa, Fabrizio/0000-0003-1798-861X; Sozzi, Carlo/0000-0001-8951-0071; Butler, Reginald/0000-0003-4366-5996; Maris, Michele/0000-0001-9442-2754; Valenziano, Luca/0000-0002-1170-0104 FU ESA; Italian Space Agency (ASI) FX Planck is a project of the European Space Agency with instruments funded by ESA member states, and with special contributions from Denmark and NASA (USA). The Planck-LFI project is developed by an International Consortium lead by Italy and involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK, USA. The Italian contribution to Planck is supported by the Italian Space Agency (ASI). We wish to thank people of the Herschel/Planck Project of ESA, ASI, THALES Alenia Space Industries, and the LFI Consortium that are involved in activities related to optical simulations. Some of the results in this paper have been derived using the HEALPix (Gorski, Hivon, and Wandelt 1999). Special thanks to Denis Dubruel (THALES Alenia Space), for his professional collaboration in all these years. We warmly thank David Pearson for constructive comments and suggestions, and for the careful reading of the first version of this work. NR 27 TC 15 Z9 15 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A7 DI 10.1051/0004-6361/200912891 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200008 ER PT J AU Strassmeier, KG Granzer, T Kopf, M Weber, M Kuker, M Reegen, P Rice, JB Matthews, JM Kuschnig, R Rowe, JF Guenther, DB Moffat, AFJ Rucinski, SM Sasselov, D Weiss, WW AF Strassmeier, K. G. Granzer, T. Kopf, M. Weber, M. Kueker, M. Reegen, P. Rice, J. B. Matthews, J. M. Kuschnig, R. Rowe, J. F. Guenther, D. B. Moffat, A. F. J. Rucinski, S. M. Sasselov, D. Weiss, W. W. TI Rotation and magnetic activity of the Hertzsprung-gap giant 31 Comae SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: activity; stars: atmospheres; stars: individual: 31 Comae; starspots; stars: late-type; stars: rotation ID PRE-MAIN-SEQUENCE; LATE-TYPE STARS; GENEVA-COPENHAGEN SURVEY; TIME-SERIES ANALYSIS; X-RAY ACTIVITY; LATE A-TYPE; G-K GIANTS; STELLAR EVOLUTION; COOL STARS; LUMINOSITY CLASSIFICATION AB Context. The single rapidly-rotating G0 giant 31 Comae has been a puzzle because of the absence of photometric variability despite its strong chromospheric and coronal emissions. As a Hertzsprung-gap giant, it is expected to be at the stage of rearranging its moment of inertia, hence likely also its dynamo action, which could possibly be linked with its missing photospheric activity. Aims. Our aim is to detect photospheric activity, obtain the rotation period, and use it for a first Doppler image of the star's surface. Its morphology could be related to the evolutionary status. Methods. We carried out high-precision, white-light photometry with the MOST satellite, ground-based Stromgren photometry with automated telescopes, and high-resolution optical echelle spectroscopy with the new STELLA robotic facility. Results. The MOST data reveal, for the first time, light variations with a full amplitude of 5 mmag and an average photometric period of 6.80 +/- 0.06 days. Radial-velocity variations with a full amplitude of 270 ms(-1) and a period of 6.76 +/- 0.02 days were detected from our STELLA spectra, which we also interpret as due to stellar rotation. The two-year constancy of the average radial velocity of +0.10 +/- 0.33 km s(-1) confirms the star's single status, as well as the membership in the cluster Melotte 111. A spectrum synthesis gives T-eff = 5660 +/- 42 K, log g = 3.51 +/- 0.09, and [Fe/H] = -0.15 +/- 0.03, which together with the revised Hipparcos distance, suggests a mass of 2.6 +/- 0.1 M-circle dot and an age of approximate to 540 Myr. The surface lithium abundance is measured to be nearly primordial. A detection of a strong He I absorption line indicates nonradiative heating processes in the atmosphere. Our Doppler images show a large, asymmetric polar spot, cooler than Teff by approximate to 1600 K, and several small low-to-mid latitude features that are warmer by approximate to 300-400 K and are possibly of chromospheric origin. We computed the convective turnover time for 31 Com as a function of depth and found on average tau(C) approximate to 5 days. Conclusions. 31 Com appears to be just at the onset of rapid magnetic braking and Li dilution because its age almost exactly coincides with the predicted onset of envelope convection. That we recover a big polar starspot despite the Rossby number being larger than unity, and thus no efficient (envelope) dynamo is expected, leads us to conclude that 31 Com still harbors a fossil predominantly poloidal magnetic field. However, the increasing convective envelope may have just started an interface dynamo that now is the source of the warm surface features and the corresponding UV and X-ray emission. C1 [Strassmeier, K. G.; Granzer, T.; Kopf, M.; Weber, M.; Kueker, M.] AIP, D-14482 Potsdam, Germany. [Reegen, P.; Kuschnig, R.; Weiss, W. W.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Rice, J. B.] Brandon Univ, Dept Phys, Brandon, MB R7A 6A9, Canada. [Matthews, J. M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Rowe, J. F.] NASA Ames Res Ctr, Moffett Field, CA 94035 USA. [Guenther, D. B.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Moffat, A. F. J.] Univ Montreal CP 6128, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Rucinski, S. M.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON OM5S 3H4, Canada. [Sasselov, D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Strassmeier, KG (reprint author), AIP, Sternwarte 16, D-14482 Potsdam, Germany. EM kstrassmeier@aip.de; reegen@astro.univie.ac.at; rice@BrandonU.ca FU Natural Sciences and Engineering Research Council (NSERC) Canada; Canadian Space Agency; Austrian Science Promotion Agency (FFG-MOST); Austrian Science Funds [FWF-P17580]; FWF; KGS FX K.G.S. and the AIP coauthors are grateful to the State of Brandenburg and the German federal ministry for education and research (BMBF) for their continuous support of the STELLA and APT activities. It is our pleasure to thank Sydney Barnes and Yong-Cheol Kim for computing the moment-of-inertia models for us. We particularly thank our anonymous referee whose comments resulted in a much improved paper. J.B.R., J.M.M., D.B.G., A.F.J.M., and S.M.R. are supported by funding from the Natural Sciences and Engineering Research Council (NSERC) Canada. R.K. is funded by the Canadian Space Agency. W.W.W. is supported by the Austrian Science Promotion Agency (FFG-MOST) and the Austrian Science Funds (FWF-P17580). The APT operation has been supported by grants from the FWF to M. Breger and KGS. This work has made use of BaSTI web tools, the MESA code and of the many CDS-Strasbourg services. NR 120 TC 10 Z9 10 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A52 DI 10.1051/0004-6361/201015023 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200075 ER PT J AU Tauber, JA Norgaard-Nielsen, HU Ade, PAR Parian, JA Banos, T Bersanelli, M Burigana, C Chamballu, A de Chambure, D Christensen, PR Corre, O Cozzani, A Crill, B Crone, G D'Arcangelo, O Daddato, R Doyle, D Dubruel, D Forma, G Hills, R Huffenberger, K Jaffe, AH Jessen, N Kletzkine, P Lamarre, JM Leahy, JP Longval, Y de Maagt, P Maffei, B Mandolesi, N Marti-Canales, J Martin-Polegre, A Martin, P Mendes, L Murphy, JA Nielsen, P Noviello, F Paquay, M Peacocke, T Ponthieu, N Pontoppidan, K Ristorcelli, I Riti, JB Rolo, L Rosset, C Sandri, M Savini, G Sudiwala, R Tristram, M Valenziano, L van der Vorst, M van't Klooster, K Villa, F Yurchenko, V AF Tauber, J. A. Norgaard-Nielsen, H. U. Ade, P. A. R. Parian, J. Amiri Banos, T. Bersanelli, M. Burigana, C. Chamballu, A. de Chambure, D. Christensen, P. R. Corre, O. Cozzani, A. Crill, B. Crone, G. D'Arcangelo, O. Daddato, R. Doyle, D. Dubruel, D. Forma, G. Hills, R. Huffenberger, K. Jaffe, A. H. Jessen, N. Kletzkine, P. Lamarre, J. M. Leahy, J. P. Longval, Y. de Maagt, P. Maffei, B. Mandolesi, N. Marti-Canales, J. Martin-Polegre, A. Martin, P. Mendes, L. Murphy, J. A. Nielsen, P. Noviello, F. Paquay, M. Peacocke, T. Ponthieu, N. Pontoppidan, K. Ristorcelli, I. Riti, J. -B. Rolo, L. Rosset, C. Sandri, M. Savini, G. Sudiwala, R. Tristram, M. Valenziano, L. van der Vorst, M. van't Klooster, K. Villa, F. Yurchenko, V. TI Planck pre-launch status: The optical system SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; space vehicles: instruments; instrumentation: detectors; instrumentation: polarimeters; submillimeter: general; telescopes ID STRAYLIGHT CONTAMINATION; FREQUENCY INSTRUMENT; CRAB-NEBULA; POLARIZATION; ANISOTROPY; TELESCOPE; RECONSTRUCTION; LFI AB Planck is a scientific satellite that represents the next milestone in space-based research related to the cosmic microwave background, and in many other astrophysical fields. Planck was launched on 14 May of 2009 and is now operational. The uncertainty in the optical response of its detectors is a key factor allowing Planck to achieve its scientific objectives. More than a decade of analysis and measurements have gone into achieving the required performances. In this paper, we describe the main aspects of the Planck optics that are relevant to science, and the estimated in-flight performance, based on the knowledge available at the time of launch. We also briefly describe the impact of the major systematic effects of optical origin, and the concept of in-flight optical calibration. Detailed discussions of related areas are provided in accompanying papers. C1 [Tauber, J. A.] European Space Agcy, Res & Sci Support Dpt, Div Astrophys, NL-2201 AZ Noordwijk, Netherlands. [Norgaard-Nielsen, H. U.; Jessen, N.] Danish Natl Space Ctr, DK-2100 Copenhagen, Denmark. [Parian, J. Amiri] PhotoCore GmbH, CH-8050 Zurich, Switzerland. [Banos, T.; Corre, O.; Dubruel, D.; Forma, G.; Martin, P.; Riti, J. -B.] Thales Alenia Space, F-06156 Cannes La Bocca, France. [Bersanelli, M.] Univ Milan, I-20133 Milan, Italy. [Burigana, C.; Mandolesi, N.; Sandri, M.; Valenziano, L.; Villa, F.] INAF Ist Astrofis Spaziale & Fis Cosm, I-40129 Bologna, Italy. [Chamballu, A.; Jaffe, A. H.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Christensen, P. R.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Cozzani, A.; Crone, G.; Daddato, R.; Doyle, D.; Kletzkine, P.; de Maagt, P.; Marti-Canales, J.; Martin-Polegre, A.; Paquay, M.; Rolo, L.; van der Vorst, M.; van't Klooster, K.] Estec, European Space Agcy, NL-2201 AZ Noordwijk, Netherlands. [Crill, B.; Huffenberger, K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [D'Arcangelo, O.] IFP CNR, Milan, Italy. [Hills, R.] Univ Cambridge, Cavendish Lab, Dpt Phys, Cambridge CB3 0HE, England. [Lamarre, J. M.] LERMA, Observ Paris, F-75014 Paris, France. [Leahy, J. P.; Maffei, B.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Mendes, L.] European Space Astron Ctr, European Space Agcy, Planck Sci Off, Madrid 28691, Spain. [Murphy, J. A.; Peacocke, T.] NUI Maynooth, Maynooth Co, Dpt Expt Phys, Kildare, Ireland. [Nielsen, P.; Pontoppidan, K.] Ticra, DK-21201 Copenhagen, Denmark. [Longval, Y.; Noviello, F.; Ponthieu, N.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Ristorcelli, I.] Univ Toulouse 3, Ctr Etud Spatiale Rayonnements, CESR, F-31038 Toulouse 4, France. [Ristorcelli, I.] CNRS, F-31038 Toulouse 4, France. [Rosset, C.] Univ Paris Diderot Paris 7, Lab Astroparticule & Cosmol APC, F-75205 Paris 13, France. [Rosset, C.] CNRS, F-75205 Paris 13, France. [Savini, G.] UCL, Opt Sci Lab, Dpt Phys & Astron, London WC1E 6BT, England. [Ade, P. A. R.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. Univ Paris 11, Lab Accelerateur Lineaire, F-91898 Orsay, France. [de Chambure, D.] European Space Agcy, F-75015 Paris, France. RP Tauber, JA (reprint author), European Space Agcy, Res & Sci Support Dpt, Div Astrophys, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. EM jtauber@rssd.esa.int OI Valenziano, Luca/0000-0002-1170-0104; Sandri, Maura/0000-0003-4806-5375; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Villa, Fabrizio/0000-0003-1798-861X; Savini, Giorgio/0000-0003-4449-9416 FU ESA; Scientific Consortium Denmark FX Planck (http://www.esa.int/Planck) is a project of the European Space Agency - ESA - with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark. NR 45 TC 41 Z9 41 U1 0 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A2 DI 10.1051/0004-6361/200912911 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200003 ER PT J AU Tauber, JA Mandolesi, N Puget, JL Banos, T Bersanelli, M Bouchet, FR Butler, RC Charra, J Crone, G Dodsworth, J Efstathiou, G Gispert, R Guyot, G Gregorio, A Juillet, JJ Lamarre, JM Laureijs, RJ Lawrence, CR Norgaard-Nielsen, HU Passvogel, T Reix, JM Texier, D Vibert, L Zacchei, A Ade, PAR Aghanim, N Aja, B Alippi, E Aloy, L Armand, P Arnaud, M Arondel, A Arreola-Villanueva, A Artal, E Artina, E Arts, A Ashdown, M Aumont, J Azzaro, M Bacchetta, A Baccigalupi, C Baker, M Balasini, M Balbi, A Banday, AJ Barbier, G Barreiro, RB Bartelmann, M Battaglia, P Battaner, E Benabed, K Beney, JL Beneyton, R Bennett, K Benoit, A Bernard, JP Bhandari, P Bhatia, R Biggi, M Biggins, R Billig, G Blanc, Y Blavot, H Bock, JJ Bonaldi, A Bond, R Bonis, J Borders, J Borrill, J Boschini, L Boulanger, F Bouvier, J Bouzit, M Bowman, R Breelle, E Bradshaw, T Braghin, M Bremer, M Brienza, D Broszkiewicz, D Burigana, C Burkhalter, M Cabella, P Cafferty, T Cairola, M Caminade, S Camus, P Cantalupo, CM Cappellini, B Cardoso, JF Carr, R Catalano, A Cayon, L Cesa, M Chaigneau, M Challinor, A Chamballu, A Chambelland, JP Charra, M Chiang, LY Chlewicki, G Christensen, PR Church, S Ciancietta, E Cibrario, M Cizeron, R Clements, D Collaudin, B Colley, JM Colombi, S Colombo, A Colombo, F Corre, O Couchot, F Cougrand, B Coulais, A Couzin, P Crane, B Crill, B Crook, M Crumb, D Cuttaia, F Dorl, U da Silva, P Daddato, R Damasio, C Danese, L d'Aquino, G D'Arcangelo, O Dassas, K Davies, RD Davies, W Davis, RJ De Bernardis, P de Chambure, D de Gasperis, G De la Fuente, ML De Paco, P De Rosa, A De Troia, G De Zotti, G Dehamme, M Delabrouille, J Delouis, JM Desert, FX di Girolamo, G Dickinson, C Doelling, E Dolag, K Domken, I Douspis, M Doyle, D Du, S Dubruel, D Dufour, C Dumesnil, C Dupac, X Duret, P Eder, C Elfving, A Ensslin, TA Eng, P English, K Eriksen, HK Estaria, P Falvella, MC Ferrari, F Finelli, F Fishman, A Fogliani, S Foley, S Fonseca, A Forma, G Forni, O Fosalba, P Fourmond, JJ Frailis, M Franceschet, C Franceschi, E Francois, S Frerking, M Gomez-Renasco, MF Gorski, KM Gaier, TC Galeotta, S Ganga, K Lazaro, JG Gavila, E Giard, M Giardino, G Gienger, G Giraud-Heraud, Y Glorian, JM Griffin, M Gruppuso, A Guglielmi, L Guichon, D Guillaume, B Guillouet, P Haissinski, J Hansen, FK Hardy, J Harrison, D Hazell, A Hechler, M Heckenauer, V Heinzer, D Hell, R Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Herreros, JM Hervier, V Heske, A Heurtel, A Hildebrandt, SR Hills, R Hivon, E Hobson, M Hollert, D Holmes, W Hornstrup, A Hovest, W Hoyland, RJ Huey, G Huffenberger, KM Hughes, N Israelsson, U Jackson, B Jaffe, A Jaffe, TR Jagemann, T Jessen, NC Jewell, J Jones, W Juvela, M Kaplan, J Karlman, P Keck, F Keihanen, E King, M Kisner, TS Kletzkine, P Kneissl, R Knoche, J Knox, L Koch, T Krassenburg, M Kurki-Suonio, H Lahteenmaki, A Lagache, G Lagorio, E Lami, P Lande, J Lange, A Langlet, F Lapini, R Lapolla, M Lasenby, A Le Jeune, M Leahy, JP Lefebvre, M Legrand, F Le Meur, G Leonardi, R Leriche, B Leroy, C Leutenegger, P Levin, SM Lilje, PB Lindensmith, C Linden-Vornle, M Loc, A Longval, Y Lubin, PM Luchik, T Luthold, I Macias-Perez, JF Maciaszek, T MacTavish, C Madden, S Maffei, B Magneville, C Maino, D Mambretti, A Mansoux, B Marchioro, D Maris, M Marliani, F Marrucho, JC Marti-Canales, J Martinez-Gonzalez, E Martin-Polegre, A Martin, P Marty, C Marty, W Masi, S Massardi, M Matarrese, S Matthai, F Mazzotta, P McDonald, A McGrath, P Mediavilla, A Meinhold, R Melin, JB Melot, F Mendes, L Mennella, A Mervier, C Meslier, L Miccolis, M Miville-Deschenes, MA Moneti, A Montet, D Montier, L Mora, J Morgante, G Morigi, G Morinaud, G Morisset, N Mortlock, D Mottet, S Mulder, J Munshi, D Murphy, A Murphy, P Musi, P Narbonne, J Naselsky, P Nash, A Nati, F Natoli, P Netterfield, B Newell, J Nexon, M Nicolas, C Nielsen, PH Ninane, N Noviello, F Novikov, D Novikov, I O'Dwyer, IJ Oldeman, P Olivier, P Ouchet, L Oxborrow, CA Perez-Cuevas, L Pagan, L Paine, C Pajot, F Paladini, R Pancher, F Panh, J Parks, G Parnaudeau, P Partridge, B Parvin, B Pascual, JP Pasian, F Pearson, DP Pearson, T Pecora, M Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Pierpaoli, E Piersanti, O Plaige, E Plaszczynski, S Platania, P Pointecouteau, E Polenta, G Ponthieu, N Popa, L Poulleau, G Poutanen, T Prezeau, G Pradell, L Prina, M Prunet, S Rachen, JP Rambaud, D Rame, F Rasmussen, I Rautakoski, J Reach, WT Rebolo, R Reinecke, M Reiter, J Renault, C Ricciardi, S Rideau, P Riller, T Ristorcelli, I Riti, JB Rocha, G Roche, Y Pons, R Rohlfs, R Romero, D Roose, S Rosset, C Rouberol, S Rowan-Robinson, M Rubino-Martin, JA Rusconi, P Rusholme, B Salama, M Salerno, E Sandri, M Santos, D Sanz, JL Sauter, L Sauvage, F Savini, G Schmelzel, M Schnorhk, A Schwarz, W Scott, D Seiffert, MD Shellard, P Shih, C Sias, M Silk, JI Silvestri, R Sippel, R Smoot, GF Starck, JL Stassi, P Sternberg, J Stivoli, F Stolyarov, V Stompor, R Stringhetti, L Strommen, D Stute, T Sudiwala, R Sugimura, R Sunyaev, R Sygnet, JF Turler, M Taddei, E Tallon, J Tamiatto, C Taurigna, M Taylor, D Terenzi, L Thuerey, S Tillis, J Tofani, G Toffolatti, L Tommasi, E Tomasi, M Tonazzini, E Torre, JP Tosti, S Touze, F Tristram, M Tuovinen, J Tuttlebee, M Umana, G Valenziano, L Vallee, D van der Vlis, M Van Leeuwen, F Vanel, JC Van-Tent, B Varis, J Vassallo, E Vescovi, C Vezzu, F Vibert, D Vielva, P Vierra, J Villa, F Vittorio, N Vuerli, C Wade, LA Walker, AR Wandelt, BD Watson, C Werner, D White, M White, SDM Wilkinson, A Wilson, P Woodcraft, A Yoffo, B Yun, M Yurchenko, V Yvon, D Zhang, B Zimmermann, O Zonca, A Zorita, D AF Tauber, J. A. Mandolesi, N. Puget, J. -L. Banos, T. Bersanelli, M. Bouchet, F. R. Butler, R. C. Charra, J. Crone, G. Dodsworth, J. Efstathiou, G. Gispert, R. Guyot, G. Gregorio, A. Juillet, J. J. Lamarre, J. -M. Laureijs, R. J. Lawrence, C. R. Norgaard-Nielsen, H. U. Passvogel, T. Reix, J. M. Texier, D. Vibert, L. Zacchei, A. Ade, P. A. R. Aghanim, N. Aja, B. Alippi, E. Aloy, L. Armand, P. Arnaud, M. Arondel, A. Arreola-Villanueva, A. Artal, E. Artina, E. Arts, A. Ashdown, M. Aumont, J. Azzaro, M. Bacchetta, A. Baccigalupi, C. Baker, M. Balasini, M. Balbi, A. Banday, A. J. Barbier, G. Barreiro, R. B. Bartelmann, M. Battaglia, P. Battaner, E. Benabed, K. Beney, J. -L. Beneyton, R. Bennett, K. Benoit, A. Bernard, J. -P. Bhandari, P. Bhatia, R. Biggi, M. Biggins, R. Billig, G. Blanc, Y. Blavot, H. Bock, J. J. Bonaldi, A. Bond, R. Bonis, J. Borders, J. Borrill, J. Boschini, L. Boulanger, F. Bouvier, J. Bouzit, M. Bowman, R. Breelle, E. Bradshaw, T. Braghin, M. Bremer, M. Brienza, D. Broszkiewicz, D. Burigana, C. Burkhalter, M. Cabella, P. Cafferty, T. Cairola, M. Caminade, S. Camus, P. Cantalupo, C. M. Cappellini, B. Cardoso, J. -F. Carr, R. Catalano, A. Cayon, L. Cesa, M. Chaigneau, M. Challinor, A. Chamballu, A. Chambelland, J. P. Charra, M. Chiang, L. -Y. Chlewicki, G. Christensen, P. R. Church, S. Ciancietta, E. Cibrario, M. Cizeron, R. Clements, D. Collaudin, B. Colley, J. -M. Colombi, S. Colombo, A. Colombo, F. Corre, O. Couchot, F. Cougrand, B. Coulais, A. Couzin, P. Crane, B. Crill, B. Crook, M. Crumb, D. Cuttaia, F. Doerl, U. da Silva, P. Daddato, R. Damasio, C. Danese, L. d'Aquino, G. D'Arcangelo, O. Dassas, K. Davies, R. D. Davies, W. Davis, R. J. De Bernardis, P. de Chambure, D. de Gasperis, G. De la Fuente, M. L. De Paco, P. De Rosa, A. De Troia, G. De Zotti, G. Dehamme, M. Delabrouille, J. Delouis, J. -M. Desert, F. -X. di Girolamo, G. Dickinson, C. Doelling, E. Dolag, K. Domken, I. Douspis, M. Doyle, D. Du, S. Dubruel, D. Dufour, C. Dumesnil, C. Dupac, X. Duret, P. Eder, C. Elfving, A. Ensslin, T. A. Eng, P. English, K. Eriksen, H. K. Estaria, P. Falvella, M. C. Ferrari, F. Finelli, F. Fishman, A. Fogliani, S. Foley, S. Fonseca, A. Forma, G. Forni, O. Fosalba, P. Fourmond, J. -J. Frailis, M. Franceschet, C. Franceschi, E. Francois, S. Frerking, M. Gomez-Renasco, M. F. Gorski, K. M. Gaier, T. C. Galeotta, S. Ganga, K. Lazaro, J. Garcia Gavila, E. Giard, M. Giardino, G. Gienger, G. Giraud-Heraud, Y. Glorian, J. -M. Griffin, M. Gruppuso, A. Guglielmi, L. Guichon, D. Guillaume, B. Guillouet, P. Haissinski, J. Hansen, F. K. Hardy, J. Harrison, D. Hazell, A. Hechler, M. Heckenauer, V. Heinzer, D. Hell, R. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Herreros, J. M. Hervier, V. Heske, A. Heurtel, A. Hildebrandt, S. R. Hills, R. Hivon, E. Hobson, M. Hollert, D. Holmes, W. Hornstrup, A. Hovest, W. Hoyland, R. J. Huey, G. Huffenberger, K. M. Hughes, N. Israelsson, U. Jackson, B. Jaffe, A. Jaffe, T. R. Jagemann, T. Jessen, N. C. Jewell, J. Jones, W. Juvela, M. Kaplan, J. Karlman, P. Keck, F. Keihanen, E. King, M. Kisner, T. S. Kletzkine, P. Kneissl, R. Knoche, J. Knox, L. Koch, T. Krassenburg, M. Kurki-Suonio, H. Lahteenmaki, A. Lagache, G. Lagorio, E. Lami, P. Lande, J. Lange, A. Langlet, F. Lapini, R. Lapolla, M. Lasenby, A. Le Jeune, M. Leahy, J. P. Lefebvre, M. Legrand, F. Le Meur, G. Leonardi, R. Leriche, B. Leroy, C. Leutenegger, P. Levin, S. M. Lilje, P. B. Lindensmith, C. Linden-Vornle, M. Loc, A. Longval, Y. Lubin, P. M. Luchik, T. Luthold, I. Macias-Perez, J. F. Maciaszek, T. MacTavish, C. Madden, S. Maffei, B. Magneville, C. Maino, D. Mambretti, A. Mansoux, B. Marchioro, D. Maris, M. Marliani, F. Marrucho, J. -C. Marti-Canales, J. Martinez-Gonzalez, E. Martin-Polegre, A. Martin, P. Marty, C. Marty, W. Masi, S. Massardi, M. Matarrese, S. Matthai, F. Mazzotta, P. McDonald, A. McGrath, P. Mediavilla, A. Meinhold, R. Melin, J. -B. Melot, F. Mendes, L. Mennella, A. Mervier, C. Meslier, L. Miccolis, M. Miville-Deschenes, M. -A. Moneti, A. Montet, D. Montier, L. Mora, J. Morgante, G. Morigi, G. Morinaud, G. Morisset, N. Mortlock, D. Mottet, S. Mulder, J. Munshi, D. Murphy, A. Murphy, P. Musi, P. Narbonne, J. Naselsky, P. Nash, A. Nati, F. Natoli, P. Netterfield, B. Newell, J. Nexon, M. Nicolas, C. Nielsen, P. H. Ninane, N. Noviello, F. Novikov, D. Novikov, I. O'Dwyer, I. J. Oldeman, P. Olivier, P. Ouchet, L. Oxborrow, C. A. Perez-Cuevas, L. Pagan, L. Paine, C. Pajot, F. Paladini, R. Pancher, F. Panh, J. Parks, G. Parnaudeau, P. Partridge, B. Parvin, B. Pascual, J. P. Pasian, F. Pearson, D. P. Pearson, T. Pecora, M. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Piersanti, O. Plaige, E. Plaszczynski, S. Platania, P. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Poulleau, G. Poutanen, T. Prezeau, G. Pradell, L. Prina, M. Prunet, S. Rachen, J. P. Rambaud, D. Rame, F. Rasmussen, I. Rautakoski, J. Reach, W. T. Rebolo, R. Reinecke, M. Reiter, J. Renault, C. Ricciardi, S. Rideau, P. Riller, T. Ristorcelli, I. Riti, J. B. Rocha, G. Roche, Y. Pons, R. Rohlfs, R. Romero, D. Roose, S. Rosset, C. Rouberol, S. Rowan-Robinson, M. Rubino-Martin, J. A. Rusconi, P. Rusholme, B. Salama, M. Salerno, E. Sandri, M. Santos, D. Sanz, J. L. Sauter, L. Sauvage, F. Savini, G. Schmelzel, M. Schnorhk, A. Schwarz, W. Scott, D. Seiffert, M. D. Shellard, P. Shih, C. Sias, M. Silk, J. I. Silvestri, R. Sippel, R. Smoot, G. F. Starck, J. -L. Stassi, P. Sternberg, J. Stivoli, F. Stolyarov, V. Stompor, R. Stringhetti, L. Strommen, D. Stute, T. Sudiwala, R. Sugimura, R. Sunyaev, R. Sygnet, J. -F. Tuerler, M. Taddei, E. Tallon, J. Tamiatto, C. Taurigna, M. Taylor, D. Terenzi, L. Thuerey, S. Tillis, J. Tofani, G. Toffolatti, L. Tommasi, E. Tomasi, M. Tonazzini, E. Torre, J. -P. Tosti, S. Touze, F. Tristram, M. Tuovinen, J. Tuttlebee, M. Umana, G. Valenziano, L. Vallee, D. van der Vlis, M. Van Leeuwen, F. Vanel, J. -C. Van-Tent, B. Varis, J. Vassallo, E. Vescovi, C. Vezzu, F. Vibert, D. Vielva, P. Vierra, J. Villa, F. Vittorio, N. Vuerli, C. Wade, L. A. Walker, A. R. Wandelt, B. D. Watson, C. Werner, D. White, M. White, S. D. M. Wilkinson, A. Wilson, P. Woodcraft, A. Yoffo, B. Yun, M. Yurchenko, V. Yvon, D. Zhang, B. Zimmermann, O. Zonca, A. Zorita, D. TI Planck pre-launch status: The Planck mission SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; space vehicles: instruments; instrumentation: detectors; instrumentation: polarimeters; submillimeter: general; radio continuum: general ID HIGH-FREQUENCY INSTRUMENT; MICROWAVE BACKGROUND ANISOTROPY; CMB EXPERIMENTS; CALIBRATION; POLARIZATION; SPACE; HFI; PERFORMANCE; DESIGN; SYSTEM AB The European Space Agency's Planck satellite, launched on 14 May 2009, is the third-generation space experiment in the field of cosmic microwave background (CMB) research. It will image the anisotropies of the CMB over the whole sky, with unprecedented sensitivity (Delta T/T similar to 2 x 10(-6)) and angular resolution (similar to 5 arcmin). Planck will provide a major source of information relevant to many fundamental cosmological problems and will test current theories of the early evolution of the Universe and the origin of structure. It will also address a wide range of areas of astrophysical research related to the Milky Way as well as external galaxies and clusters of galaxies. The ability of Planck to measure polarization across a wide frequency range (30-350 GHz), with high precision and accuracy, and over the whole sky, will provide unique insight, not only into specific cosmological questions, but also into the properties of the interstellar medium. This paper is part of a series which describes the technical capabilities of the Planck scientific payload. It is based on the knowledge gathered during the on-ground calibration campaigns of the major subsystems, principally its telescope and its two scientific instruments, and of tests at fully integrated satellite level. It represents the best estimate before launch of the technical performance that the satellite and its payload will achieve in flight. In this paper, we summarise the main elements of the payload performance, which is described in detail in the accompanying papers. In addition, we describe the satellite performance elements which are most relevant for science, and provide an overview of the plans for scientific operations and data analysis. C1 [Tauber, J. A.; Laureijs, R. J.; Bennett, K.; Bremer, M.; Giardino, G.; Sternberg, J.] ESTEC, European Space Agcy, Div Astrophys, NL-2201 AZ Noordwijk, Netherlands. [Polenta, G.] ESRIN, Agenzia Spaziale Italiana, Sci Data Ctr, Frascati, Italy. [Falvella, M. C.; Tommasi, E.] Agenzia Spaziale Italiana, Rome, Italy. [Sippel, R.; Stute, T.] Astrium GmbH, Friedrichshafen, Germany. [Broszkiewicz, D.; Cardoso, J. -F.; Catalano, A.; Colley, J. -M.; Delabrouille, J.; Dufour, C.; Ganga, K.; Giraud-Heraud, Y.; Guglielmi, L.; Guillouet, P.; Kaplan, J.; Le Jeune, M.; Piat, M.; Stompor, R.; Vallee, D.; Vanel, J. -C.; Yoffo, B.] Univ Denis Diderot Paris 7, CNRS, UMR7164, Paris, France. [Baccigalupi, C.; Danese, L.; Perrotta, F.] SISSA ISAS, Astrophys Sect, Trieste, Italy. [Ade, P. A. R.; Griffin, M.; Sudiwala, R.; Woodcraft, A.] Cardiff Univ, Dept Phys & Astron, Cardiff, Wales. [Arnaud, M.] IrfU SAp, CEA Saclay, Gif Sur Yvette, France. [Magneville, C.; Melin, J. -B.; Starck, J. -L.; Yvon, D.] IrfU SPP, CEA Saclay, Gif Sur Yvette, France. [Aumont, J.] Ctr Etud Spatiale Rayonnements, UMR 5187, Toulouse, France. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Domken, I.; Ninane, N.; Roose, S.] Ctr Spatial Liege, Angleur, Belgium. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Glorian, J. -M.; Lande, J.; Marty, C.; Marty, W.; Montier, L.; Narbonne, J.; Nexon, M.; Pointecouteau, E.; Rambaud, D.; Ristorcelli, I.; Pons, R.] CNRS Univ Toulouse, CESR, Toulouse, France. [Bond, R.; Netterfield, B.] Univ Toronto, CITA, Toronto, ON, Canada. [Blanc, Y.; Maciaszek, T.; Panh, J.; Pradell, L.] Ctr Spatial Toulouse, CNES, Toulouse, France. [Salerno, E.; Tonazzini, E.] CNR ISTI, Area Ric, Pisa, Italy. Univ Politecn Cataluna, Dept Teoria Senyal & Comunicac, Barcelona, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Aja, B.; Artal, E.; De la Fuente, M. L.; Mediavilla, A.; Pascual, J. P.] Univ Cantabria, Dept Ingn Comunicac, E-39005 Santander, Spain. [Scott, D.; Walker, A. R.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA USA. [Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Jones, W.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Church, S.] Standford Univ, Dept Phys, Stanford, CA USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Leonardi, R.; Lubin, P. M.; Meinhold, R.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Silk, J. I.] Univ Oxford, Dept Phys, Oxford, England. [White, M.] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, Padua, Italy. [Bersanelli, M.; Cappellini, B.; Franceschet, C.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Balbi, A.; Cabella, P.; de Gasperis, G.; De Troia, G.; Mazzotta, P.; Natoli, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Brienza, D.; De Bernardis, P.; Masi, S.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Norgaard-Nielsen, H. U.; Hornstrup, A.; Jessen, N. C.; Oxborrow, C. A.] DTU Space, Natl Space Inst, Copenhagen, Denmark. [Crone, G.; Passvogel, T.; Aloy, L.; Arts, A.; Baker, M.; Braghin, M.; Colombo, A.; Daddato, R.; Damasio, C.; d'Aquino, G.; de Chambure, D.; Doyle, D.; Elfving, A.; Estaria, P.; Guillaume, B.; Heske, A.; Jackson, B.; Kletzkine, P.; Krassenburg, M.; Luthold, I.; Madden, S.; Marliani, F.; Marti-Canales, J.; Martin-Polegre, A.; Oldeman, P.; Olivier, P.; Perez-Cuevas, L.; Piersanti, O.; Rasmussen, I.; Rautakoski, J.; Schnorhk, A.; Thuerey, S.; van der Vlis, M.] Estec, European Space Agcy, Herschel Planck Project, NL-2201 AZ Noordwijk, Netherlands. [Dodsworth, J.; Biggins, R.; Billig, G.; di Girolamo, G.; Doelling, E.; Foley, S.; Gienger, G.; Hechler, M.; Heinzer, D.; Keck, F.; Tuttlebee, M.; Vassallo, E.; Watson, C.; Werner, D.] ESOC, European Space Agcy, Herschel Planck Project, Darmstadt, Germany. [Texier, D.; Carr, R.; Dupac, X.; Lazaro, J. Garcia; Jagemann, T.; Mendes, L.; Taylor, D.] Planck Sci Off ESAC, European Space Agcy, Madrid, Spain. [Azzaro, M.] Univ Granada, Granada, Spain. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Chamballu, A.; Clements, D.; Jaffe, A.; MacTavish, C.; Novikov, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London, England. [Tofani, G.] INAF Arcetri Astrophys Observ, Florence, Italy. [Mandolesi, N.; Butler, R. C.; Burigana, C.; Cuttaia, F.; De Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Morgante, G.; Morigi, G.; Sandri, M.; Stringhetti, L.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF Ist Astrofis Spaziale & Fis Cosm, Bologna, Italy. [Zacchei, A.; Fogliani, S.; Frailis, M.; Maris, M.; Pasian, F.; Vuerli, C.] INAF Osservatorio Astronom Trieste, Trieste, Italy. [Umana, G.] INAF, Osservatorio Astrofis Catania, Catania, Italy. [Galeotta, S.; Zonca, A.] INAF IASF Milano, Milan, Italy. [Bonaldi, A.; De Zotti, G.; Massardi, M.] INAF Osservatorio Astronom Padova, Padua, Italy. [Reach, W. T.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Bouchet, F. R.; Benabed, K.; Beneyton, R.; Colley, J. -M.; Colombi, S.; da Silva, P.; Delouis, J. -M.; Hivon, E.; Legrand, F.; Moneti, A.; Mottet, S.; Parnaudeau, P.; Prunet, S.; Rouberol, S.; Sauter, L.; Sygnet, J. -F.; Van-Tent, B.; Vibert, D.] Univ Paris 06, CNRS, Inst Astrophys Paris, Paris, France. [Bouchet, F. R.; Benabed, K.; Beneyton, R.; Colley, J. -M.; Colombi, S.; da Silva, P.; Delouis, J. -M.; Hivon, E.; Legrand, F.; Moneti, A.; Mottet, S.; Parnaudeau, P.; Prunet, S.; Rouberol, S.; Sauter, L.; Sygnet, J. -F.; Van-Tent, B.; Vibert, D.] Univ Paris 06, UPMC, Paris, France. [Puget, J. -L.; Charra, J.; Gispert, R.; Guyot, G.; Vibert, L.; Aghanim, N.; Arondel, A.; Blavot, H.; Boulanger, F.; Bouzit, M.; Caminade, S.; Chaigneau, M.; Charra, M.; Cougrand, B.; Crane, B.; Dassas, K.; Douspis, M.; Dumesnil, C.; Duret, P.; Eng, P.; Fourmond, J. -J.; Francois, S.; Heckenauer, V.; Hervier, V.; Lagache, G.; Lami, P.; Langlet, F.; Lefebvre, M.; Leriche, B.; Leroy, C.; Longval, Y.; Mervier, C.; Meslier, L.; Miville-Deschenes, M. -A.; Morinaud, G.; Nicolas, C.; Noviello, F.; Pajot, F.; Ponthieu, N.; Poulleau, G.; Tamiatto, C.; Torre, J. -P.; Tosti, S.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Camus, P.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Chiang, L. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Gomez-Renasco, M. F.; Herreros, J. M.; Hildebrandt, S. R.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Herranz, D.; Martinez-Gonzalez, E.; Sanz, J. L.; Vielva, P.] CSIC Univ Cantabria, Inst Fis Cantabria, Santander, Spain. [Morisset, N.; Rohlfs, R.; Tuerler, M.] Univ Geneva, ISDC Data Ctr Astrophys, Versoix, Switzerland. [D'Arcangelo, O.; Platania, P.] CNR, Ist Fis Plasma, I-20133 Milan, Italy. [Lawrence, C. R.; Arreola-Villanueva, A.; Bhandari, P.; Bhatia, R.; Bock, J. J.; Borders, J.; Bowman, R.; Cafferty, T.; Crill, B.; Crumb, D.; English, K.; Fishman, A.; Fonseca, A.; Frerking, M.; Gorski, K. M.; Gaier, T. C.; Hardy, J.; Hollert, D.; Holmes, W.; Huey, G.; Israelsson, U.; Jewell, J.; Karlman, P.; King, M.; Koch, T.; Lange, A.; Levin, S. M.; Lindensmith, C.; Loc, A.; Luchik, T.; McGrath, P.; Mora, J.; Mulder, J.; Murphy, P.; Nash, A.; Newell, J.; O'Dwyer, I. J.; Paine, C.; Parks, G.; Parvin, B.; Pearson, D. P.; Pearson, T.; Prezeau, G.; Prina, M.; Reiter, J.; Rocha, G.; Romero, D.; Salama, M.; Schmelzel, M.; Schwarz, W.; Seiffert, M. D.; Shih, C.; Strommen, D.; Sugimura, R.; Tallon, J.; Tillis, J.; Vierra, J.; Wade, L. A.; Wilson, P.; Yun, M.; Zhang, B.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Jaffe, T. R.; Leahy, J. P.; Maffei, B.; Wilkinson, A.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester, Lancs, England. [Beney, J. -L.; Cizeron, R.; Couchot, F.; Dehamme, M.; Du, S.; Eder, C.; Haissinski, J.; Henrot-Versille, S.; Heurtel, A.; Le Meur, G.; Mansoux, B.; Marrucho, J. -C.; Perdereau, O.; Plaige, E.; Plaszczynski, S.; Rosset, C.; Taurigna, M.; Touze, F.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, Accelerateur Lineaire Lab, F-91405 Orsay, France. [Barbier, G.; Benoit, A.; Bouvier, J.; Desert, F. -X.; Lagorio, E.; Pancher, F.; Vescovi, C.; Vezzu, F.; Zimmermann, O.] CNRS, UMR 5571, Lab Astrophys Grenoble, Grenoble, France. [Cantalupo, C. M.; Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Lamarre, J. -M.; Coulais, A.] CNRS, LERMA, Observ Paris, Paris, France. [Banday, A. J.; Bartelmann, M.; Doerl, U.; Dolag, K.; Ensslin, T. A.; Hell, R.; Hernandez-Monteagudo, C.; Hovest, W.; Kneissl, R.; Knoche, J.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Lahteenmaki, A.; McDonald, A.; Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala, Finland. [Tuovinen, J.; Varis, J.] VTT Informat Technol, MilliLab, Espoo, Finland. [Murphy, A.; Yurchenko, V.] Natl Univ Ireland, Dept Expt Phys, Dublin, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Juvela, M.] Univ Helsinki, Observ Tahtitorninmaki, Helsinki, Finland. [Burkhalter, M.; Davies, W.] Oerlikon Space, Zurich, Switzerland. [Biggi, M.; Lapini, R.] Officine Pasquali, Florence, Italy. [Savini, G.] UCL, Opt Sci Lab, London, England. [Hazell, A.] Estec, Res & Sci Support Dept, ESA, NL-2201 AZ Noordwijk, Netherlands. [Bradshaw, T.; Crook, M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Zorita, D.] Sener Ingn Sistemas SA, C Severo Ochoa, Tres Cantos, Spain. [Ricciardi, S.; Stivoli, F.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Paladini, R.] Spitzer Sci Ctr, Pasadena, CA USA. [De Paco, P.] Univ Autonoma Barcelona, Telecommun & Syst Engn Dept, E-08193 Barcelona, Spain. [Banos, T.; Juillet, J. J.; Reix, J. M.; Armand, P.; Chambelland, J. P.; Collaudin, B.; Corre, O.; Couzin, P.; Dubruel, D.; Forma, G.; Gavila, E.; Guichon, D.; Martin, P.; Montet, D.; Ouchet, L.; Rideau, P.; Riti, J. B.; Roche, Y.; Sauvage, F.] Thales Alenia Space France, Cannes La Bocca, France. [Bacchetta, A.; Cairola, M.; Cesa, M.; Chlewicki, G.; Ciancietta, E.; Cibrario, M.; Musi, P.; Rame, F.; Sias, M.] Thales Alenia Space Italia, Turin, Italy. [Alippi, E.; Artina, E.; Balasini, M.; Battaglia, P.; Boschini, L.; Colombo, F.; Ferrari, F.; Lapolla, M.; Leutenegger, P.; Mambretti, A.; Marchioro, D.; Miccolis, M.; Pagan, L.; Pecora, M.; Rusconi, P.; Silvestri, R.; Taddei, E.] Thales Alenia Space Italia, Milan, Italy. [Nielsen, P. H.] TICRA, Copenhagen, Denmark. [Linden-Vornle, M.] Tycho Brahe Planetarium, Copenhagen, Denmark. [Fosalba, P.] Univ Barcelona, ICE CSIC, Cerdanyola Del Valles, Barcelona, Spain. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Dept, Berkeley, CA 94720 USA. [Ashdown, M.; Hills, R.; Hobson, M.; Lasenby, A.; Shellard, P.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Efstathiou, G.; Challinor, A.; Harrison, D.; Mortlock, D.; Munshi, D.; Stolyarov, V.; Van Leeuwen, F.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gregorio, A.; Bonis, J.] Univ Trieste, Dept Phys, Trieste, Italy. [Hughes, N.] Ylinen Elect Ltd, Kauniainen, Finland. [Bartelmann, M.] Univ Heidelberg, Inst Theoret Astrophys, Zentrum Astronom, D-6900 Heidelberg, Germany. [Macias-Perez, J. F.; Melot, F.; Perotto, L.; Renault, C.; Santos, D.; Stassi, P.] Univ Grenoble 1, IN2P3, CNRS, Inst Natl Polytech Grenoble,LPSC, F-38026 Grenoble, France. RP Tauber, JA (reprint author), ESTEC, European Space Agcy, Div Astrophys, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. EM jtauber@rssd.esa.int RI Bouchet, Francois/B-5202-2014; van Leeuwen, Floor/D-4586-2011; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Pascual, Juan Pablo/K-5066-2014; Toffolatti, Luigi/K-5070-2014; Starck, Jean-Luc/D-9467-2011; Juvela, Mika/H-6131-2011; Lilje, Per/A-2699-2012; Salerno, Emanuele/A-2137-2010; de Gasperis, Giancarlo/C-8534-2012; Gregorio, Anna/J-1632-2012; Pradell, Lluis/F-8150-2013; Bartelmann, Matthias/A-5336-2014; Fosalba Vela, Pablo/I-5515-2016; Aja, Beatriz/H-5573-2015; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; Collaudin, Bernard/H-7149-2015; Butler, Reginald/N-4647-2015; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; de la Fuente, Luisa/J-5142-2012; Artal, Eduardo/H-5546-2015; White, Martin/I-3880-2015; Pearson, Timothy/N-2376-2015; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016 OI Vielva, Patricio/0000-0003-0051-272X; Pascual, Juan Pablo/0000-0003-2123-0502; Toffolatti, Luigi/0000-0003-2645-7386; Starck, Jean-Luc/0000-0003-2177-7794; Juvela, Mika/0000-0002-5809-4834; Salerno, Emanuele/0000-0002-3433-3634; de Gasperis, Giancarlo/0000-0003-2899-2171; Pradell, Lluis/0000-0003-4026-226X; Fonseca, Ana/0000-0001-9900-7015; Scott, Douglas/0000-0002-6878-9840; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Vuerli, Claudio/0000-0002-9640-8785; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Aja, Beatriz/0000-0002-4229-2334; Nati, Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Polenta, Gianluca/0000-0003-4067-9196; Pierpaoli, Elena/0000-0002-7957-8993; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Bowman, Robert/0000-0002-2114-1713; Savini, Giorgio/0000-0003-4449-9416; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Burigana, Carlo/0000-0002-3005-5796; Frailis, Marco/0000-0002-7400-2135; de Paco, Pedro/0000-0002-7628-7189; Bouchet, Francois/0000-0002-8051-2924; Collaudin, Bernard/0000-0003-0114-3014; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; silk, joe/0000-0002-1566-8148; Stringhetti, Luca/0000-0002-3961-9068; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Gregorio, Anna/0000-0003-4028-8785; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; de la Fuente, Luisa/0000-0003-1403-1660; Artal, Eduardo/0000-0002-2569-1894; White, Martin/0000-0001-9912-5070; Pearson, Timothy/0000-0001-5213-6231; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131 FU NASA; Danish National Research Council; European Space Agency - ESA FX Planck is too large a project to allow full acknowledgement of all contributions by individuals, institutions, industries, and funding agencies. The main entities involved in the mission are as follows. The European Space Agency (ESA) manages the project and funds the development of the satellite, its launch, and operations. ESA's prime industrial contractor for Planck is Thales Alenia Space (Cannes, France). Industry from all over Europe has contributed to the development of Planck. Specially notable contributions to the development are due to Thales Alenia Spazio (Italy) for the Service Module, Astrium (Friedrichshafen, Germany) for the Planck reflectors, and Oerlikon Space (Zurich, Switzerland) for the payload structures. Much of the most challenging cryogenic and optical testing has been carried out at the Centre Spatial de Liege in Belgium and on the premises of Thales Alenia Space in Cannes. Two Consortia, comprising around 50 scientific institutes within Europe and the US, and funded by agencies from the participating countries, have developed the scientific instruments LFI and HFI, and delivered them to ESA (see also Appendix A). The Consortia are also responsible for scientific operation of their respective instruments and processing the acquired data. The Consortia are led by the Principal Investigators: J.-L. Puget in France of HFI (funded principally via CNES) and N. Mandolesi in Italy of LFI (funded principally via ASI). NASA has funded the US Planck Project, based at JPL and involving scientists at many US institutions, which has contributed very significantly to the efforts of these two Consortia. A Consortium of Danish institutes (DK-Planck), funded by the Danish National Research Council, has participated with ESA in a joint development of the two reflectors for the Planck telescope. The author list for this paper has been selected by the Planck Science Team, and is composed of individuals from all of the above entities who have made multi-year contributions to the development of the mission. It does not pretend to be inclusive of all contributions.; Planck (http://www.esa.int/Planck) is a project of the European Space Agency - ESA - with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark. NR 44 TC 196 Z9 197 U1 0 U2 40 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A1 DI 10.1051/0004-6361/200912983 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200002 ER PT J AU Villa, F Terenzi, L Sandri, M Meinhold, P Poutanen, T Battaglia, P Franceschet, C Hughes, N Laaninen, M Lapolla, P Bersanelli, M Butler, RC Cuttaia, F D'Arcangelo, O Frailis, M Franceschi, E Galeotta, S Gregorio, A Leonardi, R Lowe, SR Mandolesi, N Maris, M Mendes, L Mennella, A Morgante, G Stringhetti, L Tomasi, M Valenziano, L Zacchei, A Zonca, A Aja, B Artal, E Balasini, M Bernardino, T Blackhurst, E Boschini, L Cappellini, B Cavaliere, F Colin, A Colombo, F Davis, RJ De La Fuente, L Edgeley, J Gaier, T Galtress, A Hoyland, R Jukkala, P Kettle, D Kilpia, VH Lawrence, CR Lawson, D Leahy, JP Leutenegger, P Levin, S Maino, D Malaspina, M Mediavilla, A Miccolis, M Pagan, L Pascual, JP Pasian, F Pecora, M Pospieszalski, M Roddis, N Salmon, MJ Seiffert, M Silvestri, R Simonetto, A Sjoman, P Sozzi, C Tuovinen, J Varis, J Wilkinson, A Winder, F AF Villa, F. Terenzi, L. Sandri, M. Meinhold, P. Poutanen, T. Battaglia, P. Franceschet, C. Hughes, N. Laaninen, M. Lapolla, P. Bersanelli, M. Butler, R. C. Cuttaia, F. D'Arcangelo, O. Frailis, M. Franceschi, E. Galeotta, S. Gregorio, A. Leonardi, R. Lowe, S. R. Mandolesi, N. Maris, M. Mendes, L. Mennella, A. Morgante, G. Stringhetti, L. Tomasi, M. Valenziano, L. Zacchei, A. Zonca, A. Aja, B. Artal, E. Balasini, M. Bernardino, T. Blackhurst, E. Boschini, L. Cappellini, B. Cavaliere, F. Colin, A. Colombo, F. Davis, R. J. De La Fuente, L. Edgeley, J. Gaier, T. Galtress, A. Hoyland, R. Jukkala, P. Kettle, D. Kilpia, V. -H. Lawrence, C. R. Lawson, D. Leahy, J. P. Leutenegger, P. Levin, S. Maino, D. Malaspina, M. Mediavilla, A. Miccolis, M. Pagan, L. Pascual, J. P. Pasian, F. Pecora, M. Pospieszalski, M. Roddis, N. Salmon, M. J. Seiffert, M. Silvestri, R. Simonetto, A. Sjoman, P. Sozzi, C. Tuovinen, J. Varis, J. Wilkinson, A. Winder, F. TI Planck pre-launch status: Calibration of the Low Frequency Instrument flight model radiometers SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; space vehicles: instruments; instrumentation: detectors; techniques: miscellaneous AB The Low Frequency Instrument (LFI) on-board the ESA Planck satellite carries eleven radiometer subsystems, called radiometer chain assemblies (RCAs), each composed of a pair of pseudo-correlation receivers. We describe the on-ground calibration campaign performed to qualify the flight model RCAs and to measure their pre-launch performances. Each RCA was calibrated in a dedicated flight-like cryogenic environment with the radiometer front-end cooled to 20 K and the back-end at 300 K, and with an external input load cooled to 4 K. A matched load simulating a blackbody at different temperatures was placed in front of the sky horn to derive basic radiometer properties such as noise temperature, gain, and noise performance, e. g. 1/f noise. The spectral response of each detector was measured as was their susceptibility to thermal variation. All eleven LFI RCAs were calibrated. Instrumental parameters measured in these tests, such as noise temperature, bandwidth, radiometer isolation, and linearity, provide essential inputs to the Planck-LFI data analysis. C1 [Villa, F.; Terenzi, L.; Sandri, M.; Butler, R. C.; Cuttaia, F.; Franceschi, E.; Mandolesi, N.; Morgante, G.; Stringhetti, L.; Valenziano, L.; Malaspina, M.] INAF Ist Astrofis Spaziale & Fis Cosm, I-40129 Bologna, Italy. [Meinhold, P.; Leonardi, R.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. [Poutanen, T.] Helsinki Inst Phys, Helsinki 00014, Finland. [Poutanen, T.] Helsinki Univ Technol, Metsahovi Radio Observ, Kylmala 02540, Finland. [Battaglia, P.; Lapolla, P.; Balasini, M.; Boschini, L.; Colombo, F.; Leutenegger, P.; Miccolis, M.; Pagan, L.; Pecora, M.; Silvestri, R.] Thales Alenia Space Italia SpA, I-20090 Milan, Italy. [Franceschet, C.; Bersanelli, M.; Mennella, A.; Tomasi, M.; Cavaliere, F.; Maino, D.] Univ Milan, I-20133 Milan, Italy. [Hughes, N.; Laaninen, M.; Jukkala, P.; Kilpia, V. -H.; Sjoman, P.] DA Design Oy Aka Ylinen Elect, Jokioinen 31600, Finland. [D'Arcangelo, O.; Simonetto, A.; Sozzi, C.] IFP CNR, I-20125 Milan, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Zacchei, A.; Pasian, F.] INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Gregorio, A.] Univ Trieste, Dept Phys, I-34127 Trieste, Italy. [Lowe, S. R.; Blackhurst, E.; Davis, R. J.; Edgeley, J.; Galtress, A.; Kettle, D.; Lawson, D.; Leahy, J. P.; Roddis, N.; Wilkinson, A.; Winder, F.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Mendes, L.] ESAC, European Space Agcy, Planck Sci Off, Madrid 28691, Spain. [Zonca, A.; Cappellini, B.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Aja, B.; Artal, E.; De La Fuente, L.; Mediavilla, A.; Pascual, J. P.] Univ Cantabria, Dep Ingn Comunicac, E-39005 Santander, Spain. [Bernardino, T.; Colin, A.; Lawrence, C. R.; Levin, S.; Salmon, M. J.] Inst Fis Cantabria CSIC UC, Santander 39005, Spain. [Gaier, T.; Seiffert, M.] Jet Prop Lab, Pasadena, CA 91109 USA. [Hoyland, R.] Inst Astrofis Canarias, San Cristobal la Laguna 38205, Tenerife, Spain. [Pospieszalski, M.] Univ Virginia, Natl Radio Astron Observ, Charlottesville, VA USA. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. RP Villa, F (reprint author), INAF Ist Astrofis Spaziale & Fis Cosm, Via P Gobetti 101, I-40129 Bologna, Italy. EM villa@iasfbo.inaf.it RI Sozzi, Carlo/F-4158-2012; Pascual, Juan Pablo/K-5066-2014; de la Fuente, Luisa/J-5142-2012; Artal, Eduardo/H-5546-2015; Tomasi, Maurizio/I-1234-2016; Aja, Beatriz/H-5573-2015; Butler, Reginald/N-4647-2015; OI Valenziano, Luca/0000-0002-1170-0104; Sozzi, Carlo/0000-0001-8951-0071; Pascual, Juan Pablo/0000-0003-2123-0502; de la Fuente, Luisa/0000-0003-1403-1660; Artal, Eduardo/0000-0002-2569-1894; Tomasi, Maurizio/0000-0002-1448-6131; Aja, Beatriz/0000-0002-4229-2334; Zonca, Andrea/0000-0001-6841-1058; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Lowe, Stuart/0000-0002-2975-9032; Stringhetti, Luca/0000-0002-3961-9068; Pasian, Fabio/0000-0002-4869-3227; Gregorio, Anna/0000-0003-4028-8785; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Frailis, Marco/0000-0002-7400-2135; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379; Zacchei, Andrea/0000-0003-0396-1192; Galeotta, Samuele/0000-0002-3748-5115 FU ESA; Italian Space Agency (ASI); Finnish Funding Agency for Technology and Innovation (Tekes); Academy of Finland [205800, 214598, 121703, 121962]; Waldemar von Frenckells stiftelse; Magnus Ehrnrooth Foundation; Vaisala Foundation; Ministerio de Ciencia e Innovacion [ESP2004-07067-C03-01, AYA2007-68058-C03-02] FX Planck (http://www.esa.int/Planck) is a project of the European Space Agency - ESA - with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.; Planck is a project of the European Space Agency with instruments funded by ESA member states, and with special contributions from Denmark and NASA (USA). The Planck-LFI project is developed by an International Consortium lead by Italy and involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK, USA. The Italian contribution to Planck is supported by the Italian Space Agency (ASI). In Finland, the Planck LFI 70 GHz work was supported by the Finnish Funding Agency for Technology and Innovation (Tekes) T.P.'s work was supported in part by the Academy of Finland grants 205800, 214598, 121703, and 121962. T. P. thank Waldemar von Frenckells stiftelse, Magnus Ehrnrooth Foundation, and Vaisala Foundation for financial support. The Spanish participation is funded by Ministerio de Ciencia e Innovacion through the projects ESP2004-07067-C03-01 and AYA2007-68058-C03-02. NR 22 TC 9 Z9 9 U1 0 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP-OCT PY 2010 VL 520 AR A6 DI 10.1051/0004-6361/200912860 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665VQ UT WOS:000283064200007 ER PT J AU Evans, PA Willingale, R Osborne, JP O'Brien, PT Page, KL Markwardt, CB Barthelmy, SD Beardmore, AP Burrows, DN Pagani, C Starling, RLC Gehrels, N Romano, P AF Evans, P. A. Willingale, R. Osborne, J. P. O'Brien, P. T. Page, K. L. Markwardt, C. B. Barthelmy, S. D. Beardmore, A. P. Burrows, D. N. Pagani, C. Starling, R. L. C. Gehrels, N. Romano, P. TI The Swift Burst Analyser I. BAT and XRT spectral and flux evolution of gamma ray bursts SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gamma-ray burst: general; methods: data analysis; catalogs ID AFTERGLOWS; TELESCOPE; EMISSION; MISSION; GRBS AB Context. Gamma ray burst models predict the broadband spectral evolution and the temporal evolution of the energy flux. In contrast, standard data analysis tools and data repositories provide count-rate data, or use single flux conversion factors for all of the data, neglecting spectral evolution. Aims. We produce Swift BAT and XRT light curves in flux units, where the spectral evolution is accounted for. Methods. We have developed software to use the hardness ratio information to track spectral evolution of GRBs, and thus to convert the count-rate light curves from the BAT and XRT instruments on Swift into accurate, evolution-aware flux light curves. Results. The Swift Burst Analyser website(star) contains BAT, XRT and combined BAT-XRT flux light curves in three energy regimes for all GRBs observed by the Swift satellite. These light curves are automatically built and updated when data become available, are presented in graphical and plain-text format, and are available for download and use in research. C1 [Evans, P. A.; Willingale, R.; Osborne, J. P.; O'Brien, P. T.; Page, K. L.; Beardmore, A. P.; Pagani, C.; Starling, R. L. C.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Markwardt, C. B.; Barthelmy, S. D.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Markwardt, C. B.] CRESST, Columbia, MD 21044 USA. [Markwardt, C. B.] Univ Maryland Coll Pk, Dept Astron, College Pk, MD 20742 USA. [Burrows, D. N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Romano, P.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-90146 Palermo, Italy. RP Evans, PA (reprint author), Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. EM pae9@star.le.ac.uk RI Barthelmy, Scott/D-2943-2012; Gehrels, Neil/D-2971-2012 FU NASA [NAS5-00136]; STFC FX This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. P. A. E., J.P.O., K. L. P., A. P. B., C. P. and R. L. C. S. acknowledge STFC support, D.N.B., acknowledges support from NASA contract NAS5-00136. NR 15 TC 51 Z9 51 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2010 VL 519 AR A102 DI 10.1051/0004-6361/201014819 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 668UQ UT WOS:000283297300102 ER PT J AU Furst, F Kreykenbohm, I Pottschmidt, K Wilms, J Hanke, M Rothschild, RE Kretschmar, P Schulz, NS Huenemoerder, DP Klochkov, D Staubert, R AF Fuerst, F. Kreykenbohm, I. Pottschmidt, K. Wilms, J. Hanke, M. Rothschild, R. E. Kretschmar, P. Schulz, N. S. Huenemoerder, D. P. Klochkov, D. Staubert, R. TI X-ray variation statistics and wind clumping in Vela X-1 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE accretion, accretion disks; X-rays: binaries; X-rays: individuals: Vela X-1; methods: statistical ID HOT-STAR WINDS; STELLAR WIND; NEUTRON-STAR; MASS; VARIABILITY; ACCRETION; EMISSION; BINARIES; FLUX; SPECTROSCOPY AB We investigate the structure of the wind in the neutron star X-ray binary system Vela X-1 by analyzing its flaring behavior. Vela X-1 shows constant flaring, with some flares reaching fluxes of more than 3.0 Crab between 20-60 keV for several 100 s, while the average flux is around 250 mCrab. We analyzed all archival INTEGRAL data, calculating the brightness distribution in the 20-60 keV band, which, as we show, closely follows a log-normal distribution. Orbital resolved analysis shows that the structure is strongly variable, explainable by shocks and a fluctuating accretion wake. Analysis of RXTE ASM data suggests a strong orbital change of N(H). Accreted clump masses derived from the INTEGRAL data are on the order of 5x10(19) - 10(21) g. We show that the lightcurve can be described with a model of multiplicative random numbers. In the course of the simulation we calculate the power spectral density of the system in the 20-100 keV energy band and show that it follows a red-noise power law. We suggest that a mixture of a clumpy wind, shocks, and turbulence can explain the measured mass distribution. As the recently discovered class of supergiant fast X-ray transients (SFXT) seems to show the same parameters for the wind, the link between persistent HMXB like Vela X-1 and SFXT is further strengthened. C1 [Fuerst, F.; Kreykenbohm, I.; Wilms, J.; Hanke, M.] Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte & ECAP, D-96049 Bamberg, Germany. [Pottschmidt, K.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Pottschmidt, K.] CRESST, Greenbelt, MD 20771 USA. [Pottschmidt, K.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Rothschild, R. E.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Kretschmar, P.] European Space Astron Ctr, European Space Agcy, Madrid 28691, Spain. [Schulz, N. S.; Huenemoerder, D. P.] MIT, Ctr Space Res, Cambridge, MA 02139 USA. [Klochkov, D.; Staubert, R.] Univ Tubingen, Inst Astron & Astrophys, Kepler Ctr Astro & Particle Phys, D-72076 Tubingen, Germany. RP Furst, F (reprint author), Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte & ECAP, Sternwartstr 7, D-96049 Bamberg, Germany. EM felix.fuerst@sternwarte.uni-erlangen.de RI Wilms, Joern/C-8116-2013; Kreykenbohm, Ingo/H-9659-2013; OI Wilms, Joern/0000-0003-2065-5410; Kreykenbohm, Ingo/0000-0001-7335-1803; Kretschmar, Peter/0000-0001-9840-2048 FU Bundesministerium fur Wirtschaft und Technologie [50 OR0808]; DAAD; European Commission [ITN215212]; ESA FX This work was supported by the Bundesministerium fur Wirtschaft und Technologie through DLR grant 50 OR0808 and via a DAAD fellowship. This work has been partially funded by the European Commission under the 7th Framework Program under contract ITN215212. F. F. thanks the colleagues at UCSD and GSFC for their hospitality. We thank M. A. Nowak and A. Pollock for the useful discussions. For this work we used the ISIS software package provided by MIT. We especially like to thank J.C. Houck and J. E. Davis for their restless work to improve ISIS and S-Lang. This research has made use of NASA's Astrophysics Data System. This work is based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland, and with the participation of Russia and the USA. We used the archival data from the ASM Light Curve web page, developed by the ASM team at the Kavli Institute for Astrophysics and Space Research at the Massachusetts Institute of Technology. We thank the anonymous referee for her/ his useful comments. NR 57 TC 30 Z9 30 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2010 VL 519 AR A37 DI 10.1051/0004-6361/200913981 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 668UQ UT WOS:000283297300037 ER PT J AU Gunther, HM Matt, SP Schmitt, JHMM Gudel, M Li, ZY Burton, DM AF Guenther, H. M. Matt, S. P. Schmitt, J. H. M. M. Guedel, M. Li, Z. -Y. Burton, D. M. TI The disk-bearing young star IM Lupi X-ray properties and limits on accretion SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; stars: individual: IM Lup; X-rays: stars ID T-TAURI-STARS; MAIN-SEQUENCE STARS; NEWTON EXTENDED SURVEY; LOW-MASS STARS; EMISSION-LINES; BROWN DWARFS; MAGNETOSPHERIC ACCRETION; MOLECULAR CLOUD; ATOMIC DATABASE; HERBIG STAR AB Context. Classical T Tauri stars (CTTS) differ in their X-ray signatures from older pre-main sequence stars, e.g., weak-lined TTS (WTTS). CTTS exhibit a soft excess and deviations from the low-density coronal limit in the He-like triplets. Aims. We test whether these features correlate with either accretion or the presence of a disk by observing IM Lup, a disk-bearing object apparently in transition between CTTS and WTTS without obvious accretion. Methods. We analyse a Chandra grating spectrum and additional XMM-Newton data of IM Lup and accompanying optical spectra, some of which where taken simultaneously with the X-ray observations. We fit the X-ray emission lines and decompose the H alpha emission line into different components. Results. In X-rays, IM Lup has a bright and hot active corona, where elements with low first-ionisation potential are depleted. The He-like Ne IX triplet is in the low-density state, but because of the small number of counts in the data a high-density scenario cannot be excluded at the 90% confidence level. In terms of all its X-ray properties, IM Lup resembles a main-sequence star, but is also compatible with CTTS signatures at the 90% confidence level, thus we cannot decide whether the soft excess and deviations from the low-density coronal limit for the He-like triplets in CTTS are produced by accretion or only the presence of a disk. The star IM Lup is chromospherically active, which accounts for most of its emission in H alpha. Despite its low equivalent width, the complexity of the H alpha line profile is reminiscent of CTTS. We estimate the mass accretion rate to be 10(-11) M(circle dot) yr(-1). C1 [Guenther, H. M.; Schmitt, J. H. M. M.] Univ Hamburg, Hamburger Sternwarte, D-21029 Hamburg, Germany. [Guenther, H. M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Matt, S. P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Guedel, M.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Guedel, M.] Univ Vienna, Dept Astron, A-1180 Vienna, Austria. [Li, Z. -Y.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Burton, D. M.] Univ So Queensland, Toowoomba, Qld 4350, Australia. RP Gunther, HM (reprint author), Univ Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany. EM moritz.guenther@hs.uni-hamburg.de RI Guedel, Manuel/C-8486-2015; OI Guedel, Manuel/0000-0001-9818-0588; Gunther, Hans Moritz/0000-0003-4243-2840; Matt, Sean/0000-0001-9590-2274 FU ESA Member States; NASA; NRL (USA); RAL (UK); MSSL (UK); Universities of Florence (Italy); Cambridge (UK); George Mason University (USA); La Silla Observatory [081.C-0779(A)]; DLR [50OR0105]; Oak Ridge Associated Universities; Chandra [GO9-0007X] FX Based on observations obtained with XMM-Newton, an ESA science mission, and Chandra, a NASA science mission, both with instruments and contributions directly funded by ESA Member States and NASA.; CHIANTI is a collaborative project involving the NRL (USA), RAL (UK), MSSL (UK), the Universities of Florence (Italy) and Cambridge (UK), and George Mason University (USA). We made use of observations made with ESO Telescopes at the La Silla Observatory under programme ID 081.C-0779(A). The authors would like to thank Ian Waite, USQ, for the initial extraction of the IM Lup data from ANU. H.M.G. acknowledges support from DLR under 50OR0105. S.P.M. was supported by an appointment to the NASA Postdoctoral Program at Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. Z.-Y.L. acknowledges support from Chandra grant GO9-0007X. NR 66 TC 5 Z9 5 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2010 VL 519 AR A97 DI 10.1051/0004-6361/201014386 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 668UQ UT WOS:000283297300097 ER PT J AU Kumar, MSN Velusamy, T Davis, CJ Varricatt, WP Dewangan, LK AF Kumar, M. S. N. Velusamy, T. Davis, C. J. Varricatt, W. P. Dewangan, L. K. TI Ring-like features around young B stars SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; stars: emission-line, Be; stars: rotation; HII region ID SPECTRAL ENERGY-DISTRIBUTIONS; MASSIVE MOLECULAR OUTFLOWS; SPITZER-IRAC GLIMPSE; STELLAR OBJECTS; PROTOSTELLAR OBJECTS; MAIN-SEQUENCE; EMISSION; REGION; DISKS; CANDIDATES AB Aims. We investigate the nature of two young intermediate mass stars namely IRAS20293+3952 (I20293) and IRAS05358+3843 (I05358), which display clearly defined H(2) emission rings. Methods. High resolution deconvolution of finely sampled 3.6-8.0 mu m Spitzer-IRAC images are carried out. Continuum-subtracted 2.122 mu m H(2) 1-0 S(1) narrow-band images of both targets and HK band spectrum of two main stars in I20293 are presented. The spectral energy distibutions (SED) of the stars enclosed in the H(2) rings are constructed using photometry from the literature and combining with newly obtained Spitzer-MIPS 70 mu m photometry. The SEDs are modelled using a grid of radiative transfer models to obtain estimates of the star, disk and envelope physical parameters. Results. The images reveal ring-like structures surrounding isolated young B-type stars. The modelling attributes a mass and age of similar to 7 M(circle dot) and similar to 0.1 Myr, respectively, to both young stars, in agreement with other observational indicators. The HK band spectra of I20293 display the Brackett series of HI recombination lines, which appears to correspond exclusively to the young star inside this IRAS source. The ring around I20293 appears to be a single well-defined ellipse with inner parts shining brightly in the Spitzer broad band images and outer parts displaying strong H(2) emission. In the source I05358, at least two ring's are found, one circumscribing the other. The emission in the Spitzer bands and the H(2) emission are mostly coincident for the inner ring. The outer ring is visible partly in the Spitzer bands and partly in H(2) emission. The rings in both the sources, I20293 and I05358, have diameters of similar to 25000-30000 AU. The envelope sizes estimated by the SED modelling are consistent with the size of the rings estimated using the imaging data. The spectrum of the H(2) ring in I20293 is suggestive of fluorescent excitation. In the source I05358, the inner ring displays a combination of PAH and H(2) line emission with excess PAH emission closer to the star. C1 [Kumar, M. S. N.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Velusamy, T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Davis, C. J.; Varricatt, W. P.] Joint Astron Ctr, Hilo, HI 96720 USA. [Dewangan, L. K.] Phys Res Lab, Ahmadabad 380009, Gujarat, India. RP Kumar, MSN (reprint author), Univ Porto, Ctr Astrofis, Rua Estrelas, P-4150762 Oporto, Portugal. EM nanda@astro.up.pt RI Kumar, Nanda/I-4183-2013; OI Dewangan, Lokesh/0000-0001-6725-0483 FU FCT/MCTES (Portugal); POPH/FSE (EC); FCT (The Portuguese national science foundation) [PTDC/CTE-AST/65971/2006]; NASA FX Our sincere thanks to Henrik Beuther for providing the millimetre and VLA data of these sources that is used for analysis. Kumar is supported by a Ciencia 2007 contract, funded by FCT/MCTES (Portugal) and POPH/FSE (EC) and a research grant PTDC/CTE-AST/65971/2006 approved by the FCT (The Portuguese national science foundation). This work is based [in part] on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. NR 36 TC 0 Z9 0 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2010 VL 519 AR A99 DI 10.1051/0004-6361/200912880 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 668UQ UT WOS:000283297300099 ER PT J AU Ojha, R Kadler, M Bock, M Booth, R Dutka, MS Edwards, PG Fey, AL Fuhrmann, L Gaume, RA Hase, H Horiuchi, S Jauncey, DL Johnston, KJ Katz, U Lister, M Lovell, JEJ Muller, C Plotz, C Quick, JFH Ros, E Taylor, GB Thompson, DJ Tingay, SJ Tosti, G Tzioumis, AK Wilms, J Zensus, JA AF Ojha, R. Kadler, M. Boeck, M. Booth, R. Dutka, M. S. Edwards, P. G. Fey, A. L. Fuhrmann, L. Gaume, R. A. Hase, H. Horiuchi, S. Jauncey, D. L. Johnston, K. J. Katz, U. Lister, M. Lovell, J. E. J. Mueller, C. Ploetz, C. Quick, J. F. H. Ros, E. Taylor, G. B. Thompson, D. J. Tingay, S. J. Tosti, G. Tzioumis, A. K. Wilms, J. Zensus, J. A. TI TANAMI: tracking active galactic nuclei with austral milliarcsecond interferometry I. First-epoch 8.4GHz images SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: active; galaxies: jets; galaxies: nuclei; gamma rays: observations; quasars: general ID SOUTHERN RADIO-SOURCES; GAMMA-RAY EMISSION; GIGAHERTZ-PEAKED SPECTRUM; LACERTAE OBJECT PKS-2005-489; HEMISPHERE ICRF SOURCES; PARSEC-SCALE STRUCTURE; LARGE-AREA TELESCOPE; BLAZAR PKS 0537-441; VLBI OBSERVATIONS; EGRET OBSERVATIONS AB Context. A number of theoretical models vie to explain the gamma-ray emission from active galactic nuclei (AGN). This was a key discovery of EGRET. With its broader energy coverage, higher resolution, wider field of view and greater sensitivity, the Large Area Telescope (LAT) of the Fermi Gamma-ray Space Telescope is dramatically increasing our knowledge of AGN gamma-ray emission. However, discriminating between competing theoretical models requires quasi-simultaneous observations across the electromagnetic spectrum. By resolving the powerful parsec-scale relativistic outflows in extragalactic jets and thereby allowing us to measure critical physical properties, Very Long Baseline Interferometry observations are crucial to understanding the physics of extragalactic gamma-ray objects. Aims. We introduce the TANAMI program (Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry) which is monitoring an initial sample of 43 extragalactic jets located south of -30 degrees declination at 8.4GHz and 22GHz since 2007. All aspects of the program are discussed. First epoch results at 8.4GHz are presented along with physical parameters derived therefrom. Methods. These observations were made during 2007/2008 using the telescopes of the Australian Long Baseline Array in conjunction with Hartebeesthoek in South Africa. These data were correlated at the Swinburne University correlator. Results. We present first epoch images for 43 sources, some observed for the first time at milliarcsecond resolution. Parameters of these images as well as physical parameters derived from them are also presented and discussed. These and subsequent images from the TANAMI survey are available at http://pulsar.sternwarte.uni-erlangen.de/tanami/. Conclusions. We obtain reliable, high dynamic range images of the southern hemisphere AGN. All the quasars and BL Lac objects in the sample have a single-sided radio morphology. Galaxies are either double-sided, single-sided or irregular. About 28% of the TANAMI sample has been detected by LAT during its first three months of operations. Initial analysis suggests that when galaxies are excluded, sources detected by LAT have larger opening angles than those not detected by LAT. Brightness temperatures of LAT detections and non-detections seem to have similar distributions. The redshift distributions of the TANAMI sample and sub-samples are similar to those seen for the bright gamma-ray AGN seen by LAT and EGRET but none of the sources with a redshift above 1.8 have been detected by LAT. C1 [Ojha, R.; Fey, A. L.; Gaume, R. A.; Johnston, K. J.] USN Observ, Washington, DC 20392 USA. [Ojha, R.] NVI Inc, Greenbelt, MD 20770 USA. [Kadler, M.; Boeck, M.; Mueller, C.; Wilms, J.] Univ Erlangen Nurnberg, Astron Inst, D-96049 Bamberg, Germany. [Kadler, M.; Boeck, M.; Katz, U.; Mueller, C.; Wilms, J.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Kadler, M.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Kadler, M.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Booth, R.; Quick, J. F. H.] Hartebeesthoek Radio Astron Observ, ZA-1740 Krugersdorp, South Africa. [Dutka, M. S.] Catholic Univ Amer, Washington, DC 20064 USA. [Edwards, P. G.; Jauncey, D. L.; Tzioumis, A. K.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Fuhrmann, L.; Ros, E.; Zensus, J. A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Hase, H.] Univ Concepcion, Germany Entrusted Transportable Integrated Geodet, Bundesamt Kartograph & Geodesie, Concepcion, Chile. [Lister, M.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Lovell, J. E. J.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. [Ploetz, C.] Geodet Observ Wettzell, Fed Agcy Cartog & Geodesy BKG, D-93444 Bad Kotzting, Germany. [Ros, E.] Univ Valencia, Dept Astron & Astrofis, E-46100 Valencia, Spain. [Taylor, G. B.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Thompson, D. J.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Tingay, S. J.] Curtin Univ Technol, Curtin Inst Radio Astron, Bentley, WA 6102, Australia. [Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. RP Ojha, R (reprint author), USN Observ, 3450 Massachusetts Ave NW, Washington, DC 20392 USA. EM rojha@usno.navy.mil; matthias.kadler@sternwarte.uni-erlangen.de RI Thompson, David/D-2939-2012; Tingay, Steven/B-5271-2013; Wilms, Joern/C-8116-2013; Katz, Uli/E-1925-2013; Tosti, Gino/E-9976-2013; OI Thompson, David/0000-0001-5217-9135; Wilms, Joern/0000-0003-2065-5410; Katz, Uli/0000-0002-7063-4418; Ros, Eduardo/0000-0001-9503-4892; Kadler, Matthias/0000-0001-5606-6154 FU Commonwealth of Australia; Goddard Space Flight Center; NASA FX We are grateful to Dirk Behrend, Neil Gehrels, Julie McEnery, David Murphy, and John Reynolds, who contributed in numerous ways to the success of the TANAMI program so far. Furthermore, we thank the Fermi/LAT AGN group for the good collaboration. The Long Baseline Array is part of the Australia Telescope which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. This work made use of the Swinburne University of Technology software correlator, developed as part of the Australian Major National Research Facilities Programme and operated under licence. M. K. has been supported in part by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. We would like to thank the staff of the Swinburne correlator for their unflagging support. This research has made use of data from the NASA/IPAC Extragalactic Database (NED, operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration); and the SIMBAD database (operated at CDS, Strasbourg, France). This research has made use of NASA's Astrophysics Data System. This research has made use of the United States Naval Observatory (USNO) Radio Reference Frame Image Database (RRFID). NR 147 TC 41 Z9 41 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2010 VL 519 AR A45 DI 10.1051/0004-6361/200912724 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 668UQ UT WOS:000283297300045 ER PT J AU Ardo, AA Ajello, M Antolini, E Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bechtol, K Bellazzini, R Berenji, B Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Burnett, TH Buson, S Caliandro, GA Camilo, F Caraveo, PA Celik, O Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cognard, I Cohen-Tanugi, J Dermer, CD De Palma, F Digel, SW Silva, EDE Drell, PS Dubois, R Dumora, D Favuzzi, C Ferrara, EC Fortin, P Frailis, M Freire, PCC Fukazawa, Y Funk, S Fusco, P Gargano, F Gehrels, N Germani, S Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hadasch, D Hanabata, Y Harding, AK Hays, E Johannesson, G Johnson, RP Johnson, TJ Johnson, WN Johnston, S Kamae, T Katagiri, H Kataoka, J Keith, M Kerr, M Knodlseder, J Kramer, M Kuss, M Lande, J Latronico, L Lee, SH Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lubrano, P Makeev, A Manchester, RN Marelli, M Mazziotta, MN Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Mnzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Nolan, PL Norris, JP Noutos, A Nuss, E Ohsugi, T Okumura, A Orlando, E Ormes, JF Ozaki, M Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Raino, S Razzano, M Reimer, A Reimer, O Reposeur, T Rirken, J Romani, RW Sadrozinski, HFW Sander, A Parkinson, PMS Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Suson, DJ Takahashi, H Tanaka, T Thayer, JB Thayer, JG Theureau, G Thompson, DJ Thorsett, SE Tibaldo, L Tibolla, O Torres, DF Tosti, G Tramacere, A Usher, TL Vandenbroucke, J Vasileiou, V Vitale, V Waite, AP Wang, P Weltevrede, P Winer, BL Yang, Z Ylinen, T Ziegler, M AF Ardo, A. A. Ajello, M. Antolini, E. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Buson, S. Caliandro, G. A. Camilo, F. Caraveo, P. A. Celik, Oe Chekhtman, A. . Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cognard, I. Cohen-Tanugi, J. Dermer, C. D. De Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Favuzzi, C. Ferrara, E. C. Fortin, P. Frailis, M. Freire, P. C. C. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gehrels, N. Germani, S. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Hadasch, D. Hanabata, Y. Harding, A. K. Hays, E. Johannesson, G. Johnson, R. P. Johnson, T. J. Johnson, W. N. Johnston, S. Kamae, T. Katagiri, H. Kataoka, J. Keith, M. Kerr, M. Knoedlseder, J. Kramer, M. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lubrano, P. Makeev, A. Manchester, R. N. Marelli, M. Mazziotta, M. N. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Mnzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Nolan, P. L. Norris, J. P. Noutos, A. Nuss, E. Ohsugi, T. Okumura, A. Orlando, E. Ormes, J. F. Ozaki, M. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Raino, S. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Rirken, J. Romani, R. W. Sadrozinski, H. F. -W. Sander, A. Parkinson, P. M. Saz Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Theureau, G. Thompson, D. J. Thorsett, S. E. Tibaldo, L. Tibolla, O. Torres, D. F. Tosti, G. Tramacere, A. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vitale, V. Waite, A. P. Wang, P. Weltevrede, P. Winer, B. L. Yang, Z. Ylinen, T. Ziegler, M. TI FERMI LARGE AREA TELESCOPE OBSERVATIONS OF GAMMA-RAY PULSARS PSR J1057-5226, J1709-4429, AND J1952+3252 SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: stars; pulsars: individual (PSR J1057-5226, PSR J1709-4429, and PSR J1952+3252) ID HIGH-ENERGY; X-RAY; LIGHT CURVES; SPACE-TELESCOPE; RADIO PULSARS; SOUTHERN PULSARS; WIND NEBULAE; VELA PULSAR; EMISSION; RADIATION AB The Fermi Large Area Telescope (LAT) data have confirmed the pulsed emission from all six high-confidence gamma-ray pulsars previously known from the EGRET observations. We report results obtained from the analysis of 13 months of LAT data for three of these pulsars (PSR J1057-5226, PSR J1709-4429, and PSR 11952+3252) each of which had some unique feature among the EGRET pulsars. The excellent sensitivity of LAT allows more detailed analysis of the evolution of the pulse profile with energy and also of the variation of the spectral shape with phase. We measure the cutoff energy of the pulsed emission from these pulsars for the first time and provide a more complete picture of the emission mechanism. The results confirm some, but not all, of the features seen in the EGRET data. C1 [Ardo, A. A.; Chekhtman, A. .; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Makeev, A.; Strickman, M. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Ardo, A. A.; Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ajello, M.; Bechtol, K.; Berenji, B.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Kamae, T.; Lande, J.; Lee, S. -H.; Mitthumsiri, W.; Mnzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Panetta, J. H.; Reimer, A.; Reimer, O.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ajello, M.; Bechtol, K.; Berenji, B.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Kamae, T.; Lande, J.; Lee, S. -H.; Mitthumsiri, W.; Mnzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Panetta, J. H.; Reimer, A.; Reimer, O.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Antolini, E.; Bonamente, E.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Antolini, E.; Bonamente, E.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Grenier, I. A.] Uiv Paris Diderot, CNRS,CEA IRFU, Lab AIM,Serv Astrophys, CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Buson, S.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Brigida, M.; De Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; De Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fortin, P.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Camilo, F.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Caraveo, P. A.; Marelli, M.] INAF Ist Astrofis Spaziale Fis Cosm, I-20133 Milan, Italy. [Celik, Oe; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. J.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A. .; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cognard, I.; Theureau, G.] CNRS, LPCE, UMR 6115, F-45071 Orleans 02, France. [Cognard, I.; Theureau, G.] CNRS, INSU, Observ Paris, Stn Radioastron Nancay, F-18330 Nancay, France. [Cohen-Tanugi, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Caliandro, G. A.; Lott, B.; Torres, D. F.] Univ Bordeaux, CEN Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Gruppo Collegato Udine, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Freire, P. C. C.; Guillemot, L.; Kramer, M.; Noutos, A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Higashihiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Johnson, R. P.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Johnson, R. P.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Johnson, T. J.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Johnson, T. J.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Johnston, S.; Keith, M.; Manchester, R. N.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan. [Knoedlseder, J.] CNRS, UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Kramer, M.; Weltevrede, P.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.; Ozaki, M.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Rirken, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Rirken, J.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Ardo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM ocelik@milkyway.gsfc.nasa.gov; fabio.gargano@ba.infn.it; David.J.Thompson@nasa.gov; reposeur@cenbg.in2p3.fr RI Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Funk, Stefan/B-7629-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; OI Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Thorsett, Stephen/0000-0002-2025-9613; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; Bastieri, Denis/0000-0002-6954-8862; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Berenji, Bijan/0000-0002-4551-772X; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Marelli, Martino/0000-0002-8017-0338 FU International Doctorate on Astroparticle Physics (IDAPP); Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; Commonwealth of Australia FX Partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France.; This work made extensive use of the ATNF pulsar catalog (Manchester et al. 2005).63; The Parkes radio telescope is part of the Australia Telescope which is funded by the Commonwealth of Australia for operation as a National Facility managed by the CSIRO. NR 72 TC 0 Z9 0 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 26 EP 40 DI 10.1088/0004-637X/720/1/26 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000004 ER PT J AU Bhattacharya, B Noriega-Crespo, A Penprase, BE Meadows, VS Salvato, M Aussel, H Frayer, D Ilbert, O Le Floc'h, E Looper, D Surace, J Capak, P Glorgini, JD Granvik, M Grillmair, C Hagen, A Helou, G Reach, WT Rebull, LM Sanders, DB Scoville, N Sheth, K Yan, L AF Bhattacharya, B. Noriega-Crespo, A. Penprase, B. E. Meadows, V. S. Salvato, M. Aussel, H. Frayer, D. Ilbert, O. Le Floc'h, E. Looper, D. Surace, J. Capak, P. Glorgini, J. D. Granvik, M. Grillmair, C. Hagen, A. Helou, G. Reach, W. T. Rebull, L. M. Sanders, D. B. Scoville, N. Sheth, K. Yan, L. TI MID-INFRARED PHOTOMETRIC ANALYSIS OF MAIN BELT ASTEROIDS: A TECHNIQUE FOR COLOR-COLOR DIFFERENTIATION FROM BACKGROUND ASTROPHYSICAL SOURCES SO ASTROPHYSICAL JOURNAL LA English DT Article DE minor planets, asteroids: general; techniques: photometric ID SPITZER-SPACE-TELESCOPE; MULTIBAND IMAGING PHOTOMETER; NEAR-EARTH ASTEROIDS; 160 MU-M; 1ST-LOOK SURVEY; THERMAL-MODEL; COSMOS FIELD; MAGNITUDES; DIAMETERS; ALBEDOS AB The Spitzer Space Telescope routinely detects asteroids in astrophysical observations near the ecliptic plane. For the galactic or extragalactic astronomer, these solar system bodies can introduce appreciable uncertainty into the source identification process. We discuss an infrared color discrimination tool that may be used to distinguish between solar system objects and extrasolar sources. We employ four Spitzer Legacy data sets, the First Look Survey-Ecliptic Plane Component (FLS-EPC), SCOSMOS, SWIRE, and GOODS. We use the Standard Thermal Model to derive FLS-EPC main belt asteroid (MBA) diameters of 1-4 km for the numbered asteroids in our sample and note that several of our solar system sources may have fainter absolute magnitude values than previously thought. A number of the MBAs are detected at flux densities as low as a few tens of mu Jy at 3.6 mu m. As the FLS-EPC provides the only 3.6-24.0 mu m observations of individual asteroids to date, we are able to use this data set to carry out a detailed study of asteroid color in comparison to astrophysical sources observed by SCOSMOS, SWIRE, and GOODS. Both SCOSMOS and SWIRE have identified a significant number of asteroids in their data, and we investigate the effectiveness of using relative color to distinguish between asteroids and background objects. We find a notable difference in color in the IRAC 3.6-8.0 mm and MIPS 24 mu m bands between the majority of MBAs, stars, galaxies, and active galactic nuclei, though this variation is less significant when comparing fluxes in individual bands. We find median colors for the FLS-EPC asteroids to be [F(5.8/3.6), F(8.0/4.5), F(24/8)] = (4.9 +/- 1.8, 8.9 +/- 7.4, 6.4 +/- 2.3). Finally, we consider the utility of this technique for other mid-infrared observations that are sensitive to near-Earth objects, MBAs, and trans-Neptunian objects. We consider the potential of using color to differentiate between solar system and background sources for several space-based observatories, including Warm Spitzer, Herschel, and WISE. C1 [Bhattacharya, B.; Helou, G.] CALTECH, NASA Herschel Sci Ctr, Pasadena, CA 91125 USA. [Noriega-Crespo, A.; Surace, J.; Capak, P.; Grillmair, C.; Helou, G.; Rebull, L. M.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Penprase, B. E.] Pomona Coll, Dept Phys & Astron, Claremont, CA 91711 USA. [Meadows, V. S.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Salvato, M.; Helou, G.; Scoville, N.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Salvato, M.] Max Planck Inst Plasma Phys & Cluster Excellence, Garching, Germany. [Aussel, H.] CEA Saclay, Serv Astrophys, F-91191 Gif Sur Yvette, France. [Frayer, D.] NRAO, Green Bank, WV 24944 USA. [Ilbert, O.; Le Floc'h, E.; Looper, D.; Granvik, M.; Sanders, D. B.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Glorgini, J. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hagen, A.] Harvey Mudd Coll, Dept Phys, Claremont, CA 91711 USA. [Reach, W. T.] NASA, Ames Res Ctr, Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Sheth, K.] NRAO NAASC, Charlottesville, VA 22903 USA. [Yan, L.] CALTECH, WISE Data Ctr, Pasadena, CA 91125 USA. RP Bhattacharya, B (reprint author), CALTECH, NASA Herschel Sci Ctr, MC 100-22, Pasadena, CA 91125 USA. OI Hagen, Alex/0000-0003-2031-7737; Rebull, Luisa/0000-0001-6381-515X; Reach, William/0000-0001-8362-4094 FU NASA [1407]; NASA Herschel Science Center FX The authors acknowledge the late S. Tyler, whose enthusiastic presence is missed by the FLS-EPC team. During his years at the Spitzer Science Center, Mr. Tyler assisted in data analysis for this project. The authors also thank the anonymous referee for helpful comments. B.B. thanks Dr. Tom Jarrett for providing valuable feedback, and the FLS-EPC team acknowledges Professor Jim Elliot for developing the original concept of the solar system First Look Survey. This work is based upon observations made with the Spitzer Space Telescope, operated by JPL, Caltech, and funded under NASA contract 1407. Additional work is funded by the NASA Herschel Science Center, operated by JPL, Caltech. NR 38 TC 2 Z9 2 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 114 EP 129 DI 10.1088/0004-637X/720/1/114 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000010 ER PT J AU Cacketti, EM Miller, JM Ballantyne, DR Barret, D Bhattacharyya, S Boutelier, M Millers, MC Strohmayer, TE Wijnands, R AF Cacketti, Edward M. Miller, Jon M. Ballantyne, David R. Barret, Didier Bhattacharyya, Sudip Boutelier, Martin Millers, M. Coleman Strohmayer, Tod E. Wijnands, Rudy TI RELATIVISTIC LINES AND REFLECTION FROM THE INNER ACCRETION DISKS AROUND NEUTRON STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; stars: neutron; X-rays: binaries ID X-RAY BINARIES; QUASI-PERIODIC OSCILLATIONS; BLACK-HOLE SPIN; BROADENED IRON LINE; EQUATION-OF-STATE; CYGNUS X-2; XMM-NEWTON; BOUNDARY-LAYER; EMISSION-LINE; 4U 1705-44 AB A number of neutron star low-mass X-ray binaries (LMXBs) have recently been discovered to show broad, asymmetric Fe K emission lines in their X-ray spectra. These lines are generally thought to be the most prominent part of a reflection spectrum, originating in the inner part of the accretion disk where strong relativistic effects can broaden emission lines. We present a comprehensive, systematic analysis of Suzaku and XMM-Newton spectra of 10 neutron star LMXBs, all of which display broad Fe K emission lines. Of the 10 sources, 4 are Z sources, 4 are atolls, and 2 are accreting millisecond X-ray pulsars (also atolls). The Fe K lines are fit well by a relativistic line model for a Schwarzschild metric, and imply a narrow range of inner disk radii (6-15 GM/c(2)) in most cases. This implies that the accretion disk extends close to the neutron star surface over a range of luminosities. Continuum modeling shows that for the majority of observations, a blackbody component (plausibly associated with the boundary layer) dominates the X-ray emission from 8 to 20 keV. Thus it appears likely that this spectral component produces the majority of the ionizing flux that illuminates the accretion disk. Therefore, we also fit the spectra with a blurred reflection model, wherein a blackbody component illuminates the disk. This model fits well in most cases, supporting the idea that the boundary layer illuminates a geometrically thin disk. C1 [Cacketti, Edward M.; Miller, Jon M.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Ballantyne, David R.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Barret, Didier; Boutelier, Martin] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 04, France. [Bhattacharyya, Sudip] Tata Inst Fundamental Res, Dept Astron & Astrophys, Bombay 400005, Maharashtra, India. [Millers, M. Coleman] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Strohmayer, Tod E.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Wijnands, Rudy] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 XH Amsterdam, Netherlands. RP Cacketti, EM (reprint author), Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. EM ecackett@umich.edu RI XRAY, SUZAKU/A-1808-2009 FU NASA [PF8-90052]; ESA Member States FX We appreciate the extremely helpful comments from the referee that have improved the paper. E.M.C. gratefully acknowledges support provided by NASA through the Chandra Fellowship Program, grant number PF8-90052. This research has made use of data obtained from the Suzaku satellite, a collaborative mission between the space agencies of Japan (JAXA) and the USA (NASA). It also made use of observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. NR 115 TC 56 Z9 56 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 205 EP 225 DI 10.1088/0004-637X/720/1/205 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000018 ER PT J AU Leggett, SK Saumon, D Burningham, B Cushing, MC Marley, MS Pinfield, DJ AF Leggett, S. K. Saumon, D. Burningham, Ben Cushing, Michael C. Marley, M. S. Pinfield, D. J. TI PROPERTIES OF THE T8.5 DWARF WOLF 940 B SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; infrared: stars; stars: fundamental parameters; stars: individual (Wolf 940B) ID SPITZER-SPACE-TELESCOPE; STAR SPECTROSCOPIC SURVEY; EXOPLANET HOST STAR; DIGITAL SKY SURVEY; COOL BROWN DWARF; MID-T DWARFS; CHEMICAL-EQUILIBRIUM; PHYSICAL-PROPERTIES; BINARY-SYSTEM; GLIESE 570D AB We present 7.5-14.2 mu m low-resolution spectroscopy, obtained with the Spitzer Infrared Spectrograph, of the T8.5 dwarf Wolf 940 B, which is a companion to an M4 dwarf with a projected separation of 400 AU. We combine these data with previously published near-infrared spectroscopy and mid-infrared photometry to produce the spectral energy distribution for the very low temperature T dwarf. We use atmospheric models to derive the bolometric correction and obtain a luminosity of log L/L(circle dot) = -6.01 +/- 0.05 (the observed spectra make up 47% of the total flux). Evolutionary models are used with the luminosity to constrain the values of effective temperature (T(eff)) and surface gravity and hence mass and age for the T dwarf. We ensure that the spectral models used to determine the bolometric correction have T(eff) and gravity values consistent with the luminosity-implied values. We further restrict the allowed range of T(eff) and gravity using age constraints implied by the M dwarf primary and refine the physical properties of the T dwarf by comparison of the observed and modeled spectroscopy and photometry. This comparison indicates that Wolf 940 B has a metallicity within similar to 0.2 dex of solar, as more extreme values give poor fits to the data-lower metallicity produces a poor fit at lambda > 2 mu m, while higher metallicity produces a poor fit at lambda < 2 mu m. This is consistent with the independently derived value of [m/H] = +0.24 +/- 0.09 for the primary star, using the Johnson & Apps M(K): V - K relationship. We find that the T dwarf atmosphere is undergoing vigorous mixing, with an eddy diffusion coefficient K(zz) of 10(4) to 10(6) cm(2) s(-1). We derive an effective temperature of 585 K to 625 K, and surface gravity log g = 4.83 to 5.22 (cm s(-2)), for an age range of 3 Gyr to 10 Gyr, as implied by the kinematic and Ha properties of the M dwarf primary. Gravity and temperature are correlated such that the lower gravity corresponds to the lower temperature and younger age for the system and the higher values to the higher temperature and older age. The mass of the T dwarf is 24 M(Jupiter) to 45 M(Jupiter) for the younger to older age limit. C1 [Leggett, S. K.] No Operat Ctr, Gemini Observ, Hilo, HI 96720 USA. [Saumon, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Burningham, Ben; Pinfield, D. J.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Cushing, Michael C.] CALTECH, Jet Prop Lab, Dept Astrophys, Pasadena, CA 91109 USA. [Marley, M. S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Leggett, SK (reprint author), No Operat Ctr, Gemini Observ, 670 N Aohoku Pl, Hilo, HI 96720 USA. EM sleggett@gemini.edu RI Marley, Mark/I-4704-2013; OI Marley, Mark/0000-0002-5251-2943; Burningham, Ben/0000-0003-4600-5627; Leggett, Sandy/0000-0002-3681-2989 FU NASA; Gemini Observatory FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. Support for this work was also provided by the Spitzer Space Telescope Theoretical Research Program, through NASA. S.K.L.'s research is supported by the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., on behalf of the international Gemini partnership of Argentina, Australia, Brazil, Canada, Chile, the United Kingdom, and the United States of America. NR 55 TC 20 Z9 20 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 252 EP 258 DI 10.1088/0004-637X/720/1/252 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000022 ER PT J AU Whittet, DCB Goldsmith, PF Pineda, JL AF Whittet, D. C. B. Goldsmith, P. F. Pineda, J. L. TI THE UPTAKE OF INTERSTELLAR GASEOUS CO INTO ICY GRAIN MANTLES IN A QUIESCENT DARK CLOUD SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; ISM: abundances; ISM: individual objects (Taurus Dark Cloud); ISM: molecules ID TAURUS MOLECULAR CLOUD; MASS STAR-FORMATION; CARBON-MONOXIDE; BACKGROUND STARS; CORES; DUST; GAS; DEPLETION; ICES; ABUNDANCE AB Data from the Five College Radio Astronomy Observatory CO Mapping Survey of the Taurus molecular cloud are combined with extinction data for a sample of 292 background field stars to investigate the uptake of CO from the gas to icy grain mantles on dust within the cloud. On the assumption that the reservoir of CO in the ices is represented well by the combined abundances of solid CO and solid CO(2) (which forms by oxidation of CO on the dust), we find that the total column density (gas + solid) correlates tightly with visual extinction (A(V)) over the range 5 mag < A(V) < 30 mag, i.e., up to the highest extinctions covered by our sample. The mean depletion of gas-phase CO, expressed as delta(CO) = N(CO)(ice)/N(CO)(total), increases monotonically from negligible levels for A(V) less than or similar to 5 to similar to 0.3 at A(V) = 10 and similar to 0.6 at A(V) = 30. As these results refer to line-of-sight averages, they must be considered lower limits to the actual depletion at loci deep within the cloud, which may approach unity. We show that it is plausible for such high levels of depletion to be reached in dense cores on timescales similar to 0.6 Myr, comparable with their expected lifetimes. Dispersal of cores during star formation may be effective in maintaining observable levels of gaseous CO on the longer timescales estimated for the age of the cloud. C1 [Whittet, D. C. B.] Rensselaer Polytech Inst, New York Ctr Astrobiol, Troy, NY 12180 USA. [Whittet, D. C. B.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Goldsmith, P. F.; Pineda, J. L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Whittet, DCB (reprint author), Rensselaer Polytech Inst, New York Ctr Astrobiol, 110 8th St, Troy, NY 12180 USA. RI Goldsmith, Paul/H-3159-2016 OI Whittet, Douglas/0000-0001-8539-3891; FU National Aeronautics and Space Administration (NASA) [NNX07AK38G]; National Science Foundation; NASA Astrobiology Institute [NNA09DA80A] FX This research has made use of data from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, funded by the National Aeronautics and Space Administration (NASA) and the National Science Foundation. D.C.B.W. acknowledges financial support from the NASA Exobiology and Evolutionary Biology program (grant NNX07AK38G) and the NASA Astrobiology Institute (grant NNA09DA80A). This work was supported in part by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. We are grateful to an anonymous referee for helpful comments. NR 58 TC 14 Z9 14 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 259 EP 265 DI 10.1088/0004-637X/720/1/259 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000023 ER PT J AU Abdo, AA Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Bastier, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Bignami, GF Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bregeon, J Brez, A Brigida, M Brueli, P Burnett, TH Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Celik, O Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Dermer, CD de Palma, F Dormody, M Silva, EDE Drell, PS Dubois, R Dumora, D Edmonds, Y Farnier, C Favuzzi, C Fegan, SJ Focke, WB Fortin, P Frailis, M Furazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giavitto, G Giglietto, N Giordano, F Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hadasch, D Hardino, AK Hays, E Hughes, RE Johannesson, G Johnson, AS Johnson, TJ Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Marelli, M Mazziotta, MN McEnery, JE Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenk, IV Murgia, S Nolan, PL Norris, JP Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Rayi, PS Razzano, M Reimer, A Reimer, O Reposeur, T Rochester, LS Rodriguez, AY Romani, RW Roth, M Ryde, F Sadrozinski, HFW Sander, A Parkinson, PMS Scargle, JD Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Suson, DJ Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Usher, TL Van Etten, A Vasileiou, V Venter, C Vilchez, N Vitale, V Waite, AP Wang, P Watters, K Winer, BL Wood, KS Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Bastier, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Bignami, G. F. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brez, A. Brigida, M. Brueli, P. Burnett, T. H. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Celik, Oe. Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Dermer, C. D. de Palma, F. Dormody, M. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Edmonds, Y. Farnier, C. Favuzzi, C. Fegan, S. J. Focke, W. B. Fortin, P. Frailis, M. Furazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giavitto, G. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Hadasch, D. Hardino, A. K. Hays, E. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, T. J. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Marelli, M. Mazziotta, M. N. McEnery, J. E. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenk, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Rayi, P. S. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Rochester, L. S. Rodriguez, A. Y. Romani, R. W. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Usher, T. L. Van Etten, A. Vasileiou, V. Venter, C. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Watters, K. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. TI FERMI-LAT OBSERVATIONS OF THE GEMINGA PULSAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: stars; pulsars: general; pulsars: individual (PSR J0633+1746, Geminga) ID LARGE-AREA TELESCOPE; GAMMA-RAY PULSARS; PHASE-RESOLVED SPECTRA; SPACE-TELESCOPE; VELA PULSAR; OUTER MAGNETOSPHERE; OPTICAL COUNTERPART; WIND TORI; RADIATION; EMISSION AB We report on the Fermi-LAT observations of the Geminga pulsar, the second brightest non-variable GeV source in the gamma-ray sky and the first example of a radio-quiet gamma-ray pulsar. The observations cover one year, from the launch of the Fermi satellite through 2009 June 15. A data sample of over 60,000 photons enabled us to build a timing solution based solely on gamma-rays. Timing analysis shows two prominent peaks, separated by Delta phi = 0.497 +/- 0.004 in phase, which narrow with increasing energy. Pulsed gamma-rays are observed beyond 18 GeV, precluding emission below 2.7 stellar radii because of magnetic absorption. The phase-averaged spectrum was fitted with a power law with exponential cutoff of spectral index Gamma = (1.30 +/- 0.01 +/- 0.04), cutoff energy E-0 = (2.46 +/- 0.04 +/- 0.17) GeV, and an integral photon flux above 0.1 GeV of (4.14 +/- 0.02 +/- 0.32) x 10(-6) cm(-2) s(-1). The first uncertainties are statistical and the second ones are systematic. The phase-resolved spectroscopy shows a clear evolution of the spectral parameters, with the spectral index reaching a minimum value just before the leading peak and the cutoff energy having maxima around the peaks. The phase-resolved spectroscopy reveals that pulsar emission is present at all rotational phases. The spectral shape, broad pulse profile, and maximum photon energy favor the outer magnetospheric emission scenarios. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Rayi, P. S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Brez, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Edmonds, Y.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenk, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.; Watters, K.] Stanford Univ, WW Hansen Labs Phys, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Brez, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Edmonds, Y.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenk, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.; Watters, K.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-156127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Tibaldo, L.] Univ Paris Diderot, CNRS IRFU, Lab AIM,Serv Astrophys, CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Giavitto, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Giavitto, G.; Longo, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bastier, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastier, D.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bignami, G. F.] IUSS, I-27100 Pavia, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] M Merlin Univ Politecn Bari, Dipartimento Fis, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Brueli, P.; Fegan, S. J.; Fortin, P.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.; Marelli, M.] INAF Ist Astrofis Spaziale Fis Cosm, Milan, Italy. [Celik, Oe.; Gehrels, N.; Hardino, A. K.; Hays, E.; Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe.; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Meurer, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Meurer, C.; Ryde, F.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Dormody, M.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Dormody, M.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, IN2P3, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, CEN Bordeaux Gradignan, F-33175 Gradignan, France. [Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Furazawa, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gasparrini, D.] ASI Sci Date Ctr, I-00044 Frascati, Italy. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeronom Res, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS, UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Venter, C.] NW Univ, ZA-2520 Potchefstroom, South Africa. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM dumora@cenbg.in2p3.fr; Fabio.Gargano@ba.infn.it; massimiliano.razzano@pi.infn.it RI Thompson, David/D-2939-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Venter, Christo/E-6884-2011; Funk, Stefan/B-7629-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; OI Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Ray, Paul/0000-0002-5297-5278; Marelli, Martino/0000-0002-8017-0338; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Venter, Christo/0000-0002-2666-4812; Funk, Stefan/0000-0002-2012-0080; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Bignami, Giovanni/0000-0001-9582-2450; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; Rando, Riccardo/0000-0001-6992-818X FU K. A. Wallenberg Foundation; International Doctorate on Astroparticle Physics (IDAPP); Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation.; Partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program.; The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States; the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy; the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK), and Japan Aerospace Exploration Agency (JAXA) in Japan; and the K. A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 64 TC 45 Z9 46 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 272 EP 283 DI 10.1088/0004-637X/720/1/272 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000025 ER PT J AU Mancone, CL Gonzalez, AH Brodwin, M Stanford, SA Eisenhardt, PRM Stern, D Jones, C AF Mancone, Conor L. Gonzalez, Anthony H. Brodwin, Mark Stanford, Spencer A. Eisenhardt, Peter R. M. Stern, Daniel Jones, Christine TI THE FORMATION OF MASSIVE CLUSTER GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; galaxies: evolution galaxies: formation; galaxies: luminosity function, mass function ID IRAC SHALLOW SURVEY; STELLAR POPULATION SYNTHESIS; NEAR-INFRARED PROPERTIES; LUMINOSITY FUNCTION; RED SEQUENCE; STAR-FORMATION; EVOLUTION; SPITZER; 1ST; UNCERTAINTIES AB We present composite 3.6 and 4.5 mu m luminosity functions (LFs) for cluster galaxies measured from the Spitzer Deep, Wide-Field Survey for 0.3 < z < 2. We compare the evolution of m* for these LFs to models for passively evolving stellar populations to constrain the primary epoch of star formation in massive cluster galaxies. At low redshifts (z less than or similar to 1.3), our results agree well with models with no mass assembly and passively evolving stellar populations with a luminosity-weighted mean formation redshift z(f) = 2.4 assuming a Kroupa initial mass function (IMF). We conduct a thorough investigation of systematic biases that might influence our results, and estimate systematic uncertainties of Delta z(f) = (+0.16)(-0.18) (model normalization), Delta z(f) = (+0.40)(-0.05) (a), and Delta z(f) = (+0.30)(-0.45) (choice of stellar population model). For a Salpeter-type IMF, the typical formation epoch is thus strongly constrained to be z similar to 2-3. Higher formation redshifts can only be made consistent with the data if one permits an evolving IMF that is bottom-light at high redshift, as suggested by van Dokkum. At high redshifts (z greater than or similar to 1.3), we also witness a statistically significant (>5 sigma) disagreement between the measured LF and the continuation of the passive evolution model from lower redshifts. After considering potential systematic biases that might influence our highest redshift data points, we interpret the observed deviation as potential evidence for ongoing mass assembly at this epoch. C1 [Mancone, Conor L.; Gonzalez, Anthony H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Brodwin, Mark; Jones, Christine] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Stanford, Spencer A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Stanford, Spencer A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Eisenhardt, Peter R. M.; Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Mancone, CL (reprint author), Univ Florida, Dept Astron, Gainesville, FL 32611 USA. EM cmaneone@astro.ufl.edu; anthony@astro.ufl.edu FU National Science Foundation [AST-0708490]; U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344]; NASA FX This paper is based upon work supported by the National Science Foundation under grant AST-0708490. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The work of P.R.M.E. and D.S. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. NR 40 TC 46 Z9 46 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 284 EP 298 DI 10.1088/0004-637X/720/1/284 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000026 ER PT J AU Lewis, NK Showman, AP Fortney, JJ Marley, MS Freedman, RS Lodders, R AF Lewis, Nikole K. Showman, Adam P. Fortney, Jonathan J. Marley, Mark S. Freedman, Richard S. Lodders, Ratharina TI ATMOSPHERIC CIRCULATION OF ECCENTRIC HOT NEPTUNE GJ436b SO ASTROPHYSICAL JOURNAL LA English DT Article DE atmospheric effects; methods: numerical; planets and satellites: general; planets and satellites: individual (GJ436b) ID HUBBLE-SPACE-TELESCOPE; HD 209458B; GIANT PLANETS; GJ 436B; JUPITERS; SIMULATIONS; DYNAMICS; 189733B; TRANSIT; SPITZER AB GJ436b is a unique member of the transiting extrasolar planet population being one of the smallest and least irradiated and possessing an eccentric orbit. Because of its size, mass, and density, GJ436b could plausibly have an atmospheric metallicity similar to Neptune (20-60 times solar abundances), which makes it an ideal target to study the effects of atmospheric metallicity on dynamics and radiative transfer in an extrasolar planetary atmosphere. We present three-dimensional atmospheric circulation models that include realistic non-gray radiative transfer for 1, 3, 10, 30, and 50 times solar atmospheric metallicity cases of GJ436b. Low metallicity models (1 and 3 times solar) show little day/night temperature variation and strong high-latitude jets. In contrast, higher metallicity models (30 and 50 times solar) exhibit day/night temperature variations and a strong equatorial jet. Spectra and light curves produced from these simulations show strong orbital phase dependencies in the 50 times solar case and negligible variations with orbital phase in the 1 times solar case. Comparisons between the predicted planet/star flux ratio from these models and current secondary eclipse measurements support a high metallicity atmosphere (30-50 times solar abundances) with disequilibrium carbon chemistry at play for GJ436b. Regardless of the actual atmospheric composition of GJ436b, our models serve to illuminate how metallicity influences the atmospheric circulation for a broad range of warm extrasolar planets. C1 [Lewis, Nikole K.; Showman, Adam P.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Lewis, Nikole K.; Showman, Adam P.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Marley, Mark S.; Freedman, Richard S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Lodders, Ratharina] Washington Univ, St Louis, MO 63130 USA. [Freedman, Richard S.] SETI Inst, Mountain View, CA 94043 USA. RP Lewis, NK (reprint author), Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. EM nlewis@lpl.arizona.edu RI Marley, Mark/I-4704-2013; OI Marley, Mark/0000-0002-5251-2943; Fortney, Jonathan/0000-0002-9843-4354 FU NASA Headquarters [NNX08AX02H, NNX08AF27G]; NSF [AST 0707377]; National Science Foundation; NASA Advanced Supercomputing (NAS) Division at Ames Research Center FX This work was supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program (Grant NNX08AX02H) and Origins Program (Grant NNX08AF27G). Work by K.L. was supported by NSF grant AST 0707377 and by the National Science Foundation, while working at the Foundation. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. The authors thank Yuan Lian for his helpful insights into working with the MITgcm and the anonymous referee for their helpful comments and suggestions. NR 46 TC 76 Z9 77 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 344 EP 356 DI 10.1088/0004-637X/720/1/344 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000031 ER PT J AU Shao, M Catanzarite, J Pan, XP AF Shao, Michael Catanzarite, Joseph Pan, Xiaopei TI THE SYNERGY OF DIRECT IMAGING AND ASTROMETRY FOR ORBIT DETERMINATION OF EXO-EARTHS SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrometry; planets and satellites: detection; techniques: high angular resolution ID SUPER-EARTHS; PLANETS; SEARCH; MASS AB The holy grail of exoplanet searches is an exo-Earth, an Earth mass planet in the habitable zone (HZ) around a nearby star. Mass is one of the most important characteristics of a planet and can only be measured by observing the motion of the star around the planet star center of gravity. The planet's orbit can be measured either by imaging the planet at multiple epochs or by measuring the position of the star at multiple epochs by space-based astrometry. The measurement of an exoplanet's orbit by direct imaging is complicated by a number of factors. One is the inner working angle (IWA). A space coronagraph or interferometer imaging an exo-Earth can separate the light from the planet from the light from the star only when the star planet separation is larger than the IWA. Second, the apparent brightness of a planet depends on the orbital phase. A single image of a planet cannot tell us whether the planet is in the HZ or distinguish whether it is an exo-Earth or a Neptune-mass planet. Third is the confusion that may arise from the presence of multiple planets. With two images of a multiple planet system, it is not possible to assign a dot to a planet based only on the photometry and color of the planet. Finally, the planet-star contrast must exceed a certain minimum value in order for the planet to be detected. The planet may be unobservable even when it is outside the IWA, such as when the bright side of the planet is facing away from us in a "crescent" phase. In this paper we address the question: "Can a prior astrometric mission that can identify which stars have Earth-like planets significantly improve the science yield of a mission to image exo-Earths?" In the case of the Occulting Ozone Observatory, a small external occulter mission that cannot measure spectra, we find that the occulter mission could confirm the orbits of similar to 4 to similar to 5 times as many exo-Earths if an astrometric mission preceded it to identify which stars had such planets. In the case of an internal coronagraph we find that a survey of the nearest similar to 60 stars could be done with a telescope half the size if an astrometric mission had first identified the presence of Earth-like planets in the HZ and measured their orbital parameters. C1 [Shao, Michael; Catanzarite, Joseph; Pan, Xiaopei] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Shao, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM michael.shao@jpl.nasa.gov; joseph.catanzarite@jpl.nasa.gov; xiaopei.pan@jpl.nasa.gov FU National Aeronautics and Space Administration FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Government sponsorship acknowledged. We thank Doug Lisman for providing the target list for the O3 mission, and Dmitri Savransky for information about the O3 mission. We thank John Davidson, Steve Edberg, Doug Lisman, Stuart Shaklan, and Steve Unwin for helpful discussions and comments. We are grateful to the anonymous referee for providing numerous useful suggestions and comments that helped improve the paper. NR 21 TC 16 Z9 16 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 357 EP 367 DI 10.1088/0004-637X/720/1/357 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000032 ER PT J AU Xue, YQ Brandt, WN Luo, B Rafferty, DA Alexander, DM Bauer, FE Lehmer, BD Schneider, DP Silverman, JD AF Xue, Y. Q. Brandt, W. N. Luo, B. Rafferty, D. A. Alexander, D. M. Bauer, F. E. Lehmer, B. D. Schneider, D. P. Silverman, J. D. TI COLOR-MAGNITUDE RELATIONS OF ACTIVE AND NON-ACTIVE GALAXIES IN THE CHANDRA DEEP FIELDS: HIGH-REDSHIFT CONSTRAINTS AND STELLAR-MASS SELECTION EFFECTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: active; galaxies: evolution; galaxies: general; surveys; X-rays: galaxies ID SUPERMASSIVE BLACK-HOLES; STAR-FORMATION HISTORY; SPECTRAL ENERGY-DISTRIBUTIONS; NEAR-INFRARED CATALOG; POINT-SOURCE CATALOGS; X-RAY SOURCES; GALACTIC NUCLEI; HOST GALAXIES; LUMINOSITY FUNCTION; SUBMILLIMETER GALAXIES AB We extend color magnitude relations for moderate-luminosity X-ray active galactic nucleus (AGN) hosts and non-AGN galaxies through the galaxy formation epoch (z approximate to 1-4) in the Chandra Deep Field-North and Chandra Deep Field-South (CDF-N and CDF-S, respectively; jointly CDFs) surveys. This study was enabled by the deepest available X-ray data from the 2 Ms CDF surveys as well as complementary ultradeep multiwavelength data in these regions. We utilized analyses of color magnitude diagrams (CMDs) to assess the role of moderate-luminosity AGNs in galaxy evolution. First, we confirm some previous results and extend them to higher redshifts, finding, for example, that (1) there is no apparent color bimodality (i.e., the lack of an obvious red sequence and blue cloud) for AGN hosts from z approximate to 0 to 2, but non-AGN galaxy color bimodality exists up to z approximate to 3 and the relative fraction of red-sequence galaxies generally increases as the redshift decreases (consistent with a blue-to-red migration of galaxies), (2) most AGNs reside in massive hosts and the AGN fraction rises strongly toward higher stellar mass, up to z approximate to 2-3, and (3) the colors of both AGN hosts and non-AGN galaxies become redder as the stellar mass increases, up to z approximate to 2-3. Second, we point out that, in order to obtain a complete and reliable picture, it is critical to use mass-matched samples to examine color magnitude relations of AGN hosts and non-AGN galaxies. We show that for mass-matched samples up to z approximate to 2-3, AGN hosts lie in the same region of the CMD as non-AGN galaxies; i.e., there is no specific clustering of AGN hosts in the CMD around the red sequence, the top of the blue cloud, or the green valley in between. The AGN fraction (approximate to 10%) is mostly independent of host-galaxy color, providing an indication of the duty cycle of supermassive black hole growth in typical massive galaxies. These results are in contrast to those obtained with non-mass-matched samples where there is apparent AGN clustering in the CMD and the AGN fraction generally increases as the color becomes redder. We also find, for mass-matched samples, that the star formation rates of AGN hosts are typically a factor of 2-3 larger than those of non-AGN galaxies at z approximate to 0-1, whereas this difference diminishes at z approximate to 1-3. With mass-selection effects taken into account, we find that almost all of the results obtained in this work can reasonably be explained by two main ingredients, color mass correlation (i.e., X-ray AGNs preferentially reside in massive galaxies that generally tend to be redder than less-massive galaxies) and passive or secular evolution of galaxies. Our results show that the presence of moderate-luminosity AGN activity does not have a significant effect on the colors of galaxies and thus tightly constrain any effects from moderate-luminosity AGN feedback upon color magnitude properties over the approximate to 80% of cosmic time during which most of galaxy formation occurred. C1 [Xue, Y. Q.; Brandt, W. N.; Luo, B.; Rafferty, D. A.; Schneider, D. P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Xue, Y. Q.; Brandt, W. N.; Luo, B.] Penn State Univ, Dept Phys, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Alexander, D. M.; Lehmer, B. D.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Bauer, F. E.] Space Sci Inst, Boulder, CO 80301 USA. [Bauer, F. E.] Pontificia Univ Catolica Chile, Dept Astron & Astrophys, Santiago 22, Chile. [Lehmer, B. D.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Lehmer, B. D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Silverman, J. D.] ETH, Inst Astron, Dept Phys, CH-8093 Zurich, Switzerland. [Silverman, J. D.] Univ Tokyo, IPMU, Kashiwa, Chiba 2778568, Japan. RP Xue, YQ (reprint author), Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. EM xuey@astro.psu.edu RI Brandt, William/N-2844-2015; OI Brandt, William/0000-0002-0167-2453; Alexander, David/0000-0002-5896-6313 FU NASA [SP8-9003A, SP8-9003B]; Chandra X-ray Observatory Center; NASA ADP [NNX10AC99G]; Royal Society; Leverhulme Trust; Science and Technology Facilities Council; Einstein Postdoctoral Fellowship [PF9-00064] FX Support for this work was provided by NASA through Chandra Awards SP8-9003A (Y.Q.X., W.N.B., B.L., and D.A.R.) and SP8-9003B (F.E.B.) issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory. We acknowledge financial support from NASA ADP grant NNX10AC99G (Y.Q.X., W.N.B.), the Royal Society (D.M.A.), the Leverhulme Trust (D.M.A.), the Science and Technology Facilities Council fellowship program (B.D.L.), and the Einstein Postdoctoral Fellowship grant PF9-00064 (B.D.L.). We thank the referee for constructive feedback. We also thank R. Feldmann for helpful discussions on the use of the ZEBRA code and J. Wu for help with using the ASURV package. NR 119 TC 110 Z9 110 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 368 EP 391 DI 10.1088/0004-637X/720/1/368 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000033 ER PT J AU Abdo, AA Ackermann, M Ajello, M Antolini, E Baldini, L Ballet, J Barbiellini, G Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Costamante, L Cutini, S Dermer, CD de Angelis, A de Palma, F Silva, EDCE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Focke, WB Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giommi, P Giordano, F Glanzman, T Godfrey, G Grenier, IA Grove, JE Guiriec, S Hadasch, D Hayashida, M Hays, E Healey, SE Horan, D Hughes, RE Itoh, R Johannesson, G Johnson, AS Johnson, TJ Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Lemoine-Goumard, M Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lurrano, P Madejski, GM Makeev, A Mazziotta, MN McConville, W McEnery, JE Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Norris, JP Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzan, M Reimer, A Reimer, O Ritz, S Rochester, LS Rodriguez, AY Romani, RW Roth, M Sadrozinski, HFW Sander, A Parkinson, PMS Scargle, JD Sgro, C Shaw, MS Smith, PD Spandre, G Spinelli, P Starck, JL Strickman, MS Strong, AW Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vasileiou, V Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Antolini, E. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Costamante, L. Cutini, S. Dermer, C. D. de Angelis, A. de Palma, F. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Focke, W. B. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giommi, P. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grove, J. E. Guiriec, S. Hadasch, D. Hayashida, M. Hays, E. Healey, S. E. Horan, D. Hughes, R. E. Itoh, R. Johannesson, G. Johnson, A. S. Johnson, T. J. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Lemoine-Goumard, M. Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lurrano, P. Madejski, G. M. Makeev, A. Mazziotta, M. N. McConville, W. McEnery, J. E. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzan, M. Reimer, A. Reimer, O. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Romani, R. W. Roth, M. Sadrozinski, H. F. -W. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Shaw, M. S. Smith, P. D. Spandre, G. Spinelli, P. Starck, J. -L. Strickman, M. S. Strong, A. W. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. TI THE FERMI-LAT HIGH-LATITUDE SURVEY: SOURCE COUNT DISTRIBUTIONS AND THE ORIGIN OF THE EXTRAGALACTIC DIFFUSE BACKGROUND SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; diffuse radiation; galaxies: active; galaxies: jets; gamma rays: diffuse background; surveys ID LARGE-AREA TELESCOPE; ACTIVE GALACTIC NUCLEI; GAMMA-RAY EMISSION; N-LOG S; LUMINOSITY FUNCTION; SPACE-TELESCOPE; DARK-MATTER; COSMIC-RAYS; BLAZARS; GALAXIES AB This is the first of a series of papers aimed at characterizing the populations detected in the high-latitude sky of the Fermi-LAT survey. In this work, we focus on the intrinsic spectral and flux properties of the source sample. We show that when selection effects are properly taken into account, Fermi sources are on average steeper than previously found (e.g., in the bright source list) with an average photon index of 2.40 +/- 0.02 over the entire 0.1-100 GeV energy band. We confirm that flat spectrum radio quasars have steeper spectra than BL Lacertae objects with an average index of 2.48 +/- 0.02 versus 2.18 +/- 0.02. Using several methods, we build the deepest source count distribution at GeV energies, deriving that the intrinsic source (i.e., blazar) surface density at F-100 >= 10(-9) ph cm(2) s(-1) is 0.12(-0.02)(+0.03) deg(-2). The integration of the source count distribution yields that point sources contribute 16(+/- 1.8)% (+/- 7% systematic uncertainty) of the GeV isotropic diffuse background. At the fluxes currently reached by LAT, we can rule out the hypothesis that pointlike sources (i.e., blazars) produce a larger fraction of the diffuse emission. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Costamante, L.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Healey, S. E.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Costamante, L.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Healey, S. E.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Antolini, E.; Bonamente, E.; Cecchi, C.; Germani, S.; Lurrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Antolini, E.; Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lurrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzan, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Starck, J. -L.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA Saclay, CEA IRFU CNRS,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Horan, D.] Ecole Polytech, CNRS IN2P3, Lab Leprince Ringuet, Palaiseau, France. [Burnett, T. H.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Cutini, S.; Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Rome, Italy. [Celik, Oe; Gehrels, N.; Hays, E.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] Ctr Res & Explorat Space Sci & Technol CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Garde, M. Llena; Meurer, C.; Yang, Z.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Conrad, J.; Garde, M. Llena; Meurer, C.; Yang, Z.; Ylinen, T.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Dumora, D.; Lemoine-Goumard, M.; Lott, B.; Parent, D.] Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, CNRS IN2P3, F-33175 Gradignan, France. [Dumora, D.; Lemoine-Goumard, M.; Lott, B.; Parent, D.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Fukazawa, Y.; Itoh, R.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Johnson, T. J.; McConville, W.; McEnery, J. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Johnson, T. J.; McConville, W.; McEnery, J. E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.; Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tramacere, A.] CIES, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Royal Inst Technol KTH, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kahnar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM majello@slac.stanford.edu; tramacer@slac.stanford.edu RI Funk, Stefan/B-7629-2015; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Starck, Jean-Luc/D-9467-2011; Thompson, David/D-2939-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Baldini, Luca/E-5396-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013 OI Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Caraveo, Patrizia/0000-0003-2478-8018; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Cutini, Sara/0000-0002-1271-2924; Berenji, Bijan/0000-0002-4551-772X; Funk, Stefan/0000-0002-2012-0080; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; Rando, Riccardo/0000-0001-6992-818X; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Starck, Jean-Luc/0000-0003-2177-7794; Thompson, David/0000-0001-5217-9135; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; FU Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX Helpful comments from the referee are acknowledged. The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States; the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy; the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK), and Japan Aerospace Exploration Agency (JAXA) in Japan; and the K. A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 50 TC 139 Z9 139 U1 3 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 435 EP 453 DI 10.1088/0004-637X/720/1/435 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000037 ER PT J AU Bridge, CR Teplitz, HI Siana, B Scarlata, C Conselice, CJ Ferguson, HC Brown, TM Salvato, M Rudie, GC de Mello, DF Colbert, J Gardner, JP Giavalisco, M Armus, L AF Bridge, Carrie R. Teplitz, Harry I. Siana, Brian Scarlata, Claudia Conselice, Christopher J. Ferguson, Henry C. Brown, Thomas M. Salvato, Mara Rudie, Gwen C. de Mello, Duilia F. Colbert, James Gardner, Jonathan P. Giavalisco, Mauro Armus, Lee TI A SPECTROSCOPIC SEARCH FOR LEAKING LYMAN CONTINUUM AT z similar to 0.7 SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: evolution; ultraviolet: galaxies ID STAR-FORMING GALAXIES; ULTRAVIOLET-LUMINOUS GALAXIES; HIGH-REDSHIFT GALAXIES; INITIAL MASS FUNCTION; BREAK GALAXIES; IONIZING-RADIATION; MIDINFRARED OBSERVATIONS; DISTANT GALAXIES; MERGING GALAXIES; CLUMPY UNIVERSE AB We present the results of rest-frame, UV slitless spectroscopic observations of a sample of 32 z similar to 0.7 Lyman break galaxy (LBG) analogs in the COSMOS field. The spectroscopic search was performed with the Solar Blind Channel on the Hubble Space Telescope. We report the detection of leaking Lyman continuum (LyC) radiation from an active galactic nucleus-starburst composite. While we find no direct detections of LyC emission in the remainder of our sample, we achieve individual lower limits (3 sigma) of the observed non-ionizing UV-to-LyC flux density ratios, f(v), (1500 angstrom)/f(v) (830 angstrom) of 20 to 204 (median of 73.5) and 378.7 for the stack. Assuming an intrinsic Lyman break of 3.4 and an intergalactic medium transmission of LyC photons along the line of sight to the galaxy of 85%, we report an upper limit for the relative escape fraction in individual galaxies of 0.02-0.19 and a stacked 3 sigma upper limit of 0.01. We find no indication of a relative escape fraction near unity as seen in some LBGs at z similar to 3. Our UV spectra achieve the deepest limits to date at any redshift for the escape fraction in individual sources. The contrast between these z similar to 0.7 low escape fraction LBG analogs with z similar to 3 LBGs suggests that either the processes conducive to high f(esc) are not being selected for in the z less than or similar to 1 samples or the average escape fraction is decreasing from z similar to 3 to z similar to 1. We discuss possible mechanisms that could affect the escape of LyC photons. C1 [Bridge, Carrie R.; Teplitz, Harry I.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Scarlata, Claudia; Colbert, James; Armus, Lee] CALTECH, Ctr Sci, Pasadena, CA 91125 USA. [Conselice, Christopher J.] Univ Nottingham, Nottingham NG7 2RD, England. [Ferguson, Henry C.; Brown, Thomas M.; Giavalisco, Mauro] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Salvato, Mara] Max Planck Inst Plasma Phys & Excellence, D-86748 Garching, Germany. [de Mello, Duilia F.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [de Mello, Duilia F.; Gardner, Jonathan P.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Bridge, CR (reprint author), CALTECH, Infrared Proc & Anal Ctr, MS 100-22, Pasadena, CA 91125 USA. EM bridge@astro.caltech.edu RI Conselice, Christopher/B-4348-2013; OI Brown, Thomas/0000-0002-1793-9968 FU NASA [HST-GO 11236]; Space Telescope Science Institute FX We thank Mark Dickinson and Colin Borys for their contributions to this work and the anonymous referee for their constructive comments which added to the clarity of this paper. The research described in this paper was carried out, in part, by the Jet Propulsion Laboratory, California Institute of Technology, and observations obtained at the Hale Telescope, Palomar Observatory as part of a continuing collaboration between the California Institute of Technology, NASA /JPL, and Cornell University. Support for programs HST-GO 11236 was provided by NASA through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. NR 73 TC 42 Z9 42 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 465 EP 479 DI 10.1088/0004-637X/720/1/465 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000039 ER PT J AU Moore, RL Cirtain, JW Sterling, AC Falconer, DA AF Moore, Ronald L. Cirtain, Jonathan W. Sterling, Alphonse C. Falconer, David A. TI DICHOTOMY OF SOLAR CORONAL JETS: STANDARD JETS AND BLOWOUT JETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: activity; Sun: corona; Sun: coronal mass ejections (CMEs); Sun: magnetic topology; Sun: surface magnetism; Sun: transition region ID X-RAY TELESCOPE; MAGNETIC EXPLOSION; II SPICULES; HOLES; FLUX; CHROMOSPHERE; NETWORK; EMERGENCE; REGIONS; SECCHI AB By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H alpha macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major coronal mass ejections. From the corona! X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 angstrom snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T similar to 10(4) similar to 10(5) K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets. C1 [Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.; Falconer, David A.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. [Falconer, David A.] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. [Falconer, David A.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. RP Moore, RL (reprint author), NASA, George C Marshall Space Flight Ctr, Space Sci Off, VP62, Huntsville, AL 35812 USA. EM ron.moore@nasa.gov FU NASA's Science Mission Directorate; Hinode Project; Living With a Star Targeted Research & Technology Program FX This work was funded by NASA's Science Mission Directorate through the Heliophysics Guest Investigators Program, the Hinode Project, and the Living With a Star Targeted Research & Technology Program. We thank the referee for helpful comments that resulted in making the paper clearer and in making the paper more cognizant of recent related published or submitted papers on coronal jets. NR 46 TC 89 Z9 90 U1 2 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 757 EP 770 DI 10.1088/0004-637X/720/1/757 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000065 ER PT J AU LaMassa, SM Heckman, TM Ptak, A Martins, L Wild, V Sonnentrucker, P AF LaMassa, Stephanie M. Heckman, Tim M. Ptak, Andrew Martins, Lucimara Wild, Vivienne Sonnentrucker, Paule TI INDICATORS OF INTRINSIC ACTIVE GALACTIC NUCLEUS LUMINOSITY: A MULTI-WAVELENGTH APPROACH SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: Seyfert; infrared: galaxies ID HARD X-RAY; SPITZER-SPACE-TELESCOPE; SEYFERT 2 GALAXIES; POLYCYCLIC AROMATIC-HYDROCARBONS; SPECTRAL ENERGY-DISTRIBUTIONS; HIGH-RESOLUTION SPECTROSCOPY; INFRARED-SELECTED SAMPLE; STAR-FORMING GALAXIES; MU-M SAMPLE; OPTICAL SPECTROSCOPY AB Active galactic nuclei (AGNs) consist of an accretion disk around a supermassive black hole which in turn is surrounded by an obscuring torus of dust and gas. As the resulting geometry of this system affects the observable properties, quantifying isotropic indicators of intrinsic AGN luminosity is important in selecting unbiased samples of AGNs. In this paper, we consider five such proxies: the luminosities of the [O III]lambda 5007 line, the [O IV]25.89 mu m line, the mid-infrared (MIR) continuum emission by the torus, and the radio and hard X-ray (E > 10 keV) continuum emission. We compare these different proxies using two complete samples of low-redshift Type 2 AGNs selected in a homogeneous way based on different indicators: an optically selected [O III] sample and an MIR-selected 12 mu m sample. To assess the relative merits of these proxies, we have undertaken two analyses. First, we examine the correlations between all five different proxies, and find better agreement for the [O IV], MIR, and [0111] luminosities than for the hard X-ray and radio luminosities. Next, we compare the ratios of the fluxes of the different proxies to their values in unobscured Type 1 AGNs. The agreement is best for the ratio of the [O IV] and MIR fluxes, while the ratios of the hard X-ray to [O III], [O IV], and MW fluxes are systematically low by about an order of magnitude in the Type 2 AGNs, indicating that hard X-ray-selected samples do not represent the full Type 2 AGN population. In a similar spirit, we compare different optical and MIR diagnostics of the relative energetic contributions of AGN and star formation processes in our samples of Type 2 AGNs. We find good agreement between the various diagnostic parameters, such as the equivalent width of the MIR polycyclic aromatic hydrocarbon features, the ratio of the MIR [O IV]/[Ne II] emission lines, the spectral index of the MIR continuum, and the commonly used optical emission-line ratios. Finally, we test whether the presence of cold gas associated with star formation leads to an enhanced conversion efficiency of AGN ionizing radiation into [O III] or [O IV] emission. We find that no compelling evidence exists for this scenario for the luminosities represented in this sample (L(bol) approximate to 10(9) - 8 x 10(11) L(circle dot)). C1 [LaMassa, Stephanie M.; Heckman, Tim M.; Sonnentrucker, Paule] Johns Hopkins Univ, Baltimore, MD 21210 USA. [Ptak, Andrew] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Martins, Lucimara] NAT Univ Cruziero do Sul, Sao Paulo, Brazil. [Wild, Vivienne] Inst Astrophys, F-75014 Paris, France. RP LaMassa, SM (reprint author), Johns Hopkins Univ, Baltimore, MD 21210 USA. RI Ptak, Andrew/D-3574-2012; Martins, Lucimara/K-5158-2012; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013 OI Martins, Lucimara/0000-0001-6505-5190; FU NASA [1287640, NNX07AQ36G]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences; Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington FX The authors thank the anonymous referee whose insightful comments improved the quality of this manuscript. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech, RSA No. 1287640 and by NASA grant number NNX07AQ36G. This work has also made use of data from the SDSS. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 71 TC 45 Z9 45 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 786 EP 810 DI 10.1088/0004-637X/720/1/786 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000068 ER PT J AU Tullmann, R Plucinsky, PP Gaetz, TJ Slane, P Hughes, JP Harrus, I Pannuti, TG AF Tuellmann, R. Plucinsky, P. P. Gaetz, T. J. Slane, P. Hughes, J. P. Harrus, I. Pannuti, T. G. TI SEARCHING FOR THE PULSAR IN G18.95-1.1: DISCOVERY OF AN X-RAY POINT SOURCE AND ASSOCIATED SYNCHROTRON NEBULA WITH CHANDRA SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: supernova remnants; pulsars: general; X-rays: individual (G18.95-1.1) ID SUPERNOVA REMNANT; RADIO-SOURCE; H I; GALAXY; STARS AB Using the Chandra X-ray Observatory, we have pinpointed the location of a faint X-ray point source (CXOU J182913.1-125113) and an associated diffuse nebula in the composite supernova remnant (SNR) G18.95-1.1. These objects appear to be the long-sought pulsar and its wind nebula. The X-ray spectrum of the point source is best described by an absorbed power-law model with Gamma = 1.6 and an N(H) of similar to 1 x 10(22) cm(-2). This model predicts a relatively low unabsorbed X-ray luminosity of about L(X)(0.5-8.0 keV) similar or equal to 4.1 x 10(31) D(2)(2) erg s(-1), where D(2) is the distance in units of 2 kpc. The best-fit model of the diffuse nebula is a combination of thermal (kT = 0.48 keV) and non-thermal (1.4 <= Gamma <= 1.9) emission. The unabsorbed X-ray luminosity of L(X) similar or equal to 5.4 x 10(33) D(2)(2) erg s(-1) in the 0.5-8 keV energy band seems to be largely dominated by the thermal component from the SNR, providing 87% of L(X) in this band. No radio or X-ray pulsations have been reported for CXOU J182913.1-125113. If we assume an age of similar to 5300 yr for G18.95-1.1 and use the X-ray luminosity for the pulsar and the wind nebula together with the relationship between spin-down luminosity (via magnetic dipole radiation) and period, we estimate the pulsar's period to be P similar or equal to 0.4 s. Compared to other rotation-powered pulsars, a magnetic field of 2.2 x 10(13) G is implied by its location in the P-(P) over dot diagram, a value which is close to that of the quantum critical field. C1 [Tuellmann, R.; Plucinsky, P. P.; Gaetz, T. J.; Slane, P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Hughes, J. P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Harrus, I.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Pannuti, T. G.] Morehead State Univ, Ctr Space Sci, Morehead, KY 40351 USA. RP Tullmann, R (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM rtuellmann@cfa.harvard.edu FU NASA [GO9-0081X] FX Support for this work was provided by NASA through Chandra Award Number GO9-0081X. NR 21 TC 2 Z9 2 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 848 EP 852 DI 10.1088/0004-637X/720/1/848 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000071 ER PT J AU Abdo, AA Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Brandt, TJ Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Burnett, TH Buson, S Caliandro, GA Cameron, RA Cannon, A Caraveo, PA Carrigan, S Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Celotti, A Charles, E Chekhtman, A Chen, AW Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Colafrancesco, S Conrad, J Davis, DS Dermer, CD de Angelis, A de Palma, F Silva, EDE Drell, PS Dubois, R Favuzzi, C Fegan, SJ Ferrara, EC Fortin, P Frailis, M Fukazawa, Y Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grandi, P Grenier, IA Grove, JE Guillemot, L Guiriec, S Hadasch, D Hayashida, M Hays, E Horan, D Hughes, RE Jackson, MS Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kataoka, J Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Lemoine-Goumard, M Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Malaguti, G Mazziotta, MN McConville, W McEnery, JE Michelson, PF Migliori, G Mitthumsiri, W Mizuno, T Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Naumann-Godo, M Nestoras, I Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Persic, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Razzaque, S Reimer, A Reimer, O Reyes, LC Roth, M Sadrozinski, HFW Sanchez, D Sander, A Scargle, JD Sgro, C Siskind, EJ Smith, PD Spandre, G Spinelli, P Stawarz, L Stecker, FW Strickman, MS Suson, DJ Takahashi, H Tanaka, T Thayer, JB Thaver, JG Thompson, DJ Tibaldo, L Torres, DF Torresi, E Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vilchez, N Villata, M Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Brandt, T. J. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Cannon, A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe Celotti, A. Charles, E. Chekhtman, A. Chen, A. W. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Colafrancesco, S. Conrad, J. Davis, D. S. Dermer, C. D. de Angelis, A. de Palma, F. do Couto e Silva, E. Drell, P. S. Dubois, R. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Fortin, P. Frailis, M. Fukazawa, Y. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grandi, P. Grenier, I. A. Grove, J. E. Guillemot, L. Guiriec, S. Hadasch, D. Hayashida, M. Hays, E. Horan, D. Hughes, R. E. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S-H. Lemoine-Goumard, M. Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Malaguti, G. Mazziotta, M. N. McConville, W. McEnery, J. E. Michelson, P. F. Migliori, G. Mitthumsiri, W. Mizuno, T. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Naumann-Godo, M. Nestoras, I. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Persic, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Reyes, L. C. Roth, M. Sadrozinski, H. F-W. Sanchez, D. Sander, A. Scargle, J. D. Sgro, C. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Stawarz, L. Stecker, F. W. Strickman, M. S. Suson, D. J. Takahashi, H. Tanaka, T. Thayer, J. B. Thaver, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Torresi, E. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vilchez, N. Villata, M. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. TI FERMI LARGE AREA TELESCOPE OBSERVATIONS OF MISALIGNED ACTIVE GALACTIC NUCLEI SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: jets; gamma rays: general ID GAMMA-RAY EMISSION; I RADIO GALAXIES; MOLONGLO-SOUTHERN-4-JY SAMPLE MS4; RELATIVISTIC JETS; M87 JET; SPACE-TELESCOPE; HIGH-RESOLUTION; LAC OBJECTS; SCALE JETS; HOT-SPOTS AB Analysis is presented for 15 months of data taken with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope for 11 non-blazar active galactic nuclei (AGNs), including seven FRI radio galaxies and four FRII radio sources consisting of two FRII radio galaxies and two steep spectrum radio quasars. The broad line FRI radio galaxy 3C 120 is reported here as a gamma-ray source for the first time. The analysis is based on directional associations of LAT sources with radio sources in the 3CR, 3CRR, and MS4 (collectively referred to as 3C-MS) catalogs. Seven of the eleven LAT sources associated with 3C-MS radio sources have spectral indices larger than 2.3 and, except for the FRI radio galaxy NGC 1275 that shows possible spectral curvature, are well described by a power law. No evidence for time variability is found for any sources other than NGC 1275. The gamma-ray luminosities of FRI radio galaxies are significantly smaller than those of the BL Lac objects detected by the LAT, whereas the gamma-ray luminosities of the FRII sources are quite similar to those of FSRQs, which could reflect different beaming factors for the gamma-ray emission. A core dominance (CD) study of the 3CRR sample indicates that sources closer to the jet axis are preferentially detected with the Fermi LAT, insofar as the gamma-ray-detected misaligned AGNs have larger CD at a given average radio flux. The results are discussed in view of the AGN unification scenario. C1 [Grandi, P.; Malaguti, G.; Torresi, E.] INAF IASF Bologna, I-40129 Bologna, Italy. [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Razzaque, S.; Strickman, M. S.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.; Razzaque, S.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S-H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Thaver, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S-H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Thaver, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.; Tibaldo, L.] Univ Paris Diderot, Serv Astrophys, CEA Saclay, Lab AIM,CEA,IRFU,CNRS, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.; Persic, M.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brandt, T. J.; Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Brandt, T. J.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Torres, D. F.] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain. [Cannon, A.; Celik, Oe; Davis, D. S.; Ferrara, E. C.; Gehrels, N.; Hays, E.; McConville, W.; McEnery, J. E.; Stecker, F. W.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, A.] Univ Coll Dublin, Dublin 4, Ireland. [Caraveo, P. A.; Chen, A. W.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Cavazzuti, E.; Colafrancesco, S.; Gasparrini, D.; Giommi, P.] ASI, Sci Data Ctr, I-00044 Rome, Italy. [Celik, Oe; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Davis, D. S.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Davis, D. S.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Celotti, A.; Migliori, G.] Scuola Int Super Studi Avanzati, I-34014 Trieste, Italy. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Garde, M. Llena; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Jackson, M. S.; Garde, M. Llena; Yang, Z.; Ylinen, T.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Frailis, M.; Persic, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Guillemot, L.; Nestoras, I.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guillemot, L.; Lemoine-Goumard, M.; Lott, B.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Guillemot, L.; Lemoine-Goumard, M.; Lott, B.] Univ Bordeaux, CEN Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Jackson, M. S.; Ylinen, T.] Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [McConville, W.; McEnery, J. E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McConville, W.; McEnery, J. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.; Stawarz, L.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Sadrozinski, H. F-W.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Sadrozinski, H. F-W.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Scargle, J. D.] NASA, Div Space Sci, Ames Res Ctr, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Villata, M.] Osserv Astron Torino, INAF, I-10025 Pino Torinese, TO, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Grandi, P (reprint author), INAF IASF Bologna, I-40129 Bologna, Italy. EM grandi@iasfbo.inaf.it RI Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Thompson, David/D-2939-2012; Stecker, Floyd/D-3169-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013 OI Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; TORRESI, ELEONORA/0000-0002-5201-010X; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Villata, Massimo/0000-0003-1743-6946; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Ajello, Marco/0000-0002-6584-1703; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Malaguti, Giuseppe/0000-0001-9872-3378; Grandi, Paola/0000-0003-1848-6013; Giordano, Francesco/0000-0002-8651-2394; giommi, paolo/0000-0002-2265-5003; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; FU National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleate in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden FX The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States; the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleate in Italy; the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK), and Japan Aerospace Exploration Agency (JAXA) in Japan; and the K. A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden.; This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 67 TC 90 Z9 90 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2010 VL 720 IS 1 BP 912 EP 922 DI 10.1088/0004-637X/720/1/912 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647DJ UT WOS:000281596000077 ER PT J AU Biller, BA Liu, MC Wahhaj, Z Nielsen, EL Close, LM Dupuy, TJ Hayward, TL Burrows, A Chun, M Ftaclas, C Clarke, F Hartung, M Males, J Reid, IN Shkolnik, EL Skemer, A Tecza, M Thatte, N Alencar, SHP Artymowicz, P Boss, A Dal Pino, ED Gregorio-Hetem, J Ida, S Kuchner, MJ Lin, D Toomey, D AF Biller, Beth A. Liu, Michael C. Wahhaj, Zahed Nielsen, Eric L. Close, Laird M. Dupuy, Trent J. Hayward, Thomas L. Burrows, Adam Chun, Mark Ftaclas, Christ Clarke, Fraser Hartung, Markus Males, Jared Reid, I. Neill Shkolnik, Evgenya L. Skemer, Andrew Tecza, Matthias Thatte, Niranjan Alencar, Silvia H. P. Artymowicz, Pawel Boss, Alan Dal Pino, Elisabete de Gouveia Gregorio-Hetem, Jane Ida, Shigeru Kuchner, Marc J. Lin, Douglas Toomey, Douglas TI THE GEMINI NICI PLANET-FINDING CAMPAIGN: DISCOVERY OF A CLOSE SUBSTELLAR COMPANION TO THE YOUNG DEBRIS DISK STAR PZ Tel SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE brown dwarfs; instrumentation: adaptive optics; planetary systems; planets and satellites: detection; stars: pre-main sequence ID EXTRASOLAR GIANT PLANETS; BROWN DWARF COMPANION; INFRARED FILTER SET; LOW-MASS STARS; BETA-PICTORIS; EVOLUTIONARY MODELS; ADAPTIVE OPTICS; SOLAR ANALOG; T-DWARF; SPECTROSCOPY AB We report the discovery of a tight substellar companion to the young solar analog PZ Tel, a member of the beta Pic moving group observed with high-contrast adaptive optics imaging as part of the Gemini Near-Infrared Coronagraphic Imager Planet-Finding Campaign. The companion was detected at a projected separation of 16.4 +/- 1.0 AU (0.'' 33 +/- 0.'' 01) in 2009 April. Second-epoch observations in 2010 May demonstrate that the companion is physically associated and shows significant orbital motion. Monte Carlo modeling constrains the orbit of PZ Tel B to eccentricities >0.6. The near-IR colors of PZ Tel B indicate a spectral type of M7 +/- 2 and thus this object will be a new benchmark companion for studies of ultracool, low-gravity photospheres. Adopting an age of 12(-4)(+8) Myr for the system, we estimate a mass of 36 +/- 6 M(Jup) based on the Lyon/DUSTY evolutionary models. PZ Tel B is one of the few young substellar companions directly imaged at orbital separations similar to those of giant planets in our own solar system. Additionally, the primary star PZ Tel A shows a 70 mu m emission excess, evidence for a significant quantity of circumstellar dust that has not been disrupted by the orbital motion of the companion. C1 [Biller, Beth A.; Liu, Michael C.; Wahhaj, Zahed; Dupuy, Trent J.; Ftaclas, Christ] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Nielsen, Eric L.; Close, Laird M.; Males, Jared; Skemer, Andrew] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Hayward, Thomas L.; Hartung, Markus] AURA, So Operat Ctr, Gemini Observ, La Serena, Chile. [Burrows, Adam] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Chun, Mark] Inst Astron, Hilo, HI 96720 USA. [Clarke, Fraser; Tecza, Matthias; Thatte, Niranjan] Univ Oxford, Dept Astron, DWB, Oxford OX1 3RH, England. [Reid, I. Neill] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Shkolnik, Evgenya L.; Boss, Alan] Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA. [Alencar, Silvia H. P.] Univ Fed Minas Gerais, ICEx, Dept Fis, BR-30270901 Belo Horizonte, MG, Brazil. [Artymowicz, Pawel] Univ Toronto Scarborough, Toronto, ON M1C 1A4, Canada. [Dal Pino, Elisabete de Gouveia; Gregorio-Hetem, Jane] Univ Sao Paulo, IAG USP, Dept Astron, BR-05508900 Sao Paulo, Brazil. [Ida, Shigeru] Tokyo Inst Technol, Meguro Ku, Tokyo 1528551, Japan. [Kuchner, Marc J.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Lin, Douglas] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Toomey, Douglas] Mauna Kea Infrared LLC, Hilo, HI 96720 USA. RP Biller, BA (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. RI Kuchner, Marc/E-2288-2012; Alencar, Silvia/C-2803-2013; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; Ida, Shigeru/A-7840-2014; Gregorio-Hetem, Jane/A-5924-2013; de Gouveia Dal Pino, Elisabete/H-9560-2013; OI Ida, Shigeru/0000-0002-9676-3891; de Gouveia Dal Pino, Elisabete/0000-0001-8058-4752; Biller, Beth/0000-0003-4614-7035; Skemer, Andrew/0000-0001-6098-3924; Nielsen, Eric/0000-0001-6975-9056 FU Space Telescope Science Institute [HST-HF-01204.01-A]; NASA [NAS 5-26555]; NSF [AST-0713881, AST-0709484] FX We thank Adam Kraus for useful suggestions. B. A. B. was supported by Hubble Fellowship grant HST-HF-01204.01-A awarded by the Space Telescope Science Institute, which is operated by AURA for NASA, under contract NAS 5-26555. This work was supported in part by NSF grants AST-0713881 and AST-0709484. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and NSF. NR 49 TC 54 Z9 54 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 1 PY 2010 VL 720 IS 1 BP L82 EP L87 DI 10.1088/2041-8205/720/1/L82 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647HW UT WOS:000281610100017 ER PT J AU Shen, JT Rich, RM Kormendy, J Howard, CD De Propris, R Kunder, A AF Shen, Juntai Rich, R. Michael Kormendy, John Howard, Christian D. De Propris, Roberto Kunder, Andrea TI OUR MILKY WAY AS A PURE-DISK GALAXY-A CHALLENGE FOR GALAXY FORMATION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Galaxy: bulge; Galaxy: kinematics and dynamics; galaxies: kinematics and dynamics ID CENTRAL MASS CONCENTRATIONS; RADIAL-VELOCITY ASSAY; BAADES WINDOW GIANTS; BODY BARRED MODELS; KECK HIRES SPECTRA; GALACTIC BULGE; STELLAR PARAMETERS; ABUNDANCE ANALYSIS; ROTATION CURVE; K GIANTS AB Bulges are commonly believed to form in the dynamical violence of galaxy collisions and mergers. Here, we model the stellar kinematics of the Bulge Radial Velocity Assay ( BRAVA) and find no sign that the Milky Way contains a classical bulge formed by scrambling pre-existing disks of stars in major mergers. Rather, the bulge appears to be a bar seen somewhat end-on, as hinted from its asymmetric boxy shape. We construct a simple but realistic N-body model of the Galaxy that self-consistently develops a bar. The bar immediately buckles and thickens in the vertical direction. As seen from the Sun, the result resembles the boxy bulge of our Galaxy. The model fits the BRAVA stellar kinematic data covering the whole bulge strikingly well with no need for a merger-made classical bulge. The bar in our best-fit model has a half-length of similar to 4 kpc and extends 20 degrees from the Sun-Galactic center line. We use the new kinematic constraints to show that any classical bulge contribution cannot be larger than similar to 8% of the disk mass. Thus, the Galactic bulge is a part of the disk and not a separate component made in a prior merger. Giant, pure-disk galaxies like our own present a major challenge to the standard picture in which galaxy formation is dominated by hierarchical clustering and galaxy mergers. C1 [Shen, Juntai] Chinese Acad Sci, Shanghai Astron Observ, Key Lab Res Galaxies & Cosmol, Shanghai 200030, Peoples R China. [Shen, Juntai; Kormendy, John] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Rich, R. Michael; Howard, Christian D.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA USA. [Howard, Christian D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [De Propris, Roberto; Kunder, Andrea] Cerro Tololo Interamer Observ, La Serena, Chile. RP Shen, JT (reprint author), Chinese Acad Sci, Shanghai Astron Observ, Key Lab Res Galaxies & Cosmol, 80 Nandan Rd, Shanghai 200030, Peoples R China. OI Kunder, Andrea/0000-0002-2808-1370; Shen, Juntai/0000-0001-5604-1643 FU US National Science Foundation [AST-0607490, AST-0709479] FX We thank Karl Gebhardt for helpful discussions and warm support on this project. We also acknowledge support from the US National Science Foundation under grants AST-0607490 (J.K.) and AST-0709479 (R.M.R.). NR 50 TC 133 Z9 133 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 1 PY 2010 VL 720 IS 1 BP L72 EP L76 DI 10.1088/2041-8205/720/1/L72 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647HW UT WOS:000281610100015 ER PT J AU Tenenbaum, ED Dodd, JL Milam, SN Woolf, NJ Ziurys, LM AF Tenenbaum, E. D. Dodd, J. L. Milam, S. N. Woolf, N. J. Ziurys, L. M. TI COMPARATIVE SPECTRA OF OXYGEN-RICH VERSUS CARBON-RICH CIRCUMSTELLAR SHELLS: VY CANIS MAJORIS AND IRC+10216 AT 215-285 GHz SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE astrochemistry; circumstellar matter; stars: AGB and post-AGB; stars: individual (IRC+10216, VY CMa); supergiants ID MOLECULAR LINE SURVEY; LATE-TYPE STARS; EVOLVED STARS; MILLIMETER OBSERVATIONS; ROTATIONAL SPECTRUM; ENVELOPE; CHEMISTRY; EMISSION; WATER; CN AB Asensitive (1 sigma rms at 1 MHz resolution similar to 3 mK) 1 mm spectral line survey (214.5-285.5 GHz) of VY Canis Majoris (VY CMa) and IRC + 10216 has been conducted to compare the chemistries of oxygen- and carbon-rich circumstellar envelopes. This study was carried out using the Submillimeter Telescope of the Arizona Radio Observatory with a new Atacama Large Millimeter Array type receiver. This survey is the first to chemically characterize an O-rich circumstellar shell at millimeter wavelengths. In VY CMa, 128 emission features were detected arising from 18 different molecules; and in IRC + 10216, 720 lines were observed, assigned to 32 different species. The 1 mm spectrum of VY CMa is dominated by SO(2) and SiS; in IRC + 10216, C(4)H and SiC(2) are the most recurrent species. Ten molecules were common to both sources: CO, SiS, SiO, CS, CN, HCN, HNC, NaCl, PN, and HCO(+). Sulfur plays an important role in VY CMa, but saturated/unsaturated carbon dominates the molecular content of IRC + 10216, producing CH(2)NH, for example. Although the molecular complexity of IRC + 10216 is greater, VY CMa supports a unique "inorganic" chemistry leading to the oxides PO, AlO, and AlOH. Only diatomic and triatomic compounds were observed in VY CMa, while species with four or more atoms are common in IRC + 10216, reflecting carbon's ability to form multiple strong bonds, unlike oxygen. In VY CMa, a new water maser (nu(2) = 2) has been found, as well as vibrationally excited NaCl. Toward IRC + 10216, vibrationally excited CCH was detected for the first time. C1 [Tenenbaum, E. D.; Dodd, J. L.; Woolf, N. J.; Ziurys, L. M.] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Tenenbaum, E. D.; Dodd, J. L.; Woolf, N. J.; Ziurys, L. M.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Tenenbaum, E. D.; Dodd, J. L.; Ziurys, L. M.] Univ Arizona, Dept Chem, Tucson, AZ 85721 USA. [Milam, S. N.] NASA, Goddard Space Flight Ctr, Astrochem Lab, Greenbelt, MD 20771 USA. [Ziurys, L. M.] Arizona Radio Observ, Tucson, AZ 85721 USA. RP Tenenbaum, ED (reprint author), Univ Arizona, Dept Astron, 933 N Cherry Ave, Tucson, AZ 85721 USA. EM tenenbaum@strw.leidenuniv.nl; jldodd@email.arizona.edu; Stefanie.N.Milam@nasa.gov; nwoolf@as.arizona.edu; lziurys@email.arizona.edu RI Milam, Stefanie/D-1092-2012 OI Milam, Stefanie/0000-0001-7694-4129 FU NSF [AST-06-07803, AST-09-06534] FX This research is supported by NSF grant AST-06-07803 and AST-09-06534. E. D. T. acknowledges support from an NSF graduate research fellowship. NR 47 TC 24 Z9 24 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 1 PY 2010 VL 720 IS 1 BP L102 EP L107 DI 10.1088/2041-8205/720/1/L102 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 647HW UT WOS:000281610100021 ER PT J AU Hammer, D Hornschemeier, AE Mobasher, B Miller, N Smith, R Arnouts, S Milliard, B Jenkins, L AF Hammer, D. Hornschemeier, A. E. Mobasher, B. Miller, N. Smith, R. Arnouts, S. Milliard, B. Jenkins, L. TI DEEP GALEX OBSERVATIONS OF THE COMA CLUSTER: SOURCE CATALOG AND GALAXY COUNTS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; galaxies: clusters: individual (Coma); galaxies: statistics; techniques: photometric; ultraviolet: galaxies ID DIGITAL SKY SURVEY; ULTRAVIOLET LUMINOSITY FUNCTION; HUBBLE-SPACE-TELESCOPE; STAR-FORMING GALAXIES; ELLIPTIC GALAXIES; STELLAR POPULATIONS; NEARBY CLUSTERS; LOCAL UNIVERSE; NUMBER COUNTS; DATA RELEASE AB We present a source catalog from a deep 26 ks Galaxy Evolution Explorer (GALEX) observation of the Coma cluster in the far-UV (FUV; 1530 angstrom) and near-UV (NUV; 2310 angstrom) wavebands. The observed field is centered similar to 0.degrees 9 (1.6 Mpc) southwest of the Coma core in a well-studied region of the cluster known as "Coma-3." The entire field is located within the apparent virial radius of the Coma cluster, and has optical photometric coverage with Sloan Digital Sky Survey (SDSS) and deep spectroscopic coverage to r similar to 21. We detect GALEX sources to NUV = 24.5 and FUV = 25.0, which corresponds to a star formation rate of similar to 10(-3) M(circle dot)yr(-1) for galaxies at the distance of Coma. We have assembled a catalog of 9700 galaxies with GALEX and SDSS photometry, including 242 spectroscopically confirmed Coma member galaxies that span a large range of galaxy types from giant spirals and elliptical galaxies to dwarf irregular and early-type galaxies. The full multi-wavelength catalog (cluster plus background galaxies) is similar to 80% complete to NUV = 23 and FUV = 23.5. The GALEX images presented here are very deep and include detections of many resolved cluster members superposed on a dense field of unresolved background galaxies. This required a two-fold approach to generating a source catalog: we used a Bayesian deblending algorithm to measure faint and compact sources (using SDSS coordinates as position prior), and used the GALEX pipeline catalog for bright and/or extended objects. We performed simulations to assess the importance of systematic effects (e.g., object blends, source confusion, Eddington Bias) that influence the source detection and photometry when using both methods. The Bayesian deblending method roughly doubles the number of source detections and provides reliable photometry to a few magnitudes deeper than the GALEX pipeline catalog. This method is free from source confusion over the UV magnitude range studied here; we estimate that the GALEX pipeline catalogs are confusion limited at NUV similar to 23 and FUV similar to 24. We have measured the UV field galaxy counts using our catalog and report a similar to 50% (30%) excess of counts across FUV = 22-23.5 (NUV = 21.5-23) relative to other GALEX studies. Our number counts are a better match to deeper UV galaxy counts measured with Hubble Space Telescope. C1 [Hammer, D.; Hornschemeier, A. E.; Miller, N.; Jenkins, L.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Hammer, D.; Hornschemeier, A. E.; Jenkins, L.] NASA, Goddard Space Flight Ctr, Lab Xray Astrophys, Greenbelt, MD 20771 USA. [Mobasher, B.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Miller, N.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Smith, R.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Arnouts, S.] Canada France Hawaii Telescope Corp, Kamuela, HI 96743 USA. [Milliard, B.] Lab Astrophys Marseille, F-13376 Marseille 12, France. RP Hammer, D (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. OI Jenkins, Leigh/0000-0001-9464-0719 FU GALEX [05-GALEX05-0046]; Alfred P. Sloan Foundation; NASA; NSF; DoE; Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX We thank Antara Basu-Zych for commenting on a draft of this paper, Elysse Voyer for sharing new results, Panayiotis Tzanavaris and Bret Lehmer for useful science discussion, and Eric Cardiff for providing helpful language translations. This research was supported by the GALEX Cycle 2 grant 05-GALEX05-0046 (PI: Hornschemeier). GALEX is a NASA Small Explorer, developed in cooperation with the Centre National d'Etudes Spatiales of France and the Korean Ministry of Science and Technology. Funding for the creation and distribution of the SDSS Archive has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, NASA, the NSF, DoE, Monbukagakusho, Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/. This study made use of the NASA Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory (Cal Tech), under contract with NASA. NR 76 TC 9 Z9 9 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD SEP PY 2010 VL 190 IS 1 BP 43 EP 57 DI 10.1088/0067-0049/190/1/43 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654WN UT WOS:000282201900002 ER PT J AU Kirkpatrick, JD Looper, DL Burgasser, AJ Schurr, SD Cutri, RM Cushing, MC Cruz, KL Sweet, AC Knapp, GR Barman, TS Bochanski, JJ Roellig, TL McLean, IS McGovern, MR Rice, EL AF Kirkpatrick, J. Davy Looper, Dagny L. Burgasser, Adam J. Schurr, Steven D. Cutri, Roc M. Cushing, Michael C. Cruz, Kelle L. Sweet, Anne C. Knapp, Gillian R. Barman, Travis S. Bochanski, John J. Roellig, Thomas L. McLean, Ian S. McGovern, Mark R. Rice, Emily L. TI DISCOVERIES FROM A NEAR-INFRARED PROPER MOTION SURVEY USING MULTI-EPOCH TWO MICRON ALL-SKY SURVEY DATA SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE brown dwarfs; infrared: stars; proper motions; solar neighborhood; stars: late-type ID KECK-II-TELESCOPE; LOW-MASS STARS; SPITZER-SPACE-TELESCOPE; SPECTRAL TYPE-L; T-DWARF BINARY; FIELD L-DWARFS; BLUE L DWARF; BROWN DWARF; L-SUBDWARF; OPTICAL SPECTROSCOPY AB We have conducted a 4030 deg(2) near-infrared proper motion survey using multi-epoch data from the Two Micron All-Sky Survey (2MASS). We find 2778 proper motion candidates, 647 of which are not listed in SIMBAD. After comparison to Digitized Sky Survey images, we find that 107 of our proper motion candidates lack counterparts at B, R, and I bands and are thus 2MASS-only detections. We present results of spectroscopic follow-up of 188 targets that include the infrared-only sources along with selected optical-counterpart sources with faint reduced proper motions or interesting colors. We also establish a set of near-infrared spectroscopic standards with which to anchor near-infrared classifications for our objects. Among the discoveries are six young field brown dwarfs, five "red L" dwarfs, three L-type subdwarfs, twelve M-type subdwarfs, eight "blue L" dwarfs, and several T dwarfs. We further refine the definitions of these exotic classes to aid future identification of similar objects. We examine their kinematics and find that both the "blue L" and "red L" dwarfs appear to be drawn from a relatively old population. This survey provides a glimpse of the kinds of research that will be possible through time-domain infrared projects such as the UKIDSS Large Area Survey, various VISTA surveys, and WISE, and also through z- or y-band enabled, multi-epoch surveys such as Pan-STARRS and LSST. C1 [Kirkpatrick, J. Davy; Cutri, Roc M.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Looper, Dagny L.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Burgasser, Adam J.] Univ Calif San Diego, Ctr Astrophys & Space Sci, San Diego, CA 92093 USA. [Schurr, Steven D.] CALTECH, Planck Sci Ctr, Pasadena, CA 91125 USA. [Cushing, Michael C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cruz, Kelle L.] Hunter Coll, Dept Phys & Astron, New York, NY 10065 USA. [Sweet, Anne C.] British Consulate, San Francisco, CA 94104 USA. [Knapp, Gillian R.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Barman, Travis S.] Lowell Observ, Flagstaff, AZ 86001 USA. [Bochanski, John J.] MIT, Cambridge, MA 02139 USA. [Roellig, Thomas L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [McLean, Ian S.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [McGovern, Mark R.] Antelope Valley Coll, Lancaster, CA 93536 USA. [Rice, Emily L.] Amer Museum Nat Hist, New York, NY 10024 USA. RP Kirkpatrick, JD (reprint author), CALTECH, Ctr Infrared Proc & Anal, MS 100-22, Pasadena, CA 91125 USA. EM davy@ipac.caltech.edu RI Rice, Emily/G-4446-2013 OI Rice, Emily/0000-0002-3252-5886 FU U.S. Government [NAG W- 2166]; National Aeronautics and Space Administration; National Science Foundation; NASA FX We thank John Stauffer and Maria Morales- Calderon for giving us some telescope time in exchange for instrument expertise on 2005 December 9 (UT) at Keck- II. We thank Lee Rottler for assistance in installing and troubleshooting various science software packages in support of this paper. We thank Francesca Colonnese for help with intermediate versions of the tables for the 1X- 6X survey and Rob Simcoe for taking some of the Magellan- Clay observations. We are indebted to the support staff at each of the observatories we used; their expertise was instrumental in making this survey a success. We acknowledge use of The Digitized Sky Surveys, which were produced at the Space Telescope Science Institute under U.S. Government grant NAG W- 2166. The images of these surveys are based on photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain and the UK Schmidt Telescope. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/ California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has made use of the NASA/ IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Our research has benefitted from the M, L, and T dwarf compendium housed at DwarfArchives. org, whose server was funded by a NASA Small Research Grant, administered by the American Astronomical Society. We are also indebted to the SIMBAD database, operated at CDS, Strasbourg, France. We further recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 107 TC 102 Z9 102 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD SEP PY 2010 VL 190 IS 1 BP 100 EP 146 DI 10.1088/0067-0049/190/1/100 PG 47 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 654WN UT WOS:000282201900005 ER PT J AU Peterson, H Bailey, M Hallett, J AF Peterson, Harold Bailey, Matthew Hallett, John TI Ice particle growth under conditions of the upper troposphere SO ATMOSPHERIC RESEARCH LA English DT Article DE Ice crystal growth; Layer growth; Laboratory ice study ID CRYSTALS; NUCLEATION; HABIT AB Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 degrees C and -70 degrees C under ice supersaturation up to 100% (200% relative humidity) at air pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 pm, leading to growth in the prism plane by passing of successive layers conveniently viewed by time-lapse video. (C) 2010 Elsevier B.V. All rights reserved. C1 [Peterson, Harold] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Bailey, Matthew; Hallett, John] Univ Nevada, Desert Res Inst, Reno, NV 89506 USA. RP Peterson, H (reprint author), NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. EM harold.peterson@nasa.gov FU NSF [ATM-0224865]; NASA FX This research was supported by NSF grant ATM-0224865, Physical and Dynamical Meteorology Program, and by an appointment to the NASA Postdoctoral Program at the Marshall Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 9 TC 2 Z9 2 U1 1 U2 5 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0169-8095 J9 ATMOS RES JI Atmos. Res. PD SEP PY 2010 VL 97 IS 4 SI SI BP 446 EP 449 DI 10.1016/j.atmosres.2010.05.013 PG 4 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 653BZ UT WOS:000282060000006 ER PT J AU Stenger, MB Brown, AK Lee, SMC Locke, JP Platts, SH AF Stenger, Mtchael B. Brown, Angela K. Lee, Stuart M. C. Locke, James P. Platts, Steven H. TI Gradient Compression Garments as a Countermeasure to Post-Spaceflight Orthostatic Intolerance SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Article DE space shuttle; astronauts; presyncope; tilt test; orthostatic hypotension ID SHORT-DURATION SPACEFLIGHT; HYPOTENSION; PERFORMANCE; ASTRONAUTS; SUIT AB STENGER MB, BROWN AK, LEE SMC, LOCKE JP, PLATTS SH. Gradient compression garments as a countermeasure to post-spaceflight orthostatic intolerance. Aviat Space Environ Med 2010; 81:883-7. Introduction: Post-spaceflight orthostatic intolerance affects 30% of short-duration and 80% of long-duration crewmembers. While the current NASA antigravity suit is effective during Space Shuttle re-entry, it is not designed to be worn postflight and has several drawbacks. The purpose of this study was to evaluate the use of commercially available, thigh-high, gradient compression garments to prevent post-spaceflight orthostatic intolerance. Methods: Before spaceflight, five male Shuttle astronauts were fitted for compression garments. Postflight stand time, blood pressure, heart rate, stroke volume, cardiac output, and peripheral resistance during 10-min, 80 degrees head-up tilt test within 4 h of landing in these astronauts were retrospectively compared to a group of nine male astronauts not wearing the compression garments. Results: On landing clay, three of nine non-countermeasure astronauts developed presyncopal symptoms and could not complete the test, while no countermeasure subjects became presyncopal. Compared to the non-countermeasure subjects, the countermeasure subjects had higher systolic blood pressure (116 +/- 3 vs. 134 +/- 2 mmHg), stroke volume (42 +/- 5 vs. 57 +/- 6 ml), and cardiac output (3.1 +/- 0.3 vs. 4.6 +/- 0.4 L). Heart rate was not different between groups. Conclusions: In this small pilot study, the rate of pre-syncope in the non-countermeasure group was similar to that reported previously in subjects without a compression garment. In contrast, thigh-high graded compression garments mitigated the symptoms of orthostatic intolerance by improving stroke volume, cardiac output, and systolic blood pressure responses to standing. C1 [Stenger, Mtchael B.; Brown, Angela K.; Lee, Stuart M. C.; Locke, James P.; Platts, Steven H.] NASA, Lyndon B Johnson Space Ctr, Wyle Integrated Sci & Engn Grp, Houston, TX 77058 USA. RP Stenger, MB (reprint author), NASA, Lyndon B Johnson Space Ctr, Wyle Integrated Sci & Engn Grp, 1290 Hercules Dr, Houston, TX 77058 USA. EM michael.b.stenger@nasa.gov NR 16 TC 15 Z9 21 U1 1 U2 2 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD SEP PY 2010 VL 81 IS 9 BP 883 EP 887 DI 10.3357/ASEM.2781.2010 PG 5 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA 643BA UT WOS:000281266300011 PM 20824997 ER PT J AU Conde, DA Colchero, F Zarza, H Christensen, NL Sexton, JO Manterola, C Chavez, C Rivera, A Azuara, D Ceballos, G AF Conde, Dalia A. Colchero, Fernando Zarza, Heliot Christensen, Norman L., Jr. Sexton, Joseph O. Manterola, Carlos Chavez, Cuauhtemoc Rivera, Antonio Azuara, Danae Ceballos, Gerardo TI Sex matters: Modeling male and female habitat differences for jaguar conservation SO BIOLOGICAL CONSERVATION LA English DT Article DE Generalized linear model; Use-availability habitat model; Land cover; Mayan Forest; Large carnivore conservation; Gender; Roads; Tropical forest ID RESOURCE SELECTION FUNCTIONS; LARGE CARNIVORES; PANTHERA-ONCA; HOME-RANGE; LANDSCAPE; LIVESTOCK; ECOLOGY; PREDICTION; AGREEMENT; MAMMALS AB Competition for mates, cub rearing, and other behaviors differ between males and females in large carnivores. Although these differences can be reflected in patterns of habitat use, gender has rarely been incorporated into habitat models. We evaluated differences in habitat use between male and female jaguars in the Mayan Forest of the Yucatan Peninsula by modeling occupancy as a function of land cover type, distance to roads, and sex. Nested models were fitted to high-spatiotemporal resolution satellite (GPS) telemetry, controlled for temporal autocorrelation, and eliminated selection bias of pseudo-absences using a semi-non-parametric bootstrap. Although both male and female jaguars prefer tall forest, short forest was also preferred by females but avoided by males. Whereas females significantly avoided roads, males didn't and ventured into low-intensity cattle ranching and agriculture. Females' preference for intact forests and against roads led to their habitat being fragmented to a greater degree than that of males. Models that ignored sexual differences failed to capture the effect of roads and agriculture on jaguar habitat use, blurred the distinction of use between short and tall forest, and underestimated fragmentation of female jaguar habitat; but incorporating these differences increased precision of habitat maps and allowed the identification of potential jaguar-human conflict areas associated with male's use of cattle and agricultural lands. Specifying sex differences increases the power of habitat models to understand landscape occupancy by large carnivores, and so greater attention should be paid to these differences in their modeling and conservation. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Conde, Dalia A.; Colchero, Fernando] Max Planck Inst Demog Res, D-18057 Rostock, Germany. [Conde, Dalia A.; Christensen, Norman L., Jr.] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. [Conde, Dalia A.; Colchero, Fernando; Rivera, Antonio] Jaguar Conservancy AC, Mexico City, DF, Mexico. [Zarza, Heliot; Chavez, Cuauhtemoc; Ceballos, Gerardo] Univ Nacl Autonoma Mexico, Inst Ecol, Mexico City 04510, DF, Mexico. [Sexton, Joseph O.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Manterola, Carlos] Comis Nacl Areas Na Protegidas, Mexico City, DF, Mexico. [Azuara, Danae] Anima Efferus AC, Mexico City, DF, Mexico. RP Conde, DA (reprint author), Max Planck Inst Demog Res, D-18057 Rostock, Germany. EM Conde@demog.mpdr.de OI Colchero, Fernando/0000-0001-8613-4568; Ceballos, Gerardo/0000-0001-8374-2656 FU CONABIO [BJ006]; Safari Club International; CONACYT; SEMARNAT-CONACYT; Corredor Biologico Mesoamericano Mexico; L. Hubbard Exploration Fund; National Fish and Wildlife Foundation FX We thank Defensores de la Naturaleza, the Ejido Caobas, Fundacion ARCAS, Propeten, and WCS-Guatemala for their support with fieldwork. We also are grateful with Song Qian and Dean Urban for important statistical advice. We thank Pedro Alvarez Icaza, Eugenia Pallares, Francisco Zavala, Lucrecia Masaya, Rodrigo Morales, Fernando Martinez, Ivonne Cassaigne, Maria Andrade, Gerardo Garcia, Roan Balas McNab, Victor Hugo Ramos and Sophie Calme for their invaluable support with logistics and regional data acquisition. We thank Alyson Van Raalte and Owen Jones and the anonymous reviewers for their comments on earlier versions of this manuscript. Financial support was provided by CONABIO (Grant# BJ006), Safari Club International, CONACYT, SEMARNAT-CONACYT, Corredor Biologico Mesoamericano Mexico, L. Hubbard Exploration Fund, Conservation International and the National Fish and Wildlife Foundation. We would like to specially thank the Walls family for supporting our project and to WINGS WORLD-QUEST for recognizing this effort. NR 51 TC 40 Z9 43 U1 10 U2 70 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0006-3207 J9 BIOL CONSERV JI Biol. Conserv. PD SEP PY 2010 VL 143 IS 9 BP 1980 EP 1988 DI 10.1016/j.biocon.2010.04.049 PG 9 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 641KW UT WOS:000281125400007 ER PT J AU Fromm, M Lindsey, DT Servranckx, R Yue, G Trickl, T Sica, R Doucet, P Godin-Beekmann, SE AF Fromm, Michael Lindsey, Daniel T. Servranckx, Rene Yue, Glenn Trickl, Thomas Sica, Robert Doucet, Paul Godin-Beekmann, Sophi E. TI THE UNTOLD STORY OF PYROCUMULONIMBUS SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID FOREST-FIRE SMOKE; EXPLOSIVE VOLCANIC-ERUPTIONS; POLAR STRATOSPHERIC CLOUDS; LIDAR OBSERVATIONS; EL-CHICHON; SAGE-II; PINATUBO ERUPTION; MOUNT-PINATUBO; BOREAL FOREST; AEROSOL CLOUD C1 [Fromm, Michael] USN, Res Lab, Washington, DC 20375 USA. [Lindsey, Daniel T.] NOAA, Ft Collins, CO USA. [Servranckx, Rene] Canadian Meteorol Ctr, Dorval, PQ, Canada. [Yue, Glenn] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Trickl, Thomas] IMK IFU, Karlsruher Inst Technol, Garmisch Partenkirchen, Germany. [Sica, Robert; Doucet, Paul] Univ Western Ontario, Dept Phys & Astron, London, ON, Canada. [Godin-Beekmann, Sophi E.] UPMC CNRS, Observat Spatiale, Lab Atmosphere, Paris, France. RP Fromm, M (reprint author), USN, Res Lab, Lab 4555 Overlook Ave,SW, Washington, DC 20375 USA. EM mike.fromm@nrl.navy.mil RI Trickl, Thomas/F-7331-2010; Garmisch-Pa, Ifu/H-9902-2014; Lindsey, Dan/F-5607-2010 OI Lindsey, Dan/0000-0002-0967-5683 FU Office of Naval Research FX Level-2 TOMS aerosol index data were provided by the NASA TOMS team. We thank Peter Englefield for Canada fire-location data, and Chuck McHugh for U. S. Forest Service fire data. We also thank Gian Paul Gobbi and the ISAC-CNR Rome group for Frascati lidar data, and Horst Jager for the Garmisch-Partenkirchen aerosol lidar data. The Haute Provence lidar data are from the Network for the Detection of Atmospheric Composition Change (NDACC) and are available online (www.ndacc.org). Radiosonde-derived data were accessed online (http://weather.uwyo.edu/upperair/sounding.html), as was the SPARC Data Center (www.sparc.sunysb.edu/html/hres.html). The authors gratefully acknowledge the NOAA/Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY Web site (www.arl.noaa.gov/ready.html) as well as NOAA's Comprehensive Large Array-Data Stewardship (CLASS; online at www.class.ncdc.noaa.gov/saa/products/welcome) for satellite data used in this publication. The Goddard Automailer interface was also used for trajectory calculations. Pat Kablick provided valuable help improving the manuscript. MDF was supported by NRL internal funding (from the Office of Naval Research). The views, opinions, and findings in this report are those of the authors, and should not be construed as an official NOAA and or U. S. Government position, policy, or decision. NR 76 TC 66 Z9 66 U1 1 U2 21 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD SEP PY 2010 VL 91 IS 9 BP 1193 EP 1209 DI 10.1175/2010BAMS3004.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 660XC UT WOS:000282678800003 ER PT J AU Winker, DM Pelon, J Coakley, JA Ackerman, SA Charlson, RJ Colarco, PR Flamant, P Fu, Q Hoff, RM Kittaka, C Kubar, TL Le Treut, H McCormick, MP Megie, G Poole, L Powell, K Trepte, C Vaughan, MA Wielicki, BA AF Winker, D. M. Pelon, J. Coakley, J. A., Jr. Ackerman, S. A. Charlson, R. J. Colarco, P. R. Flamant, P. Fu, Q. Hoff, R. M. Kittaka, C. Kubar, T. L. Le Treut, H. McCormick, M. P. Megie, G. Poole, L. Powell, K. Trepte, C. Vaughan, M. A. Wielicki, B. A. TI THE CALIPSO MISSION A Global 3D View of Aerosols and Clouds SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID GENERAL-CIRCULATION MODEL; SURFACE WIND-SPEED; OPTICAL-PROPERTIES; INITIAL ASSESSMENT; LIDAR MEASUREMENTS; RADIATION BUDGET; CLIMATE; SPACE; ICE; ALGORITHM C1 [Winker, D. M.; Pelon, J.; Trepte, C.; Vaughan, M. A.; Wielicki, B. A.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Pelon, J.; Megie, G.] Univ Paris 06, CNRS INSU, IPSL, LATMOS, Paris, France. [Coakley, J. A., Jr.] Oregon State Univ, Coll Ocean & Atmospher Sci, Corvallis, OR 97331 USA. [Ackerman, S. A.] Univ Wisconsin, Cooperat Inst Meteorol Satellite Studies, Madison, WI USA. [Charlson, R. J.; Fu, Q.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Colarco, P. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hoff, R. M.] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. [Flamant, P.] Ecole Polytech, IPSL, LMD, Palaiseau, France. [Kittaka, C.; Poole, L.] Sci Syst & Applicat Inc, Hampton, VA USA. [Kubar, T. L.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [McCormick, M. P.] Hampton Univ, Hampton, VA 23668 USA. [Le Treut, H.] Univ Paris 06, ENS, Ecole Polytech, CNRS INSU,IPSL,LMD, Paris, France. RP Winker, DM (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM david.m.winker@nasa.gov RI Ackerman, Steven/G-1640-2011; Hoff, Raymond/C-6747-2012; Colarco, Peter/D-8637-2012 OI Ackerman, Steven/0000-0002-4476-0269; Colarco, Peter/0000-0003-3525-1662 FU National Aeronautics and Space Administration; Centre National d'Etudes Spatiales; Centre National de la Recherche Scientifique/Institut National des Sciences de l'Univers FX This work was funded by the National Aeronautics and Space Administration, Centre National d'Etudes Spatiales, and Centre National de la Recherche Scientifique/Institut National des Sciences de l'Univers. We would like to acknowledge the support and successful cooperation of NASA and CNES in the development and operation of CALIPSO and the advocacy of Gerard Megie for the mission. We thank Bill Hunt and the team at Ball Aerospace for CALIOP and payload integration; the teams at SODERN and Thales Alenia Space for the IIR and platform integration, respectively; the operations teams at NASA and CNES; and the support of the ASDC and ICARE data centers, who all made essential contributions to the success of the CALIPSO mission. The work described in "The occurrence of marine stratus and stratocumulus" was carried out by T. Kubar in collaboration with D. E. Waliser and J.-L. F. Li at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We thank Brian Getzewitch for the analyses of cloud statistics presented here. Lastly, we would like to acknowledge Chieko Kittaka's many contributions to the CALIPSO team. She is sorely missed. NR 94 TC 262 Z9 265 U1 7 U2 54 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD SEP PY 2010 VL 91 IS 9 BP 1211 EP 1229 DI 10.1175/2010BAMS3009.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 660XC UT WOS:000282678800004 ER PT J AU Gottschalck, J Wheeler, M Weickmann, K Vitart, F Savage, N Lin, H Hendon, H Waliser, D Sperber, K Nakagawa, M Prestrelo, C Flatau, M Higgins, W AF Gottschalck, J. Wheeler, M. Weickmann, K. Vitart, F. Savage, N. Lin, H. Hendon, H. Waliser, D. Sperber, K. Nakagawa, M. Prestrelo, C. Flatau, M. Higgins, W. TI A FRAMEWORK FOR ASSESSING OPERATIONAL MADDEN-JULIAN OSCILLATION FORECASTS A CLIVAR MJO Working Group Project SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID TROPICAL INTRASEASONAL OSCILLATION; EXTREME PRECIPITATION EVENTS; ENSEMBLE PREDICTION SYSTEM; COUPLED EQUATORIAL WAVES; AMERICAN-MONSOON-SYSTEM; 1997-98 EL-NINO; CIRCULATION ANOMALIES; SUMMER MONSOON; SIMULATION DIAGNOSTICS; BREAK PHASES C1 [Gottschalck, J.] NOAA NCEP Climate Predict Ctr, Camp Springs, MD 20746 USA. [Wheeler, M.; Hendon, H.] Ctr Australian Weather & Climate Res, Melbourne, Vic, Australia. [Weickmann, K.] NOAA Earth Syst Res Lab, Boulder, CO USA. [Vitart, F.] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England. [Savage, N.] Met Off, Exeter, Devon, England. [Lin, H.] Environm Canada, Montreal, PQ, Canada. [Waliser, D.] NASA, Jet Prop Lab, Pasadena, CA USA. [Sperber, K.] Lawrence Livermore Natl Lab, Dept Energy, Livermore, CA USA. [Nakagawa, M.] Japan Meteorol Agcy, Tokyo, Japan. [Flatau, M.] USN, Res Lab, Monterey, CA USA. [Prestrelo, C.] Ctr Weather Forecasting & Climate Studies, Sao Paulo, Brazil. RP Gottschalck, J (reprint author), NOAA NCEP Climate Predict Ctr, 5200 Auth Rd, Camp Springs, MD 20746 USA. EM jon.gottschalck@noaa.gov RI Wheeler, Matthew/C-9038-2011; Prestrelo, Cristiano/I-5139-2015; Sperber, Kenneth/H-2333-2012; OI Wheeler, Matthew/0000-0002-9769-1973; Savage, Nicholas/0000-0001-9391-5100 FU U.S. CLIVAR, International CLIVAR; U.S. CLIVAR Office; U. S. Department of Energy, Office of Science [DE-AC52-07NA27344] FX The authors would like to thank the entire MJOWG (in alphabetical order)-Maria Flatau, Jon Gottschalck, Harry Hendon, Wayne Higgins, In-Sik Kang, Daehyun Kim, Hai Lin, Eric Maloney, Mitch Moncrief, Kathy Pegion, Nicholas Savage, Siegfried Schubert, Ken Sperber (cochair), Bill Stern, Augustin Vintzileos, Frederic Vitart, Duane Waliser (cochair), Bin Wang, Wanqui Wang, Klaus Weickmann, Matt Wheeler, and Chidong Zhang. The MJOWG wishes to acknowledge and thank U.S. CLIVAR, International CLIVAR, and the U.S. CLIVAR Office (specifically David Legler and Cathy Stephens) for supporting this working group and its activities. JG wishes to acknowledge and thank Kyong-Hwan Seo and Qin Zhang from Pusan National University Korea and NOAA/CPC respectively for their contributions to code development. KS was supported under the auspices of the U. S. Department of Energy, Office of Science, Climate Change Prediction Program by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. DW's contribution to this study was carried out on behalf of the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 71 TC 86 Z9 86 U1 0 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD SEP PY 2010 VL 91 IS 9 BP 1247 EP 1258 DI 10.1175/2010BAMS2816.1 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 660XC UT WOS:000282678800006 ER PT J AU Huberty, JM Kita, NT Kozdon, R Heck, PR Fournelle, JH Spicuzza, MJ Xu, HF Valley, JW AF Huberty, Jason M. Kita, Noriko T. Kozdon, Reinhard Heck, Philipp R. Fournelle, John H. Spicuzza, Michael J. Xu, Huifang Valley, John W. TI Crystal orientation effects in delta O-18 for magnetite and hematite by SIMS SO CHEMICAL GEOLOGY LA English DT Article DE Magnetite; Hematite; SIMS; Oxygen isotopes; EBSD; Crystal orientation effects ID OXYGEN-ISOTOPE RATIOS; ION MASS-SPECTROMETRY; CARBONACEOUS CHONDRITE; METAMORPHIC MAGNETITE; HIGH-PRECISION; IRON-FORMATION; MICROPROBE; HETEROGENEITY; FRACTIONATION; BADDELEYITE AB In situ high precision analysis of oxygen isotope ratios (delta O-18) by secondary ion mass spectrometry (SIMS) reveals that instrumental bias in delta O-18 for magnetite varies due to crystal orientation effects. Multiple analyses of delta O-18 have an average precision of +/- 0.4%. (2SD) in single grains of magnetite, close to +/- 0.3%., that obtained for multiple grains of UWQ-1, a homogeneous quartz standard. In contrast, the average precision is five to ten times worse, +/- 2-3%. (2SD), from grain-to-grain of magnetite due to variation in instrumental bias with crystal orientation. Electron backscatter diffraction shows that individual grains of magnetite are single crystals and that crystal orientation varies randomly from grain-to-grain. The crystal orientation for each magnetite grain is plotted relative to the incident angle of the SIMS primary Cs+ beam. High values of delta O-18 are measured when the Cs+ beam is parallel to < uv0 >, from [110] to [100], preferred channeling and focusing directions for magnetite. Routine delta O-18 analysis at WiscSIMS utilizes a Gaussian focused Cs+ primary beam (deep-pit mode) at primary and secondary voltages of + 10 kV and -10 kV respectively (total impact energy 20 key). Four analytical experiments were conducted in attempts to improve the grain-to-grain precision in measured delta O-18 for magnetite: (1) applying an energy offset of 50 eV, (2) using a Kohler illuminated beam (shallow-pit mode), (3) reducing the total impact energy, and (4) varying the primary and secondary accelerating voltages. The best results were obtained in experiment (4) at primary/secondary accelerating voltages of +3 kV/-10 kV respectively with an incident Cs+ beam angle of 14 degrees. The grain-to-grain precision in measured delta O-18 for magnetite improves from +/- 2.9%. to +/- 0.8%. (2SD) at + 10 kV/-10 kV and +3 kV/-10 kV analysis respectively, while precision in single grains is +/- 0.4%. for both. Instrumental bias in delta O-18 also varies with crystal orientation for hematite at similar levels as is seen for magnetite. The grain-to-grain precision in measured delta O-18 for hematite improves from +/- 2.1%. to +/- 1.0%. (2SD) at + 10 kV/-10 kV and +3 kV/-10 kV analysis respectively, while precision in single grains is +/- 0.3%. (2SD) for both. Importantly, crystal orientation effects have not been identified at levels of +/- 0.3%. for delta O-18 in silicates or other minerals analyzed by WiscSIMS though many minerals remain to be examined. (C) 2010 Elsevier B.V. All rights reserved. C1 [Huberty, Jason M.] Univ Wisconsin, WiscSIMS, Madison, WI 53706 USA. Univ Wisconsin, Dept Geosci, NASA Astrobiol Inst, Madison, WI 53706 USA. RP Huberty, JM (reprint author), Univ Wisconsin, WiscSIMS, 1215 W Dayton St, Madison, WI 53706 USA. EM jason@geology.wisc.edu RI Valley, John/B-3466-2011; Heck, Philipp/C-6092-2012; Kozdon, Reinhard/J-9468-2014; Kita, Noriko/H-8035-2016 OI Valley, John/0000-0003-3530-2722; Kozdon, Reinhard/0000-0001-6347-456X; Kita, Noriko/0000-0002-0204-0765 FU NASA Astrobiology Institute; NSF-EAR [0509639, 0838058, 0319230, 0516725, 0744079]; DOE [93ER 14389] FX We thank Brian Hess for sample preparation, Jim Kern for technical assistance and Takayuki Ushikubo, Ian Lyon, John Saxton, and Paul Voyles for many fruitful discussions. Yuichi Morishita at the Geological Survey of Japan provided sample M34572-A, Brian Beard provided sample 08-BI-12, and the UW-Madison Geology Museum provided sample 09H1. Reviews by Hisayoshi Yurimoto and John Ferry substantially improved this paper. This study was funded by the NASA Astrobiology Institute, NSF-EAR (0509639, 0838058) and DOE (93ER 14389). WiscSIMS is partly supported by NSF-EAR (0319230, 0516725, 0744079). NR 48 TC 24 Z9 25 U1 0 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 J9 CHEM GEOL JI Chem. Geol. PD SEP PY 2010 VL 276 IS 3-4 BP 269 EP 283 DI 10.1016/j.chemgeo.2010.06.012 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 653QW UT WOS:000282112800010 ER PT J AU McAllister, S Fernandez-Pello, C Urban, D Ruff, G AF McAllister, Sara Fernandez-Pello, Carlos Urban, David Ruff, Gary TI The combined effect of pressure and oxygen concentration on piloted ignition of a solid combustible SO COMBUSTION AND FLAME LA English DT Article DE Piloted ignition; Solid ignition; Hypobaric; Reduced pressure; Material flammability; Elevated oxygen ID CRITICAL HEAT; FLAME SPREAD; RATES; ATMOSPHERES; DEGRADATION; EXTINCTION; PYROLYSIS AB There are a number of situations when fires may occur at low pressures and oxygen concentrations that are different than standard atmospheric conditions, such as in buildings at high elevation, airplanes, and spacecraft. The flammability of materials may be affected by these environmental conditions. Since ignition delay is a measure of material flammability and directly influences whether a fire will occur, experiments were conducted to assess the variation of the ignition delay of PMMA in sub-atmospheric pressures and elevated oxygen concentrations. Three sets of experiments were performed at different pressures and in air, in an atmosphere having 30% oxygen/70% nitrogen by volume, and in a "normoxic" atmosphere (constant oxygen partial pressure). It was observed that as the pressure is reduced, the ignition time decreased, reached a minimum, and then increased until ignition did not occur. Several mechanisms were considered to explain the "U-shaped" dependence of ignition time on pressure, and three regimes were identified each having a different controlling mechanism: the transport regime where the ignition delay is controlled by changes in convection heat losses and critical mass flux for ignition; the chemical kinetic regime where the ignition delay is controlled by gas-phase chemical kinetics; and an overlap region where both the transport and chemistry effects are seen. The results provide further insight about the effect of the environmental conditions on the flammability of materials, and guidance about fire safety in low pressure environments. Published by Elsevier Inc. on behalf of The Combustion Institute. C1 [McAllister, Sara; Fernandez-Pello, Carlos] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Urban, David; Ruff, Gary] NASA, John H Glenn Res Ctr, Cleveland, OH 44135 USA. RP McAllister, S (reprint author), US Forest Serv, USDA, Rocky Mt Res Ctr, Missoula Fire Sci Lab, 5775 US Highway 10 W, Missoula, MT 59808 USA. EM smcallister@fs.fed.us FU NASA [NNC-05GA02G, NNX-08BA77A] FX The authors want to thank Sonia Fereres, Sarah Scott, Amelia Ramirez-Correa, Romina Rodriguez, Andres Osorio, Colin Silla, and Jesus Tapia for their assistance running the experiments and Chris Lautenberger for his insights. This work was supported by NASA Grants NNC-05GA02G and NNX-08BA77A. NR 35 TC 17 Z9 17 U1 2 U2 11 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD SEP PY 2010 VL 157 IS 9 BP 1753 EP 1759 DI 10.1016/j.combustflame.2010.02.022 PG 7 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 630IX UT WOS:000280267700012 ER PT J AU Lee, D Tippur, H Bogert, P AF Lee, Dongyeon Tippur, Hareesh Bogert, Phillip TI Quasi-static and dynamic fracture of graphite/epoxy composites: An optical study of loading-rate effects SO COMPOSITES PART B-ENGINEERING LA English DT Article DE Polymer-matrix Composites (PMCs); Fracture; Impact behavior; Mechanical testing digital image correlation ID DIGITAL IMAGE CORRELATION; STRESS INTENSITY FACTOR; FUNCTIONALLY GRADED MATERIALS; INTERSONIC CRACK-GROWTH; I INTERLAMINAR FRACTURE; HIGH-SPEED PHOTOGRAPHY; CARBON/EPOXY COMPOSITE; FIELD-MEASUREMENTS; STRAIN-GAUGES; TOUGHNESS AB Strain-rate effects on fracture behavior of unidirectional composite materials are studied. Single-edge notched multi-layered unidirectional graphite composites (T800/3900-2) are investigated to examine fracture responses under static and dynamic loading conditions using a digital speckle correlation method. The fracture parameters for growing cracks are extracted as a function of fiber orientation. A 20 digital image correlation (DIC) method is used to obtain time-resolved full-field in-plane surface displacements when specimens are subjected to quasi-static and impact loading. Stress intensity factor and crack extension histories for pure mode-I and mixed mode cases are extracted from the full-field displacements. When compared to the dynamic stress intensity factors at crack initiation, the static values are found to be consistently lower. The stress intensity factor histories exhibit a monotonic reduction under dynamic loading conditions whereas an increasing trend is seen after crack initiation under quasi-static loading cases. This is potentially due to dominant crack face fiber bridging effects in the latter cases. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Lee, Dongyeon; Tippur, Hareesh] Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA. [Bogert, Phillip] NASA, Langley Res Ctr, Hampton, VA USA. RP Tippur, H (reprint author), Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA. EM htippur@eng.auburn.edu FU NASA-LaRC [NNX07AC64A] FX This research was sponsored by the NASA-LaRC under Cooperative Agreement Number NNX07AC64A. NR 45 TC 12 Z9 13 U1 2 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-8368 J9 COMPOS PART B-ENG JI Compos. Pt. B-Eng. PD SEP PY 2010 VL 41 IS 6 BP 462 EP 474 DI 10.1016/j.compositesb.2010.05.007 PG 13 WC Engineering, Multidisciplinary; Materials Science, Composites SC Engineering; Materials Science GA 638OW UT WOS:000280905300005 ER PT J AU Yuan, SW Rodriquez, J AF Yuan, Sidney W. Rodriquez, Jose TI 2009 Space Cryogenic Workshop SO CRYOGENICS LA English DT Editorial Material C1 [Yuan, Sidney W.] Aerosp Corp, Thermal Management Technol, El Segundo, CA 90245 USA. [Rodriquez, Jose] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. RP Yuan, SW (reprint author), Aerosp Corp, Thermal Management Technol, El Segundo, CA 90245 USA. EM Sidney.W.Yuan@aero.org; Jose.I.Rodriguez@jpl.nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 J9 CRYOGENICS JI Cryogenics PD SEP PY 2010 VL 50 IS 9 BP 487 EP 487 DI 10.1016/j.cryogenics.2010.03.003 PG 1 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA 651RI UT WOS:000281944400001 ER PT J AU Fujimoto, R Mitsuda, K Yamasaki, N Takei, Y Tsujimoto, M Sugita, H Sato, Y Shinozaki, K Ohashi, T Ishisaki, Y Ezoe, Y Murakami, M Kitamoto, S Murakami, H Tamagawa, T Kawaharada, M Yamaguchi, H Sato, K Kanao, K Yoshida, S DiPirro, M Shirron, P Sneiderman, G Kelley, RL Porter, FS Kilbourne, CA Crow, J Mattern, A Kashani, A McCammon, D den Herder, JW AF Fujimoto, Ryuichi Mitsuda, Kazuhisa Yamasaki, Noriko Takei, Yoh Tsujimoto, Masahiro Sugita, Hiroyuki Sato, Yoichi Shinozaki, Keisuke Ohashi, Takaya Ishisaki, Yoshitaka Ezoe, Yuichiro Murakami, Masahide Kitamoto, Shunji Murakami, Hiroshi Tamagawa, Toru Kawaharada, Madoka Yamaguchi, Hiroya Sato, Kosuke Kanao, Kenichi Yoshida, Seiji DiPirro, Mike Shirron, Peter Sneiderman, Gary Kelley, Richard L. Porter, F. Scott Kilbourne, Caroline A. Crow, John Mattern, Andrea Kashani, Ali McCammon, Dan den Herder, Jan-Willem TI Cooling system for the soft X-ray spectrometer onboard Astro-H SO CRYOGENICS LA English DT Article; Proceedings Paper CT 23rd Space Cryogenics Workshop (SCW) CY JUN 23-25, 2009 CL Arcadia, CA SP NASA Jet Propuls Lab, Aerosp Corp DE Space cryogenics; Adiabatic demagnetization; He II systems; Joule-Thomson coolers; Stirling ID SUZAKU; DEWAR AB The Soft X-ray Spectrometer (SXS) is a cryogenic high resolution X-ray spectrometer onboard the X-ray astronomy satellite Astro-H which will be launched in 2014. The detector array is cooled down to 50 mK using an adiabatic demagnetization refrigerator (ADR). The cooling chain from the room temperature to the ADR heat-sink is composed of superfluid liquid He, a Joule-Thomson cryocooler, and double-stage Stirling cryocoolers. It is designed to keep 301 of liquid He for more than 5 years in the normal case, and longer than 3 years even if one of the cryocoolers fails. Cryogen-free operation is also possible in the normal case. It is fully redundant from the room temperature to the ADR heat-sink. (c) 2010 Elsevier Ltd. All rights reserved. C1 [Fujimoto, Ryuichi; Sato, Kosuke] Kanazawa Univ, Fac Math & Phys, Kanazawa, Ishikawa 9201192, Japan. [Fujimoto, Ryuichi; Mitsuda, Kazuhisa; Yamasaki, Noriko; Takei, Yoh; Tsujimoto, Masahiro] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Sugita, Hiroyuki; Sato, Yoichi; Shinozaki, Keisuke] JAXA, Aerosp Res & Dev Directorate, Tsukuba, Ibaraki 3058505, Japan. [Ohashi, Takaya; Ishisaki, Yoshitaka; Ezoe, Yuichiro] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Murakami, Masahide] Univ Tsukuba, Inst Engn Mech & Syst, Ibaraki 3058573, Japan. [Kitamoto, Shunji; Murakami, Hiroshi] Rikkyo Univ, Toshima Ku, Tokyo 1718501, Japan. [Tamagawa, Toru; Kawaharada, Madoka; Yamaguchi, Hiroya] RIKEN, Wako, Saitama 3510198, Japan. [Kanao, Kenichi; Yoshida, Seiji] Sumitomo Heavy Ind Ltd, Niihama, Ehime 7928588, Japan. [DiPirro, Mike; Shirron, Peter; Sneiderman, Gary; Kelley, Richard L.; Porter, F. Scott; Kilbourne, Caroline A.; Crow, John; Mattern, Andrea] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kashani, Ali] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Kashani, Ali] Atlas Sci, San Jose, CA 95120 USA. [McCammon, Dan] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [den Herder, Jan-Willem] SRON, Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands. RP Fujimoto, R (reprint author), Kanazawa Univ, Fac Math & Phys, Kanazawa, Ishikawa 9201192, Japan. EM fujimoto@se.kanazawa-u.ac.jp RI Mitsuda, Kazuhisa/C-2649-2008; Yamasaki, Noriko/C-2252-2008; Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012; XRAY, SUZAKU/A-1808-2009 OI Porter, Frederick/0000-0002-6374-1119; NR 17 TC 12 Z9 14 U1 2 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD SEP PY 2010 VL 50 IS 9 BP 488 EP 493 DI 10.1016/j.cryogenics.2010.02.004 PG 6 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA 651RI UT WOS:000281944400002 ER PT J AU Shirron, P Kimball, M Wegel, D Miller, F AF Shirron, Peter Kimball, Mark Wegel, Donald Miller, Franklin TI ADR design for the Soft X-ray Spectrometer instrument on the Astro-H mission SO CRYOGENICS LA English DT Article; Proceedings Paper CT 23rd Space Cryogenics Workshop (SCW) CY JUN 23-25, 2009 CL Arcadia, CA SP NASA Jet Prop Lab, Aerosp Corp DE Adiabatic demagnetization refrigerator; Magnetic refrigeration; X-ray astronomy; Space missions AB In its instrument suite, the Japanese Astro-H mission will include the Soft X-ray Spectrometer (SXS), whose 36-pixel detector array of ultra-sensitive X-ray microcalorimeters will be cooled to 50 mK. This will be accomplished using a two-stage adiabatic demagnetization refrigerator (ADR). A complicating factor for its design is that the ADR will be integrated into a superfluid helium dewar at 1.3 K that will be coupled to a 1.8 K Joule-Thomson (JT) stage through a heat switch. When liquid helium is present, the coupling will be weak, and the JT stage will act primarily as a shield to reduce parasitic heat loads. When the liquid is depleted, the heat switch will couple more strongly so that the ADR can continue to operate using the JT stage as its heat sink. A two-stage ADR is the most mass efficient option and it has the operational flexibility to work well with a stored cryogen and a cryocooler. The ADR's design and operating modes are discussed, with emphasis on how they reflect the capabilities and limitations of the hybrid cryogenic system. Published by Elsevier Ltd. C1 [Shirron, Peter; Kimball, Mark; Wegel, Donald] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Miller, Franklin] Univ Wisconsin, Dept Mech Engn, Madison, WI 53715 USA. RP Shirron, P (reprint author), NASA, Goddard Space Flight Ctr, Code 552, Greenbelt, MD 20771 USA. EM peter.shirron@nasa.gov RI Miller, Franklin/S-3931-2016 OI Miller, Franklin/0000-0001-5942-1991 NR 6 TC 11 Z9 12 U1 2 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 J9 CRYOGENICS JI Cryogenics PD SEP PY 2010 VL 50 IS 9 BP 494 EP 499 DI 10.1016/j.cryogenics.2010.02.018 PG 6 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA 651RI UT WOS:000281944400003 ER PT J AU Ishikawa, K Ezoe, Y Yamaguchi, H Mitsuishi, I Yoshitake, H Mitsuda, K Fujimoto, R Ohashi, T Murakami, M Kanao, KI Yoshida, S Tsunematsu, S DiPirro, M Shirron, P AF Ishikawa, Kumi Ezoe, Yuichiro Yamaguchi, Hiroya Mitsuishi, Ikuyuki Yoshitake, Hiroshi Mitsuda, Kazuhisa Fujimoto, Ryuichi Ohashi, Takaya Murakami, Masahide Kanao, Ken-ichi Yoshida, Seiji Tsunematsu, Shoji DiPirro, Michael Shirron, Peter CA SXS Team TI Porous plug and superfluid helium film flow suppressor for the soft X-ray spectrometer onboard Astro-H SO CRYOGENICS LA English DT Article; Proceedings Paper CT 23rd Space Cryogenics Workshop (SCW) CY JUN 23-25, 2009 CL Arcadia, CA SP NASA Jet Prop Lab, Aerosp Corp DE X-ray microcalorimeter; Superfluid helium; Vent system AB Suppression of superfluid helium flow is critical for the Soft X-ray Spectrometer (SXS) onboard Astro-H, to achieve a life time of the liquid helium over 5 years. The superfluid film flow must be sufficiently small, compared to a nominal helium gas flow rate of the SXS (25 mu g/s). For this purpose, four devices composed of a porous plug, an orifice, a heat exchanger, and knife edge devices will be employed based on the experience of the X-ray microcalorimeter (XRS for X-Ray Spectrometer) onboard Suzaku. The porous plug is a phase separator of the liquid and gas helium. A potential film flow leaking from the porous plug is suppressed by the orifice. Almost all the remaining film flow evaporates at the heat exchanger. The knife edge devices stop the remaining film flow by using atomically sharp edges. In this paper, we describe the principle and design of these four devices. (c) 2010 Elsevier Ltd. All rights reserved. C1 [Ishikawa, Kumi; Ezoe, Yuichiro; Ohashi, Takaya] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Yamaguchi, Hiroya] RIKEN, Wako, Saitama 3510198, Japan. [Mitsuishi, Ikuyuki; Yoshitake, Hiroshi; Mitsuda, Kazuhisa] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Fujimoto, Ryuichi] Kanazawa Univ, Kanazawa, Ishikawa 9201192, Japan. [Murakami, Masahide] Univ Tsukuba, Tsukuba, Ibaraki 3058573, Japan. [Kanao, Ken-ichi; Yoshida, Seiji; Tsunematsu, Shoji] Sumitomo Heavy Ind Ltd, Niihama, Ehime 7928588, Japan. [DiPirro, Michael; Shirron, Peter] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ishikawa, K (reprint author), Tokyo Metropolitan Univ, 1-1 Minami Osawa, Tokyo 1920397, Japan. EM kumi@phys.metro-u.ac.jp RI Mitsuda, Kazuhisa/C-2649-2008; XRAY, SUZAKU/A-1808-2009 NR 6 TC 6 Z9 7 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 J9 CRYOGENICS JI Cryogenics PD SEP PY 2010 VL 50 IS 9 BP 507 EP 511 DI 10.1016/j.cryogenics.2010.02.008 PG 5 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA 651RI UT WOS:000281944400005 ER PT J AU Holmes, W Bock, JJ Bradford, CM Chui, TCP Koch, TC Lamborn, AU Moore, D Paine, CG Thelen, MP Yazzie, A AF Holmes, W. Bock, J. J. Bradford, C. Matt Chui, T. C. P. Koch, T. C. Lamborn, A. U. Moore, D. Paine, C. G. Thelen, M. P. Yazzie, A. TI Sub-Kelvin cooler configuration study for the Background Limited Infrared Submillimeter Spectrometer BLISS on SPICA SO CRYOGENICS LA English DT Article; Proceedings Paper CT 23rd Space Cryogenics Workshop (SCW) CY JUN 23-25, 2009 CL Arcadia, CA SP NASA Jet Prop Lab, Aerosp Corp DE Space cryogenics; Adiabatic demagnetization ID ADIABATIC DEMAGNETIZATION REFRIGERATOR; HEAT SWITCH; MISSION; DESIGN; SYSTEM AB The Background Limited Infrared Submillimeter Spectrometer (BLISS) is an instrument proposed for the Japanese space borne telescope mission SPICA. The BLISS concept is a suite of grating spectrometers which combine to cover the 40-400 mu m range at resolving power R similar to 700 with detector sensitivity approaching the natural photon background limits. To achieve the high sensitivity, the BLISS detectors require cooling to 50 mK, well below the 1.7 K cold stage provided on the SPICA spacecraft. We present a thermal architecture for BLISS that includes a thermal intercept stage actively cooled to a temperature in between the 1.7 K cold tip and the detector stage at 50 mK. This architecture requires, essentially, two coolers; one to cool the intercept stage from 1.7 K and one to cool the detectors from the intercept stage temperature to 50 mK. We compared several configurations of flight-heritage coolers to cool the intercept and detector stages. Of the various configurations studied, a continuous adiabatic demagnetization refrigerator (ADR) for each stage has the highest maturity, lowest heat dump at 1.7 K and total mass comparable to other approaches. Other options, such as a Herschel (3)He sorption cooler-ADR hybrid and the recently demonstrated closed cycle version of the dilution cooler on Planck are also feasible for BLISS on SPICA. (c) 2010 Published by Elsevier Ltd. C1 [Holmes, W.; Bock, J. J.; Bradford, C. Matt; Chui, T. C. P.; Koch, T. C.; Lamborn, A. U.; Moore, D.; Paine, C. G.; Thelen, M. P.; Yazzie, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bock, J. J.] CALTECH, Dept Phys & Astron, Pasadena, CA 91106 USA. RP Holmes, W (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Warren.A.Holmes@jpl.nasa.gov NR 26 TC 3 Z9 3 U1 1 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 J9 CRYOGENICS JI Cryogenics PD SEP PY 2010 VL 50 IS 9 BP 516 EP 521 DI 10.1016/j.cryogenics.2010.02.005 PG 6 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA 651RI UT WOS:000281944400007 ER PT J AU Zimmerli, GA Asipauskas, M Van Dresar, NT AF Zimmerli, Gregory A. Asipauskas, Marius Van Dresar, Neil T. TI Empirical correlations for the solubility of pressurant gases in cryogenic propellants SO CRYOGENICS LA English DT Article; Proceedings Paper CT 23rd Space Cryogenics Workshop (SCW) CY JUN 23-25, 2009 CL Arcadia, CA SP NASA Jet Prop Lab, Aerosp Corp DE Solubility; Helium; Diffusion; Cryogenic propellants ID LIQUID-VAPOR EQUILIBRIUM; THERMODYNAMIC FUNCTIONS; ARGON&CARBON MONOXIDE; HYDROGEN-HELIUM; SYSTEM; OXYGEN; NITROGEN; ARGON; ATM; METHANE AB We have analyzed data published by others reporting the solubility of helium in liquid hydrogen, oxygen, and methane, and of nitrogen in liquid oxygen, to develop empirical correlations for the mole fraction of these pressurant gases in the liquid phase as a function of temperature and pressure. The data, compiled and provided by NIST, are from a variety of sources and covers a large range of liquid temperatures and pressures. The correlations were developed to yield accurate estimates of the mole fraction of the pressurant gas in the cryogenic liquid at temperature and pressures of interest to the propulsion community, yet the correlations developed are applicable over a much wider range. The mole fraction solubility of helium in all these liquids is less than 0.3% at the temperatures and pressures used in propulsion systems. When nitrogen is used as a pressurant for liquid oxygen, substantial contamination can result, though the diffusion into the liquid is slow. Published by Elsevier Ltd. C1 [Zimmerli, Gregory A.; Van Dresar, Neil T.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Asipauskas, Marius] Natl Ctr Space Explorat Res, Cleveland, OH 44135 USA. RP Zimmerli, GA (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM Gregory.A.Zimmerli@nasa.gov NR 32 TC 6 Z9 6 U1 0 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 J9 CRYOGENICS JI Cryogenics PD SEP PY 2010 VL 50 IS 9 BP 556 EP 560 DI 10.1016/j.cryogenics.2010.02.010 PG 5 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA 651RI UT WOS:000281944400013 ER PT J AU Zhang, B Larson, M Rodriguez, J AF Zhang, Burt Larson, Melora Rodriguez, Jose TI Passive coolers for pre-cooling of JT loops for deep space infrared imaging applications SO CRYOGENICS LA English DT Article; Proceedings Paper CT 23rd Space Cryogenics Workshop (SCW) CY JUN 23-25, 2009 CL Arcadia, CA SP NASA Jet Prop Lab, Aerosp Corp DE Hydrogen; Neon; Supercritical helium; Heat exchangers; Joule-Thomson coolers AB Infrared instruments (IR) for deep space imaging missions, such as the James Webb Space Telescope (JWST) and Planck, require cryogenic cooling for proper operation of their focal plane arrays (FPA) in far infrared and sub-millimeter wavelength ranges. The FPA is sometimes located meters away from the spacecraft. To meet such remote cooling requirement, a Joule-Thomson (J-T) loop becomes a convenient choice for either direct cooling for the FPA or for serving as a heat sink for a cascade cooling system. The refrigerant lines of the JT loop inevitably suffer parasitic heat leak primarily due to IR backload as they traverse from the spacecraft to the FPA. An actively cooled JT loop using a mechanical pre-cooler located at the spacecraft will experience the highest parasitic heat leak since the lines are cold through the entire length whereas a passively cooled JT loop can utilize a number of radiators to cool the lines down gradually in stages and hence reduce the heat leak. In addition to savings in power and mass, a passive cooler offers consistent and predictable performance with practically no performance degradation in a thermally stable orbit, such as one around the Sun-Earth 12 point. Passive coolers are less popular in low temperature applications when their cooling capacity diminishes rapidly in proportion to T4 until the temperature reaches a point where either the parasitic heat leak becomes so significant or its size becomes so excessive that the passive cooling scheme becomes impractical. Despite the limited capacity, passive cooling may still prove to be a viable alternative to active cooling depending on the operating temperature and heat dissipation rate of the FPA. The current effort aims at evaluating the merit of using passive coolers as an alternative to using a mechanical cooler for pre-cooling of a JT loop for remote IR instrument cooling. A parametric study is conducted to explore the merits of passive cooling of a JT loop in a temperature range below 30 K. Correlations between cooling capacity, heat leak from supporting structure, and the operating temperature are investigated to provide design guidelines. Radiator staging options will also be presented and discussed. (c) 2010 Elsevier Ltd. All rights reserved. C1 [Zhang, Burt; Larson, Melora; Rodriguez, Jose] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Zhang, B (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM burt.x.zhang@nasa.gov NR 12 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 J9 CRYOGENICS JI Cryogenics PD SEP PY 2010 VL 50 IS 9 BP 628 EP 632 DI 10.1016/j.cryogenics.2010.02.019 PG 5 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA 651RI UT WOS:000281944400024 ER PT J AU Chui, T Bock, J Holmes, W Raab, J AF Chui, Talso Bock, Jamie Holmes, Warren Raab, Jeff TI Thermal design and analysis of a multi-stage 30 K radiative cooling system for EPIC SO CRYOGENICS LA English DT Article; Proceedings Paper CT 23rd Space Cryogenics Workshop (SCW) CY JUN 23-25, 2009 CL Arcadia, CA SP NASA Jet Prop Lab, Aerosp Corp DE V-groove; Radiator; Cooling; Space; Telescope AB The Experimental Probe of Inflationary Cosmology (EPIC) is an implementation of the NASA Einstein Inflation Probe mission, to answer questions about the physics of Inflation in the early Universe by measuring the polarization of the Cosmic Microwave Background (CMB). The mission relies on a passive cooling system to cool the enclosure of a telescope to 30 K; a cryocooler then cools this enclosure to 18 K and the telescope to 4 K. Subsequently, an Adiabatic Demagnetization Refrigerator further cools a large Focal Plane to similar to 100 mK. For this mission, the telescope has an aperture of 1.4 m, and the spacecraft's symmetry axis is oriented similar to 45 degrees relative to the direction of the sun. The spacecraft will be spun at similar to 0.5 rpm around this axis, which then precesses on the sky at 1 rph. The passive system must both supply the necessary cooling power for the cryocooler and meet demanding temperature stability requirements. We describe the thermal design of a passive cooling system consisting of four V-groove radiators for shielding of solar radiation and cooling the telescope to 30K. The design realizes loads of 20 and 68 mW at the 4K and 18 K stages on the cooler, respectively. A lower cost option for reaching 40 K with three V-groove radiators is also described. The analysis includes radiation coupling between stages of the radiators and sunshields, and parasitic conduction in the bipod support, harnesses, and ADR leads. Dynamic effects are also estimated, including the very small variations in temperature due to the scan motion of the spacecraft. (c) 2010 Elsevier Ltd. All rights reserved. C1 [Chui, Talso; Bock, Jamie; Holmes, Warren] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Raab, Jeff] Northrop Grumman Aerosp, Redondo Beach, CA 90278 USA. RP Chui, T (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM talso.c.chui@jpl.nasa.gov NR 6 TC 2 Z9 2 U1 2 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 J9 CRYOGENICS JI Cryogenics PD SEP PY 2010 VL 50 IS 9 BP 633 EP 637 DI 10.1016/j.cryogenics.2010.02.013 PG 5 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA 651RI UT WOS:000281944400025 ER PT J AU Hastings, LJ Schunk, RG Grayson, G Bolshinskiy, LG Martin, AK Eskridge, RH Pendleton, ML Frenkel, AL AF Hastings, L. J. Schunk, R. G. Grayson, G. Bolshinskiy, L. G. Martin, A. K. Eskridge, R. H. Pendleton, M. L. Frenkel, A. L. TI Feed system thermal integration for a cryogenic Lunar ascent stage SO CRYOGENICS LA English DT Article; Proceedings Paper CT 23rd Space Cryogenics Workshop (SCW) CY JUN 23-25, 2009 CL Arcadia, CA SP NASA Jet Prop Lab, Aerosp Corp DE Oxygen; Methane; Heat transfer; Fluid acquisition; Space cryogenics AB Cryogenic liquid acquisition devices (LADs) for space-based propulsion interface directly with the feed system, a significant heat leak source. The gradual accumulation of thermal energy within a representative capillary LAD during long-term storage periods (up to 210 days) on the Lunar surface is the main issue addressed. The ongoing program consists of experimental and analytical facets that include: (a) thermal modeling of LAD interior temperatures, (b) computational fluid dynamics (CFD) analyses to define bulk liquid conditions surrounding the LAD, (c) testing and analyses of condensation conditioning techniques for stabilizing LAD liquid retention, and (d) low-cost fluid systems thermal integration testing. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Hastings, L. J.] NASA, Alpha Technol Inc, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Grayson, G.] Boeing Co, Huntington Beach, CA 92647 USA. [Bolshinskiy, L. G.] NASA, Univ Alabama Huntsville, Jacobs Engn Grp, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Martin, A. K.; Eskridge, R. H.; Pendleton, M. L.] NASA, Jacobs TEC, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Frenkel, A. L.] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA. RP Hastings, LJ (reprint author), NASA, Alpha Technol Inc, George C Marshall Space Flight Ctr, MSFC Mail Code ER24, Huntsville, AL 35812 USA. EM leon.j.hastings@nasa.gov RI Frenkel, Alexander /C-5276-2013 NR 2 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 J9 CRYOGENICS JI Cryogenics PD SEP PY 2010 VL 50 IS 9 BP 638 EP 646 DI 10.1016/j.cryogenics.2010.02.007 PG 9 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA 651RI UT WOS:000281944400026 ER PT J AU Paradise, S Wilson, B Braverman, A AF Paradise, Susan Wilson, Brian Braverman, Amy TI The aerosol measurement and processing system (AMAPS) SO EARTH SCIENCE INFORMATICS LA English DT Article DE Aerosol; AERONET; MISR; MODIS ID INSTRUMENT; PARAGON AB As the collection of Earth science datasets continues to grow, so too grows the challenge in the ability to collect, interpret, assimilate, compare, and combine them. Stores of data, already enormous, continue to amass. New instruments are built that introduce differences in measurements and retrieval algorithms from previous ones. Data are rarely collocated either spatially or temporally, and rarely represent equivalent quantities even for similarly named parameters. Uncertainties must be understood and accounted for. Formats differ. In the realm of diverse data sources, the analyst each time must become an expert in the data from each source, and that expertise is disseminated in the form of publications (if at all), but analysis tools are not, and must be continually redeveloped. AMAPS addresses each of these areas in a way that provides a breakthrough in the analyst's ability to efficiently and effectively make use of the vast wealth of data that continues to accumulate. AMAPS is targeted to aerosol data acquisition and analysis. Data from disparate aerosol sources, including the Multi-angle Imaging SpectroRadiometer (MISR), the Moderate Resolution Imaging Spectrometer (MODIS), and the AErosol RObotic NETwork (AERONET), are efficiently retrieved and transformed behind the scenes to a common format via SciFlo. Analysis algorithms for collocation and comparison between sources are generalized so that researchers have access to a common set of tools applied consistently to each data source. AMAPS has established a successful track record in supporting scientific research. C1 [Paradise, Susan; Wilson, Brian; Braverman, Amy] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Paradise, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Susan.Paradise@jpl.nasa.gov FU National Aeronautics and Space Administration FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We would like to thank the NASA Langley Research Center's Atmospheric Sciences Data Center for their support in hosting the AMAPS services. NR 19 TC 1 Z9 1 U1 1 U2 1 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD SEP PY 2010 VL 3 IS 3 BP 159 EP 165 DI 10.1007/s12145-009-0042-7 PG 7 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 703XI UT WOS:000286014200003 ER PT J AU Cheng, YB Middleton, EM Huemmrich, KF Zhang, QY Campbell, PKE Corp, LA Russ, AL Kustas, WP AF Cheng, Yen-Ben Middleton, Elizabeth M. Huemmrich, Karl F. Zhang, Qingyuan Campbell, Petya K. E. Corp, Lawrence A. Russ, Andrew L. Kustas, William P. TI Utilizing in situ directional hyperspectral measurements to validate bio-indicator simulations for a corn crop canopy SO ECOLOGICAL INFORMATICS LA English DT Article DE Hyperspectral data; Radiative transfer models; SAIL; MCRM; Photochemical reflectance index; NDVI ID LIGHT-USE EFFICIENCY; PHOTOCHEMICAL REFLECTANCE INDEX; RADIATION-USE-EFFICIENCY; WATER-STRESS DETECTION; XANTHOPHYLL CYCLE; VEGETATION INDEXES; SUNFLOWER LEAVES; GLOBAL RADIATION; DIRECT COMPONENT; TRANSFER MODEL AB Two radiative transfer canopy models, SAIL and the two-layer Markov-Chain Canopy Reflectance Model (MCRM), were coupled with in situ leaf optical properties to simulate canopy-level spectral band ratio vegetation indices with the focus on the photochemical reflectance index in a cornfield. In situ hyperspectral measurements were made at both leaf and canopy levels. Leaf optical properties were obtained from both sunlit and shaded leaves. Canopy reflectance was acquired for eight different relative azimuth angles (psi) at three different view zenith angles (theta(v)), and later used to validate model outputs. Field observations of PRI for sunlit leaves exhibited lower values than shaded leaves, indicating higher light stress Canopy PRI expressed obvious sensitivity to viewing geometry, as a function of both theta(v) and psi. Overall, simulations from MCRM exhibited better agreements with in situ values than SAIL When using only sunlit leaves as input, the MCRM-simulated PRI values showed satisfactory correlation and RMSE. as compared to in situ values However. the performance of the MCRM model was significantly improved after defining a lower canopy layer comprised of shaded leaves beneath the upper sunlit leaf layer. Four other widely used band ratio vegetation indices were also studied and compared with the PRI results. MCRM simulations were able to generate satisfactory simulations for these other four indices when using only sunlit leaves as input: but unlike PRI, adding shaded leaves did not improve the performance of MCRM. These results support the hypothesis that the PRI is sensitive to physiological dynamics while the others detect static factors related to canopy structure. Sensitivity analysis was performed on MCRM in order to better understand the effects of structure related parameters on the PRI simulations. LAI showed the most significant impact on MCRM-simulated PRI among the parameters studied This research shows the importance of hyperspectral and narrow band sensor studies, and especially the necessity of including the green wavelengths (e g., 531 nm) on satellites proposing to monitor carbon dynamics of terrestrial ecosystems. (C) 2010 Elsevier B.V. All rights reserved. C1 [Cheng, Yen-Ben; Middleton, Elizabeth M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cheng, Yen-Ben] Earth Resources Technol Inc, Annapolis Jct, MD 20701 USA. [Huemmrich, Karl F.; Campbell, Petya K. E.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21250 USA. [Zhang, Qingyuan] Univ Maryland Baltimore Cty, Goddard Earth Sci Technol Ctr, Baltimore, MD 21250 USA. [Corp, Lawrence A.] Sigma Space Corp, Lanham, MD 20706 USA. [Russ, Andrew L.; Kustas, William P.] ARS, USDA, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA. RP Cheng, YB (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Cheng, Yen-Ben/G-1311-2012; Campbell, Petya/G-4931-2013; Campbell, Petya/L-7486-2013 OI Campbell, Petya/0000-0002-0505-4951; Campbell, Petya/0000-0002-0505-4951 FU NASA FX Y.-B. Cheng is currently affiliated with Earth Resources Technology. Inc. Part of the work presented in this paper was completed when he was a NASA Postdoctoral Program Fellow at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. Additional funding came through a NASA ROSES project (PI, E.M. Middleton) funded through the Carbon Cycle Science Program (Diane Wickland, manager). The authors gratefully acknowledge W. Verhoef and A. Kuusk for sharing computer code for canopy reflectance models. NR 59 TC 13 Z9 13 U1 3 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-9541 EI 1878-0512 J9 ECOL INFORM JI Ecol. Inform. PD SEP PY 2010 VL 5 IS 5 SI SI BP 330 EP 338 DI 10.1016/j.ecoinf.2010.03.001 PG 9 WC Ecology SC Environmental Sciences & Ecology GA 670VR UT WOS:000283455900003 ER PT J AU Bourke, MC Lancaster, N Fenton, LK Parteli, EJR Zimbelman, JR Radebaugh, J AF Bourke, Mary C. Lancaster, Nick Fenton, Lori K. Parteli, Eric J. R. Zimbelman, James R. Radebaugh, Jani TI Extraterrestrial dunes: An introduction to the special issue on planetary dune systems SO GEOMORPHOLOGY LA English DT Article DE Aeolian; Dune; Mars; Venus; Titan; Earth ID NORTH POLAR-REGION; OPTICALLY STIMULATED LUMINESCENCE; DIRECTIONALLY VARYING FLOWS; GENERAL-CIRCULATION MODEL; TRANSVERSE AEOLIAN RIDGES; MARTIAN ANALOG MATERIALS; INNER SOLAR-SYSTEM; SAND DUNES; LONGITUDINAL DUNES; LAYERED DEPOSITS AB Aeolian dune fields have been described on Earth, Mars, Venus and Titan. The plethora of data returned from recent planetary missions has enabled a new era in planetary geomorphic studies. Much of our understanding of planetary dune systems comes from the application of Earth analogs, wind tunnel experiments and modeling studies. Despite the range of atmospheric pressures, composition and gravity, many of the dune forms on extraterrestrial surfaces are similar to those on Earth, although some have notable differences in bedform scale and composition. As an introduction to the special issue on planetary dune systems this paper summarizes the current state of knowledge of planetary dune studies and highlights outstanding questions that require further investigation. (C) 2010 Elsevier B.V. All rights reserved. C1 [Bourke, Mary C.] PSI, Tucson, AZ 85719 USA. [Bourke, Mary C.] Univ Oxford, Sch Geog & Environm, Oxford OX1 3QY, England. [Lancaster, Nick] Desert Res Inst, Reno, NV 89512 USA. [Fenton, Lori K.] NASA, Ames Res Ctr, Carl Sagan Ctr, Moffett Field, CA 94035 USA. [Parteli, Eric J. R.] Univ Fed Ceara, Dept Fis, BR-60455900 Fortaleza, Ceara, Brazil. [Zimbelman, James R.] Smithsonian Inst, Natl Air & Space Museum, MRC 315, Ctr Earth & Planetary Studies, Washington, DC 20013 USA. [Radebaugh, Jani] Brigham Young Univ, Dept Geol Sci, Provo, UT 84602 USA. RP Bourke, MC (reprint author), PSI, 1700 E Ft Lowell 106, Tucson, AZ 85719 USA. EM mbourke@psi.edu RI Parteli, Eric/K-7085-2014; Bourke, Mary/I-4387-2012; UFC, DF/E-1564-2017; Universidade Federal do Ceara, Physics Department/J-4630-2016 OI Bourke, Mary/0000-0002-0424-0322; Universidade Federal do Ceara, Physics Department/0000-0002-9247-6780 NR 202 TC 47 Z9 48 U1 8 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-555X J9 GEOMORPHOLOGY JI Geomorphology PD SEP 1 PY 2010 VL 121 IS 1-2 SI SI BP 1 EP 14 DI 10.1016/j.geomorph.2010.04.007 PG 14 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 636AH UT WOS:000280699300001 ER PT J AU Fenton, LK Hayward, RK AF Fenton, Lori K. Hayward, Rosalyn K. TI Southern high latitude dune fields on Mars: Morphology, aeolian inactivity, and climate change SO GEOMORPHOLOGY LA English DT Article DE Aeolian; Climate change; Mars; Dunes; Planetary geomorphology ID POLAR LAYERED DEPOSITS; GLOBAL SURVEYOR DATA; SURFACE GROUND ICE; DEBRIS FLOWS; GEOLOGIC HISTORY; THERMAL INERTIA; MARTIAN GULLIES; HIGH OBLIQUITY; LIQUID WATER; SAND DUNES AB In a study area spanning the martian surface poleward of 50 degrees S., 1190 dune fields have been identified, mapped, and categorized based on dune field morphology. Dune fields in the study area span similar to 116 400 km(2), leading to a global dune field coverage estimate of similar to 904 000 km(2), far less than that found on Earth. Based on distinct morphological features, the dune fields were grouped into six different classes that vary in interpreted aeolian activity level from potentially active to relatively inactive and eroding. The six dune field classes occur in specific latitude zones, with a sequence of reduced activity and degradation progressing poleward. In particular, the first signs of stabilization appear at similar to 60 degrees S., which broadly corresponds to the edge of high concentrations of water-equivalent hydrogen content (observed by the Neutron Spectrometer) that have been interpreted as ground ice. This near-surface ground ice likely acts to reduce sand availability in the present climate state on Mars, stabilizing high latitude dunes and allowing erosional processes to change their morphology. As a result, climatic changes in the content of near-surface ground ice are likely to influence the level of dune activity. Spatial variation of dune field classes with longitude is significant, suggesting that local conditions play a major role in determining dune field activity level. Dune fields on the south polar layered terrain, for example, appear either potentially active or inactive, indicating that at least two generations of dune building have occurred on this surface. Many dune fields show signs of degradation mixed with crisp-brinked dunes, also suggesting that more than one generation of dune building has occurred since they originally formed. Dune fields superposed on early and late Amazonian surfaces provide potential upper age limits of similar to 100 My on the south polar layered deposits and similar to 3 Ga elsewhere at high latitudes. No craters are present on any identifiable dune fields, which can provide a lower age limit through crater counting: assuming all relatively stabilized dune fields represent a single noncontiguous surface of uniform age, their estimated crater retention age is 0.99), and acceptable for the virtual wheat and corn canopies (RMSE < 1.8 degrees C and R(2) > 0.81). C1 [Huang, Huaguo] Beijing Forestry Univ, Key Lab Silviculture & Conservat, Minist Educ, Beijing 100083, Peoples R China. [Liu, Qinhuo; Qin, Wenhan] State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China. [Qin, Wenhan] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Huang, HG (reprint author), Beijing Forestry Univ, Key Lab Silviculture & Conservat, Minist Educ, Beijing 100083, Peoples R China. EM huaguo.huang@gmail.com RI rslab, water/O-7043-2015 FU Chinese Natural Science Foundation [40801135, 40730525]; Chinese State Key Basic Research Project [2007CB714402, 2007CB714400]; Beijing Forestry University [BLYX200917]; Research Fund for the Doctoral Program of Higher Education; Chinese Academy of Sciences [KZCX2-XB2-09] FX This work was supported in part by the Chinese Natural Science Foundation Project 40801135, the Chinese State Key Basic Research Project 2007CB714402, the Innovation Project of Beijing Forestry University under Contract BLYX200917, the Chinese Natural Science Foundation Project 40730525, the Research Fund for the Doctoral Program of Higher Education, the Chinese State Key Basic Research Project "Synthetic Retrieval of Territorial Ecological Variables Using both Active and Passive Remote Sensing Approaches" under Grant 2007CB714400, and the "WATER: Watershed Airborne Telemetry Experiment Research" under Grant KZCX2-XB2-09 under the auspices of the Chinese Academy of Sciences Action Plan for West Development Program. NR 34 TC 5 Z9 6 U1 5 U2 18 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD SEP PY 2010 VL 3 IS 3 BP 313 EP 322 DI 10.1109/JSTARS.2010.2046625 PG 10 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA 667KE UT WOS:000283191200009 ER PT J AU Prados, AI Leptoukh, G Lynnes, C Johnson, J Rui, HL Chen, AJ Husar, RB AF Prados, Ana I. Leptoukh, Gregory Lynnes, Chris Johnson, James Rui, Hualan Chen, Aijun Husar, Rudolf B. TI Access, Visualization, and Interoperability of Air Quality Remote Sensing Data Sets via the Giovanni Online Tool SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Air quality; interoperability; remote sensing ID AEROSOL OPTICAL-THICKNESS; PARTICULATE POLLUTION; PROMISED LAND; SATELLITE; TRANSPORT; GOCART; MATTER; SPACE; MODIS; PM2.5 AB This paper describes the air quality data products and services available through Giovanni, a web based tool for access, visualization, and analysis of satellite remote sensing products, and also model output and surface observations relevant to global air quality. Available datasets include total column aerosol measurements from numerous satellite instruments, column NO2 and SO2, vertical aerosol products from CALIPSO, surface PM2.5 concentrations over the continental U.S, and speciated model Aerosol Optical Depth. Giovanni was designed to make satellite and ground-based data easier to use; it does not require separate access to or downloading of data sets, making the visualizations and analysis services accessible to both the novice and the experienced user. Giovanni air quality data products are provided on a common grid and can also be obtained in KMZ format for Google Earth visualization. This feature allows collocation of datasets to aid in analysis of pollution events and to facilitate satellite/monitor comparisons and aerosol intercomparison studies in a fraction of the time compared to traditional methods. Giovanni also supports multiple interoperability protocols which permit data sharing with other online tools, in order to enhance access to the datasets for improved air quality decision making. The Giovanni team is currently actively involved in several data networking initiatives with service oriented tools at other institutions such as DataFed. C1 [Prados, Ana I.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Johnson, James] NASA, Goddard Space Flight Ctr, RS Informat Syst, Greenbelt, MD 20771 USA. [Rui, Hualan] NASA, Goddard Space Flight Ctr, ADNET Syst, Greenbelt, MD 20771 USA. [Chen, Aijun] George Mason Univ, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Husar, Rudolf B.] Washington Univ, St Louis, MO 63130 USA. RP Prados, AI (reprint author), Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. RI Lynnes, Christopher/B-4506-2010; Husar, Rudolf/A-9000-2009 OI Lynnes, Christopher/0000-0001-6744-3349; NR 44 TC 7 Z9 7 U1 1 U2 18 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 EI 2151-1535 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD SEP PY 2010 VL 3 IS 3 BP 359 EP 370 DI 10.1109/JSTARS.2010.2047940 PG 12 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA 667KE UT WOS:000283191200015 ER PT J AU Nan, ZT Wang, SG Liang, X Adams, TE Teng, W Liang, Y AF Nan, Zhuotong Wang, Shugong Liang, Xu Adams, Thomas E. Teng, William Liang, Yao TI Analysis of Spatial Similarities Between NEXRAD and NLDAS Precipitation Data Products SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Data analysis; hydrology; pattern recognition; radar; rain ID DATA ASSIMILATION SYSTEM; RIVER-BASIN; RAIN-GAUGE; FORECASTS; VERIFICATION; ALGORITHMS; RADAR; TEXAS; TIME AB Precipitation is one of the key inputs for hydrological modeling. Although the Multisensor Precipitation Estimator (MPE) from NEXRAD (Next Generation Radar) and the NLDAS (North American Land Data Assimilation System) precipitation data have been extensively used in various hydrological and climatic studies, there has been no systematic investigation of the spatial similarities and differences between them, based on long-term time series data over a large spatial region. In this study, six years of hourly and daily precipitation time series data from NEXRAD and NLDAS were investigated for their spatial similarities, over a subregion of the Ohio River basin. Three spatial metrics were used: Cohen's Kappa coefficient, Forecast Quality Index (FQI), and displacement-based Forecast Quality Measure (FQM). The three metrics were also applied to the two data products after stratification by season (warm, cold). Results show that significant differences exist between NEXRAD MPE and NLDAS. Analyses and discussions are presented on possible causes of the dissimilarities. In addition, results show that a single metric cannot adequately represent their spatial characteristics. The three metrics are complementary to each other and, when used jointly, can provide a more complete picture of the similarities and differences between the two precipitation products. However, if a single metric is desired, then a more comprehensive one needs to be developed to effectively account for magnitude, distance, shape, and neighborhood effects. C1 [Nan, Zhuotong; Wang, Shugong; Liang, Xu] Univ Pittsburgh, Dept Civil & Environm Engn, Pittsburgh, PA 15261 USA. [Adams, Thomas E.] NOAA, Natl Weather Serv, Ohio River Forecast Ctr, Wilmington, OH 45177 USA. [Teng, William] NASA, Goddard Space Flight Ctr, Goddard Earth Sci DISC Wyle Informat Syst, Greenbelt, MD 20771 USA. [Liang, Yao] Indiana Univ Purdue Univ, Dept Comp & Informat Sci, Indianapolis, IN 46202 USA. RP Nan, ZT (reprint author), Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou 730000, Peoples R China. EM nztong@lzb.ac.cn; shw36@pitt.edu; xuliang@pitt.edu; thomas.adams@noaa.gov; William.L.Teng@nasa.gov; yliang@cs.iupui.edu RI westgis.CAREERI, SCI paper/O-2255-2013 OI westgis.CAREERI, SCI paper/0000-0001-5298-1494 FU NASA [NNA07CN83A] FX This work was supported by NASA under Grant NNA07CN83A. NR 28 TC 7 Z9 8 U1 0 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD SEP PY 2010 VL 3 IS 3 BP 371 EP 385 DI 10.1109/JSTARS.2010.2048418 PG 15 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA 667KE UT WOS:000283191200016 ER PT J AU Cavalieri, DJ Markus, T Hall, DK Ivanoff, A Glick, E AF Cavalieri, Donald J. Markus, Thorsten Hall, Dorothy K. Ivanoff, Alvaro Glick, Emily TI Assessment of AMSR-E Antarctic Winter Sea-Ice Concentrations Using Aqua MODIS SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E); antarctic; sea-ice concentration; validation ID SNOW COVER; MICROWAVE; ALGORITHM; PRODUCT; IMAGERY; ALBEDO; EOS AB An assessment of the standard Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sea-ice concentrations for the Antarctic winter is made from a comparison of nearly 40 000 AMSR-E sea-ice concentration values with geolocated sea-ice concentrations derived from ten Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) scenes acquired on October 1st and 2nd of 2005 and 2006. The standard AMSR-E sea-ice concentration products are produced using the National Aeronautics and Space Administration Team 2 sea-ice algorithm. The ten MODIS scenes cover portions of almost all the sea-ice regions surrounding the Antarctic continent. The AMSR-E averaged ice concentration biases relative to MODIS (AMSR-E minus MODIS) ranged from less than -0.5% to -18%, and the corresponding averaged root-mean-square (rms) errors ranged from 2% to 24%. One scene [October 1, 2006 (0550 UT)] had both the largest bias (-18%) and rms error (24%), whereas the other nine scenes had an average bias of -1.5% and an average rms error of 4.9%. The biases and rms errors are correlated with the fractions of new ice and open water. This is consistent with the findings that the largest errors in ice concentration derived from the AMSR-E occur in the marginal ice zone (MIZ) and along the ice edge and are likely caused by sea-ice flooding in the MIZ and new-ice production at the ice edge. C1 [Cavalieri, Donald J.; Markus, Thorsten; Hall, Dorothy K.] NASA Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Ivanoff, Alvaro] ADNET Syst Inc, Rockville, MD 20852 USA. [Glick, Emily] Bryn Mawr Coll, Dept Math, Bryn Mawr, PA 19010 USA. RP Cavalieri, DJ (reprint author), NASA Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. EM Donald.J.Cavalieri@nasa.gov RI Markus, Thorsten/D-5365-2012; Hall, Dorothy/D-5562-2012 FU Earth Observing System Aqua Project Office, National Aeronautics and Space Administration (NASA) [NNH06ZDA001N-EOS] FX Manuscript received September 24, 2009; revised January 28, 2010. Date of publication June 3, 2010; date of current version August 25, 2010. This work was supported in part by the Earth Observing System Aqua Project Office, National Aeronautics and Space Administration (NASA), and in part by NASA's Cryospheric Sciences Program through NNH06ZDA001N-EOS. NR 24 TC 9 Z9 11 U1 1 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD SEP PY 2010 VL 48 IS 9 BP 3331 EP 3339 DI 10.1109/TGRS.2010.2046495 PG 9 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 666TK UT WOS:000283142800001 ER PT J AU Arii, M van Zyl, JJ Kim, Y AF Arii, Motofumi van Zyl, Jakob J. Kim, Yunjin TI A General Characterization for Polarimetric Scattering From Vegetation Canopies SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE General probability density function (pdf); general volume component; model-based decomposition; radar polarimetry ID MODEL; AREAS AB Current polarimetric model-based decomposition techniques are limited to specific types of vegetation because of their assumptions about the volume scattering component. In this paper, we propose a generalized probability density function based on the nth power of a cosine-squared function. This distribution is completely characterized by two parameters; a mean orientation angle and the power of the cosine-squared function. We show that the underlying randomness of the distribution is only a function of the power of the cosine-squared function. We then derive the average covariance matrix for various different elementary scatterers showing that the result has a very simple analytical form suitable for use in model-based decomposition schemes. C1 [Arii, Motofumi] Mitsubishi Space Software Co Ltd, Kanagawa 2470065, Japan. CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Arii, M (reprint author), Mitsubishi Space Software Co Ltd, Kanagawa 2470065, Japan. EM motofumi@gmail.com FU National Aeronautics and Space Administration FX Manuscript received September 1, 2009; revised January 4, 2010. Date of publication May 20, 2010; date of current version August 25, 2010. The work described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 14 TC 54 Z9 59 U1 0 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD SEP PY 2010 VL 48 IS 9 BP 3349 EP 3357 DI 10.1109/TGRS.2010.2046331 PG 9 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 666TK UT WOS:000283142800003 ER PT J AU Colliander, A Narhi, T de Maagt, P AF Colliander, Andreas Narhi, Tapani de Maagt, Peter TI Modeling and Analysis of Polarimetric Synthetic Aperture Interferometric Radiometers Using Noise Waves SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Interferometric synthethic aperture radiometers; noise waves ID MICROWAVE RADIOMETER; VISIBILITY FUNCTION; INSTRUMENT; EARTH; SMOS AB Polarimetric synthetic aperture interferometric radiometers are analyzed, including the polarization leakage and other front-end non-idealities that can be measured and represented with S-parameters. The analysis utilizes the noise wave concept in order to account for the amplitude and phase properties of the front-end. The method is applied to a model of an entire synthetic aperture interferometric radiometer. The simulations can be used to examine and retrieve requirements for the system parameters. The feasibility of the method is demonstrated and examples of end-to-end simulation results are also given in this paper. C1 [Colliander, Andreas; Narhi, Tapani; de Maagt, Peter] European Space Agcy, European Space Res & Technol Ctr, NL-2200 AG Noordwijk, Netherlands. [Colliander, Andreas] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Colliander, A (reprint author), European Space Agcy, European Space Res & Technol Ctr, NL-2200 AG Noordwijk, Netherlands. EM Andreas.Colliander@jpl.nasa.gov; Tapani.Narhi@esa.int; Peter.de.Maagt@esa.int NR 27 TC 3 Z9 3 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD SEP PY 2010 VL 48 IS 9 BP 3560 EP 3570 DI 10.1109/TGRS.2010.2047261 PG 11 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 666TK UT WOS:000283142800021 ER PT J AU Mengshoel, OJ Chavira, M Cascio, K Poll, S Darwiche, A Uckun, S AF Mengshoel, Ole J. Chavira, Mark Cascio, Keith Poll, Scott Darwiche, Adnan Uckun, Serdar TI Probabilistic Model-Based Diagnosis: An Electrical Power System Case Study SO IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS LA English DT Article DE Aerospace; arithmetic circuits (ACs); Bayesian networks (BNs); domain modeling; electrical power systems (EPSs); knowledge engineering; model-based diagnosis; real-time systems; uncertainty ID MULTIPLE-FAULT DIAGNOSIS; BAYESIAN NETWORK; BELIEF NETWORKS; INFERENCE; COMPLEXITY AB We present in this paper a case study of the probabilistic approach to model-based diagnosis. Here, the diagnosed system is a real-world electrical power system (EPS), i.e., the Advanced Diagnostic and Prognostic Testbed (ADAPT) located at the NASA Ames Research Center. Our probabilistic approach is formally well founded and based on Bayesian networks (BNs) and arithmetic circuits (ACs). We pay special attention to meeting two of themain challenges often associated with real-world application of model-based diagnosis technologies: model development and real-time reasoning. To address the challenge of model development, we develop a systematic approach to representing EPSs as BNs, supported by an easy-to-use specification language. To address the real-time reasoning challenge, we compile BNs into ACs. AC evaluation (ACE) supports real-time diagnosis by being predictable, fast, and exact. In experiments with the ADAPT BN, which contains 503 discrete nodes and 579 edges and produces accurate results, the time taken to compute the most probable explanation using ACs has a mean of 0.2625 ms and a standard deviation of 0.2028 ms. In comparative experiments, we found that, while the variable elimination and join tree propagation algorithms also perform very well in the ADAPT setting, ACE was an order of magnitude or more faster. C1 [Mengshoel, Ole J.] Carnegie Mellon Univ, Moffett Field, CA 94305 USA. [Mengshoel, Ole J.; Poll, Scott] NASA, Ames Res Ctr, Intelligent Syst Div, Moffett Field, CA 94035 USA. [Chavira, Mark] Google, Santa Monica, CA 90401 USA. [Cascio, Keith; Darwiche, Adnan] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA. [Uckun, Serdar] Palo Alto Res Ctr, Embedded Reasoning Area, Palo Alto, CA 94304 USA. RP Mengshoel, OJ (reprint author), Carnegie Mellon Univ, NASA Res Pk, Moffett Field, CA 94305 USA. EM Ole.Mengshoel@sv.cmu.edu; chavira@cs.ucla.edu; keith@cs.ucla.edu; Scott.Poll@nasa.gov; darwiche@cs.ucla.edu; Serdar.Uckun@parc.com FU NASA [NCC2-1426, NNA07BB97C]; NSF [CCF0937044, ECCS0931978] FX This material is based, in part, on work supported by NASA under Award NCC2-1426 and Award NNA07BB97C as well as NSF awards CCF0937044 and ECCS0931978. This work was performed while S. Uckun was at NASA. The authors would like to thank A. Patterson-Hine and D. Maclise (NASA ARC) for their central roles in the development of the ADAPT testbed, and D. Garcia and D. Nishikawa (NASA ARC) for generating the ADAPT data for many of our experiments. NR 35 TC 23 Z9 24 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1083-4427 EI 1558-2426 J9 IEEE T SYST MAN CY A JI IEEE Trans. Syst. Man Cybern. Paart A-Syst. Hum. PD SEP PY 2010 VL 40 IS 5 SI SI BP 874 EP 885 DI 10.1109/TSMCA.2010.2052037 PG 12 WC Computer Science, Cybernetics; Computer Science, Theory & Methods SC Computer Science GA 666OW UT WOS:000283126300002 ER PT J AU Daigle, MJ Roychoudhury, I Biswas, G Koutsoukos, XD Patterson-Hine, A Poll, S AF Daigle, Matthew J. Roychoudhury, Indranil Biswas, Gautam Koutsoukos, Xenofon D. Patterson-Hine, Ann Poll, Scott TI A Comprehensive Diagnosis Methodology for Complex Hybrid Systems: A Case Study on Spacecraft Power Distribution Systems SO IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS LA English DT Article DE Distributed diagnosis; electrical power distribution systems; hybrid bond graphs (HBGs); hybrid systems; model-based diagnosis ID MODEL-BASED DIAGNOSIS; FAULT-DIAGNOSIS AB The application of model-based diagnosis schemes to real systems introduces many significant challenges, such as building accurate system models for heterogeneous systems with complex behaviors, dealing with noisy measurements and disturbances, and producing valuable results in a timely manner with limited information and computational resources. The Advanced Diagnostics and Prognostics Testbed (ADAPT), which was deployed at the NASA Ames Research Center, is a representative spacecraft electrical power distribution system that embodies a number of these challenges. ADAPT contains a large number of interconnected components, and a set of circuit breakers and relays that enable a number of distinct power distribution configurations. The system includes electrical dc and ac loads, mechanical subsystems (such as motors), and fluid systems (such as pumps). The system components are susceptible to different types of faults, i.e., unexpected changes in parameter values, discrete faults in switching elements, and sensor faults. This paper presents Hybrid TRANSCEND, which is a comprehensive model-based diagnosis scheme to address these challenges. The scheme uses the hybrid bond graph modeling language to systematically develop computational models and algorithms for hybrid state estimation, robust fault detection, and efficient fault isolation. The computational methods are implemented as a suite of software tools that enable diagnostic analysis and testing through simulation, diagnosability studies, and deployment on the experimental testbed. Simulation and experimental results demonstrate the effectiveness of the methodology. C1 [Daigle, Matthew J.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Daigle, Matthew J.; Roychoudhury, Indranil; Patterson-Hine, Ann; Poll, Scott] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Roychoudhury, Indranil] SGT Inc, Greenbelt, MD 20770 USA. [Biswas, Gautam; Koutsoukos, Xenofon D.] Vanderbilt Univ, Inst Software Integrated Syst, Nashville, TN 37235 USA. [Biswas, Gautam; Koutsoukos, Xenofon D.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. RP Daigle, MJ (reprint author), Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. EM matthew.j.daigle@nasa.gov; indranil.roychoudhury@nasa.gov; gautam.biswas@vanderbilt.edu; xenofon.koutsoukos@vanderbilt.edu; ann.patterson-hine@nasa.gov; scott.poll@nasa.gov OI Daigle, Matthew/0000-0002-4616-3302 FU National Science Foundation [CNS-0615214]; NASA NRA [NNX07AD12A] FX Manuscript received April 29, 2008; revised June 27, 2009. Date of publication July 8, 2010; date of current version August 18, 2010. This work was supported in part by the National Science Foundation under Grant CNS-0615214 and in part by NASA NRA under Grant NNX07AD12A. This paper was recommended by Guest Editor J. De Kleer. NR 31 TC 23 Z9 24 U1 1 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1083-4427 J9 IEEE T SYST MAN CY A JI IEEE Trans. Syst. Man Cybern. Paart A-Syst. Hum. PD SEP PY 2010 VL 40 IS 5 SI SI BP 917 EP 931 DI 10.1109/TSMCA.2010.2052038 PG 15 WC Computer Science, Cybernetics; Computer Science, Theory & Methods SC Computer Science GA 666OW UT WOS:000283126300005 ER PT J AU Kurien, J R-Moreno, MD AF Kurien, James R-Moreno, Maria D. TI Intrinsic Hurdles in Applying Automated Diagnosis and Recovery to Spacecraft SO IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS LA English DT Article DE Benefits; cost; expected value; fault protection (FP); model-based diagnosis (MBD); spacecraft ID SYSTEMS AB Experience developing and deploying model-based diagnosis (MBD) and recovery and other model-based technologies on a variety of testbeds and flight experiments led us to explore why our expectations about the impact of MBD on spacecraft operations have not been matched by effective benefits in the field. By MBD, we mean the problem of observing a mechanical, software, or other system and determining what failures its internal components have suffered using a generic inference algorithm and a model of the system's components and interconnections. These techniques are very attractive, suggesting a vision of machines that repair themselves, reduced costs for all kinds of endeavors, spacecraft that continue their missions even when failing, and so on. This promise inspired a broad range of activities, including our involvement over several years in flying the Livingstone and L2 onboard MBD and recovery systems as experiments on Deep Space 1 and Earth Observer 1 spacecraft. Yet, in the end, no spacecraft project adopted the technology in operations nor flew additional flight experiments. To our knowledge, no spacecraft project has adopted any other MBD technology in operations. In this paper, we present a cost/benefit analysis for MBD using expectations and experiences with Livingstone as an example. We provide an overview of common techniques for making spacecraft robust, citing fault protection schemes from recent missions. We lay out the cost, benefit, and risk advantages associated with onboard MBD and use the examples to probe each expected advantage in turn. We suggest a method for evaluating a mission that has already been flown and providing a rough estimate of the maximum value that a perfect onboard diagnosis and recovery system would have provided. By unpacking the events that must occur in order to provide value, we also identify the factors needed to compute the expected value that would be provided by a real diagnosis and recovery system. We then discuss the expected value we would estimate that such a system would have had for the Mars Exploration Rover mission. This has allowed us to identify the specific assumptions that made our expectations for MBD in this domain incorrect. C1 [Kurien, James] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [R-Moreno, Maria D.] Univ Alcala de Henares, Dept Automat, Alcala De Henares 28805, Spain. RP Kurien, J (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM James.A.Kurien@nasa.gov; mdolores@aut.uah.es FU National Aeronautics and Space Administration (NASA); Castilla-La Mancha Project [PEII09-0266-6640] FX Manuscript received June 17, 2008. Date of publication July 19, 2010; date of current version August 18, 2010. This work was supported by the National Aeronautics and Space Administration (NASA), including the NASA's Intelligent Systems Program. The work of M. D. R-Moreno was supported by the Castilla-La Mancha Project PEII09-0266-6640. This paper was recommended by Guest Editor P. Struss. NR 42 TC 2 Z9 4 U1 1 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1083-4427 EI 1558-2426 J9 IEEE T SYST MAN CY A JI IEEE Trans. Syst. Man Cybern. Paart A-Syst. Hum. PD SEP PY 2010 VL 40 IS 5 SI SI BP 945 EP 958 DI 10.1109/TSMCA.2010.2052035 PG 14 WC Computer Science, Cybernetics; Computer Science, Theory & Methods SC Computer Science GA 666OW UT WOS:000283126300007 ER PT J AU Baluchamy, S Zhang, Y Ravichandran, P Ramesh, V Sodipe, A Hall, JC Jejelowo, O Gridley, DS Wu, HL Ramesh, GT AF Baluchamy, Sudhakar Zhang, Ye Ravichandran, Prabakaran Ramesh, Vani Sodipe, Ayodotun Hall, Joseph C. Jejelowo, Olufisayo Gridley, Daila S. Wu, Honglu Ramesh, Govindarajan T. TI Differential oxidative stress gene expression profile in mouse brain after proton exposure SO IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL LA English DT Article DE Proton; Real-time RT-PCR; Oxidative stress; Reactive oxygen species (ROS) ID IONIZING-RADIATION; EOSINOPHIL; INTERLEUKIN-10; RADIOSURGERY; THERAPY; DAMAGE; DNA AB Radiation is known to potentially interfere with cellular functions at all levels of cell organization. The radiation-induced stress response is very complex and involves altered expression of many genes. Identification of specific genes may allow the determination of pathways important in radiation responses. Although several radiation-related research have been studied extensively, the molecular and cellular processes affected by proton exposure remain poorly understood. Our earlier reports have shown that proton radiation induces reactive oxygen species (ROS) formation and lipid peroxidation and inhibits antioxidants, superoxide dismutase, and glutathione. Therefore, in this present study, we used quantitative real-time reverse transcription polymerase chain reaction approach and showed the modulation of several genes including oxidative stress, antioxidants defense mechanism, ROS metabolism, and oxygen transporters related genes expression in 2-Gy proton-exposed mouse brain. Literature evidences suggest that change in oxidants and antioxidants levels induce DNA damage, followed by cell death. In conclusion, changes in the gene profile of mouse brain after proton irradiation are complex and the exposed cells might undergo programmed cell death through alteration of genes responsible for oxidative stress signaling mechanism. C1 [Baluchamy, Sudhakar; Ravichandran, Prabakaran; Ramesh, Vani; Hall, Joseph C.; Ramesh, Govindarajan T.] Norfolk State Univ, Mol Toxicol Lab, Ctr Biotechnol & Biomed Sci, Dept Biol, Norfolk, VA 23504 USA. [Sodipe, Ayodotun; Jejelowo, Olufisayo] Texas So Univ, Dept Biol, Houston, TX 77004 USA. [Zhang, Ye; Wu, Honglu] NASA, Lyndon B Johnson Space Ctr, Radiat Biophys Lab, Houston, TX 77058 USA. [Zhang, Ye; Wu, Honglu] NASA, Lyndon B Johnson Space Ctr, Human Adaptat & Countermeasures Div, Houston, TX 77058 USA. [Gridley, Daila S.] Loma Linda Univ, Med Ctr, Dept Radiat Med, Loma Linda, CA 92354 USA. RP Ramesh, GT (reprint author), Norfolk State Univ, Mol Toxicol Lab, Ctr Biotechnol & Biomed Sci, Dept Biol, Norfolk, VA 23504 USA. EM gtramesh@nsu.edu RI Gridley, Daila/P-7711-2015 FU NASA [NNX08BA47A, NCC-1-02038, NIH-1P20MD001822-1] FX This work was supported by NASA funding NNX08BA47A: NCC-1-02038: NIH-1P20MD001822-1 (GR). NR 29 TC 11 Z9 11 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1071-2690 J9 IN VITRO CELL DEV-AN JI In Vitro Cell. Dev. Biol.-Anim. PD SEP PY 2010 VL 46 IS 8 BP 718 EP 725 DI 10.1007/s11626-010-9330-2 PG 8 WC Cell Biology; Developmental Biology SC Cell Biology; Developmental Biology GA 644RG UT WOS:000281396600009 PM 20607620 ER PT J AU Guggilla, VS Akyurtlu, J Akyurtlu, A Blankson, I AF Guggilla, Vidya Sagar Akyurtlu, Jale Akyurtlu, Ates Blankson, Isaiah TI Steam Reforming of n-Dodecane over Ru-Ni-Based Catalysts SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID GEL NI/AL2O3 CATALYSTS; BIMETALLIC CATALYSTS; CARBON-DIOXIDE; HYDROGEN-PRODUCTION; FUEL-CELLS; NI/GAMMA-AL2O3 CATALYSTS; NI/CEO2-AL2O3 CATALYSTS; NICKEL-CATALYST; LOW-TEMPERATURE; SYNTHESIS GAS AB Steam reforming of n-dodecane has been carried out with the goal of development of new and highly active catalysts for hydrogen production. Newly designed RuO-NiO-CeO(2)-Al(2)O(3) catalysts have been successfully prepared with various loadings of Ni by sol-gel method. X-ray diffraction (XRD), H(2) TPD, BET surface area, temperature-programmed reduction (TPR), and temperature-programmed desorption of CO(2) (TPD of CO2) were used to characterize the prepared catalysts. The coke formation was studied by temperature programmed oxidation (TPO). The reforming of n-dodecane was carried out in a microreactor and investigated at different reaction temperatures, space velocity, steam/carbon ratio, and time-on-stream. Characterization results reveal that the presence of Ru and CeO(2) enhances the catalyst reducibility. H2 TPD and CO(2) TPD data indicate that 1 wt % Ru/2.5 wt % Ni/3 wt % CeO(2)/Al(2)O(3) (1R2.5N3CA) catalyst exhibits larger nickel surface area and higher basicity compared to all the other catalysts. The activity and hydrogen yield of the 1R2.5N3CA catalyst are significantly higher than those of the other nickel catalysts under the same experimental conditions. Catalytic stability is also enhanced by the presence of ruthenium in nickel catalysts. Such improvement indicates that ruthenium plays an important role in the catalytic action of nickel. Overall, the bimetallic 1R2.5N3CA may be an effective catalyst for the production of hydrogen from n-dodecane. C1 [Guggilla, Vidya Sagar; Akyurtlu, Jale; Akyurtlu, Ates] Hampton Univ, Dept Chem Engn, Hampton, VA 23668 USA. [Blankson, Isaiah] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. RP Guggilla, VS (reprint author), W Virginia Univ, Morgantown, WV 26506 USA. EM vidyasagar.guggilla@mail.wvu.edu FU NASA [NCC3-1037] FX The authors gratefully acknowledge financial support from NASA grant (NCC3-1037). They thank Dr. V. Jagasivamani for his assistance with the XRD experiments. NR 63 TC 22 Z9 22 U1 7 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD SEP 1 PY 2010 VL 49 IS 17 BP 8164 EP 8173 DI 10.1021/ie100811g PG 10 WC Engineering, Chemical SC Engineering GA 641EO UT WOS:000281107800044 ER PT J AU Clancy, TC Frankland, SJV Hinkley, JA Gates, TS AF Clancy, T. C. Frankland, S. J. V. Hinkley, J. A. Gates, T. S. TI Multiscale modeling of thermal conductivity of polymer/carbon nanocomposites SO INTERNATIONAL JOURNAL OF THERMAL SCIENCES LA English DT Article DE Simulation; Thermal conductivity; Nanocomposite; Carbon nanotube; Polymer ID CARBON-NANOTUBE COMPOSITES; MOLECULAR-DYNAMICS; GRAPHITE NANOCOMPOSITES; HEAT-FLOW; RESISTANCE AB Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between nanoparticles and amorphous and crystalline polymer matrices. Bulk thermal conductivities of the nanocomposites were then estimated using an established effective medium approach. To study functionalization, oligomeric ethylene vinyl alcohol copolymers were chemically bonded to a single wall carbon nanotube. The results, in a poly(ethylene vinyl acetate) matrix, are similar to those obtained previously for grafted linear hydrocarbon chains. To study the effect of non-covalent functionalization, two types of polyethylene matrices. aligned (extended-chain crystalline) vs. amorphous (random coils) were modeled. Both matrices produced the same interfacial thermal resistance values. Finally, functionalization of edges and faces of plate-like graphite nanoparticles was found to be only modestly effective in reducing the interfacial thermal resistance and improving the composite thermal conductivity. (C) 2010 Elsevier Masson SAS. All rights reserved. C1 [Clancy, T. C.; Frankland, S. J. V.] Natl Inst Aerosp, Hampton, VA 23666 USA. [Hinkley, J. A.; Gates, T. S.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Clancy, TC (reprint author), Natl Inst Aerosp, 100 Explorat Way, Hampton, VA 23666 USA. EM tclancy@nianet.org NR 20 TC 22 Z9 24 U1 3 U2 33 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1290-0729 EI 1778-4166 J9 INT J THERM SCI JI Int. J. Therm. Sci. PD SEP PY 2010 VL 49 IS 9 BP 1555 EP 1560 DI 10.1016/j.ijthermalsci.2010.05.007 PG 6 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 638JG UT WOS:000280889900009 ER PT J AU Ma, J Karaman, I Noebe, RD AF Ma, J. Karaman, I. Noebe, R. D. TI High temperature shape memory alloys SO INTERNATIONAL MATERIALS REVIEWS LA English DT Review DE High temperature shape memory alloys; Intermetallics; Thermomechanical processing; Shape memory effect; Superelasticity; Martensitic transformation ID MARTENSITIC-TRANSFORMATION BEHAVIOR; MN-GA ALLOYS; CU-AL-NB; THERMAL CYCLIC CHARACTERISTICS; ZRCU INTERMETALLIC COMPOUND; CHANNEL ANGULAR EXTRUSION; NICKEL-TITANIUM ALLOYS; EQUIATOMIC TINI ALLOY; NI SINGLE-CRYSTALS; MELT-SPUN RIBBONS AB Shape memory alloys (SMAs) with high transformation temperatures can enable simplifications and improvements in operating efficiency of many mechanical components designed to operate at temperatures above 100 degrees C, potentially impacting the automotive, aerospace, manufacturing and energy exploration industries. A wide range of these SMAs exists and can be categorised in three groups based on their martensitic transformation temperatures: group I, transformation temperatures in the range of 100-400 degrees C; group II, in the range of 400-700 degrees C; and group III, above 700 degrees C. In addition to the high transformation temperatures, potential high temperature shape memory alloys (HTSMAs) must also exhibit acceptable recoverable transformation strain levels, long term stability, resistance to plastic deformation and creep, and adequate environmental resistance. These criteria become increasingly more difficult to satisfy as their operating temperatures increase, due to greater involvement of thermally activated mechanisms in their thermomechanical responses. Moreover, poor workability, due to the ordered intermetallic structure of many HTSMA systems, and high material costs pose additional problems for the commercialisation of HTSMAs. In spite of these challenges, progress has been made through compositional control, alloying, and the application of various thermomechanical processing techniques to the point that several likely applications have been demonstrated in alloys such as Ti-Ni-Pd and Ti-Ni-Pt. In the present work, a comprehensive review of potential HTSMA systems are presented in terms of physical and thermomechanical properties, processing techniques, challenges and applications. C1 [Ma, J.; Karaman, I.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Karaman, I.] Texas A&M Univ, Mat Sci & Eng Interdisciplinary Grad Program, College Stn, TX 77843 USA. [Noebe, R. D.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Karaman, I (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. EM ikaraman@tamu.edu RI Karaman, Ibrahim/E-7450-2010 OI Karaman, Ibrahim/0000-0001-6461-4958 FU NASA [NNX07AB56A]; National Science Foundation - Division of Chemical, Bioengineering, Environmental, and Transport Systems [0731133]; National Science Foundation - Division of Materials Research [0805293] FX The corresponding author would like to acknowledge the financial support from: the NASA Fundamental Aeronautics Program, Subsonic Fixed Wing Project through cooperative agreement no. NNX07AB56A; National Science Foundation - Division of Chemical, Bioengineering, Environmental, and Transport Systems - Bioengineering Program, grant no. 0731133; and National Science Foundation - Division of Materials Research - Metallic Materials Program, grant no. 0805293, all of which were instrumental in the preparation of this review. RDN would like to acknowledge support from the NASA Fundamental Aeronautics Program, Supersonics and Subsonic Fixed Wing Projects. NR 318 TC 223 Z9 227 U1 32 U2 247 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 0950-6608 J9 INT MATER REV JI Int. Mater. Rev. PD SEP PY 2010 VL 55 IS 5 BP 257 EP 315 DI 10.1179/095066010X12646898728363 PG 59 WC Materials Science, Multidisciplinary SC Materials Science GA 645IC UT WOS:000281445000001 ER PT J AU Mattmann, CA Crichton, DJ Hart, AF Kelly, SC Hughes, JS AF Mattmann, Chris A. Crichton, Daniel J. Hart, Andrew F. Kelly, Sean C. Hughes, J. Steven TI Experiments with Storage and Preservation of NASA's Planetary Data via the Cloud SO IT PROFESSIONAL LA English DT Article C1 [Mattmann, Chris A.; Crichton, Daniel J.; Hart, Andrew F.; Kelly, Sean C.; Hughes, J. Steven] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Mattmann, Chris A.] Univ So Calif, Dept Comp Sci, Los Angeles, CA 90089 USA. RP Mattmann, CA (reprint author), NASA, Jet Prop Lab, Pasadena, CA 91109 USA. EM mattmann@jpl.nasa.gov; crichton@jpl.nasa.gov; andrew.f.hart@jpl.nasa.gov; sean.kelly@jpl.nasa.gov; jshughes@jpl.nasa.gov FU Jet Propulsion Laboratory under NASA FX This work was supported by the Jet Propulsion Laboratory, managed by the California Institute of Technology, under a contract with NASA. NR 15 TC 3 Z9 3 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1520-9202 J9 IT PROF JI IT Prof. PD SEP-OCT PY 2010 VL 12 IS 5 BP 28 EP 35 PG 8 WC Computer Science, Information Systems; Computer Science, Software Engineering; Telecommunications SC Computer Science; Telecommunications GA V23GB UT WOS:000208330200007 ER PT J AU Palopo, K Windhorst, RD Suharwardy, S Lee, HT AF Palopo, Kee Windhorst, Robert D. Suharwardy, Salman Lee, Hak-Tae TI Wind-Optimal Routing in the National Airspace System SO JOURNAL OF AIRCRAFT LA English DT Article; Proceedings Paper CT AIAA 9th Aviation Technology, Integration and Operations Conference CY SEP 21-23, 2009 CL Hilton Head, CA SP AIAA AB A study analyzing the economic cost and benefit impacts of different flight routing methods in the National Airspace System is presented. It compares wind-optimal routes and filed flight routes for 365 days of traffic, from 2005 to 2007, in class A airspace. Routing differences are measured by flight time, fuel burn, sector loading, conflict counts, and airport arrival rates. From the results, wind-optimal routes exhibit an average per-flight time saving of 2.7 min and an average fuel saving of 210 lb, compared to filed flight routes. In addition, the airport arrival rates at the top 73 U.S. domestic airports do not show notable differences between wind-optimal routing and filed flight routing. The study shows an average of 29% fewer conflicts. Finally, wind-optimal routes have, at most, one high-altitude sector with increased sector workload than filed flight routes at any time instance. C1 [Suharwardy, Salman; Lee, Hak-Tae] Univ Affiliated Res Ctr, Aerosp Syst Modeling & Optimizat Branch, Moffett Field, CA 94035 USA. [Palopo, Kee; Windhorst, Robert D.] NASA, Ames Res Ctr, Aerosp Syst Modeling & Optimizat Branch, Moffett Field, CA 94035 USA. RP Lee, HT (reprint author), Univ Affiliated Res Ctr, Aerosp Syst Modeling & Optimizat Branch, Mail Stop 210-8, Moffett Field, CA 94035 USA. NR 15 TC 4 Z9 4 U1 0 U2 3 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 J9 J AIRCRAFT JI J. Aircr. PD SEP-OCT PY 2010 VL 47 IS 5 BP 1584 EP 1592 DI 10.2514/1.C000208 PG 9 WC Engineering, Aerospace SC Engineering GA 667PM UT WOS:000283206100011 ER PT J AU Karlsson, J Svensson, G Cardoso, S Teixeira, J Paradise, S AF Karlsson, Johannes Svensson, Gunilla Cardoso, Sambingo Teixeira, Joao Paradise, Susan TI Subtropical Cloud-Regime Transitions: Boundary Layer Depth and Cloud-Top Height Evolution in Models and Observations SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID STRATOCUMULUS TRANSITION; MARINE STRATOCUMULUS; SHALLOW CUMULUS; MIXED LAYERS; MISR; ENTRAINMENT; PACIFIC; ASTEX; PARAMETERIZATION; SIMULATIONS AB In this study, the mean and variability of boundary layer height (BLH) are analyzed along a transect in the eastern Pacific Ocean for the summer of 2003 using BLH estimates based on the height of the main relative humidity (RH) inversion and the height of low cloud tops (CTH). The observations and the regional and global model data have been prepared in the context of the Global Energy and Water Cycle Experiment (GEWEX) Cloud System Study (GCSS) Pacific Cross-Section Intercomparison (GPCI). The GPCI transect covers the transition from a stratocumulus-topped marine boundary layer (MBL) off the coast of California to a trade cumulus-topped, less-well-defined, MBL, and finally to the deep-convection regions in the intertropical convergence zone (ITCZ). The Atmospheric Infrared Sounder (AIRS) and the Multiangle Imaging Spectroradiometer (MISR) have been used to derive observational records of the two BLH estimates. Analyses from the ECMWF are also used in the study. Both BLH estimates in the models, the ECMWF analysis, and the observations agree on a southward vertical growth of the MBL along the GPCI transect in the stratocumulus region. Away from the region typically associated with extensive cloud cover, the two BLH estimates depict different evolutions of the MBL. In most models, the height of the main RH inversion decreases southward from; similar to 18 degrees N, reaching a minimum at the ITCZ, whereas the height of the RH inversion in the ECMWF analysis and a few of the models is fairly constant all the way to the ITCZ. As a result of insufficient vertical resolution of the gridded dataset, the AIRS data only manage to reproduce the initial growth of the BLH. The median-model CTH increases from the stratocumulus-topped MBL to the ITCZ. In contrast, the observed MISR CTHs decrease southward from 20 degrees N to the ITCZ, possibly indicative of the fact that in these regions MISR manages to capture a variety of cloud tops with a mean that is below the subsidence inversion while the models and the ECMWF analysis mainly simulate CTHs corresponding to the height of the subsidence inversion. In most models and in the ECMWF analysis, the height of the main RH inversion and the CTH tend to coincide in the northern part of the GPCI transect. In the regions associated with trade cumuli and deep convection there is a more ambiguous relation between the two BLH estimates. In this region, most of the models place the CTH above the main RH inversion. The ECMWF analysis shows a good agreement between the BLH estimates throughout the transect. C1 [Karlsson, Johannes; Svensson, Gunilla] Univ Stockholm, Dept Meteorol, S-10691 Stockholm, Sweden. [Cardoso, Sambingo] Univ Lisbon, Inst Dom Lus, P-1699 Lisbon, Portugal. [Cardoso, Sambingo] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Teixeira, Joao; Paradise, Susan] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Karlsson, J (reprint author), Univ Stockholm, Dept Meteorol, S-10691 Stockholm, Sweden. EM johannes@misu.su.se RI Karlsson, Johannes/H-3937-2011 FU National Science Foundation; Office of Naval Research [N0001408IP20064]; NASA; Portuguese Science and Technology Foundation (FCT) [SFRH/BD/37214/2007] FX The National Center for Atmospheric Research is sponsored by the National Science Foundation.; We acknowledge the modeling groups contributing with model data to the GPCI. We also thank Andrew Gettleman (NCAR/CGD/CMS) for providing the AIRS data. Support for this research was partly provided by the Office of Naval Research, Marine Meteorology Program under Award N0001408IP20064 and by the NASA MAP Program. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Sambingo Cardoso contributed to this research during a visit to the National Center for Atmospheric Research on Ph.D. Grant SFRH/BD/37214/2007 by the Portuguese Science and Technology Foundation (FCT). NR 52 TC 28 Z9 28 U1 2 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD SEP PY 2010 VL 49 IS 9 BP 1845 EP 1858 DI 10.1175/2010JAMC2338.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 655LI UT WOS:000282251100004 ER PT J AU Gustafsson, T Osterlund, T Flanagan, JN von Walden, F Trappe, TA Linnehan, RM Tesch, PA AF Gustafsson, T. Osterlund, T. Flanagan, J. N. von Walden, F. Trappe, T. A. Linnehan, R. M. Tesch, P. A. TI Effects of 3 days unloading on molecular regulators of muscle size in humans SO JOURNAL OF APPLIED PHYSIOLOGY LA English DT Article DE atrophy; proteasome degradation; simulated spaceflight; ubiquitin ID HUMAN SKELETAL-MUSCLE; FOXO TRANSCRIPTION FACTORS; MESSENGER-RNA EXPRESSION; RESISTANCE EXERCISE; GENE-EXPRESSION; DISUSE ATROPHY; UBIQUITIN LIGASES; PROTEIN-SYNTHESIS; TIME-COURSE; BED REST AB Gustafsson T, Osterlund T, Flanagan JN, von Walden F, Trappe TA, Linnehan RM, Tesch PA. Effects of 3 days unloading on molecular regulators of muscle size in humans. J Appl Physiol 109: 721-727, 2010. First published June 10, 2010; doi: 10.1152/japplphysiol.00110.2009.-Changes in skeletal muscle mass are controlled by mechanisms that dictate protein synthesis or degradation. The current human study explored whether changes in activation of the phosphoinositide 3-kinase (PI3K)-Akt1, p38, myostatin, and mRNA expression of markers of protein degradation and synthesis occur soon after withdrawal of weight bearing. Biopsies of the vastus lateralis muscle (VL) and soleus muscle (Sol) were obtained from eight healthy men before and following 3 days of unilateral lower limb suspension (ULLS). Akt1, Forkhead box class O (FOXO)-1A, FOXO-3A, p38, and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1) phosphorylation and protein levels and myostatin protein level were analyzed by Western blot. Levels of mRNA of IGF1, FOXO-1A, FOXO-3A, atrogin-1, MuRF-1, caspase-3, calpain-2, calpain-3, 4E-BP1, and myostatin were measured using real-time PCR. The amounts of phosphorylated Akt1, FOXO-1A, FOXO-3A, and p38 were unaltered (P > 0.05) after ULLS. Similarly, mRNA levels of IGF1, FOXO-1A, FOXO-3A, caspase-3, calpain-2, and calpain-3 showed no changes (P > 0.05). The mRNA levels of atrogin-1 and MuRF-1, as well as the mRNA and protein phosphorylation of 4E-BP1, increased (P < 0.05) in VL but not in Sol. Both muscles showed increased (P < 0.05) myostatin mRNA and protein following ULLS. These results suggest that pathways other than PI3K-Akt stimulate atrogin-1 and MuRF-1 expression within 3 days of ULLS. Alternatively, transient changes in these pathways occurred in the early phase of ULLS. The increased myostatin mRNA and protein expression also indicate that multiple processes are involved in the early phase of muscle wasting. Further, the reported difference in gene expression pattern across muscles suggests that mechanisms regulating protein content in human skeletal muscle are influenced by phenotype and/or function. C1 [Gustafsson, T.; Osterlund, T.] Karolinska Inst, Dept Lab Med, Sect Clin Physiol, Karolinska Univ Hosp, S-14186 Stockholm, Sweden. [Flanagan, J. N.] Karolinska Inst, Karolinska Univ Hosp, Dept Med, Androl Unit, S-14186 Stockholm, Sweden. [Flanagan, J. N.] Karolinska Inst, Karolinska Univ Hosp, Dept Med, Mol Endocrinol Unit, S-14186 Stockholm, Sweden. [Trappe, T. A.] Ball State Univ, Human Performance Lab, Muncie, IN 47306 USA. [Linnehan, R. M.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [von Walden, F.; Tesch, P. A.] Karolinska Inst, Dept Physiol & Pharmacol, S-14186 Stockholm, Sweden. [Tesch, P. A.] Mid Sweden Univ, Dept Hlth Sci, Ostersund, Sweden. RP Gustafsson, T (reprint author), Karolinska Inst, Dept Lab Med, Sect Clin Physiol, Karolinska Univ Hosp, S-14186 Stockholm, Sweden. EM Thomas.Gustafsson@ki.se OI Gustafsson, Thomas/0000-0002-1559-4206 FU Swedish National Centre for Research in Sports; Karolinska Institute Foundation; Swedish Society of Medicine; Loo and Hans Osterman Foundation; Swedish Research Council; The Swedish Society for Medical Research; Swedish National Space Board; National Aeronautics and Space Administration (NASA) FX This study was supported by grants from the Swedish National Centre for Research in Sports (T. Gustafsson, P. A. Tesch), the Karolinska Institute Foundation (T. Gustafsson), the Swedish Society of Medicine (T. Gustafsson), the Loo and Hans Osterman Foundation (T. Gustafsson), the Swedish Research Council (T. Gustafsson, J. N. Flanagan), The Swedish Society for Medical Research (T. Gustafsson), the Swedish National Space Board (P. A. Tesch), and the National Aeronautics and Space Administration (NASA; R. M. Linnehan). NR 49 TC 60 Z9 61 U1 3 U2 14 PU AMER PHYSIOLOGICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 8750-7587 J9 J APPL PHYSIOL JI J. Appl. Physiol. PD SEP PY 2010 VL 109 IS 3 BP 721 EP 727 DI 10.1152/japplphysiol.00110.2009 PG 7 WC Physiology; Sport Sciences SC Physiology; Sport Sciences GA 651WT UT WOS:000281958800014 PM 20538844 ER PT J AU Maddux, BC Ackerman, SA Platnick, S AF Maddux, B. C. Ackerman, S. A. Platnick, S. TI Viewing Geometry Dependencies in MODIS Cloud Products SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID GROUND-BASED OBSERVATIONS; STATISTICS; VALIDATION; TERRA; MASK; HIRS AB Characterizing the earth's global cloud field is important for the proper assessment of the global radiation budget and hydrologic cycle. This characterization can only be achieved with satellite measurements. For complete daily coverage across the globe, polar-orbiting satellites must take observations over a wide range of sensor zenith angles. This paper uses Moderate Resolution Imaging Spectroradiometer (MODIS) Level-3 data to determine the effect that sensor zenith angle has on global cloud properties including the cloud fraction, cloud-top pressure, effective radii, and optical thickness. For example, the MODIS cloud amount increases from 57% to 71% between nadir and edge-of-scan (similar to 67 degrees) observations, for clouds observed between 35 degrees N and 35 degrees S latitude. These increases are due to a combination of factors, including larger pixel size and longer observation pathlength at more oblique sensor zenith angles. The differences caused by sensor zenith angle bias in cloud properties are not readily apparent in monthly mean regional or global maps because the averaging of multiple satellite overpasses together "washes out'' the zenith angle artifact. Furthermore, these differences are not constant globally and are dependent on the cloud type being observed. C1 [Maddux, B. C.; Ackerman, S. A.] Univ Wisconsin Madison, Dept Atmospher & Ocean Sci, Madison, WI USA. [Maddux, B. C.; Ackerman, S. A.] Univ Wisconsin Madison, Cooperat Inst Meteorol Satellite Studies, Madison, WI USA. [Platnick, S.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. RP Maddux, BC (reprint author), 1225 W Dayton St, Madison, WI 53706 USA. EM brentm@ssec.wisc.edu RI Ackerman, Steven/G-1640-2011; Platnick, Steven/J-9982-2014 OI Ackerman, Steven/0000-0002-4476-0269; Platnick, Steven/0000-0003-3964-3567 FU NASA [NNX08AF78A, NNX09AP02G] FX The authors thank the MODIS Science Team, especially Richard Frey, Michael King, and Paul Menzel. Data were acquired from the Level 1 and Atmosphere Archive and Distribution System at ladsweb. nascom.nasa.gov. Funding for this manuscript was partially provided by NASA Grants NNX08AF78A and NNX09AP02G. NR 32 TC 37 Z9 38 U1 1 U2 19 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD SEP PY 2010 VL 27 IS 9 BP 1519 EP 1528 DI 10.1175/2010JTECHA1432.1 PG 10 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 652WS UT WOS:000282042200007 ER PT J AU Chamoire, A Gascoin, F Estournes, C Caillat, T Tedenac, JC AF Chamoire, A. Gascoin, F. Estournes, C. Caillat, T. Tedenac, J. -C. TI High-Temperature Transport Properties of Yb4-x Sm (x) Sb-3 SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article; Proceedings Paper CT 28th International Conference on Thermoelectrics/7th European Conference on Thermoelectrics CY JUL 26-30, 2009 CL Freiburg, GERMANY DE Yb4Sb3; anti-Th3P4; spark plasma sintering; thermoelectrics ID ANTI-TH3P4 STRUCTURE; VALENCE FLUCTUATION; SYSTEM; YB4BI3; YB4AS3; YB4SB3 AB Polycrystalline L4Sb3 (L = La, Ce, Sm, and Yb) and Yb4-x Sm (x) Sb-3, which crystallizes in the anti-Th3P4 structure type (I-43d no. 220), were synthesized via high-temperature reaction. Structural and chemical characterization were performed by x-ray diffraction and electronic microscopy with energy-dispersive x-ray analysis. Pucks were densified by spark plasma sintering. Transport property measurements showed that these compounds are n-type with low Seebeck coefficients, except for Yb4Sb3, which shows semimetallic behavior with hole conduction above 523 K. By partially substituting Yb by a trivalent rare earth we successfully improved the thermoelectric figure of merit of Yb4Sb3 up to 0.7 at 1273 K. C1 [Estournes, C.] Univ Toulouse 3, CIRIMAT, MHT PNF2, F-33062 Toulouse, France. [Caillat, T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gascoin, F.] ENSICAEN CNRS, Lab CRISMAT, UMR 6508, F-14050 Caen 4, France. [Chamoire, A.; Gascoin, F.; Tedenac, J. -C.] Univ Montpellier 2, Inst Charles Gerhardt Montpellier, Equipe PMOF, CNRS,ENSCM,UM2,UM1,UMR 5253, F-34095 Montpellier, France. RP Chamoire, A (reprint author), Ohio State Univ, Dept Mech Engn, Columbus, OH 43210 USA. EM achamoire@gmail.com RI ESTOURNES, Claude/F-2322-2017 OI ESTOURNES, Claude/0000-0001-8381-8454 NR 17 TC 0 Z9 0 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD SEP PY 2010 VL 39 IS 9 BP 1579 EP 1582 DI 10.1007/s11664-010-1274-5 PG 4 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 644PW UT WOS:000281393000038 ER PT J AU Sibley, G Matthies, L Sukhatme, G AF Sibley, Gabe Matthies, Larry Sukhatme, Gaurav TI Sliding Window Filter with Application to Planetary Landing SO JOURNAL OF FIELD ROBOTICS LA English DT Article; Proceedings Paper CT IEEE International Conference on Robotics and Automation CY MAY 12-17, 2009 CL Kobe, JAPAN SP IEEE ID GAUSS-NEWTON METHOD; SIMULTANEOUS LOCALIZATION; KALMAN FILTER; NAVIGATION; PARAMETER AB We are concerned with improving the range resolution of stereo vision for entry, descent, and landing (EDL) missions to Mars and other planetary bodies. The goal is to create accurate and precise three-dimensional planetary surface-structure estimates by filtering sequences of stereo images taken from an autonomous landing vehicle. We describe a sliding window filter (SWF) approach based on delayed state marginalization. The SWF can run in constant time, yet still achieve experimental results close to those of the bundle adjustment solution. This technique can scale from the offline batch least-squares solution to fast online incremental solutions. For instance, if the window encompasses all time, the solution is equivalent to full bundle adjustment; if only one time step is maintained, the solution matches the extended Kalman filter; if poses and landmarks are slowly marginalized out over time such that the state vector ceases to grow, then the filter becomes constant time, like visual odometry. Within the constant time regime, the sliding window approach demonstrates convergence properties that are close to those of the full batch solution and strictly superior to visual odometry. Experiments with real data show that ground structure estimates follow the expected convergence pattern that is predicted by theory. These experiments indicate the effectiveness of filtering long-range stereo for EDL. (C) 2010 Wiley Periodicals, Inc. C1 [Sibley, Gabe; Sukhatme, Gaurav] Univ So Calif, Dept Comp Sci, Los Angeles, CA 90089 USA. [Matthies, Larry] NASA, Jet Prop Lab, Comp Vis Grp, Pasadena, CA 91109 USA. RP Sibley, G (reprint author), Univ So Calif, Dept Comp Sci, Los Angeles, CA 90089 USA. NR 96 TC 46 Z9 47 U1 2 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1556-4959 EI 1556-4967 J9 J FIELD ROBOT JI J. Field Robot. PD SEP-OCT PY 2010 VL 27 IS 5 SI SI BP 587 EP 608 DI 10.1002/rob.20360 PG 22 WC Robotics SC Robotics GA 638CV UT WOS:000280869700005 ER PT J AU Rai, MM AF Rai, Man Mohan TI A computational investigation of the instability of the detached shear layers in the wake of a circular cylinder SO JOURNAL OF FLUID MECHANICS LA English DT Article DE instability; mathematical foundations; wakes/jets ID DIRECT NUMERICAL-SIMULATION; TRANSITION; TURBULENCE; FLOW AB Cylinder wakes have been studied extensively over several decades to better understand the basic flow phenomena encountered in such flows. The physics of the very near wake of the cylinder is perhaps the most challenging of them all. This region comprises the two detached shear layers, the recirculation region and wake flow. A study of the instability of the detached shear layers is important because these shear layers have a considerable impact on the dynamics of the very near wake. It has been observed experimentally that during certain periods of time that are randomly distributed, the measured fluctuating velocity component near the shear layers shows considerable amplification and it subsequently returns to its normal level (intermittency). Here, direct numerical simulations are used to accomplish a number of objectives such as confirming the presence of intermittency (computationally) and shedding light on processes that contribute significantly to intermittency and shear-layer transition/breakdown. Velocity time traces together with corresponding instantaneous vorticity contours are used in deciphering the fundamental processes underlying intermittency and shear-layer transition. The computed velocity spectra at three locations along the shear layer are provided. The computed shear-layer frequency agrees well with a power-law fit to experimental data. C1 NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Rai, MM (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM man.m.rai@nasa.gov NR 14 TC 12 Z9 12 U1 2 U2 9 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD SEP PY 2010 VL 659 BP 375 EP 404 DI 10.1017/S002211201000251X PG 30 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 653SX UT WOS:000282118200016 ER PT J AU Mest, SC Crown, DA Harbert, W AF Mest, Scott C. Crown, David A. Harbert, William TI Watershed modeling in the Tyrrhena Terra region of Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID DIGITAL ELEVATION MODELS; SMALL MARTIAN VALLEYS; THERMAL EMISSION SPECTROMETER; MARGARITIFER SINUS; DRAINAGE NETWORKS; EVOLUTION; SURFACE; ORIGIN; CHANNELS; CRATER AB Watershed analyses from high-resolution image (Viking, Mars Orbiter Camera, and Thermal Emission Imaging System) and topographic (Mars Orbiter Laser Altimeter [MOLA]) data are used to qualitatively and quantitatively characterize highland fluvial systems and analyze the role of water in the evolution of Tyrrhena Terra (13 degrees S-30 degrees S, 265 degrees W-280 degrees W), Mars. In this study, Geographical Information System software is used in conjunction with MOLA Digital Elevation Models to delineate drainage basin divides, extract valley networks, and derive basin and network morphometric parameters (e. g., drainage density, stream order, bifurcation ratio, and relief morphometry) useful in characterizing the geologic and climatic conditions of watershed formation, as well as for evaluating basin "maturity" and processes of watershed development. Model-predicted valley networks and watershed boundaries, which are dependent on the degree to which pixel sinks are filled in the topographic data set and a channelization threshold, are evaluated against image and topographic data, slope maps, and detailed maps of valley segments from photogeologic analyses. Valley morphologies, crater/valley relationships, and impact crater distributions show that valleys in Tyrrhena Terra are ancient. Based on geologic properties of the incised materials, valley and network morphologies, morphometric parameters, and the presence of many gullies heading at or near-crater rim crests, surface runoff, derived from rainfall or snowmelt, was the dominant erosional process; sapping may have only played a secondary role in valley formation in Tyrrhena Terra. Furthermore, spatial and temporal relationships of dissected highland materials and impact craters, suggests widespread, but relatively short-lived, erosion by runoff with most activity in the Noachian period. C1 [Mest, Scott C.; Crown, David A.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Mest, Scott C.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. [Harbert, William] Univ Pittsburgh, Dept Geol & Planetary Sci, Pittsburgh, PA 15260 USA. RP Mest, SC (reprint author), Planetary Sci Inst, 1700 E Ft Lowell Rd,Ste 106, Tucson, AZ 85719 USA. EM mest@psi.edu RI Harbert, William/E-3502-2010 FU NASA [NGT5-125]; Planetary Geology and Geophysics Program [NAG5-10529]; Pennsylvania Space Grant Consortium FX The authors would like to thank Herb Frey and the Planetary Geodynamics Laboratory for giving Scott Mest the opportunity to conduct research at Goddard Space Flight Center. Thoughtful and helpful reviews provided by Bob Craddock, Tomasz Stepinski, David Tarboton, and two anonymous reviewers considerably improved this manuscript. This research was supported by grants from the NASA Graduate Student Researchers Program (NGT5-125), the Planetary Geology and Geophysics Program (NAG5-10529), and the Pennsylvania Space Grant Consortium. MOC images courtesy of NASA/JPL/Malin Space Science Systems and THEMIS images courtesy of NASA/JPL/Arizona Sate University. MOLA data courtesy of NASA/GSFC. NR 126 TC 11 Z9 11 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD SEP 1 PY 2010 VL 115 AR E09001 DI 10.1029/2009JE003429 PG 27 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 647QD UT WOS:000281632800001 ER PT J AU Liu, Y Tao, G Joshi, SM AF Liu, Yu Tao, Gang Joshi, Suresh M. TI Modeling and Model Reference Adaptive Control of Aircraft with Asymmetric Damage SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article; Proceedings Paper CT AIAA Guidance, Navigation and Control Conference CY AUG 10-13, 2009 CL Chicago, IL SP Amer Inst Aeronaut & Astronaut AB This paper addresses some fundamental issues in adaptive control of aircraft with structural damage. It presents a thorough study of linearized aircraft models with damage to obtain new details of system descriptions, such as coupling and partial derivatives of lateral and longitudinal dynamics. A detailed study of system invariance under damage conditions is performed for generic aircraft models to obtain key system characterizations for model reference adaptive control, such as infinite zero structure and signs of high-frequency gain matrices. A comprehensive study of multivariable model reference adaptive control systems in the presence of damage is performed to obtain critical design specifications for adaptive flight control, such as system and controller parameterizations and adaptive parameter update laws. Both analytical and simulation results are given to illustrate the design and performance of adaptive control systems for aircraft flight control. C1 [Liu, Yu; Tao, Gang] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA. [Joshi, Suresh M.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Liu, Y (reprint author), Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA. NR 13 TC 15 Z9 18 U1 0 U2 3 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD SEP-OCT PY 2010 VL 33 IS 5 BP 1500 EP 1517 DI 10.2514/1.47996 PG 18 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 653FK UT WOS:000282073600018 ER PT J AU Markley, FL Reynolds, RG Liu, FX Lebsock, KL AF Markley, F. Landis Reynolds, Reid G. Liu, Frank X. Lebsock, Kenneth L. TI Maximum Torque and Momentum Envelopes for Reaction-Wheel Arrays SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article; Proceedings Paper CT AIAA Guidance, Navigation and Control Conference CY AUG 10-13, 2009 CL Chicago, IL SP Amer Inst Aeronaut & Astronaut AB Spacecraft reaction-wheel maneuvers are limited by the maximum torque and/or angular momentum that the wheels can provide. The torque or momentum envelope for an n-wheel configuration can be obtained by projecting the n-dimensional hypercube, representing the domain boundary of individual wheel torques or momenta, into three-dimensional space via the 3 x n matrix of wheel axes. This paper elucidates the properties of the projected hypercube and presents algorithms for determining this maximal torque or momentum envelope for general wheel configurations and for distributing a prescribed torque or momentum among the n wheels. We show that these algorithms provide 22, 27, and 33% more capability than the more conventional pseudoinverse algorithm for configurations of four, five, and six wheels, respectively. Analysis of a representative slew using six wheels shows that these algorithms can provide either a 25% reduction in maximum wheel momentum or a 30% reduction in slew time when compared with the pseudoinverse algorithm. C1 [Markley, F. Landis] NASA, Goddard Space Flight Ctr, Attitude Control Syst Engn Branch, Greenbelt, MD 20771 USA. [Reynolds, Reid G.] Millennium Space Syst Inc, Torrance, CA 90503 USA. [Liu, Frank X.] Stinger Ghaffarian Technol Inc, Greenbelt, MD 20770 USA. [Lebsock, Kenneth L.] Orbital Sci Corp, Greenbelt, MD 20770 USA. RP Markley, FL (reprint author), NASA, Goddard Space Flight Ctr, Attitude Control Syst Engn Branch, Code 591, Greenbelt, MD 20771 USA. NR 5 TC 15 Z9 16 U1 0 U2 3 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD SEP-OCT PY 2010 VL 33 IS 5 BP 1606 EP 1614 DI 10.2514/1.47235 PG 9 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 653FK UT WOS:000282073600026 ER PT J AU Raj, R Kim, J McQuillen, J AF Raj, Rishi Kim, Jungho McQuillen, John TI Gravity Scaling Parameter for Pool Boiling Heat Transfer SO JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME LA English DT Article DE scaling parameter; variable gravity; pool boiling; microgravity ID BUBBLE DYNAMICS; MICROGRAVITY AB Although the effects of microgravity, earth gravity, and hypergravity (>1.5 g) on pool boiling heat flux have been studied previously, pool boiling heat flux data over a continuous range of gravity levels (0-1.7 g) was unavailable until recently. The current work uses the results of a variable gravity, subcooled pool boiling experiment to develop a gravity scaling parameter for n-perfluorohexane/FC-72 in the buoyancy-dominated boiling regime (L(h)/L(c)>2.1). The heat flux prediction was then validated using heat flux data at different subcoolings and dissolved gas concentrations. The scaling parameter can be used as a tool to predict boiling heat flux at any gravity level in the buoyancy dominated regime if the data under similar experimental conditions are available at any other gravity level. [DOI: 10.1115/1.4001632] C1 [Raj, Rishi; Kim, Jungho] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA. [McQuillen, John] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Kim, J (reprint author), Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA. EM rraj@umd.edu; kimjh@umd.edu; john.b.mcquillen@nasa.gov RI Raj, Rishi/A-5215-2010 OI Raj, Rishi/0000-0002-9805-0609 FU NASA [NNX08AI60A] FX This work was supported by NASA under Grant No. NNX08AI60A through the Advanced Capabilities Division in the Exploration Systems Mission Directorate at NASA Headquarters. The authors would like to thank the European Space Agency for accommodating our experiment on the 48th ESA Parabolic Flight Campaign in March, 2008. NR 18 TC 7 Z9 7 U1 3 U2 13 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-1481 J9 J HEAT TRANS-T ASME JI J. Heat Transf.-Trans. ASME PD SEP PY 2010 VL 132 IS 9 AR 091502 DI 10.1115/1.4001632 PG 9 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 626UJ UT WOS:000279992300009 ER PT J AU Mulenburg, G AF Mulenburg, Gerald TI Work Breakdown Structures: The Foundation for Project Management Excellence SO JOURNAL OF PRODUCT INNOVATION MANAGEMENT LA English DT Book Review C1 [Mulenburg, Gerald] NASA, Kennedy Space Ctr, FL 32899 USA. NR 4 TC 0 Z9 0 U1 1 U2 17 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0737-6782 J9 J PROD INNOVAT MANAG JI J. Prod. Innov. Manage. PD SEP PY 2010 VL 27 IS 5 BP 779 EP 781 PG 4 WC Business; Engineering, Industrial; Management SC Business & Economics; Engineering GA 622NG UT WOS:000279669900012 ER PT J AU Casiano, MJ Hulka, JR Yang, V AF Casiano, Matthew J. Hulka, James R. Yang, Vigor TI Liquid-Propellant Rocket Engine Throttling: A Comprehensive Review SO JOURNAL OF PROPULSION AND POWER LA English DT Article; Proceedings Paper CT AIAA/ASME/SAE/ASEE 45th Joint Propulsion Conference CY AUG 02-07, 2009 CL Denver, CO SP AIAA, ASME, SAE, ASEE ID HISTORY AB Liquid-propellant rocket engines are capable of on-command variable thrust or thrust modulation, an operability advantage that has been studied intermittently since the late 1930s. Throttleable liquid-propellant rocket engines can be used for planetary entry and descent, space rendezvous, orbital maneuvering including orientation and stabilization in space, and hovering and hazard avoidance during planetary landing. Other applications have included control of aircraft rocket engines, limiting of vehicle acceleration or velocity using retrograde rockets, and ballistic missile defense trajectory control. Throttleable liquid-propellant rocket engines can also continuously follow the most economical thrust curve in a given situation, as opposed to making discrete throttling changes over a few select operating points. The effects of variable thrust on the mechanics and dynamics of an liquid-propellant rocket engine as well as difficulties and issues surrounding the throttling process are important aspects of throttling behavior. This review provides a detailed survey of liquid-propellant rocket engine throttling centered around engines from the United States. Several liquid-propellant rocket engine throttling methods are discussed, including high-pressure-drop systems, dual-injector manifolds, gas injection, multiple chambers, pulse modulation, throat throttling, movable injector components, and hydrodynamically dissipative injectors. Concerns and issues surrounding each method are examined, and the advantages and shortcomings compared. C1 [Casiano, Matthew J.] NASA, George C Marshall Space Flight Ctr, Prop Syst Dept, Huntsville, AL 35812 USA. [Hulka, James R.] Jacobs Engn, ESTS Grp, Prop Syst Dept, Huntsville, AL 35812 USA. [Yang, Vigor] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA. RP Casiano, MJ (reprint author), NASA, George C Marshall Space Flight Ctr, Prop Syst Dept, Mailstop ER42, Huntsville, AL 35812 USA. NR 117 TC 5 Z9 7 U1 2 U2 14 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 J9 J PROPUL POWER JI J. Propul. Power PD SEP-OCT PY 2010 VL 26 IS 5 BP 897 EP 923 DI 10.2514/1.49791 PG 27 WC Engineering, Aerospace SC Engineering GA 662FT UT WOS:000282793500001 ER PT J AU Zaman, KBMQ Rigby, DL Heidmann, JD AF Zaman, K. B. M. Q. Rigby, D. L. Heidmann, J. D. TI Inclined Jet in Crossflow Interacting with a Vortex Generator SO JOURNAL OF PROPULSION AND POWER LA English DT Article; Proceedings Paper CT 48th AIAA Aerospace Sciences Meeting CY JAN 04-07, 2010 CL Orlando, FL SP AIAA AB An experiment is conducted on the effectiveness of a vortex generator in preventing liftoff of a jet in crossflow, with possible relevance to film-cooling applications. The jet issues into the boundary layer at an angle of 20 degrees to the freestream. The effect of a triangular ramp-shaped vortex generator is studied while varying its geometry and location. Detailed flow:field properties are obtained for a case in which the height of the vortex generator and the diameter of the orifice are comparable with the approach boundary-layer thickness. The vortex generator produces a streamwise vortex pair with a vorticity magnitude 3 times larger (and of opposite sense) than that found in the jet in crossflow alone. Such a vortex generator appears to he most effective in keeping the jet attached to the wall. The effect of parametric variation is studied mostly from surveys 10 diameters downstream from the orifice. Results over a range of jet-to-freestream momentum flux ratio (1 10 mu m in diameter and the resulting linear relationship of projectile to crater diameter was extrapolated to smaller sizes. We now describe a new experimental calibration program firing very small monodisperse silica projectiles (470 nm-10 mu m) at approximately 6 km s-1. The results show an unexpected departure from linear relationship between 1 and 10 mu m. We collated crater measurement data and, where applicable, impactor residue data for 596 craters gathered during the postmission preliminary examination phase. Using the new calibration, we recalculate the size of the particle responsible for each crater and hence reinterpret the cometary dust size distribution. We find a greater flux of small particles than previously reported. From crater morphology and residue composition of a subset of craters, the internal structure and dimensions of the fine dust particles are inferred and a "maximum-size" distribution for the subgrains composing aggregate particles is obtained. The size distribution of the small particles derived directly from the measured craters peaks at approximately 175 nm, but if this is corrected to allow for aggregate grains, the peak in subgrain sizes is at < 100 nm. C1 [Price, M. C.; Burchell, M. J.; Cole, M. J.] Univ Kent, Sch Phys Sci, Canterbury CT2 7NH, Kent, England. [Kearsley, A. T.; Graham, G.] Nat Hist Museum, Dept Mineral, IARC, London SW7 5BD, England. [Hoerz, F.] NASA, Johnson Space Ctr, LZ Technol ESCG, Houston, TX 77058 USA. [Borg, J.] Inst Astrophys Spatiale, F-91405 Orsay, France. [Bridges, J. C.] Univ Leicester, Dept Phys & Astron, Space Res Ctr, Leicester LE1 7RH, Leics, England. [Floss, C.; Marhas, K. K.; Stadermann, F. J.] Washington Univ, Dept Phys, Space Sci Lab, St Louis, MO 63130 USA. [Green, S. F.] Open Univ, PSSRI, Milton Keynes MK7 6AA, Bucks, England. [Hoppe, P.] Max Planck Inst Chem, D-55020 Mainz, Germany. [Leroux, H.] Univ Lille 1, Unite Mat & Transformat, F-59655 Villeneuve Dascq, France. [Park, N.] AWE, Reading RG7 4PR, Berks, England. [Stroud, R.] USN, Res Lab, Washington, DC 20375 USA. [Telisch, N.; Wozniakiewicz, P. J.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. RP Price, MC (reprint author), Univ Kent, Sch Phys Sci, Canterbury CT2 7NH, Kent, England. EM mcp2@star.kent.ac.uk RI Green, Simon/C-7408-2009; Hoppe, Peter/B-3032-2015; Stroud, Rhonda/C-5503-2008 OI Hoppe, Peter/0000-0003-3681-050X; Stroud, Rhonda/0000-0001-5242-8015 FU STFC (UK); CNES (Centre National des Etudes Spatiales); DoE [DE-AC52-07NA27344] FX The work at the University of Kent was funded by a grant from the STFC (UK). H. L. and J. B. thank the CNES (Centre National des Etudes Spatiales) for their support. Contributions from N. T. and P. J. W. were performed under the auspices of the USA. DoE by LLNL under contract DE-AC52-07NA27344. NR 37 TC 42 Z9 42 U1 0 U2 6 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2010 VL 45 IS 9 BP 1409 EP 1428 DI 10.1111/j.1945-5100.2010.01104.x PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 694NA UT WOS:000285303700001 ER PT J AU Weisberg, MK Smith, C Herd, C Haack, H Yamaguchi, A Aoudjehane, HC Welzenbach, L Grossman, JN AF Weisberg, Michael K. Smith, Caroline Herd, Christopher Haack, Henning Yamaguchi, Akira Aoudjehane, Hasnaa Chennaoui Welzenbach, Linda Grossman, Jeffrey N. TI The Meteoritical Bulletin, No. 98, September 2010 SO METEORITICS & PLANETARY SCIENCE LA English DT Article AB This issue of The Meteoritical Bulletin reports information on 1103 meteorites including 281 non-Antarctic meteorites (Table 1) and 822 Antarctic meteorites (Table 2). Reported in full written descriptions are three falls. Full descriptions are also given for three shergottites, two ungrouped irons, a primitive achondrite, an olivine diogenite, and a lunar meteorite. One iron, Gebel Kamil, was found in and around the Kamil impact crater. Also reported is a new dense collection area in Tunisia. Tables list a wide variety of meteorites including chondrites, ureilites, irons, acapulcoites, and HEDs. Antarctic meteorites reported in this edition include meteorites recovered by ANSMET (US), CHINARE (China), KOREAMET (Korea), and the NIPR (Japan) meteorite recovery programs. C1 [Weisberg, Michael K.] Kingsborough Community Coll, Dept Phys Sci, Brooklyn, NY 11235 USA. [Weisberg, Michael K.] CUNY, Grad Sch, Brooklyn, NY 11235 USA. [Weisberg, Michael K.] Amer Museum Nat Hist, Dept Earth & Planetary Sci, New York, NY 10024 USA. [Smith, Caroline] Nat Hist Museum, Dept Mineral, London SW7 5BD, England. [Smith, Caroline] Univ Glasgow, Sch Geog & Earth Sci, Glasgow G12 8QQ, Lanark, Scotland. [Herd, Christopher] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB T6G 2E3, Canada. [Haack, Henning] Univ Copenhagen, Nat Hist Museum Denmark, DK-1350 Copenhagen K, Denmark. [Yamaguchi, Akira] Natl Inst Polar Res, Antarctic Meteorite Res Ctr, Tokyo 1908518, Japan. [Aoudjehane, Hasnaa Chennaoui] Univ Hassan 2, Fac Sci, Dept Geol, Casablanca, Morocco. [Welzenbach, Linda] Smithsonian Inst, Washington, DC 20013 USA. [Grossman, Jeffrey N.] NASA, Washington, DC 20546 USA. RP Weisberg, MK (reprint author), Kingsborough Community Coll, Dept Phys Sci, 2001 Oriental Blvd, Brooklyn, NY 11235 USA. EM meteorite@kingsborough.edu RI Haack, Henning/A-4807-2013 OI Haack, Henning/0000-0002-4618-3178 FU EC FX LF was supported by the EC through the ORIGINS project. NR 3 TC 7 Z9 7 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2010 VL 45 IS 9 BP 1530 EP 1551 DI 10.1111/j.1945-5100.2010.01119.x PG 22 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 694NA UT WOS:000285303700011 ER PT J AU Bagatin, M Gerardin, S Paccagnella, A Cellere, G Irom, F Nguyen, DN AF Bagatin, M. Gerardin, S. Paccagnella, A. Cellere, G. Irom, F. Nguyen, D. N. TI Destructive events in NAND Flash memories irradiated with heavy ions SO MICROELECTRONICS RELIABILITY LA English DT Article; Proceedings Paper CT 21st European Symposium on the Reliability of Electron Devices, Failure Physics and Analysis (ESREF) CY OCT 11-15, 2010 CL Gaeta, ITALY ID COMMERCIAL NAND; CELLS AB Besides being widely used in virtually all terrestrial applications requiring non-volatile storage, Flash memories are arousing increasing interest with regards to space applications. This work presents new original data on the occurrence of destructive events and supply current spikes in NAND Flash memories exposed to heavy ions. Interestingly enough, these phenomena occur irradiating the devices even in stand-by mode. We examined the dependence of these effects on Linear Energy Transfer (LET) and flux of impinging ions, we used different test protocols, and shielded different blocks of the memory. Our analysis shows that the permanent loss of functionality occurs only with high-LET ions and usually with high particle flux, originating from damage to the charge pumps, likely due to Single Event Gate Rupture. We also show that there is not necessarily a correlation between irreversible damage and supply current spikes, as previously believed, even though they both originate in the charge pump circuitry. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Bagatin, M.; Gerardin, S.; Paccagnella, A.; Cellere, G.] Univ Padua, Dipartimento Ingn Infomaz, Padua, Italy. [Cellere, G.] Appl Mat Baccini, Treviso, Italy. [Irom, F.; Nguyen, D. N.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Bagatin, M (reprint author), Univ Padua, Dipartimento Ingn Infomaz, Padua, Italy. EM marta.bagatin@dei.unipd.it NR 15 TC 6 Z9 6 U1 2 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0026-2714 J9 MICROELECTRON RELIAB JI Microelectron. Reliab. PD SEP-NOV PY 2010 VL 50 IS 9-11 SI SI BP 1832 EP 1836 DI 10.1016/j.microrel.2010.07.032 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 659ZX UT WOS:000282607400124 ER PT J AU Galindo, HM Pfeiffer-Herbert, AS McManus, MA Chao, Y Chai, F Palumbi, SR AF Galindo, Heather M. Pfeiffer-Herbert, Anna S. McManus, Margaret A. Chao, Yi Chai, Fei Palumbi, Stephen R. TI Seascape genetics along a steep cline: using genetic patterns to test predictions of marine larval dispersal SO MOLECULAR ECOLOGY LA English DT Article DE genetics; marine connectivity; numerical modelling; oceanography ID CENTRAL CALIFORNIA COAST; BALANUS-GLANDULA; POPULATION CONNECTIVITY; INTERANNUAL VARIABILITY; PROPAGULE DISPERSAL; LANDSCAPE GENETICS; MODELING SYSTEM; PACIFIC-OCEAN; BARNACLE; BEHAVIOR AB Coupled biological and physical oceanographic models are powerful tools for studying connectivity among marine populations because they simulate the movement of larvae based on ocean currents and larval characteristics. However, while the models themselves have been parameterized and verified with physical empirical data, the simulated patterns of connectivity have rarely been compared to field observations. We demonstrate a framework for testing biological-physical oceanographic models by using them to generate simulated spatial genetic patterns through a simple population genetic model, and then testing these predictions with empirical genetic data. Both agreement and mismatches between predicted and observed genetic patterns can provide insights into mechanisms influencing larval connectivity in the coastal ocean. We use a high-resolution ROMS-CoSINE biological-physical model for Monterey Bay, California specifically modified to simulate dispersal of the acorn barnacle, Balanus glandula. Predicted spatial genetic patterns generated from both seasonal and annual connectivity matrices did not match an observed genetic cline in this species at either a mitochondrial or nuclear gene. However, information from this mismatch generated hypotheses testable with our modelling framework that including natural selection, larval input from a southern direction and/or increased nearshore larval retention might provide a better fit between predicted and observed patterns. Indeed, moderate selection and a range of combined larval retention and southern input values dramatically improve the fit between simulated and observed spatial genetic patterns. Our results suggest that integrating population genetic models with coupled biological-physical oceanographic models can provide new insights and a new means of verifying model predictions. C1 [Galindo, Heather M.; Palumbi, Stephen R.] Stanford Univ, Dept Biol Sci, Hopkins Marine Stn, Pacific Grove, CA 93950 USA. [Pfeiffer-Herbert, Anna S.] Univ Rhode Isl, Grad Sch Oceanog, Narragansett, RI 02882 USA. [McManus, Margaret A.] Univ Hawaii Manoa, Dept Oceanog, Honolulu, HI 96822 USA. [Chao, Yi] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Chai, Fei] Univ Maine, Sch Marine Sci, Orono, ME 04469 USA. RP Palumbi, SR (reprint author), Stanford Univ, Dept Biol Sci, Hopkins Marine Stn, 120 Ocean View Blvd, Pacific Grove, CA 93950 USA. EM spalumbi@stanford.edu FU Gordon and Betty Moore Foundation; David and Lucille Packard Foundation; Andrew Mellon Foundation; Stanford University; National Science Foundation; National Aeronautics and Space Administration (NASA) FX We thank E. Jacobs-Palmer, E. Sotka, and V. Alla for assistance with sample and data collection. We also thank three anonymous reviewers for their comments, which helped us to significantly improve the manuscript. This is contribution 359 from PISCO, the Partnership for Interdisciplinary Studies of Coastal Oceans, funded primarily by the Gordon and Betty Moore Foundation and the David and Lucille Packard Foundation. Additional funding was provided by the Andrew Mellon Foundation, Stanford University, and a National Science Foundation Graduate Research Fellowship awarded to H. M. Galindo. The research for Y. Chao was carried out, in part, at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). NR 68 TC 54 Z9 54 U1 3 U2 38 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0962-1083 EI 1365-294X J9 MOL ECOL JI Mol. Ecol. PD SEP PY 2010 VL 19 IS 17 SI SI BP 3692 EP 3707 DI 10.1111/j.1365-294X.2010.04694.x PG 16 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA 643HC UT WOS:000281285200015 PM 20723046 ER PT J AU Loh, YS Rich, RM Heinis, S Scranton, R Mallery, RP Salim, S Martin, DC Wyder, T Arnouts, S Barlow, TA Forster, K Friedman, PG Morrissey, P Neff, SG Schiminovich, D Seibert, M Bianchi, L Donas, J Heckman, TM Lee, YW Madore, BF Milliard, B Szalay, AS Welsh, BY AF Loh, Yeong-Shang Rich, R. Michael Heinis, Sebastien Scranton, Ryan Mallery, Ryan P. Salim, Samir Martin, D. Christopher Wyder, Ted Arnouts, Stephane Barlow, Tom A. Forster, Karl Friedman, Peter G. Morrissey, Patrick Neff, Susan G. Schiminovich, David Seibert, Mark Bianchi, Luciana Donas, Jose Heckman, Timothy M. Lee, Young-Wook Madore, Barry F. Milliard, Bruno Szalay, Alex S. Welsh, Barry Y. TI The UV-optical colour dependence of galaxy clustering in the local universe SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: statistical; galaxies: clusters: general; galaxies: elliptical and lenticular; galaxies: evolution ID DIGITAL SKY SURVEY; ACTIVE GALACTIC NUCLEI; HALO OCCUPATION DISTRIBUTION; MAGNITUDE DIAGRAM; REAL-SPACE; OBSERVATIONAL EVIDENCE; COSMOLOGICAL CONSTANT; LUMINOSITY FUNCTION; COMPLETE SAMPLE; REDSHIFT SURVEY AB We measure the UV-optical colour dependence of galaxy clustering in the local Universe. Using the clean separation of the red and blue sequences made possible by the NUV - r colour-magnitude diagram, we segregate the galaxies into red, blue and intermediate 'green' classes. We explore the clustering as a function of this segregation by removing the dependence on luminosity and by excluding edge-on galaxies as a means of a non-model dependent veto of highly extincted galaxies. We find that xi(r(p), pi) for both red and green galaxies shows strong redshift-space distortion on small scales - the 'finger-of-God' effect, with green galaxies having a lower amplitude than is seen for the red sequence, and the blue sequence showing almost no distortion. On large scales, xi(r(p), pi) for all three samples show the effect of large-scale streaming from coherent infall. On scales of 1 h-1 Mpc < r(p) < 10 h-1 Mpc, the projected auto-correlation function w(p)(r(p)) for red and green galaxies fits a power law with slope gamma similar to 1.93 and amplitude r(0) similar to 7.5 and 5.3, compared with gamma similar to 1.75 and r(0) similar to 3.9 h-1 Mpc for blue sequence galaxies. Compared to the clustering of a fiducial L* galaxy, the red, green and blue have a relative bias of 1.5, 1.1 and 0.9, respectively. The w(p)(r(p)) for blue galaxies display an increase in convexity at similar to 1 h-1 Mpc, with an excess of large-scale clustering. Our results suggest that the majority of blue galaxies are likely central galaxies in less massive haloes, while red and green galaxies have larger satellite fractions, and preferentially reside in virialized structures. If blue sequence galaxies migrate to the red sequence via processes like mergers or quenching that take them through the green valley, such a transformation may be accompanied by a change in environment in addition to any change in luminosity and colour. C1 [Loh, Yeong-Shang; Rich, R. Michael; Mallery, Ryan P.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Heinis, Sebastien; Arnouts, Stephane; Heckman, Timothy M.; Szalay, Alex S.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Scranton, Ryan] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Salim, Samir] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Martin, D. Christopher; Wyder, Ted; Barlow, Tom A.; Forster, Karl; Friedman, Peter G.; Morrissey, Patrick; Seibert, Mark] CALTECH, Pasadena, CA 91125 USA. [Neff, Susan G.] NASA, Goddard Space Flight Ctr, Astron & Solar Phys Lab, Greenbelt, MD 20771 USA. [Schiminovich, David] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Bianchi, Luciana] Johns Hopkins Univ, Ctr Astrophys Sci, Baltimore, MD 21218 USA. [Donas, Jose; Milliard, Bruno] Lab Astrophys Marseille, F-13376 Marseille 12, France. [Lee, Young-Wook] Yonsei Univ, Ctr Space Astrophys, Seoul 120749, South Korea. [Madore, Barry F.; Welsh, Barry Y.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Madore, Barry F.] Carnegie Inst Washington Observ, Pasadena, CA 91101 USA. RP Loh, YS (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM yeongloh@astro.ucla.edu FU Space Telescope Science Institute [GO-11182] FX YSL would like to thank C. Hirata, S. Salim, C. Park, J. Kormendy and Z. Zheng for helpful discussions. This work has made extensive use of IDLUTILS8 and Goddard IDL libraries. RMR acknowledges support from grant GO-11182 from the Space Telescope Science Institute. NR 80 TC 16 Z9 16 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 1 PY 2010 VL 407 IS 1 BP 55 EP 70 DI 10.1111/j.1365-2966.2010.16908.x PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 641PN UT WOS:000281140900005 ER PT J AU Ebeling, H Edge, AC Mantz, A Barrett, E Henry, JP Ma, CJ van Speybroeck, L AF Ebeling, H. Edge, A. C. Mantz, A. Barrett, E. Henry, J. Patrick Ma, C. J. van Speybroeck, L. TI The X-ray brightest clusters of galaxies from the Massive Cluster Survey SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE catalogues; surveys; galaxies: clusters: general; X-rays: galaxies: clusters ID ALL-SKY SURVEY; TELESCOPE LENSING SURVEY; DARK-MATTER; OPTICAL SPECTROSCOPY; SPATIAL-DISTRIBUTION; MACS J0717.5+3745; MILKY-WAY; SAMPLE; CATALOG; CONSTRAINTS AB We present a statistically complete sample of very X-ray luminous galaxy clusters detected in the MAssive Cluster Survey (MACS). This second MACS release comprises all 34 MACS clusters with nominal X-ray fluxes in excess of 2 x 10-12 erg s-1 cm-2 (0.1-2.4 keV) in the ROSAT Bright Source Catalogue; two-thirds of them are new discoveries. Extending over the redshift range from 0.3 to 0.5, this subset complements the complete sample of the 12 most distant MACS clusters (z > 0.5) published in 2007 and further exemplifies the efficacy of X-ray selection for the compilation of samples of intrinsically massive galaxy clusters. Extensive follow-up observations with Chandra/ACIS led to three additional MACS cluster candidates being eliminated as (predominantly) X-ray point sources. For another four clusters - which, however, remain in our sample of 34 - the point-source contamination was found to be about 50 per cent. The median X-ray luminosity of 1.3 x 1045 erg s-1 (0.1-2.4 keV, Chandra, within r(500)) of the clusters in this subsample demonstrates the power of the MACS strategy to find the most extreme and rarest clusters out to significant redshift. A comparison of the optical and X-ray data for all clusters in this release finds a wide range of morphologies with no obvious bias in favour of either relaxed or merging systems. C1 [Ebeling, H.; Barrett, E.; Henry, J. Patrick; Ma, C. J.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Edge, A. C.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Mantz, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Mantz, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Mantz, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [van Speybroeck, L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Ebeling, H (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. EM ebeling@ifa.hawaii.edu OI Edge, Alastair/0000-0002-3398-6916 FU NASA LTSA [NAG 5-8253]; SAO [GO2-3168X, GO5-6133X, GO0-11140X, DD5-6031X, GO7-8125X, GO8-9118X]; U.S. Department of Energy [DE-AC02-76SF00515]; Stanford Graduate Fellowship; NASA FX We thank many incarnations of the Chandra peer-review panel and of the University of Hawaii's telescope time allocation committee for their support, trust and patience. HE gratefully acknowledges financial support from NASA LTSA grant NAG 5-8253 and SAO grants GO2-3168X, GO5-6133X and GO0-11140X. ACE thanks the Royal Society for generous support during the identification phase of the MACS project. Parts of this work received support from the U.S. Department of Energy under contract number DE-AC02-76SF00515 as well as from SAO grants DD5-6031X, GO7-8125X and GO8-9118X. AM was supported by a Stanford Graduate Fellowship and an appointment to the NASA Postdoctoral Program, administered by Oak Ridge Associated Universities through a contract with NASA. NR 68 TC 106 Z9 106 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 1 PY 2010 VL 407 IS 1 BP 83 EP 93 DI 10.1111/j.1365-2966.2010.16920.x PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 641PN UT WOS:000281140900007 ER PT J AU Koster, RD Mahanama, SPP Livneh, B Lettenmaier, DP Reichle, RH AF Koster, Randal D. Mahanama, Sarith P. P. Livneh, Ben Lettenmaier, Dennis P. Reichle, Rolf H. TI Skill in streamflow forecasts derived from large-scale estimates of soil moisture and snow SO NATURE GEOSCIENCE LA English DT Article ID CONTERMINOUS UNITED-STATES; RIVER-BASIN; WESTERN US; PREDICTABILITY; DROUGHT AB Seasonal predictions of streamflow can benefit from knowledge of the amounts of snow and other water present in a basin when the forecast is issued(1-5). In the American west, operational forecasts for spring-summer streamflow rely heavily on snow-water storage and are often issued at the time of maximum snow accumulation. However, forecasts issued earlier can also show skill, particularly if proxy information for soil moisture, such as antecedent rainfall, is also used as a predictor(1,4). Studies using multiple regression approaches and/or model-produced streamflows(6-9) indeed suggest that information on soil moisture-a relatively underappreciated predictor-can improve streamflow predictions. Here, we quantify the relative contributions of early-season snow and soil moisture information to the skill of streamflow forecasts more directly and comprehensively: in a suite of land-modelling systems, we use the snow and soil moisture information both together and separately to derive seasonal forecasts. Our skill analysis reveals that early-season snow water storage generally contributes most to skill, but the contribution of early-season soil moisture is often significant. In addition, we conclude that present-generation macroscale land-surface models forced with large-scale meteorological data can produce estimates of water storage in soils and as snow that are useful for basin-scale prediction. C1 [Koster, Randal D.; Mahanama, Sarith P. P.; Reichle, Rolf H.] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mahanama, Sarith P. P.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21250 USA. [Livneh, Ben; Lettenmaier, Dennis P.] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. RP Koster, RD (reprint author), NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Code 610-1, Greenbelt, MD 20771 USA. EM randal.d.koster@nasa.gov RI Reichle, Rolf/E-1419-2012; Koster, Randal/F-5881-2012; lettenmaier, dennis/F-8780-2011; Livneh, Ben/I-2939-2015; OI Koster, Randal/0000-0001-6418-6383; lettenmaier, dennis/0000-0003-3317-1327; LIVNEH, BEN/0000-0001-5445-2473 NR 23 TC 87 Z9 87 U1 2 U2 26 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 J9 NAT GEOSCI JI Nat. Geosci. PD SEP PY 2010 VL 3 IS 9 BP 613 EP 616 DI 10.1038/NGEO944 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 645NL UT WOS:000281467600013 ER PT J AU Wu, XP Heflin, MB Schotman, H Vermeersen, BLA Dong, DA Gross, RS Ivins, ER Moore, A Owen, SE AF Wu, Xiaoping Heflin, Michael B. Schotman, Hugo Vermeersen, Bert L. A. Dong, Danan Gross, Richard S. Ivins, Erik R. Moore, AngelynW. Owen, Susan E. TI Simultaneous estimation of global present-day water transport and glacial isostatic adjustment SO NATURE GEOSCIENCE LA English DT Article ID GRACE GRAVITY-DATA; SEA-LEVEL; MASS-BALANCE; ICE SHEETS; GREENLAND; SYSTEM; MODEL; EARTH AB Global water transport between oceans and continents during the transition from glacial to interglacial times has been enormous. The viscoelastic solid Earth has been responding to this unloading of large ice masses with a rise of the land masses, in a process termed glacial isostatic adjustment. In addition, significant changes in the land/ocean water distribution occur at present. As both present-day changes in the ice/water thickness and glacial isostatic adjustment affect space geodetic measurements, it is difficult to untangle the relative contributions of these two processes. Here we combine gravity measurements and geodetic data of surface movement with a data-assimilating model of ocean bottom pressure to simultaneously estimate present-day water transport and glacial isostatic adjustment. We determine their separate contributions to movements in the geocentre, which occur in response to changes in the Earth's mass distribution, with uncertainties below 0.1 mm yr(-1). According to our estimates, mass losses between 2002 and 2008 in Greenland, Alaska/Yukon and West Antarctica are 104 +/- 23, 101 +/- 23 and 64 +/- 32 Gt yr(-1), respectively. Our estimates of glacial isostatic adjustment indicate a large geocentre velocity of -0.72 +/- 0.06 mm yr(-1) in the polar direction. We conclude that a significant revision of the present estimates of glacial isostatic adjustments and land-ocean water exchange is required. C1 [Wu, Xiaoping; Heflin, Michael B.; Dong, Danan; Gross, Richard S.; Ivins, Erik R.; Moore, AngelynW.; Owen, Susan E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Schotman, Hugo; Vermeersen, Bert L. A.] Delft Univ Technol, DEOS, Fac Aerosp Engn, NL-2629 HS Delft, Netherlands. [Schotman, Hugo] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands. RP Wu, XP (reprint author), CALTECH, Jet Prop Lab, Mail Stop 238-600,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Xiaoping.Wu@jpl.nasa.gov RI Ivins, Erik/C-2416-2011 FU NASA FX Part of this work was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA), and financially supported through NASA's International Polar Year, GRACE Science Team and MEaSUREs (through a project led by V. Zlotnicki in JPL) programmes. We thank Z. Altamimi, S. Bettadpur, J. Davis, I. Fukumori, F. Landerer, J. Ries, R. Riva, D. Salstein, M. Tamisiea and J.Wahr for discussions and help, and Y. Xu for editorial assistance. The figures are prepared using the GMT graphics package (Wessel and Smith, EOS, 1991). NR 35 TC 76 Z9 78 U1 3 U2 30 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD SEP PY 2010 VL 3 IS 9 BP 642 EP 646 DI 10.1038/NGEO938 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 645NL UT WOS:000281467600019 ER PT J AU Chu, JY Wang, QD Lehan, JP Gao, GJ Griesmann, U AF Chu, Jiyoung Wang, Quandou Lehan, John P. Gao, Guangjun Griesmann, Ulf TI Spatially resolved height response of phase-shifting interferometers measured using a patterned mirror with varying spatial frequency SO OPTICAL ENGINEERING LA English DT Article DE interferometry; spatial frequency; height response ID LASER FIZEAU INTERFEROMETER AB In the performance evaluation of phase-shifting interferometers for figure metrology, the height response, or height transfer function, is rarely taken into consideration, because in most applications smooth surfaces are measured and only the lowest spatial frequencies are of interest. For measurements with low uncertainty it is important to understand the height response as a function of the spatial-frequency content of a surface under test, in particular when it contains form-error components with frequencies at the high end of an interferometer's spatial-frequency passband. A mirror with a patterned area of 140-mm diameter, consisting of several subpatterns with varying spatial frequency, was used to evaluate the spectral response. Our goal was to develop a method for efficient mapping of the spectral response over the circular field of view of a phase-shifting interferometer. A new way of representing the dependence of the spectral response on the field of view of an interferometer is described. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3488052] C1 [Chu, Jiyoung; Wang, Quandou; Gao, Guangjun; Griesmann, Ulf] NIST, Mfg Engn Lab, Gaithersburg, MD 20899 USA. [Chu, Jiyoung] Samsung Elect Co, Suwon, Gyeonggi Do, South Korea. [Lehan, John P.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Lehan, John P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gao, Guangjun] Natl Univ Singapore, Div Bioengn, Singapore 117574, Singapore. RP Chu, JY (reprint author), NIST, Mfg Engn Lab, 100 Bur Dr, Gaithersburg, MD 20899 USA. EM ulf.griesmann@nist.gov NR 11 TC 5 Z9 5 U1 0 U2 1 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD SEP PY 2010 VL 49 IS 9 AR 095601 DI 10.1117/1.3488052 PG 7 WC Optics SC Optics GA 656VY UT WOS:000282370400027 ER PT J AU Shebalin, JV AF Shebalin, John V. TI Broken ergodicity in two-dimensional homogeneous magnetohydrodynamic turbulence SO PHYSICS OF PLASMAS LA English DT Article DE eigenvalues and eigenfunctions; magnetohydrodynamics; turbulence ID MEAN MAGNETIC-FIELD; ISOTROPIC TURBULENCE; RELAXATION; FLUCTUATIONS; GENERATION; SIMULATION; PLASMA AB Two-dimensional (2D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3D) homogeneous MHD turbulence. These features include several ideal (i.e., nondissipative) invariants along with the phenomenon of broken ergodicity (defined as nonergodic behavior over a very long time). Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo. Recently, the origin of broken ergodicity in 3D MHD turbulence that is manifest in the lowest wavenumbers was found. Here, we study the origin of broken ergodicity in 2D MHD turbulence. It will be seen that broken ergodicity in ideal 2D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions. The origins of broken ergodicity in an ideal 2D homogeneous MHD turbulence are found through an eigenanalysis of the covariance matrices of the probability density function and by an examination of the associated entropy functional. When the values of ideal invariants are kept fixed and grid size increases, it will be shown that the energy in a few large modes remains constant, while the energy in any other mode is inversely proportional to grid size. Also, as grid size increases, we find that broken ergodicity becomes manifest at more and more wavenumbers. [doi:10.1063/1.3489340] C1 NASA, Lyndon B Johnson Space Ctr, Astromat Res & Explorat Sci Off, Houston, TX 77058 USA. RP Shebalin, JV (reprint author), NASA, Lyndon B Johnson Space Ctr, Astromat Res & Explorat Sci Off, Houston, TX 77058 USA. NR 44 TC 7 Z9 7 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2010 VL 17 IS 9 AR 092303 DI 10.1063/1.3489340 PG 16 WC Physics, Fluids & Plasmas SC Physics GA 657UD UT WOS:000282439300008 ER PT J AU Sundberg, T Boardsen, SA Slavin, JA Blomberg, LG Korth, H AF Sundberg, T. Boardsen, S. A. Slavin, J. A. Blomberg, L. G. Korth, H. TI The Kelvin-Helmholtz instability at Mercury: An assessment SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Mercury; Kelvin-Helmholtz; Finite Larmor radius; Magnetopause ID LATITUDE BOUNDARY-LAYER; MESSENGERS 1ST FLYBY; ION LARMOR RADIUS; SOLAR-WIND; MAGNETIC-FIELD; CLUSTER OBSERVATIONS; PLASMA ENVIRONMENT; MAGNETOPAUSE; MAGNETOSPHERE; WAVES AB The Kelvin-Helmholtz instability is believed to be an important means for the transfer of energy, plasma, and momentum from the solar wind into planetary magnetospheres, with in situ measurements reported from Earth, Saturn, and Venus. During the first MESSENGER flyby of Mercury, three periodic rotations were observed in the magnetic field data possibly related to a Kelvin-Helmholtz wave on the dusk side magnetopause. We present an analysis of the event, along with comparisons to previous Kelvin-Helmholtz observations and an investigation of what influence finite ion gyro radius effects, believed to be of importance in the Hermean magnetosphere, may have on the instability. The wave signature does not correspond to that of typical Kelvin-Helmholtz events, and the magnetopause direction does not show any signs of major deviation from the unperturbed case. There is thus no indication of any high amplitude surface waves. On the other hand, the wave period corresponds to that expected for a Kelvin-Helmholtz wave, and as the dusk side is shown to be more stable than the dawn side, we judge the observed waves not to be fully developed Kelvin-Helmholtz waves, but they may be an initial perturbation that could cause Kelvin-Helmholtz waves further down the tail. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Sundberg, T.; Blomberg, L. G.] Royal Inst Technol KTH, Sch Elect Engn, Stockholm, Sweden. [Boardsen, S. A.; Slavin, J. A.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Boardsen, S. A.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Korth, H.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Sundberg, T (reprint author), Royal Inst Technol KTH, Sch Elect Engn, Stockholm, Sweden. EM torbjorn.sundberg@ee.kth.se RI Slavin, James/H-3170-2012 OI Slavin, James/0000-0002-9206-724X FU Swedish National Space Board FX This work was partially supported by the Swedish National Space Board. The authors would like to thank Michael Raadu and Judy Cumnock for helpful discussions and comments. We also thank the Planetary Data System for providing the MESSENGER data, and the Cluster FGM and CIS teams and the Cluster Active Archive for providing the Cluster data. NR 46 TC 22 Z9 22 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD SEP PY 2010 VL 58 IS 11 BP 1434 EP 1441 DI 10.1016/j.pss.2010.06.008 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 644IM UT WOS:000281368500002 ER PT J AU West, R Knowles, B Birath, E Charnoz, S Di Nino, D Hedman, M Helfenstein, P McEwen, A Perry, J Porco, C Salmon, J Throop, H Wilson, D AF West, Robert Knowles, Benjamin Birath, Emma Charnoz, Sebastien Di Nino, Daiana Hedman, Matthew Helfenstein, Paul McEwen, Alfred Perry, Jason Porco, Carolyn Salmon, Julien Throop, Henry Wilson, Daren TI In-flight calibration of the Cassini imaging science sub-system cameras SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Instrumentation; Image processing; Photometry; Polarimetry; Experimental techniques ID SOUTHERN SPECTROPHOTOMETRIC STANDARDS AB We describe in-flight calibration of the Cassini Imaging Science Sub-system narrow- and wide-angle cameras using data from 2004 to 2009. We report on the photometric performance of the cameras including the use of polarization filters, point spread functions over a dynamic range greater than 107, gain and loss of hot pixels, changes in flat fields, and an analysis of charge transfer efficiency. Hot pixel behavior is more complicated than can be understood by a process of activation by cosmic ray damage and deactivation by annealing. Point spread function (PSF) analysis revealed a ghost feature associated with the narrow-angle camera Green filter. More generally, the observed PSFs do not fall off with distance as rapidly as expected if diffraction were the primary contributor. Stray light produces significant signal far from the center of the PSF. Our photometric analysis made use of calibrated spectra from eighteen stars and the spectral shape of the satellite Enceladus. The analysis revealed a shutter offset that differed from pre-launch calibration. It affects the shortest exposures. Star photometry results are reproducible to a few percent in most filters. No degradation in charge transfer efficiency has been detected although uncertainties are large. The results of this work have been digitally archived and incorporated into our calibration software CISSCAL available online. (C) 2010 Elsevier B.V. All rights reserved. C1 [West, Robert] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Knowles, Benjamin; Birath, Emma; Di Nino, Daiana; Porco, Carolyn; Wilson, Daren] CICLOPS Space Sci Inst, Boulder, CO USA. [Charnoz, Sebastien; Salmon, Julien] Univ Paris Diderot, UMR AIM, CEA, CNRS,CEA SAp,Ctr Orme Merisiers, F-91191 Gif Sur Yvette, France. [Hedman, Matthew] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Helfenstein, Paul] Cornell Univ, CRSR, Ithaca, NY 14853 USA. [McEwen, Alfred; Perry, Jason] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Throop, Henry] SW Res Inst, Boulder, CO 80302 USA. RP West, R (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 169-237, Pasadena, CA 91109 USA. EM Robert.A.West@jpl.nasa.gov NR 17 TC 30 Z9 30 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD SEP PY 2010 VL 58 IS 11 BP 1475 EP 1488 DI 10.1016/j.pss.2010.07.006 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 644IM UT WOS:000281368500006 ER PT J AU Saeed, MF Kolokoltsov, AA Albrecht, T Davey, RA AF Saeed, Mohammad F. Kolokoltsov, Andrey A. Albrecht, Thomas Davey, Robert A. TI Cellular Entry of Ebola Virus Involves Uptake by a Macropinocytosis-Like Mechanism and Subsequent Trafficking through Early and Late Endosomes SO PLOS PATHOGENS LA English DT Article ID CLATHRIN-MEDIATED ENDOCYTOSIS; MARBURG VIRUSES; DOWN-REGULATION; HOST-CELLS; GLYCOPROTEIN; INFECTION; REQUIRES; PATHWAYS; DYNAMIN; FILOVIRUSES AB Zaire ebolavirus (ZEBOV), a highly pathogenic zoonotic virus, poses serious public health, ecological and potential bioterrorism threats. Currently no specific therapy or vaccine is available. Virus entry is an attractive target for therapeutic intervention. However, current knowledge of the ZEBOV entry mechanism is limited. While it is known that ZEBOV enters cells through endocytosis, which of the cellular endocytic mechanisms used remains unclear. Previous studies have produced differing outcomes, indicating potential involvement of multiple routes but many of these studies were performed using noninfectious surrogate systems such as pseudotyped retroviral particles, which may not accurately recapitulate the entry characteristics of the morphologically distinct wild type virus. Here we used replication-competent infectious ZEBOV as well as morphologically similar virus-like particles in specific infection and entry assays to demonstrate that in HEK293T and Vero cells internalization of ZEBOV is independent of clathrin, caveolae, and dynamin. Instead the uptake mechanism has features of macropinocytosis. The binding of virus to cells appears to directly stimulate fluid phase uptake as well as localized actin polymerization. Inhibition of key regulators of macropinocytosis including Pak1 and CtBP/BARS as well as treatment with the drug EIPA, which affects macropinosome formation, resulted in significant reduction in ZEBOV entry and infection. It is also shown that following internalization, the virus enters the endolysosomal pathway and is trafficked through early and late endosomes, but the exact site of membrane fusion and nucleocapsid penetration in the cytoplasm remains unclear. This study identifies the route for ZEBOV entry and identifies the key cellular factors required for the uptake of this filamentous virus. The findings greatly expand our understanding of the ZEBOV entry mechanism that can be applied to development of new therapeutics as well as provide potential insight into the trafficking and entry mechanism of other filoviruses. C1 [Saeed, Mohammad F.; Kolokoltsov, Andrey A.; Davey, Robert A.] Univ Texas Med Branch, Dept Microbiol & Immunol, Galveston, TX 77555 USA. [Saeed, Mohammad F.; Kolokoltsov, Andrey A.; Davey, Robert A.] Univ Texas Med Branch, Galveston Natl Lab, Galveston, TX USA. [Saeed, Mohammad F.; Kolokoltsov, Andrey A.; Davey, Robert A.] Univ Texas Med Branch, Inst Human Infect & Immun, Galveston, TX USA. [Albrecht, Thomas] NASA, Dept SK, Houston, TX USA. RP Saeed, MF (reprint author), Univ Texas Med Branch, Dept Microbiol & Immunol, Galveston, TX 77555 USA. EM radavey@utmb.edu FU NIH, NIH/NIAID [5R01AI063513-02]; NIH NIAID [2 U54 AI057156-06, RP21] FX This work was supported by grants from the NIH, NIH/NIAID 5R01AI063513-02 and NIH NIAID 2 U54 AI057156-06, subproject RP21. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 61 TC 126 Z9 131 U1 3 U2 57 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7366 J9 PLOS PATHOG JI PLoS Pathog. PD SEP PY 2010 VL 6 IS 9 AR e1001110 DI 10.1371/journal.ppat.1001110 PG 15 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 656WY UT WOS:000282373000030 PM 20862315 ER PT J AU Pence, WD White, RL Seaman, R AF Pence, W. D. White, R. L. Seaman, R. TI Optimal Compression of Floating-Point Astronomical Images Without Significant Loss of Information SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID NOISE; PERFORMANCE; SYSTEM; FITS AB We describe a compression method for floating-point astronomical images that gives compression ratios of 6-10 while still preserving the scientifically important information in the image. The pixel values are first preprocessed by quantizing them into scaled integer intensity levels, which removes some of the uncompressible noise in the image. The integers are then losslessly compressed using the fast and efficient Rice algorithm and stored in a portable FITS format file. Quantizing an image more coarsely gives greater image compression, but it also increases the noise and degrades the precision of the photometric and astrometric measurements in the quantized image. Dithering the pixel values during the quantization process can greatly improve the precision of measurements in the images. This is especially important if the analysis algorithm relies on the mode or the median, which would be similarly quantized if the pixel values are not dithered. We perform a series of experiments on both synthetic and real astronomical CCD images to quantitatively demonstrate that the magnitudes and positions of stars in the quantized images can be measured with the predicted amount of precision. In order to encourage wider use of these image compression methods, we have made available a pair of general-purpose image compression programs, called fpack and funpack, which can be used to compress any FITS format image. C1 [Pence, W. D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [White, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Seaman, R.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. RP Pence, WD (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM William.Pence@nasa.gov RI White, Richard/A-8143-2012 NR 28 TC 13 Z9 13 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD SEP PY 2010 VL 122 IS 895 BP 1065 EP 1076 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 643UM UT WOS:000281324800008 ER PT J AU Zhou, D Semones, E Guetersloh, S Zapp, N Weyland, M Benton, ER AF Zhou, D. Semones, E. Guetersloh, S. Zapp, N. Weyland, M. Benton, E. R. TI The experimental and simulated LET spectrum and charge spectrum from CR-39 detectors exposed to irons near CRaTER at BNL SO RADIATION MEASUREMENTS LA English DT Article DE CR-39; Iron exposure; LET spectrum; Charge spectrum; Monte Carlo simulation ID LOW-EARTH-ORBIT; NUCLEAR TRACK DETECTORS; DIFFERENT DOSIMETERS; COSMIC-RAYS; AVIATION ALTITUDES; RADIATION-FIELD; BULK ETCH; PARTICLE; CODE AB Human will be sooner or later return to the moon and will eventually travel to the planets near Earth. Space radiation hazards are an important concern for human space flight in deep space where galactic cosmic rays (GCR) and solar energetic particles are dominated and radiation is much stronger than that in LEO (Low Earth Orbit) because in deep space there is no magnetosphere to screen charged particle and no big planet nearby to shadow the spacecraft. Research indicates that the impact of particle radiation on humans depends strongly on the particles' linear energy transfer (LET) and the radiation risk is dominated by high LET radiation. Therefore, radiation research on high LET should be emphasized and conducted systematically so as to make radiation risk as low as reasonably achievable (ALARA) for astronauts. Radiation around the moon can be measured with silicon detectors and/or CR-39 plastic nuclear track detectors (PNTDs). At present stage the silicon detectors are one of the preferred active dosimeters which are sensitive to all LET and CR-39 detectors are the preferred passive dosimeters which are sensitive to high LET (>= 5 keV/mu m water). CR-39 PNTDs can be used as personal dosimeters for astronauts. Both the LET spectrum and the charge spectrum for charged particles in space can be measured with silicon detectors and CR-39 detectors. Calibrations for a detector system combined with the silicon detectors CRaTER (Cosmic Rays Telescope for the Effects of Radiation) from Boston University and Massachusetts Institute of Technology, and the CR-39 PNTDs from JSC (Johnson Space Center) SRAG (Space Radiation Analysis Group) were conducted by exposing the detector system to the accelerator generated protons and heavy ions. US space mission for the radiation measurement around the moon using CRaTER was carried out in 2009. Results obtained from the calibration exposures indicate an excellent agreement between LET spectrum and charge spectrum measured with CR-39 detectors and simulated with PHITS (Particle and Heavy Ion Transport System). This paper introduces the LET spectrum method and charge spectrum method using CR-39 PNTDs and the Monte Carlo simulation method for CR-39 detectors, presents and compares the results measured with CR-39 PNTDs and simulated for CR-39 detectors exposed to heavy irons (600 MeV/n) in BNL (Brookhaven National Laboratory) in front and behind the CRaTER. (C) 2010 Published by Elsevier Ltd. C1 [Zhou, D.] NASA, Lyndon B Johnson Space Ctr, Space Radiat Anal Grp, Houston, TX 77058 USA. [Zhou, D.] Univ Space Res Assoc, Houston, TX 77058 USA. [Benton, E. R.] Eril Res Inc, Stillwater, OK 74074 USA. RP Zhou, D (reprint author), NASA, Lyndon B Johnson Space Ctr, Space Radiat Anal Grp, 2101 Nasa Pkwy, Houston, TX 77058 USA. EM dzhou@ems.jsc.nasa.gov NR 34 TC 4 Z9 4 U1 1 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1350-4487 J9 RADIAT MEAS JI Radiat. Meas. PD SEP PY 2010 VL 45 IS 8 BP 916 EP 922 DI 10.1016/j.radmeas.2010.02.014 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 653TV UT WOS:000282120700006 ER PT J AU Ware, JH Sanzari, J Avery, S Sayers, C Krigsfeld, G Nuth, M Wan, XS Rusek, A Kennedy, AR AF Ware, J. H. Sanzari, J. Avery, S. Sayers, C. Krigsfeld, G. Nuth, M. Wan, X. S. Rusek, A. Kennedy, A. R. TI Effects of Proton Radiation Dose, Dose Rate and Dose Fractionation on Hematopoietic Cells in Mice SO RADIATION RESEARCH LA English DT Article ID TOTAL-BODY IRRADIATION; DIETARY ANTIOXIDANTS; ANIMAL SURVIVAL; STEM-CELLS; EXPOSURE; SPACE AB The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons. (C) 2010 by Radiation Research Society C1 [Ware, J. H.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X. S.; Kennedy, A. R.] Univ Penn, Dept Radiat Oncol, Div Oncol Res, Sch Med, Philadelphia, PA 19104 USA. [Rusek, A.] NASA, Space Radiat Lab, Brookhaven Natl Lab, Upton, NY 11973 USA. RP Ware, JH (reprint author), 195 John Morgan Bldg,3620 Hamilton Walk, Philadelphia, PA 19104 USA. EM jhware@mail.med.upenn.edu FU National Space Biomedical Research Institute (NSBRI) through NASA [NCC 9-58]; NIH [2T32CA09677] FX This work was supported by the National Space Biomedical Research Institute (NSBRI) through NASA NCC 9-58 and NIH Training Grant 2T32CA09677. We would like to thank the staff of the NASA Space Radiation Laboratory and the Brookhaven National Laboratory for help with the animal proton irradiations, with particular thanks to Drs. I-Hung Chiang and Peter Guida. We also acknowledge the expert technical assistance of Corinne Reizel, Brookhaven National Laboratory, who helped us to obtain blood samples from the mice in the studies reported here. NR 18 TC 13 Z9 13 U1 0 U2 3 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD SEP PY 2010 VL 174 IS 3 BP 325 EP 330 DI 10.1667/RR1979.1 PG 6 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 647ZH UT WOS:000281658900007 PM 20726731 ER PT J AU Kim, BG Kim, T AF Kim, Beob G. Kim, Taemin TI A program for making completely balanced Latin Square designs employing a systemic method SO REVISTA COLOMBIANA DE CIENCIAS PECUARIAS LA English DT Article DE animal experiment; Latin square design; remote carryover effect AB Animal scientists employ Latin square designs to reduce the required number of animals for detecting statistical differences in animal experiments. Randomization procedures do not balance residual effects that possibly exist in Latin square experiments. A spreadsheet-based program is available for making Latin square designs balanced for the first-order residual effects. The balance of remote residual effects may also be very important to consider when a relatively long latent period exists after a treatment. We have developed a spreadsheet-based program, the Completely Balanced Latin Square Designer (CBLSD), to facilitate the generation of Latin squares (n = prime number - 1) balanced for immediate and remote carryover effects. The program allows a user to choose the number of treatments that is equal to the number of animals and periods in a square. A user may also input the number of squares. Then, the CBLSD instantly generates a Latin square balanced for the multi-order as well as first-order carryover effects. Also provided is a schedule table for an experiment sorted by period and animal. The CBLSD enables animal experimenters to quickly and accurately make Latin squares balanced for the immediate and remote carryover effects. The program is freely available upon request. C1 [Kim, Beob G.] Konkuk Univ, Dept Anim Sci & Environm, Seoul 143701, South Korea. [Kim, Taemin] NASA, Intelligent Robot Grp, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Kim, BG (reprint author), Konkuk Univ, Dept Anim Sci & Environm, Seoul 143701, South Korea. EM bgkim@konkuk.ac.kr; taemin.kim@nasa.gov RI Kim, Beob/B-5634-2009 FU Konkuk University FX The present work was supported by the faculty research fund of Konkuk University in 2010. NR 6 TC 11 Z9 11 U1 1 U2 2 PU UNIV ANTIOQUIA, FAC CIENCIAS AGRARIAS PI MEDELLIN PA CIUDADELA ROBLEDO, CARRERA 75 NO 65-87 OF 6-225, APARTADO AEREO 1226, MEDELLIN, 00000, COLOMBIA SN 0120-0690 J9 REV COLOMB CIENC PEC JI Rev. Colomb Cienc. Pecu. PD SEP PY 2010 VL 23 IS 3 BP 277 EP 282 PG 6 WC Agriculture, Dairy & Animal Science SC Agriculture GA 678PH UT WOS:000284091100002 ER PT J AU Fong, R AF Fong, Ron TI Scientists vs. Engineers SO SCIENTIST LA English DT Letter C1 NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Fong, R (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM ronald.c.fong@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU SCIENTIST INC PI PHILADELPHIA PA 400 MARKET ST, STE 1250, PHILADELPHIA, PA 19106 USA SN 0890-3670 J9 SCIENTIST JI Scientist PD SEP PY 2010 VL 24 IS 9 BP 14 EP 14 PG 1 WC Information Science & Library Science; Multidisciplinary Sciences SC Information Science & Library Science; Science & Technology - Other Topics GA 644PJ UT WOS:000281391600004 ER PT J AU Orchard, ME Tang, LA Saha, B Goebel, K Vachtsevanos, G AF Orchard, Marcos E. Tang, Liang Saha, Bhaskar Goebel, Kai Vachtsevanos, George TI Risk-Sensitive Particle-Filtering-based Prognosis Framework for Estimation of Remaining Useful Life in Energy Storage Devices SO STUDIES IN INFORMATICS AND CONTROL LA English DT Article DE Risk-sensitive particle filtering; failure prognosis; nonlinear state estimation; battery prognosis ID FAILURE PROGNOSIS; FAULT-DIAGNOSIS AB Failure prognosis, and particularly representation and management of uncertainty in long-term predictions, is a topic of paramount importance not only to improve productivity and efficiency, but also to ensure safety in the system's operation. The use of particle filter (PF) algorithms - in combination with outer feedback correction loops has contributed significantly to the development of a robust framework for online estimation of the remaining useful equipment life. This paper explores the advantages and disadvantages of a Risk-Sensitive PF (RSPF) prognosis framework that complements the benefits of the classic approach, by representing the probability of rare events and highly non-monotonic phenomena within the formulation of the nonlinear dynamic equation that describes the evolution of the fault condition in time. The performance of this approach is thoroughly compared using a set of ad-hoc metrics. Actual data illustrating aging of an energy storage device (specifically battery capacity measurements [A-hr]) are used to test the proposed framework. C1 [Orchard, Marcos E.] Univ Chile, Dept Elect Engn, Santiago 8370451, Chile. [Tang, Liang; Vachtsevanos, George] Impact Technol LLC, Rochester, NY 14623 USA. [Saha, Bhaskar] NASA, Ames Res Ctr, MCT Inc, Moffett Field, CA 94035 USA. [Vachtsevanos, George] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. RP Orchard, ME (reprint author), Univ Chile, Dept Elect Engn, Santiago 8370451, Chile. EM morchard@ing.uchile.cl; liang.tang@impact-tek.com; bhaskar.saha@nasa.gov; kai.goebel@nasa.gov; gjv@ece.gatech.edu RI Orchard, Marcos/H-4418-2013; researchers, ac3e/N-2008-2016 OI Orchard, Marcos/0000-0003-4778-2719; FU NASA [NNA08BC20C] FX The authors would like to acknowledge the support of NASA Aviation Safety Program/IVHM Project NRA NNA08BC20C, Thanks also go to Dr. Johan Reimann and Dr. Gregory Kacprzynski of Impact Technologies for valuable discussions. NR 19 TC 14 Z9 15 U1 2 U2 18 PU NATL INST R&D INFORMATICS-ICI PI BUCHAREST PA PUBL DEPT, 8-10 AVERESCU BLVD, SECTOR 1, BUCHAREST, 011455, ROMANIA SN 1220-1766 J9 STUD INFORM CONTROL JI Stud. Inform. Control PD SEP PY 2010 VL 19 IS 3 BP 209 EP 218 PG 10 WC Automation & Control Systems; Operations Research & Management Science SC Automation & Control Systems; Operations Research & Management Science GA 662TC UT WOS:000282834300001 ER PT J AU Weisbin, CR Mrozinski, J Lincoln, W Elfes, A Shelton, K Hua, H Smith, JH Adumitroaie, V Silberg, R AF Weisbin, Charles R. Mrozinski, Joseph Lincoln, William Elfes, Alberto Shelton, Kacie Hua, Hook Smith, Jeffrey H. Adumitroaie, Virgil Silberg, Robert TI Lunar Architecture and Technology Analysis Driven by Lunar Science Scenarios SO SYSTEMS ENGINEERING LA English DT Article DE NASA Vision for Space Exploration; lunar mission planning; astronaut-robot teams; multiagent planning; multiagent scheduling; optimal space mission planning AB NASA's Vision for Space Exploration and the missions it comprises pose large-scale systems-engineering problems with concomitant large-budget investment decisions involving multiple disciplines (e.g., science, engineering, information technology), multiple constraints (e.g., time, mass, energy consumption), myriad uncertainties, and a hierarchical structure of problem decomposition with resolution of increasing fidelity. Navigation through this sea of complexity is greatly facilitated by an analytical system that includes optimization and analysis software tools. The interplay between program planning and decision-support tools is seen here in a case study of a hypothetical mission on the Moon. The architecture of one such tool, HURON, is discussed and its application is illustrated in a comparison of the relative productivity of employing two pressurized or two unpressurized robotic rovers with two pairs of astronauts to conduct a specified group of activities. For the mission scenarios studied, a pair of pressurized rovers is shown to be significantly more productive than a pair of unpressurized rovers when calculating work accomplished divided by marginal operational costs. The HURON decision-support system presented and successfully applied in this paper deals explicitly with combinatorial explosion of a huge design space in scheduling the activities of agents subject to constraints, deploys a productivity function as a measure of value, and automatically determines a ranked sensitivity list of important inputs. The approach is applicable to a wide class of large-scale systems-engineering applications. (C) 2009 Wiley Periodicals, Inc. Syst Eng 13: 217-231, 2010 C1 [Weisbin, Charles R.; Mrozinski, Joseph; Lincoln, William; Elfes, Alberto; Shelton, Kacie; Hua, Hook; Smith, Jeffrey H.; Adumitroaie, Virgil; Silberg, Robert] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Weisbin, CR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Char-les.R.Weisbin@jpl.nasa.gov RI Elfes, Alberto/E-2463-2011 OI Elfes, Alberto/0000-0003-2433-995X FU Exploration Systems Mission Directorate Integration Office (DIO); Pat Troutman of LaRC; ESMD Advanced Capabilities Division (ACD); Exploration Technology Development Program (ETDP); Analysis Program Office; National Aeronautics and Space Administration FX The authors greatly appreciate the extensive background information regarding geological survey investigation techniques graciously provided to us by Dean Eppler. Thanks are due to John E. Gruener, Pam Clark, Ruthan Lewis, and Dean Eppler for their input on science goals and techniques and to Andrew Abercromby and Mike Gernhardt, who provided much data regarding EVA tasking. The authors gratefully acknowledge Doug Craig of the Exploration Systems Mission Directorate Integration Office (DIO) and Pat Troutman of LaRC supporting the DIO; Chris Moore of the ESMD Advanced Capabilities Division (ACD), and Frank Peni and Dave Beals of the Exploration Technology Development Program (ETDP), who support ACD; and Stephen Prusha, who manages the JPL System Modeling and Analysis Program Office, under whose auspices this work was conducted. To all listed above, the authors express their appreciation for contributing resources, analytical review and critique, and advocacy for this effort.; The research described in this paper was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration. It is part of ongoing work conducted by JPL's START (Strategic Assessment of Risk and Technology) team [http://start.jpl.nasa.gov] for NASA's Directorate Integration Office (DIO) in support of the technology prioritization activity of the Exploration Technology Development Program (ETDP), both part of NASA's Exploration Systems Mission Directorate (ESMD). Initial application of this approach is in support of the OSEWG (Optimizing Science and Exploration Working Group) surface science scenarios, a joint effort of the ESMD DIO and the NASA Science Mission Directorate. NR 30 TC 0 Z9 0 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1098-1241 EI 1520-6858 J9 SYSTEMS ENG JI Syst. Eng. PD FAL PY 2010 VL 13 IS 3 BP 217 EP 231 DI 10.1002/sys.20144 PG 15 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 638RN UT WOS:000280913700002 ER PT J AU Beakes, MP Satterthwaite, WH Collins, EM Swank, DR Merz, JE Titus, RG Sogard, SM Mangel, M AF Beakes, Michael P. Satterthwaite, William H. Collins, Erin M. Swank, David R. Merz, Joseph E. Titus, Robert G. Sogard, Susan M. Mangel, Marc TI Smolt Transformation in Two California Steelhead Populations: Effects of Temporal Variability in Growth SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY LA English DT Article ID TROUT ONCORHYNCHUS-MYKISS; LIFE-HISTORY VARIATION; ATLANTIC SALMON; JUVENILE STEELHEAD; HATCHERY; PATTERNS; WILD; PROXIMATE; GAIRDNERI; SURVIVAL AB We tested the effect of temporal patterns in food supply on life history decisions in coastal steelhead Oncorhynchus mykiss irideus from a Central California coastal (CCC) population (Scott Creek) and a Northern California Central Valley (NCCV) population (upper Sacramento River basin). We manipulated growth through feeding experiments conducted from May to the following March using warm (2006 cohort) and cool (2007 cohort) temperature regimes. Survival in seawater challenges just before the time of typical juvenile emigration provided an index of steelhead smolt versus nonsmolt life history pathways. Survival varied significantly with fish size (with larger fish being more likely to survive than smaller fish) and by source population (with CCC steelhead being more likely to survive than NCCV steelhead of the same size). The timing of increased food supply (treatment group) did not significantly affect seawater survival rates in either NCCV or CCC steelhead. For both strains, the eventual survivors of seawater challenges (putative smolts) diverged from the eventual mortalities (putative nonsmolts) in both size and growth rate by June in both years, suggesting that the initial growth advantages were maintained throughout the experiments. A significant divergence in condition factor between smolts and nonsmolts by December matched the expected morphological transition of smolts, which showed faster growth in length than weight compared with nonsmolts. The apparent timing of the decision window, several months before the typical period of smolt emigration, matches the patterns observed for other salmonids. In coastal California, this decision must occur before fish have had the opportunity to take advantage of improved winter-early spring feeding conditions. These results support the role of early growth opportunity in life history decisions and provide insight into the applicability of life history models for managing California steelhead. C1 [Beakes, Michael P.; Satterthwaite, William H.; Mangel, Marc] Univ Calif Santa Cruz, Ctr Stock Assessment Res, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA. [Beakes, Michael P.; Sogard, Susan M.] Natl Marine Fisheries Serv, Santa Cruz, CA 95060 USA. [Satterthwaite, William H.] MRAG Amer, Capitola, CA 95010 USA. [Collins, Erin M.; Titus, Robert G.] Calif Dept Fish & Game, Sacramento, CA 95826 USA. [Swank, David R.] Natl Marine Fisheries Serv, Sacramento, CA 95814 USA. [Merz, Joseph E.] Cramer Fish Sci, Auburn, CA 95603 USA. [Merz, Joseph E.] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA. RP Beakes, MP (reprint author), Univ Calif Santa Cruz, Ctr Stock Assessment Res, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA. EM michael.beakes@noaa.gov FU CALFED Science Program [SCI-05-140]; [U-05-SC-40] FX This material is based upon work supported by the CALFED Science Program under Science Program Project No. SCI-05-140 to Marc Mangel, Susan Sogard, and Rob Titus under grant agreement number U-05-SC-40. NOAA's Center for Stock Assessment Research provided additional support. We thank the U. S. Fish and Wildlife Service, Kurtis Brown, The Monterey Bay Salmon and Trout project, Dave Streig, the University of California-Santa Cruz Center for Stock Assessment research laboratory, the NOAA Southwest Fisheries Science Center and employees therein for providing technical and logistic support in addition to the facilities with which to conduct these rearing experiments. NR 30 TC 18 Z9 18 U1 1 U2 32 PU AMER FISHERIES SOC PI BETHESDA PA 5410 GROSVENOR LANE SUITE 110, BETHESDA, MD 20814-2199 USA SN 0002-8487 J9 T AM FISH SOC JI Trans. Am. Fish. Soc. PD SEP PY 2010 VL 139 IS 5 BP 1263 EP 1275 DI 10.1577/T09-146.1 PG 13 WC Fisheries SC Fisheries GA 659VC UT WOS:000282594000001 ER PT J AU Pfister, L Selkirk, HB Starr, DO Rosenlof, K Newman, PA AF Pfister, L. Selkirk, H. B. Starr, D. O. Rosenlof, K. Newman, P. A. TI A meteorological overview of the TC4 mission SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID LOW-LEVEL JET; NORTHWESTERN SOUTH-AMERICA; TROPICAL TROPOPAUSE; DIURNAL PATTERNS; CONVECTION; RAINFALL; PACIFIC; WAVES AB The TC4 mission in Central America during summer 2007 examined convective transport into the tropical UTLS and the evolution of cirrus clouds. The tropical tropopause layer (TTL) circulation is dominated by the Asian monsoon anticyclone and westward winds that stretch from the western Pacific into the Atlantic. During TC4, TTL westward flow over Central America was stronger than normal. Incidence of cold clouds over the Central American region was the third lowest out of 34 years sampled. The major factor was an incipient La Nina, specifically anomalously cold temperatures off the Pacific Coast of South America. Weakness in the low level Caribbean jet caused a shift in the coldest clouds from the Caribbean to the Pacific side of Central America. The character of tropopause temperature variability was that of upward propagating waves generated by local and nonlocal convection. These waves produced tropopause temperature variations of 3 K, with peak-to-peak variations of 8 K. At low levels in Central America, flow from the Sahara desert predominated; further south, the air came from the Amazon region. Convectively influenced air in the upper troposphere came from Central America, the northern Amazon region, the Atlantic ITCZ, and the North American monsoon. In the TTL, Asian and African convection affected the observed air masses. North of 10N in the Central American TTL, African and Asian convection may have contributed as much to the air masses as Central and South American convection. South of 8N, Asian and African convection had far less impact. C1 [Pfister, L.] NASA, Div Earth Sci, Ames Res Ctr, Moffett Field, CA 94035 USA. [Starr, D. O.; Newman, P. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rosenlof, K.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Selkirk, H. B.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. RP Pfister, L (reprint author), NASA, Div Earth Sci, Ames Res Ctr, MS 245-5, Moffett Field, CA 94035 USA. EM leonhard.pfister@nasa.gov; david.o.starr@nasa.gov; karen.h.rosenlof@nasa.gov; paul.a.newman@nasa.gov RI Rosenlof, Karen/B-5652-2008; Newman, Paul/D-6208-2012; Selkirk, Henry/H-2021-2012; Manager, CSD Publications/B-2789-2015 OI Rosenlof, Karen/0000-0002-0903-8270; Newman, Paul/0000-0003-1139-2508; FU NASA FX The authors of this paper would like to acknowledge support from the NASA Upper Atmosphere Research Program, the NASA Atmospheric Chemistry Modeling and Analysis Program, and the NOAA Atmospheric Composition and Climate program. NR 37 TC 23 Z9 23 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 31 PY 2010 VL 115 AR D00J12 DI 10.1029/2009JD013316 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 646WB UT WOS:000281573700004 ER PT J AU Gregory, OJ Busch, E Fralick, GC Chen, XM AF Gregory, Otto J. Busch, Eike Fralick, Gustave C. Chen, Ximing TI Preparation and characterization of ceramic thin film thermocouples SO THIN SOLID FILMS LA English DT Article DE Indium tin oxide (ITO); Alumina doped zinc oxide; NiCoCrAlY/alumina nanocomposite; Ceramic thermocouple ID PIEZORESISTIVE PROPERTIES; ELEVATED-TEMPERATURES; STRAIN-GAUGE; SENSORS AB Indium tin oxide (ITO), alumina doped zinc oxide (ZnO) and NiCrCoAlY/alumina nanocomposites were systematically investigated as thermoelements. These ceramic thermoelements were initially tested relative to a platinum reference electrode and the resulting thermoelectric properties were evaluated. Bi-ceramic junctions comprised of the most stable and responsive ceramic thermoelements, i e those thermoelements with the largest and most stable Seebeck coefficients relative to platinum, were fabricated and tested A bi-ceramic junction based on nitrogen-doped ITO oxygen-doped ITO exhibited excellent high temperature stability and reproducibility, however, this thermocouple pair had a relatively low Seebeck coefficient (6 mu V/degrees C). Alumina doped ZnO ITO thermocouples generated a very large electromotive force at low temperatures but lacked high temperature stability When nitrogen-doped ITO was combined with a NiCoCrAlY/alumina nanocomposite, a very large and stable Seebeck coefficient (375 mu V/degrees C) was realized Ceramic thermocouples based on several candidate materials were demonstrated at temperatures up to 1200 degrees C and the potential of using these materials in other thermoelectric devices including those for energy harvesting is discussed. (C) 2010 Elsevier B.V All rights reserved C1 [Gregory, Otto J.; Busch, Eike; Chen, Ximing] Univ Rhode Isl, Dept Chem Engn, Kingston, RI 02881 USA. [Fralick, Gustave C.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Gregory, OJ (reprint author), Univ Rhode Isl, Dept Chem Engn, Kingston, RI 02881 USA. FU NASA Glenn Research Center, Cleveland, Ohio [NAG3-2655, NNC05GA67G, NNX07AB83A] FX The authors thank NASA Glenn Research Center, Cleveland, Ohio for the support of this work under NASA Grants NAG3-2655 (Aerospace Power and Propulsion Program), NNC05GA67G (Ultra Efficient Engine Technology) and NNX07AB83A (Aircraft Aging and Durability Program). NR 16 TC 11 Z9 14 U1 0 U2 39 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD AUG 31 PY 2010 VL 518 IS 21 BP 6093 EP 6098 DI 10.1016/j.tsf.2010.05.102 PG 6 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 639QK UT WOS:000280989100039 ER PT J AU Heinzel, G Cervantes, FG Marin, AFG Kullmann, J Feng, W Danzmann, K AF Heinzel, Gerhard Cervantes, Felipe Guzman Marin, Antonio F. Garcia Kullmann, Joachim Feng, Wang Danzmann, Karsten TI Deep phase modulation interferometry SO OPTICS EXPRESS LA English DT Article ID HETERODYNE INTERFEROMETER; OPTICAL INTERFEROMETERS; SHIFTING INTERFEROMETRY; AUTOMATIC ALIGNMENT; LTP INTERFEROMETER; READOUT; ACCURACY; SENSOR; SYSTEM; NOISE AB We have developed a method to equip homodyne interferometers with the capability to operate with constant high sensitivity over many fringes for continuous real-time tracking. The method can be considered as an extension of the "J(1) ... J(4)" methods, and its enhancement to deliver very sensitive angular measurements through Differential Wavefront Sensing is straightforward. Beam generation requires a sinusoidal phase modulation of several radians in one interferometer arm. On a stable optical bench, we have demonstrated a long-term sensitivity over thousands of seconds of 0.1 mrad/root Hz that correspond to 20 pm/root Hz in length, and 10 nrad/root Hz in angle at millihertz frequencies. (c) 2010 Optical Society of America C1 [Heinzel, Gerhard; Cervantes, Felipe Guzman; Marin, Antonio F. Garcia; Kullmann, Joachim; Feng, Wang; Danzmann, Karsten] Max Planck Inst Gravitat Phys, Albert Einstein Inst Hannover, D-30167 Hannover, Germany. [Heinzel, Gerhard; Cervantes, Felipe Guzman; Marin, Antonio F. Garcia; Kullmann, Joachim; Feng, Wang; Danzmann, Karsten] Leibniz Univ Hannover, Albert Einstein Inst Hannover, D-30167 Hannover, Germany. [Cervantes, Felipe Guzman] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Feng, Wang] Acad Sinica, Purple Mt Observ, CAS, Nanjing 210008, Peoples R China. RP Heinzel, G (reprint author), Max Planck Inst Gravitat Phys, Albert Einstein Inst Hannover, Callinstr 38, D-30167 Hannover, Germany. EM gerhard.heinzel@aei.mpg.de; felipe.guzman@nasa.gov RI Guzman, Felipe/H-6453-2011 OI Guzman, Felipe/0000-0001-9136-929X FU Deutsches Zentrum fur Luft-und Raumfahrt (DLR) [50 OQ 0501, 50 OQ 0601] FX We gratefully acknowledge support by the Deutsches Zentrum fur Luft-und Raumfahrt (DLR) (references 50 OQ 0501 and 50 OQ 0601). NR 29 TC 13 Z9 15 U1 4 U2 12 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD AUG 30 PY 2010 VL 18 IS 18 BP 19076 EP 19086 DI 10.1364/OE.18.019076 PG 11 WC Optics SC Optics GA 653PE UT WOS:000282107900061 PM 20940802 ER PT J AU Valentini, P Schwartzentruber, TE Cozmuta, I AF Valentini, Paolo Schwartzentruber, Thomas E. Cozmuta, Ioana TI Molecular dynamics simulation of O-2 sticking on Pt(111) using the ab initio based ReaxFF reactive force field SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DISSOCIATIVE ADSORPTION; OXYGEN-ADSORPTION; CHEMISORBED O-2; SURFACES; ENERGY; BEAM; SPECTROSCOPY; PRECURSORS; PLATINUM; DESORPTION AB The molecular dynamics technique with the ab initio based classical reactive force field ReaxFF is used to study the adsorption dynamics of O-2 on Pt(111) for both normal and oblique impacts. Overall, good quantitative agreement with the experimental data is found at low incident energies. Specifically, our simulations reproduce the characteristic minimum of the trapping probability at kinetic incident energies around 0.1 eV. This feature is determined by the presence of a physisorption well in the ReaxFF potential energy surface (PES) and the progressive suppression of a steering mechanism when increasing the translational kinetic energy (or the molecule's rotational energy) because of steric hindrance. In the energy range between 0.1 and 0.4 eV, the sticking probability increases, similar to molecular beam sticking data. For very energetic impacts (above 0.4 eV), ReaxFF predicts sticking probabilities lower than experimental sticking data by almost a factor of 3 due to an overall less attractive ReaxFF PES compared to experiments and density functional theory. For oblique impacts, the trapping probability is reduced by the nonzero parallel momentum because of the PES corrugation and does not scale with the total incident kinetic energy. Furthermore, our simulations predict quasispecular (slightly supraspecular) distributions of angles of reflection, in accordance with molecular beam experiments. Increasing the beam energy (between 1.2 and 1.7 eV) causes the angular distributions to broaden and to exhibit a tail toward the surface normal because molecules have enough momentum to get very near the surface and thus probe more corrugated repulsive regions of the PES. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3469810] C1 [Valentini, Paolo; Schwartzentruber, Thomas E.] Univ Minnesota, Dept Aerosp Engn & Mech, Minneapolis, MN 55455 USA. [Cozmuta, Ioana] NASA, Ames Res Ctr, Eloret Corp, Moffett Field, CA 94035 USA. RP Valentini, P (reprint author), Univ Minnesota, Dept Aerosp Engn & Mech, Minneapolis, MN 55455 USA. EM vale@aem.umn.edu; schwartz@aem.umn.edu; ioana.cozmuta@nasa.gov RI Valentini, Paolo/A-6660-2011 FU Air Force Office of Scientific Research (AFOSR) [FA9550-04-1-0341, FA9550-09-1-0157]; University of Minnesota; NASA under the ELORET [NNA04BC25C] FX We would like to thank Professor Adri van Duin for his help with the ReaxFF potential and for providing us with the parameters for simulating the system of interest. The research was supported by the Air Force Office of Scientific Research (AFOSR) under Grant Nos. FA9550-04-1-0341 and FA9550-09-1-0157. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the AFOSR or the U. S. Government. P. V. would like to acknowledge partial support from the Doctoral Dissertation Fellowship of the University of Minnesota. A portion of the funding for the work of Dr. Ioana Cozmuta originates from NASA's Fundamental Aeronautics Hypersonic Program under the ELORET contract NNA04BC25C. NR 39 TC 25 Z9 25 U1 4 U2 35 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 28 PY 2010 VL 133 IS 8 AR 084703 DI 10.1063/1.3469810 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 649CE UT WOS:000281743800037 PM 20815586 ER PT J AU Huang, FT McPeters, RD Bhartia, PK Mayr, HG Frith, SM Russell, JM Mlynczak, MG AF Huang, Frank T. McPeters, Richard D. Bhartia, Pawan K. Mayr, Hans G. Frith, Stacey M. Russell, James M., III Mlynczak, Martin G. TI Temperature diurnal variations (migrating tides) in the stratosphere and lower mesosphere based on measurements from SABER on TIMED SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID QUASI-BIENNIAL OSCILLATION; DOPPLER-SPREAD PARAMETERIZATION; ATMOSPHERIC THERMAL TIDES; WAVE MOMENTUM DEPOSITION; MIDDLE ATMOSPHERE; GRAVITY-WAVE; SEASONAL-VARIATIONS; LIDAR OBSERVATIONS; DIMENSIONAL MODEL; OZONE AB Derived diurnal variations of temperature (diurnal migrating tides) in the stratosphere and lower mesosphere based on satellite measurements from SABER on TIMED are presented. They complement earlier studies by us and by others that concentrated on higher altitudes. The amplitudes range from less than 1 degrees K to a few degrees K, compared to those in the upper mesosphere, which can reach 20 degrees K. They are important to the understanding of the dynamics and energetics and can be of additional value when used with previous measurements that have records spanning decades but which do not provide adequate information to estimate diurnal variations. We compare with results by others based on satellite and ground-based measurements. At low altitudes (similar to 25-12 hPa), the comparisons are generally quite good, even for magnitudes of 1 degrees or less. With increasing altitude, the diurnal amplitudes display asymmetry with respect to the equator on latitude versus day coordinates up to about 1 hPa (similar to 48 km), where a transition begins, and the morphology becomes reminiscent of the first symmetric propagating mode of the migrating tide. A transition also appears in the diurnal phase gradient with respect to altitude, where the regular progression of the diurnal phase becomes significantly smaller at altitudes from about 2.8 to 0.22 hPa. The seasonal variations can show significant semiannual behavior that peak near equinox but are less obvious at lower altitudes below similar to 10 hPa. Interannual variations in the upper stratosphere are qualitatively consistent with those found previously at higher altitudes by us. C1 [Huang, Frank T.] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [McPeters, Richard D.; Bhartia, Pawan K.; Mayr, Hans G.; Frith, Stacey M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Russell, James M., III] Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23668 USA. [Mlynczak, Martin G.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Huang, FT (reprint author), Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore Campus,5523 Res Pk Dr, Baltimore, MD 21228 USA. EM fthuang@comcast.net RI Mlynczak, Martin/K-3396-2012; McPeters, Richard/G-4955-2013; Bhartia, Pawan/A-4209-2016 OI McPeters, Richard/0000-0002-8926-8462; Bhartia, Pawan/0000-0001-8307-9137 FU Goddard Earth Sciences and Technology Center (GEST); NASA FX We thank the Editor, Joost de Gouw, and three reviewers for insightful comments that helped to improve the manuscript. Funding for FTH was by the Goddard Earth Sciences and Technology Center (GEST) and NASA. NR 45 TC 15 Z9 15 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 28 PY 2010 VL 115 AR D16121 DI 10.1029/2009JD013698 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 644XG UT WOS:000281414800004 ER PT J AU Li, J Liu, L Lacis, AA Carlson, BE AF Li, Jing Liu, Li Lacis, Andrew A. Carlson, Barbara E. TI An optimal fitting approach to improve the GISS ModelE aerosol optical property parameterization using AERONET data SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID LIGHT-SCATTERING; SATELLITE; SIMULATIONS; NETWORK; GCM AB We improve the updated 2000 Goddard Institute for Space Studies, New York, ModelE aerosol optical property parameterization using an optimal fitting approach with AERONET ground measurements. The model aerosol optical properties, such as optical depth, are calculated using the aerosol mass density field from a chemical transport model, Mie scattering parameters, a prescribed dry size for each aerosol species assuming external mixing, and a hygroscopicity parameterization. A comparison between the model-and AERONET-measured optical depth (AOD) and Angstrom exponent (AE) indicates that the general circulation model (GCM) aerosol parameterization has a flatter AOD spectral dependence, thus a very low biased AE, which suggests that the aerosol sizes used in the model are too large. The seasonal variation of GCM AE also disagrees with that of AERONET data. On the basis of these results, we identify GCM aerosol size as the most poorly constrained parameter and develop an optimal fitting technique to adjust the GCM aerosol dry size by minimizing the total mean square error between the GCM and AERONET AOD at the six AERONET wavelengths. After adjusting the aerosol's dry size, the agreement between the GCM AE with AERONET data is improved. The fitted AOD at the six wavelengths closely matches AERONET data over most biomass burning, dust, and rural regions. The results are also greatly improved for the other aerosol types. The global distribution of the optimally fitted sizes displays regionally uniform characteristics, which allows the generation of a geographically varying size data set. Model uncertainty caused by other factors is also represented by an uncertainty parameter, which is mainly attributed to errors from aerosol mass concentration, Mie scattering parameters, relative humidity, and AERONET measurements. The relative contribution of each of these errors sources depends on the relevant aerosol type. Further comparison between the absorption optical depth and AE spectral dependence provides additional information on absorbing aerosols and GCM fine-to-coarse mode ratio, which will be addressed in future research. C1 [Li, Jing] Columbia Univ, Dept Earth & Environm Sci, New York, NY 10025 USA. [Li, Jing; Liu, Li; Lacis, Andrew A.; Carlson, Barbara E.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Li, J (reprint author), Columbia Univ, Dept Earth & Environm Sci, 2800 Broadway, New York, NY 10025 USA. EM jli@giss.nasa.gov RI Lacis, Andrew/D-4658-2012; Carlson, Barbara/D-8319-2012; Li, Jing/J-2397-2014 OI Li, Jing/0000-0002-0540-0412 NR 37 TC 3 Z9 3 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 28 PY 2010 VL 115 AR D16211 DI 10.1029/2010JD013909 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 644XG UT WOS:000281414800005 ER PT J AU Puma, MJ Cook, BI AF Puma, M. J. Cook, B. I. TI Effects of irrigation on global climate during the 20th century SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID LAND-COVER CHANGE; WATER-RESOURCES; GISS MODELE; VEGETATION; TEMPERATURE; PRECIPITATION; SIMULATIONS; EVAPORATION; DYNAMICS; IMPACTS AB Various studies have documented the effects of modern-day irrigation on regional and global climate, but none, to date, have considered the time-varying impact of steadily increasing irrigation rates on climate during the 20th century. We investigate the impacts of observed irrigation changes over this century with two ensemble simulations using an atmosphere general circulation model. Both ensembles are forced with transient climate forcings and observed sea surface temperatures from 1902 to 2000; one ensemble includes irrigation specified by a time-varying data set of irrigation water withdrawals. Early in the century, irrigation is primarily localized over southern and eastern Asia, leading to significant cooling in boreal summer (June-August) over these regions. This cooling spreads and intensifies by century's end, following the rapid expansion of irrigation over North America, Europe, and Asia. Irrigation also leads to boreal winter (December-February) warming over parts of North America and Asia in the latter part of the century, due to enhanced downward longwave fluxes from increased near-surface humidity. Precipitation increases occur primarily downwind of the major irrigation areas, although precipitation in parts of India decreases due to a weaker summer monsoon. Irrigation begins to significantly reduce temperatures and temperature trends during boreal summer over the Northern Hemisphere midlatitudes and tropics beginning around 1950; significant increases in precipitation occur in these same latitude bands. These trends reveal the varying importance of irrigation-climate interactions and suggest that future climate studies should account for irrigation, especially in regions with unsustainable irrigation resources. C1 [Puma, M. J.] Columbia Univ, Ctr Climate Syst Res, New York, NY 10027 USA. [Puma, M. J.; Cook, B. I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Cook, B. I.] Columbia Univ, Lamont Doherty Earth Observ, Earth Inst, Palisades, NY USA. RP Puma, MJ (reprint author), Columbia Univ, Ctr Climate Syst Res, New York, NY 10027 USA. EM mpuma@giss.nasa.gov; bc9z@ldeo.columbia.edu RI Cook, Benjamin/H-2265-2012 FU NASA [NNX08AJ75A] FX M.J. Puma gratefully acknowledges funding for Interdisciplinary Global Change Research under NASA Cooperative Agreement NNX08AJ75A supported by the NASA Climate and Earth Observing Program. The authors also thank D. Wisser for providing us with the global irrigation data set from Wisser et al. [2010] and G. Schmidt for his helpful suggestions. Three anonymous reviewers provided valuable comments that significantly improved this paper (Lamont contribution 7379). NR 55 TC 66 Z9 67 U1 4 U2 29 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 28 PY 2010 VL 115 AR D16120 DI 10.1029/2010JD014122 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 644XG UT WOS:000281414800006 ER PT J AU Burlaga, LF Ness, NF Wang, YM Sheeley, NR Richardson, JD AF Burlaga, L. F. Ness, N. F. Wang, Y. -M. Sheeley, N. R., Jr. Richardson, J. D. TI Observations of the magnetic field and plasma in the heliosheath by Voyager 2 from 2007.7 to 2009.4 SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID WIND TERMINATION SHOCK; SOLAR-WIND; 95 AU; EVOLUTION; UPSTREAM; IONS AB The density and temperature profiles of the plasma measured by Voyager 2 (V2) behind the termination shock changed abruptly near 2008.6 from relatively large average values and large fluctuations during 2007.7 to 2008.6 (interval A) to relatively low average values and very small-amplitude fluctuations during 2008.6 to 2009.4 (interval B). This paper shows that the change in the magnetic field strength B(t) was less abrupt than the plasma changes, and the fluctuations of the magnetic field strength in interval B were of moderate amplitude, with indications of a quasiperiodic structure in part of the interval. The magnetic field was directed away from the sun (positive polarity) similar to 78% +/- 5% of the time in both interval A and interval B, changing in an irregular way from positive to negative polarities throughout the interval. The polarity distribution indicates that the minimum latitudinal extent of the heliospheric current sheet (HCS) was near V2 throughout the interval, consistent with the extrapolated minimum latitudes of the HCS computed from solar magnetic field observations. Thus, V2 was observing magnetic fields from the southern polar coronal hole most of the time. The distribution of B was lognormal in interval A and Gaussian interval B. C1 [Burlaga, L. F.] NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Greenbelt, MD 20771 USA. [Ness, N. F.] Catholic Univ Amer, Inst Astrophys & Computat Sci, Washington, DC 20064 USA. [Richardson, J. D.] MIT, Kavali Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Wang, Y. -M.; Sheeley, N. R., Jr.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. RP Burlaga, LF (reprint author), NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Mail Code 673,Bldg 2,Rm 244, Greenbelt, MD 20771 USA. EM lburlagahsp@verizon.net; nfnudel@yahoo.com; yi.wang@nrl.navy.mil; neil.sheeley@nrl.navy.mil; jdr@space.mit.edu FU NASA [NNX06AG99G] FX T. McClanahan and S. Kramer processed the data, and Daniel Berdischevsky computed the zero level offsets of the instrument. N. F. Ness was partially supported in part by NASA Grant NNX06AG99G to CUA. One of the authors (LB) acknowledges helpful conversations with E. Roelof. NR 27 TC 13 Z9 13 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD AUG 28 PY 2010 VL 115 AR A08107 DI 10.1029/2009JA015239 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 644YI UT WOS:000281417700007 ER PT J AU Farrugia, CJ Erkaev, NV Torbert, RB Biernat, HK Gratton, FT Szabo, A Kucharek, H Matsui, H Lin, RP Ogilvie, KW Lepping, RP Smith, CW AF Farrugia, C. J. Erkaev, N. V. Torbert, R. B. Biernat, H. K. Gratton, F. T. Szabo, A. Kucharek, H. Matsui, H. Lin, R. P. Ogilvie, K. W. Lepping, R. P. Smith, C. W. TI Magnetosheath for almost-aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at X =-12 Re SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID FLUX-TRANSFER EVENTS; BOW SHOCK; MAGNETOPAUSE; PLASMA; MAGNETOSPHERE; MODEL AB While there are many approximations describing the flow of the solar wind past the magnetosphere in the magnetosheath, the case of perfectly aligned (parallel or antiparallel) interplanetary magnetic field (IMF) and solar wind flow vectors can be treated exactly in a magnetohydrodynamic (MHD) approach. In this work we examine a case of nearly-opposed (to within 15) interplanetary field and flow vectors, which occurred on October 24-25, 2001 during passage of the last interplanetary coronal mass ejection in an ejecta merger. Interplanetary data are from the ACE spacecraft. Simultaneously Wind was crossing the near-Earth (X similar to -13 Re) geomagnetic tail and subsequently made an approximately 5-hour-long magnetosheath crossing close to the ecliptic plane (Z = -0.7 Re). Geomagnetic activity was returning steadily to quiet, "ground" conditions. We first compare the predictions of the Spreiter and Rizzi theory with the Wind magnetosheath observations and find fair agreement, in particular as regards the proportionality of the magnetic field strength and the product of the plasma density and bulk speed. We then carry out a small-perturbation analysis of the Spreiter and Rizzi solution to account for the small IMF components perpendicular to the flow vector. The resulting expression is compared to the time series of the observations and satisfactory agreement is obtained. We also present and discuss observations in the dawnside boundary layer of pulsed, high-speed (v similar to 600 km/s) flows exceeding the solar wind flow speeds. We examine various generating mechanisms and suggest that the most likely cause is a wave of frequency 3.2 mHz excited at the inner edge of the boundary layer by the Kelvin-Helmholtz instability. C1 [Farrugia, C. J.; Torbert, R. B.; Kucharek, H.; Matsui, H.; Smith, C. W.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Farrugia, C. J.; Torbert, R. B.; Kucharek, H.; Matsui, H.; Smith, C. W.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Erkaev, N. V.] Russian Acad Sci, Inst Computat Modeling, Krasnoyarsk 660036, Russia. [Erkaev, N. V.] Siberian Fed Univ, Krasnoyarsk, Russia. [Biernat, H. K.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria. [Biernat, H. K.] Graz Univ, Inst Theoret Phys, A-8010 Graz, Austria. [Gratton, F. T.] Consejo Nacl Invest Cient & Tecn, Inst Fis Plasma, Buenos Aires, DF, Argentina. [Szabo, A.; Ogilvie, K. W.; Lepping, R. P.] NASA, Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20771 USA. [Lin, R. P.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Lin, R. P.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lin, R. P.] Kyung Hee Univ, Sch Space Res, Seoul, South Korea. RP Farrugia, CJ (reprint author), Univ New Hampshire, Ctr Space Sci, 39 Coll Rd, Durham, NH 03824 USA. EM charlie.farrugia@unh.edu RI Erkaev, Nikolai/M-1608-2013 OI Erkaev, Nikolai/0000-0001-8993-6400 FU NASA [NNX08AD11G, NNG06GD41G]; RFBR [07-05-00135, 09-05-91000-ANF_a]; RAS [16]; NASA at UC Berkeley [NNX08AE34G]; Korean Ministry of Education, Science and Technology [R31-10016] FX The authors would like to thank David Burgess for helpful discussions. Part of this work was done when NVE was on a research visit to the Space Science Center of the University of New Hampshire, USA. This work is supported by NASA grants NNX08AD11G and NNG06GD41G, and also by RFBR grants 07-05-00135, 09-05-91000-ANF_a and by Program 16 of RAS. R. P. Lin has been supported in part by NASA grant NNX08AE34G at UC Berkeley, and the WCU grant (R31-10016) funded by the Korean Ministry of Education, Science and Technology. We thank D. J. McComas and H. J. Singer for the ACE plasma data and GOES magnetic field data, respectively, obtained through NASA cdaweb site. NR 34 TC 10 Z9 10 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD AUG 27 PY 2010 VL 115 AR A08227 DI 10.1029/2009JA015128 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 644YG UT WOS:000281417500005 ER PT J AU Parker, J Norton, C Lyzenga, G AF Parker, Jay Norton, Charles Lyzenga, Gregory TI Parallel GeoFEST for regional faulted deformation SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article; Proceedings Paper CT 6th APEC Cooperation for Earthquake Simulations (ACES) CY MAY 11-16, 2008 CL Cairns, AUSTRALIA DE finite element; earthquake; adaptive mesh refinement ID CALIFORNIA; ALGORITHMS AB The GeoFEST application, which can accurately simulate deformation and stress in a faulted region of the earth's crust and mantle in the presence of heterogeneous rheology, faulting, tectonic loading, and viscoelastic relaxation, is a scalable parallel application well suited for the largest supercomputers. In order to achieve such scaling, the authors implemented a carefully choreographed algorithm using the Message Passing interface (MPI) calls, made use of parallel partitioning and data management functions from the PYRAMID and ParMetis libraries, and designed a technique for using the strain energy density from an initial scratch elastic solution to direct PYRAMID in performing parallel adaptive mesh refinement. An example problem follows that illustrates how an initial geometry and mesh designed on a laptop computer is automatically processed on hundreds to thousands of processors using millions of refined finite elements. Copyright (c) 2009 John Wiley & Sons, Ltd. C1 [Parker, Jay; Norton, Charles; Lyzenga, Gregory] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91125 USA. RP Parker, J (reprint author), CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91125 USA. EM Jay.W.Parker@jpl.nasa.gov NR 20 TC 0 Z9 0 U1 0 U2 1 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD AUG 25 PY 2010 VL 22 IS 12 SI SI BP 1604 EP 1625 DI 10.1002/cpe.1511 PG 22 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 643WA UT WOS:000281329200008 ER PT J AU Glasscoe, MT Granat, RA Rundle, JB Rundle, PB Donnellan, A Kellogg, LH AF Glasscoe, Margaret T. Granat, Robert A. Rundle, John B. Rundle, Paul B. Donnellan, Andrea Kellogg, Louise H. TI Analysis of emergent fault element behavior in Virtual California SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article; Proceedings Paper CT 6th APEC Cooperation for Earthquake Simulations (ACES) CY MAY 11-16, 2008 CL Cairns, AUSTRALIA DE emergent phenomena; statistical analysis; earthquake physics; numerical simulation ID SAN-ANDREAS FAULT; SOUTHERN-CALIFORNIA; EARTHQUAKE; SIMULATIONS; SEISMICITY; NETWORKS; STRESS; VALLEY; ZONE AB The Virtual California simulation tool can be used to study fault and stress interaction scenarios for realistic California earthquakes and produces a large data set, which is ideally suited for statistical analysis. As with any complex system, it can produce emergent phenomena unexpected by its designers; these can be studied in order to gain insight into real world geophysical phenomena. We have developed a statistical method to analyze Virtual California data that enables us to determine the correlation relationships between the simulated fault elements. We present the results of this analysis of 40 000 years of data for 59 faults (639 elements). We focus on five specific cases that display noteworthy behavior that includes long-range fault interactions, activation-quiescence, and complex small-scale interactions. Copyright (c) 2009 John Wiley & Sons, Ltd. C1 [Glasscoe, Margaret T.; Granat, Robert A.; Donnellan, Andrea] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rundle, John B.; Rundle, Paul B.; Kellogg, Louise H.] Univ Calif Davis, Davis, CA 95616 USA. RP Glasscoe, MT (reprint author), M-S 300-233,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Margaret.T.Glasscoe@jpl.nasa.gov RI Kellogg, Louise/J-2171-2012 OI Kellogg, Louise/0000-0001-5874-0472 NR 22 TC 0 Z9 0 U1 0 U2 2 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD AUG 25 PY 2010 VL 22 IS 12 SI SI BP 1665 EP 1683 DI 10.1002/cpe.1546 PG 19 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 643WA UT WOS:000281329200012 ER PT J AU Seidel, DJ Ao, CO Li, K AF Seidel, Dian J. Ao, Chi O. Li, Kun TI Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article AB Planetary boundary layer (PBL) processes control energy, water, and pollutant exchanges between the surface and free atmosphere. However, there is no observation-based global PBL climatology for evaluation of climate, weather, and air quality models or for characterizing PBL variability on large space and time scales. As groundwork for such a climatology, we compute PBL height by seven methods, using temperature, potential temperature, virtual potential temperature, relative humidity, specific humidity, and refractivity profiles from a 10 year, 505-station radiosonde data set. Six methods are directly compared; they generally yield PBL height estimates that differ by several hundred meters. Relative humidity and potential temperature gradient methods consistently give higher PBL heights, whereas the parcel (or mixing height) method yields significantly lower heights that show larger and more consistent diurnal and seasonal variations (with lower nighttime and wintertime PBLs). Seasonal and diurnal patterns are sometimes associated with local climatological phenomena, such as nighttime radiation inversions, the trade inversion, and tropical convection and associated cloudiness. Surface-based temperature inversions are a distinct type of PBL that is more common at night and in the morning than during midday and afternoon, in polar regions than in the tropics, and in winter than other seasons. PBL height estimates are sensitive to the vertical resolution of radiosonde data; standard sounding data yield higher PBL heights than high-resolution data. Several sources of both parametric and structural uncertainty in climatological PBL height values are estimated statistically; each can introduce uncertainties of a few 100 m. C1 [Seidel, Dian J.] NOAA, Air Resources Lab R ARL, Silver Spring, MD 20910 USA. [Li, Kun] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA. [Ao, Chi O.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Seidel, DJ (reprint author), NOAA, Air Resources Lab R ARL, 1315 E W Highway, Silver Spring, MD 20910 USA. EM Dian.Seidel@noaa.gov FU National Aeronautics and Space Administration FX We thank Angela Betancourt-Negron (University of Puerto Rico) for assistance with data processing and Dan Hollis (UK Met Office) for providing cloud observations for Lerwick. Yehui Zhang (NOAA Air Resources Laboratory) performed calculations to test the effects of including surface-level observations. Julian Wang and Donald Ballard (NOAA Air Resources Laboratory), Imke Durre (NOAA National Climatic Data Center), Venkat Ratnam, (National Atmospheric Research Laboratory, Gadanki), and four anonymous reviewers each provided helpful suggestions on the manuscript. Research performed by C. Ao was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 22 TC 99 Z9 100 U1 3 U2 43 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 25 PY 2010 VL 115 AR D16113 DI 10.1029/2009JD013680 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 644XC UT WOS:000281414400005 ER PT J AU Kosugi, H Tsunemi, H Katsuda, S Uchida, H Kimura, M AF Kosugi, Hiroko Tsunemi, Hiroshi Katsuda, Satoru Uchida, Hiroyuki Kimura, Masashi TI Suzaku Observation of the Southeastern Rim of the Cygnus Loop SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE ISM: abundances; ISM: individual (Cygnus Loop); ISM: supernova remnants; X-rays: ISM ID X-RAY-EMISSION; SUPERNOVA REMNANT; ABUNDANCE INHOMOGENEITY; INTERSTELLAR-MEDIUM; NORTHEASTERN RIM; LIMB; PLASMA; SOLAR; ASCA AB X-ray measured metal abundances of the rim of the Cygnus Loop are known to have two patterns. One, seen at narrow regions along the outermost edge, is 0.5-times the solar value, and the other, seen in the remainder of the rim, is 0.2-times the solar value. While the former is "normal", as the ISM around the Cygnus Loop, the latter is unexpectedly depleted, and its origin has been puzzling. We have been tackling this issue by observing the rims with X-ray observatories. So far, the normal abundance was observed only at regions where no cloud-shock interactions are suggested. On the contrary, based on our recent Suzaku observations, we find the normal abundance at the southeastern rim where cloud-shock interactions are evident. The spatial variation of the abundance there is similar to that in other normal abundance rims: the normal abundance is present along the outermost edge (4' width regions), while the inner region shows strongly depleted abundances. This structure has been confirmed both by the plasma model fit and by the model-free fit. We noticed that the rim regions showing normal abundance correspond to those with a relatively weak radio intensity. Since the Cygnus Loop is believed to be the result of a cavity explosion, we discuss that the abundance distribution is due to the abundance difference between the cavity wall and its outside. The origin of the depleted abundance still remains an open question. C1 [Kosugi, Hiroko; Tsunemi, Hiroshi; Uchida, Hiroyuki; Kimura, Masashi] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Osaka 5600043, Japan. [Katsuda, Satoru] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Kosugi, H (reprint author), Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, 1-1 Machikaneyama, Osaka 5600043, Japan. EM kosugi@ess.sci.osaka-u.ac.jp RI XRAY, SUZAKU/A-1808-2009 FU JSPS FX S.K., H.U., and M.K. are supported by JSPS Research Fellowship for Young Scientists. NR 33 TC 5 Z9 5 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD AUG 25 PY 2010 VL 62 IS 4 BP 1035 EP 1044 DI 10.1093/pasj/62.4.1035 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 658JA UT WOS:000282485100019 ER PT J AU Eyring, V Cionni, I Lamarque, JF Akiyoshi, H Bodeker, GE Charlton-Perez, AJ Frith, SM Gettelman, A Kinnison, DE Nakamura, T Oman, LD Pawson, S Yamashita, Y AF Eyring, V. Cionni, I. Lamarque, J. F. Akiyoshi, H. Bodeker, G. E. Charlton-Perez, A. J. Frith, S. M. Gettelman, A. Kinnison, D. E. Nakamura, T. Oman, L. D. Pawson, S. Yamashita, Y. TI Sensitivity of 21st century stratospheric ozone to greenhouse gas scenarios SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID NITROUS-OXIDE; CLIMATE AB To understand how greenhouse gas (GHG) emissions may affect future stratospheric ozone, 21st century projections from four chemistry-climate models are examined for their dependence on six different GHG scenarios. Compared to higher GHG emissions, lower emissions result in smaller increases in tropical upwelling with resultant smaller reductions in ozone in the tropical lower stratosphere and less severe stratospheric cooling with resultant smaller increases in upper stratospheric ozone globally. Increases in reactive nitrogen and hydrogen that lead to additional chemical ozone destruction mainly play a role in scenarios with higher GHG emissions. Differences among the six GHG scenarios are found to be largest over northern midlatitudes (similar to 20 DU by 2100) and in the Arctic (similar to 40 DU by 2100) with divergence mainly in the second half of the 21st century. The uncertainty in the return of stratospheric column ozone to 1980 values arising from different GHG scenarios is comparable to or less than the uncertainty that arises from model differences in the larger set of 17 CCMVal-2 SRES A1B simulations. The results suggest that effects of GHG emissions on future stratospheric ozone should be considered in climate change mitigation policy and ozone projections should be assessed under more than a single GHG scenario. Citation: Eyring, V., et al. (2010), Sensitivity of 21st century stratospheric ozone to greenhouse gas scenarios, wGeophys. Res. Lett., 37, L16807, doi:10.1029/2010GL044443. C1 [Eyring, V.; Cionni, I.] Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atmosphare, D-82234 Oberpfaffenhofen, Germany. [Lamarque, J. F.; Gettelman, A.; Kinnison, D. E.] Natl Ctr Atmospher Res, Boulder, CO 80305 USA. [Akiyoshi, H.; Nakamura, T.; Yamashita, Y.] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Bodeker, G. E.] Bodeker Sci, Alexandra, New Zealand. [Charlton-Perez, A. J.] Univ Reading, Dept Meteorol, Reading RG6 6AH, Berks, England. [Frith, S. M.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Oman, L. D.; Pawson, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Oman, L. D.] Johns Hopkins Univ, Baltimore, MD USA. RP Eyring, V (reprint author), Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atmosphare, D-82234 Oberpfaffenhofen, Germany. RI Charlton-Perez, Andrew/F-4079-2010; Oman, Luke/C-2778-2009; Lamarque, Jean-Francois/L-2313-2014; Nakamura, Tetsu/M-7914-2015; Pawson, Steven/I-1865-2014; Eyring, Veronika/O-9999-2016 OI Charlton-Perez, Andrew/0000-0001-8179-6220; Oman, Luke/0000-0002-5487-2598; Lamarque, Jean-Francois/0000-0002-4225-5074; Nakamura, Tetsu/0000-0002-2056-7392; Pawson, Steven/0000-0003-0200-717X; Eyring, Veronika/0000-0002-6887-4885 FU CCMVal Activity for World Climate Research Programme's (WCRP) Stratospheric Processes FX We acknowledge the CCMVal Activity for World Climate Research Programme's (WCRP) Stratospheric Processes and their Role in Climate (SPARC) project for organizing and coordinating the model data analysis activity and the British Atmospheric Data Center (BADC) for collecting and archiving the CCMVal model output. Thanks to Darryn Waugh for helpful comments on the manuscript. NR 19 TC 28 Z9 29 U1 0 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 24 PY 2010 VL 37 AR L16807 DI 10.1029/2010GL044443 PG 7 WC Geosciences, Multidisciplinary SC Geology GA 644WN UT WOS:000281412700006 ER PT J AU Lau, WKM Kim, KM AF Lau, William K. M. Kim, Kyu-Myong TI Fingerprinting the impacts of aerosols on long-term trends of the Indian summer monsoon regional rainfall SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID BLACK CARBON AEROSOLS; CLIMATE AB In this paper, we present corroborative observational evidences from satellites, in-situ observations, and reanalysis data showing possible impacts of absorbing aerosols on subseasonal and regional summer monsoon rainfall over India. We find that increased absorbing aerosols in the Indo-Gangetic Plain in recent decades may have led to long-term warming of the upper troposphere over northern India and the Tibetan Plateau, enhanced rainfall in northern India and the Himalayas foothill regions in the early part (May-June) of the monsoon season, followed by diminished rainfall over central and southern Indian in the latter part (July-August) of the monsoon season. These signals, which are consistent with current theories of atmospheric heating and solar dimming by aerosol and induced cloudiness in modulating the Indian monsoon, would have been masked by conventional method of using all-India rainfall averaged over the entire monsoon season. Citation: Lau, W. K. M., and K.-M. Kim (2010), Fingerprinting the impacts of aerosols on long-term trends of the Indian summer monsoon regional rainfall, Geophys. Res. Lett., 37, L16705, doi:10.1029/2010GL043255. C1 [Lau, William K. M.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Kim, Kyu-Myong] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. RP Lau, WKM (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Code 613, Greenbelt, MD 20771 USA. EM william.k.lau@nasa.gov RI Kim, Kyu-Myong/G-5398-2014; Lau, William /E-1510-2012 OI Lau, William /0000-0002-3587-3691 FU NASA Headquarters, Earth Science Division, Interdisciplinary Investigation FX This work is supported by the NASA Headquarters, Earth Science Division, Interdisciplinary Investigation (H. Maring, Program Manager). NR 26 TC 31 Z9 31 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 24 PY 2010 VL 37 AR L16705 DI 10.1029/2010GL043255 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 644WN UT WOS:000281412700001 ER PT J AU Marchand, R Ackerman, T Smyth, M Rossow, WB AF Marchand, Roger Ackerman, Thomas Smyth, Mike Rossow, William B. TI A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID VERTICAL STRUCTURE; SATELLITE-OBSERVATIONS; CIRRUS CLOUDS; LEVEL CLOUDS; WATER-VAPOR; PART II; RETRIEVAL; RESOLUTION; MODEL; LAYER AB There are notable differences in the joint histograms of cloud top height and optical depth being produced from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging Spectro-Radiometer (MISR) and by the International Satellite Cloud Climatology Project (ISCCP). These differences have their roots in the different retrieval approaches used by the three projects and are driven largely by responses of the retrievals to (1) stratocumulus (or more broadly low-level clouds under temperature inversions), (2) small (subpixel) or broken low-level clouds, and (3) multilayer clouds. Because each data set has different strengths and weakness, the combination tells us more about the observed cloud fields than any of the three by itself. In particular, the MISR stereo height retrieval provides a calibration insensitive approach to determining cloud height that is especially valuable in combination with ISCCP or MODIS because the combination provides a means to estimate the amount of multilayer cloud, where the upper cloud is optically thin. In this article we present a review of the three data sets using case studies and comparisons of annually averaged joint histograms on global and regional scales. Recommendations for using these data in climate model evaluations are provided. C1 [Marchand, Roger; Ackerman, Thomas] Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA 98105 USA. [Smyth, Mike] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rossow, William B.] CUNY City Coll, NOAA Cooperat Remote Sensing Sci & Technol Ctr, New York, NY 10031 USA. RP Marchand, R (reprint author), Univ Washington, Joint Inst Study Atmosphere & Ocean, Box 355672,3737 Brooklyn Ave NE, Seattle, WA 98105 USA. EM rojmarch@u.washington.edu RI Rossow, William/F-3138-2015 FU NASA Jet Propulsion Laboratory [NMO710860] FX The authors would like to express thanks to all those members of the NASA ISCCP, MODIS, and MISR teams who helped make this research possible, especially Jeff Walters at the NASA Langley Research Center (LaRC), who devoted considerable effort to processing the MISR data. We especially thank Amy Braverman (NASA JPL), who repeatedly insisted that the MISR project undertake creation of the joint histogram data set and somehow cornered us (R. M. and T. P. A.) into it. Special thanks also go to Steven Platnick and Steve Ackerman (of the MODIS team) for reviewing this article and for the many long discussions and valuable insights. We also thank Dave Diner (NASA JPL) for his leadership of the MISR science team, and we thank the MISR project, whose financial support made this research possible. MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. This research was funded by the NASA Jet Propulsion Laboratory (contract NMO710860). NR 64 TC 70 Z9 71 U1 2 U2 27 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 24 PY 2010 VL 115 AR D16206 DI 10.1029/2009JD013422 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 644XA UT WOS:000281414200003 ER PT J AU Bauschlicher, CW Lawson, JW AF Bauschlicher, Charles W., Jr. Lawson, John W. TI Amorphous carbon and its surfaces SO CHEMICAL PHYSICS LA English DT Article DE Amorphous carbon; DFT; Surfaces ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; ELECTRONIC-PROPERTIES; METALS AB We have investigated bulk amorphous carbon at three densities (3.2, 2.6, and 2.0 g/cm(3)) using density functional theory (DFT). The variation in the structure with density is discussed. The bulk structures are used to create surface structures. If the surfaces are relaxed at 700 K, the surface structures, as a function of density, are more similar than the analogous bulk structures. The relaxed surfaces appear to be graphene sheets with defects, sizable distortions, and have covalently bonded carbon chains holding the sheets together. Published by Elsevier B.V. C1 [Bauschlicher, Charles W., Jr.; Lawson, John W.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Bauschlicher, CW (reprint author), NASA, Ames Res Ctr, Mail Stop 230-3, Moffett Field, CA 94035 USA. EM Charles.W.Bauschlicher@nasa.gov; John.W.Lawson@nasa.gov NR 14 TC 4 Z9 4 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 J9 CHEM PHYS JI Chem. Phys. PD AUG 23 PY 2010 VL 374 IS 1-3 BP 77 EP 82 DI 10.1016/j.chemphys.2010.06.022 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 642IO UT WOS:000281204200009 ER PT J AU Hung, CC Hurst, J AF Hung, Ching-cheh Hurst, Janet TI Use of ferric chloride as a solvent to purify boron nitride nanotube SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Hung, Ching-cheh; Hurst, Janet] NASA, Glenn Res Ctr, Cleveland, OH USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 507-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703595 ER PT J AU Hung, CC Hurst, J AF Hung, Ching-cheh Hurst, Janet TI Exfoliation of boron nitride nanotubes prepared from a solid gas chemical reaction SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 [Hung, Ching-cheh; Hurst, Janet] NASA Glenn Res Ctr, Cleveland, OH USA. NR 0 TC 0 Z9 0 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 297-INOR PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703397 ER PT J AU Ma, WP Jacobs, G Sparks, DE Yen, CH Klettlinger, JLS Tomsik, TM Davis, BH AF Ma, Wenping Jacobs, Gary Sparks, Dennis E. Yen, Chia H. Klettlinger, Jennifer L. S. Tomsik, Thomas M. Davis, Burtron H. TI Kinetics study of Fischer-Tropsch synthesis over a 15%Co/Al2O3 catalyst SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 Univ Kentucky, Ctr Appl Energy Res, Lexington, KY 40511 USA. NASA, Glenn Res Ctr, Cleveland, OH USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 267-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164703051 ER PT J AU Vivod, SL Meador, MAB Nguyen, BN AF Vivod, Stephanie L. Meador, Mary Ann B. Nguyen, Baochau N. TI Bismaleimide reinforced silica aerogels via surface modification through incorporation of p-aminophenyltrimethoxysilane SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract C1 NASA Glenn Res Ctr, Cleveland, OH USA. Ohio Aerosp Inst, Cleveland, OH USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 22 PY 2010 VL 240 MA 298-POLY PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA V20UK UT WOS:000208164706788 ER PT J AU Croteau, P Atlas, EL Schauffler, SM Blake, DR Diskin, GS Boering, KA AF Croteau, Philip Atlas, Elliot L. Schauffler, Sue M. Blake, Donald R. Diskin, Glenn S. Boering, Kristie A. TI Effect of local and regional sources on the isotopic composition of nitrous oxide in the tropical free troposphere and tropopause layer SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID INTRAMOLECULAR SITE PREFERENCE; LOWER STRATOSPHERE; N2O ISOTOPOMERS; ATMOSPHERIC N2O; NORTH PACIFIC; AIRCRAFT OBSERVATIONS; ABSOLUTE CALIBRATION; CARBON-DIOXIDE; ICE CORE; FRACTIONATION AB Measurements and models of the spatiotemporal variability of surface N2O mixing ratios and isotopic compositions are increasingly used to constrain the global N2O budget. However, large variability observed on the small spatial scales of soil chambers and shipboard sampling, which appears to be very sensitive to local environmental conditions, has made extrapolation to the global scale difficult. In this study, we present measurements of the isotopic composition of N2O (delta N-15(bulk), delta N-15(alpha), delta N-15(beta), and delta O-18) from whole-air samples collected at altitudes of 0.5 to 19km by the NASA DC-8 and WB-57 aircraft during the Costa Rica-Aura Validation Experiment (CR-AVE) and the Tropical Composition, Cloud and Climate Coupling Experiment (TC4) campaigns in January-February 2006 and July-August 2007, respectively. The vertical profiles of isotopic composition showed predictable, repeating patterns consistent with the influence of a surface source at lower altitudes and the influence of stratospheric photochemistry in the lower stratosphere. Their correlations with marine tracers at lower altitudes are consistent with a predominantly oceanic source, although a soil source cannot be ruled out. Measurements in a combustion plume revealed a strong depletion in N-15 at the central nitrogen atom (i.e., low delta N-15(alpha) values), providing new information on N2O isotopic compositions from combustion. This new data set demonstrates that a coherent picture of the isotopic composition of tropospheric N2O is possible at currently attainable precisions and that its variations from 0.5 km to the lower stratosphere are a useful tool in investigating the sources and distributions of this important greenhouse gas. C1 [Croteau, Philip; Boering, Kristie A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Atlas, Elliot L.] Univ Miami, Div Marine & Atmospher Chem, Miami, FL 33149 USA. [Blake, Donald R.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Diskin, Glenn S.] NASA Langley Res Ctr, Chem & Dynam Branch, Hampton, VA 23681 USA. [Schauffler, Sue M.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. RP Croteau, P (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RI Atlas, Elliot/J-8171-2015 FU NASA [NNG05G010G]; Camille Dreyfus Teacher-Scholar Award FX We gratefully acknowledge support from the NASA Upper Atmosphere Research Program (NNG05G010G to UC Berkeley) and to U Miami, the NASA Tropospheric Chemistry Program, and a Camille Dreyfus Teacher-Scholar Award for K.A.B. We also thank R. Lueb for support in sample collection, Aaron Johnson for isotope measurements assistance, X. Zhu and L. Pope for laboratory work, G. Sachse and C. Harward for DACOM data, and L. Pfister of NASA Ames Research Center and M. Schoeberl, P. Newman, and L. Lait of the Atmospheric Chemistry and Dynamics Branch of the NASA Goddard Space Flight Center for convective influence and back trajectory calculations. NR 71 TC 6 Z9 6 U1 1 U2 26 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 21 PY 2010 VL 115 AR D00J11 DI 10.1029/2009JD013117 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 641QG UT WOS:000281144200004 ER PT J AU Yu, YF Saatchi, S Heath, LS LaPoint, E Myneni, R Knyazikhin, Y AF Yu, Yifan Saatchi, Sassan Heath, Linda S. LaPoint, Elizabeth Myneni, Ranga Knyazikhin, Yuri TI Regional distribution of forest height and biomass from multisensor data fusion SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID NATIONAL ELEVATION DATASET; RADAR TOPOGRAPHY MISSION; VEGETATION CANOPY HEIGHT; LAND-USE; C-BAND; LIDAR; CARBON; PERFORMANCE; CONIFER; TERRAIN AB Elevation data acquired from radar interferometry at C-band from SRTM are used in data fusion techniques to estimate regional scale forest height and aboveground live biomass (AGLB) over the state of Maine. Two fusion techniques have been developed to perform post-processing and parameter estimations from four data sets: 1 arc sec National Elevation Data (NED), SRTM derived elevation (30 m), Landsat Enhanced Thematic Mapper (ETM) bands (30 m), derived vegetation index (VI) and NLCD2001 land cover map. The first fusion algorithm corrects for missing or erroneous NED data using an iterative interpolation approach and produces distribution of scattering phase centers from SRTM-NED in three dominant forest types of evergreen conifers, deciduous, and mixed stands. The second fusion technique integrates the USDA Forest Service, Forest Inventory and Analysis (FIA) ground-based plot data to develop an algorithm to transform the scattering phase centers into mean forest height and aboveground biomass. Height estimates over evergreen (R-2 = 0.86, P < 0.001; RMSE = 1.1 m) and mixed forests (R-2 = 0.93, P < 0.001, RMSE = 0.8 m) produced the best results. Estimates over deciduous forests were less accurate because of the winter acquisition of SRTM data and loss of scattering phase center from tree-surface interaction. We used two methods to estimate AGLB; algorithms based on direct estimation from the scattering phase center produced higher precision (R-2 = 0.79, RMSE = 25 Mg/ha) than those estimated from forest height (R-2 - 0.25, RMSE - 66 Mg/ha). We discuss sources of uncertainty and implications of the results in the context of mapping regional and continental scale forest biomass distribution. C1 [Yu, Yifan] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Heath, Linda S.; LaPoint, Elizabeth] US Forest Serv, Dept Agr, Durham, NH 03824 USA. [Myneni, Ranga; Knyazikhin, Yuri] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA. [Saatchi, Sassan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Yu, YF (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. EM yifany@ucla.edu RI Myneni, Ranga/F-5129-2012 NR 41 TC 5 Z9 5 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD AUG 21 PY 2010 VL 115 AR G00E12 DI 10.1029/2009JG000995 PG 16 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 641QJ UT WOS:000281144500001 ER PT J AU Schriver, D Ashour-Abdalla, M Coroniti, FV LeBoeuf, JN Decyk, V Travnicek, P Santolik, O Winningham, D Pickett, JS Goldstein, ML Fazakerley, AN AF Schriver, D. Ashour-Abdalla, M. Coroniti, F. V. LeBoeuf, J. N. Decyk, V. Travnicek, P. Santolik, O. Winningham, D. Pickett, J. S. Goldstein, M. L. Fazakerley, A. N. TI Generation of whistler mode emissions in the inner magnetosphere: An event study SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID STORM-TIME CHORUS; VLF CHORUS; ELECTROMAGNETIC-RADIATION; NUMERICAL-SIMULATION; OUTER MAGNETOSPHERE; RESONANT DIFFUSION; CHARGED-PARTICLES; FAN INSTABILITY; PLASMA; ELECTRONS AB On July 24, 2003, when the Cluster 4 satellite crossed the magnetic equator at about 4.5 R(E) radial distance on the dusk side (similar to 15 MLT), whistler wave emissions were observed below the local electron gyrofrequency (f(ce)) in two bands, one band above one-half the gyrofrequency (0.5f(ce)) and the other band below 0.5f(ce). A careful analysis of the wave emissions for this event has shown that Cluster 4 passed through the wave source region. Simultaneous electron particle data from the PEACE instrument in the generation region indicated the presence of a mid-energy electron population (similar to 100 s of eV) that had a highly anisotropic temperature distribution with the perpendicular temperature 10 times the parallel temperature. To understand this somewhat rare event in which the satellite passed directly through the wave generation region and in which a free energy source (i.e., temperature anisotropy) was readily identified, a linear theory and particle in cell simulation study has been carried out to elucidate the physics of the wave generation, wave-particle interactions, and energy redistribution. The theoretical results show that for this event the anisotropic electron distribution can linearly excite obliquely propagating whistler mode waves in the upper frequency band, i.e., above 0.5f(ce). Simulation results show that in addition to the upper band emissions, nonlinear wave-wave coupling excites waves in the lower frequency band, i.e., below 0.5f(ce). The instability saturates primarily by a decrease in the temperature anisotropy of the mid-energy electrons, but also by heating of the cold electron population. The resulting wave-particle interactions lead to the formation of a high-energy plateau on the parallel component of the warm electron velocity distribution. The theoretical results for the saturation time scale indicate that the observed anisotropic electron distribution must be refreshed in less than 0.1 s allowing the anisotropy to be detected by the electron particle instrument, which takes several seconds to produce a distribution. C1 [Schriver, D.; Ashour-Abdalla, M.; Travnicek, P.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Ashour-Abdalla, M.; Coroniti, F. V.; Decyk, V.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Fazakerley, A. N.] Univ Coll London, Mullard Space Sci Lab, Holmbury, England. [Goldstein, M. L.] NASA, Goddard Space Flight Ctr, Lab Geospace Sci, Greenbelt, MD 20771 USA. [LeBoeuf, J. N.] JNL Sci, Casa Grande, AZ 85194 USA. [Pickett, J. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Santolik, O.] Inst Atmospher Phys, Dept Space Phys, Prague 14131 4, Czech Republic. [Travnicek, P.] ASCR, Astron Inst, Prague 14131, Czech Republic. [Winningham, D.] SW Res Inst, San Antonio, TX 78228 USA. [Santolik, O.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. RP Schriver, D (reprint author), Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. EM dave@igpp.ucla.edu RI Goldstein, Melvyn/B-1724-2008; Santolik, Ondrej/F-7766-2014; Travnicek, Pavel/G-8608-2014 FU NASA GI [NNX08AF26G]; NASA GSFC [NNX07AJ86G, NNX07AI24G]; KONTAKT [ME842] FX The authors wish to thank R. Richard for useful comments concerning this study. This work was supported by NASA GI grant NNX08AF26G and a NASA GSFC grant NNX07AJ86G. Work at the University of Iowa was carried out under NASA GSFC grant NNX07AI24G. O.S. acknowledges the support of grant KONTAKT ME842. Computing was carried out on the NAS SGI Altix machine as part of the Columbia supercomputing system and the NSF NCAR Frost Blue Gene supercomputing system. NR 60 TC 21 Z9 21 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD AUG 21 PY 2010 VL 115 AR A00F17 DI 10.1029/2009JA014932 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 641RE UT WOS:000281146600002 ER PT J AU Coe, MJ Bird, AJ Buckley, DAH Corbet, RHD Dean, AJ Finger, M Galache, JL Haberl, F McBride, VA Negueruela, I Schurch, M Townsend, LJ Udalski, A Wilms, J Zezas, A AF Coe, M. J. Bird, A. J. Buckley, D. A. H. Corbet, R. H. D. Dean, A. J. Finger, M. Galache, J. L. Haberl, F. McBride, V. A. Negueruela, I. Schurch, M. Townsend, L. J. Udalski, A. Wilms, J. Zezas, A. TI INTEGRAL deep observations of the Small Magellanic Cloud SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: neutron; X-rays: binaries ID X-RAY BINARIES; STAR-FORMATION; SMC REGION; CATALOG; POPULATION; GALAXIES; SMC-X-1; LONG AB Deep observations of the Small Magellanic Cloud (SMC) and region were carried out in the hard X-ray band by the INTEGRAL observatory in 2008-2009. The field of view of the instrument permitted simultaneous coverage of the entire SMC and the eastern end of the Magellanic Bridge. In total, INTEGRAL detected seven sources in the SMC and five in the Magellanic Bridge; the majority of the sources were previously unknown systems. Several of the new sources were detected undergoing bright X-ray outbursts and all the sources exhibited transient behaviour except the supergiant system SMC X-1. They are all thought to be high-mass X-ray binary systems in which the compact object is a neutron star. C1 [Coe, M. J.; Bird, A. J.; Dean, A. J.; McBride, V. A.; Schurch, M.; Townsend, L. J.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Buckley, D. A. H.] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Corbet, R. H. D.] Univ Maryland Baltimore Cty, Dept Astron, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Finger, M.] Natl Space Sci & Technol Ctr, Huntsville, AL 35805 USA. [Galache, J. L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Haberl, F.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Negueruela, I.] Univ Alicante, Dept Fis Ingn Sistemas & Teoria Seal, E-03080 Alicante, Spain. [Schurch, M.] Univ Cape Town, ACGC, ZA-7701 Rondebosch, South Africa. [Udalski, A.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Wilms, J.] Univ Erlangen Nurnberg, Dr Karl Remeis Observ, D-96049 Bamberg, Germany. [Wilms, J.] Univ Erlangen Nurnberg, ECAP, D-96049 Bamberg, Germany. [Zezas, A.] Fdn Res & Technol, IESL, Iraklion 71110, Crete, Greece. RP Coe, MJ (reprint author), Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. EM mjcoe@soton.ac.uk RI Wilms, Joern/C-8116-2013; Negueruela, Ignacio/L-5483-2014; Zezas, Andreas/C-7543-2011; OI Wilms, Joern/0000-0003-2065-5410; Negueruela, Ignacio/0000-0003-1952-3680; Zezas, Andreas/0000-0001-8952-676X; Haberl, Frank/0000-0002-0107-5237 FU Polish MNiSW [N20303032/4275]; University of Southampton FX The OGLE project was partially supported by the Polish MNiSW grant N20303032/4275. LJT is supported by a Mayflower Scholarship from the University of Southampton. NR 32 TC 7 Z9 7 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG 21 PY 2010 VL 406 IS 4 BP 2533 EP 2539 DI 10.1111/j.1365-2966.2010.16844.x PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635RA UT WOS:000280672600030 ER PT J AU Mordy, CW Eisner, LB Proctor, P Stabeno, P Devol, AH Shull, DH Napp, JM Whitledge, T AF Mordy, Calvin W. Eisner, Lisa B. Proctor, Peter Stabeno, Phyllis Devol, Allan H. Shull, David H. Napp, Jeffrey M. Whitledge, Terry TI Temporary uncoupling of the marine nitrogen cycle: Accumulation of nitrite on the Bering Sea shelf SO MARINE CHEMISTRY LA English DT Article DE Bering Sea; Nutrient cycle; Nitrite; Nitrogen cycle; Nitrification; Denitrification ID SUBSURFACE AMMONIUM MAXIMUM; NITRATE UPTAKE; DENITRIFICATION RATES; PHYTOPLANKTON; SEDIMENTS; SUMMER; FIXATION; PATTERNS; PACIFIC; GROWTH AB An unprecedented pool of nitrite (2-5.6 mu M) was observed in the well-oxygenated, ammonium-rich bottom waters of Bering Sea middle shelf in fall 2005 on two simultaneous oceanographic cruises. This nitrite pool was located in a transition zone that separated the ice-derived cold pool to the north from warmer waters to the south. The transition zone was influenced by on-shelf flow. The nitrite pool was transitory; it was not apparent 11 days after it was first observed. Several origins of the pool were considered including: truncation of sedimentary denitrification and/or curtailment of anammox (these are dominate pathways in the nitrogen cycle of the Bering Sea), nitrite release from light-limited phytoplankton (light and nutrient conditions were favorable for this mechanism), and truncation of water column nitrification (there was a small decrease of ammonium in the vicinity of the nitrite pool). The occurrence of this pool suggests a temporary uncoupling of the marine nitrogen cycle. (C) 2010 Elsevier B.V. All rights reserved. C1 [Mordy, Calvin W.; Proctor, Peter] Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA 98105 USA. [Eisner, Lisa B.] NOAA, Ted Stephens Marine Res Inst, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK 99801 USA. [Stabeno, Phyllis] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. [Devol, Allan H.] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. [Shull, David H.] Western Washington Univ, Dept Environm Sci, Bellingham, WA 98225 USA. [Napp, Jeffrey M.] NOAA, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98115 USA. [Whitledge, Terry] Univ Alaska Fairbanks, Inst Marine Sci, Fairbanks, AK 99775 USA. RP Mordy, CW (reprint author), Univ Washington, Joint Inst Study Atmosphere & Ocean, Box 355672, Seattle, WA 98105 USA. EM Calvin.W.Mordy@noaa.gov; Lisa.Eisner@noaa.gov; Peter.Proctor@noaa.gov; Phyllis.Stabeno@noaa.gov; devol@ocean.washington.edu; david.shull@wwu.edu; jeff.napp@noaa.gov; terry@ims.uaf.edu FU NOAA; NOAA's Alaska Fisheries Science Center; North Pacific Research Board [517, 602, 701]; Arctic Yukon Kuskokwim Sustainable Salmon Initiative (AYKSSI); NSF [ARC0612380]; Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA [NA17RJ1232] FX We thank the crew and officers of the NOAA ship Miller Freeman and the F/V Sea Storm for their assistance and effort. We also thank Bill Floering and Bill Parker for overseeing CTD and mooring operations, Eric Wisegarver and Fred Menzia for assisting with the nutrient data, Karen Birchfield, Nancy Kachel, Dave Kachel and Doug Jongeward for assisting with the figures, Kristin Cieciel for assistance in BASIS data collection, CTD processing, and database management, and Colleen Harpold for analysis of chlorophyll samples. We also thank an anonymous reviewer for improving the manuscript. Research was funded by NOAA's North Pacific Climate Regimes and Ecosystem Productivity Program, NOAA's Fisheries and the Environment (FATE) Program, NOAA's Alaska Fisheries Science Center, the North Pacific Research Board (Grants: #517, 602 and 701 to PJS), the Arctic Yukon Kuskokwim Sustainable Salmon Initiative (AYKSSI), and NSF's Office of Polar Programs (Grant ARC0612380 to AHD and DHS). This publication is partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement No. NA17RJ1232. This research is contribution EcoFOCI-N707 to NOAA's Ecosystems and Fisheries-Oceanography Coordinated Investigations, contribution 3287 to NOAA's Pacific Marine Environmental Laboratory, and contribution 1741 to JISAO. NR 29 TC 21 Z9 22 U1 4 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-4203 J9 MAR CHEM JI Mar. Chem. PD AUG 20 PY 2010 VL 121 IS 1-4 BP 157 EP 166 DI 10.1016/j.marchem.2010.04.004 PG 10 WC Chemistry, Multidisciplinary; Oceanography SC Chemistry; Oceanography GA 711AW UT WOS:000286559100015 ER PT J AU Lueker, M Reichardt, CL Schaffer, KK Zahn, O Ade, PAR Aird, KA Benson, BA Bleem, LE Carlstrom, JE Chang, CL Cho, HM Crawford, TM Crites, AT de Haan, T Dobbs, MA George, EM Hall, NR Halverson, NW Holder, GP Holzapfel, WL Hrubes, JD Joy, M Keisler, R Knox, L Lee, AT Leitch, EM McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Padin, S Plagge, T Pryke, C Ruhl, JE Shaw, L Shirokoff, E Spieler, HG Stalder, B Staniszewski, Z Stark, AA Vanderlinde, K Vieira, JD Williamson, R AF Lueker, M. Reichardt, C. L. Schaffer, K. K. Zahn, O. Ade, P. A. R. Aird, K. A. Benson, B. A. Bleem, L. E. Carlstrom, J. E. Chang, C. L. Cho, H. -M. Crawford, T. M. Crites, A. T. de Haan, T. Dobbs, M. A. George, E. M. Hall, N. R. Halverson, N. W. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Padin, S. Plagge, T. Pryke, C. Ruhl, J. E. Shaw, L. Shirokoff, E. Spieler, H. G. Stalder, B. Staniszewski, Z. Stark, A. A. Vanderlinde, K. Vieira, J. D. Williamson, R. TI MEASUREMENTS OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH THE SOUTH POLE TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmological parameters; cosmology: observations; galaxies: clusters: intracluster medium; large-scale structure of universe ID ANGULAR POWER SPECTRUM; STAR-FORMING GALAXIES; EXTRAGALACTIC SOURCES; DUST EMISSION; CLUSTERS; PROBE; CMB; SUBMILLIMETER; CAMERA; TEMPERATURE AB We report cosmic microwave background (CMB) power-spectrum measurements from the first 100 deg(2) field observed by the South Pole Telescope (SPT) at 150 and 220 GHz. On angular scales where the primary CMB anisotropy is dominant, l less than or similar to 3000, the SPT power spectrum is consistent with the standard Lambda CDM cosmology. On smaller scales, we see strong evidence for a point-source contribution, consistent with a population of dusty, star-forming galaxies. After we mask bright point sources, anisotropy power on angular scales of 3000 < l < 9500 is detected with a signal-to-noise ratio greater than or similar to 50 at both frequencies. We combine the 150 and 220 GHz data to remove the majority of the point-source power and use the point-source-subtracted spectrum to detect Sunyaev-Zel'dovich (SZ) power at 2.6 sigma. At l = 3000, the SZ power in the subtracted bandpowers is 4.2 +/- 1.5 mu K-2, which is significantly lower than the power predicted by a fiducial model using WMAP5 cosmological parameters. This discrepancy may suggest that contemporary galaxy cluster models overestimate the thermal pressure of intracluster gas. Alternatively, this result can be interpreted as evidence for lower values of sigma(8). When combined with an estimate of the kinetic SZ contribution, the measured SZ amplitude shifts sigma(8) from the primary CMB anisotropy derived constraint of 0.794 +/- 0.028 down to 0.773 +/- 0.025. The uncertainty in the constraint on sigma(8) from this analysis is dominated by uncertainties in the theoretical modeling required to predict the amplitude of the SZ power spectrum for a given set of cosmological parameters. C1 [Lueker, M.; Reichardt, C. L.; Benson, B. A.; Cho, H. -M.; George, E. M.; Holzapfel, W. L.; Lee, A. T.; Mehl, J.; Plagge, T.; Shirokoff, E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Schaffer, K. K.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Keisler, R.; Leitch, E. M.; McMahon, J. J.; Meyer, S. S.; Padin, S.; Pryke, C.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Schaffer, K. K.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; McMahon, J. J.; Meyer, S. S.; Pryke, C.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Zahn, O.] Univ Calif Berkeley, Lawrence Berkeley Natl Labs, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Ade, P. A. R.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Leitch, E. M.; Meyer, S. S.; Padin, S.; Pryke, C.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [de Haan, T.; Dobbs, M. A.; Holder, G. P.; Shaw, L.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Hall, N. R.; Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Joy, M.] NASA, George C Marshall Space Flight Ctr, Dept Space Sci, Huntsville, AL 35812 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Mohr, J. J.] Excellence Cluster Univ, D-85748 Garching, Germany. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Ctr Educ & Res Cosmol & Astrophys, Dept Phys, Cleveland, OH 44106 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Stalder, B.; Stark, A. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Lueker, M (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM lueker@socrates.berkeley.edu RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Williamson, Ross/0000-0002-6945-2975; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Stark, Antony/0000-0002-2718-9996 FU National Science Foundation (NSF) Office of Polar Programs; United States Antarctic Program; Raytheon Polar Services Company; National Science Foundation [ANT-0638937, ANT-0130612]; NSF Physics Frontier Center [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; National Sciences and Engineering Research Council of Canada; Quebec Fonds de recherche sur la nature et les technologies; Canadian Institute for Advanced Research; KICP; Berkeley Center for Cosmological Physics; Fermi; GAAN; Miller Institute for Basic Research in Science, University of California Berkeley; Alfred P. Sloan; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; NASA Office of Space Science FX The SPT team gratefully acknowledges the contributions to the design and construction of the telescope by S. Busetti, E. Chauvin, T. Hughes, P. Huntley, and E. Nichols and his team of iron workers. We also thank the National Science Foundation (NSF) Office of Polar Programs, the United States Antarctic Program, and the Raytheon Polar Services Company for their support of the project. We are grateful for professional support from the staff of the South Pole station. We thank T. M. Lanting, J. Leong, A. Loehr, W. Lu, M. Runyan, D. Schwan, M. Sharp, and C. Greer for their early contributions to the SPT project, J. Joseph and C. Vu for their contributions to the electronics, and P. Ralph for his useful discussions and insights.; The SPT is supported by the National Science Foundation through grants ANT-0638937 and ANT-0130612. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, the Quebec Fonds de recherche sur la nature et les technologies, and the Canadian Institute for Advanced Research. The following individuals acknowledge additional support: K.K.S. and B.A.B. from a KICP Fellowship, O.Z. from a Berkeley Center for Cosmological Physics Fellowship, J.J.M. from a Fermi Fellowship, Z.S. from a GAAN Fellowship, and A.T.L. from the Miller Institute for Basic Research in Science, University of California Berkeley. N.W.H. acknowledges support from an Alfred P. Sloan Research Fellowship.; This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U. S. Department of Energy under Contract no. DE-AC02-05CH11231. Some of the results in this paper have been derived using the HEALPix (Gorski et al. 2005) package. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. NR 60 TC 117 Z9 117 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2010 VL 719 IS 2 BP 1045 EP 1066 DI 10.1088/0004-637X/719/2/1045 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635LU UT WOS:000280658000005 ER PT J AU Fox, JL Kankelborg, CC Thomas, RJ AF Fox, J. Lewis Kankelborg, Charles C. Thomas, Roger J. TI A TRANSITION REGION EXPLOSIVE EVENT OBSERVED IN He II WITH THE MOSES SOUNDING ROCKET SO ASTROPHYSICAL JOURNAL LA English DT Article DE instrumentation: spectrographs; space vehicles: instruments; Sun: transition region; Sun: UV radiation; techniques: imaging spectroscopy ID RAY BRIGHT POINTS; SOLAR ACTIVE-REGION; QUIET-SUN; MAGNETIC RECONNECTION; IMAGING SPECTROMETER; ATMOSPHERE; HINODE; CORONA; SPECTROGRAPH; SPECTRUM AB Transition region explosive events (EEs) have been observed with slit spectrographs since at least 1975, most commonly in lines of C IV (1548 angstrom, 1550 angstrom) and Si IV (1393 angstrom, 1402 angstrom). We report what we believe to be the first observation of a transition region EE in He II 304 angstrom. With the Multi-Order Solar EUV Spectrograph (MOSES) sounding rocket, a novel slitless imaging spectrograph, we are able to see the spatial structure of the event. We observe a bright core expelling two jets that are distinctly non-collinear, in directions that are not anti-parallel. The jets have sky-plane velocities of order 75 km s(-1) and line-of-sight velocities of +75 km s(-1) (blue) and -30 km s(-1) (red). The core is a region of high non-thermal Doppler broadening, characteristic of EEs, with maximal broadening 380 km s(-1) FWHM. It is possible to resolve the core broadening into red and blue line-of-sight components of maximum Doppler velocities +160 km s(-1) and -220 km s(-1). The event lasts more than 150 s. Its properties correspond to the larger, long-lived, and more energetic EEs observed in other wavelengths. C1 [Fox, J. Lewis; Kankelborg, Charles C.] Montana State Univ, Bozeman, MT 59717 USA. [Thomas, Roger J.] NASA GSFC Code 671, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Fox, JL (reprint author), Montana State Univ, EPS 264, Bozeman, MT 59717 USA. EM fox@physics.montana.edu; kankel@solar.physics.montana.edu; Roger.J.Thomas@nasa.gov FU NASA LCAS [NAG5-10997, NNX-07AG6G]; NASA GSRP [NGT5-50471]; Montana Space Grant Consortium FX We gratefully acknowledge the assistance of Dana Longcope in obtaining and understanding the magnetic context data. This work was supported by NASA LCAS grants NAG5-10997 and NNX-07AG6G. J.L.F. was supported in part by NASA GSRP grant NGT5-50471, and by the Montana Space Grant Consortium fellowship program. NR 29 TC 6 Z9 7 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2010 VL 719 IS 2 BP 1132 EP 1143 DI 10.1088/0004-637X/719/2/1132 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635LU UT WOS:000280658000011 ER PT J AU Wiedenbeck, ME Cohen, CMS Leske, RA Mewaldt, RA Cummings, AC Stone, EC von Rosenvinge, TT AF Wiedenbeck, M. E. Cohen, C. M. S. Leske, R. A. Mewaldt, R. A. Cummings, A. C. Stone, E. C. von Rosenvinge, T. T. TI HEAVY-ION FRACTIONATION IN THE IMPULSIVE SOLAR ENERGETIC PARTICLE EVENT OF 2002 AUGUST 20: ELEMENTS, ISOTOPES, AND INFERRED CHARGE STATES SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: abundances; Sun: flares; Sun: particle emission ID ADVANCED COMPOSITION EXPLORER; MAGNETIC NEUTRAL SHEETS; CORONAL MASS EJECTIONS; IONIZATION STATES; PRE-ACCELERATION; ULTRAHEAVY IONS; ABUNDANCES; FLARES; WIND; IRON AB Measurements of heavy-ion elemental and isotopic composition in the energy range similar to 12-60 MeV nucleon(-1) are reported from the Advanced Composition Explorer/Solar Isotope Spectrometer (ACE/SIS) instrument for the solar energetic particle (SEP) event of 2002 August 20. We investigate fractionation in this particularly intense impulsive event by examining the enhancements of elemental and isotopic abundance ratios relative to corresponding values in the solar wind. The elemental enhancement pattern is similar to those in other impulsive events detected by ACE/SIS and in compilations of average impulsive-event composition. For individual elements, the abundance of a heavy isotope (mass M(2)) is enhanced relative to that of a lighter isotope (M(1)) by a factor similar to(M(1)/M(2))(alpha) with alpha similar or equal to -15. Previous studies have reported elemental abundance enhancements organized as a power law in Q/M, the ratio of estimated ionic charge to mass in the material being fractionated. We consider the possibility that a fractionation law of this form could be responsible for the isotopic fractionation as a power law in the mass ratio and then explore the implications it would have for the ionic charge states in the source material. Assuming that carbon is fully stripped (Q(C) = 6), we infer mean values of the ionic charge during the fractionation process, Q(Z), for a variety of elements with atomic numbers 7 <= Z <= 28. We find that Q(Fe) similar or equal to 21-22, comparable to the highest observed values that have been reported at lower energies in impulsive SEP events from direct measurements near 1 AU. The inferred charge states as a function of Z are characterized by several step increases in the number of attached electrons, Z - Q(Z). We discuss how this step structure, together with the known masses of the elements, might account for a variety of features in the observed pattern of elemental abundance enhancements. We also briefly consider alternative fractionation laws and the relationship between the charge states we infer in the source material and those derived from in situ observations. C1 [Wiedenbeck, M. E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cohen, C. M. S.; Leske, R. A.; Mewaldt, R. A.; Cummings, A. C.; Stone, E. C.] CALTECH, Pasadena, CA 91125 USA. [von Rosenvinge, T. T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Wiedenbeck, ME (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM mark.e.wiedenbeck@jpl.nasa.gov FU International Space Science Institute (ISSI); NSF; NASA at Caltech [NAG5-12929, NNX08AI11G]; JPL; GSFC FX We are grateful to J. Mazur for providing charge state estimates from SAMPEX/LICA, S. Krucker for providing information about the RHESSI X-ray imaging measurements in the 2002 August 20 event, A. Labrador for providing some unpublished charge-state data included in Figure 8, Y.-K. Ko for advice about the comparison with solar wind charge states, and G. Mason for providing the ULEIS data shown in Figure 12. In addition, we acknowledge useful discussions with E. Mobius, V. Petrosian, and J. Drake. This study also benefited from discussions at international team meetings sponsored by the International Space Science Institute (ISSI) in 2006 and 2007 and at the NSF-sponsored SHINE workshop in 2008. We thank E. Chollet and the anonymous referee for helpful comments on the manuscript. We gratefully acknowledge the ACE/SWICS team for providing solar wind charge state data used in this study through the ACE Science Center Web site. This research was supported by NASA at Caltech (under grants NAG5-12929 and NNX08AI11G), JPL, and GSFC. NR 77 TC 5 Z9 5 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2010 VL 719 IS 2 BP 1212 EP 1229 DI 10.1088/0004-637X/719/2/1212 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635LU UT WOS:000280658000016 ER PT J AU Habbal, SR Druckmuller, M Morgan, H Scholl, I Rusin, V Daw, A Johnson, J Arndt, M AF Habbal, S. Rifai Druckmueller, M. Morgan, H. Scholl, I. Rusin, V. Daw, A. Johnson, J. Arndt, M. TI TOTAL SOLAR ECLIPSE OBSERVATIONS OF HOT PROMINENCE SHROUDS SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetic fields; Sun: corona; Sun: filaments, prominences; Sun: magnetic topology ID CORONAL STRUCTURE; CAVITY; TEMPERATURE; DENSITIES; CORE; EUV AB Using observations of the corona taken during the total solar eclipses of 2006 March 29 and 2008 August 1 in broadband white light and in narrow bandpass filters centered at Fe x 637.4 nm, Fe XI 789.2 nm, Fe XIII 1074.7 nm, and Fe XIV 530.3 nm, we show that prominences observed off the solar limb are enshrouded in hot plasmas within twisted magnetic structures. These shrouds, which are commonly referred to as cavities in the literature, are clearly distinct from the overlying arch-like structures that form the base of streamers. The existence of these hot shrouds had been predicted by model studies dating back to the early 1970s, with more recent studies implying their association with twisted magnetic flux ropes. The eclipse observations presented here, which cover a temperature range of 0.9 to 2 x 10(6) K, are the first to resolve the long-standing ambiguity associated with the temperature and magnetic structure of prominence cavities. C1 [Habbal, S. Rifai; Morgan, H.; Scholl, I.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Druckmueller, M.] Brno Univ Technol, Fac Mech Engn, Brno 61669, Czech Republic. [Rusin, V.] Slovak Acad Sci, Astron Inst, Tatranska Lomnica 05960, Slovakia. [Daw, A.] Appalachian State Univ, Dept Phys & Astron, Boone, NC 28608 USA. [Daw, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Johnson, J.] Electricon, Denver, CO 80204 USA. [Arndt, M.] Bridgewater State Coll, Dept Phys, Bridgewater, MA 02325 USA. RP Habbal, SR (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. EM shadia@ifa.hawaii.edu RI daw, adrian/D-2297-2012; OI Morgan, Huw/0000-0002-6547-5838 FU NASA [NNX08AQ29G]; NSF [ATM 08-02520, ATM-0801633, NSF-AGS-0450096]; NC Space Grant; Czech Science Foundation [205/09/1469]; Slovak Academy of Sciences Grant Agency VEGA [0098/10]; Science and Technology Assistance Agency APVT [APVT 51-012-704]; ASTELCO FX Support for the eclipse observations was provided by NASA grant NNX08AQ29G and NSF grant ATM 08-02520 to the University of Hawaii, NSF grant ATM-0801633, an NC Space Grant New Investigations award to Appalachian State University (A. Daw), and NSF grant NSF-AGS-0450096 to Bridgewater State College (M. Arndt). M. D. was supported by grant 205/09/1469 from the Czech Science Foundation. V. R. was partially supported by the Slovak Academy of Sciences Grant Agency VEGA, grant 0098/10, and by the Science and Technology Assistance Agency APVT under contract APVT 51-012-704. M. D. and V. R. also acknowledge Peter Aniol's (ASTELCO) technical and financial support. We thank Dr. Duncan Mackay for his insightful comments on the emergence of helicity with active regions. NR 25 TC 32 Z9 32 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2010 VL 719 IS 2 BP 1362 EP 1369 DI 10.1088/0004-637X/719/2/1362 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635LU UT WOS:000280658000026 ER PT J AU Rouillard, AP Lavraud, B Sheeley, NR Davies, JA Burlaga, LF Savani, NP Jacquey, C Forsyth, RJ AF Rouillard, A. P. Lavraud, B. Sheeley, N. R. Davies, J. A. Burlaga, L. F. Savani, N. P. Jacquey, C. Forsyth, R. J. TI WHITE LIGHT AND IN SITU COMPARISON OF A FORMING MERGED INTERACTION REGION SO ASTROPHYSICAL JOURNAL LA English DT Article DE solar-terrestrial relations; solar wind; Sun: coronal mass ejections (CMEs) ID CORONAL MASS EJECTION; MAGNETIC CLOUD EXPANSION; STEREO MISSION; SOLAR-WIND; HELIOSPHERIC IMAGERS; 1 AU; SECCHI; BRIGHTNESS; TRACKING; EARTH AB The images taken by the Heliospheric Imager (HI) instruments, part of the SECCHI imaging package on board the pair of STEREO spacecraft, provide information on the radial and latitudinal evolution of the plasma transported by coronal mass ejections (CMEs). In this case study, a CME, appearing near 15 UT on 2007 November 15 in SECCHI coronagraph images, leads to the formation of two out-flowing density structures (DSs) in the heliosphere. The analysis of time-elongation maps constructed from images obtained by the HI instruments shows that these DSs were propagating along the Sun-Earth line. A direct comparison of HI images and in situ measurements taken near Earth could therefore be performed. These two DSs are separated by a cavity associated with little brightness variation or equivalently little electron density variation. In situ measurements made in the solar wind near Earth on 2007 November 20 show that this cavity corresponds to a magnetic cloud (MC). While the leading DS is related to the sheath in front of the MC, the second DS is located on the sunward side of the MC where high-speed solar wind from a coronal hole catches up and interacts with the MC. We conclude that HI observes the sub-structures of a merged interaction region (MIR), a region of the interplanetary medium where the total solar wind pressure is greatly enhanced by the interaction of an MC with the ambient solar wind. This MIR caused the largest geomagnetic storm in 2007. C1 [Rouillard, A. P.; Lavraud, B.; Jacquey, C.] Univ Toulouse, Ctr Etud Spatiale Rayonnements, F-21028 Toulouse, France. [Rouillard, A. P.; Lavraud, B.; Jacquey, C.] CNRS, UMR 5187, Toulouse, France. [Sheeley, N. R.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Davies, J. A.] Rutherford Appleton Lab, Space Sci & Technol Dept, Chilton OX11 0QX, England. [Burlaga, L. F.] Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Savani, N. P.; Forsyth, R. J.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England. RP Rouillard, AP (reprint author), George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. EM arouilla@gmu.edu RI Savani, Neel/G-4066-2014 OI Savani, Neel/0000-0002-1916-7877 NR 40 TC 17 Z9 17 U1 3 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2010 VL 719 IS 2 BP 1385 EP 1392 DI 10.1088/0004-637X/719/2/1385 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635LU UT WOS:000280658000028 ER PT J AU van Meter, JR Miller, MC Baker, JG Boggs, WD Kelly, BJ AF van Meter, James R. Miller, M. Coleman Baker, John G. Boggs, William D. Kelly, Bernard J. TI TEST OF A GENERAL FORMULA FOR BLACK HOLE GRAVITATIONAL WAVE KICKS SO ASTROPHYSICAL JOURNAL LA English DT Article DE black hole physics; galaxies: nuclei; gravitational waves ID MODELING KICKS; BINARIES; MERGER; RECOIL; ORDER AB Although the gravitational wave kick velocity in the orbital plane of coalescing black holes has been understood for some time, apparently conflicting formulae have been proposed for the dominant out-of-plane kick, each a good fit to different data sets. This is important to resolve because it is only the out-of-plane kicks that can reach more than 500 km s(-1) and can thus eject merged remnants from galaxies. Using a different ansatz for the out-of-plane kick, we show that we can fit almost all existing data to better than 5%. This is good enough for any astrophysical calculation and shows that the previous apparent conflict was only because the two data sets explored different aspects of the kick parameter space. C1 [van Meter, James R.; Boggs, William D.; Kelly, Bernard J.] NASA, GSFC, CRESST, Greenbelt, MD 20771 USA. [van Meter, James R.; Baker, John G.; Boggs, William D.; Kelly, Bernard J.] NASA, GSFC, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. [van Meter, James R.; Kelly, Bernard J.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Miller, M. Coleman] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Miller, M. Coleman] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Boggs, William D.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. RP van Meter, JR (reprint author), NASA, GSFC, CRESST, Greenbelt, MD 20771 USA. EM james.r.vanmeter@nasa.gov RI van meter, james/E-7893-2011; Kelly, Bernard/G-7371-2011 FU National Science Foundation [AST 06-07428]; NASA [NNX08AH29G, 06-BEFS06-19, 09-ATP09-0136] FX New simulations used for this work were performed on Jaguar at Oakridge National Laboratories. M. C. M acknowledges partial support from the National Science Foundation under grant AST 06-07428 and NASA ATP grant NNX08AH29G. The work at Goddard was supported in part by NASA grants 06-BEFS06-19 and 09-ATP09-0136. We also wish to think S. McWilliams and A. Buonanno for helpful discussions. NR 25 TC 29 Z9 29 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2010 VL 719 IS 2 BP 1427 EP 1432 DI 10.1088/0004-637X/719/2/1427 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635LU UT WOS:000280658000032 ER PT J AU Abdo, AA Ackermann, M Ajello, M Atwood, WB Baldini, L Ballet, J Barbiellini, G Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Brandt, TJ Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Cannon, A Caraveo, PA Carrigan, S Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Colafrancesco, S Cominsky, LR Conrad, J Costamante, L Davis, DS Dermer, CD de Angelis, A de Palma, F do Couto e Silva, E Drell, PS Dubois, R Dumora, D Falcone, A Farnier, C Favuzzi, C Fegan, SJ Finke, J Focke, WB Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Georganopoulos, M Germani, S Giebels, B Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grandi, P Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hadasch, D Harding, AK Hase, H Hayashida, M Hays, E Horan, D Hughes, RE Itoh, R Jackson, MS Johannesson, G Johnson, AS Johnson, TJ Johnson, WN Kadler, M Kamae, T Katagiri, H Kataoka, J Kawai, N Kishishita, T Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Lemoine-Goumard, M Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN McConville, W McEnery, JE Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Muller, C Nakamori, T Naumann-Godo, M Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Ojha, R Okumura, A Omodei, N Orlando, E Ormes, JF Ozaki, M Pagani, C Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Plotz, C Porter, TA Raino, S Rando, R Razzano, M Razzaque, S Reimer, A Reimer, O Reposeur, T Ripken, J Ritz, S Rodriguez, AY Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Scargle, JD Sgro, C Siskind, EJ Smith, PD Spandre, G Spinelli, P Starck, JL Stawarz, L Strickman, MS Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Atwood, W. B. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Brandt, T. J. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Cannon, A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Colafrancesco, S. Cominsky, L. R. Conrad, J. Costamante, L. Davis, D. S. Dermer, C. D. de Angelis, A. de Palma, F. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Falcone, A. Farnier, C. Favuzzi, C. Fegan, S. J. Finke, J. Focke, W. B. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Georganopoulos, M. Germani, S. Giebels, B. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grandi, P. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Hadasch, D. Harding, A. K. Hase, Hayo Hayashida, M. Hays, E. Horan, D. Hughes, R. E. Itoh, R. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, T. J. Johnson, W. N. Kadler, M. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kishishita, T. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Lemoine-Goumard, M. Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. McConville, W. McEnery, J. E. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Mueller, C. Nakamori, T. Naumann-Godo, M. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Ojha, R. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Pagani, C. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Plotz, C. Porter, T. A. Raino, S. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Reposeur, T. Ripken, J. Ritz, S. Rodriguez, A. Y. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Scargle, J. D. Sgro, C. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Starck, J. -L. Stawarz, L. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. TI FERMI LARGE AREA TELESCOPE VIEW OF THE CORE OF THE RADIO GALAXY CENTAURUS A SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: individual (Centaurus A); galaxies: jets; gamma rays: galaxies; radiation mechanisms: non-thermal ID GAMMA-RAY EMISSION; ACTIVE GALACTIC NUCLEI; ENERGY COSMIC-RAYS; SUPERMASSIVE BLACK-HOLE; BASE-LINE INTERFEROMETRY; BL LACERTAE OBJECTS; X-RAY; PARTICLE-ACCELERATION; TEV BLAZARS; NGC 5128 AB We present gamma-ray observations with the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope of the nearby radio galaxy Centaurus A (Cen A). The previous EGRET detection is confirmed, and the localization is improved using data from the first 10 months of Fermi science operation. In previous work, we presented the detection of the lobes by the LAT; in this work, we concentrate on the gamma-ray core of Cen A. Flux levels as seen by the LAT are not significantly different from that found by EGRET, nor is the extremely soft LAT spectrum (Gamma = 2.67 +/- 0.10(stat) +/- 0.08(sys) where the photon flux is Phi alpha E-Gamma). The LAT core spectrum, extrapolated to higher energies, is marginally consistent with the non-simultaneous HESS spectrum of the source. The LAT observations are complemented by simultaneous observations from Suzaku, the Swift Burst Alert Telescope and X-ray Telescope, and radio observations with the Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry program, along with a variety of non-simultaneous archival data from a variety of instruments and wavelengths to produce a spectral energy distribution (SED). We fit this broadband data set with a single-zone synchrotron/synchrotron self-Compton model, which describes the radio through GeV emission well, but fails to account for the non-simultaneous higher energy TeV emission observed by HESS from 2004 to 2008. The fit requires a low Doppler factor, in contrast to BL Lac objects which generally require larger values to fit their broadband SEDs. This indicates that the gamma-ray emission originates from a slower region than that from BL Lac objects, consistent with previous modeling results from Cen A. This slower region could be a slower moving layer around a fast spine, or a slower region farther out from the black hole in a decelerating flow. The fit parameters are also consistent with Cen A being able to accelerate ultra-high energy cosmic-rays, as hinted at by results from the Auger observatory. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Finke, J.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Razzaque, S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.; Finke, J.; Razzaque, S.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Costamante, L.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Costamante, L.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Ritz, S.; Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Ritz, S.; Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.; Starck, J. -L.; Tibaldo, L.] Univ Paris Diderot, Serv Astrophys, CEA Saclay, Lab AIM,CEA IRFU,CNRS, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Brandt, T. J.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brandt, T. J.; Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain. [Cannon, A.; Celik, Oe; Davis, D. S.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. J.; Kadler, M.; McConville, W.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, A.] Univ Coll Dublin, Dublin 4, Ireland. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Colafrancesco, S.; Gasparrini, D.; Giommi, P.] ASI, Sci Data Ctr, I-00044 Rome, Italy. [Celik, Oe; Kadler, M.; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Davis, D. S.; Georganopoulos, M.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Davis, D. S.; Georganopoulos, M.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Jackson, M. S.; Garde, M. Llena; Ripken, J.; Ryde, F.; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Reposeur, T.] CEN Bordeaux Gradignan, CNRS, UMR 5797, IN2P3, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Reposeur, T.] Univ Bordeaux, CEN Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fukazawa, Y.; Itoh, R.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Grandi, P.] INAF IASF Bologna, I-40129 Bologna, Italy. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Hase, Hayo] Bundesamt Kartog & Geodasie, Concepcion, Chile. [Jackson, M. S.; Ryde, F.; Ylinen, T.] Royal Inst Technol, KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Kadler, M.; Mueller, C.] Dr Remeis Sternwarte Bamberg, D-96049 Bamberg, Germany. [Kadler, M.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Kadler, M.] USRA, Columbia, MD 21044 USA. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Kishishita, T.; Ohno, M.; Okumura, A.; Ozaki, M.; Stawarz, L.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Ojha, R.] USN Observ, Washington, DC 20392 USA. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Pagani, C.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Scargle, J. D.] NASA, Div Space Sci, Ames Res Ctr, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM justin.finke@nrl.navy.mil; fukazawa@hep01.hepl.hiroshima-u.ac.jp RI Starck, Jean-Luc/D-9467-2011; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Funk, Stefan/B-7629-2015; XRAY, SUZAKU/A-1808-2009; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; OI Starck, Jean-Luc/0000-0003-2177-7794; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Funk, Stefan/0000-0002-2012-0080; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Grandi, Paola/0000-0003-1848-6013; Giordano, Francesco/0000-0002-8651-2394; Kadler, Matthias/0000-0001-5606-6154; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726 FU Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; NASA [NNX08AV77G, NNX09AU07G]; K. A. Wallenberg Foundation; International Doctorate on Astroparticle Physics (IDAPP) program FX Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France.; We are grateful to the anonymous referee for useful comments which have improved the manuscript. We thank N. Odegard for providing us with the WMAP image and the Suzaku team for their calibration and satellite operation. We also acknowledge the Swift Team and the Swift/XRT monitoring program efforts as well as Swift analysis supported by NASA grants NNX08AV77G and NNX09AU07G.; Royal Swedish Academy of Sciences Research Fellow funded by a grant from the K. A. Wallenberg Foundation.; Partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program. NR 105 TC 90 Z9 90 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2010 VL 719 IS 2 BP 1433 EP 1444 DI 10.1088/0004-637X/719/2/1433 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635LU UT WOS:000280658000033 ER PT J AU Sibthorpe, B Ade, PAR Bock, JJ Chapin, EL Devlin, MJ Dicker, S Griffin, M Gundersen, JO Halpern, M Hargrave, PC Hughes, DH Jeong, WS Kaneda, H Klein, J Koo, BC Lee, HG Marsden, G Martin, PG Mauskopf, P Moon, DS Netterfield, CB Olmi, L Pascale, E Patanchon, G Rex, M Roy, A Scott, D Semisch, C Truch, MDP Tucker, C Tucker, GS Viero, MP Wiebe, DV AF Sibthorpe, B. Ade, P. A. R. Bock, J. J. Chapin, E. L. Devlin, M. J. Dicker, S. Griffin, M. Gundersen, J. O. Halpern, M. Hargrave, P. C. Hughes, D. H. Jeong, W. -S. Kaneda, H. Klein, J. Koo, B. -C. Lee, H. -G. Marsden, G. Martin, P. G. Mauskopf, P. Moon, D. -S. Netterfield, C. B. Olmi, L. Pascale, E. Patanchon, G. Rex, M. Roy, A. Scott, D. Semisch, C. Truch, M. D. P. Tucker, C. Tucker, G. S. Viero, M. P. Wiebe, D. V. TI AKARI AND BLAST OBSERVATIONS OF THE CASSIOPEIA A SUPERNOVA REMNANT AND SURROUNDING INTERSTELLAR MEDIUM SO ASTROPHYSICAL JOURNAL LA English DT Article DE early universe; ISM: supernova remnants ID SPITZER-SPACE-TELESCOPE; A SUPERNOVA; X-RAY; INFRARED-EMISSION; DUST FORMATION; COLD DUST; RADIO-EMISSION; II SUPERNOVAE; SN 1987A; GAS AB We use new large area far infrared maps ranging from 65 to 500 mu m obtained with the AKARI and the Balloon-borne Large Aperture Submillimeter Telescope missions to characterize the dust emission toward the Cassiopeia A supernova remnant (SNR). Using the AKARI high-resolution data we find a new "tepid" dust grain population at a temperature of similar to 35 K and with an estimated mass of 0.06 M-circle dot. This component is confined to the central area of the SNR and may represent newly formed dust in the unshocked supernova ejecta. While the mass of tepid dust that we measure is insufficient by itself to account for the dust observed at high redshift, it does constitute an additional dust population to contribute to those previously reported. We fit our maps at 65, 90, 140, 250, 350, and 500 mu m to obtain maps of the column density and temperature of "cold" dust (near 16 K) distributed throughout the region. The large column density of cold dust associated with clouds seen in molecular emission extends continuously from the surrounding interstellar medium to project on the SNR, where the foreground component of the clouds is also detectable through optical, X-ray, and molecular extinction. At the resolution available here, there is no morphological signature to isolate any cold dust associated only with the SNR from this confusing interstellar emission. Our fit also recovers the previously detected "hot" dust in the remnant, with characteristic temperature 100 K. C1 [Sibthorpe, B.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Griffin, M.; Hargrave, P. C.; Mauskopf, P.; Pascale, E.; Tucker, C.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bock, J. J.] Jet Prop Lab, Pasadena, CA 91109 USA. [Bock, J. J.] CALTECH, Pasadena, CA 91125 USA. [Chapin, E. L.; Halpern, M.; Marsden, G.; Scott, D.; Wiebe, D. V.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Devlin, M. J.; Dicker, S.; Klein, J.; Rex, M.; Semisch, C.; Truch, M. D. P.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Gundersen, J. O.] Univ Miami, Dept Phys, Coral Gables, FL 33146 USA. [Hughes, D. H.] Inst Nacl Astrofis Opt & Electr, Puebla 72840, Mexico. [Jeong, W. -S.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Kaneda, H.] Nagoya Univ, Dept Astrophys, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Koo, B. -C.; Lee, H. -G.] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea. [Lee, H. -G.] Univ Tokyo, Grad Sch Sci, Dept Astron, Bunkyo Ku, Tokyo 1130003, Japan. [Martin, P. G.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Martin, P. G.; Moon, D. -S.; Netterfield, C. B.; Roy, A.; Viero, M. P.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Netterfield, C. B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Olmi, L.] Ist Radioastron, I-50125 Florence, Italy. [Olmi, L.] Univ Puerto Rico, Dept Phys, San Juan, PR 00936 USA. [Patanchon, G.] Lab APC, F-75205 Paris, France. [Tucker, G. S.] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Sibthorpe, B (reprint author), Royal Observ, UK Astron Technol Ctr, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. EM bruce.sibthorpe@stfc.ac.uk RI Klein, Jeffrey/E-3295-2013; OI Scott, Douglas/0000-0002-6878-9840; Olmi, Luca/0000-0002-1162-7947 FU NASA [NAG5-12785, NAG5-13301, NNGO-6GI11G]; NSF Office of Polar Programs; Canadian Space Agency; Natural Sciences and Engineering Research Council (NSERC) of Canada; UK Science and Technology Facilities Council (STFC); Korea Science and Engineering Foundation [R01-2007-000-20336-0, F01-2007-000-10048-0] FX We acknowledge the support of NASA through grant numbers NAG5-12785, NAG5-13301, and NNGO-6GI11G, the NSF Office of Polar Programs, the Canadian Space Agency, the Natural Sciences and Engineering Research Council (NSERC) of Canada, the UK Science and Technology Facilities Council (STFC), and Korea Science and Engineering Foundation (R01-2007-000-20336-0, F01-2007-000-10048-0). This work is also based on observations with AKARI, a JAXA project with the participation of ESA. Finally, we acknowledge M. Wright for the use of his 83 GHz radio map of Cas A. NR 70 TC 41 Z9 41 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2010 VL 719 IS 2 BP 1553 EP 1564 DI 10.1088/0004-637X/719/2/1553 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635LU UT WOS:000280658000042 ER PT J AU Grady, CA Hamaguchi, K Schneider, G Stecklum, B Woodgate, BE McCleary, JE Williger, GM Sitko, ML Menard, F Henning, T Brittain, S Troutmann, M Donehew, B Hines, D Wisniewski, JP Lynch, DK Russell, RW Rudy, RJ Day, AN Shenoy, A Wilner, D Silverstone, M Bouret, JC Meusinger, H Clampin, M Kim, S Petre, R Sahu, M Endres, M Collins, KA AF Grady, C. A. Hamaguchi, K. Schneider, G. Stecklum, B. Woodgate, B. E. McCleary, J. E. Williger, G. M. Sitko, M. L. Menard, F. Henning, Th Brittain, S. Troutmann, M. Donehew, B. Hines, D. Wisniewski, J. P. Lynch, D. K. Russell, R. W. Rudy, R. J. Day, A. N. Shenoy, A. Wilner, D. Silverstone, M. Bouret, J. -C. Meusinger, H. Clampin, M. Kim, S. Petre, R. Sahu, M. Endres, M. Collins, K. A. TI LOCATING THE ACCRETION FOOTPRINT ON A HERBIG Ae STAR: MWC 480 SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: jets and outflows; protoplanetary disks; stars: individual (MWC 480); ultraviolet: stars; X-rays: stars ID T-TAURI-STARS; X-RAY-EMISSION; PRE-MAIN-SEQUENCE; 2-DIMENSIONAL RADIATIVE-TRANSFER; YOUNG STELLAR OBJECTS; INFRARED FILTER SET; ULTRAVIOLET-SPECTROSCOPIC-EXPLORER; AE/BE STARS; PROTOSTELLAR ENVELOPES; PROTOPLANETARY DISKS AB Accretion is a fundamental process which establishes the dynamics of the protoplanetary disk and the final properties of the forming star. In solar-type stars, the star-disk coupling is determined by the magnetic field structure, which is responsible for funneling material from the disk midplane to higher latitudes on the star. Here, we use pan-chromatic data for the Herbig Ae star MWC 480 to address whether similar processes occur in intermediate-mass stars. MWC 480 has X-ray emission typical of actively accreting Herbig Ae stars, but with similar to 10x more photoelectric absorption than expected from optical and FUV data. We consider three sources for the absorption: the disk, absorption in a wind or jet, and accretion. While we detect the disk in scattered light in a re-analysis of archival Hubble Space Telescope data, the data are consistent with grazing illumination of the dust disk. We find that MWC 480's disk is stratified, geometrically thin, and is not responsible for the observed photoelectric absorption. MWC 480 drives a bipolar jet, but with a mass-loss rate that is low compared to other Herbig Ae stars, where the outflow is more favorably oriented and enhanced photoelectric absorption is not seen. This excludes a jet or wind origin for the enhanced photoelectric absorption. We compare MWC 480's OVI emission with other Herbig Ae stars. The distribution of the emission in inclination, and lack of a correlation of profile shape and system inclination excludes equatorially confined accretion for the FUSE Herbig Ae stars. The photoelectric absorption data further suggest that the accretion footprint on MWC 480 and other Herbig Ae stars is located at high-temperate, rather than polar, latitudes. These findings support the presence of funneled accretion in MWC 480 and Herbig Ae stars, strengthening the parallel to T Tauri stars. C1 [Grady, C. A.; Silverstone, M.] Eureka Sci, Oakland, CA 96002 USA. [Hamaguchi, K.] NASA, GSFC, CRESST, Greenbelt, MD 20771 USA. [Hamaguchi, K.] NASA, GSFC, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Hamaguchi, K.] Univ Maryland, Dept Phys, Baltimore, MD 21250 USA. [Hamaguchi, K.] NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, Greenbelt, MD 20771 USA. [Schneider, G.; Kim, S.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Stecklum, B.; Meusinger, H.] Thuringer Landessternwarte Tautenburg, D-07778 Tautenburg, Germany. [Grady, C. A.; Woodgate, B. E.; Clampin, M.] NASA, Goddard Space Flight Ctr, ExoPlanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [McCleary, J. E.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Williger, G. M.; Collins, K. A.] Univ Louisville, Dept Phys, Louisville, KY 40292 USA. [Williger, G. M.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Williger, G. M.] Univ Nice, UMR 6525, Lab Fizeau, F-06108 Nice 2, France. [Sitko, M. L.; Hines, D.] Space Sci Inst, Boulder, CO 80301 USA. [Sitko, M. L.] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. [Menard, F.] UJF, CNRS, UMR 5571, Lab Astrophys Grenoble, Paris, France. [Henning, Th] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Brittain, S.; Troutmann, M.; Donehew, B.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Wisniewski, J. P.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Lynch, D. K.; Russell, R. W.; Rudy, R. J.] Aerosp Corp, Los Angeles, CA 90009 USA. [Shenoy, A.] NASA, Goddard Space Flight Ctr, Summer High Sch Intern, Rockville, MD 20850 USA. [Shenoy, A.] NASA, Goddard Space Flight Ctr, Thomas Wootton High Sch, Rockville, MD 20850 USA. [Wilner, D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bouret, J. -C.] NASA, Goddard Space Flight Ctr, Lab Observat Cosmol, Greenbelt, MD 20771 USA. [Bouret, J. -C.] Univ Provence, CNRS, Lab Astrophy Marseille, F-13376 Marseille 12, France. [Petre, R.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Sahu, M.] US Patent & Trademark Off, Alexandria, VA 22314 USA. [Endres, M.] Wyle Informat Syst, Mclean, VA 22102 USA. [Endres, M.] Endres Gamebit Ltd, London SE5 7HS, England. RP Grady, CA (reprint author), Eureka Sci, 2452 Delmer,Suite 100, Oakland, CA 96002 USA. EM jwisnie@u.washington.edu RI Brittain, Sean/K-9001-2012; Woodgate, Bruce/D-2970-2012; Clampin, mark/D-2738-2012 OI Brittain, Sean/0000-0001-5638-1330; FU Kentucky Space Grant Consortium; NASA [NAS5-26555, NNG05EA89P, NAS5-32985, NAS8-03060, HST-GO-10177, NAS 5-26555, 399131.02.06.02.32, NNX08AH90G, NNH06CC28C, NNX09AC73G]; Chandra X-ray Observatory Center [09200520]; NASA Astrobiology Center [CAN 03-OSS-02]; NSF [AST 08-02230, AST-0708899]; Hubble Space Telescope [HST-GO-10764, HST-GO-10864]; University of Cincinnati; Aerospace Corporation; [D065]; [E510] FX Supported by the Kentucky Space Grant Consortium and NASA.; We thank the staff of the Chandra X-ray Center who tracked down the Aspect Camera Array Data used in target acquisition of MWC 480, and the anonymous referee for excellent comments and suggestions. This study is based on observations made with the Chandra X-Ray Observatory which is operated by the Smithsonian Astrophysical Observatory under NAS8-03060. It is also based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA Contract NAS5-26555. FUV spectroscopy used in this study was based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer, and was supported under NASA contract NNG05EA89P to Eureka Scientific. FUSE was operated for NASA by the Johns Hopkins University under NASA contract NAS5-32985. We acknowledge support for analysis of those observations through Chandra Award Number 09200520 issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060, and HST-GO-10177 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. FUSE data included in this study were obtained under programs D065 and E510. The Goddard Fabry-Perot Interferometer is supported under NASA RTOP 399131.02.06.02.32 to Goddard Space Flight Center. K. H. was supported under NASA Astrobiology Center funding under CAN 03-OSS-02. J.P.W. acknowledges support from NSF Astronomy & Astrophysics Postdoctoral Fellowship AST 08-02230. S. D. B. acknowledges support for this work from the National Science Foundation under grant number AST-0708899 and NASA Origins of Solar Systems under grant number NNX08AH90G. M. R. T. performed this work under contract with the Jet Propulsion Laboratory (JPL) funded by NASA through the Michelson Fellowship Program. JPL is managed for NASA by the California Institute of Technology. M. L. S. was supported under NASA ADP grants NNH06CC28C & NNX09AC73G, and Hubble Space Telescope grants HST-GO-10764 and HST-GO-10864. A. N. Day acknowledges support from the Women in Science and Engineering program at the University of Cincinnati. Support for this work was also provided by the IR&D program at The Aerospace Corporation. NR 92 TC 20 Z9 20 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2010 VL 719 IS 2 BP 1565 EP 1581 DI 10.1088/0004-637X/719/2/1565 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635LU UT WOS:000280658000043 ER PT J AU Leutenegger, MA Cohen, DH Zsargo, J Martell, EM MacArthur, JP Owocki, SP Gagne, M Hillier, DJ AF Leutenegger, Maurice A. Cohen, David H. Zsargo, Janos Martell, Erin M. MacArthur, James P. Owocki, Stanley P. Gagne, Marc Hillier, D. John TI MODELING BROADBAND X-RAY ABSORPTION OF MASSIVE STAR WINDS SO ASTROPHYSICAL JOURNAL LA English DT Article DE radiative transfer; stars: early-type; stars: mass-loss; stars: winds, outflows ID EMISSION-LINE PROFILES; RADIATION-DRIVEN WINDS; HOT LUMINOUS STARS; GALACTIC-O-STARS; STELLAR WINDS; ZETA-PUPPIS; INTERSTELLAR-MEDIUM; SUPER-GIANTS; SPECTROSCOPY; IONIZATION AB We present a method for computing the net transmission of X-rays emitted by shock-heated plasma distributed throughout a partially optically thick stellar wind from a massive star. We find the transmission by an exact integration of the formal solution, assuming that the emitting plasma and absorbing plasma are mixed at a constant mass ratio above some minimum radius, below which there is assumed to be no emission. This model is more realistic than either the slab absorption associated with a corona at the base of the wind or the exospheric approximation that assumes that all observed X-rays are emitted without attenuation from above the radius of optical depth unity. Our model is implemented in XSPEC as a pre-calculated table that can be coupled to a user-defined table of the wavelength-dependent wind opacity. We provide a default wind opacity model that is more representative of real wind opacities than the commonly used neutral interstellar medium (ISM) tabulation. Preliminary modeling of Chandra grating data indicates that the X-ray hardness trend of OB stars with spectral subtype can largely be understood as a wind absorption effect. C1 [Leutenegger, Maurice A.] NASA, Goddard Space Flight Ctr, High Energy Phys Lab, Greenbelt, MD 20771 USA. [Cohen, David H.; Martell, Erin M.; MacArthur, James P.] Swarthmore Coll, Dept Phys & Astron, Swarthmore, PA 19081 USA. [Zsargo, Janos] Escuela Super Fis & Matemat, Inst Politecn Nacl, Mexico City 07738, DF, Mexico. [Zsargo, Janos; Hillier, D. John] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Martell, Erin M.] Univ Chicago, Dept Astron, Chicago, IL 60637 USA. [Owocki, Stanley P.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Gagne, Marc] W Chester Univ Penn, Dept Geol & Astron, W Chester, PA 19383 USA. RP Leutenegger, MA (reprint author), NASA, Goddard Space Flight Ctr, High Energy Phys Lab, Code 662, Greenbelt, MD 20771 USA. EM Maurice.A.Leutenegger@nasa.gov RI Gagne, Marc/C-1130-2013 FU NASA; Swarthmore College [AR7-8002X, GO0-11002B]; STScI [HST-AR-10693.02]; SAO [TM6-7003X, GO0-11002A] FX M.A.L. is supported by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. D.H.C. acknowledges support from Chandra awards AR7-8002X and GO0-11002B to Swarthmore College, and D.H.C., E.M.M., and J.P.M. thank the Provost's Office at Swarthmore College for support via Eugene M. Lang and Surdna Summer Research Fellowships. J.Z. and D.J.H. were supported by STScI grant HST-AR-10693.02 and by SAO grants TM6-7003X and GO0-11002A. NR 42 TC 24 Z9 24 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2010 VL 719 IS 2 BP 1767 EP 1774 DI 10.1088/0004-637X/719/2/1767 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635LU UT WOS:000280658000057 ER PT J AU Hicks, AK Mushotzky, R Donahue, M AF Hicks, A. K. Mushotzky, R. Donahue, M. TI DETECTING STAR FORMATION IN BRIGHTEST CLUSTER GALAXIES WITH GALEX SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; galaxies: clusters: intracluster medium; galaxies: elliptical and lenticular, cD; galaxies: stellar content; stars: formation; ultraviolet: galaxies; X-rays: galaxies: clusters ID COOLING FLOW CLUSTERS; RAY-LUMINOUS CLUSTERS; SPECTRAL ENERGY-DISTRIBUTIONS; XMM-NEWTON; DUST ATTENUATION; OPTICAL MONITOR; FORMATION RATES; INFRARED SURVEY; RADIO GALAXIES; ABELL CLUSTERS AB We present the results of GALEX observations of 17 cool core (CC) clusters of galaxies. We show that GALEX is easily capable of detecting star formation in brightest cluster galaxies (BCGs) out to z >= 0.45 and 50-100 kpc. In most of the CC clusters studied, we find significant UV luminosity excesses and colors that strongly suggest recent and/or current star formation. The BCGs are found to have blue UV colors in the center which become increasingly redder with radius, indicating that the UV signature of star formation is most easily detected in the central regions. Our findings show good agreement between UV star formation rates and estimates based on Ha observations. IR observations coupled with our data indicate moderate-to-high dust attenuation. Comparisons between our UV results and the X-ray properties of our sample suggest clear correlations between UV excess, cluster entropy, and central cooling time, confirming that star formation is directly and incontrovertibly related to the cooling gas. C1 [Hicks, A. K.; Donahue, M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Mushotzky, R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mushotzky, R.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Hicks, AK (reprint author), Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. EM ahicks@alum.mit.edu; richard@astro.umd.edu; donahue@pa.msu.edu RI Donahue, Megan/B-5361-2012 FU NASA [NNX07AJ38G, AR7-8012X, NNG05GD82G, NAS5-98034] FX Support for this work was provided by NASA through GALEX award NNX07AJ38G, Chandra Archive award AR7-8012X, and LTSA grant NNG05GD82G. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.; Based on observations made with the NASA Galaxy Evolution Explorer. GALEX is operated for NASA by the California Institute of Technology under NASA contract NAS5-98034. NR 66 TC 47 Z9 47 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2010 VL 719 IS 2 BP 1844 EP 1858 DI 10.1088/0004-637X/719/2/1844 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635LU UT WOS:000280658000064 ER PT J AU Bruhweiler, FC Ferrero, RF Bourdin, MO Gull, TR AF Bruhweiler, F. C. Ferrero, R. Freire Bourdin, M. O. Gull, T. R. TI THE YOUNG INTERSTELLAR BUBBLE WITHIN THE ROSETTE NEBULA SO ASTROPHYSICAL JOURNAL LA English DT Article DE H II regions; ISM: bubbles; ISM: individual objects (Rosette Nebula); stars: early-type ID MULTISEEDED MULTIMODE FORMATION; RESONANCE-ABSORPTION LINES; MOLECULAR-COMPLEX; WAVELENGTHS LONGWARD; PHYSICAL PARAMETERS; EMBEDDED CLUSTERS; STAR-FORMATION; LYMAN LIMIT; ATOMIC DATA; NGC 2244 AB ionized Si IV and C IV seen toward the young, bright OB stars of NGC 2244 in the core of the Rosette Nebula to study the physics of young IS bubbles. Two discrete velocity components in Si IV and C IV are seen toward stars in the 6.2 pc radius central cavity, while only a single velocity component is seen toward those stars in the surrounding H II region, at the perimeter and external to this cavity. The central region shows characteristics of a very young, windblown bubble. The shell around the central hot cavity is expanding at 56 km s(-1) with respect to the embedded OB stars, while the surrounding H II region of the Rosette is expanding at similar to 13 km s(-1). Even though these stars are quite young (approximate to 2-4 Myr), both the radius and expansion velocity of the 6.2 pc inner shell point to a far younger age; t(age) similar to 6.4 x 10(4) years. These results represent a strong contradiction to theory and present modeling, where much larger bubbles are predicted around individual O stars and O associations. Specifically, the results for this small bubble and its deduced age extend the "missing wind luminosity problem" to young evolving bubbles. These results indicate that OB star winds mix the surrounding H II regions and the wind kinetic energy is converted to turbulence and radiated away in the dense H II regions. These winds do not form hot, adiabatically expanding cavities. True IS bubbles appear only to form at later evolutionary times, perhaps triggered by increased mass loss rates or discrete ejection events. Means for rectifying discrepancies between theory and observations are discussed. C1 [Bruhweiler, F. C.] Catholic Univ Amer, Dept Phys, IACS, Washington, DC 20064 USA. [Bruhweiler, F. C.; Gull, T. R.] NASA, Goddard Space Flight Ctr, Explorat Universe Div, Greenbelt, MD 20771 USA. [Ferrero, R. Freire] Univ Strasbourg, CNRS, Observ Astron Strasbourg, F-67000 Strasbourg, France. RP Bruhweiler, FC (reprint author), Catholic Univ Amer, Dept Phys, IACS, Washington, DC 20064 USA. EM bruhweiler@cua.edu; freire@astro.u-strasbg.fr; theodore.r.gull@nasa.gov RI Gull, Theodore/D-2753-2012 OI Gull, Theodore/0000-0002-6851-5380 FU Universite Louis Pasteur at Strasbourg FX Part of this research was conducted at NASA/Goddard Space Flight Center. The STScI IUE archive retrieval and CDS/Simbad Web sites were used to obtain the actual data and other observed parameters for the stars. Maxime Bourdin thanks the Observatoire Astronomique de Strasbourg (OAS) for making possible this collaboration. Fred Bruhweiler especially thanks Rubens Freire Ferrero and the OAS for being such gracious hosts during the last phase of this research. F.B. also thanks the Universite Louis Pasteur at Strasbourg for financial support and la Fondation Nationale Alfred Kastler for assistance during his stays at the OAS. NR 39 TC 6 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2010 VL 719 IS 2 BP 1872 EP 1883 DI 10.1088/0004-637X/719/2/1872 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635LU UT WOS:000280658000066 ER PT J AU Kaul, UK AF Kaul, Upender K. TI Three-dimensional elliptic grid generation with fully automatic boundary constraints SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Enhanced elliptic grid generation; Three-dimensional boundary constraints; Decay functions; Grid clustering; Orthogonal grids; Single-zone grids; Mars Science Laboratory (MSL); Canopy; Aeroshell; Inflatable Aerodynamic Decelerator (IAD) ID ARBITRARY 2-DIMENSIONAL BODIES; NUMERICAL GENERATION; MOVING GRIDS; SCHEMES; SYSTEMS; NUMBER AB A new procedure for generating smooth uniformly clustered three-dimensional structured elliptic grids is presented here which formulates three-dimensional boundary constraints by extending the two-dimensional counterpart(1) presented by the author earlier This fully automatic procedure obviates the need for manual specification of decay parameters over the six bounding surfaces of a given volume grid The procedure has been demonstrated here for the Mars Science Laboratory (MSL) geometries such as aeroshell and canopy, as well as the Inflatable Aerodynamic Decelerator (IAD) geometry and a 3D analytically defined geometry The new procedure also enables generation of single-block grids for such geometries because the automatic boundary constraints permit the decay parameters to evolve as part of the solution to the elliptic grid system of equations. These decay parameters are no longer Just constants, as specified in the conventional approach, but functions of generalized coordinate variables over a given bounding surface Since these decay functions vary over a given boundary, orthogonal grids around any arbitrary simply-connected boundary can be clustered automatically without having to break up the boundaries and the corresponding interior or exterior domains into various blocks for grid generation The new boundary constraints are not limited to the simply-connected regions only, but can also be formulated around multiply-connected and Isolated regions in the interior The proposed method is superior to other methods of grid generation such as algebraic and hyperbolic techniques in that the grids obtained here are C-2 continuous, whereas simple elliptic smoothing of algebraic or hyperbolic grids to enforce C-2 continuity destroys the grid clustering near the boundaries Published by Elsevier Inc C1 NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Kaul, UK (reprint author), NASA, Ames Res Ctr, M-S 258-5, Moffett Field, CA 94035 USA. FU NASA FX This work was supported by the Supersonics Project of the NASA Fundamental Aeronautics Program. The author thanks Ed Schaffer of NASA Ames Research Center for providing the analytical geometry definition for the MSL aeroshell and the canopy and Ian Clark of Georgia Institute of Technology for providing the geometry definition for the Inflatable Aerodynamic Decelerator. The author would also like to thank the reviewers for their helpful comments and suggestions. NR 35 TC 7 Z9 8 U1 1 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD AUG 20 PY 2010 VL 229 IS 17 BP 5966 EP 5979 DI 10.1016/j.jcp.2010.04.028 PG 14 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 621II UT WOS:000279569200009 ER PT J AU Lyatsky, W Khazanov, GV Slavin, JA AF Lyatsky, Wladislaw Khazanov, George V. Slavin, James A. TI Saturation of the electric field transmitted to the magnetosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID TRANSPOLAR POTENTIAL SATURATION; POLAR-CAP; SOLAR-WIND; IONOSPHERE; CURRENTS; MODEL AB We reexamined the processes leading to saturation of the electric field, transmitted into the Earth's ionosphere from the solar wind, incorporating features of the coupled system previously ignored. We took into account that the electric field is transmitted into the ionosphere through a region of open field lines, and that the ionospheric conductivity in the polar cap and auroral zone may be different. Penetration of the electric field into the magnetosphere is linked with the generation of the Alfven wave, going out from the ionosphere into the solar wind and being coupled with the field-aligned currents at the boundary of the open field limes. The electric field of the outgoing Alfven wave reduces the original electric field and provides the saturation effect in the electric field and currents during strong geomagnetic disturbances, associated with increasing ionospheric conductivity. The electric field and field-aligned currents of this Alfven wave are dependent on the ionospheric and solar wind parameters and may significantly affect the electric field and field-aligned currents, generated in the polar ionosphere. Estimating the magnitude of the saturation effect in the electric field and field-aligned currents allows us to improve the correlation between solar wind parameters and resulting disturbances in the Earth's magnetosphere. C1 [Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lyatsky, W (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM lyatsky@gmail.com RI Slavin, James/H-3170-2012; feggans, john/F-5370-2012 OI Slavin, James/0000-0002-9206-724X; NR 35 TC 8 Z9 8 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD AUG 20 PY 2010 VL 115 AR A08221 DI 10.1029/2009JA015091 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 641RD UT WOS:000281146500001 ER PT J AU Ramasamy, S Tewari, SN Lee, KN Bhatt, RT Fox, DS AF Ramasamy, Sivakumar Tewari, Surendra N. Lee, Kang N. Bhatt, Ramakrishna T. Fox, Dennis S. TI EBC development for hot-pressed Y2O3/Al2O3 doped silicon nitride ceramics SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Electron microscopy; Silicon nitride ceramics; Coating; Sintering; Oxidation; Thermal cycling ID ENVIRONMENTAL BARRIER COATINGS; WATER-VAPOR; OXIDATION RESISTANCE; PARALINEAR OXIDATION; SI3N4 CERAMICS; SINTERED SI3N4; MULLITE; CORROSION; STRENGTH; BEHAVIOR AB Multilayer EBCs of alcohol and sol-based slurries containing (a) 45% SiO2-34% Y2O3-%Al2O3, (b) mullite/Gd2SiO5 (88/12 wt.%) with and without B2O3 addition, (c) mullite/rare-earth silicates (94/6 wt.%, (Gd2SiO5, Lu2SiO5, Er2SiO5, and HfSiO4)), and (d) only mullite, were applied on hot pressed Y2O3/Al2O3 doped Si3N4 substrates. Of the four major EBC systems studied, only mullite/Gd2SiO5 (88/12 wt.%) EBCs sintered in air at 1400 degrees C for 3 h showed good bonding with the substrate. In all other EBC systems studied, the Y2O3/Al2O3 additives present in Si3N4 reacted with silica and rare-earth silicates to form low melting point constituents during sintering causing bubble formation and/or de-bonding at the substrate/coating interface. Thermal cyclic resistance of silicon nitride coupons coated with mullite/Gd2SiO5 (88/12 wt.%) EBC was investigated in a moisture containing environment (90% H2O-10%O-2) for 100 cycles from 1350 degrees C to room temperature (1 h hot and 15 min cold). Moisture exposure resulted in accumulation of large pores in the coating, mostly aligned along the substrate/coating interface. (C) 2010 Elsevier B.V. All rights reserved. C1 [Ramasamy, Sivakumar; Tewari, Surendra N.] Cleveland State Univ, Cleveland, OH 44115 USA. [Lee, Kang N.] Rolls Royce Corp, Indianapolis, IN USA. [Bhatt, Ramakrishna T.; Fox, Dennis S.] NASA, Glenn Res Ctr, Cleveland, OH USA. RP Ramasamy, S (reprint author), Cleveland State Univ, 2121 Euclid Ave, Cleveland, OH 44115 USA. EM rshiku@yahoo.com RI Ramasamy, Sivakumar/B-7514-2012 NR 32 TC 5 Z9 6 U1 8 U2 32 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD AUG 20 PY 2010 VL 527 IS 21-22 BP 5492 EP 5498 DI 10.1016/j.msea.2010.05.067 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 642AO UT WOS:000281175300020 ER PT J AU Jullo, E Natarajan, P Kneib, JP D'Aloisio, A Limousin, M Richard, J Schimd, C AF Jullo, Eric Natarajan, Priyamvada Kneib, Jean-Paul D'Aloisio, Anson Limousin, Marceau Richard, Johan Schimd, Carlo TI Cosmological Constraints from Strong Gravitational Lensing in Clusters of Galaxies SO SCIENCE LA English DT Article ID HUBBLE-SPACE-TELESCOPE; LARGE-SCALE STRUCTURE; DARK ENERGY; PARAMETERS; MATTER; SUPERNOVAE; UNIVERSE; MASS AB Current efforts in observational cosmology are focused on characterizing the mass-energy content of the universe. We present results from a geometric test based on strong lensing in galaxy clusters. Based on Hubble Space Telescope images and extensive ground-based spectroscopic follow-up of the massive galaxy cluster Abell 1689, we used a parametric model to simultaneously constrain the cluster mass distribution and dark energy equation of state. Combining our cosmological constraints with those from x-ray clusters and the Wilkinson Microwave Anisotropy Probe 5-year data gives Omega(m) = 0.25 +/- 0.05 and W(x) = -0.97 +/- 0.07, which are consistent with results from other methods. Inclusion of our method with all other available techniques brings down the current 2 sigma contours on the dark energy equation-of-state parameter W(x) by similar to 30%. C1 [Natarajan, Priyamvada] Yale Univ, Dept Astron, New Haven, CT 06511 USA. [Jullo, Eric] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jullo, Eric; Kneib, Jean-Paul; Limousin, Marceau; Schimd, Carlo] Univ Aix Marseille 1, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Natarajan, Priyamvada; D'Aloisio, Anson] Yale Univ, Dept Phys, New Haven, CT 06504 USA. [Limousin, Marceau] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Richard, Johan] Univ Durham, Dept Phys, Inst Computat Cosmol, Durham DH1 3LE, England. RP Natarajan, P (reprint author), Yale Univ, Dept Astron, POB 208101, New Haven, CT 06511 USA. EM priyamvada.natarajan@yale.edu RI Kneib, Jean-Paul/A-7919-2015 OI Kneib, Jean-Paul/0000-0002-4616-4989 FU NASA; Radcliffe Fellowship; Guggenheim Fellowship; CNRS FX E.J. and J.-P.K. acknowledge fruitful discussions with D. Coe, L. Koopmans, L. Moustakas, and M. Auger. The authors are thankful for computational resources from Institut du Developpement et des Ressources en Informatique Scientifique acknowledges a NASA postdoctoral fellowship, and P.N. acknowledges a Radcliffe Fellowship and a Guggenheim Fellowship. J.-P.K., M.L., and C.S. acknowledge support from CNRS, and M.L. thanks Centre National d'Etudes Spatiales and Ville de Marseille. The authors thank A. Vikhlinin for providing data on cosmological constraints from x-ray clusters to combine with our strong lensing results. NR 40 TC 69 Z9 70 U1 0 U2 5 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD AUG 20 PY 2010 VL 329 IS 5994 BP 924 EP 927 DI 10.1126/science.1185759 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 640WN UT WOS:000281084800028 PM 20724628 ER PT J AU Watters, TR Robinson, MS Beyer, RA Banks, ME Bell, JF Pritchard, ME Hiesinger, H van der Bogert, CH Thomas, PC Turtle, EP Williams, NR AF Watters, Thomas R. Robinson, Mark S. Beyer, Ross A. Banks, Maria E. Bell, James F., III Pritchard, Matthew E. Hiesinger, Harald van der Bogert, Carolyn H. Thomas, Peter C. Turtle, Elizabeth P. Williams, Nathan R. TI Evidence of Recent Thrust Faulting on the Moon Revealed by the Lunar Reconnaissance Orbiter Camera SO SCIENCE LA English DT Article ID THERMAL HISTORY; TECTONICS; MERCURY; ORIGIN AB Lunar Reconnaissance Orbiter Camera images reveal previously undetected lobate thrust-fault scarps and associated meter-scale secondary tectonic landforms that include narrow extensional troughs or graben, splay faults, and multiple low-relief terraces. Lobate scarps are among the youngest landforms on the Moon, based on their generally crisp appearance, lack of superposed large-diameter impact craters, and the existence of crosscut small-diameter impact craters. Identification of previously known scarps was limited to high-resolution Apollo Panoramic Camera images confined to the equatorial zone. Fourteen lobate scarps were identified, seven of which are at latitudes greater than +/- 60 degrees, indicating that the thrust faults are globally distributed. This detection, coupled with the very young apparent age of the faults, suggests global late-stage contraction of the Moon. C1 [Watters, Thomas R.; Banks, Maria E.] Smithsonian Inst, Ctr Earth & Planetary Studies, Washington, DC 20560 USA. [Robinson, Mark S.] Arizona State Univ, Sch Earth & Space Explorat, Scottsdale, AZ 85251 USA. [Beyer, Ross A.] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Beyer, Ross A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Bell, James F., III] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Pritchard, Matthew E.; Williams, Nathan R.] Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY 14853 USA. [Hiesinger, Harald; van der Bogert, Carolyn H.] Univ Munster, Inst Planetol, D-48149 Munster, Germany. [Hiesinger, Harald] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Thomas, Peter C.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Turtle, Elizabeth P.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Watters, TR (reprint author), Smithsonian Inst, Ctr Earth & Planetary Studies, Washington, DC 20560 USA. EM watterst@si.edu RI Turtle, Elizabeth/K-8673-2012; Pritchard, Matthew/L-5892-2015; OI Turtle, Elizabeth/0000-0003-1423-5751; Pritchard, Matthew/0000-0003-3616-3373; Beyer, Ross/0000-0003-4503-3335 FU NASA [NNX08AM73G, NNG07EK00C]; Deutsches Zentrum fur Luft- und Raumfahrt [50 OW 0901] FX We thank the three anonymous reviewers for helpful comments that improved the manuscript. We gratefully acknowledge the Lunar Orbiter Laser Altimeter team for the lunar topographic model and the LRO and LROC engineers and technical support personnel. This work was supported by the LRO Project, NASA grants NNX08AM73G and NNG07EK00C, and through Deutsches Zentrum fur Luft- und Raumfahrt grant 50 OW 0901. NR 34 TC 34 Z9 39 U1 0 U2 14 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD AUG 20 PY 2010 VL 329 IS 5994 BP 936 EP 940 DI 10.1126/science.1189590 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 640WN UT WOS:000281084800032 PM 20724632 ER PT J AU Negron-Juarez, RI Chambers, JQ Guimaraes, G Zeng, HC Raupp, CFM Marra, DM Ribeiro, GHPM Saatchi, SS Nelson, BW Higuchi, N AF Negron-Juarez, Robinson I. Chambers, Jeffrey Q. Guimaraes, Giuliano Zeng, Hongcheng Raupp, Carlos F. M. Marra, Daniel M. Ribeiro, Gabriel H. P. M. Saatchi, Sassan S. Nelson, Bruce W. Higuchi, Niro TI Widespread Amazon forest tree mortality from a single cross-basin squall line event SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID BRAZILIAN AMAZON; LARGE BLOWDOWNS; RAIN-FOREST; DISTURBANCE; DROUGHT; BIOMASS; CARBON AB Climate change is expected to increase the intensity of extreme precipitation events in Amazonia that in turn might produce more forest blowdowns associated with convective storms. Yet quantitative tree mortality associated with convective storms has never been reported across Amazonia, representing an important additional source of carbon to the atmosphere. Here we demonstrate that a single squall line (aligned cluster of convective storm cells) propagating across Amazonia in January, 2005, caused widespread forest tree mortality and may have contributed to the elevated mortality observed that year. Forest plot data demonstrated that the same year represented the second highest mortality rate over a 15-year annual monitoring interval. Over the Manaus region, disturbed forest patches generated by the squall followed a power-law distribution (scaling exponent alpha = 1.48) and produced a mortality of 0.3-0.5 million trees, equivalent to 30% of the observed annual deforestation reported in 2005 over the same area. Basin-wide, potential tree mortality from this one event was estimated at 542 +/- 121 million trees, equivalent to 23% of the mean annual biomass accumulation estimated for these forests. Our results highlight the vulnerability of Amazon trees to wind-driven mortality associated with convective storms. Storm intensity is expected to increase with a warming climate, which would result in additional tree mortality and carbon release to the atmosphere, with the potential to further warm the climate system. Citation: Negron-Juarez, R. I., J. Q. Chambers, G. Guimaraes, H. Zeng, C. F. M. Raupp, D. M. Marra, G. H. P. M. Ribeiro, S. S. Saatchi, B. W. Nelson, and N. Higuchi (2010), Widespread Amazon forest tree mortality from a single cross-basin squall line event, Geophys. Res. Lett., 37, L16701, doi:10.1029/2010GL043733. C1 [Negron-Juarez, Robinson I.; Chambers, Jeffrey Q.] Tulane Univ, New Orleans, LA 70118 USA. [Chambers, Jeffrey Q.; Guimaraes, Giuliano; Marra, Daniel M.; Ribeiro, Gabriel H. P. M.; Nelson, Bruce W.; Higuchi, Niro] Natl Inst Amazonian Res, BR-69060001 Manaus, Amazonas, Brazil. [Chambers, Jeffrey Q.] Max Planck Inst Biogeochemstry, Jena, Germany. [Zeng, Hongcheng] Univ Windsor, Great Lakes Inst Environm Res, Windsor, ON N9B 3P4, Canada. [Raupp, Carlos F. M.] Sao Paulo State Univ, Inst Theoret Phys, BR-01156970 Sao Paulo, Brazil. [Saatchi, Sassan S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Negron-Juarez, RI (reprint author), Tulane Univ, 400 Lindy Boggs, New Orleans, LA 70118 USA. EM rjuarez@tulane.edu RI Chambers, Jeffrey/J-9021-2014; OI Chambers, Jeffrey/0000-0003-3983-7847; Ribeiro, Gabriel/0000-0002-3343-3043 FU NASA LBA-ECO [CD-34]; Tulane University FX We would like to thank Pedro Dias, Susan Trumbore and Dar Roberts for interesting discussions related to this work, and two anonymous reviewers for useful comments and suggestions. This work was supported by a NASA LBA-ECO grant (CD-34), a NASA Biodiversity grant, and Tulane University's Research Enhancement Fund. NR 29 TC 34 Z9 34 U1 1 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 19 PY 2010 VL 37 AR L16701 DI 10.1029/2010GL043733 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 641OP UT WOS:000281138000001 ER PT J AU Pohorille, A Jarzynski, C Chipot, C AF Pohorille, Andrew Jarzynski, Christopher Chipot, Christophe TI Good Practices in Free-Energy Calculations SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; BINDING FREE-ENERGIES; GROWTH THERMODYNAMIC INTEGRATION; POLARIZABLE FORCE-FIELD; MONTE-CARLO-SIMULATION; ABSOLUTE FREE-ENERGIES; PERTURBATION CALCULATIONS; NONEQUILIBRIUM MEASUREMENTS; LIGAND-BINDING; BIOLOGICAL-SYSTEMS AB As access to computational resources continues to increase, free-energy calculations have emerged as a powerful tool that can play a predictive role in a wide range of research areas. Yet, the reliability of these calculations can often be improved significantly if a number of precepts, or good practices, are followed. Although the theory upon which these good practices rely has largely been known for many years, it is often overlooked or simply ignored. In other cases, the theoretical developments are too recent for their potential to be fully grasped and merged into popular platforms for the computation of free-energy differences. In this contribution, the current best practices for carrying out free-energy calculations using free energy perturbation and nonequilibrium work methods are discussed, demonstrating that at little to no additional cost, free-energy estimates could be markedly improved and bounded by meaningful error estimates. Monitoring the probability distributions that underlie the transformation between the states or interest, performing the calculation bidirectionally, stratifying the reaction pathway, and choosing the most appropriate paradigms and algorithms for transforming between states offer significant gains in both accuracy and precision. C1 [Chipot, Christophe] Univ Illinois, Beckman Inst Adv Sci & Engn, Theoret & Computat Biophys Grp, Urbana, IL 61801 USA. [Pohorille, Andrew] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. [Jarzynski, Christopher] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Pohorille, Andrew] Univ Calif San Francisco, San Francisco, CA 94143 USA. RP Chipot, C (reprint author), Univ Illinois, Beckman Inst Adv Sci & Engn, Theoret & Computat Biophys Grp, 405 N Mathews, Urbana, IL 61801 USA. EM chipot@ks.uiuc.edu RI Jarzynski, Christopher/B-4490-2009 OI Jarzynski, Christopher/0000-0002-3464-2920 FU NASA; National Science Foundation (USA) [CHE-0841557] FX The authors thank Lawrence Pratt, Stefan Boresch, and Tony Lelievre for reading and commenting on the manuscript. A.P. thanks the NASA Exobiology Program for supporting this work. C.J. acknowledges financial support from the National Science Foundation (USA), under CHE-0841557. C.C. acknowledges Johan Strumpfer and Aline Kurtzmann for stimulating discussions. NR 117 TC 202 Z9 202 U1 7 U2 134 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD AUG 19 PY 2010 VL 114 IS 32 BP 10235 EP 10253 DI 10.1021/jp102971x PG 19 WC Chemistry, Physical SC Chemistry GA 636JG UT WOS:000280727700001 PM 20701361 ER PT J AU Zheng, YH Lui, ATY Fok, MC AF Zheng, Yihua Lui, Anthony T. Y. Fok, Mei-Ching TI Effects of plasma sheet properties on storm-time ring current SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ART. NO. 1151; MAGNETIC-FIELD; ELECTRIC-FIELD; LARGE-SCALE; MODEL; DENSITY; TEMPERATURE; TRANSPORT AB Using an electrically self-consistent kinetic ring current model, we investigate how different conditions of plasma sheet distribution affect the ring current properties. Results include comparative studies in (1) varying the radial distance of the plasma sheet boundary; (2) varying local time distribution of the source population; (3) varying the source spectra, with #2 as our main focus. Our results show that a source that is farther away from Earth leads to a stronger ring current than a source that is closer to the Earth. Local time distribution of the source plays an important role in determining both the radial and azimuthal (local time) location of the ring current peak pressure. We found that postmidnight source locations generally lead to a stronger ring current. This finding is in agreement with Lavraud et al. (2008). However, our results do not exhibit any simple dependence of the local time distribution of the peak ring current (within the lower energy range) on the local time distribution of the source, as suggested by Lavraud et al. (2008). Instead, the local time distribution of source populations has to compete with the dynamically updated self-consistent electric field (through the coupling to the ionosphere) in controlling the ring current intensity and peak location. Our results also show that different source spectra lead to different (though the difference may not be very significant) ring current intensities and that low-energy plasma in the kiloelectron volt range at the boundary constitutes a dominant source population to the ring current. In addition, we found that the radial location of source population is also important to ring current development. C1 [Zheng, Yihua; Lui, Anthony T. Y.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Zheng, Yihua] NASA, Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20771 USA. RP Zheng, YH (reprint author), NASA, Goddard Space Flight Ctr, Space Weather Lab, Code 674, Greenbelt, MD 20771 USA. EM Yihua.Zheng@nasa.gov; Tony.lui@jhuapl.edu; mei-ching.h.fok@nasa.gov RI Zheng, Yihua/D-7368-2012; Fok, Mei-Ching/D-1626-2012 FU NASA [NNX07AG08G, NNX08AM16G]; NSF [0852508] FX This work was supported by the NASA grants NNX07AG08G, NNX08AM16G and NSF grant 0852508 to JHU/APL. We thank both reviewers for their substantive and constructive comments. NR 41 TC 4 Z9 4 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD AUG 18 PY 2010 VL 115 AR A08220 DI 10.1029/2009JA014806 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 641RB UT WOS:000281146300001 ER PT J AU Demergasso, C Dorador, C Meneses, D Blamey, J Cabrol, N Escudero, L Chong, G AF Demergasso, Cecilia Dorador, Cristina Meneses, Daniela Blamey, Jenny Cabrol, Nathalie Escudero, Lorena Chong, Guillermo TI Prokaryotic diversity pattern in high-altitude ecosystems of the Chilean Altiplano SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID MICROBIAL COMMUNITY STRUCTURE; GRADIENT GEL-ELECTROPHORESIS; 16S RIBOSOMAL-RNA; SP-NOV.; NORTHERN CHILE; RESISTANT-BACTERIA; TROPICAL ANDES; SALINE WETLAND; GEN. NOV.; LAKE AB The Chilean Altiplano is the westernmost part of a large volcanic-sedimentary plateau in the central Andes. High solar irradiance and rapid increase of temperature have contributed to make it a hot spot of global climatic change. In this study, we describe microbial diversity in the summit lake of the Simba volcano (5,870 m) and the evaporitic basins of Salar de Aguas Calientes (4,200 m) and Laguna Lejia (4,325 m) using both culture and culture-independent methods. The results obtained were analyzed together with available information from related environments to describe the traits of the microbial community driven by main environmental factors. Isolated cultures exhibit high resistance to all three types of UV radiation, further supporting the adaptation of microorganisms to the high altitude environment. The microbial community structures at Salar de Aguas Calientes and Laguna Lejia are similar to those from other saline systems and cold environments where Bacteroidetes is the major bacterial group. The abundance of sequences related to alphaproteobacteria and methanogenic populations likely reflects the importance of aerobic anoxigenic phothosynthesis and the cycling of one-carbon compounds in the high altitude lake ecosystems. Geochemistry and microbial communities at Simba as well as those reported in the Licancabur summit lake provide evidence for sulfur-rich environments but under different conditions. Those differences between neighboring mountain lake ecosystems highlight the effect of volcanic activity on microbial communities. The hypothetical ecosystem model described in this work provides a clue to follow the microbial community responses to geophysical environment coupled with rapid climate change. C1 [Demergasso, Cecilia; Dorador, Cristina; Meneses, Daniela; Escudero, Lorena] Univ Catolica Norte, Ctr Biotechnol, Antofagasta 1240000, Chile. [Demergasso, Cecilia; Escudero, Lorena; Chong, Guillermo] CICITEM, Antofagasta 1240000, Chile. [Blamey, Jenny] Fdn Biociencia, Santiago 7750132, Chile. [Cabrol, Nathalie] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Cabrol, Nathalie] SETI Carl Sagan Ctr, Mountain View, CA 94043 USA. RP Demergasso, C (reprint author), Univ Catolica Norte, Ctr Biotechnol, Avda Angamos 0610, Antofagasta 1240000, Chile. EM cdemerga@ucn.cl RI Dorador, Cristina/C-3914-2009; OI Demergasso, Cecilia/0000-0003-4563-3066 FU NASA Astrobiology Institute (NAI/SETI) [NNA04CC05A]; Programa Bicentenario de Ciencia y Tecnologia, CONICYT [IPC-81]; [ESO-AUI 1632] FX This work was supported by the grant NNA04CC05A through the NASA Astrobiology Institute (NAI/SETI), by the project ESO-AUI 1632 to Cecilia Demergasso and by the grant Programa Bicentenario de Ciencia y Tecnologia, CONICYT, IPC-81 to Daniela Meneses. Thanks are given to Viviana Urtuvia for lab assistance, to Roxana Perez for help in UV resistance experiments, and to Christian Andronico for scheme elaboration assistance. NR 74 TC 13 Z9 13 U1 0 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD AUG 17 PY 2010 VL 115 AR G00D09 DI 10.1029/2008JG000836 PG 14 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 641QH UT WOS:000281144300001 ER PT J AU Lakhina, GS Tsurutani, BT Verkhoglyadova, OP Pickett, JS AF Lakhina, G. S. Tsurutani, B. T. Verkhoglyadova, O. P. Pickett, J. S. TI Pitch angle transport of electrons due to cyclotron interactions with the coherent chorus subelements SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID WHISTLER-MODE CHORUS; WAVE-PARTICLE INTERACTIONS; AURORAL-ZONE; RADIATION BELT; VLF EMISSIONS; ACCELERATION; MAGNETOSPHERE; FREQUENCY; MICROBURSTS; FLUXES AB Chorus is a right-hand, circularly-polarized electromagnetic plane wave. Dayside chorus is a bursty emission composed of rising frequency "elements" with duration of similar to 0.1 to 1.0 s. Each element is composed of coherent subelements with durations of similar to 1 to 100 ms or more. Due to the coherent nature of the chorus subelements/wave packets, energetic electrons with pitch angles near the loss cone may stay in resonance with the waves for more than one wave cycle. The electrons could therefore be "transported" in pitch across a relatively large angle from a single wave-particle interaction. Here we study the cyclotron resonance of the energetic electron with the coherent chorus subelements. We consider a Gaussian distribution for the time duration of the chorus subelements and derive an expression for the pitch angle transport due to this interaction. For typical chorus subelement parameters, the average pitch angle diffusion coefficients similar to(0.5-8.5)s(-1) are found. Such rapid pitch angle scattering may provide an explanation for the ionospheric microbursts of similar to 0.1 to 0.5 s in bremsstrahlung x-rays formed by similar to 10-100 keV precipitating electrons. The model is applicable to the cases when R = t(tr)/Delta t = [(omega + Omega/2) t(tr)/omega T] > 1 and inhomogeneity factor S = t(tr)(2) /t(inh)(2) < 1, where Omega is the electron cyclotron frequency in the ambient magnetic field, B(0), w is the frequency of chorus, ttr is the trapping time (or phase oscillation period), t(inh) is the time for the passage through the resonance in the inhomogeneous magnetic field, and t(tr) is the duration of the chorus subelement. For the typical parameters at L = 5, the energetic electrons having pitch angles of alpha <= pi/3 can satisfy both the condition R > 1 and S < 1 for a range of chorus wave amplitudes. C1 [Lakhina, G. S.] Indian Inst Geomagnetism, Navi Mumbai 410218, India. [Tsurutani, B. T.; Verkhoglyadova, O. P.] CALTECH, Jet Prop Lab, Pasadena, CA 91190 USA. [Pickett, J. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. RP Lakhina, GS (reprint author), Indian Inst Geomagnetism, Plot 5,Sector 18,New Panvel W, Navi Mumbai 410218, India. EM lakhina@iigs.iigm.res.in; bruce.t.tsurutani@jpl.nasa.gov; olga.verkhoglyadova@jpl.nasa.gov; pickett@uiowa.edu RI Lakhina, Gurbax /C-9295-2012; OI Lakhina, Gurbax /0000-0002-8956-486X; Verkhoglyadova, Olga/0000-0002-9295-9539 FU Indian National Science Academy, New Delhi; NASA; NASA Goddard Space Flight Center [NNX07AI24G]; Jet Propulsion Laboratory/California Institute of Technology [1346597] FX G.S.L. thanks the Indian National Science Academy, New Delhi, for the support under the Senior Scientist scheme. Portion of this research was done at the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA. J.S.P. acknowledges support from NASA Goddard Space Flight Center under the Cluster mission grant NNX07AI24G and from Jet Propulsion Laboratory/California Institute of Technology under Subcontract 1346597. NR 65 TC 26 Z9 26 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD AUG 17 PY 2010 VL 115 AR A00F15 DI 10.1029/2009JA014885 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 641RA UT WOS:000281146200001 ER PT J AU Coles, JB Kuo, BPP Alic, N Moro, S Bres, CS Boggio, JMC Andrekson, PA Karlsson, M Radic, S AF Coles, J. B. Kuo, B. P. -P. Alic, N. Moro, S. Bres, C. -S. Boggio, J. M. Chavez Andrekson, P. A. Karlsson, M. Radic, S. TI Bandwidth-efficient phase modulation techniques for Stimulated Brillouin Scattering suppression in fiber optic parametric amplifiers SO OPTICS EXPRESS LA English DT Article ID SBS-THRESHOLD; INCREASE; SYSTEMS AB Two novel bandwidth efficient pump-dithering Stimulated Brillouin Scattering (SBS) suppression techniques are introduced. The techniques employ a frequency-hopped chirp and an RF noise source to impart phase modulation on the pumps of a two pump Fiber Optical Parametric Amplifier (FOPA). The effectiveness of the introduced techniques is confirmed by measurements of the SBS threshold increase and the associated improvements relative to the current state of the art. Additionally, the effect on the idler signal integrity is presented as measured following amplification from a two pump FOPA employing both techniques. The measured 0.8 dB penalty with pumps dithered by an RF noise source, after accruing 160ps/nm of dispersion with 38 dB conversion gain in a two-pump FOPA is the lowest reported to date. (C) 2010 Optical Society of America C1 [Coles, J. B.; Kuo, B. P. -P.; Alic, N.; Moro, S.; Bres, C. -S.; Boggio, J. M. Chavez; Radic, S.] Univ Calif San Diego, Dept Elect & Comp Engn, Jacobs Sch Engn, La Jolla, CA 92093 USA. [Coles, J. B.] CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA. [Andrekson, P. A.; Karlsson, M.] Chalmers, S-41296 Gothenburg, Sweden. RP Coles, JB (reprint author), Univ Calif San Diego, Dept Elect & Comp Engn, Jacobs Sch Engn, La Jolla, CA 92093 USA. EM jcoles@ucsd.edu RI Karlsson, Magnus/J-5723-2014 OI Karlsson, Magnus/0000-0002-2438-2491 FU Swedish Foundation for International Cooperation in Research and Higher Education (STINT) FX The authors would like to acknowledge the Swedish Foundation for International Cooperation in Research and Higher Education (STINT) for support of the collaborative work, as well as Sumitomo Electric for providing the highly non-linear fiber used in this work. NR 21 TC 27 Z9 27 U1 0 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD AUG 16 PY 2010 VL 18 IS 17 BP 18138 EP 18150 DI 10.1364/OE.18.018138 PG 13 WC Optics SC Optics GA 640LZ UT WOS:000281054400059 PM 20721202 ER PT J AU Proud, SR Rasmussen, MO Fensholt, R Sandholt, I Shisanya, C Mutero, W Mbow, C Anyamba, A AF Proud, Simon Richard Rasmussen, Mads Olander Fensholt, Rasmus Sandholt, Inge Shisanya, Chris Mutero, Wycliffe Mbow, Cheikh Anyamba, Assaf TI Improving the SMAC atmospheric correction code by analysis of Meteosat Second Generation NDVI and surface reflectance data SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Atmospheric correction; SEVIRI; SMAC; Radiative transfer; 6S; Meteosat Second Generation; NDVI; In-situ measurements ID IN-SITU MEASUREMENTS; SEMIARID ENVIRONMENT; VEGETATION INDEXES; SOLAR SPECTRUM; WATER-VAPOR; MODIS; 6S AB In order to obtain high quality data, the correction of atmospheric perturbations acting upon land surface reflectance measurements recorded by a space-based sensor is an important topic within remote sensing. For many years the Second Simulation of the Satellite Signal in the Solar Spectrum (65) radiative transfer model and the Simplified Method for Atmospheric Correction (SMAC) codes have been used for this atmospheric correction, but previous studies have shown that in a number of situations the quality of correction provided by the SMAC is low. This paper describes a method designed to improve the quality of the SMAC atmospheric correction algorithm through a slight increase in its computational complexity. Data gathered from the SEVIRI aboard Meteosat Second Generation (MSG) is used to validate the additions to SMAC, both by comparison to simulated data corrected using the highly accurate 6S method and by comparison to in-situ and 6S corrected SEVIRI data gathered for two field sites in Africa. The additions to the SMAC are found to greatly increase the quality of atmospheric correction performed, as well as broaden the range of atmospheric conditions under which the SMAC can be applied. When examining the Normalised Difference Vegetation Index (NDVI), the relative difference between SMAC and in-situ values decreases by 1.5% with the improvements in place. Similarly, the mean relative difference between SMAC and 6S reflectance values decreases by a mean of 13, 14.5 and 8.5% for Channels 1, 2 and 3 respectively. Furthermore, the processing speed of the SMAC is found to remain largely unaffected, with only a small increase in the time taken to process a full SEVIRI scene. Whilst the method described within this paper is only applicable to SEVIRI data, a similar approach can be applied to other data sources than SEVIRI, and should result in a similar accuracy improvement no matter which instrument supplies the original data. (C) 2010 Elsevier Inc. All rights reserved. C1 [Proud, Simon Richard; Rasmussen, Mads Olander; Fensholt, Rasmus; Sandholt, Inge] Univ Copenhagen, Dept Geog & Geol, DK-1350 Copenhagen, Denmark. [Shisanya, Chris] Kenyatta Univ, Dept Geog, Nairobi, Kenya. [Mutero, Wycliffe] Kenya Wildlife Serv, Nairobi, Kenya. [Mbow, Cheikh] Univ Cheikh Anta Diop, Inst Sci Environm, Dakar, Senegal. [Anyamba, Assaf] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Proud, SR (reprint author), Univ Copenhagen, Dept Geog & Geol, Oster Voldgade 10, DK-1350 Copenhagen, Denmark. EM srp@geo.ku.dk RI Fensholt, Rasmus/L-7951-2014; Proud, Simon/A-4239-2015 OI Fensholt, Rasmus/0000-0003-3067-4527; Proud, Simon/0000-0003-3880-6774 NR 34 TC 16 Z9 16 U1 0 U2 7 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD AUG 16 PY 2010 VL 114 IS 8 BP 1687 EP 1698 DI 10.1016/j.rse.2010.02.020 PG 12 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 612ZD UT WOS:000278943900006 ER PT J AU Ganguly, S Friedl, MA Tan, B Zhang, XY Verma, M AF Ganguly, Sangram Friedl, Mark A. Tan, Bin Zhang, Xiaoyang Verma, Manish TI Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE MODIS phenology; Land cover dynamics; Land cover; Vegetation dynamics; MODIS Collection 5 ID LEAF-AREA; SPRING PHENOLOGY; SATELLITE DATA; CANOPY PHENOLOGY; DECIDUOUS FOREST; TIME-SERIES; PART 2; VEGETATION; VALIDATION; RESOLUTION AB Information related to land surface phenology is important for a variety of applications. For example, phenology is widely used as a diagnostic of ecosystem response to global change. In addition, phenology influences seasonal scale fluxes of water, energy, and carbon between the land surface and atmosphere. Increasingly, the importance of phenology for studies of habitat and biodiversity is also being recognized. While many data sets related to plant phenology have been collected at specific sites or in networks focused on individual plants or plant species, remote sensing provides the only way to observe and monitor phenology over large scales and at regular intervals. The MODIS Global Land Cover Dynamics Product was developed to support investigations that require regional to global scale information related to spatio-temporal dynamics in land surface phenology. Here we describe the Collection 5 version of this product, which represents a substantial refinement relative to the Collection 4 product. This new version provides information related to land surface phenology at higher spatial resolution than Collection 4 (500-m vs. 1-km), and is based on 8-day instead of 16-day input data. The paper presents a brief overview of the algorithm, followed by an assessment of the product. To this end, we present (1) a comparison of results from Collection 5 versus Collection 4 for selected MODIS tiles that span a range of climate and ecological conditions, (2) a characterization of interannual variation in Collections 4 and 5 data for North America from 2001 to 2006, and (3) a comparison of Collection 5 results against ground observations for two forest sites in the northeastern United States. Results show that the Collection 5 product is qualitatively similar to Collection 4. However, Collection 5 has fewer missing values outside of regions with persistent cloud cover and atmospheric aerosols. Interannual variability in Collection 5 is consistent with expected ranges of variance suggesting that the algorithm is reliable and robust, except in the tropics where some systematic differences are observed. Finally, comparisons with ground data suggest that the algorithm is performing well, but that end of season metrics associated with vegetation senescence and dormancy have higher uncertainties than start of season metrics. (C) 2010 Elsevier Inc. All rights reserved. C1 [Ganguly, Sangram] NASA, Bay Area Environm Res Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. [Friedl, Mark A.; Verma, Manish] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA. [Tan, Bin] NASA, Goddard Space Flight Ctr, Earth Resources Technol Inc, Greenbelt, MD 20771 USA. [Zhang, Xiaoyang] Earth Resources Technol Inc, Annapolis Jct, MD 20701 USA. RP Ganguly, S (reprint author), NASA, Bay Area Environm Res Inst, Ames Res Ctr, MS 242-4, Moffett Field, CA 94035 USA. EM sangramganguly@gmail.com RI Zhang, Xiaoyang/E-3208-2010; Tan, Bin/G-1331-2012; ganguly, sangram/B-5108-2010 FU NASA [NNX08AE61A]; University of Arizona under NASA [NNX08AE61A] FX The research presented in this paper was supported by NASA Cooperative Agreement number NNX08AE61A and by a sub-contract from the University of Arizona under NASA grant number NNX08AE61A. The authors gratefully acknowledge data supplied by the Harvard Forest and Hubbard Brook LTER sites. NR 62 TC 135 Z9 143 U1 6 U2 110 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD AUG 16 PY 2010 VL 114 IS 8 BP 1805 EP 1816 DI 10.1016/j.rse.2010.04.005 PG 12 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 612ZD UT WOS:000278943900016 ER PT J AU Brown, AJ Hook, SJ Baldridge, AM Crowley, JK Bridges, NT Thomson, BJ Marion, GM de Souza, CR Bishop, JL AF Brown, Adrian J. Hook, Simon J. Baldridge, Alice M. Crowley, James K. Bridges, Nathan T. Thomson, Bradley J. Marion, Giles M. de Souza Filho, Carlos R. Bishop, Janice L. TI Hydrothermal formation of Clay-Carbonate alteration assemblages in the Nil Fossae region of Mars SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Mars; CRISM; carbonate; clay-carbonate alteration; Nili Fossae ID MARTIAN METEORITE ALH84001; NORTH-POLE AREA; WESTERN-AUSTRALIA; PILBARA CRATON; MU-M; CHASSIGNY METEORITE; ALH 84001; MINERALS; EVOLUTION; IDENTIFICATION AB The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) has returned observations of the Nili Fossae region indicating the presence of Mg-carbonate in small (<10 km sq(2)), relatively bright rock units that are commonly fractured (Ehlmann et al., 2008b). We have analyzed spectra from CRISM images and used co-located HiRISE images in order to further characterize these carbonate-bearing units. We applied absorption band mapping techniques to investigate a range of possible phyllosilicate and carbonate minerals that could be present in the Nib Fossae region. We also describe a clay-carbonate hydrothermal alteration mineral assemblage in the Archean Warrawoona Group of Western Australia that is a potential Earth analog to the Nil Fossae carbonate-bearing rock units. We discuss the geological and biological implications for hydrothermal processes on Noachian Mars. (C) 2010 Elsevier B.V. All rights reserved. C1 [Brown, Adrian J.; Bishop, Janice L.] SETI Inst, Mountain View, CA 94043 USA. [Hook, Simon J.; Baldridge, Alice M.; Bridges, Nathan T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Thomson, Bradley J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Marion, Giles M.] Desert Res Inst, Reno, NV 89512 USA. [de Souza Filho, Carlos R.] Univ Estadual Campinas, Campinas, SP, Brazil. RP Brown, AJ (reprint author), SETI Inst, 515 N Whisman Rd, Mountain View, CA 94043 USA. EM abrown@seti.org RI Bridges, Nathan/D-6341-2016 FU NASA [NNH05ZDA001N-IES] FX We would like to thank Bethany Ehlmann, Ed Cloutis, Katrin Stephan and Nicolas Mangold for their reviews which improved this paper immensely. We would also like to thank the entire CRISM Team, particularly the Science Operations team at JHU APL. This work was supported by the NASA Interdisciplinary Exploration Systems Program NNH05ZDA001N-IES. NR 93 TC 45 Z9 46 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD AUG 15 PY 2010 VL 297 IS 1-2 BP 174 EP 182 DI 10.1016/j.epsl.2010.06.018 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 653PW UT WOS:000282110100018 ER PT J AU Righter, K Caffee, M Rosas-Elguera, J Valencia, V AF Righter, K. Caffee, M. Rosas-Elguera, J. Valencia, V. TI Channel incision in the Rio Atenguillo, Jalisco, Mexico, defined by Cl-36 measurements of bedrock SO GEOMORPHOLOGY LA English DT Article DE Knickpoints; Incision; Uplift; Arc tectonics; Bedrock channel ID LONGITUDINAL PROFILE DEVELOPMENT; VOLCANIC BELT; WESTERN MEXICO; COSMOGENIC CL-36; BASALTIC VOLCANISM; TERRESTRIAL ROCKS; SOUTHWEST MEXICO; NORTH-AMERICAN; RIVER INCISION; PACIFIC COAST AB The Jalisco Block of western Mexico has undergone uplift in the Tertiary, in response to subduction tectonics. The Atenguillo River, interior to the Jalisco Block, has incised the bedrock units of the Jalisco Block, including Cretaceous ash flow tuff, granite, as well as younger volcanic lava flows. To study incision rates, knickpoint propagation, and the uplift rate of the region samples from nine different points along the Atenguillo channel were collected for Cl-36 exposure age dating. Exposure ages along the length of the channel are high near the head of the basin where the river meanders in a broad plain. Ages are younger at the knickpoints and downstream where the river cuts deeply and forms a canyon. Incision rates measured at different points along the channel also correlate with channel slope and age. Low incision rates are measured in the oldest part of the channel near the head (station B; 2.5 mm/year), and just above the knickpoints (station C; 0.6 mm/year and station G; 1.4 mm/year). The incision rates are highest just below the knickpoints (station F; 2.4 mm/year) and farther downstream (stations H and I; 5.6 and 2.9 mm/year, respectively). The high incision rates can be attributed to subduction-related uplift of the Jalisco Block. Other features attributable to uplift are emergent paleoshorelines and uplifted marine sediments along the coast; and relatively lower incision rates were measured north of the Jalisco Block. Published by Elsevier B.V. C1 [Righter, K.] NASA, Johnson Space Ctr, Mailcode KT, Houston, TX 77058 USA. [Caffee, M.] Purdue Univ, PRIMELab, W Lafayette, IN 47906 USA. [Rosas-Elguera, J.] Univ Guadalajara, Ctr Ciencias Tierra, Guadalajara 44430, Jalisco, Mexico. [Valencia, V.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. RP Righter, K (reprint author), Lunar & Planetary Inst, 3600 Bay Area Blvd, Houston, TX 77058 USA. EM kevin.righter-1@nasa.gov RI Caffee, Marc/K-7025-2015 OI Caffee, Marc/0000-0002-6846-8967 FU University of Arizona, office of the Vice President for Research; NSF [INT0420380] FX Initial funding for this project was provided by the University of Arizona Small Grants Program from the office of the Vice President for Research. G. Komatsu assisted in the initial field work, and the analyses were analyzed as part of the free seed analysis program of the PRIMELab. This initial help was instrumental in getting this project supported in the way required to carry out a comprehensive study. P. Sharma (PRIMELab), M. Zreda, P. Heese, and T. Shanahan (Univ. of Arizona) all contributed to the early analyses of samples collected in 1998. The larger project was funded by NSF International programs (INT0420380), and we thank H. Stolberg for his assistance, as well as the assistance of L Lane (Univ. of Arizona), D. Cranford (LPI), and D. Devin (USRA) for their assistance with financial issues. I.S.E. Carmichael, M. Seidl, and R. Torres got KR to think about river channel evolution in Mexico while undertaking graduate studies at UC Berkeley in 1990-1993. This is LPI contribution # 1404. NR 90 TC 17 Z9 17 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-555X J9 GEOMORPHOLOGY JI Geomorphology PD AUG 15 PY 2010 VL 120 IS 3-4 BP 279 EP 292 DI 10.1016/j.geomorph.2010.04.001 PG 14 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 641AJ UT WOS:000281095500015 ER PT J AU Chembo, YK Yu, N AF Chembo, Yanne K. Yu, Nan TI On the generation of octave-spanning optical frequency combs using monolithic whispering-gallery-mode microresonators SO OPTICS LETTERS LA English DT Article ID NOBEL LECTURE AB Octave-spanning optical frequency combs are especially interesting in optical metrology owing to the ability of self-referencing. We report a theoretical study on the generation of octave-spanning combs in the whispering gallery modes of a microresonator. Through a modal expansion model simulation in a calcium fluoride microcavity, we show that a combination of suitable pump power, Kerr nonlinearity, and dispersion profile can lead to stable and robust octave-spanning optical frequency combs. (C) 2010 Optical Society of America C1 [Chembo, Yanne K.; Yu, Nan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Chembo, YK (reprint author), FEMTO ST Inst, Dept Opt, CNRS, UMR 6174, 16 Route Gray, F-25030 Besancon, France. EM yanne.chembo@jpl.nasa.gov FU NASA FX This work was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with NASA. Yanne K. Chembo acknowledges a fellowship from the NASA Postdoctoral Program, administered by Oak Ridge Associated Universities. Authors also acknowledge logistic support from the JPL Super-computing and Visualization Facility. NR 13 TC 26 Z9 26 U1 0 U2 13 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD AUG 15 PY 2010 VL 35 IS 16 BP 2696 EP 2698 PG 3 WC Optics SC Optics GA 640OZ UT WOS:000281062400010 PM 20717427 ER PT J AU Morgenstern, O Giorgetta, MA Shibata, K Eyring, V Waugh, DW Shepherd, TG Akiyoshi, H Austin, J Baumgaertner, AJG Bekki, S Braesicke, P Bruhl, C Chipperfield, MP Cugnet, D Dameris, M Dhomse, S Frith, SM Garny, H Gettelman, A Hardiman, SC Hegglin, MI Jockel, P Kinnison, DE Lamarque, JF Mancini, E Manzini, E Marchand, M Michou, M Nakamura, T Nielsen, JE Olivie, D Pitari, G Plummer, DA Rozanov, E Scinocca, JF Smale, D Teyssedre, H Toohey, M Tian, W Yamashita, Y AF Morgenstern, O. Giorgetta, M. A. Shibata, K. Eyring, V. Waugh, D. W. Shepherd, T. G. Akiyoshi, H. Austin, J. Baumgaertner, A. J. G. Bekki, S. Braesicke, P. Bruehl, C. Chipperfield, M. P. Cugnet, D. Dameris, M. Dhomse, S. Frith, S. M. Garny, H. Gettelman, A. Hardiman, S. C. Hegglin, M. I. Joeckel, P. Kinnison, D. E. Lamarque, J. -F. Mancini, E. Manzini, E. Marchand, M. Michou, M. Nakamura, T. Nielsen, J. E. Olivie, D. Pitari, G. Plummer, D. A. Rozanov, E. Scinocca, J. F. Smale, D. Teyssedre, H. Toohey, M. Tian, W. Yamashita, Y. TI Review of the formulation of present-generation stratospheric chemistry-climate models and associated external forcings SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID QUASI-BIENNIAL OSCILLATION; GRAVITY-WAVE DRAG; CHEMICAL-TRANSPORT MODEL; MIDDLE ATMOSPHERE MODEL; METEOROLOGICAL-RESEARCH-INSTITUTE; DOPPLER-SPREAD PARAMETERIZATION; GLOBAL LIGHTNING DISTRIBUTIONS; SEMI-LAGRANGIAN ADVECTION; CIRCULATION MODEL; TRACER TRANSPORT AB The goal of the Chemistry-Climate Model Validation (CCMVal) activity is to improve understanding of chemistry-climate models (CCMs) through process-oriented evaluation and to provide reliable projections of stratospheric ozone and its impact on climate. An appreciation of the details of model formulations is essential for understanding how models respond to the changing external forcings of greenhouse gases and ozone-depleting substances, and hence for understanding the ozone and climate forecasts produced by the models participating in this activity. Here we introduce and review the models used for the second round (CCMVal-2) of this intercomparison, regarding the implementation of chemical, transport, radiative, and dynamical processes in these models. In particular, we review the advantages and problems associated with approaches used to model processes of relevance to stratospheric dynamics and chemistry. Furthermore, we state the definitions of the reference simulations performed, and describe the forcing data used in these simulations. We identify some developments in chemistry-climate modeling that make models more physically based or more comprehensive, including the introduction of an interactive ocean, online photolysis, troposphere-stratosphere chemistry, and non-orographic gravity-wave deposition as linked to tropospheric convection. The relatively new developments indicate that stratospheric CCM modeling is becoming more consistent with our physically based understanding of the atmosphere. C1 [Morgenstern, O.; Smale, D.] Natl Inst Water & Atmospher Res, Lauder 9352, Omakau, New Zealand. [Giorgetta, M. A.] Max Planck Inst Meteorol, D-20146 Hamburg, Germany. [Shibata, K.] Japan Meteorol Agcy, Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan. [Eyring, V.; Dameris, M.; Garny, H.; Joeckel, P.] Inst Atmospher Phys, Deutsch Zentrum Luft & Raumfahrt, D-82234 Wessling, Germany. [Waugh, D. W.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Shepherd, T. G.; Hegglin, M. I.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Akiyoshi, H.; Nakamura, T.; Yamashita, Y.] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Austin, J.] Natl Ocean & Atmospher Adm, Princeton, NJ 08540 USA. [Austin, J.; Gettelman, A.; Kinnison, D. E.; Lamarque, J. -F.] Natl Ctr Atmospher Res, Boulder, CO 80305 USA. [Baumgaertner, A. J. G.; Bruehl, C.] Max Planck Inst Chem, D-55020 Mainz, Germany. [Bekki, S.; Cugnet, D.; Marchand, M.] UPMC, CNRS, INSU, UVSQ,IPSL,LATMOS, F-75231 Paris, France. [Braesicke, P.] Univ Cambridge, Dept Chem, Ctr Atmospher Sci, NCAS Climate Chem, Cambridge CB2 1EW, England. [Chipperfield, M. P.; Dhomse, S.; Tian, W.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. [Frith, S. M.; Nielsen, J. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hardiman, S. C.] Hadley Ctr, Met Off, Exeter EX1 3PB, Devon, England. [Mancini, E.; Pitari, G.] Univ Aquila, Dipartimento Fis, I-67100 Laquila, Italy. [Manzini, E.] Ctr Euro Mediterraneo Cambiamenti Climat, I-40127 Bologna, Italy. [Michou, M.; Olivie, D.; Teyssedre, H.] Meteo France, CNRS, CNRM, GAME, F-31057 Toulouse, France. [Plummer, D. A.; Scinocca, J. F.] Environm Canada, Canadian Ctr Climate Modeling & Anal, Victoria, BC V8W 3V6, Canada. [Rozanov, E.] World Radiat Ctr, Phys Meteorol Observ, CH-7260 Davos, Switzerland. [Rozanov, E.] ETH, Inst Atmosphare & Klima, Zurich, Switzerland. [Toohey, M.] Univ Kiel, Leibniz Inst Meereswissensch, IFM, GEOMAR, D-24148 Kiel, Germany. RP Morgenstern, O (reprint author), Natl Inst Water & Atmospher Res, Private Bag 50061, Lauder 9352, Omakau, New Zealand. EM o.morgenstern@niwa.co.nz RI Eyring, Veronika/O-9999-2016; Hegglin, Michaela/D-7528-2017; Jockel, Patrick/C-3687-2009; Toohey, Matthew/G-3129-2010; Dhomse, Sandip/C-8198-2011; Manzini, Elisa/H-5760-2011; Rozanov, Eugene/A-9857-2012; Baumgaertner, Andreas/C-4830-2011; Chipperfield, Martyn/H-6359-2013; Lamarque, Jean-Francois/L-2313-2014; bekki, slimane/J-7221-2015; Nakamura, Tetsu/M-7914-2015; Braesicke, Peter/D-8330-2016; Waugh, Darryn/K-3688-2016; Pitari, Giovanni/O-7458-2016 OI Eyring, Veronika/0000-0002-6887-4885; Hegglin, Michaela/0000-0003-2820-9044; Mancini, Eva/0000-0001-7071-0292; Morgenstern, Olaf/0000-0002-9967-9740; Jockel, Patrick/0000-0002-8964-1394; Toohey, Matthew/0000-0002-7070-405X; Dhomse, Sandip/0000-0003-3854-5383; Rozanov, Eugene/0000-0003-0479-4488; Baumgaertner, Andreas/0000-0002-4740-0701; Chipperfield, Martyn/0000-0002-6803-4149; Lamarque, Jean-Francois/0000-0002-4225-5074; bekki, slimane/0000-0002-5538-0800; Nakamura, Tetsu/0000-0002-2056-7392; Braesicke, Peter/0000-0003-1423-0619; Waugh, Darryn/0000-0001-7692-2798; Pitari, Giovanni/0000-0001-7051-9578 FU Global Environmental Research Found of the Ministry of the Environment of Japan [A-071]; DMGC [C01X0703]; UK Natural Environment Research Council (NERC) through the NCAS initiative; University of Edinburgh, Cray Inc.; NAG Ltd.; Office of Science and Technology through EPSRC; National Science Foundation FX We acknowledge the Chemistry-Climate Model Validation (CCMVal) Activity for WCRP's (World Climate Research Programme) SPARC (Stratospheric Processes and their Role in Climate) project for organizing and coordinating the model data analysis activity, and the British Atmospheric Data Centre (BADC) for collecting and archiving the CCMVal model output. CCSRNIES research was supported by the Global Environmental Research Found of the Ministry of the Environment of Japan (A-071) and the simulations were completed with the supercomputer at CGER, NIES. O.M. acknowledges funding under the DMGC program (contract C01X0703). P. B. has been supported by the UK Natural Environment Research Council (NERC) through the NCAS initiative. UMUKCA-UCAM and UMSLIMCAT simulations made use of the facilities of HECToR, the UK's national high-performance computing service, which is provided by UoE HPCx Ltd. at the University of Edinburgh, Cray Inc. and NAG Ltd., and funded by the Office of Science and Technology through EPSRC's High End Computing Programme. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in the publication are those of the authors and do not necessarily reflect the views of the National Science Foundation. We acknowledge valuable comments by three anonymous reviewers. NR 144 TC 95 Z9 95 U1 1 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 14 PY 2010 VL 115 AR D00M02 DI 10.1029/2009JD013728 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 639FD UT WOS:000280956300008 ER PT J AU Stolte, WC Guillemin, R Demchenko, IN Ohrwall, G Yu, SW Young, JA Taupin, M Hemmers, O Piancastelli, MN Lindle, DW AF Stolte, W. C. Guillemin, R. Demchenko, I. N. Ohrwall, G. Yu, S-W Young, J. A. Taupin, M. Hemmers, O. Piancastelli, M. N. Lindle, D. W. TI Inner-shell photofragmentation of Cl-2 SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID CHLORINE K-EDGE; MULTIPHOTON IONIZATION; COINCIDENCE MEASUREMENTS; PHOTOABSORPTION SPECTRA; RYDBERG STATES; EXCITED-STATES; HCL; SPECTROSCOPY; MOLECULES; CL2 AB We report an extensive study on partial-ion-yield spectroscopy around the Cl 1s and 2p ionization thresholds for Cl-2. All positive ion channels, several with the same mass/charge ratio, which could be distinguished by taking the advantage of the Cl-37 isotope, have been measured at a photon resolution of nearly 6500. At the Cl 1s ionization threshold, no significant differences are reported between the absorption and the partial-ion yields. In contrast, near the 2p ionization thresholds, we detect large variations in the fragmentation patterns following excitations to the Rydberg series when comparing the atomic fragment ions to the molecular fragment ions. We attribute the different behaviours to the more-or-less diffuse nature of Rydberg states with different angular momenta. C1 [Stolte, W. C.; Demchenko, I. N.; Lindle, D. W.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Stolte, W. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Guillemin, R.] CNRS, Lab Chim Phys Mat & Rayonnement, UMR 7614, F-75231 Paris 05, France. [Demchenko, I. N.] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. [Ohrwall, G.] Lund Univ, Max Lab, SE-22100 Lund, Sweden. [Yu, S-W] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Young, J. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Taupin, M.] Natl Sch Engn Caen ENSICAEN, F-14050 Caen 4, France. [Hemmers, O.] Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. [Piancastelli, M. N.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. RP Stolte, WC (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. EM WCStolte@lbl.gov FU ALS; National Science Foundation [PHY-05-55699]; DOE [DE-AC03-76SF00098] FX The authors thank the staff of the ALS for their excellent support. Support from the National Science Foundation under NSF grant no PHY-05-55699 is gratefully acknowledged. The Advanced Light Source is supported by DOE (DE-AC03-76SF00098). NR 31 TC 3 Z9 3 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD AUG 14 PY 2010 VL 43 IS 15 SI SI AR 155202 DI 10.1088/0953-4075/43/15/155202 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 628IZ UT WOS:000280114100011 ER PT J AU Hada, M Gersey, B Saganti, PB Wilkins, R Cucinotta, FA Wu, H AF Hada, M. Gersey, B. Saganti, P. B. Wilkins, R. Cucinotta, F. A. Wu, H. TI mBAND analysis of chromosome aberrations in human epithelial cells induced by gamma-rays and secondary neutrons of low dose rate SO MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS LA English DT Article; Proceedings Paper CT 9th International Symposium on Chromosomal Aberrations (ISCA9) CY JUL 11-12, 2009 CL Rheinfeld Castle, GERMANY DE Neutron; High-LET; Low dose rate; Chromosome aberration ID DENSELY IONIZING-RADIATION; EXPOSED IN-VITRO; HIGH-ENERGY NEUTRONS; HIGH-LET RADIATION; HUMAN-LYMPHOCYTES; ALPHA-PARTICLES; PAST EXPOSURE; HEAVY-IONS; EXCHANGES; INDUCTION AB Human risks from chronic exposures to both low- and high-LET radiation are of intensive research interest in recent years. In the present study, human epithelial cells were exposed in vitro to gamma-rays at a dose rate of 17 mGy/h or secondary neutrons of 25 mGy/h. The secondary neutrons have a broad energy spectrum that simulates the Earth's atmosphere at high altitude, as well as the environment inside spacecrafts like the Russian MIR station and the International Space Station (ISS). Chromosome aberrations in the exposed cells were analyzed using the multicolor banding in situ hybridization (mBAND) technique with chromosome 3 painted in 23 colored bands that allows identification of both inter- and intrachromosome exchanges including inversions. Comparison of present dose responses between gamma-rays and neutron irradiations for the fraction of cells with damaged chromosome 3 yielded a relative biological effectiveness (RBE) value of 26 +/- 4 for the secondary neutrons. Our results also revealed that secondary neutrons of low dose rate induced a higher fraction of intrachromosome exchanges than gamma-rays, but the fractions of inversions observed between these two radiation types were indistinguishable. Similar to the previous findings after acute radiation exposures, most of the inversions observed in the present study were accompanied by other aberrations. The fractions of complex type aberrations and of unrejoined chromosomal breakages were also found to be higher in the neutron-exposed cells than after gamma-rays. We further analyzed the location of the breaks involved in chromosome aberrations along chromosome 3, and observed hot spots after gamma-ray, but not neutron, exposures. Published by Elsevier B.V. C1 [Wu, H.] NASA, Lyndon B Johnson Space Ctr, Radiat Biophys Lab, Human Adaptat & Countermeasures Div, Houston, TX 77058 USA. [Hada, M.] Univ Space Res Assoc, Houston, TX 77058 USA. [Gersey, B.; Saganti, P. B.; Wilkins, R.] Prairie View A&M Univ, Prairie View, TX 77446 USA. RP Wu, H (reprint author), NASA, Lyndon B Johnson Space Ctr, Radiat Biophys Lab, Human Adaptat & Countermeasures Div, Houston, TX 77058 USA. EM honglu.wu-1@nasa.gov NR 44 TC 4 Z9 5 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1383-5718 J9 MUTAT RES-GEN TOX EN JI Mutat. Res. Genet. Toxicol. Environ. Mutagen. PD AUG 14 PY 2010 VL 701 IS 1 SI SI BP 67 EP 74 DI 10.1016/j.mrgentox.2010.03.009 PG 8 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 642LT UT WOS:000281216200010 PM 20338263 ER PT J AU George, K Chappell, LJ Cucinotta, FA AF George, K. Chappell, L. J. Cucinotta, F. A. TI Persistence of space radiation induced cytogenetic damage in the blood lymphocytes of astronauts SO MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS LA English DT Article; Proceedings Paper CT 9th International Symposium on Chromosomal Aberrations (ISCA9) CY JUL 11-12, 2009 CL Rheinfeld Castle, GERMANY DE Biodosimetry; Space radiation; Chromosomal aberrations ID IN-SITU HYBRIDIZATION; CHROMOSOME-ABERRATIONS; FOLLOW-UP; DICENTRIC FREQUENCIES; BIOLOGICAL DOSIMETRY; TRANSLOCATION; EXPOSURE; STABILITY; FLIGHTS; SMOKING AB Cytogenetic damage was assessed in blood lymphocytes from 16 astronauts before and after they participated in long-duration space missions of 3 months or more. The frequency of chromosome damage was measured by fluorescence in situ hybridization (FISH) chromosome painting before flight and at various intervals from a few days to many months after return from the mission. For all individuals, the frequency of chromosome exchanges measured within a month of return from space was higher than their preflight yield. However, some individuals showed a temporal decline in chromosome damage with time after flight. Statistical analysis using combined data for all astronauts indicated a significant overall decreasing trend in total chromosome exchanges with time after flight, although this trend was not seen for all astronauts and the yield of chromosome damage in some individuals actually increased with time after flight. The decreasing trend in total exchanges was slightly more significant when statistical analysis was restricted to data collected more than 220 days after return from flight. When analysis was restricted to data collected within 220 days of return from the mission there was no relationship between total exchanges and time. Translocation yields varied more between astronauts and there was only a slight non-significant decrease with time after flight that was similar for both later and earlier sampling times. (C) 2010 Published by Elsevier B.V. C1 [George, K.] Wyle, Houston, TX 77058 USA. [Chappell, L. J.] USRA, Div Life Sci, Houston, TX 77058 USA. [Cucinotta, F. A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP George, K (reprint author), Wyle, 1290 Hercules Dr, Houston, TX 77058 USA. EM Kerry.a.george@nasa.gov NR 21 TC 15 Z9 15 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1383-5718 J9 MUTAT RES-GEN TOX EN JI Mutat. Res. Genet. Toxicol. Environ. Mutagen. PD AUG 14 PY 2010 VL 701 IS 1 SI SI BP 75 EP 79 DI 10.1016/j.mrgentox.2010.02.007 PG 5 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 642LT UT WOS:000281216200011 PM 20176126 ER PT J AU Abdo, AA Ackermann, M Ajello, M Atwood, WB Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Brandt, TJ Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cecchi, C Ccedil;elik, O Charles, E Chaty, S Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Corbel, S Corbet, R DeCesar, ME den Hartog, PR Dermer, CD de Palma, F Digel, SW Donato, D Silva, EDE Drell, PS Dubois, R Dubus, G Dumora, D Favuzzi, C Fegan, SJ Ferrara, EC Fortin, P Frailis, M Fuhrmann, L Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guiriec, S Hadasch, D Harding, AK Hayashida, M Hays, E Healey, SE Hill, AB Horan, D Hughes, RE Itoh, R Jean, P Johannesson, G Johnson, AS Johnson, RP Johnson, TJ Johnson, WN Kamae, T Katagiri, H Kataoka, J Kerr, M Knodlseder, J Koerding, E Kuss, M Lande, J Lande, J Lee, SH Lemoine-Goumard, M Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN McConville, W McEnery, JE Mehault, J Michelson, PF Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Naumann-Godo, M Nestoras, I Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Ray, PS Razzano, M Razzaque, S Rea, N Reimer, A Reimer, O Reposeur, T Ripken, J Ritz, S Romani, RW Roth, M Sadrozinski, HFW Sander, A Parkinson, PMS Scargle, JD Schinzel, FK Sgro, C Shaw, MS Siskind, EJ Smith, DA Smith, PD Sokolovsky, KV Spandre, G Spinelli, P Stawarz, L Strickman, MS Suson, DJ Takahashi, H Takahashi, T Tanaka, T Tanaka, Y Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vilchez, N Vitale, V Waite, AP Wallace, E Wang, P Winer, BL Wolff, MT Wood, KS Yang, Z Ylinen, T Ziegler, M Maehara, H Nishiyama, K Kabashima, F Bach, U Bower, GC Falcone, A Forster, JR Henden, A Kawabata, KS Koubsky, P Mukai, K Nelson, T Oates, SR Sakimoto, K Sasada, M Shenavrin, VI Shore, SN Skinner, GK Sokoloski, J Stroh, M Tatarnikov, AM Uemura, M Wahlgren, GM Yamanaka, M AF Abdo, A. A. Ackermann, M. Ajello, M. Atwood, W. B. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Brandt, T. J. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cecchi, C. Celik, O. Charles, E. Chaty, S. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Corbel, S. Corbet, R. DeCesar, M. E. den Hartog, P. R. Dermer, C. D. de Palma, F. Digel, S. W. Donato, D. do Couto e Silva, E. Drell, P. S. Dubois, R. Dubus, G. Dumora, D. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Fortin, P. Frailis, M. Fuhrmann, L. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guiriec, S. Hadasch, D. Harding, A. K. Hayashida, M. Hays, E. Healey, S. E. Hill, A. B. Horan, D. Hughes, R. E. Itoh, R. Jean, P. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, T. J. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kerr, M. Knodlseder, J. Koerding, E. Kuss, M. Lande, J. Lande, J. Lee, S. -H. Lemoine-Goumard, M. Llena Garde, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. McConville, W. McEnery, J. E. Mehault, J. Michelson, P. F. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Naumann-Godo, M. Nestoras, I. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Ray, P. S. Razzano, M. Razzaque, S. Rea, N. Reimer, A. Reimer, O. Reposeur, T. Ripken, J. Ritz, S. Romani, R. W. Roth, M. Sadrozinski, H. F. W. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Schinzel, F. K. Sgro, C. Shaw, M. S. Siskind, E. J. Smith, D. A. Smith, P. D. Sokolovsky, K. V. Spandre, G. Spinelli, P. Stawarz, L. Strickman, M. S. Suson, D. J. Takahashi, H. Takahashi, T. Tanaka, T. Tanaka, Y. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wallace, E. Wang, P. Winer, B. L. Wolff, M. T. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. Maehara, H. Nishiyama, K. Kabashima, F. Bach, U. Bower, G. C. Falcone, A. Forster, J. R. Henden, A. Kawabata, K. S. Koubsky, P. Mukai, K. Nelson, T. Oates, S. R. Sakimoto, K. Sasada, M. Shenavrin, V. I. Shore, S. N. Skinner, G. K. Sokoloski, J. Stroh, M. Tatarnikov, A. M. Uemura, M. Wahlgren, G. M. Yamanaka, M. TI Gamma-Ray Emission Concurrent with the Nova in the Symbiotic Binary V407 Cygni SO SCIENCE LA English DT Article ID LARGE-AREA TELESCOPE; RS OPHIUCHI; 2006 OUTBURST; BLAST WAVE; PHOTOMETRY; DISCOVERY; SPACE AB Novae are thermonuclear explosions on a white dwarf surface fueled by mass accreted from a companion star. Current physical models posit that shocked expanding gas from the nova shell can produce x-ray emission, but emission at higher energies has not been widely expected. Here, we report the Fermi Large Area Telescope detection of variable gamma-ray emission (0.1 to 10 billion electron volts) from the recently detected optical nova of the symbiotic star V407 Cygni. We propose that the material of the nova shell interacts with the dense ambient medium of the red giant primary and that particles can be accelerated effectively to produce pi(0) decay gamma-rays from proton-proton interactions. Emission involving inverse Compton scattering of the red giant radiation is also considered and is not ruled out. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Ray, P. S.; Razzaque, S.; Strickman, M. S.; Wolff, M. T.; Wood, K. S.] US Navy, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.; Razzaque, S.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; den Hartog, P. R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Healey, S. E.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Shaw, M. S.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Cohen-Tanugi, J.; den Hartog, P. R.; de Palma, F.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Healey, S. E.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Knodlseder, J.; Lande, J.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Romani, R. W.; Shaw, M. S.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.; Tatarnikov, A. M.; Uemura, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Johnson, R. P.; Ritz, S.; Sadrozinski, H. F. W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Johnson, R. P.; Ritz, S.; Sadrozinski, H. F. W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Lande, J.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Shore, S. N.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. Univ Paris Diderot, Lab AIM, CEA IRFU CNRS, Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-30128 Toulouse 4, France. Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. Ecole Polytech, CNRS IN2P3, Lab Leprince Ringuet, Palaiseau, France. Univ Washington, Dept Phys, Seattle, WA 98195 USA. CSIC, Inst Ciencies Espai IEEC, Campus UAB, Barcelona 08193, Spain. Ist Astrofis Spaziale & Fis Cosm, Ist Nazl Astrofis INAF, I-20133 Milan, Italy. [Celik, O.; Corbet, R.; DeCesar, M. E.; Donato, D.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.; Mukai, K.; Nelson, T.; Skinner, G. K.; Wahlgren, G. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, O.; Donato, D.; Moiseev, A. A.; Vasileiou, V.; Skinner, G. K.] NASA, Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. [Celik, O.; Corbet, R.; Vasileiou, V.; Mukai, K.; Nelson, T.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, O.; Corbet, R.; Vasileiou, V.; Mukai, K.; Nelson, T.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Llena Garde, M.; Ripken, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Llena Garde, M.; Ripken, J.; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Corbel, S.] Inst Univ France, F-75005 Paris, France. [DeCesar, M. E.; Donato, D.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.; Skinner, G. K.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [DeCesar, M. E.; Donato, D.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.; Skinner, G. K.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Dubus, G.; Hill, A. B.] Univ Grenoble 1, CNRS, Lab Astrophys Grenoble, CNRS,UMR 5571, F-38041 Grenoble 09, France. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Reposeur, T.; Smith, D. A.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, F-33175 Gradignan, France. Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Frailis, M.] Grp Coll Udine, Ist Nazl Fis Nucl, Sez Trieste, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fuhrmann, L.; Nestoras, I.; Schinzel, F. K.; Sokolovsky, K. V.; Bach, U.] Max Planck Inst Radioastron, I-53121 Bonn, Germany. [Fukazawa, Y.; Itoh, R.; Katagiri, H.; Mizuno, T.; Sakimoto, K.; Sasada, M.; Yamanaka, M.] Hiroshima Univ, Dept Phys Sci, Higashihiroshima 7398526, Japan. [Gasparrini, D.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Frascati, Italy. INAF Ist Radioastron, I-40129 Bologna, Italy. [Giroletti, M.; Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Okumura, A.; Ozaki, M.; Stawarz, L.; Takahashi, T.; Tanaka, Y.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan. [Ohsugi, T.; Takahashi, H.; Kawabata, K. S.; Uemura, M.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp, Lattingtown, NY 11560 USA. [Sokolovsky, K. V.] Lebedev Phys Inst, Astro Space Ctr, Moscow 117810, Russia. [Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, LA 46323 USA. [Tramacere, A.] Consorzio Interuniv Fis Spaziale, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. [Maehara, H.] Kyoto Univ, Kwasan Observ, Kyoto 6078471, Japan. [Maehara, H.] Kyoto Univ, Hida Observ, Kyoto 6078471, Japan. [Nishiyama, K.; Kabashima, F.; Stroh, M.] Miyaki Argenteus Observ, Miyaki, Saga, Japan. [Bower, G. C.; Forster, J. R.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Forster, J. R.] Hat Creek Observ, Hat Creek, CA 96040 USA. [Henden, A.] Amer Assoc Variable Star Observers, Cambridge, MA 02138 USA. [Koubsky, P.] Acad Sci Czech Republic, Inst Astron, CS-25165 Ondrejov, Czech Republic. [Oates, S. R.] Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. [Shenavrin, V. I.; Tatarnikov, A. M.] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow, Russia. [Shore, S. N.] Univ Pisa, Dipartimento Fis Enrico Fermi, I-56127 Pisa, Italy. [Sokoloski, J.] Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA. [Wahlgren, G. M.] Catholic Univ Amer, Washington, DC 20064 USA. RP Cheung, CC (reprint author), US Navy, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM Teddy.Cheung.ctr@nrl.navy.mil; Adam.Hill@obs.ujfgrenoble.fr; Pierre.Jean@cesr.fr; srazzaque@ssd5.nrl.navy.mil; Kent.Wood@nrl.navy.mil RI Rando, Riccardo/M-7179-2013; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Kuss, Michael/H-8959-2012; Koubsky, Pavel/G-9031-2014; Reimer, Olaf/A-3117-2013; Morselli, Aldo/G-6769-2011; Funk, Stefan/B-7629-2015; Sokolovsky, Kirill/D-2246-2015; Johannesson, Gudlaugur/O-8741-2015; giglietto, nicola/I-8951-2012; Moskalenko, Igor/A-1301-2007; Torres, Diego/O-9422-2016; OI Mazziotta, Mario Nicola/0000-0001-9325-4672; Gargano, Fabio/0000-0002-5055-6395; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Rea, Nanda/0000-0003-2177-6388; Ray, Paul/0000-0002-5297-5278; SPINELLI, Paolo/0000-0001-6688-8864; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Hill, Adam/0000-0003-3470-4834; Sasada, Mahito/0000-0001-5946-9960; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Chaty, Sylvain/0000-0002-5769-8601; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; lubrano, pasquale/0000-0003-0221-4806; Reimer, Olaf/0000-0001-6953-1385; Morselli, Aldo/0000-0002-7704-9553; Funk, Stefan/0000-0002-2012-0080; Sokolovsky, Kirill/0000-0001-5991-6863; Johannesson, Gudlaugur/0000-0003-1458-7036; giglietto, nicola/0000-0002-9021-2888; Moskalenko, Igor/0000-0001-6141-458X; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214 FU NASA; U.S. Department of Energy in the United States; CEA/Irfu and IN2P3/CNRS in France; ASI and Istituto Nazionale de Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); JAXA in Japan; K. A. Wallenberg Foundation; Swedish Research Council; National Space Board in Sweden; INAF in Italy; Centre National d'Etudes Spatiales in France; Royal Swedish Academy of Sciences; European Community [ERC-StG-200911]; Astronomical Institute, Academy of Sciences of the Czech Republic (Ondrejov, Czech Republic); International Doctorate on Astroparticle Physics FX The Fermi-LAT Collaboration acknowledges support from a number of agencies and institutes for both the development and operation of the LAT, as well as for scientific data analysis. These organizations include NASA and the U.S. Department of Energy in the United States; CEA/Irfu and IN2P3/CNRS in France; ASI and Istituto Nazionale de Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK), and JAXA in Japan; and the K. A. Wallenberg Foundation, the Swedish Research Council, and the National Space Board in Sweden. We also gratefully acknowledge additional support from INAF in Italy and the Centre National d'Etudes Spatiales in France for science analysis during the operations phase. We acknowledge with thanks the variable star observations from the American Association of Variable Star Observers International Database contributed by observers worldwide and used in this research. J. Conrad is a Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation; G. D. and A. B. H. were funded by contract ERC-StG-200911 from the European Community; P.K. was supported by the Astronomical Institute, Academy of Sciences of the Czech Republic (Ondrejov, Czech Republic); and L. T. was partially supported by the International Doctorate on Astroparticle Physics program. NR 28 TC 102 Z9 104 U1 2 U2 5 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD AUG 13 PY 2010 VL 329 IS 5993 BP 817 EP 821 DI 10.1126/science.1192537 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 637ID UT WOS:000280809900044 PM 20705855 ER PT J AU Breeveld, AA Curran, PA Hoversten, EA Koch, S Landsman, W Marshall, FE Page, MJ Poole, TS Roming, P Smith, PJ Still, M Yershov, V Blustin, AJ Brown, PJ Gronwall, C Holland, ST Kuin, NPM McGowan, K Rosen, S Boyd, P Broos, P Carter, M Chester, MM Hancock, B Huckle, H Immler, S Ivanushkina, M Kennedy, T Mason, KO Morgan, AN Oates, S De Pasquale, M Schady, P Siegel, M Berk, DV AF Breeveld, A. A. Curran, P. A. Hoversten, E. A. Koch, S. Landsman, W. Marshall, F. E. Page, M. J. Poole, T. S. Roming, P. Smith, P. J. Still, M. Yershov, V. Blustin, A. J. Brown, P. J. Gronwall, C. Holland, S. T. Kuin, N. P. M. McGowan, K. Rosen, S. Boyd, P. Broos, P. Carter, M. Chester, M. M. Hancock, B. Huckle, H. Immler, S. Ivanushkina, M. Kennedy, T. Mason, K. O. Morgan, A. N. Oates, S. De Pasquale, M. Schady, P. Siegel, M. Berk, D. Vanden TI Further calibration of the Swift ultraviolet/optical telescope SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE instrumentation: detectors; instrumentation: photometers; astrometry; ultraviolet: general ID PHOTON-COUNTING DETECTORS; STAR CATALOG; PHOTOMETRY; GALAXIES; MISSION AB The Ultraviolet/Optical Telescope (UVOT) is one of three instruments onboard the Swift observatory. The photometric calibration has been published, and this paper follows up with details on other aspects of the calibration including a measurement of the point spread function with an assessment of the orbital variation and the effect on photometry. A correction for large-scale variations in sensitivity over the field of view is described, as well as a model of the coincidence loss which is used to assess the coincidence correction in extended regions. We have provided a correction for the detector distortion and measured the resulting internal astrometric accuracy of the UVOT, also giving the absolute accuracy with respect to the International Celestial Reference System. We have compiled statistics on the background count rates, and discuss the sources of the background, including instrumental scattered light. In each case, we describe any impact on UVOT measurements, whether any correction is applied in the standard pipeline data processing or whether further steps are recommended. C1 [Breeveld, A. A.; Curran, P. A.; Page, M. J.; Poole, T. S.; Smith, P. J.; Still, M.; Yershov, V.; Blustin, A. J.; Kuin, N. P. M.; McGowan, K.; Rosen, S.; Carter, M.; Hancock, B.; Huckle, H.; Kennedy, T.; Mason, K. O.; Oates, S.; De Pasquale, M.; Schady, P.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Hoversten, E. A.; Koch, S.; Roming, P.; Brown, P. J.; Gronwall, C.; Broos, P.; Chester, M. M.; Ivanushkina, M.; Morgan, A. N.; Siegel, M.; Berk, D. Vanden] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Landsman, W.; Marshall, F. E.; Holland, S. T.; Boyd, P.; Immler, S.] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. [Still, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Blustin, A. J.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Brown, P. J.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Holland, S. T.] Univ Space Res Assoc, Columbia, MD 21044 USA. [McGowan, K.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Rosen, S.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Ivanushkina, M.] Northrop Grumman Corp, Aerosp Syst, Vehicle Syst Integrat, El Segundo, CA 90245 USA. [Mason, K. O.] Sci & Technol Facil Council, Swindon SN2 1SZ, Wilts, England. [Morgan, A. N.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Berk, D. Vanden] St Vincent Coll, Dept Phys, Latrobe, PA 15650 USA. RP Breeveld, AA (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM aab@mssl.ucl.ac.uk RI Boyd, Patricia/D-3274-2012; Curran, Peter/B-5293-2013 OI Curran, Peter/0000-0003-3003-4626 FU STFC; NASA's Office of Space Science [NAG5-8401, NAS5-00136] FX Swift UVOT was designed and built in collaboration between MSSL, PSU, SwRI, Swales Aerospace and GSFC, and was launched by NASA. We would like to thank all those involved in the continued operation of UVOT at PSU, MSSL and GSFC and those involved in the data processing and the writing of the analysis software. This work is supported at MSSL by funding from STFC and at PSU by NASA's Office of Space Science through grant NAG5-8401 and NAS5-00136. We acknowledge the use of public data from the Swift archive. NR 31 TC 96 Z9 96 U1 1 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG 11 PY 2010 VL 406 IS 3 BP 1687 EP 1700 DI 10.1111/j.1365-2966.2010.16832.x PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635PT UT WOS:000280669200017 ER PT J AU Rapetti, D Allen, SW Mantz, A Ebeling, H AF Rapetti, David Allen, Steven W. Mantz, Adam Ebeling, Harald TI The observed growth of massive galaxy clusters - III. Testing general relativity on cosmological scales SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE cosmological parameters; cosmology: observations; cosmology: theory; dark energy; dark matter; X-rays: galaxies: clusters ID HUBBLE-SPACE-TELESCOPE; HIGH-REDSHIFT SUPERNOVAE; DIGITAL SKY SURVEY; MICROWAVE BACKGROUND ANISOTROPIES; CONSTRAINING DARK ENERGY; PROBE WMAP OBSERVATIONS; ACCELERATING UNIVERSE; NONLINEAR STRUCTURE; POWER SPECTRUM; IA SUPERNOVAE AB This is the third of a series of papers in which we derive simultaneous constraints on cosmological parameters and X-ray scaling relations using observations of the growth of massive, X-ray flux-selected galaxy clusters. Our data set consists of 238 clusters drawn from the ROSAT All-Sky Survey and incorporates extensive follow-up observations using the Chandra X-ray Observatory. Here we present improved constraints on departures from general relativity (GR) on cosmological scales, using the growth index, gamma, to parametrize the linear growth rate of cosmic structure. Using the method of Mantz et al. (Paper I), we simultaneously and self-consistently model the growth of X-ray luminous clusters and their observable-mass scaling relations, accounting for survey biases, parameter degeneracies and the impact of systematic uncertainties. Such analysis of the survey and follow-up data is crucial, else spurious constraints may be obtained. We combine the X-ray cluster growth data with cluster gas mass fraction, Type Ia supernova, baryon acoustic oscillation and cosmic microwave background data. We find that the combination of these data leads to a tight correlation between gamma and the normalization of the matter power spectrum, Sigma(8). Consistency with GR requires a measured growth index of gamma similar to 0.55. Under the assumption of self-similar evolution and constant scatter in the cluster observable-mass scaling relations, and for a spatially flat model with a cosmological constant, we measure gamma(Sigma(8)/0.8)6.8 = 0.55+0.13(-0.10), with allowed values for Sigma(8) in the range of 0.79-0.89 (68.3 per cent confidence limits). Relaxing the assumptions on the scaling relations by introducing two additional parameters to model possible evolution in the normalization and scatter of the luminosity-mass relation, we obtain consistent constraints on gamma that are only similar to 20 per cent weaker than those above. Allowing the dark energy equation of state, w, to take any constant value, we simultaneously constrain the growth and expansion histories and find no evidence for departures from either GR or the cosmological constant plus cold dark matter paradigm. Our results represent the most robust consistency test of GR on cosmological scales to date. C1 [Rapetti, David; Allen, Steven W.; Mantz, Adam] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Rapetti, David; Allen, Steven W.; Mantz, Adam] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Mantz, Adam] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ebeling, Harald] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. RP Rapetti, D (reprint author), Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 452 Lomita Mall, Stanford, CA 94305 USA. EM drapetti@slac.stanford.edu RI Rapetti, David/E-6032-2015 OI Rapetti, David/0000-0003-2196-6675 FU National Aeronautics and Space Administration (NASA) [NAG5-8253]; NASA [NAS8-03060]; U.S. Department of Energy [DE-AC02-76SF00515]; Stanford Graduate Fellowship; [DD5-6031X]; [GO2-3168X]; [GO2-3157X]; [GO3-4164X]; [GO3-4157X]; [GO5-6133]; [GO7-8125X]; [GO8-9118X] FX We thank A. Lewis, M. Amin, R. Blandford and R. Wagoner for useful discussions. We thank G. Morris for technical support. The computational analysis was carried out using the KIPAC XOC and Orange computer clusters at SLAC. We acknowledge support from the National Aeronautics and Space Administration (NASA) through LTSA grant NAG5-8253 and through Chandra Award Numbers DD5-6031X, GO2-3168X, GO2-3157X, GO3-4164X, GO3-4157X, GO5-6133, GO7-8125X and GO8-9118X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the NASA under contract NAS8-03060. This work was supported in part by the U.S. Department of Energy under contract number DE-AC02-76SF00515. AM was supported by a Stanford Graduate Fellowship and an appointment to the NASA Postdoctoral Program, administered by Oak Ridge Associated Universities through a contract with NASA. NR 96 TC 45 Z9 45 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG 11 PY 2010 VL 406 IS 3 BP 1796 EP 1804 DI 10.1111/j.1365-2966.2010.16799.x PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635PT UT WOS:000280669200024 ER PT J AU Mantz, A Allen, SW Rapetti, D AF Mantz, A. Allen, S. W. Rapetti, D. TI The observed growth of massive galaxy clusters - IV. Robust constraints on neutrino properties SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE cosmological parameters; cosmology: observations; large-scale structure of Universe; X-rays: galaxies: clusters ID DIGITAL SKY SURVEY; X-RAY MEASUREMENTS; DOUBLE-BETA DECAY; LENS TIME DELAYS; DARK ENERGY; COSMOLOGICAL CONSTRAINTS; HUBBLE CONSTANT; POWER SPECTRUM; DATA RELEASE; PARAMETERS AB This is the fourth of a series of papers in which we derive simultaneous constraints on cosmological parameters and X-ray scaling relations using observations of the growth of massive, X-ray flux-selected galaxy clusters. Our data set consists of 238 clusters drawn from the ROSAT All-Sky Survey and incorporates extensive follow-up observations using the Chandra X-ray Observatory. Here we examine the constraints on neutrino properties that are enabled by the precise and robust constraint on the amplitude of the matter power spectrum at low redshift available from our data. In combination with cluster gas mass fraction, cosmic microwave background, supernova and baryon acoustic oscillation data, and incorporating conservative allowances for systematic uncertainties, we limit the species-summed neutrino mass, M-nu, to < 0.33 eV at 95.4 per cent confidence in a spatially flat, cosmological constant (Lambda CDM) model. In a flat Lambda CDM model where the effective number of neutrino species, N-eff, is allowed to vary, we find N-eff = 3.4+0.6(-0.5) (68.3 per cent confidence, incorporating a direct constraint on the Hubble parameter from Cepheid and supernova data). We also obtain results with additional degrees of freedom in the cosmological model, in the form of global spatial curvature ((k)) and a primordial spectrum of tensor perturbations (r and n(t)). The results are not immune to these generalizations; however, in the most general case we consider, in which M-nu, N-eff, curvature and tensors are all free, we still obtain M-nu < 0.70 eV and N-eff = 3.7 +/- 0.7 (at, respectively, the same confidence levels as above). These results agree well with recent work using independent data and highlight the importance of measuring cosmic structure and expansion at low as well as high (z similar to 1100) redshifts. Although our cluster data extend to redshift z = 0.5, the direct effect of neutrino mass on the growth of structure at late times is not yet detected at a significant level. C1 [Mantz, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mantz, A.; Allen, S. W.; Rapetti, D.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Mantz, A.; Allen, S. W.; Rapetti, D.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Mantz, A (reprint author), NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. EM adam.b.mantz@nasa.gov RI Rapetti, David/E-6032-2015 OI Rapetti, David/0000-0003-2196-6675 FU National Aeronautics and Space Administration (NASA) [DD5-6031X, GO7-8125X, GO8-9118X]; NASA [NAS8-03060]; U.S. Department of Energy [DE-AC02-76SF00515]; Stanford Graduate Fellowship FX We are grateful to Harald Ebeling and Alex Drlica-Wagner for their contributions to this series of papers and to Glenn Morris, Stuart Marshall and the SLAC Unix support team for technical support. We also thank Giorgio Gratta and Naoko Kurahashi for useful discussions. Calculations were carried out using the KIPAC XOC and Orange compute clusters at the SLAC National Accelerator Laboratory and the SLAC Unix compute farm. We acknowledge support from the National Aeronautics and Space Administration (NASA) through Chandra Award Numbers DD5-6031X, GO7-8125X and GO8-9118X, issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. This work was supported in part by the U.S. Department of Energy under contract number DE-AC02-76SF00515. AM was supported by a Stanford Graduate Fellowship and an appointment to the NASA Postdoctoral Program, administered by Oak Ridge Associated Universities through a contract with NASA. NR 89 TC 45 Z9 45 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG 11 PY 2010 VL 406 IS 3 BP 1805 EP 1814 DI 10.1111/j.1365-2966.2010.16794.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635PT UT WOS:000280669200025 ER PT J AU Garofalo, D Meier, DL AF Garofalo, D. Meier, D. L. TI Misconceptions about general relativity in theoretical black hole astrophysics SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE black hole physics; relativistic processes ID SIMULATIONS AB The fundamental role played by black holes in our study of microquasars, gamma-ray bursts and the outflows from active galactic nuclei requires an appreciation for, and at times some in-depth analysis of, curved space-time. We highlight misconceptions surrounding the notion of coordinate transformation in general relativity as applied to metrics for rotating black holes that are beginning to increasingly appear in the literature. We emphasize that there is no coordinate transformation that can turn the metric of a rotating space-time into that for a Schwarzschild space-time, or more generally, that no coordinate transformation exists that can diagonalize the metric for a rotating space-time. We caution against the notion of 'local' coordinate transformation, which is often incorrectly associated with a global analysis of the space-time. C1 [Garofalo, D.; Meier, D. L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Garofalo, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM david.a.garofalo@jpl.nasa.gov NR 8 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG 11 PY 2010 VL 406 IS 3 BP 2047 EP 2049 DI 10.1111/j.1365-2966.2010.16815.x PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635PT UT WOS:000280669200046 ER PT J AU Hughes, A Wong, T Ott, J Muller, E Pineda, JL Mizuno, Y Bernard, JP Paradis, D Maddison, S Reach, WT Staveley-Smith, L Kawamura, A Meixner, M Kim, S Onishi, T Mizuno, N Fukui, Y AF Hughes, A. Wong, T. Ott, J. Muller, E. Pineda, J. L. Mizuno, Y. Bernard, J. -P. Paradis, D. Maddison, S. Reach, W. T. Staveley-Smith, L. Kawamura, A. Meixner, M. Kim, S. Onishi, T. Mizuno, N. Fukui, Y. TI Physical properties of giant molecular clouds in the Large Magellanic Cloud SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE ISM: clouds; ISM: molecules; galaxies: ISM; Magellanic Clouds ID SEST KEY PROGRAM; REGULATED STAR-FORMATION; GALAXY EVOLUTION SAGE; ALL-SKY SURVEY; SPITZER SURVEY; GRAVITATIONAL-INSTABILITY; INTERSTELLAR CLOUDS; IRREGULAR GALAXIES; APERTURE SYNTHESIS; LINEAR-REGRESSION AB The Magellanic Mopra Assessment (MAGMA) is a high angular resolution 12CO (J = 1 -> 0) mapping survey of giant molecular clouds (GMCs) in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud using the Mopra Telescope. Here we report on the basic physical properties of 125 GMCs in the LMC that have been surveyed to date. The observed clouds exhibit scaling relations that are similar to those determined for Galactic GMCs, although LMC clouds have narrower linewidths and lower CO luminosities than Galactic clouds of a similar size. The average mass surface density of the LMC clouds is 50 M(circle dot) pc-2, approximately half that of GMCs in the inner Milky Way. We compare the properties of GMCs with and without signs of massive star formation, finding that non-star-forming GMCs have lower peak CO brightness than star-forming GMCs. We compare the properties of GMCs with estimates for local interstellar conditions: specifically, we investigate the H i column density, radiation field, stellar mass surface density and the external pressure. Very few cloud properties demonstrate a clear dependence on the environment; the exceptions are significant positive correlations between (i) the H i column density and the GMC velocity dispersion, (ii) the stellar mass surface density and the average peak CO brightness and (iii) the stellar mass surface density and the CO surface brightness. The molecular mass surface density of GMCs without signs of massive star formation shows no dependence on the local radiation field, which is inconsistent with the photoionization-regulated star formation theory proposed by McKee. We find some evidence that the mass surface density of the MAGMA clouds increases with the interstellar pressure, as proposed by Elmegreen, but the detailed predictions of this model are not fulfilled once estimates for the local radiation field, metallicity and GMC envelope mass are taken into account. C1 [Hughes, A.; Maddison, S.] Swinburne Univ Technol, Ctr Supercomp & Astrophys, Hawthorn, Vic 3122, Australia. [Hughes, A.] CSIRO Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Wong, T.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Ott, J.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Muller, E.; Mizuno, Y.; Kawamura, A.; Onishi, T.; Mizuno, N.; Fukui, Y.] Nagoya Univ, Dept Astrophys, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Pineda, J. L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bernard, J. -P.] Univ Toulouse 3, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Paradis, D.; Reach, W. T.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Staveley-Smith, L.] Univ Western Australia, Int Ctr Radio Astron Res, Crawley, WA 6009, Australia. [Meixner, M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Meixner, M.] Harvard Smithsonian Astrophys, Radio & Geoastron Div, Cambridge, MA 02138 USA. [Kim, S.] Sejong Univ, Dept Astron & Space Sci, Seoul 143747, South Korea. [Onishi, T.] Osaka Prefecture Univ, Dept Phys Sci, Osaka 5998531, Japan. [Mizuno, N.] Natl Inst Nat Sci, Natl Astron Observ Japan, ALMA J Project Off, Mitaka, Tokyo 1818588, Japan. RP Hughes, A (reprint author), Swinburne Univ Technol, Ctr Supercomp & Astrophys, Hawthorn, Vic 3122, Australia. EM ahughes@astro.swin.edu.au RI Staveley-Smith, Lister/A-1683-2011 OI Reach, William/0000-0001-8362-4094; Staveley-Smith, Lister/0000-0002-8057-0294 FU NSF [08-07323]; University of Illinois; National Science Foundation; NASA; Australian Research Council; Korean government (MEST) [2009-0062866] FX We thank Christian Henkel, Jonathan Seale and Min Wang for their assistance with MAGMA observations. We also thank the staff at the ATNF for observing support and Robert Gruendl for providing the stellar mass surface density image. We acknowledge extensive use of NASA's Astrophysics Data System Bibliographic Services. TW is supported by NSF grant 08-07323 and the University of Illinois. JO is supported by the National Radio Astronomy Observatory (NRAO) which is operated by Associated Universities, Inc., under cooperative agreement with the National Science Foundation. JLP is supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by Oak Ridge Associated Universities through a contract with NASA. AH, J-PB and DP are grateful to the Australian Research Council for financial assistance during this project via the Linkage International scheme (Australia-France Co-operation Fund in Astronomy). SK is supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) 2009-0062866. AH thanks Erik Rosolowsky, Adam Leroy, Alberto Bolatto, Kaye Marion and Michael Murphy for helpful discussions. We thank the referee for constructive criticism that improved the analysis in this paper. NR 93 TC 51 Z9 51 U1 0 U2 4 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG 11 PY 2010 VL 406 IS 3 BP 2065 EP 2086 DI 10.1111/j.1365-2966.2010.16829.x PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635PT UT WOS:000280669200048 ER PT J AU Atrio-Barandela, F Kashlinsky, A Ebeling, H Kocevski, D Edge, A AF Atrio-Barandela, F. Kashlinsky, A. Ebeling, H. Kocevski, D. Edge, A. TI THE ERROR BUDGET OF THE DARK FLOW MEASUREMENT SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; diffuse radiation; early universe ID SCALE PECULIAR VELOCITIES; ELLIPTIC GALAXIES; LOCAL GROUP; BULK FLOWS; ANISOTROPY; CLUSTERS; FLUCTUATIONS; SPECTROSCOPY; PHOTOMETRY; COSMOLOGY AB We analyze the uncertainties and possible systematics associated with the "Dark Flow" measurements using the cumulative Sunyaev-Zeldovich (SZ) effect combined with all-sky catalogs of clusters of galaxies. Filtering of all-sky cosmic microwave background maps is required to remove the intrinsic cosmological signal down to the limit imposed by cosmic variance. Contributions to the errors come from the remaining cosmological signal, which integrates down with the number of clusters, and the instrumental noise, which scales with the number of pixels; the latter decreases with integration time and is subdominant for the Wilkinson Microwave Anisotropy Probe (WMAP) 5 year data. It is proven both analytically and numerically that the errors for the 5 year WMAP data are similar or equal to 15 root 3/N(clusters) mu K per dipole component. The relevant components of the bulk flow velocity are measured with a high statistical significance of up to greater than or similar to 3-3.5 sigma for the brighter cluster samples. We discuss different methods to compute error bars and demonstrate that they have biases that would overpredict the errors, as is the case in a recent reanalysis of our earlier results. If the signal is caused by systematic effects present in the data, such systematics must have a dipole pattern, correlate with cluster X-ray luminosity, and be present only at cluster positions. Only contributions from the SZ effect could provide such contaminants via several potential effects. We discuss such candidates apart from the bulk motion of the cluster samples and demonstrate that their contributions to our measurements are negligible. Application of our methods and database to the upcoming PLANCK maps, with their large frequency coverage, and, in particular, the 217 GHz channel will eliminate any such contributions and determine better the amplitude, coherence, and scale of the flow. C1 [Atrio-Barandela, F.] Univ Salamanca, E-37008 Salamanca, Spain. [Kashlinsky, A.] NASA, Goddard Space Flight Ctr, SSAI, Greenbelt, MD 20771 USA. [Kashlinsky, A.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Ebeling, H.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Kocevski, D.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Edge, A.] Univ Durham, Dept Phys, Durham DH1 3LE, England. RP Atrio-Barandela, F (reprint author), Univ Salamanca, E-37008 Salamanca, Spain. EM atrio@usal.es RI Atrio-Barandela, Fernando/A-7379-2017; OI Atrio-Barandela, Fernando/0000-0002-2130-2513; Edge, Alastair/0000-0002-3398-6916 FU NASA [NNG04G089G, 09-ADP09-0050]; Spanish Ministerio de Educacion y Ciencia [FIS2009-07238]; Junta de Castilla y Leon [GR-234] FX This work was supported by NASA ADP grants NNG04G089G and 09-ADP09-0050. F. A. B. acknowledges financial support from the Spanish Ministerio de Educacion y Ciencia (grant FIS2009-07238) and the Junta de Castilla y Leon (grant GR-234). NR 32 TC 19 Z9 21 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2010 VL 719 IS 1 BP 77 EP 87 DI 10.1088/0004-637X/719/1/77 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635KD UT WOS:000280653100007 ER PT J AU Nguyen, AN Nittler, LR Stadermann, FJ Stroud, RM Alexander, CMO AF Nguyen, Ann N. Nittler, Larry R. Stadermann, Frank J. Stroud, Rhonda M. Alexander, Conel M. O'D. TI COORDINATED ANALYSES OF PRESOLAR GRAINS IN THE ALLAN HILLS 77307 AND QUEEN ELIZABETH RANGE 99177 METEORITES SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; dust, extinction; nuclear reactions, nucleosynthesis, abundances; stars: AGB and post-AGB; stars: winds, outflows; supernovae: general ID ASYMPTOTIC GIANT BRANCH; SILICON-CARBIDE GRAINS; TITANIUM ISOTOPIC COMPOSITIONS; GALACTIC CHEMICAL EVOLUTION; CIRCUMSTELLAR GRAPHITE GRAINS; INTERPLANETARY DUST PARTICLES; SIC GRAINS; CARBONACEOUS CHONDRITES; MURCHISON METEORITE; INTERSTELLAR-MEDIUM AB We report the identification of presolar silicates (similar to 177 ppm), presolar oxides (similar to 11 ppm), and one presolar SiO(2) grain in the Allan Hills (ALHA) 77307 chondrite. Three grains having Si-isotopic compositions similar to SiC X and Z grains were also identified, though the mineral phases are unconfirmed. Similar abundances of presolar silicates (similar to 152 ppm) and oxides (similar to 8 ppm) were also uncovered in the primitive CR chondrite Queen Elizabeth Range (QUE) 99177, along with 13 presolar SiC grains and one presolar silicon nitride. The O-isotopic compositions of the presolar silicates and oxides indicate that most of the grains condensed in low-mass red giant and asymptotic giant branch stars. Interestingly, unlike presolar oxides, few presolar silicate grains have isotopic compositions pointing to low-metallicity, low-mass stars (Group 3). The (18)O-rich (Group 4) silicates, along with the few Group 3 silicates that were identified, likely have origins in supernova outflows. This is supported by their O- and Si-isotopic compositions. Elemental compositions for 74 presolar silicate grains were determined by scanning Auger spectroscopy. Most of the grains have non-stoichiometric elemental compositions inconsistent with pyroxene or olivine, the phases commonly used to fit astronomical spectra, and have comparable Mg and Fe contents. Non-equilibrium condensation and/or secondary alteration could produce the high Fe contents. Transmission electron microscopic analysis of three silicate grains also reveals non-stoichiometric compositions, attributable to non-equilibrium or multistep condensation, and very fine scale elemental heterogeneity, possibly due to subsequent annealing. The mineralogies of presolar silicates identified in meteorites thus far seem to differ from those in interplanetary dust particles. C1 [Stadermann, Frank J.] Washington Univ, Space Sci Lab, St Louis, MO 63130 USA. [Stadermann, Frank J.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Stroud, Rhonda M.] USN, Res Lab, Washington, DC 20375 USA. [Nguyen, Ann N.; Nittler, Larry R.; Alexander, Conel M. O'D.] Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA. RP Nguyen, AN (reprint author), NASA, Lyndon B Johnson Space Ctr, Astromat Res & Explorat Sci Directorate, Robert M Walker Lab Space Sci, Houston, TX 77058 USA. EM lan-anh.n.nguyen@nasa.gov RI Alexander, Conel/N-7533-2013; Stroud, Rhonda/C-5503-2008 OI Alexander, Conel/0000-0002-8558-1427; Stroud, Rhonda/0000-0001-5242-8015 FU NASA [NNG04GF61G, NNX07AJ71G, NNX08AI13G, NNX07AI82G, NNH09AL20I, NNH07AG02I]; Office of Naval Research; Carnegie Institution of Washington FX The work of L.R.N. was supported by NASA grants NNG04GF61G and NNX07AJ71G. The work of F.J.S. was possible through NASA grants NNX08AI13G and NNX07AI82G. R. M. S. acknowledges the NASA Cosmochemistry and LARS programs (grants NNH09AL20I and NNH07AG02I), as well as the Office of Naval Research. A.N. acknowledges support from the Carnegie Institution of Washington. We are grateful to Scott Messenger for a helpful and positive review. NR 131 TC 61 Z9 61 U1 2 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2010 VL 719 IS 1 BP 166 EP 189 DI 10.1088/0004-637X/719/1/166 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635KD UT WOS:000280653100015 ER PT J AU Watts, AL Kouveliotou, C van der Horst, AJ Gogus, E Kaneko, Y van der Klis, M Wijers, RAMJ Harding, AK Baring, MG AF Watts, Anna L. Kouveliotou, Chryssa van der Horst, Alexander J. Gogus, Ersin Kaneko, Yuki van der Klis, Michiel Wijers, Ralph A. M. J. Harding, Alice K. Baring, Matthew G. TI PHOTOSPHERIC RADIUS EXPANSION DURING MAGNETAR BURSTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars: individual (SGR 0501+4516); stars: neutron; stars: magnetic field; X-rays: bursts ID X-RAY-BURSTS; SOFT-GAMMA-REPEATER; SUPER-EDDINGTON LUMINOSITIES; ACCRETING NEUTRON-STARS; LARGE TORQUE VARIATIONS; 1998 AUGUST 27; GIANT FLARE; SGR 1900+14; PULSAR 1E-1048.1-5937; DISTANCE INDICATORS AB On 2008 August 24 the new magnetar SGR 0501+4516 (discovered by Swift) emitted a bright burst with a pronounced double-peaked structure in hard X-rays, reminiscent of the double-peaked temporal structure seen in some bright thermonuclear bursts on accreting neutron stars. In the latter case this is due to Photospheric Radius Expansion (PRE): when the flux reaches the Eddington limit, the photosphere expands and cools so that emission becomes softer and drops temporarily out of the X-ray band, re-appearing as the photosphere settles back down. We consider the factors necessary to generate double-peaked PRE events, and show that such a mechanism could plausibly operate in magnetar bursts despite the vastly different emission process. Identification of the magnetic Eddington limit in a magnetar would constrain magnetic field and distance and could, in principle, enable a measurement of gravitational redshift. It would also locate the emitting region at the neutron star surface, constraining the burst trigger mechanism. Conclusive confirmation of PRE events will require more detailed radiative models for bursts. However, for SGR 0501+4516 the predicted critical flux (using the magnetic field strength inferred from timing and the distance suggested by its probable location in the Perseus arm of our Galaxy) is consistent with that observed in the August 24 burst. C1 [Watts, Anna L.; van der Klis, Michiel; Wijers, Ralph A. M. J.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Kouveliotou, Chryssa] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. [van der Horst, Alexander J.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Gogus, Ersin; Kaneko, Yuki] Sabanci Univ, TR-34956 Istanbul, Turkey. [Harding, Alice K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Baring, Matthew G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. RP Watts, AL (reprint author), Univ Amsterdam, Astron Inst Anton Pannekoek, Postbus 94249, NL-1090 GE Amsterdam, Netherlands. EM A.L.Watts@uva.nl RI Harding, Alice/D-3160-2012; OI Wijers, Ralph/0000-0002-3101-1808 FU NASA [NNH07ZDA001-GLAST, NNX10AC59A]; Netherlands Organization for Scientific Research (NWO); EU [MTKD-CT-2006-042722]; NSF [AST-0607651] FX This publication is part of the GBM/Magnetar Key Project (NASA grant NNH07ZDA001-GLAST, PI: C. Kouveliotou). A. L. W. acknowledges support from a Netherlands Organization for Scientific Research (NWO) Vidi Fellowship, and would like to thank Maxim Lyutikov for discussions on magnetospheric triggers, and Duncan Galloway and Nevin Weinberg for discussions about PRE in X-ray bursts. A.J.v.d. H is supported by an appointment to the NASA Postdoctoral Program at the MSFC, administered by Oak Ridge Associated Universities through a contract with NASA. E. G. and Y.K. acknowledge EU FP6 Transfer of Knowledge Project "Astrophysics of Neutron Stars" (MTKD-CT-2006-042722). M. G. B. acknowledges support through NASA grant NNX10AC59A and NSF grant AST-0607651. NR 116 TC 10 Z9 10 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2010 VL 719 IS 1 BP 190 EP 200 DI 10.1088/0004-637X/719/1/190 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635KD UT WOS:000280653100016 ER PT J AU Watanabe, T Hara, H Sterling, AC Harra, LK AF Watanabe, Tetsuya Hara, Hirohisa Sterling, Alphonse C. Harra, Louise K. TI PRODUCTION OF HIGH-TEMPERATURE PLASMAS DURING THE EARLY PHASES OF A C9.7 FLARE SO ASTROPHYSICAL JOURNAL LA English DT Article DE line: profiles; Sun: corona; Sun: flares; Sun: UV radiation ID BRAGG CRYSTAL SPECTROMETER; LOOP RADIATIVE HYDRODYNAMICS; CHROMOSPHERIC EVAPORATION; SOLAR-FLARE; IMAGING SPECTROMETER; EXTREME-ULTRAVIOLET; ATOMIC DATABASE; EMISSION-LINES; HINODE MISSION; DYNAMICS AB Explosive chromospheric evaporation is predicted from some current solar flare models. In this paper, we analyze a flare with high time cadence raster scans with the EUV Imaging Spectrometer (EIS) on board the Hinode spacecraft. This observation covers an area of 240 '' x 240 '', with the 1 '' slit in about 160 s. The early phases of a C9.7 flare that occurred on 2007 June 6 were well observed. The purpose of our analysis is to study for the first time the spatially resolved spectra of high-temperature plasma, especially from Fe XXIII and Fe XXIV, allowing us to explore the explosive chromospheric evaporation scenario further. Sections of raster images obtained between 17:20:09 and 17:20:29 (UT) show a few bright patches of emission from Fe XXIII/Fe XXIV lines at the footpoints of the flaring loops; these footpoints were not clearly seen in the images taken earlier, between 17:17:30 and 17:17:49 (UT). Fe XXIII spectra at these footpoints show dominating blueshifted components of -(300 to 400) km s(-1), while Fe XV/XIV lines are nearly stationary; Fe XII lines and/or lower temperature lines show slightly redshifted features, and Fe VIII and Si VII to He II lines show similar to+50 km s(-1) redshifted components. The density of the 1.5-2 MK plasma at these footpoints is estimated to be 3 x 10(10) cm(-3) by the Fe XIII/XIV line pairs around the maximum of the flare. High-temperature loops connecting the footpoints appear in the Fe XXIII/XXIV images taken over 17:22:49-17:23:08 (UT) which is near the flare peak. Line profiles of these high-temperature lines at this flare peak time show only slowly moving components. The concurrent cooler Fe XVII line at 254.8 angstrom is relatively weak, indicating the predominance of high-temperature plasma (>10(7) K) in these loops. The characteristics observed during the early phases of this flare are consistent with the scenario of explosive chromospheric evaporation. C1 [Watanabe, Tetsuya; Hara, Hirohisa] Natl Astron Observ, Mitaka, Tokyo 1818588, Japan. [Watanabe, Tetsuya; Hara, Hirohisa] Grad Univ Adv Studies, Hayama, Kanagawa 2400193, Japan. [Sterling, Alphonse C.] NASA, MSFC, Huntsville, AL 35812 USA. [Harra, Louise K.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. RP Watanabe, T (reprint author), Natl Astron Observ, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. EM watanabe@uvlab.mtk.nao.ac.jp OI Harra, Louise/0000-0001-9457-6200 FU MEXT, Japan; NAOJ/NINS; NASA's Office of Space Science; JAXA; NAOJ (Japan); STFC (UK); NASA (USA); ESA; NSC (Norway); NINS Inter-institute collarborative program for Creation of New Research Area; NIFS/NINS FX Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as domestic partner, and NASA and STFC (UK) as international partners. Scientific operation of the Hinode mission is conducted by the Hinode science team organized at ISAS/JAXA. This team mainly consists of scientists from institutes in the partner countries. Support for the post-launch operation is provided by JAXA and NAOJ (Japan), STFC (UK), NASA (USA), ESA, and NSC (Norway). This work is partly carried out at the NAOJ Hinode Science Center, which is supported by the Grant-in-Aid for Creative Scientific Research: "The Basic Study of Space Weather Prediction" from MEXT, Japan (Head Investigator: K. Shibata), generous donations from Sun Microsystems, and NAOJ/NINS internal funding. It is also supported by the NINS Inter-institute collarborative program for Creation of New Research Area (Head Investigator: T. Watanabe) and by NIFS/NINS under the project of Formation of International Network for Scientific Collaborations (Head Investigator: H. Yamada). A. C. S. is supported by funding from NASA's Office of Space Science through the Living with a Star and the Supporting Research and Technology programs. NR 35 TC 26 Z9 26 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2010 VL 719 IS 1 BP 213 EP 219 DI 10.1088/0004-637X/719/1/213 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635KD UT WOS:000280653100018 ER PT J AU Kitiashvili, IN Kosovichev, AG Wray, AA Mansour, NN AF Kitiashvili, I. N. Kosovichev, A. G. Wray, A. A. Mansour, N. N. TI MECHANISM OF SPONTANEOUS FORMATION OF STABLE MAGNETIC STRUCTURES ON THE SUN SO ASTROPHYSICAL JOURNAL LA English DT Article DE convection; magnetohydrodynamics (MHD); methods: numerical; Sun: photosphere; Sun: surface magnetism; sunspots ID SOLAR PHOTOSPHERE; FLUX CONCENTRATIONS; VORTEX FLOWS; MAGNETOCONVECTION; SUNSPOT; CONVECTION; HINODE; OSCILLATIONS; SIMULATIONS; EXCITATION AB One of the puzzling features of solar magnetism is formation of long-living compact magnetic structures, such as sunspots and pores, in the highly turbulent upper layer of the solar convective zone. We use realistic radiative three-dimensional MHD simulations to investigate the interaction between magnetic field and turbulent convection. In the simulations, a weak vertical uniform magnetic field is imposed in a region of fully developed granular convection, and the total magnetic flux through the top and bottom boundaries is kept constant. The simulation results reveal a process of spontaneous formation of stable magnetic structures, which may be a key to understanding the magnetic self-organization on the Sun and formation of pores and sunspots. This process consists of two basic steps: (1) formation of small-scale filamentary magnetic structures associated with concentrations of vorticity and whirlpool-type motions, and (2) merging of these structures due to the vortex attraction, caused by converging downdrafts around magnetic concentration below the surface. In the resulting large-scale structure maintained by the converging plasmamotions, the magnetic field strength reaches similar to 1.5 kG at the surface and similar to 6 kG in the interior, and the surface structure resembles solar pores. The magnetic structure remains stable for the whole simulation run of several hours with no sign of decay. C1 [Kitiashvili, I. N.; Kosovichev, A. G.] Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Kitiashvili, I. N.] AlbaNova Univ Ctr, NORDITA, Dept Astron, SE-10691 Stockholm, Sweden. [Wray, A. A.; Mansour, N. N.] NASA, Ames Res Ctr, Mountain View, CA 94040 USA. RP Kitiashvili, IN (reprint author), Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA. EM irinasun@stanford.edu NR 34 TC 47 Z9 47 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2010 VL 719 IS 1 BP 307 EP 312 DI 10.1088/0004-637X/719/1/307 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635KD UT WOS:000280653100026 ER PT J AU Hashimoto, T Ohta, K Aoki, K Tanaka, I Yabe, K Kawai, N Aoki, W Furusawa, H Hattori, T Iye, M Kawabata, KS Kobayashi, N Komiyama, Y Kosugi, G Minowa, Y Mizumoto, Y Niino, Y Nomoto, K Noumaru, J Ogasawara, R Pyo, TS Sakamoto, T Sekiguchi, K Shirasaki, Y Suzuki, M Tajitsu, A Takata, T Tamagawa, T Terada, H Totani, T Watanabe, J Yamada, T Yoshida, A AF Hashimoto, T. Ohta, K. Aoki, K. Tanaka, I. Yabe, K. Kawai, N. Aoki, W. Furusawa, H. Hattori, T. Iye, M. Kawabata, K. S. Kobayashi, N. Komiyama, Y. Kosugi, G. Minowa, Y. Mizumoto, Y. Niino, Y. Nomoto, K. Noumaru, J. Ogasawara, R. Pyo, T. -S. Sakamoto, T. Sekiguchi, K. Shirasaki, Y. Suzuki, M. Tajitsu, A. Takata, T. Tamagawa, T. Terada, H. Totani, T. Watanabe, J. Yamada, T. Yoshida, A. TI "DARK" GRB 080325 IN A DUSTY MASSIVE GALAXY AT z similar to 2 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: photometry; gamma-ray burst: individual (GRB 080325); gamma rays: galaxies ID GAMMA-RAY BURSTS; STAR-FORMING GALAXIES; SMALL MAGELLANIC CLOUD; HIGH-METALLICITY HOST; LYMAN BREAK GALAXIES; LUMINOSITY DENSITIES; STARBURST GALAXIES; LOCAL ENVIRONMENTS; FORMATION RATES; NUMBER COUNTS AB We present optical and near-infrared observations of Swift GRB 080325 classified as a "dark gamma-ray burst (GRB)." Near-infrared observations with Subaru/MOIRCS provided a clear detection of afterglow in the K-s band, although no optical counterpart was reported. The flux ratio of rest-wavelength optical to X-ray bands of the afterglow indicates that the dust extinction along the line of sight to the afterglow is AV = 2.7-10 mag. This large extinction is probably the major reason for the optical faintness of GRB 080325. The J - K-s color of the host galaxy, (J - K-s = 1.3 in AB magnitude), is significantly redder than those for typical GRB hosts previously identified. In addition to J and Ks bands, optical images in B, R-c, i', and z' bands with Subaru/SuprimeCam were obtained at about 1 year after the burst, and a photometric redshift of the host is estimated to be z(photo) = 1.9. The host luminosity is comparable to L* at z similar to 2 in contrast to the sub-L* property of typical GRB hosts at lower redshifts. The best-fit stellar population synthesis model for the host shows that the red nature of the host is attributed to a large dust extinction (A(V) = 0.8 mag), and that the host galaxy is massive (M* = 7.0 x 10(10) M-circle dot), which makes it one of the most massive GRB hosts yet identified. By assuming that the mass-metallicity relation for star-forming galaxies at z similar to 2 is applicable for the GRB host, this large stellar mass suggests the high-metallicity environment around GRB 080325, consistent with inferred large extinction. C1 [Hashimoto, T.; Ohta, K.; Yabe, K.; Niino, Y.; Totani, T.] Kyoto Univ, Dept Astron, Kyoto 6068502, Japan. [Aoki, K.; Tanaka, I.; Hattori, T.; Minowa, Y.; Noumaru, J.; Pyo, T. -S.; Tajitsu, A.; Terada, H.] Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Aoki, W.; Furusawa, H.; Iye, M.; Komiyama, Y.; Kosugi, G.; Mizumoto, Y.; Ogasawara, R.; Sekiguchi, K.; Shirasaki, Y.; Takata, T.; Watanabe, J.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Kawabata, K. S.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Kobayashi, N.] Univ Tokyo, Inst Astron, Tokyo 1810015, Japan. [Nomoto, K.] Univ Tokyo, IPMU, Chiba 2778568, Japan. [Sakamoto, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Suzuki, M.] JAXA, ISS Sci Project Off, ISAS, Tsukuba, Ibaraki 3058505, Japan. [Tamagawa, T.] Tokyo Univ Sci, Dept Phys, Shinjuku Ku, Tokyo 1628601, Japan. [Tamagawa, T.] Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Yamada, T.] Tohoku Univ, Astron Inst, Sendai, Miyagi 9808578, Japan. [Yoshida, A.] Aoyama Gakuin Univ, Dept Phys, Kanagawa 2298558, Japan. RP Hashimoto, T (reprint author), Kyoto Univ, Dept Astron, Kyoto 6068502, Japan. RI Nomoto, Ken'ichi/A-4393-2011 FU Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan; [19047003] FX We are grateful to the Subaru Telescope staffs for conducting ToO and Service observations. We thank Fumiaki Nakata and Sakurako Okamoto for useful comments on data reduction and analysis. We also thank Marcin Sawicki for providing us with the "SEDfit." We also thank the anonymous referee for his/her comments which improved this paper. This work is supported by the Grant-in-Aid for Scientific Research Priority Areas (19047003) and the Grant-in-Aid for the Global COE Program "The Next Generation of Physics, Spun from Universality and Emergence" from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan. NR 63 TC 21 Z9 21 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2010 VL 719 IS 1 BP 378 EP 384 DI 10.1088/0004-637X/719/1/378 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635KD UT WOS:000280653100032 ER PT J AU Tsumura, K Battle, J Bock, J Cooray, A Hristov, V Keating, B Lee, DH Levenson, LR Mason, P Matsumoto, T Matsuura, S Nam, UW Renbarger, T Sullivan, I Suzuki, K Wada, T Zemcov, M AF Tsumura, K. Battle, J. Bock, J. Cooray, A. Hristov, V. Keating, B. Lee, D. H. Levenson, L. R. Mason, P. Matsumoto, T. Matsuura, S. Nam, U. W. Renbarger, T. Sullivan, I. Suzuki, K. Wada, T. Zemcov, M. TI OBSERVATIONS OF THE NEAR-INFRARED SPECTRUM OF THE ZODIACAL LIGHT WITH CIBER SO ASTROPHYSICAL JOURNAL LA English DT Article DE infrared: diffuse background; interplanetary medium; zodiacal dust ID BACKGROUND EXPERIMENT SEARCH; DEEP IMPACT EJECTA; SYSTEM DUST BANDS; MIDINFRARED SPECTRUM; INTERPLANETARY DUST; IRTS OBSERVATION; ARRAY CAMERA; MAIN-BELT; IRRADIANCE; ORIGIN AB Interplanetary dust (IPD) scatters solar radiation which results in the zodiacal light that dominates the celestial diffuse brightness at optical and near-infrared wavelengths. Both asteroid collisions and cometary ejections produce the IPD, but the relative contribution from these two sources is still unknown. The low resolution spectrometer (LRS) onboard the Cosmic Infrared Background ExpeRiment (CIBER) observed the astrophysical sky spectrum between 0.75 and 2.1 mu m over a wide range of ecliptic latitude. The resulting zodiacal light spectrum is redder than the solar spectrum, and shows a broad absorption feature, previously unreported, at approximately 0.9 mu m, suggesting the existence of silicates in the IPD material. The spectral shape of the zodiacal light is isotropic at all ecliptic latitudes within the measurement error. The zodiacal light spectrum, including the extended wavelength range to 2.5 mu m using Infrared Telescope in Space (IRTS) data, is qualitatively similar to the reflectance of S-type asteroids. This result can be explained by the proximity of S-type asteroidal dust to Earth's orbit, and the relatively high albedo of asteroidal dust compared with cometary dust. C1 [Tsumura, K.; Matsumoto, T.; Matsuura, S.; Wada, T.] Japan Aerosp Explorat Agcy JAXA, Dept Infrared Astrophys, Inst Space & Astronaut Sci, Kanagawa 2525210, Japan. [Battle, J.; Bock, J.; Zemcov, M.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Bock, J.; Hristov, V.; Levenson, L. R.; Mason, P.; Sullivan, I.; Zemcov, M.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Cooray, A.] Univ Calif Irvine, Ctr Cosmol, Irvine, CA 92697 USA. [Keating, B.; Renbarger, T.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Lee, D. H.; Nam, U. W.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Matsumoto, T.] Seoul Natl Univ, Dept Phys & Astron, Seoul 151742, South Korea. [Suzuki, K.] Nagoya Univ, Instrument Dev Grp, Ctr Tech, Aichi 4648602, Japan. RP Tsumura, K (reprint author), Japan Aerosp Explorat Agcy JAXA, Dept Infrared Astrophys, Inst Space & Astronaut Sci, Kanagawa 2525210, Japan. EM tsumura@ir.isas.jaxa.jp FU Japan Society for the Promotion of Science (JSPS) [20.34, 18204018, 19540250, 21111004, 21340047]; Ministry of Education, Culture, Sports, Science and Technology (MEXT); NASA [NNX07AI54G, NNG05WC18G, NNX07AG43G, NNX07AJ24G]; NSF FX This work was supported by KAKENHI (20.34, 18204018, 19540250, 21111004, and 21340047) from Japan Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sports, Science and Technology (MEXT), and NASA APRA research grants (NNX07AI54G, NNG05WC18G, NNX07AG43G, and NNX07AJ24G). We acknowledge the dedicated efforts of the sounding rocket staff at NASA Wallops Flight Facility and White Sands Missile Range. We also acknowledge the engineers at the Genesia Corporation for the technical support of the CIBER optics. We thank Dr. Allan Smith, Dr. Keith Lykke, and Dr. Steven Brown (the National Institute of Standards and Technology) for the laboratory calibration of LRS. We also thank Dr. Hasegawa Sunao (ISAS/JAXA), Dr. Ishiguro Masateru (Seoul National University), Dr. Ootsubo Takafumi (Tohoku University), Dr. Noguchi Takaaki (Ibaraki University), Dr. Pyo Jeonghyun (KASI), and Dr. Carey Lisse (Johns Hopkins University) for discussions and comments about IPD, and Dr. Martin Cohen (UC Berkeley) and Dr. Yamamura Issei (ISAS/JAXA) for comments about stellar spectrum. K.T. acknowledges support from the JSPS Research Fellowship for the Young Scientists, M.Z. acknowledges support from a NASA Postdoctoral Fellowship, and A.C. acknowledges support from an NSF CARRER award. NR 46 TC 19 Z9 19 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2010 VL 719 IS 1 BP 394 EP 402 DI 10.1088/0004-637X/719/1/394 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635KD UT WOS:000280653100034 ER PT J AU Luketic, S Proga, D Kallman, TR Raymond, JC Miller, JM AF Luketic, S. Proga, D. Kallman, T. R. Raymond, J. C. Miller, J. M. TI ON THE PROPERTIES OF THERMAL DISK WINDS IN X-RAY TRANSIENT SOURCES: A CASE STUDY OF GRO J1655-40 SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; hydrodynamics; methods: numerical ID COMPTON-HEATED WINDS; ACCRETION DISKS; RADIATION; CORONAE; LINE; SPECTROSCOPY; EMISSION; DYNAMICS; OUTFLOW; FLOWS AB We present the results of hydrodynamical simulations of the disk photosphere irradiated by strong X-rays produced in the innermost part of the disk of an accreting black hole. As expected, the irradiation heats the photosphere and drives a thermal wind. To apply our results to the well-studied X-ray transient source GRO J1655-40, we adopted the observed mass of its black hole and the observed properties of its X-ray radiation. To compare the results with the observations, we also computed transmitted X-ray spectra based on the wind solution. Our main finding is that the density of the fast-moving part of the wind is more than 1 order of magnitude lower than that inferred from the observations. Consequently, the model fails to predict spectra with line absorption as strong and as blueshifted as those observed. However, despite the thermal wind being weak and Compton thin, the ratio between the mass-loss rate and the mass-accretion rate is about seven. This high ratio is insensitive to the accretion luminosity, in the limit of lower luminosities. Most of the mass is lost from the disk between 0.07 and 0.2 of the Compton radius. We discovered that beyond this range the wind solution is self-similar. In particular, soon after it leaves the disk, the wind flows at a constant angle with respect to the disk. Overall, the thermal winds generated in our comprehensive simulations do not match the wind spectra observed in GRO J1655-40. This supports the conclusion of Miller et al. and Kallman et al. that the wind in GRO J1655-40, and possibly in other X-ray transients, may be driven by magnetic processes. This in turn implies that the disk wind carries even more material than our simulations predict and as such has a very significant impact on the accretion disk structure and dynamics. C1 [Luketic, S.; Proga, D.] Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA. [Kallman, T. R.] NASA, Goddard Space Flight Ctr, High Energy Astrophys Lab, Greenbelt, MD 20771 USA. [Raymond, J. C.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Miller, J. M.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. RP Luketic, S (reprint author), Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA. EM stefan@physics.unlv.edu; dproga@physics.unlv.edu FU NASA [NAS 8-39073] FX We thank Tim Waters for his comments on the manuscript. We acknowledge support provided by the Chandra awards TM8-9004X and TM0-11010X issued by the Chandra X-Ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS 8-39073. NR 26 TC 29 Z9 29 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2010 VL 719 IS 1 BP 515 EP 522 DI 10.1088/0004-637X/719/1/515 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635KD UT WOS:000280653100045 ER PT J AU Marsh, KA Plavchan, P Kirkpatrick, JD Lowrance, PJ Cutri, RM Velusamy, T AF Marsh, Kenneth A. Plavchan, Peter Kirkpatrick, J. Davy Lowrance, Patrick J. Cutri, Roc M. Velusamy, Thangasamy TI DEEP NEAR-INFRARED IMAGING OF THE rho Oph CLOUD CORE: CLUES TO THE ORIGIN OF THE LOWEST-MASS BROWN DWARFS SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; infrared: stars; stars: low-mass; stars: pre-main sequence ID SPITZER-SPACE-TELESCOPE; STAR-FORMATION; EVOLUTIONARY MODELS; DISC FRAGMENTATION; CIRCUMSTELLAR DISK; T-DWARFS; YOUNG; OPHIUCHI; CLUSTER; PHOTOMETRY AB A search for young substellar objects in the rho Oph cloud core region has been made with the aid of multiband profile-fitting point-source photometry of the deep-integration Combined Calibration Scan images of the 2MASS extended mission in the J, H, and K-s bands, and Spitzer IRAC images at 3.6, 4.5, 5.8, and 8.0 mu m. The field of view of the combined observations was 1. x 9'.3, and the 5 sigma limiting magnitude at J was 20.5. Comparison of the observed spectral energy distributions with the predictions of the COND and DUSTY models, for an assumed age of 1 Myr, supports the identification of many of the sources with brown dwarfs and enables the estimation of effective temperature, Teff. The cluster members are then readily distinguishable from background stars by their locations on a plot of flux density versus Teff. The range of estimated Teff values extends down to similar to 750 K which, based on the COND model, would suggest the presence of objects of sub-Jupiter mass. The results also suggest that the mass function for the. Oph cloud resembles that of the sigma Orionis cluster based on a recent study, with both rising steadily toward lower masses. The other main result from our study is the apparent presence of a progressive blueward skew in the distribution of J - H and H - K-s colors, such that the blue end of the range becomes increasingly bluer with increasing magnitude. We suggest that this behavior might be understood in terms of the "ejected stellar embryo" hypothesis, whereby some of the lowest-mass brown dwarfs could escape to locations close to the front edge of the cloud, and thereby be seen with less extinction. C1 [Marsh, Kenneth A.; Plavchan, Peter; Kirkpatrick, J. Davy; Lowrance, Patrick J.; Cutri, Roc M.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Velusamy, Thangasamy] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Marsh, KA (reprint author), CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. EM kam@ipac.caltech.edu; plavchan@ipac.caltech.edu; davy@ipac.caltech.edu; lowrance@ipac.caltech.edu; roc@ipac.caltech.edu; Thangasamy.Velusamy@jpl.nasa.gov FU NASA FX We thank the referee for helpful comments and suggestions. We also thank Tim Thompson for making the IRAC mosaic images, and John Stauffer and Luisa Rebull for helpful discussions. The research utilized data products from 2MASS, a joint project of the University of Massachussetts and IPAC/Caltech, and also archival data from Spitzer, operated by JPL/Caltech under contract to NASA. Use was also made of the SIMBAD database, operated at CDS, Strasbourg, France. The work was carried out at IPAC/Caltech and was supported by a grant from the NASA Astrophysics Data Analysis Program. NR 57 TC 24 Z9 24 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2010 VL 719 IS 1 BP 550 EP 560 DI 10.1088/0004-637X/719/1/550 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635KD UT WOS:000280653100048 ER PT J AU Fuentes, MCL Klimchuk, JA AF Lopez Fuentes, M. C. Klimchuk, J. A. TI A SIMPLE MODEL FOR THE EVOLUTION OF MULTI-STRANDED CORONAL LOOPS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: corona; Sun: flares; Sun: magnetic topology; Sun: X-rays, gamma rays ID ACTIVE-REGION; ENERGY-RELEASE; SOLAR CORONA; TRACE; NANOFLARES; SOHO/CDS; SXI; HOT AB We develop and analyze a simple cellular automaton model that reproduces the main properties of the evolution of soft X-ray coronal loops. We are motivated by the observation that these loops evolve in three distinguishable phases that suggest the development, maintenance, and decay of a self-organized system. The model is based on the idea that loops are made of elemental strands that are heated by the relaxation of magnetic stress in the form of nanoflares. In this vision, usually called the "Parker conjecture," the origin of stress is the displacement of the strand footpoints due to photospheric convective motions. Modeling the response and evolution of the plasma we obtain synthetic light curves that have the same characteristic properties (intensity, fluctuations, and timescales) as the observed cases. We study the dependence of these properties on the model parameters and find scaling laws that can be used as observational predictions of the model. We discuss the implications of our results for the interpretation of recent loop observations in different wavelengths. C1 [Lopez Fuentes, M. C.] CONICET UBA, Inst Astron & Fis Espacio, RA-1428 Buenos Aires, DF, Argentina. [Klimchuk, J. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Fuentes, MCL (reprint author), CONICET UBA, Inst Astron & Fis Espacio, CC 67,Suc 28, RA-1428 Buenos Aires, DF, Argentina. RI Klimchuk, James/D-1041-2012; OI Klimchuk, James/0000-0003-2255-0305; Lopez Fuentes, Marcelo/0000-0001-8830-4022 FU NASA FX The authors thank Paul Charbonneau for enriching discussions and the anonymous referee for useful comments and suggestions. This work was supported by the NASA Supporting Research and Technology and Living With a Star Programs. NR 35 TC 15 Z9 15 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2010 VL 719 IS 1 BP 591 EP 601 DI 10.1088/0004-637X/719/1/591 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635KD UT WOS:000280653100052 ER PT J AU Tombesi, F Sambruna, RM Reeves, JN Braito, V Ballo, L Gofford, J Cappi, M Mushotzky, RF AF Tombesi, F. Sambruna, R. M. Reeves, J. N. Braito, V. Ballo, L. Gofford, J. Cappi, M. Mushotzky, R. F. TI DISCOVERY OF ULTRA-FAST OUTFLOWS IN A SAMPLE OF BROAD-LINE RADIO GALAXIES OBSERVED WITH SUZAKU SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; galaxies: active; line: identification; radio continuum: galaxies; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; X-RAY-SPECTRUM; WARM/HOT INTERGALACTIC MEDIUM; ACCRETION DISC OUTFLOWS; ABSORPTION-LINES; BLACK-HOLE; XMM-NEWTON; PHOTOIONIZED GAS; FE LINE; IRON AB We present the results of a uniform and systematic search for blueshifted Fe K absorption lines in the X-ray spectra of five bright broad-line radio galaxies observed with Suzaku. We detect, for the first time in radio-loud active galactic nuclei (AGNs) at X-rays, several absorption lines at energies greater than 7 keV in three out of five sources, namely, 3C 111, 3C 120, and 3C 390.3. The lines are detected with high significance according to both the F-test and extensive Monte Carlo simulations. Their likely interpretation as blueshifted Fe xxv and Fe xxvi K-shell resonance lines implies an origin from highly ionized gas outflowing with mildly relativistic velocities, in the range v similar or equal to 0.04-0.15c. A fit with specific photoionization models gives ionization parameters in the range log xi similar or equal to 4-5.6 erg s(-1) cm and column densities of N-H similar or equal to 10(22)-10(23) cm(-2). These characteristics are very similar to those of the ultra-fast outflows (UFOs) previously observed in radio-quiet AGNs. Their estimated location within similar to 0.01-0.3 pc of the central super-massive black hole suggests a likely origin related with accretion disk winds/outflows. Depending on the absorber covering fraction, the mass outflow rate of these UFOs can be comparable to the accretion rate and their kinetic power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, these UFOs can play a significant role in the expected feedback from the AGN to the surrounding environment and can give us further clues on the relation between the accretion disk and the formation of winds/jets in both radio-quiet and radio-loud AGNs. C1 [Tombesi, F.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [Tombesi, F.; Cappi, M.] INAF IASF Bologna, I-40129 Bologna, Italy. [Tombesi, F.; Sambruna, R. M.; Mushotzky, R. F.] NASA, High Energy Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Tombesi, F.; Sambruna, R. M.] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA. [Reeves, J. N.; Gofford, J.] Keele Univ, Sch Phys & Geog Sci, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Braito, V.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Ballo, L.] CSIC UC, Ist Fis Cantabria, Santander 39005, Spain. RP Tombesi, F (reprint author), Univ Bologna, Dipartimento Astron, Via Ranzani 1, I-40127 Bologna, Italy. EM tombesi@iasfbo.inaf.it RI Cappi, Massimo/F-4813-2015; XRAY, SUZAKU/A-1808-2009; OI Cappi, Massimo/0000-0001-6966-8920; Ballo, Lucia/0000-0002-5036-3497; Braito, Valentina/0000-0002-2629-4989 FU NASA [NAG5-10708]; Suzaku program; ASI [I/088/06/0] FX We thank Laura Maraschi, Demos Kazanas, Keigo Fukumura, and Meg Urry for useful discussions. F. T. and R. M. S. acknowledge financial support from NASA grant NAG5-10708 and the Suzaku program. M. C. acknowledges financial support from ASI under contract I/088/06/0. NR 68 TC 90 Z9 92 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2010 VL 719 IS 1 BP 700 EP 715 DI 10.1088/0004-637X/719/1/700 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635KD UT WOS:000280653100062 ER PT J AU Vieira, JD Crawford, TM Switzer, ER Ade, PAR Aird, KA Ashby, MLN Benson, BA Bleem, LE Brodwin, M Carlstrom, JE Chang, CL Cho, HM Crites, AT de Haan, T Dobbs, MA Everett, W George, EM Gladders, M Hall, NR Halverson, NW High, FW Holder, GP Holzapfel, WL Hrubes, JD Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Lueker, M Marrone, DP McIntyre, V McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Padin, S Plagge, T Pryke, C Reichardt, CL Ruhl, JE Schaffer, KK Shaw, L Shirokoff, E Spieler, HG Stalder, B Staniszewski, Z Stark, AA Vanderlinde, K Walsh, W Williamson, R Yang, Y Zahn, O Zenteno, A AF Vieira, J. D. Crawford, T. M. Switzer, E. R. Ade, P. A. R. Aird, K. A. Ashby, M. L. N. Benson, B. A. Bleem, L. E. Brodwin, M. Carlstrom, J. E. Chang, C. L. Cho, H. -M. Crites, A. T. de Haan, T. Dobbs, M. A. Everett, W. George, E. M. Gladders, M. Hall, N. R. Halverson, N. W. High, F. W. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Lueker, M. Marrone, D. P. McIntyre, V. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Padin, S. Plagge, T. Pryke, C. Reichardt, C. L. Ruhl, J. E. Schaffer, K. K. Shaw, L. Shirokoff, E. Spieler, H. G. Stalder, B. Staniszewski, Z. Stark, A. A. Vanderlinde, K. Walsh, W. Williamson, R. Yang, Y. Zahn, O. Zenteno, A. TI EXTRAGALACTIC MILLIMETER-WAVE SOURCES IN SOUTH POLE TELESCOPE SURVEY DATA: SOURCE COUNTS, CATALOG, AND STATISTICS FOR AN 87 SQUARE-DEGREE FIELD SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: high-redshift; submillimeter: galaxies; surveys ID SPECTRUM RADIO-SOURCES; STAR-FORMING GALAXIES; SCUBA SUPER-MAP; GOODS-N FIELD; SUBMILLIMETER-SELECTED GALAXIES; COMPACT STEEP-SPECTRUM; 1200-MU-M MAMBO SURVEY; ALL-SKY SURVEY; 1.1 MM SURVEY; NUMBER COUNTS AB We report the results of an 87 deg(2) point-source survey centered at R. A. 5(h)30(m), decl. -55 degrees taken with the South Pole Telescope at 1.4 and 2.0 mm wavelengths with arcminute resolution and milli-Jansky depth. Based on the ratio of flux in the two bands, we separate the detected sources into two populations, one consistent with synchrotron emission from active galactic nuclei and the other consistent with thermal emission from dust. We present source counts for each population from 11 to 640 mJy at 1.4 mm and from 4.4 to 800mJy at 2.0 mm. The 2.0 mm counts are dominated by synchrotron-dominated sources across our reported flux range; the 1.4 mm counts are dominated by synchrotron-dominated sources above similar to 15 mJy and by dust-dominated sources below that flux level. We detect 141 synchrotron-dominated sources and 47 dust-dominated sources at signal-to-noise ratio S/N > 4.5 in at least one band. All of the most significantly detected members of the synchrotron-dominated population are associated with sources in previously published radio catalogs. Some of the dust-dominated sources are associated with nearby (z << 1) galaxies whose dust emission is also detected by the Infrared Astronomy Satellite. However, most of the bright, dust-dominated sources have no counterparts in any existing catalogs. We argue that these sources represent the rarest and brightestmembers of the population commonly referred to as submillimeter galaxies (SMGs). Because these sources are selected at longer wavelengths than in typical SMG surveys, they are expected to have a higher mean redshift distribution and may provide a new window on galaxy formation in the early universe. C1 [Vieira, J. D.; Crawford, T. M.; Switzer, E. R.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crites, A. T.; Gladders, M.; Keisler, R.; Marrone, D. P.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Padin, S.; Plagge, T.; Pryke, C.; Schaffer, K. K.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Vieira, J. D.; Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Vieira, J. D.; Carlstrom, J. E.; Chang, C. L.; Keisler, R.; McMahon, J. J.; Meyer, S. S.; Pryke, C.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Crawford, T. M.; Carlstrom, J. E.; Crites, A. T.; Gladders, M.; Meyer, S. S.; Padin, S.] Univ Chicago, Ctr Astron & Astrophys, Chicago, IL 60637 USA. [Ade, P. A. R.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Ashby, M. L. N.; Brodwin, M.; Stalder, B.; Stark, A. A.; Walsh, W.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Cho, H. -M.; George, E. M.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Plagge, T.; Reichardt, C. L.; Shirokoff, E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [de Haan, T.; Dobbs, M. A.; Holder, G. P.; Shaw, L.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Hall, N. R.; Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [High, F. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Joy, M.] NASA, George C Marshall Space Flight Ctr, Dept Space Sci, VP62, Huntsville, AL 35812 USA. [Lee, A. T.; Leitch, E. M.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [McIntyre, V.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Mohr, J. J.] Excellence Cluster Universe, D-85748 Garching, Germany. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Yang, Y.; Zenteno, A.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Yang, Y.; Zenteno, A.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Zahn, O.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA. [Marrone, D. P.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. RP Vieira, JD (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM vieira@caltech.edu RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Williamson, Ross/0000-0002-6945-2975; Marrone, Daniel/0000-0002-2367-1080; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Stark, Antony/0000-0002-2718-9996 FU Canadian Astronomy Data Centre; National Research Council of Canada; Canadian Space Agency; Commonwealth of Australia; CSIRO; Legacy Archive for Microwave Background Data Analysis (LAMBDA); NASA Office of Space Science FX This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration, and the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research used the facilities of the Canadian Astronomy Data Centre operated by the National Research Council of Canada with the support of the Canadian Space Agency. The ATCA is part of the Australia Telescope, which is funded by the Commonwealth of Australia for operation as a national facility managed by the CSIRO. Some of the results in this paper have been derived using the HEALPix (G ' orski et al. 2005) package. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. NR 107 TC 157 Z9 157 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2010 VL 719 IS 1 BP 763 EP 783 DI 10.1088/0004-637X/719/1/763 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635KD UT WOS:000280653100068 ER PT J AU Rivera, EJ Laughlin, G Butler, RP Vogt, SS Haghighipour, N Meschiari, S AF Rivera, Eugenio J. Laughlin, Gregory Butler, R. Paul Vogt, Steven S. Haghighipour, Nader Meschiari, Stefano TI LICK-CARNEGIE EXOPLANET SURVEY: A URANUS-MASS FOURTH PLANET FOR GJ 876 IN AN EXTRASOLAR LAPLACE CONFIGURATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; planets and satellites: general; stars: individual (GJ 876) ID M-DWARFS; DETERMINISTIC MODEL; LUMINOSITY-RELATION; GIANT PLANETS; DEBRIS DISKS; SYSTEM; GJ-876; SEARCH; STARS; COMPANIONS AB Continued radial velocity (RV) monitoring of the nearby M4V red dwarf star GJ 876 with Keck/High Resolution Echelle Spectrograph has revealed the presence of a Uranus-mass fourth planetary companion in the system. The new planet has a mean period of P(e) = 126.6 days (over the 12.6-year baseline of the RV observations), and a minimum mass of m(e) sin i(e) = 12.9 +/- 1.7 M(circle dot). The detection of the new planet has been enabled by significant improvements to our RV data set for GJ 876. The data have been augmented by 36 new high-precision measurements taken over the past five years. In addition, the precision of all of the Doppler measurements have been significantly improved by the incorporation of a high signal-to-noise template spectrum for GJ 876 into the analysis pipeline. Implementation of the new template spectrum improves the internal rms errors for the velocity measurements taken during 1998-2005 from 4.1 m s(-1) to 2.5 m s(-1). Self-consistent, N-body fits to the RV data set show that the four-planet system has an invariable plane with an inclination relative to the plane of the sky of i = 59 degrees.5. The fit is not significantly improved by the introduction of a mutual inclination between the planets "b" and "c," but the new data do confirm a non-zero eccentricity, e(d) = 0.207 +/- 0.055 for the innermost planet, "d." In our best-fit coplanar model, the mass of the new component is m(e) = 14.6 +/- 1.7 M(circle plus). Our best-fitting model places the new planet in a three-body resonance with the previously known giant planets (which have mean periods of P(c) = 30.4 and P(b) = 61.1 days). The critical argument, phi(Laplace) = lambda(c) - 3 lambda(b) + 2 lambda(e), for the Laplace resonance librates with an amplitude of Delta phi(Laplace) = 40 degrees +/- 13 degrees about phi(Laplace) = 0 degrees. Numerical integration indicates that the four-planet system is stable for at least a billion years (at least for the coplanar cases). This resonant configuration of three giant planets orbiting an M dwarf primary differs from the well-known Laplace configuration of the three inner Galilean satellites of Jupiter, which are executing very small librations about phi(Laplace) = 180 degrees and which never experience triple conjunctions. The GJ 876 system, by contrast, comes close to a triple conjunction between the outer three planets once per every orbit of the outer planet, "e." C1 [Rivera, Eugenio J.; Laughlin, Gregory; Vogt, Steven S.; Meschiari, Stefano] Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Butler, R. Paul] Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA. [Haghighipour, Nader] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. [Haghighipour, Nader] Univ Hawaii Manoa, NASA Astrobiol Inst, Honolulu, HI 96822 USA. RP Rivera, EJ (reprint author), Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. EM rivera@ucolick.org RI Butler, Robert/B-1125-2009; OI Meschiari, Stefano/0000-0002-2930-0416 FU NSF [AST-0307493, AST-0908870, AST-0449986]; NASA [NNX07AR40G, NNX09AN05G]; NASA Astrobiology Institute at the Institute for Astronomy, University of Hawaii [NNA04CC08A]; Funds for Astrophysics Research, Inc; UC-Keck; UH-Keck; NASA-Keck Time Assignment Committees FX We sincerely thank Jacob Bean for refereeing and improving this work. S. S. V. gratefully acknowledges support from NSF grants AST-0307493 and AST-0908870 and from the NASA KECK PI program. R. P. B. gratefully acknowledges support from NASA OSS grant NNX07AR40G, the NASA Keck PI program, the Carnegie Institution of Washington, and the NAI, NASA Astrobiology Institute. G. L. acknowledges support from NSF grant AST-0449986. N.H. gratefully acknowledges support from NASA EXOB grant NNX09AN05G, the NASA Astrobiology Institute under cooperative agreement NNA04CC08A at the Institute for Astronomy, University of Hawaii, and a Theodore Dunham J. grant administered by Funds for Astrophysics Research, Inc. We also acknowledge the major contributions of fellow members of our previous California-Carnegie Exoplanet team: Geoff Marcy, Debra Fischer, Jason Wright, Katie Peek, and Andrew Howard, in helping us to obtain many of the pre-2008 RVs presented in this paper. The work herein is based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology, and we thank the UC-Keck, UH-Keck, and NASA-Keck Time Assignment Committees for their support. We also thank those of Hawaiian ancestry on whose sacred mountain of Mauna Kea we are privileged to be guests. Without their generous hospitality, the Keck observations presented herein would not have been possible. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. NR 64 TC 117 Z9 118 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2010 VL 719 IS 1 BP 890 EP 899 DI 10.1088/0004-637X/719/1/890 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635KD UT WOS:000280653100079 ER PT J AU Chandar, R Whitmore, BC Kim, H Kaleida, C Mutchler, M Calzetti, D Saha, A O'Connell, R Balick, B Bond, H Carollo, M Disney, M Dopita, MA Frogel, JA Hall, D Holtzman, JA Kimble, RA McCarthy, P Paresce, F Silk, J Trauger, J Walker, AR Windhorst, RA Young, E AF Chandar, Rupali Whitmore, Bradley C. Kim, Hwihyun Kaleida, Catherine Mutchler, Max Calzetti, Daniela Saha, Abhijit O'Connell, Robert Balick, Bruce Bond, Howard Carollo, Marcella Disney, Michael Dopita, Michael A. Frogel, Jay A. Hall, Donald Holtzman, Jon A. Kimble, Randy A. McCarthy, Patrick Paresce, Francesco Silk, Joe Trauger, John Walker, Alistair R. Windhorst, Rogier A. Young, Erick TI THE LUMINOSITY, MASS, AND AGE DISTRIBUTIONS OF COMPACT STAR CLUSTERS IN M83 BASED ON HUBBLE SPACE TELESCOPE/WIDE FIELD CAMERA 3 OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: individual (M83), galaxies: star clusters: general; stars: formation ID LARGE-MAGELLANIC-CLOUD; ANTENNAE GALAXIES; DISRUPTION MECHANISMS; NEARBY GALAXIES; SPIRAL GALAXIES; STELLAR; EVOLUTION; MODELS; POPULATION; ISOCHRONES AB The newly installed Wide Field Camera 3 (WFC3) on the Hubble Space Telescope has been used to obtain multi-band images of the nearby spiral galaxy M83. These new observations are the deepest and highest resolution images ever taken of a grand-design spiral, particularly in the near-ultraviolet, and allow us to better differentiate compact star clusters from individual stars and to measure the luminosities of even faint clusters in the U band. We find that the luminosity function (LF) for clusters outside of the very crowded starburst nucleus can be approximated by a power law, dN/dL proportional to L(alpha), with alpha = -2.04 +/- 0.08, down to M(V) approximate to -5.5. We test the sensitivity of the LF to different selection techniques, filters, binning, and aperture correction determinations, and find that none of these contribute significantly to uncertainties in alpha. We estimate ages and masses for the clusters by comparing their measured UBVI, H alpha colors with predictions from single stellar population models. The age distribution of the clusters can be approximated by a power law, dN/d tau proportional to tau(gamma), with gamma = -0.9 +/- 0.2, for M greater than or similar to few x 10(3) M(circle dot) and tau less than or similar to 4 x 10(8) yr. This indicates that clusters are disrupted quickly, with approximate to 80%-90% disrupted each decade in age over this time. The mass function of clusters over the same M-tau range is a power law, dN/dM proportional to M(beta), with beta = -1.94 +/- 0.16, and does not have bends or show curvature at either high or low masses. Therefore, we do not find evidence for a physical upper mass limit, MC, or for the earlier disruption of lower mass clusters when compared with higher mass clusters, i.e., mass-dependent disruption. We briefly discuss these implications for the formation and disruption of the clusters. C1 [Chandar, Rupali] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Whitmore, Bradley C.; Mutchler, Max; Bond, Howard] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Kim, Hwihyun; Kaleida, Catherine; Windhorst, Rogier A.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Calzetti, Daniela] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Saha, Abhijit] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [O'Connell, Robert] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Balick, Bruce] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Carollo, Marcella] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Disney, Michael] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Dopita, Michael A.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Frogel, Jay A.] AURA, Washington, DC 20005 USA. [Hall, Donald] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Holtzman, Jon A.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Kimble, Randy A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCarthy, Patrick] Carnegie Inst Washington, Pasadena, CA 91101 USA. [Paresce, Francesco] Estec, NL-2200 AG Noordwijk, Netherlands. [Silk, Joe] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Trauger, John] NASA JPL, Pasadena, CA 91109 USA. [Walker, Alistair R.] Cerro Tololo Interamer Observ, La Serena, Chile. [Young, Erick] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Chandar, R (reprint author), Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. EM Rupali.Chandar@utoledo.edu RI Kimble, Randy/D-5317-2012; Dopita, Michael/P-5413-2014; OI Dopita, Michael/0000-0003-0922-4986; silk, joe/0000-0002-1566-8148 FU Space Telescope Science Institute; NASA FX We thank Zolt Levay for making the color images used in Figures 1 and 3, and Gustavo Bruzual and Stephane Charlot for providing new cluster SED models for the WFC3 filter set prior to publication. We also thank the anonymous referee and Mike Fall for helpful comments. R. C. acknowledges support from NSF through CAREER award 0847467. This paper is based on Early Release Science observations made by the WFC3 Scientific Oversight Committee. We are grateful to the Director of the Space Telescope Science Institute for awarding Director's Discretionary time for this program. Finally, we are deeply indebted to the brave astronauts of STS-125 for rejuvenating HST. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 38 TC 70 Z9 70 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2010 VL 719 IS 1 BP 966 EP 978 DI 10.1088/0004-637X/719/1/966 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635KD UT WOS:000280653100085 ER PT J AU Corbet, RHD Pearlman, AB Buxton, M Levine, AM AF Corbet, Robin H. D. Pearlman, Aaron B. Buxton, Michelle Levine, Alan M. TI PROPERTIES OF THE 24 DAY MODULATION IN GX 13+1 FROM NEAR-INFRARED AND X-RAY OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: individual (GX 13+1); stars: neutron; X-rays: stars ID UNEVENLY SPACED DATA; TIME-SERIES ANALYSIS; RXTE ASM DATA; BINARIES; GX-13+1; VARIABILITY; PERIODICITIES; SPECTROSCOPY; BAT AB A 24 day period for the low-mass X-ray binary (LMXB) GX 13+1 was previously proposed on the basis of seven years of RXTE All-Sky Monitor (ASM) observations and it was suggested that this was the orbital period of the system. This would make it one of the longest known orbital periods for a Galactic LMXB powered by Roche lobe overflow. We present here the results of (1) K-band photometry obtained with the SMARTS Consortium CTIO 1.3 m telescope on 68 nights over a 10 month interval; (2) continued monitoring with the RXTE ASM, analyzed using a semi-weighted power spectrum instead of the data filtering technique previously used; and (3) Swift Burst Alert Telescope (BAT) hard X-ray observations. Modulation near 24 days is seen in both the K band and additional statistically independent ASM X-ray observations. However, the modulation in the ASM is not strictly periodic. The periodicity is also not detected in the Swift BAT observations, but modulation at the same relative level as seen with the ASM cannot be ruled out. If the 24 day period is the orbital period of system, this implies that the X-ray modulation is caused by structure that is not fixed in location. A possible mechanism for the X-ray modulation is the dipping behavior recently reported from XMM-Newton observations. C1 [Corbet, Robin H. D.] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. [Corbet, Robin H. D.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, CRESST, Greenbelt, MD 20771 USA. [Pearlman, Aaron B.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Buxton, Michelle] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Levine, Alan M.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. RP Corbet, RHD (reprint author), Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. EM corbet@umbc.edu; aaronp1@umbc.edu NR 38 TC 8 Z9 8 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2010 VL 719 IS 1 BP 979 EP 984 DI 10.1088/0004-637X/719/1/979 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635KD UT WOS:000280653100086 ER PT J AU Druon, JN Mannino, A Signorini, S McClain, C Friedrichs, M Wilkin, J Fennel, K AF Druon, J. N. Mannino, A. Signorini, S. McClain, C. Friedrichs, M. Wilkin, J. Fennel, K. TI Modeling the dynamics and export of dissolved organic matter in the Northeastern US continental shelf SO ESTUARINE COASTAL AND SHELF SCIENCE LA English DT Article DE dissolved organic matter; dissolved organic carbon; dissolved organic nitrogen; transport; carbon burial; modeling; USA; Mid-Atlantic Bight ID MID-ATLANTIC BIGHT; PHYTOPLANKTON EXTRACELLULAR RELEASE; CAPE-HATTERAS; SOUTHERN BIGHT; OPEN-OCEAN; NORTH-SEA; BIOCHEMICAL-COMPOSITION; CHEMICAL-COMPOSITION; NITROGEN RELEASE; BACTERIAL-GROWTH AB Continental shelves are believed to play a major role in carbon cycling due to their high productivity. To improve our understanding of carbon dynamics on continental margins, a dissolved organic matter (DOM) model was developed and imbedded within an existing coupled ocean circulation-biogeochemical model of the U.S. East coast. A model simulation with the DOM module was compared with the reference model (without the DOM module) to illustrate the role of DOM dynamics in coastal ocean biogeochemical cycling. Model results reveal that the progressive release of dissolved organic nitrogen (DON) in the ocean's upper layer during summer increases the regenerated primary production by 30-300%, which, in turn, enhances the dissolved organic carbon (DOC) production mainly from phytoplankton exudation in the upper layer and solubilization of particulate organic matter (POM) deeper in the water column. This analysis suggests that DOM is a necessary component for representing ecosystem functioning and organic fluxes in models because DOM (1) is a major organic pool directly related to primary production, (2) decouples partially the carbon and nitrogen cycles (through carbon excess uptake, POM solubilization and DOM mineralization) and (3) is intimately linked to the residence time of water masses for its distribution and export. The seasonally produced DOC on the shelf can be exported to the open ocean by horizontal transport at comparable rates (1-2 mol C m(-2) yr(-1)) to particulate organic carbon burial in the southern U.S. Mid-Atlantic Bight (MAB). (C) 2010 Elsevier Ltd. All rights reserved. C1 [Druon, J. N.; Mannino, A.; Signorini, S.; McClain, C.] NASA, Goddard Space Flight Ctr, Ocean Biol Proc Grp, Greenbelt, MD 20771 USA. [Friedrichs, M.] Coll William & Mary, Virginia Inst Marine Sci, Gloucester Point, VA 23062 USA. [Wilkin, J.] Rutgers State Univ, New Brunswick, NJ 08901 USA. [Fennel, K.] Dalhousie Univ, Dept Oceanog, Halifax, NS B3H 4J1, Canada. RP Druon, JN (reprint author), Commiss European Communities, Joint Res Ctr, Inst Protect & Secur Citizen, Maritime Affairs Unit, Via Fermi,TP 051, I-21027 Ispra, VA, Italy. EM jean-noel.druon@jrc.ec.europa.eu RI Fennel, Katja/A-7470-2009; Wilkin, John/E-5343-2011; Mannino, Antonio/I-3633-2014; OI Fennel, Katja/0000-0003-3170-2331; Wilkin, John/0000-0002-5444-9466; Friedrichs, Marjorie/0000-0003-2828-7595 FU NASA FX This work was supported by a NASA postdoctoral associateship arranged by Dr. Paula Bontempi, the NASA Ocean Biology and Biogeochemistry Program Manager, in the frame of the NASA Interdisciplinary Science Project U.S. Eastern Continental Shelf Carbon Budget (USECoS, http://www.ccpo.odu.edu/Research/US-ECoS/). We wish to thank John O'Reilly, Cindy Lee, Eileen Hofmann, Ray Najjar and Dale Haidvogel for the constructive discussions and suggestions on the project and Rutgers University, Institute of Marine and Coastal Sciences, for supplying the computer resources. The manuscript benefitted from comments provided by the editor, Ivan Valiela, and an anonymous reviewer. We thank the NASA Ocean Biology Processing Group for processing and distribution of SeaWiFS data. NR 100 TC 20 Z9 21 U1 1 U2 28 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0272-7714 EI 1096-0015 J9 ESTUAR COAST SHELF S JI Estuar. Coast. Shelf Sci. PD AUG 10 PY 2010 VL 88 IS 4 BP 488 EP 507 DI 10.1016/j.ecss.2010.05.010 PG 20 WC Marine & Freshwater Biology; Oceanography SC Marine & Freshwater Biology; Oceanography GA 624ZL UT WOS:000279860800007 ER PT J AU Cavanagh, PR Genc, KO Gopalakrishnan, R Kuklis, MM Maender, CC Rice, AJ AF Cavanagh, P. R. Genc, K. O. Gopalakrishnan, R. Kuklis, M. M. Maender, C. C. Rice, A. J. TI Foot forces during typical days on the international space station SO JOURNAL OF BIOMECHANICS LA English DT Article DE Spaceflight; Bone loss; Mechanical loading; Exercise; Countermeasures ID LONG-DURATION SPACEFLIGHT; BONE-STRUCTURE; ADAPTATION; DENSITY; INDIVIDUALS; MENOPAUSE; STRENGTH; WALKING; WOMEN; MODEL AB Decreased bone mineral density (BMD) in astronauts returning from long-duration spaceflight missions has been well documented, but the altered mechanical loading environment experienced by the musculoskeletal system, which may contribute to these changes, has not been well characterized. The current study describes the loading environment of the lower extremity (LE) during typical days on the International Space Station (ISS) compared to similar data for the same individuals living on Earth. Data from in-shoe force measurements are also used as input to the enhanced daily load stimulus (EDLS) model to determine the mechanical "dose" experienced by the musculoskeletal system and to associate this dose with changes in BMD. Four male astronauts on approximately 6-month missions to the ISS participated in this study. In-shoe forces were recorded using capacitance-based insoles during entire typical working days both on Earth and on-orbit. BMD estimates from the hip and spine regions were obtained from dual energy X-ray absorptiometry (DXA) pre- and post-flight. Measurable loading was recorded for only 30% of the time assigned for exercise. In-shoe forces during treadmill walking and running on the ISS were reduced by 25% and 46%, respectively, compared to similar activities on Earth. Mean on-orbit LE loads varied from 0.20 to 1.3 body weight (BW) during resistance exercise and were similar to 0.10 BW during bicycle ergometry. Application of the EDLS model showed a mean decrease of 25% in the daily load experienced by the LE. BMD decreased by 0.71% and 0.83% per month during their missions in the femoral neck and lumbar spine, respectively. Our findings support the conclusion that the measured ISS exercise durations and/or loading were insufficient to provide the loading stimulus required to prevent bone loss. Future trials with EDLS values closer to 100% of Earth values will offer a true test of exercise as a countermeasure to on-orbit bone loss. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Cavanagh, P. R.; Genc, K. O.; Rice, A. J.] Univ Washington, Dept Orthopaed & Sports Med, Seattle, WA 98195 USA. [Genc, K. O.] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA. [Gopalakrishnan, R.; Kuklis, M. M.] Cleveland Clin, Dept Biomed Engn, Cleveland, OH 44106 USA. [Maender, C. C.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Cavanagh, PR (reprint author), Univ Washington, Dept Orthopaed & Sports Med, BB 1065D,1959 NE Pacific St,Box 356500, Seattle, WA 98195 USA. EM cavanagh@uw.edu RI Gopalakrishnan, Raghavan/F-1213-2015 OI Gopalakrishnan, Raghavan/0000-0002-9038-9392 FU NASA [NCC9 153] FX This work was supported by NASA cooperative agreement NCC9 153. The remarkable cooperation of the subjects is acknowledged. We are also grateful to the many individuals at Penn State University (particularly Jess Snedeker and Ruth Ochia), the Cleveland Clinic, NASA Johnson Space Center, Lockheed Martin, Wyle Integrated Science and Engineering, and Baylor College of Medicine who made this experiment possible. NR 31 TC 30 Z9 34 U1 2 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-9290 J9 J BIOMECH JI J. Biomech. PD AUG 10 PY 2010 VL 43 IS 11 BP 2182 EP 2188 DI 10.1016/j.jbiomech.2010.03.044 PG 7 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA 646IU UT WOS:000281534000019 PM 20462584 ER PT J AU Moy, LA Knuteson, RO Tobin, DC Revercomb, HE Borg, LA Susskind, J AF Moy, L. A. Knuteson, R. O. Tobin, D. C. Revercomb, H. E. Borg, L. A. Susskind, J. TI Comparison of measured and modeled outgoing longwave radiation for clear-sky ocean and land scenes using coincident CERES and AIRS observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ENERGY SYSTEM CERES; WATER-VAPOR; ATMOSPHERIC RADIATION; BUDGET EXPERIMENT; BAND MODEL; PART II; CLOUDS; EARTH; VALIDATION; RADIANCE AB Clear-sky outgoing longwave radiation (OLR) is computed using the Atmospheric and Environmental Research (AER), Inc., Rapid Radiative Transfer Model (RRTM) for comparison with the observations of the Clouds and the Earth's Radiant Energy System (CERES) for both ocean and land scenes. CERES clear-sky OLR is in agreement with RRTM model calculations to 0.2% accuracy using best estimate radiosondes (BE) launched coincident with NASA Aqua overpasses at the Atmospheric Radiation Measurement Southern Great Plains (SGP) site and 0.8% using retrieved profiles of temperature, water vapor, ozone, and surface parameters from the Atmospheric Infrared Sounder (AIRS) on the Aqua platform. A partial flux analysis using AIRS radiances implies an accuracy for the RRTM model in the far infrared of 0.4% (about 0.5 W/m(2)) for wave numbers less than 650 cm(-1) (wavelengths greater than 15.4 mu m). CERES minus model biases over clear-sky ocean are similar to previously published results. Ordering the results according to the magnitude of the measured minus model mean bias for nighttime, tropical, ocean gives: +0.57 +/- 1.9 W/m(2) (Dessler/Fu-Liou), +0.83 +/- 1.5 W/m(2) (Huang/MODTRAN5), +1.6 +/- 1.6 W/m(2) (Moy/RRTM), +3.7 +/- 2.1 W/m(2) (Dessler/Chou). Comparison of observed minus modeled OLR over land are included in this study. Excluding nonfrozen ocean, a mean difference over land of +2.0 W/m(2) for nighttime cases and +1.0 W/m(2) for daytime cases is found where the land classes are weighted inversely by their standard error. The nighttime bias is quite consistent across all the land classes. The daytime bias shows less consistency with a tendency toward larger CERES minus AIRS RRTM OLR bias for the land classes with smaller vegetation fraction. Comparison of clear-sky CERES and AIRS RRTM OLR over cold snow-/ice-covered surfaces (mainly in the polar regions) is complicated by the use of the MODIS cloud mask in the identification of the clear CERES footprints used in the comparison. Clear scenes over cold surfaces can be identified more reliably in the daytime, for which the comparison between CERES and AIRS RRTM is better than 1.2 W/m(2) indicating good agreement. C1 [Moy, L. A.; Knuteson, R. O.; Tobin, D. C.; Revercomb, H. E.; Borg, L. A.] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. [Susskind, J.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. RP Moy, LA (reprint author), Univ Wisconsin, Ctr Space Sci & Engn, 1225 W Dayton St, Madison, WI 53706 USA. EM robert.knuteson@ssec.wisc.edu FU Office of Biological and Environmental Research of the U.S. Department of Energy [DE-FG02-90ER61057]; National Aeronautics and Space Administration [NNX07AD82G] FX This research was supported by the Office of Biological and Environmental Research of the U.S. Department of Energy under grant DE-FG02-90ER61057 and the National Aeronautics and Space Administration under grant NNX07AD82G. NR 60 TC 4 Z9 4 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 10 PY 2010 VL 115 AR D15110 DI 10.1029/2009JD012758 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 639EX UT WOS:000280955400001 ER PT J AU German, CR Bowen, A Coleman, ML Honig, DL Huber, JA Jakuba, MV Kinsey, JC Kurz, MD Leroy, S McDermott, JM de Lepinay, BM Nakamura, K Seewald, JS Smith, JL Sylva, SP Van Dover, CL Whitcomb, LL Yoerger, DR AF German, C. R. Bowen, A. Coleman, M. L. Honig, D. L. Huber, J. A. Jakuba, M. V. Kinsey, J. C. Kurz, M. D. Leroy, S. McDermott, J. M. de Lepinay, B. Mercier Nakamura, K. Seewald, J. S. Smith, J. L. Sylva, S. P. Van Dover, C. L. Whitcomb, L. L. Yoerger, D. R. TI Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE hydrothermal activity; mid-ocean ridge; microbiology; ocean chemistry; astrobiology ID CITY HYDROTHERMAL FIELD; SOUTHWEST INDIAN RIDGE; ATLANTIC RIDGE; ULTRAMAFIC ROCKS; CRITICAL-POINT; OCEAN CRUST; PLUME; SYSTEM; FLUIDS; CH4 AB Thirty years after the first discovery of high-temperature submarine venting, the vast majority of the global mid-ocean ridge remains unexplored for hydrothermal activity. Of particular interest are the world's ultraslow spreading ridges that were the last to be demonstrated to host high-temperature venting but may host systems particularly relevant to prebiotic chemistry and the origins of life. Here we report evidence for previously unknown, diverse, and very deep hydrothermal vents along the similar to 110 km long, ultraslow spreading Mid-Cayman Rise (MCR). Our data indicate that the MCR hosts at least three discrete hydrothermal sites, each representing a different type of water-rock interaction, including both mafic and ultramafic systems and, at similar to 5,000 m, the deepest known hydrothermal vent. Although submarine hydrothermal circulation, in which seawater percolates through and reacts with host lithologies, occurs on all mid-ocean ridges, the diversity of vent types identified here and their relative geographic isolation make the MCR unique in the oceans. These new sites offer prospects for an expanded range of vent-fluid compositions, varieties of abiotic organic chemical synthesis and extremophile microorganisms, and unparalleled faunal biodiversity-all in close proximity. C1 [German, C. R.; Bowen, A.; Kinsey, J. C.; Kurz, M. D.; McDermott, J. M.; Seewald, J. S.; Sylva, S. P.; Yoerger, D. R.] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Coleman, M. L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Coleman, M. L.] NASA, Astrobiol Inst, Pasadena, CA 91109 USA. [Honig, D. L.; Van Dover, C. L.] Duke Univ, Marine Lab, Beaufort, NC 28516 USA. [Huber, J. A.; Smith, J. L.] Marine Biol Lab, Woods Hole, MA 02543 USA. [Jakuba, M. V.] Univ Sydney, Australian Ctr Field Robot, Sydney, NSW 2006, Australia. [Leroy, S.] CNRS, Inst Sci Terre Paris, Unite Mixte Rech 7193, Paris, France. [de Lepinay, B. Mercier] Univ Nice Sophia Antipolis, Ctr Natl Rech Sci GeoAzur, Valbonne, France. [Nakamura, K.] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058567, Japan. [Whitcomb, L. L.] Johns Hopkins Univ, Lab Computat Sensing & Robot, Baltimore, MD 21218 USA. RP German, CR (reprint author), Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. EM cgerman@whoi.edu RI Whitcomb, Louis/A-3322-2010; Coleman, Max/A-1303-2007; Meyer, Julie/D-1021-2010; LEROY, Sylvie/G-5956-2010; Wright, Dawn/A-4518-2011; Sylva, Sean/D-4400-2014; OI Coleman, Max/0000-0002-5514-1826; Meyer, Julie/0000-0003-3382-3321; Wright, Dawn/0000-0002-2997-7611; Sylva, Sean/0000-0002-4727-440X; Kurz, Mark/0000-0003-1745-2356; Huber, Julie/0000-0002-4790-7633 FU National Aeronautics and Space Administration (NASA); Woods Hole Oceanographic Institution Ocean Ridge Initiative; Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA FX We thank the Captain and crew of RV Cape Hatteras and the Nereus technical team for shipboard support and D.P. Connelly and C.M. Sands (National Oceanography Centre, Southampton, UK) for help with operations at sea and shore-based TDFe and TDMn analyses. This research was funded through the National Aeronautics and Space Administration (NASA) Astrobiology Science and Technology for Exploring Planets program and the Woods Hole Oceanographic Institution Ocean Ridge Initiative. The contribution of M.L.C. was carried out as part of his work at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The perceptive insights of two anonymous reviewers greatly helped improve this manuscript. NR 43 TC 68 Z9 69 U1 2 U2 44 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 10 PY 2010 VL 107 IS 32 BP 14020 EP 14025 DI 10.1073/pnas.1009205107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 636UD UT WOS:000280767700011 PM 20660317 ER PT J AU Shultz, MJ Bisson, P Groenzin, H Li, I AF Shultz, Mary Jane Bisson, Patrick Groenzin, Henning Li, Irene TI Multiplexed polarization spectroscopy: Measuring surface hyperpolarizability orientation SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SUM-FREQUENCY GENERATION; LIQUID-SOLID INTERFACE; CH STRETCHING MODES; VIBRATIONAL SPECTROSCOPY; ACCURATE DETERMINATION; MOLECULAR-ORIENTATION; HARMONIC-GENERATION; ACETONITRILE-WATER; ADSORPTION LAYERS; SFG SPECTRUM AB Infrared-visible sum frequency generation (SFG) has seen increasing usage as a surface probe, particularly for liquid interfaces since they are amenable to few alternate probes. Interpreting the SFG data to arrive at a molecular-level configuration on the surface, however, remains a challenge. This paper reports a technique for analyzing and interpreting SFG data-called polarization-angle null or PAN-SFG. PAN-SFG enables ready identification of the ratio of the surface tangential and longitudinal hyperpolarizabilities-the hyperpolarizability direction-as well as the phase relationship between these components separated from the optical factors due to the substrate and experimental geometry. Separation of the surface optical factors results in an immediate connection between the null angle and the surface species polarization. If the Raman polarizability is also known, then PAN-SFG analysis, like the previously reported null techniques, provides a very accurate orientation. In addition, the reported polarization-angle, phase-shift analysis enables facile separation of the nonresonant background polarization from that of the resonant signal. Beyond orientation, PAN-SFG can be used to deconvolute overlapping resonances and identify components beyond a dipole response. This paper reports PAN-SFG for two systems providing deeper insight into both. An acetonitrile-water mixture was previously reported to undergo a phase transition at 7 mol %, attributed to a sudden change in orientation. PAN-SFG demonstrates that acetonitrile generates a classic dipole response and provides compelling evidence that the acetonitrile configuration remains constant as a function of concentration. An alternate model for the phase transition is presented. Like many aqueous systems, the SFG spectrum of the hydrogen-bonded region of ice consists of broad and overlapping features; features previously identified with PAN-SFG. Here PAN-SFG analysis is used to show that the reddest of these, the feature at 3098 cm(-1), contains a significant quadrupole contribution that grows as the temperature is lowered. The quadrupole and its temperature dependence are used to assign the 3098 cm(-1) feature to bilayer-stitching-hydrogen bonds. This is the first definitive assignment in the hydrogen-bonded region of water. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3463449] C1 [Shultz, Mary Jane; Bisson, Patrick] Tufts Univ, Dept Chem, Water & Surfaces Lab, Medford, MA 02155 USA. [Groenzin, Henning] MB Technol GmbH, D-71063 Sindelfingen, Germany. [Li, Irene] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Shultz, MJ (reprint author), Tufts Univ, Dept Chem, Water & Surfaces Lab, Pearson Bldg, Medford, MA 02155 USA. EM mary.shultz@tufts.edu OI Bisson, Patrick/0000-0002-4985-3077 FU NSF [CHE0844986, CHE0240172] FX We gratefully acknowledge support of this work by the NSF under Grant Nos. CHE0844986 and CHE0240172. NR 64 TC 10 Z9 10 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 7 PY 2010 VL 133 IS 5 AR 054702 DI 10.1063/1.3463449 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 642LL UT WOS:000281215000026 PM 20707544 ER PT J AU Le Page, Y van der Werf, GR Morton, DC Pereira, JMC AF Le Page, Y. van der Werf, G. R. Morton, D. C. Pereira, J. M. C. TI Modeling fire-driven deforestation potential in Amazonia under current and projected climate conditions SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID FOREST FRAGMENTATION; GLOBAL PRECIPITATION; BRAZILIAN AMAZON; RAIN-FOREST; LAND-USE; DYNAMICS; DROUGHT; FUTURE; MODIS; SUSCEPTIBILITY AB Fire is a widely used tool to prepare deforested areas for agricultural use in Amazonia. Deforestation is currently concentrated in seasonal forest types along the 'arc of deforestation', where dry-season conditions facilitate burning of clear-felled vegetation. Interior Amazon forests, however, are less suitable for fire-driven deforestation due to more humid climate conditions. These forests will ultimately come under more intense pressure as the deforestation frontier advances. Whether these regions continue to be protected by humid conditions partly determines land use changes in interior Amazon forests. Here, we present a study of the climate constraint on deforestation fires in Amazonia under present-day and projected climate conditions. We used precipitation data and satellite-based active fire detections to model fire-driven deforestation potential. Our model results suggest that 58% of the Amazon forest is too wet to permit fire-driven deforestation under current average climate conditions. Under the IPCC B1 scenario, the model indicates increased fire potential by 2050 in eastern Amazonia, while dry-season precipitation may provide limitations on projected deforestation by 2050 in central and western Amazonia. However, the entire region is very sensitive to a possible drying with climate change; a reduction in dry-season precipitation of 200 mm/year would reduce the climate constraint on deforestation fires from 58% to only 24% of the forest. Our results suggest that dry-season climate conditions will continue to shape land use decisions in Amazonia through mid-century, and should therefore be included in deforestation projections for the region. C1 [Le Page, Y.; Pereira, J. M. C.] Inst Super Agron, Dept Engn Florestal, P-1349017 Lisbon, Portugal. [Morton, D. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [van der Werf, G. R.] Vrije Univ Amsterdam, Fac Earth & Life Sci, Dept Hydrol & Geo Environm Sci, NL-1081 HV Amsterdam, Netherlands. RP Le Page, Y (reprint author), Inst Super Agron, Dept Engn Florestal, P-1349017 Lisbon, Portugal. EM niquya@gmail.com RI Le Page, Yannick/B-4627-2008; Morton, Douglas/D-5044-2012; Pereira, Jose/I-1283-2014; van der Werf, Guido/M-8260-2016 OI Pereira, Jose/0000-0003-2583-3669; van der Werf, Guido/0000-0001-9042-8630 NR 51 TC 17 Z9 17 U1 0 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD AUG 7 PY 2010 VL 115 AR G03012 DI 10.1029/2009JG001190 PG 11 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 636GH UT WOS:000280719100002 ER PT J AU Baluchamy, S Ravichandran, P Periyakaruppan, A Ramesh, V Hall, JC Zhang, Y Jejelowo, O Gridley, DS Wu, HL Ramesh, GT AF Baluchamy, Sudhakar Ravichandran, Prabakaran Periyakaruppan, Adaikkappan Ramesh, Vani Hall, Joseph C. Zhang, Ye Jejelowo, Olufisayo Gridley, Daila S. Wu, Honglu Ramesh, Govindarajan T. TI Induction of Cell Death through Alteration of Oxidants and Antioxidants in Lung Epithelial Cells Exposed to High Energy Protons SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID FACTOR-KAPPA-B; OXIDATIVE STRESS; CARBON NANOTUBES; REACTIVE OXYGEN; APOPTOSIS; CANCER; DAMAGE AB Radiation affects several cellular and molecular processes, including double strand breakage and modifications of sugar moieties and bases. In outer space, protons are the primary radiation source that poses a range of potential health risks to astronauts. On the other hand, the use of proton irradiation for tumor radiation therapy is increasing, as it largely spares healthy tissues while killing tumor tissues. Although radiation-related research has been conducted extensively, the molecular toxicology and cellular mechanisms affected by proton irradiation remain poorly understood. Therefore, in this study, we irradiated rat lung epithelial cells with different doses of protons and investigated their effects on cell proliferation and death. Our data show an inhibition of cell proliferation in proton-irradiated cells with a significant dose-dependent activation and repression of reactive oxygen species and antioxidants glutathione and superoxide dismutase, respectively, compared with control cells. In addition, the activities of apoptosis-related genes such as caspase-3 and -8 were induced in a dose-dependent manner with corresponding increased levels of DNA fragmentation in proton-irradiated cells compared with control cells. Together, our results show that proton irradiation alters oxidant and antioxidant levels in cells to activate the apoptotic pathway for cell death. C1 [Baluchamy, Sudhakar; Ravichandran, Prabakaran; Ramesh, Vani; Hall, Joseph C.; Ramesh, Govindarajan T.] Norfolk State Univ, Mol Toxicol Lab, Ctr Biotechnol & Biomed Sci, Dept Biol, Norfolk, VA 23504 USA. [Periyakaruppan, Adaikkappan; Jejelowo, Olufisayo] Texas So Univ, Dept Biol, Houston, TX 77004 USA. [Zhang, Ye; Wu, Honglu] NASA, Lyndon B Johnson Space Ctr, Radiat Biophys Lab, Houston, TX 77058 USA. [Zhang, Ye; Wu, Honglu] NASA, Lyndon B Johnson Space Ctr, Human Adaptat & Countermeasures Div, Houston, TX 77058 USA. [Gridley, Daila S.] Loma Linda Univ, Med Ctr, Dept Radiat Med, Loma Linda, CA 92354 USA. RP Ramesh, GT (reprint author), Norfolk State Univ, Mol Toxicol Lab, Ctr Biotechnol & Biomed Sci, Dept Biol, Norfolk, VA 23504 USA. EM gtramesh@nsu.edu RI Periyakaruppan, Adaikkappan/B-7398-2013; Gridley, Daila/P-7711-2015 OI Periyakaruppan, Adaikkappan/0000-0002-0395-6564; FU NIH [1P20MD001822-1]; NASA [NNX08BA47A, NCC-1-02038] FX This work was supported, by NIH (1P20MD001822-1) and NASA Grants NNX08BA47A and NCC-1-02038. NR 20 TC 18 Z9 19 U1 0 U2 2 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD AUG 6 PY 2010 VL 285 IS 32 BP 24769 EP 24774 DI 10.1074/jbc.M110.138099 PG 6 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 633YB UT WOS:000280542100049 PM 20538614 ER PT J AU Li, F Newman, PA Stolarski, RS AF Li, Feng Newman, Paul A. Stolarski, Richard S. TI Relationships between the Brewer-Dobson circulation and the southern annular mode during austral summer in coupled chemistry-climate model simulations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID OZONE DEPLETION; EXTRATROPICAL CIRCULATION; GREENHOUSE GASES; CHANGING CLIMATE; STRATOSPHERE; TROPOSPHERE; HEMISPHERE; TRENDS; VARIABILITY; ATMOSPHERE AB The Brewer-Dobson circulation (BDC) is the mean meridional mass circulation in the stratosphere and the southern annular mode (SAM) is the prime variability pattern of the Southern Hemisphere extratropical troposphere. Motivated by previous studies showing that both the strengths of the BDC and the SAM have the largest trends in the austral summer in the recent past, this paper investigates the relationships between the BDC and the SAM using coupled chemistry-climate model simulations. The model results show that the strengthening of the BDC in the Southern Hemisphere during November-February (NDJF) is strongly projected onto the high index of the SAM. The trends in the BDC and the SAM are driven by Antarctic ozone depletion, which increases stratosphere-troposphere interactions through a delayed Antarctic vortex breakup. The prolonged persistence of stratospheric westerlies enhances upward propagation of tropospheric wave activity into the stratosphere and strengthens the BDC. The wave flux and westerly anomalies in the stratosphere in turn drive a SAM trend toward its high index. Model results also show that the BDC-SAM relationship is robust on the interannual time scale. C1 [Li, Feng] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Newman, Paul A.; Stolarski, Richard S.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Branch, Greenbelt, MD 20771 USA. RP Li, F (reprint author), Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, 5523 Res Pk Dr,Suite 320, Baltimore, MD 21228 USA. EM feng.li@nasa.gov RI Newman, Paul/D-6208-2012; Li, Feng/H-2241-2012; Stolarski, Richard/B-8499-2013 OI Newman, Paul/0000-0003-1139-2508; Stolarski, Richard/0000-0001-8722-4012 FU NASA FX This work was supported by NASA's Modeling and Analysis program. We thank three anonymous reviewers for their insightful comments. The NCEP Reanalysis 2 data are provided by the NOAA/OAR/ESRL PSD, Boulder, CO, USA, from their Web site at http://www.esrl.noaa.gov/psd/. NR 38 TC 6 Z9 6 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 6 PY 2010 VL 115 AR D15106 DI 10.1029/2009JD012876 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 636GC UT WOS:000280718500003 ER PT J AU Olsen, MA Douglass, AR Schoeberl, MR Rodriquez, JM Yoshida, Y AF Olsen, Mark A. Douglass, Anne R. Schoeberl, Mark R. Rodriquez, Jose M. Yoshida, Yasuko TI Interannual variability of ozone in the winter lower stratosphere and the relationship to lamina and irreversible transport SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ISENTROPIC TRANSPORT; POLAR VORTICES; MODEL; ATMOSPHERE; TROPICS; AREA AB We use the high-resolution dynamic limb sounder (HIRDLS) high-vertical resolution ozone profiles in the northern hemisphere lower stratosphere to examine the meridional transport out of the tropics. We focus on February 2005-2007 when there are differences in the dynamical background in the lower stratosphere due to the states of the quasi-biennial oscillation and polar vortex. HIRDLS data reveal a large number of low ozone laminae that have the characteristics of tropical air at midlatitudes. More laminae are observed in February in 2006 than in 2005 or 2007. Because laminae can form, move out of the tropics, and return to the tropics without mixing into the midlatitude ozone field, the number of laminae is not directly related to the net transport. We use equivalent latitude coordinates to discriminate between reversible and irreversible laminar transport. The equivalent latitude analysis shows greater irreversible transport between the tropics and lower midlatitudes in both 2005 and 2007 compared to 2006 despite the higher number of laminae observed in 2006. Our conclusion that there was more irreversible transport of tropical air into the lower midlatitudes in 2005 and 2007 is supported by equivalent length analysis of mixing using microwave limb sounder N2O measurements. This study shows that reversibility must be considered in order to infer the importance of lamination to net transport. C1 [Olsen, Mark A.; Yoshida, Yasuko] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 20771 USA. [Douglass, Anne R.; Rodriquez, Jose M.] NASA, Atmospher Chem & Dynam Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Schoeberl, Mark R.] Sci & Technol Corp, Hampton, VA 23666 USA. RP Olsen, MA (reprint author), Univ Maryland, Goddard Earth Sci & Technol Ctr, MS 613-3, Baltimore, MD 20771 USA. EM mark.olsen@nasa.gov RI Douglass, Anne/D-4655-2012 FU NASA; EOS FX The authors thank three anonymous referees that provided constructive comments that improved the final manuscript. This work was supported by NASA's Atmospheric Chemistry Modeling and Analysis Program and EOS Interdisciplinary Science Program. NR 43 TC 11 Z9 11 U1 2 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 6 PY 2010 VL 115 AR D15305 DI 10.1029/2009JD013004 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 636GC UT WOS:000280718500004 ER PT J AU Zhang, YC Long, CN Rossow, WB Dutton, EG AF Zhang, Yuanchong Long, Charles N. Rossow, William B. Dutton, Ellsworth G. TI Exploiting diurnal variations to evaluate the ISCCP-FD flux calculations and radiative-flux-analysis-processed surface observations from BSRN, ARM, and SURFRAD SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID DATA SETS; CLOUD; NETWORK; CLIMATE; SKIES; MODEL; TOP AB Using a meteorological similarity comparison method (MSCM), we performed a mutual and simultaneous evaluation of the surface radiative flux datasets from the International Satellite Cloud Climatology Project-FD and the new radiative-flux-analysis-processed surface observations (RFA-PSO). For downward shortwave (SW), diffuse (Dif), and direct (Dir) fluxes, matching cloud fraction (CF) reduces the flux difference between FD and RFA-PSO by up to a factor of 2. Decreasing the aerosol optical depth values used in the FD calculations accounts for much of the remaining difference. For downward longwave (LW) flux, matching either surface air temperature or CF reduces the flux difference to nearly zero. For the total downward SW diurnal variations, there is excellent agreement for both clear and cloudy sky, but less good agreement for the Dif and Dir components. The latter agree much better for clear sky when the FD aerosol optical depth is reduced and for cloudy sky when matching CF and cloud optical depth jointly. For LW diurnal variations, the agreement is best for clear sky, but FD has a larger amplitude by 3-7 W/m(2) for cloudy sky because of differing sensitivities to cirrus and low clouds in the two datasets. These results confirm that the source of the FD surface flux uncertainty of similar to 10-15 W/m(2) is the input quantities, not the radiative transfer model. An important limitation of the RFA-PSO cloud parameters (not the fluxes) is the inhomogeneous diurnal sampling and the retrieval difficulties with broken clouds (SW) and cirrus clouds (LW). C1 [Zhang, Yuanchong] Columbia Univ, Dept Appl Phys & Appl Math, NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Dutton, Ellsworth G.] Natl Ocean & Atmospher Adm, ESRL, R GMD, Global Monitoring Div, Boulder, CO 80305 USA. [Long, Charles N.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Rossow, William B.] CUNY, Remote Sensing CREST, NASA,Goddard Inst Space Studies, Cooperat Remote Sensing Sci & Technol Ctr CREST, New York, NY 10031 USA. RP Zhang, YC (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, NASA, Goddard Inst Space Studies, 2880 Broadway,Rm 320-B, New York, NY 10025 USA. EM yzhang@giss.nasa.gov RI Rossow, William/F-3138-2015 FU NASA [NNXD7AN04G, NNXD7AO90G]; Climate Change Research Division of the U. S. Department of Energy FX We thank the principal investigators, Rick Wagener, Brent N. Holben, and Ross Mitchell for their efforts in establishing and maintaining Nauru, Manus, and Darwin AERONET sites, respectively, and Connor Flynn for his data processing for these sites. The work by two authors (Y. Zhang and W. B. Rossow) is supported by NASA grant NNXD7AN04G, the MAP program directed by Dr. Donald Anderson, and grant NNXD7AO90G, the NEWS project directed by Dr. Jared Entin. C. N. Long acknowledges the support of the Climate Change Research Division of the U. S. Department of Energy as part of the Atmospheric Radiation Measurement (ARM) Program. Recognition is also extended to those responsible for the operation and maintenance of the instruments that produced the measurements used in this study; their diligent and dedicated efforts are often underappreciated. NR 37 TC 16 Z9 16 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 6 PY 2010 VL 115 AR D15105 DI 10.1029/2009JD012743 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 636GC UT WOS:000280718500001 ER PT J AU Kaul, AB Megerian, KG Jennings, AT Greer, JR AF Kaul, Anupama B. Megerian, Krikor G. Jennings, Andrew T. Greer, Julia R. TI In situ characterization of vertically oriented carbon nanofibers for three-dimensional nano-electro-mechanical device applications SO NANOTECHNOLOGY LA English DT Article ID NANOTUBES; INSTABILITIES; NANOWIRES AB We have performed mechanical and electrical characterization of individual as-grown, vertically oriented carbon nanofibers (CNFs) using in situ techniques, where such high-aspect-ratio, nanoscale structures are of interest for three-dimensional (3D) electronics, in particular 3D nano-electro-mechanical-systems (NEMS). Nanoindentation and uniaxial compression tests conducted in an in situ nanomechanical instrument, SEMentor, suggest that the CNFs undergo severe bending prior to fracture, which always occurs close to the bottom rather than at the substrate-tube interface, suggesting that the CNFs are well adhered to the substrate. This is also consistent with bending tests on individual tubes which indicated that bending angles as large as similar to 70 degrees. could be accommodated elastically. In situ electrical transport measurements revealed that the CNFs grown on refractory metallic nitride buffer layers were conducting via the sidewalls, whereas those synthesized directly on Si were electrically unsuitable for low-voltage dc NEMS applications. Electrostatic actuation was also demonstrated with a nanoprobe in close proximity to a single CNF and suggests that such structures are attractive for nonvolatile memory applications. Since the magnitude of the actuation voltage is intimately dictated by the physical characteristics of the CNFs, such as diameter and length, we also addressed the ability to tune these parameters, to some extent, by adjusting the plasma-enhanced chemical vapor deposition growth parameters with this bottom-up synthesis approach. C1 [Kaul, Anupama B.; Megerian, Krikor G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jennings, Andrew T.; Greer, Julia R.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. RP Kaul, AB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM anupama.b.kaul@jpl.nasa.gov FU Jet Propulsion Laboratory, California Institute of Technology [R.08.023.060]; NSF CAREER [DMR-0748267] FX We sincerely acknowledge Robert Kowalczyk for his assistance with the PECVD growth chamber, Ron Ruiz for assistance with SEM configuration, Henry LeDuc for deposition equipment, in addition to Choonsup Lee, Abdur Khan, Leif Bagge, Richard Baron, Paul von Allmen, and Larry Epp for useful discussions. We would also like to thank Shelby Hutchens of the California Institute of Technology (Caltech), Brian Peters of Agilent Technologies for SEM imaging (figures 3(a) and (b)), and Dongchan Jang for assistance with the TEM sample preparation. We gratefully acknowledge critical support and infrastructure provided for this work by the Kavli Nanoscience Institute at Caltech. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and was funded through the internal Research and Technology Development (R&TD) program 01STCR, R.08.023.060. JRG also gratefully acknowledges the financial support of NSF CAREER grant (DMR-0748267). NR 28 TC 10 Z9 10 U1 2 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD AUG 6 PY 2010 VL 21 IS 31 AR 315501 DI 10.1088/0957-4484/21/31/315501 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 626JC UT WOS:000279961200012 PM 20622301 ER PT J AU Slavin, JA Anderson, BJ Baker, DN Benna, M Boardsen, SA Gloeckler, G Gold, RE Ho, GC Korth, H Krimigis, SM McNutt, RL Nittler, LR Raines, JM Sarantos, M Schriver, D Solomon, SC Starr, RD Travnicek, PM Zurbuchen, TH AF Slavin, James A. Anderson, Brian J. Baker, Daniel N. Benna, Mehdi Boardsen, Scott A. Gloeckler, George Gold, Robert E. Ho, George C. Korth, Haje Krimigis, Stamatios M. McNutt, Ralph L., Jr. Nittler, Larry R. Raines, Jim M. Sarantos, Menelaos Schriver, David Solomon, Sean C. Starr, Richard D. Travnicek, Pavel M. Zurbuchen, Thomas H. TI MESSENGER Observations of Extreme Loading and Unloading of Mercury's Magnetic Tail SO SCIENCE LA English DT Article ID SOLAR-WIND; MAGNETOSPHERE; SUBSTORMS; RECONNECTION; MAGNETOTAIL; TRANSPORT; MODEL AB During MESSENGER's third flyby of Mercury, the magnetic field in the planet's magnetic tail increased by factors of 2 to 3.5 over intervals of 2 to 3 minutes. Magnetospheric substorms at Earth are powered by similar tail loading, but the amplitude is lower by a factor of similar to 10 and typical durations are similar to 1 hour. The extreme tail loading observed at Mercury implies that the relative intensity of substorms must be much larger than at Earth. The correspondence between the duration of tail field enhancements and the characteristic time for the Dungey cycle, which describes plasma circulation through Mercury's magnetosphere, suggests that such circulation determines the substorm time scale. A key aspect of tail unloading during terrestrial substorms is the acceleration of energetic charged particles, but no acceleration signatures were seen during the MESSENGER flyby. C1 [Slavin, James A.; Boardsen, Scott A.; Sarantos, Menelaos] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Anderson, Brian J.; Gold, Robert E.; Ho, George C.; Korth, Haje; Krimigis, Stamatios M.; McNutt, Ralph L., Jr.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Baker, Daniel N.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. [Baker, Daniel N.] Univ Colorado, Dept Phys, Boulder, CO 80303 USA. [Baker, Daniel N.] Univ Colorado, Astrophys & Planetary Sci Dept, Boulder, CO 80303 USA. [Benna, Mehdi] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Benna, Mehdi; Boardsen, Scott A.; Sarantos, Menelaos] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Gloeckler, George; Raines, Jim M.; Zurbuchen, Thomas H.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Gloeckler, George] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Krimigis, Stamatios M.] Acad Athens, Athens 11527, Greece. [Nittler, Larry R.; Solomon, Sean C.] Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA. [Schriver, David; Travnicek, Pavel M.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Starr, Richard D.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Travnicek, Pavel M.] Acad Sci Czech Republic, Inst Astron, Prague 14131, Czech Republic. RP Slavin, JA (reprint author), NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. EM james.a.slavin@nasa.gov RI Anderson, Brian/I-8615-2012; Slavin, James/H-3170-2012; McNutt, Ralph/E-8006-2010; Sarantos, Menelaos/H-8136-2013; Travnicek, Pavel/G-8608-2014; Ho, George/G-3650-2015; Benna, Mehdi/F-3489-2012 OI Slavin, James/0000-0002-9206-724X; McNutt, Ralph/0000-0002-4722-9166; Ho, George/0000-0003-1093-2066; FU NASA [NAS5-97271, NASW-00002]; NSF Center for Integrated Space Weather Modeling FX We thank all those who contributed to the success of the MESSENGER flybys of Mercury. We thank J. Feggans and M. Marosy for data visualization and graphics support. The MESSENGER project is supported by the NASA Discovery Program under contracts NAS5-97271 to the Johns Hopkins University Applied Physics Laboratory and NASW-00002 to the Carnegie Institution of Washington. Small parts of the work were supported by an NSF Center for Integrated Space Weather Modeling grant. NR 27 TC 88 Z9 88 U1 5 U2 11 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD AUG 6 PY 2010 VL 329 IS 5992 BP 665 EP 668 DI 10.1126/science.1188067 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 634RV UT WOS:000280602700034 PM 20647422 ER PT J AU Vervack, RJ McClintock, WE Killen, RM Sprague, AL Anderson, BJ Burger, MH Bradley, ET Mouawad, N Solomon, SC Izenberg, NR AF Vervack, Ronald J., Jr. McClintock, William E. Killen, Rosemary M. Sprague, Ann L. Anderson, Brian J. Burger, Matthew H. Bradley, E. Todd Mouawad, Nelly Solomon, Sean C. Izenberg, Noam R. TI Mercury's Complex Exosphere: Results from MESSENGER's Third Flyby SO SCIENCE LA English DT Article ID SOLAR-WIND INTERACTION; MAGNETOSPHERE; SODIUM; SURFACE; ACCELERATION; ATMOSPHERE; DISCOVERY; EMISSION; MISSION; CALCIUM AB During MESSENGER's third flyby of Mercury, the Mercury Atmospheric and Surface Composition Spectrometer detected emission from ionized calcium concentrated 1 to 2 Mercury radii tailward of the planet. This measurement provides evidence for tailward magnetospheric convection of photoions produced inside the magnetosphere. Observations of neutral sodium, calcium, and magnesium above the planet's north and south poles reveal altitude distributions that are distinct for each species. A two-component sodium distribution and markedly different magnesium distributions above the two poles are direct indications that multiple processes control the distribution of even single species in Mercury's exosphere. C1 [Vervack, Ronald J., Jr.; Anderson, Brian J.; Izenberg, Noam R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [McClintock, William E.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. [Killen, Rosemary M.; Burger, Matthew H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sprague, Ann L.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Bradley, E. Todd] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Mouawad, Nelly] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Solomon, Sean C.] Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA. RP Vervack, RJ (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. EM Ron.Vervack@jhuapl.edu RI Anderson, Brian/I-8615-2012; Izenberg, Noam/F-3952-2015; Vervack, Ronald/C-2702-2016 OI Izenberg, Noam/0000-0003-1629-6478; Vervack, Ronald/0000-0002-8227-9564 FU NASA [NAS5-97271, NASW-00002]; MESSENGER Participating Scientist Program FX We thank M. Lankton and M. Kochte for their contributions to the acquisition and analysis of the data reported here and J. Slavin and D. Blewett for insightful comments. The MESSENGER project is supported by the NASA Discovery Program under contracts NAS5-97271 to the Johns Hopkins University Applied Physics Laboratory and NASW-00002 to the Carnegie Institution of Washington. R. J. V., R. M. K., and A. L. S. are supported by the MESSENGER Participating Scientist Program. NR 24 TC 45 Z9 45 U1 2 U2 14 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD AUG 6 PY 2010 VL 329 IS 5992 BP 672 EP 675 DI 10.1126/science.1188572 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 634RV UT WOS:000280602700036 PM 20647427 ER PT J AU Bucholtz, A Hlavka, DL McGill, MJ Schmidt, KS Pilewskie, P Davis, SM Reid, EA Walker, AL AF Bucholtz, Anthony Hlavka, Dennis L. McGill, Matthew J. Schmidt, K. Sebastian Pilewskie, Peter Davis, Sean M. Reid, Elizabeth A. Walker, Annette L. TI Directly measured heating rates of a tropical subvisible cirrus cloud SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID RADIATIVE PROPERTIES; ACCURATE PARAMETERIZATION; LIDAR MEASUREMENTS; CLIMATE MODELS; TROPOPAUSE; THIN; IMPACT; STRATOSPHERE; TROPOSPHERE; AEROSOL AB We present the first direct measurements of the infrared and solar heating rates of a tropical subvisible cirrus (SVC) cloud sampled off the east coast of Nicaragua on 25 July 2007 by the NASA ER-2 aircraft during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4). On this day a persistent thin cirrus layer, with mostly clear skies underneath, was detected in real time by the cloud lidar on the ER-2, and the aircraft was directed to profile down through the SVC. Measurements of the net broadband infrared irradiance and spectrally integrated solar irradiance above, below, and through the SVC are used to determine the infrared and solar heating rates of the cloud. The lidar measurements show that the variable SVC layer was located between similar to 13 and 15 km. Its midvisible optical depth varied from 0.01 to 0.10 with a mean of 0.034 +/- 0.033. Its depolarization ratio was approximately 0.4, indicative of ice clouds. From the divergence of the measured net irradiances the infrared heating rate of the SVC was determined to be similar to 2.50-3.24 K d(-1) and the solar heating rate was found to be negligible. These values are consistent with previous indirect observations of other SVC and with model-generated heating rates of SVC with similar optical depths. This study illustrates the utility and potential of the profiling sampling strategy employed here. A more fully instrumented high-altitude aircraft that also included in situ cloud and aerosol probes would provide a comprehensive data set for characterizing both the radiative and microphysical properties of these ubiquitous tropical clouds. C1 [Bucholtz, Anthony; Reid, Elizabeth A.; Walker, Annette L.] Naval Res Lab, Marine Meteorol Div, Monterey, CA 93943 USA. [McGill, Matthew J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hlavka, Dennis L.] Sci Syst & Applicat, Lanham, MD USA. [Schmidt, K. Sebastian; Pilewskie, Peter] Univ Colorado, Dept Atmospher & Ocean Sci, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Davis, Sean M.] NOAA, Earth Syst Res Lab, Div Chem Sci, Boulder, CO 80305 USA. RP Bucholtz, A (reprint author), Naval Res Lab, Marine Meteorol Div, 7 Grace Hopper Ave,Stop 2, Monterey, CA 93943 USA. EM anthony.bucholtz@nrlmry.navy.mil RI Davis, Sean/C-9570-2011; McGill, Matthew/D-8176-2012; SCHMIDT, KONRAD SEBASTIAN/C-1258-2013; Manager, CSD Publications/B-2789-2015; OI Davis, Sean/0000-0001-9276-6158; SCHMIDT, KONRAD SEBASTIAN/0000-0003-3899-228X; Hlavka, Dennis/0000-0002-2976-7243 FU NASA [NNH07A-F56I] FX We are grateful to Warren Gore and Tony Trias from NASA Ames Research Center for their engineering and technical support during TC4, especially with the integration of the BBIR instruments into the SSFR data acquisition system on the ER-2 aircraft. This work was supported by the NASA Radiation Sciences Program under grant NNH07A-F56I (TC4). NR 43 TC 9 Z9 9 U1 2 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 5 PY 2010 VL 115 AR D00J09 DI 10.1029/2009JD013128 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 636GB UT WOS:000280718400004 ER PT J AU Bucsela, EJ Pickering, KE Huntemann, TL Cohen, RC Perring, A Gleason, JF Blakeslee, RJ Albrecht, RI Holzworth, R Cipriani, JP Vargas-Navarro, D Mora-Segura, I Pacheco-Hernandez, A Laporte-Molina, S AF Bucsela, Eric J. Pickering, Kenneth E. Huntemann, Tabitha L. Cohen, Ronald C. Perring, Anne Gleason, James F. Blakeslee, Richard J. Albrecht, Rachel I. Holzworth, Robert Cipriani, James P. Vargas-Navarro, Dylana Mora-Segura, Ileana Pacheco-Hernandez, Alexia Laporte-Molina, Sadi TI Lightning-generated NOx seen by the Ozone Monitoring Instrument during NASA's Tropical Composition, Cloud and Climate Coupling Experiment (TC4) SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TROPOSPHERIC CHEMISTRY; SATELLITE-OBSERVATIONS; DETECTION EFFICIENCY; LOCATION NETWORK; IN-SITU; GOME; RETRIEVAL; TRANSPORT; NITROGEN; MODEL AB We present case studies identifying lightning-generated upper tropospheric NOx (LNOx) observed during NASA's Tropical Composition, Cloud and Climate Coupling Experiment (TC4) in July and August 2007. In the campaign, DC-8 aircraft missions, flown from Costa Rica, recorded in situ NO2 profiles near active storms and in relatively quiet areas. We combine these TC4 DC-8 data with satellite data from the Ozone Monitoring Instrument (OMI) to estimate the lightning-generated NO2 (LNO2), above background levels, in the observed OMI NO2 fields. We employ improved off-line processing techniques to customize the OMI retrieval for LNO2. Information on lightning flashes (primarily cloud-to-ground) observed by the Costa Rica Lightning Detection Network operated by the Instituto Costarricense de Electricidad and the World Wide Lightning Location Network were examined over storms upwind of regions where OMI indicates enhanced LNO2. These flash data are compared with Tropical Rainfall Measuring Mission/Lightning Imaging Sensor satellite data to estimate total flashes. Finally, using [NOx]/[NO2] ratios from NASA's Global Modeling Initiative model, we estimate LNOx production per flash for four cases and obtain rates of similar to 100-250 mol/flash. These are consistent with rates derived from previous studies of tropical and subtropical storms and below those from modeling of observed midlatitude storms. In our study, environments with stronger anvil-level winds were associated with higher production rates. LIS flash footprint data for one of the low-LNOx production cases with weak upper tropospheric winds suggest below-average flash lengths for this storm. LNOx enhancements over background determined from the OMI data were in less than, but roughly proportional to, aircraft estimates. C1 [Bucsela, Eric J.] SRI Int Inc, Menlo Pk, CA 94025 USA. [Pickering, Kenneth E.; Gleason, James F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Huntemann, Tabitha L.; Albrecht, Rachel I.; Cipriani, James P.] Univ Maryland, College Pk, MD 20742 USA. [Cohen, Ronald C.; Perring, Anne] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Blakeslee, Richard J.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35808 USA. [Holzworth, Robert] Univ Washington, Seattle, WA 98195 USA. RP Bucsela, EJ (reprint author), SRI Int Inc, 333 Ravenswood Ave,40457, Menlo Pk, CA 94025 USA. EM bucsela@ix.netcom.com RI Gleason, James/E-1421-2012; Pickering, Kenneth/E-6274-2012; Albrecht, Rachel/D-9311-2012; Perring, Anne/G-4597-2013; Cohen, Ronald/A-8842-2011 OI Albrecht, Rachel/0000-0003-0582-6568; Perring, Anne/0000-0003-2231-7503; Cohen, Ronald/0000-0001-6617-7691 FU NASA FX This research was supported by the NASA Aura Validation Program. Lightning data from the Costa Rica Lightning Detection Network were provided by Instituto Costarricense de Electricidad. NR 43 TC 23 Z9 24 U1 2 U2 27 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 5 PY 2010 VL 115 AR D00J10 DI 10.1029/2009JD013118 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 636GB UT WOS:000280718400003 ER PT J AU Drube, L Leer, K Goetz, W Gunnlaugsson, HP Haspang, MP Lauritsen, N Madsen, MB Sorensen, LKD Ellehoj, MD Lemmon, MT Morris, RV Blaney, D Reynolds, RO Smith, PH AF Drube, L. Leer, K. Goetz, W. Gunnlaugsson, H. P. Haspang, M. P. Lauritsen, N. Madsen, M. B. Sorensen, L. K. D. Ellehoj, M. D. Lemmon, M. T. Morris, R. V. Blaney, D. Reynolds, R. O. Smith, P. H. TI Magnetic and optical properties of airborne dust and settling rates of dust at the Phoenix landing site SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID MARS-PATHFINDER; MARTIAN DUST; IMAGER; CALIBRATION; MINERALOGY; OXIDES; ANALOG; SOIL AB The Magnetic Properties Experiment (referred to as iSweep or Caltarget) onboard the Phoenix lander was executed in the arctic region of Mars during the mission's 152 sols lifetime. The iSweep experiment involved periodic multispectral imaging of a series of permanent ring magnets. It was designed to attract airborne magnetic dust particles to certain areas on the iSweeps thereby sorting all settling airborne particles at least to some degree according to their magnetic properties. The dust on the area directly above the strong magnets of the iSweep was found to be brighter than that collected on the precursor Sweep Magnet Experiment onboard the Mars Exploration Rovers near Mars' equator, and also this dust is found to be brighter than both surface soil near the lander and soil in the region surrounding the lander. As most other dust and soils on Mars, the Phoenix dust lacks strong spectral signatures of highly crystalline phases. For the first time, based on the complete calibrated data set of images of the iSweeps, spectra were extracted of the putative dust falling on the magnetically protected areas of the iSweeps. These areas are accessible only for particles with a magnetic susceptibility below 10(-3). Spectra of this nonmagnetic dust are interpreted as signals from nonmagnetic minerals such as tectosilicates or glasses pigmented by poorly crystalline ferric oxides. Rates of dust settling were determined to be 1.08 mu m/sol on the magnets and 0.06 mu m/sol for the magnetically protected areas. C1 [Drube, L.; Leer, K.; Haspang, M. P.; Lauritsen, N.; Madsen, M. B.; Sorensen, L. K. D.; Ellehoj, M. D.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Goetz, W.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Gunnlaugsson, H. P.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus, Denmark. [Lemmon, M. T.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Morris, R. V.] NASA, Lyndon B Johnson Space Ctr, Code KR, Houston, TX 77058 USA. [Blaney, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Reynolds, R. O.; Smith, P. H.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85705 USA. RP Drube, L (reprint author), Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. EM line@nbi.ku.dk RI Lemmon, Mark/E-9983-2010; Madsen, Morten/D-2082-2011; OI Lemmon, Mark/0000-0002-4504-5136; Madsen, Morten/0000-0001-8909-5111; Ellehoj, Mads/0000-0002-6961-2537 FU NASA; Lundbeck Foundation; Danish Research Agency FX We thank the capable team of engineers and scientists who made the Phoenix mission possible and NASA for its support of our endeavors. Some of the data used in this paper was generously provided by these colleagues: The CRISM spectrum was provided by Ray Arvidson, and the Hubble spectrum was provided by Jim Bell III. The solar power data and information on the development of the dust factor during the mission were provided by Jeff Coyne and Bill Jackson of Lockheed Martin. Comments by an anonymous reviewer and by Jason Soderblom have significantly improved the paper and are highly appreciated. Financial support from the Lundbeck Foundation and the Danish Research Agency is gratefully acknowledged. NR 38 TC 9 Z9 9 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD AUG 5 PY 2010 VL 115 AR E00E23 DI 10.1029/2009JE003419 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 636GT UT WOS:000280720500001 ER PT J AU Leutenegger, MA Beiersdorfer, P Brown, GV Kelley, RL Kilbourne, CA Porter, FS AF Leutenegger, M. A. Beiersdorfer, P. Brown, G. V. Kelley, R. L. Kilbourne, C. A. Porter, F. S. TI Measurement of Anomalously Strong Emission from the 1s-9p Transition in the Spectrum of H-Like Phosphorus Following Charge Exchange with Molecular Hydrogen SO PHYSICAL REVIEW LETTERS LA English DT Article ID BEAM ION-TRAP; SELECTIVE ELECTRON-CAPTURE; SOLAR-WIND; SLOW COLLISIONS; CROSS-SECTIONS; EXCITED-STATES; PDX TOKAMAK; PLASMAS; SPECTROMETER; SPECTROSCOPY AB We have measured K-shell x-ray spectra of highly ionized argon and phosphorus following charge exchange with molecular hydrogen at low collision energy in an electron beam ion trap using an x-ray calorimeter array with similar to 6 eV resolution. We find that the emission at the high end of the Lyman series is greater by a factor of 2 for phosphorus than for argon, even though the measurement was performed concurrently and the atomic numbers are similar. This does not agree with current theoretical models and deviates from the trend observed in previous measurements. C1 [Leutenegger, M. A.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Beiersdorfer, P.; Brown, G. V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Beiersdorfer, P.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Leutenegger, MA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012 OI Porter, Frederick/0000-0002-6374-1119; FU NASA; US Department of Energy [DE-AC52-07NA27344] FX We would like to acknowledge the aid of D. Thorn and J. Clementson in data acquisition; M.F. Gu for calibration support; and E. Magee for technical support. M.A.L. is supported by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. Part of this work was performed by Lawrence Livermore National Laboratory under the auspices of the US Department of Energy under Contract No. DE-AC52-07NA27344. The XRS/EBIT instrument was constructed and maintained with support from NASA. NR 34 TC 10 Z9 10 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 5 PY 2010 VL 105 IS 6 AR 063201 DI 10.1103/PhysRevLett.105.063201 PG 4 WC Physics, Multidisciplinary SC Physics GA 634UZ UT WOS:000280612400005 PM 20867978 ER PT J AU Goetz, W Pike, WT Hviid, SF Madsen, MB Morris, RV Hecht, MH Staufer, U Leer, K Sykulska, H Hemmig, E Marshall, J Morookian, JM Parrat, D Vijendran, S Bos, BJ El Maarry, MR Keller, HU Kramm, R Markiewicz, WJ Drube, L Blaney, D Arvidson, RE Bell, JF Reynolds, R Smith, PH Woida, P Woida, R Tanner, R AF Goetz, W. Pike, W. T. Hviid, S. F. Madsen, M. B. Morris, R. V. Hecht, M. H. Staufer, U. Leer, K. Sykulska, H. Hemmig, E. Marshall, J. Morookian, J. M. Parrat, D. Vijendran, S. Bos, B. J. El Maarry, M. R. Keller, H. U. Kramm, R. Markiewicz, W. J. Drube, L. Blaney, D. Arvidson, R. E. Bell, J. F., III Reynolds, R. Smith, P. H. Woida, P. Woida, R. Tanner, R. TI Microscopy analysis of soils at the Phoenix landing site, Mars: Classification of soil particles and description of their optical and magnetic properties SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID CHEMISTRY AB The optical microscope onboard the Phoenix spacecraft has returned color images (4 mu m pixel(-1)) of soils that were delivered to and held on various substrates. A preliminary taxonomy of Phoenix soil particles, based on color, size, and shape, identifies the following particle types [generic names in brackets]: (1) reddish fines, mostly unresolved, that are spectrally similar to (though slightly darker than) global airborne dust [red fines], (2) silt-to sand-sized brownish grains [brown sand], (3) silt-to sand-sized black grains [black sand], and (4) small amounts of whitish fines, possibly salts [white fines]. Most particles have a saturation magnetization in the range 0.5-2 Am-2 kg(-1) as inferred from their interaction with magnetic substrates. The particle size distribution has two distinct peaks below 10 mu m (fines) and in the range 20-100 mu m (grains), respectively, and is different from that of ripple soils in Gusev crater. In particular medium to large sand grains appear to be absent in Phoenix soils. Most sand grains have subrounded shape with variable texture. A fractured grain (observed on sol 112) reveals evidence of micrometer-sized crystal facets. The brown sand category displays a large diversity in color including shiny, almost colorless particles. Potential source regions for these grains may be the Tharsis volcanoes or Heimdal crater (20 km east of the landing site). The black grains are suggested to belong to a more widespread population of particles with mafic mineralogy. The absence of black/brown composite grains is consistent with different formation pathways and source regions for each grain type. C1 [Goetz, W.; Hviid, S. F.; El Maarry, M. R.; Keller, H. U.; Kramm, R.; Markiewicz, W. J.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Arvidson, R. E.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63108 USA. [Bell, J. F., III] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Hecht, M. H.; Morookian, J. M.; Blaney, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Bos, B. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Madsen, M. B.; Leer, K.; Drube, L.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Pike, W. T.; Sykulska, H.; Hemmig, E.; Vijendran, S.] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2AZ, England. [Marshall, J.] SETI Inst, Mountain View, CA 94043 USA. [Parrat, D.] Univ Neuchatel, Inst Microtechnol, CH-2000 Neuchatel, Switzerland. [Morris, R. V.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Reynolds, R.; Smith, P. H.; Woida, P.; Woida, R.; Tanner, R.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85719 USA. [Staufer, U.] Delft Univ Technol, Micro & Nano Engn Lab, NL-2600 AA Delft, Netherlands. RP Goetz, W (reprint author), Max Planck Inst Solar Syst Res, Max Planck Str 2, D-37191 Katlenburg Lindau, Germany. EM goetz@mps.mpg.de RI Madsen, Morten/D-2082-2011; Staufer, Urs/J-6866-2016; OI Madsen, Morten/0000-0001-8909-5111; Staufer, Urs/0000-0002-3519-6467; EL-MAARRY, MOHAMED RAMY/0000-0002-8262-0320 FU Deutsches Zentrum fur Luft- und Raumfahrt e.V. (DLR) [50 QM 0602]; UK Science and Technology Facilities Council; Wolferman Nageli Foundation; NASA/JPL; Swiss National Science foundation; NASA FX This research was supported in part by Deutsches Zentrum fur Luft- und Raumfahrt e.V. (DLR) grant 50 QM 0602, the UK Science and Technology Facilities Council, the Wolferman Nageli Foundation, and NASA/JPL. D. Parrat acknowledges a fellowship from the Swiss National Science foundation. R. V. Morris acknowledges support of the NASA Mars Phoenix Scout Mission Project and the NASA Johnson Space Center. M. B. Madsen, K. Leer, and L. Drube acknowledge support from the Danish Research Agency and from the Lundbeck Foundation. Discussions with R. Sullivan, Cornell University, on ripple types and associated soil particle sizes at the Gusev site were very inspiring. R. Bugiolacchi, Max Planck Institute for Solar System Research, helped with processing of some images. NR 42 TC 30 Z9 30 U1 1 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD AUG 4 PY 2010 VL 115 AR E00E22 DI 10.1029/2009JE003437 PG 23 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 636GR UT WOS:000280720300001 ER PT J AU Cane, HV Richardson, IG Von Rosenvinge, TT AF Cane, H. V. Richardson, I. G. Von Rosenvinge, T. T. TI A study of solar energetic particle events of 1997-2006: Their composition and associations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID CORONAL MASS EJECTIONS; III RADIO-BURSTS; INNER HELIOSPHERE; RAY FLARES; ACCELERATION; ABUNDANCES; SPACECRAFT; ELECTRON; PROTONS; ORIGIN AB We examined the properties and associations of 280 solar proton events that extended above 25 MeV and occurred in the years 1997-2006. The properties include early peak intensities of five species over several energy ranges and the intensity-time profiles. Solar event associations were made for as many events as possible. The solar parameters determined include coronal mass ejection and flare properties and radio emissions from a wavelength range of meters to kilometers. The events were divided into five representative types based on the relative abundances and particle profiles to more easily illustrate how particle characteristics vary with the solar parameters. We find a continuum of event properties with no indication of specific parameters that clearly separate out groups of events. There is, however, a reasonable separation of events based on the timing of the associated type III emissions relative to the H a flare. Type III bursts indicate the presence of flare particles that escape to the interplanetary medium. The least intense, relatively short-lived, proton events that are electron-rich (and generally Fe-rich and He-rich) have associated type III bursts that occur at the start of the flare (i.e., in the impulsive phase), indicating rapid acceleration and escape of particles. In the largest events the type III emissions occur after the impulsive phase. It is likely that this late acceleration and/or release of particles results in a composition different from that of impulsive acceleration and release. A scenario in which concomitant flare processes contribute particles in the majority of solar energetic particle events is consistent with the observations. C1 [Cane, H. V.; Richardson, I. G.; Von Rosenvinge, T. T.] NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Cane, H. V.] Univ Tasmania, Sch Math & Phys, Hobart, Tas, Australia. [Richardson, I. G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Richardson, I. G.] Univ Maryland, CRESST, College Pk, MD 20742 USA. RP Cane, HV (reprint author), NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Code 661, Greenbelt, MD 20771 USA. EM Hilary.Cane@utas.edu.au; Ian.G.Richardson@nasa.gov; Tycho.T.vonRosenvinge@nasa.gov OI Richardson, Ian/0000-0002-3855-3634 NR 32 TC 52 Z9 52 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD AUG 4 PY 2010 VL 115 AR A08101 DI 10.1029/2009JA014848 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 636HA UT WOS:000280721200003 ER PT J AU Jiang, JH Su, H Pawson, S Liu, HC Read, WG Waters, JW Santee, ML Wu, DL Schwartz, MJ Livesey, NJ Lambert, A Fuller, RA Lee, JN AF Jiang, Jonathan H. Su, Hui Pawson, Steven Liu, Hui-Chun Read, William G. Waters, Joe W. Santee, Michelle L. Wu, Dong L. Schwartz, Michael J. Livesey, Nathaniel J. Lambert, Alyn Fuller, Ryan A. Lee, Jae N. TI Five year (2004-2009) observations of upper tropospheric water vapor and cloud ice from MLS and comparisons with GEOS-5 analyses SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID RELAXED ARAKAWA-SCHUBERT; SEA-SURFACE TEMPERATURE; TROPICAL TROPOPAUSE; VARIATIONAL ANALYSIS; ATMOSPHERIC BRIDGE; EL-NINO; CONVECTION; TRANSPORT; STRATOSPHERE; IRIS AB This paper gives an overview of August 2004 through February 2010 upper tropospheric (UT) water vapor (H2O) and ice water content (IWC) from the Aura Microwave Limb Sounder (MLS) and comparisons with outputs from the NASA Goddard Earth Observing System Version 5 (GEOS-5) data assimilation system. Both MLS and GEOS-5 show that high values of H2O and IWC at 215 to 147 hPa are associated with areas of deep convection. They exhibit good (within similar to 15%) agreement in IWC at these altitudes, but GEOS-5 H2O is similar to 50% (215 hPa) to similar to 30% (147 hPa) larger than MLS values, possibly due to higher temperatures in the data assimilation system at these altitudes. A seasonally migrating band of tropical deep convection is clearly evident in both the MLS and GEOS-5 UT H2O and IWC, but GEOS-5 produces a weaker intertropical convergence zone than MLS. MLS and GEOS-5 both show spatial anticorrelation between IWC and H2O at 100 hPa, where low H2O is associated with low temperatures in regions of tropical convection. At 100 hPa, GEOS-5 produces 50% less IWC and 15% less H2O in the tropics, and similar to 20% more H2O in the extratropics, than does MLS. Behavior of the 100 hPa H2O is consistent with it being controlled by temperature. The seasonal cycle in the vertical transport of tropical mean H2O from similar to 147 hPa to similar to 10 hPa appears much stronger in MLS than in GEOS-5. The UT IWC and H2O interannual variations, from both MLS and GEOS-5, show clear imprints of the El Nino-Southern Oscillation. C1 [Jiang, Jonathan H.; Su, Hui; Read, William G.; Waters, Joe W.; Santee, Michelle L.; Wu, Dong L.; Schwartz, Michael J.; Livesey, Nathaniel J.; Lambert, Alyn; Fuller, Ryan A.; Lee, Jae N.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Pawson, Steven; Liu, Hui-Chun] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. RP Jiang, JH (reprint author), CALTECH, Jet Prop Lab, MS 183-701,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM jonathan.h.jiang@jpl.nasa.gov RI Schwartz, Michael/F-5172-2016; Wu, Dong/D-5375-2012; Pawson, Steven/I-1865-2014 OI Schwartz, Michael/0000-0001-6169-5094; Pawson, Steven/0000-0003-0200-717X FU Jet Propulsion Laboratory, California Institute of Technology, NASA; NASA FX The authors acknowledge the support from the Aura MLS project, Jet Propulsion Laboratory, California Institute of Technology, conducted under contract with NASA. We also acknowledge the support by NASA's Modeling and Analysis Program (MAP) for the Global Modeling and Assimilation Office at NASA Goddard Space Flight Center. The GEOS-5 data assimilation system is run on NASA's High-Performance Computing (HEC) resources at NASA's Goddard Research Center. NR 50 TC 23 Z9 23 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 3 PY 2010 VL 115 AR D15103 DI 10.1029/2009JD013256 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 636GA UT WOS:000280718300006 ER PT J AU Johnson, MS Meskhidze, N Solmon, F Gasso, S Chuang, PY Gaiero, DM Yantosca, RM Wu, SL Wang, YX Carouge, C AF Johnson, Matthew S. Meskhidze, Nicholas Solmon, Fabien Gasso, Santiago Chuang, Patrick Y. Gaiero, Diego M. Yantosca, Robert M. Wu, Shiliang Wang, Yuxuan Carouge, Claire TI Modeling dust and soluble iron deposition to the South Atlantic Ocean SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ANTARCTIC CIRCUMPOLAR CURRENT; MINERAL AEROSOL SOLUTIONS; SULFUR-DIOXIDE; PHYTOPLANKTON BLOOM; ATMOSPHERIC IRON; SAHARAN DUST; DESERT DUST; DISSOLUTION; TRANSPORT; ACID AB The global chemical transport model GEOS-Chem, implemented with a dust-iron dissolution scheme, was used to analyze the magnitude and spatial distribution of mineral dust and soluble-iron (sol-Fe) deposition to the South Atlantic Ocean (SAO). The comparison of model results with remotely sensed data shows that GEOS-Chem can capture dust source regions in Patagonia and characterize the temporal variability of dust outflow. For a year-long model simulation, 22 Tg of mineral dust and 4 Gg of sol-Fe were deposited to the surface waters of the entire SAO region, with roughly 30% of this dust and sol-Fe predicted to be deposited to possible high nitrate low chlorophyll oceanic regions. Model-predicted dissolved iron fraction of mineral dust over the SAO was small, on average only accounting for 0.57% of total iron. Simulations suggest that the primary reason for such a small fraction of sol-Fe is the low ambient concentrations of acidic trace gases available for mixing with dust plumes. Overall, the amount of acid added to the deliquesced aerosol solution was not enough to overcome the alkalinity buffer of Patagonian dust and initiate considerable acid dissolution of mineral-iron. Sensitivity studies show that the amount of sol-Fe deposited to the SAO was largely controlled by the initial amount of sol-Fe at the source region, with limited contribution from the spatial variability of Patagonian-desert topsoil mineralogy and natural sources of acidic trace gases. Simulations suggest that Patagonian dust should have a minor effect on biological productivity in the SAO. C1 [Yantosca, Robert M.; Carouge, Claire] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Chuang, Patrick Y.] Univ Calif Santa Cruz, Earth & Planetary Sci Dept, Santa Cruz, CA 95064 USA. [Gaiero, Diego M.] Univ Nacl Cordoba, FCEFyN, CIGeS, RA-5000 Cordoba, Argentina. [Solmon, Fabien] UPS, Lab Aerol, CNRS, Toulouse, France. [Gasso, Santiago] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Wu, Shiliang] Michigan Technol Univ, Atmospher Sci Program, Dept Geol & Min Engn & Sci, Houghton, MI 49931 USA. [Wu, Shiliang] Michigan Technol Univ, Dept Civil & Environm Engn, Houghton, MI 49931 USA. [Wang, Yuxuan] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. [Johnson, Matthew S.; Meskhidze, Nicholas] N Carolina State Univ, Dept Marine Earth & Atmospher Sci, Raleigh, NC 27695 USA. RP Johnson, MS (reprint author), N Carolina State Univ, Dept Marine Earth & Atmospher Sci, Box 8208, Raleigh, NC 27695 USA. RI Wang, Yuxuan/C-6902-2014; Yantosca, Robert/F-7920-2014; Chem, GEOS/C-5595-2014; Gasso, Santiago/H-9571-2014; OI Wang, Yuxuan/0000-0002-1649-6974; Yantosca, Robert/0000-0003-3781-1870; Gasso, Santiago/0000-0002-6872-0018; Gaiero, Diego Marcelo/0000-0003-1029-2265; Carouge, Claire/0000-0002-0313-8385 FU National Science Foundation [ATM-0826117]; North Carolina Space Grant FX This research was supported by the National Science Foundation through grant ATM-0826117. Matthew Johnson also acknowledges support from the North Carolina Space Grant Graduate Research Fellowship. The authors would like to thank Duncan Fairlie of the NASA Langley Research Center for his help with the application of the GEOS-Chem dust module. We thank Brent Holben for his effort in establishing and maintaining the Trelew AERONET site. Thanks are also owed to Daniel Jacob and the Harvard University Atmospheric Chemistry Modeling Group for providing the base model GEOS-Chem used during our research. NR 100 TC 32 Z9 33 U1 2 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 3 PY 2010 VL 115 AR D15202 DI 10.1029/2009JD013311 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 636GA UT WOS:000280718300007 ER PT J AU Lawson, RP Jensen, E Mitchell, DL Baker, B Mo, QX Pilson, B AF Lawson, R. Paul Jensen, Eric Mitchell, David L. Baker, Brad Mo, Qixu Pilson, Bryan TI Microphysical and radiative properties of tropical clouds investigated in TC4 and NAMMA SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID OPTICAL ARRAY PROBES; IN-SITU OBSERVATIONS; CIRRUS CLOUDS; ICE CRYSTALS; PART I; AIRCRAFT MEASUREMENTS; WATER-CONTENT; ANVIL CLOUDS; SENSITIVITY; SCATTERING AB The size, shape and concentration of ice particles in tropical anvil cirrus and in situ cirrus clouds have a significant impact on cloud radiative forcing, and hence on global climate change. Data collected in tropical anvil and cirrus clouds with a 2D-S probe, an optical imaging probe with improved response characteristics and the ability to remove shattered artifacts, are analyzed and discussed. The data were collected with NASA DC-8 and WB-57F research aircraft near Costa Rica during the 2007 Tropical Composition, Cloud and Climate Coupling (TC4) field project, and with the DC-8 near Cape Verde during the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA) campaign. Data were collected in convective turrets, anvils still attached to convection, aged anvils detached from convection and cirrus formed in situ. Unusually strong maritime convection was encountered, with peak updrafts of 20 m s(-1), ice water contents exceeding 2 g m(-3) and total particle concentrations exceeding 10 cm(-3) at 12.2 km. Ice water contents in the anvils declined outward from the center of convection, decreasing to < 0.1 g m(-3) in aged anvil cirrus. The data show that microphysical and radiative properties of both tropical anvils and cirrus are most strongly influenced by ice particles in the size range from about 100 to 400 mm. This is contrary to several previous investigations that have suggested that ice particles less than about 50 mm control radiative properties in anvils and cirrus. The 2D-S particle area and mass size distributions, plus information on particle shape, are input into an optical properties routine that computes cloud extinction, asymmetry parameter and single scattering albedo. These optical properties are then input into two-stream radiative code to compute radiative heating profiles within the various cloud types. The results produce short-and long-wave heating/cooling vertical profiles in these tropical clouds. A simple parameterization based on 2D-S measurements is derived from the particle mass size distribution that yields an area size distribution. The parameterized area size distribution can then be used in large-scale numerical simulations that include radiative transfer packages. C1 [Lawson, R. Paul; Baker, Brad; Mo, Qixu; Pilson, Bryan] SPEC Inc, Boulder, CO 80301 USA. [Jensen, Eric] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Mitchell, David L.] Univ Nevada, Desert Res Inst, Reno, NV 89512 USA. RP Lawson, RP (reprint author), SPEC Inc, 3022 Sterling Cir, Boulder, CO 80301 USA. EM plawson@specinc.com FU NASA [NNX06AC09G (NAMMA), NNX07AK81G (TC4)]; Office of Science (BER), U.S. Department of Energy [DE-FG02-06ER64201] FX The authors gratefully acknowledge funding from NASA under contracts NNX06AC09G (NAMMA) and NNX07AK81G (TC4). In addition, support from the U.S. Navy's Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) agency for supporting development of the 2D-S probe is appreciated. The Office of Science (BER), U.S. Department of Energy (grant DE-FG02-06ER64201) sponsored D.L.M.'s participation in this research. We would like to thank the aircraft crews and NASA support staffs that made the NAMMA and TC4 field campaigns such a great success. NR 58 TC 48 Z9 48 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 3 PY 2010 VL 115 AR D00J08 DI 10.1029/2009JD013017 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 636GA UT WOS:000280718300004 ER PT J AU Nguyen, J Soibel, A Ting, DZY Hill, CJ Lee, MC Gunapala, SD AF Nguyen, Jean Soibel, Alexander Ting, David Z. -Y. Hill, Cory J. Lee, Mike C. Gunapala, Sarath D. TI Low dark current long-wave infrared InAs/GaSb superlattice detectors SO APPLIED PHYSICS LETTERS LA English DT Article ID PHOTODIODES AB Surface leakage reduction has been achieved using BCl(3)/Cl(2)/CH(4)/H(2)/Ar inductively coupled plasma dry etching for pixel isolation of high performance long-wave infrared superlattice detectors. The leakage has been minimized by effectively increasing the surface resistivity by more than 7.4 times and decreasing the surface state density by more than 3.8 times. Through altering the etch mechanism, the dark current density was reduced by more than two orders of magnitude where a dark current of 1.01 x 10(-5) A/cm(2) at 200 mV was achieved at T=77 K for a 10.3 mu m detector with a peak quantum efficiency value of 30% (without antireflection coating). (C) 2010 American Institute of Physics. [doi:10.1063/1.3476342] C1 [Nguyen, Jean; Soibel, Alexander; Ting, David Z. -Y.; Hill, Cory J.; Lee, Mike C.; Gunapala, Sarath D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Nguyen, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM jean.nguyen@jpl.nasa.gov RI Soibel, Alexander/A-1313-2007 FU Missile Defense Agency FX The authors would like to thank R. Tower and P. Moffitt with BAE Systems for helpful discussions and M. Tidrow, L. Zheng, and S. Bandara for encouragement and support. The research described in this paper was sponsored by the Missile Defense Agency and was carried out at the Jet Propulsion Laboratory, California Institute of Technology, through an agreement with the National Aeronautrics and Space Administration. NR 12 TC 25 Z9 25 U1 4 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 2 PY 2010 VL 97 IS 5 AR 051108 DI 10.1063/1.3476342 PG 3 WC Physics, Applied SC Physics GA 640NY UT WOS:000281059500008 ER PT J AU Tripathi, N Bell, LD Nikzad, S Shahedipour-Sandvik, F AF Tripathi, N. Bell, L. D. Nikzad, S. Shahedipour-Sandvik, F. TI Effect of n(+)GaN cap polarization field on Cs-free GaN photocathode characteristics SO APPLIED PHYSICS LETTERS LA English DT Article AB We report on a Cs-free GaN photocathode structure in which band engineering at the photocathode surface caused by Si delta doping eliminates the need for use of cesium for photocathode activation. The structure is capped with a highly doped n(+)GaN layer. We have identified that n(+)GaN cap thickness plays an important role in limiting the effect of polarization induced charges at the GaN surface on the photocathode emission threshold. Physics based device simulations is used for further analysis of the experimental results. Our findings clearly illustrate the impact of polarization induced surface charges on the device properties including its emission threshold. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3476341] C1 [Tripathi, N.; Shahedipour-Sandvik, F.] SUNY Albany, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA. [Bell, L. D.; Nikzad, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Tripathi, N (reprint author), SUNY Albany, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA. EM sshahedipour@uamail.albany.edu NR 9 TC 10 Z9 10 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 2 PY 2010 VL 97 IS 5 AR 052107 DI 10.1063/1.3476341 PG 3 WC Physics, Applied SC Physics GA 640NY UT WOS:000281059500030 ER PT J AU Rittenhouse, CD Pidgeon, AM Albright, TP Culbert, PD Clayton, MK Flather, CH Huang, CQ Masek, JG Stewart, SI Radeloff, VC AF Rittenhouse, Chadwick D. Pidgeon, Anna M. Albright, Thomas P. Culbert, Patrick D. Clayton, Murray K. Flather, Curtis H. Huang, Chengquan Masek, Jeffrey G. Stewart, Susan I. Radeloff, Volker C. TI Conservation of Forest Birds: Evidence of a Shifting Baseline in Community Structure SO PLOS ONE LA English DT Article ID SPECIES RICHNESS; NESTING SUCCESS; MIGRATORY BIRDS; LAND-USE; LANDSCAPE; FRAGMENTATION; HABITAT; DYNAMICS; BIODIVERSITY; ABUNDANCE AB Background: Quantifying changes in forest bird diversity is an essential task for developing effective conservation actions. When subtle changes in diversity accumulate over time, annual comparisons may offer an incomplete perspective of changes in diversity. In this case, progressive change, the comparison of changes in diversity from a baseline condition, may offer greater insight because changes in diversity are assessed over longer periods of times. Our objectives were to determine how forest bird diversity has changed over time and whether those changes were associated with forest disturbance. Methodology/Principal Findings: We used North American Breeding Bird Survey data, a time series of Landsat images classified with respect to land cover change, and mixed-effects models to associate changes in forest bird community structure with forest disturbance, latitude, and longitude in the conterminous United States for the years 1985 to 2006. We document a significant divergence from the baseline structure for all birds of similar migratory habit and nest location, and all forest birds as a group from 1985 to 2006. Unexpectedly, decreases in progressive similarity resulted from small changes in richness (<1 species per route for the 22-year study period) and modest losses in abundance (-28.7--10.2 individuals per route) that varied by migratory habit and nest location. Forest disturbance increased progressive similarity for Neotropical migrants, permanent residents, ground nesting, and cavity nesting species. We also documented highest progressive similarity in the eastern United States. Conclusions/Significance: Contemporary forest bird community structure is changing rapidly over a relatively short period of time (e.g., similar to 22 years). Forest disturbance and forest regeneration are primary factors associated with contemporary forest bird community structure, longitude and latitude are secondary factors, and forest loss is a tertiary factor. Importantly, these findings suggest some regions of the United States may already fall below the habitat amount threshold where fragmentation effects become important predictors of forest bird community structure. C1 [Rittenhouse, Chadwick D.; Pidgeon, Anna M.; Albright, Thomas P.; Culbert, Patrick D.; Radeloff, Volker C.] Univ Wisconsin, Dept Forest & Wildlife Ecol, Madison, WI 53706 USA. [Clayton, Murray K.] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA. [Flather, Curtis H.] US Forest Serv, USDA, Rocky Mt Res Stn, Ft Collins, CO USA. [Huang, Chengquan] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Masek, Jeffrey G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Stewart, Susan I.] US Forest Serv, USDA, No Res Stn, Evanston, IL USA. RP Rittenhouse, CD (reprint author), Univ Wisconsin, Dept Forest & Wildlife Ecol, Madison, WI 53706 USA. EM cdrittenhous@wisc.edu RI Masek, Jeffrey/D-7673-2012; Rittenhouse, Chadwick/G-7169-2012; Radeloff, Volker/B-6124-2016; Flather, Curtis/G-3577-2012 OI Huang, Chengquan/0000-0003-0055-9798; Radeloff, Volker/0000-0001-9004-221X; Flather, Curtis/0000-0002-0623-3126 FU NASA [NNX07AL14G] FX The NASA Biodiversity Program and Interdisciplinary Sciences Program (grant #NNX07AL14G) supported this work. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 54 TC 13 Z9 14 U1 0 U2 30 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD AUG 2 PY 2010 VL 5 IS 8 AR e11938 DI 10.1371/journal.pone.0011938 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 633RA UT WOS:000280520400015 PM 20689854 ER PT J AU Nawaz, A Albertoni, R Auweter-Kurtz, M AF Nawaz, Anuscheh Albertoni, Riccardo Auweter-Kurtz, Monika TI Thrust efficiency optimization of the pulsed plasma thruster SIMP-LEX SO ACTA ASTRONAUTICA LA English DT Article DE Pulsed plasma thruster; Efficiency; Optimization; Electric circuit AB The effect of electric parameters on the thrust efficiency of an ablative pulsed plasma thruster was studied. Analytically, it was shown that a higher efficiency can be obtained by increasing energy of a bank of capacitors. This can be achieved by changing the inductance per distance of the plasma sheet, or reducing the resistance of the circuit and the mass bit. Further, an optimum discharge time was found when the capacitance and the inductance were varied. A low initial inductance increases the thrust efficiency. Experimentally, these trends can be verified by comparing two thrusters: SIMP-LEX and ADD SIMP-LEX, with their different initial inductances. For ADD SIMP-LEX, the optimal thrust efficiency for different capacities was determined to be 31% at 60 mu F for a 17J configuration. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Nawaz, Anuscheh; Albertoni, Riccardo; Auweter-Kurtz, Monika] Univ Stuttgart, IRS, D-70550 Stuttgart, Germany. RP Nawaz, A (reprint author), NASA, Ames Res Ctr, Sierra Lobo Inc, Moffett Field, CA 94035 USA. EM anuscheh.nawaz@nasa.gov; spacewings@libero.it; m.auweter@gmx.net FU German Aerospace Centre Deutsches Zentrum far Luft- und Raum-fahrt (DLR [FKZ-50-JR-0446] FX We gratefully acknowledge funding from the German Aerospace Centre Deutsches Zentrum far Luft- und Raum-fahrt (DLR) under Contract number FKZ-50-JR-0446. NR 10 TC 10 Z9 10 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD AUG-SEP PY 2010 VL 67 IS 3-4 BP 440 EP 448 DI 10.1016/j.actaastro.2010.03.006 PG 9 WC Engineering, Aerospace SC Engineering GA 617JK UT WOS:000279276700016 ER PT J AU Rayman, MD Mase, RA AF Rayman, Marc D. Mase, Robert A. TI The second year of Dawn mission operations: Mars gravity assist and onward to Vest SO ACTA ASTRONAUTICA LA English DT Article; Proceedings Paper CT 60th International Astronautical Congress CY OCT 12-16, 2009 CL Daejeon, SOUTH KOREA DE Dawn; Vesta; Ceres; Electric propulsion; Ion propulsion; Mission operations ID CERES; EXPLORATION AB Dawn launched in September 2007 on a mission to orbit main belt asteroids (4) Vesta in 2011-2012 and (1) Ceres in 2015. The mission is enabled by an ion propulsion system, which will be operated for the majority of the interplanetary cruise. Following 10.5 months of thrusting that concluded in October 2008, the spacecraft began a period of optimal coast that ended in June 2009. A Mars gravity assist in February 2009 provided an effective Delta nu of 2.6 km/s. The mission flexibility afforded by the use of ion propulsion provided relatively simple targeting at Mars. Additional engineering activities were conducted during the coast period after Mars, including loading new software into the spacecraft's central computer. This paper describe the progress of the mission, including the approach to Mars, the encounter itself, special activities conducted prior to the resumption of ion thrusting, and the continuation toward Vesta. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Rayman, Marc D.; Mase, Robert A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Rayman, MD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM mrayman@jpl.nasa.gov NR 4 TC 8 Z9 8 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD AUG-SEP PY 2010 VL 67 IS 3-4 BP 483 EP 488 DI 10.1016/j.actaastro.2010.03.010 PG 6 WC Engineering, Aerospace SC Engineering GA 617JK UT WOS:000279276700020 ER PT J AU Ruttley, TM Harm, DL Evans, CA Robinson, JA AF Ruttley, Tara M. Harm, Deborah L. Evans, Cynthia A. Robinson, Julie A. TI International utilization at the threshold of "assembly complete"-science returns from the International Space Station SO ACTA ASTRONAUTICA LA English DT Article; Proceedings Paper CT 60th International Astronautical Congress CY OCT 12-16, 2009 CL Daejeon, SOUTH KOREA DE ISS; Microgravity; Space physical sciences; Space life sciences; ISS results; ISS research: ISS science ID UNITED-STATES; VIRULENCE; FLIGHT; MICROGRAVITY; TYPHIMURIUM; INFECTIONS; NECROSIS; HFQ AB The European Columbus and Japanese Kibo laboratories are now fully operational on the International Space Station (ISS), bringing decades of international planning to fruition. NASA is now completing launch and activation of major research facilities that will be housed in the Destiny U.S. Laboratory, Columbus, and Kibo. These facilities include major physical sciences capabilities for combustion, fluid physics, and materials science, as well as additional multipurpose and supporting infrastructure. Expansion of the laboratory space and expansion to a 6-person crew (May 2009), is already leading to significant increases in research throughput even before the assembly is completed. International research on the ISS includes exchanges of results, sharing of facilities, collaboration on experiments, and joint publication and communication of accomplishments. Significant and ongoing increases in research activity on ISS have occurred over the past year. Although research results lag behind on-orbit operations by 2-5 years, the surge of early research activities following Space Shuttle return to flight in 2005 is now producing an accompanying surge in scientific publications. Evidence of scientific productivity from early utilization opportunities combined with the current pace of research activity in orbit are both important parts of the evidence base for evaluating the potential future achievements of a complete and active ISS. Published by Elsevier Ltd. C1 [Ruttley, Tara M.] NASA, Lyndon B Johnson Space Ctr, Int Space Stn Payloads Off, Houston, TX 77058 USA. NASA, Lyndon B Johnson Space Ctr, ISS Program Sci Off, Houston, TX 77058 USA. RP Ruttley, TM (reprint author), NASA, Lyndon B Johnson Space Ctr, Int Space Stn Payloads Off, Houston, TX 77058 USA. EM Tara.m.ruttley@nasa.gov; Deborah.harm-1@nasa.gov; Cindy.evans-1@nasa.gov; Julie.a.robinson@nasa.gov RI Ruttley, Tara/D-8696-2016; OI Ruttley, Tara/0000-0001-7184-6749; Robinson, Julie/0000-0002-6832-6459 NR 28 TC 0 Z9 0 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD AUG-SEP PY 2010 VL 67 IS 3-4 BP 513 EP 519 DI 10.1016/j.actaastro.2010.03.015 PG 7 WC Engineering, Aerospace SC Engineering GA 617JK UT WOS:000279276700024 ER PT J AU Kovarik, L Yang, F Garg, A Diercks, D Kaufman, M Noebe, RD Mills, MJ AF Kovarik, L. Yang, F. Garg, A. Diercks, D. Kaufman, M. Noebe, R. D. Mills, M. J. TI Structural analysis of a new precipitate phase in high-temperature TiNiPt shape memory alloys SO ACTA MATERIALIA LA English DT Article DE Shape memory alloys (SMAs); Precipitation; Crystal structure; High-angle annular dark field (HAADF); Ab initio electron theory ID ULTRASOFT PSEUDOPOTENTIALS; TRANSFORMATIONS; TRANSITION AB Aging of the high-temperature shape memory alloy Ti50Ni30Pt20 (at.%) results in precipitation of a previously unidentified phase, which plays a key role in achieving desirable shape memory properties. The precipitate phase has been analyzed with electron diffraction, high-resolution scanning transmission electron microscopy and three-dimensional atom probe tomography. The experimental observations show that the precipitates have unique crystallography due to their non-periodic character along one of the primary crystallographic directions. It will be shown that the structure can be explained in terms of crystal intergrowth of three variants of a monoclinic crystal. The monoclinic crystal structure is closely related to the high-temperature cubic B2 phase; the departure of the structure from the B2 phase can be attributed to ordering of Pt atoms on the Ni sublattice and relaxation of the atoms (shuffle displacements) from the B2 sites. The shuffle displacements and the overall structural refinement were deduced from ab initio calculations. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Kovarik, L.; Yang, F.; Mills, M. J.] Ohio State Univ, Columbus, OH 43210 USA. [Garg, A.] Univ Toledo, Toledo, OH 44145 USA. [Garg, A.; Noebe, R. D.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Diercks, D.] Univ N Texas, Denton, TX 76207 USA. [Kaufman, M.] Colorado Sch Mines, Golden, CO 80401 USA. RP Kovarik, L (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM libor.kovarik@pnl.gov RI Kaufman, Michael/A-7737-2012; Mills, Michael/I-6413-2013; Kovarik, Libor/L-7139-2016 FU NASA; Ohio Supercomputer Center (OSC) [PAS0203-1] FX This work was supported by the NASA Fundamental Aeronautics Program, Supersonics Project, Dale Hopkins, API. The Center for Advanced Research and Technology (CART) at the University of North Texas is acknowledged for the APT analysis. The first principle calculations were performed at the Ohio Supercomputer Center (OSC) under Grant # PAS0203-1. NR 18 TC 36 Z9 37 U1 2 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD AUG PY 2010 VL 58 IS 14 BP 4660 EP 4673 DI 10.1016/j.actamat.2010.04.039 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 624TW UT WOS:000279845400008 ER PT J AU Georgiadis, NJ Rizzetta, DP Fureby, C AF Georgiadis, Nicholas J. Rizzetta, Donald P. Fureby, Christer TI Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT 47th AIAA Aerospace Sciences Meeting and Exhibit Including the New Horizons Forum and Aerospace Exposition CY JAN 05-08, 2009 CL Orlando, FL SP AIAA ID DIRECT NUMERICAL-SIMULATION; TURBULENT-BOUNDARY-LAYER; SUBGRID-SCALE MODEL; COMPRESSION-RAMP FLOW; NAVIER-STOKES; DIRECT COMPUTATION; AERODYNAMIC SOUND; INFLOW CONDITIONS; REYNOLDS-NUMBER; REACTING FLOWS AB Usage of large-eddy simulation (LES) methods for calculation of turbulent flows has increased substantially in recent years. This paper attempts to 1) provide an assessment of the current capabilities of LES, 2) outline some recommended practices for using LES, and 3) identify future research needs. The assessment considers flow problems for which LES can be successfully applied today and flow problems for which LES still has limitations. The availability of LES and hybrid Reynolds-averaged Navier-Stokes (RANS)/LES in general-purpose codes is discussed. Several important issues for which the LES community has not yet reached a consensus are discussed. These include grid sensitivity studies, application of unstructured grid methods, upwind-biased solvers, and turbulence (subgrid) modeling including continuous hybrid RANS/LES approaches. A section on recommended practices and key considerations tries to provide guidance on some of the important items that need to be addressed in using LES. The paper concludes with a discussion of future research directions, with a focus on work needed to advance the capabilities and reliability of LES for analysis of turbulent flows. C1 [Georgiadis, Nicholas J.] NASA, John H Glenn Res Ctr Lewis Field, Inlet & Nozzle Branch, Cleveland, OH 44135 USA. [Rizzetta, Donald P.] USAF, Res Lab, Computat Sci Branch, Wright Patterson AFB, OH 45433 USA. [Fureby, Christer] Chalmers, Swedish Def Res Agcy FOI, Dept Shipping & Marine Technol, S-14725 Stockholm, Sweden. RP Georgiadis, NJ (reprint author), NASA, John H Glenn Res Ctr Lewis Field, Inlet & Nozzle Branch, Cleveland, OH 44135 USA. NR 107 TC 47 Z9 49 U1 1 U2 20 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD AUG PY 2010 VL 48 IS 8 BP 1772 EP 1784 DI 10.2514/1.J050232 PG 13 WC Engineering, Aerospace SC Engineering GA 636HB UT WOS:000280721300017 ER PT J AU Anyamba, A Linthicum, KJ Small, J Britch, SC Pak, E de La Rocque, S Formenty, P Hightower, AW Breiman, RF Chretien, JP Tucker, CJ Schnabel, D Sang, R Haagsma, K Latham, M Lewandowski, HB Magdi, SO Mohamed, MA Nguku, PM Reynes, JM Swanepoel, R AF Anyamba, Assaf Linthicum, Kenneth J. Small, Jennifer Britch, Seth C. Pak, Edwin de La Rocque, Stephane Formenty, Pierre Hightower, Allen W. Breiman, Robert F. Chretien, Jean-Paul Tucker, Compton J. Schnabel, David Sang, Rosemary Haagsma, Karl Latham, Mark Lewandowski, Henry B. Magdi, Salih Osman Mohamed, Mohamed Ally Nguku, Patrick M. Reynes, Jean-Marc Swanepoel, Robert TI Prediction, Assessment of the Rift Valley Fever Activity in East and Southern Africa 2006-2008 and Possible Vector Control Strategies SO AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE LA English DT Article ID KENYA; VIRUS; HABITATS; AEDES; FORMULATION; CALIFORNIA; VEGETATION; MOSQUITOS; OUTBREAK; DIPTERA AB Historical outbreaks of Rift Valley fever (RVF) since the early 1950s have been associated with cyclical patterns of the El Nino/Southern Oscillation (ENSO) phenomenon, which results in elevated and widespread rainfall over the RVF endemic areas of Africa. Using satellite measurements of global and regional elevated sea surface temperatures, elevated rainfall, and satellite derived-normalized difference vegetation index data, we predicted with lead times of 2-4 months areas where outbreaks of RVF in humans and animals were expected and occurred in the Horn of Africa, Sudan, and Southern Africa at different time periods from September 2006 to March 2008. Predictions were confirmed by entomological field investigations of virus activity and by reported cases of RVF in human and livestock populations. This represents the first series of prospective predictions of RVF outbreaks and provides a baseline for improved early warning, control, response planning, and mitigation into the future. C1 [Anyamba, Assaf; Small, Jennifer; Pak, Edwin; Tucker, Compton J.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Linthicum, Kenneth J.; Britch, Seth C.] USDA ARS, Ctr Med Agr & Vet Entomol, Gainesville, FL USA. [de La Rocque, Stephane] FAO Food & Agr Org United Nations, Anim Prod & Hlth Div AGAH, EMPRES, Rome, Italy. [Formenty, Pierre] World Hlth Org, Global Alert & Response Dept HSE GAR, Geneva, Switzerland. CDC Kenya Nairobi, Int Emerging Infect Program, Global Dis Detect Div, Nairobi, Kenya. [Chretien, Jean-Paul] Walter Reed Army Inst Res, Div Prevent Med, Silver Spring, MD USA. [Sang, Rosemary] Kenya Govt Med Res Ctr, Ctr Virus Res, Arbovirol VHF Lab, Nairobi, Kenya. [Haagsma, Karl] Youngstown Air Reserve Stn, Vienna, OH USA. [Latham, Mark] Manatee Cty Mosquito Control, Palmetto, FL USA. [Lewandowski, Henry B.] Chatham Cty Mosquito Control, Savannah, GA USA. [Magdi, Salih Osman] Fed Minist Hlth, Dept Epidemiol, Khartoum, Sudan. [Mohamed, Mohamed Ally] Minist Hlth & Social Welf, Dar Es Salaam, Tanzania. Minist Hlth, Div Dis Surveillance & Response, Nairobi, Kenya. [Reynes, Jean-Marc] Inst Pasteur Madagascar, Antananarivo, Madagascar. [Swanepoel, Robert] Natl Inst Communicable Dis, Johannesburg, South Africa. [Hightower, Allen W.; Breiman, Robert F.] CDC, Kenya Med Res Unit KEMRI, Nairobi, Kenya. [Nguku, Patrick M.] Minist Hlth, Div Communicable Dis Control, Nairobi, Kenya. RP Anyamba, A (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Code 614-4, Greenbelt, MD 20771 USA. EM Asaph.Anyamba-1@nasa.gov; kenneth.linthicum@ars.usda.gov; jennifer.1.small@nasa.gov; seth.britch@ars.usda.gov; ed.pak@nasa.gov; Stephane.DeLaRocque@fao.org; formentyp@who.int; awh1@cdc.gov; rbreiman@ke.cdc.gov; jpchretien@gmail.com; compton@ltpmail.gsfc.nasa.gov; DSchnabel@wrp-nbo.org; RSang@kemri.org; Karl.Haagsma@youngstown.af.mil; marklatham@manateemosquito.com; hblewand@chathamcounty.org; mgdosman@yahoo.com; mahd67@yahoo.com; drnguku@yahoo.com; jmreynes@pasteur.mg; bobs@nicd.ac.za RI Valle, Ruben/A-7512-2013; Reynes, Jean-Marc/M-6108-2014 FU United States Army Medical Research Unit-Kenya; Entomology Department; World Health Organization Department of Global Alert and Response; Food and Agricultural Organization of the United Nations; Department of Defense Global Emerging Infections Surveillance and Response System; United States Department of Defense, through the Armed Forces Pest Management Board; National Aeronautics and Space Administration [NNHO8CD31C/ROSES 2007] FX We thank personnel from the Entomological team Arbovirology/VHF Laboratory, Centre for Virus Research Kenya Medical Research Institute, Jason Richardson (now at United States Army Medical Component, Bangkok, Thailand) and various other personnel from the Ministry of Health in Kenya who collected some of the outbreak data used in this study. We also acknowledge the contributions of the United States Army Medical Research Unit-Kenya, Entomology Department, the World Health Organization Department of Global Alert and Response, the Food and Agricultural Organization of the United Nations,The Ministries of Health in Tanzania and Sudan, Institut Pasteur de Madagascar, The United States Department of Agriculture Foreign Agricultural Service for providing access to satellite data used in this study, and the Centers for Disease Control and Prevention Kenya, for access to epidemiological data.; Financial support:The participation of AA, KJL, JS, SCB, EP and CJT on this project is in part supported by funding from the Department of Defense Global Emerging Infections Surveillance and Response System, the United States Department of Agriculture Agricultural Research Service, the Deployed War-Fighter Protection Research Program Funded by the United States Department of Defense, through the Armed Forces Pest Management Board, and the National Aeronautics and Space Administration grant # NNHO8CD31C/ROSES 2007. NR 14 TC 66 Z9 70 U1 4 U2 20 PU AMER SOC TROP MED & HYGIENE PI MCLEAN PA 8000 WESTPARK DR, STE 130, MCLEAN, VA 22101 USA SN 0002-9637 J9 AM J TROP MED HYG JI Am. J. Trop. Med. Hyg. PD AUG PY 2010 VL 83 IS 2 SU S BP 43 EP 51 DI 10.4269/ajtmh.2010.09-0289 PG 9 WC Public, Environmental & Occupational Health; Tropical Medicine SC Public, Environmental & Occupational Health; Tropical Medicine GA 635YS UT WOS:000280694500007 PM 20682905 ER PT J AU Mccubbin, FM Steele, A Nekvasil, H Schnieders, A Rose, T Fries, M Carpenter, PK Jolliff, BL AF Mccubbin, Francis M. Steele, Andrew Nekvasil, Hanna Schnieders, Albert Rose, Timothy Fries, Marc Carpenter, Paul K. Jolliff, Bradley L. TI Detection of structurally bound hydroxyl in fluorapatite from Apollo Mare basalt 15058,128 using TOF-SIMS SO AMERICAN MINERALOGIST LA English DT Article DE Water on Moon; TOF-SIMS; apatite; mare basalt; lunar water; EPMA; Raman spectroscopy; Apollo sample ID RAMAN-SPECTROSCOPY; MASS-SPECTROMETRY; CRYSTAL-CHEMISTRY; PLANETARY MAGMAS; STARDUST AEROGEL; APATITE; MOON; SURFACE; WATER; OH AB Fluorapatite grains from Apollo 15 Mare basalt 15058,128 were analyzed by Raman spectroscopy, Raman spectral imaging, time-of-flight secondary ion mass spectrometry (TOF-SIMS), field emission scanning electron microscopy (FE-SEM), and electron probe microanalysis (EPMA) in an attempt to detect structurally bound OH(-) in the fluorapatite. Although OH(-) could not be definitively detected by Raman spectroscopy because of REE-induced photoluminescence, hydroxyl was detected in the fluorapatite by TOF-SIMS. The TOF-SIMS technique is qualitative but capable of detecting the presence of hydroxyl even at trace levels. Electron microprobe data indicate that on average, F and Cl (F+Cl) fill the monovalent anion site in these fluorapatite grains within the uncertainties of the analyses (about 0.07 +/- 0.01 atoms per formula unit). However, some individual spot analyses have F+Cl deficiencies greater than analytical uncertainties that could represent structural OH(-). On the basis of EPMA data, the fluorapatite grain with the largest F+Cl deficiency constrains the upper limit of the OH(-) content to be no more than 4600 +/- 2000 ppm by weight (the equivalent of similar to 2400 +/- 1100 ppm water). The TOF-SIMS detection of OH(-) in fluorapatite from Apollo sample 15058,128 represents the first direct confirmation of structurally bound hydroxyl in a lunar magmatic mineral. This result provides justification for attributing at least some of the missing structural component in the monovalent anion site of other lunar fluorapatite grains to the presence of OH(-). Moreover, this finding supports the presence of dissolved water in lunar magmas and the presence of at least some water within the lunar interior. C1 [Mccubbin, Francis M.; Steele, Andrew] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Nekvasil, Hanna] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Schnieders, Albert] ION TOF USA Inc, New York, NY 10977 USA. [Rose, Timothy] Smithsonian Inst, Natl Museum Nat Hist, Dept Mineral Sci, Washington, DC 20560 USA. [Fries, Marc] Jet Prop Lab, Pasadena, CA 91109 USA. [Carpenter, Paul K.; Jolliff, Bradley L.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Carpenter, Paul K.; Jolliff, Bradley L.] Washington Univ, McDonnell Ctr Space Sci, St Louis, MO 63130 USA. RP Mccubbin, FM (reprint author), Carnegie Inst Washington, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. EM fmccubbin@ciw.edu RI McCubbin, Francis/D-1698-2009 FU NASA [NNX08AZ04G]; LASER program; NASA SRLIDA; Mars Fundamental Research programs; NASA's Cosmochemistry program; Carnegie Institution of Washington; Geophysical Laboratory; NASA Astrobiology Institute FX We thank the Lunar Curatorial staff at the Lyndon B. Johnson Space Center in Houston, Texas, for allocation of the thin section of Apollo sample 15058,128. We are grateful for Daniel Harlov and Jennifer Thomson for the editorial handling of this manuscript. Insightful and constructive reviews were provided by John Hughes and Philip Piccoli. We also thank Alberto E. Patino Douce and Lutz Nasdala for helpful and insightful reviews of a previous version of the manuscript. Steven Symes and Bjorn Mysen are acknowledged for productive and fruitful discussions on this topic. Financial support for this work was provided by NASA grant NNX08AZ04G from the LASER program awarded to Hanna Nekvasil; Andrew Steele acknowledges support from the NASA SRLIDA and Mars Fundamental Research programs; and Brad Jolliff acknowledges support from NASA's Cosmochemistry program. Francis McCubbin acknowledges fellowship support from the Carnegie Institution of Washington, Geophysical Laboratory, and NASA Astrobiology Institute during this study. NR 53 TC 69 Z9 69 U1 2 U2 27 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD AUG-SEP PY 2010 VL 95 IS 8-9 BP 1141 EP 1150 DI 10.2138/am.2010.3448 PG 10 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 642NE UT WOS:000281220900003 ER PT J AU Mengshoel, OJ AF Mengshoel, Ole J. TI Understanding the scalability of Bayesian network inference using clique tree growth curves SO ARTIFICIAL INTELLIGENCE LA English DT Article DE Probabilistic reasoning; Bayesian networks; Clique tree clustering; Clique tree growth; C/V-ratio; Continuous approximation; Gompertz growth curves; Controlled experiments; Regression ID BELIEF NETWORKS; PROBABILISTIC INFERENCE; FACTOR GRAPHS; NP-HARD; COMPLEXITY; ALGORITHM; DIAGNOSIS; CODES; MAPS AB One of the main approaches to performing computation in Bayesian networks (BNs) is clique tree clustering and propagation. The clique tree approach consists of propagation in a clique tree compiled from a BN, and while it was introduced in the 1980s, there is still a lack of understanding of how clique tree computation time depends on variations in BN size and structure. In this article, we improve this understanding by developing an approach to characterizing clique tree growth as a function of parameters that can be computed in polynomial time from BNs, specifically: (i) the ratio of the number of a BN's non-root nodes to the number of root nodes, and (ii) the expected number of moral edges in their moral graphs. Analytically, we partition the set of cliques in a clique tree into different sets, and introduce a growth curve for the total size of each set. For the special case of bipartite BNs, there are two sets and two growth curves, a mixed clique growth curve and a root clique growth curve. In experiments, where random bipartite BNs generated using the BPART algorithm are studied, we systematically increase the out-degree of the root nodes in bipartite Bayesian networks, by increasing the number of leaf nodes. Surprisingly, root clique growth is well-approximated by Gompertz growth curves, an S-shaped family of curves that has previously been used to describe growth processes in biology, medicine, and neuroscience. We believe that this research improves the understanding of the scaling behavior of clique tree clustering for a certain class of Bayesian networks; presents an aid for trade-off studies of clique tree clustering using growth curves; and ultimately provides a foundation for benchmarking and developing improved BN inference and machine learning algorithms. (C) 2010 Elsevier B.V. All rights reserved. C1 Carnegie Mellon Univ, NASA Ames Res Ctr, Moffett Field, CA 94035 USA. RP Mengshoel, OJ (reprint author), Carnegie Mellon Univ, NASA Ames Res Ctr, Mail Stop 269-3, Moffett Field, CA 94035 USA. EM Ole.Mengshoel@sv.cmu.edu FU NASA [NCC2-1426, NNA07BB97C, NNA08205346R]; NSF [CCF0937044, ECCS0931978] FX This material is based upon work supported by NASA under awards NCC2-1426, NNA07BB97C, and NNA08205346R as well as NSF awards CCF0937044 and ECCS0931978. Comments from the anonymous reviewers, which helped improve the article, are also acknowledged. NR 71 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0004-3702 J9 ARTIF INTELL JI Artif. Intell. PD AUG PY 2010 VL 174 IS 12-13 BP 984 EP 1006 DI 10.1016/j.artint.2010.05.007 PG 23 WC Computer Science, Artificial Intelligence SC Computer Science GA 630MW UT WOS:000280278500009 ER PT J AU Rai, B Kaur, J Catalina, M AF Rai, Balwant Kaur, Jasdeep Catalina, Maria TI Anti-oxidation actions of curcumin in two forms of bed rest: oxidative stress serum and salivary markers SO ASIAN PACIFIC JOURNAL OF TROPICAL MEDICINE LA English DT Article DE Curcumin; Serum; Saliva; Oxidative stress; Bed rest position; Space microgravity ID VITAMIN-E; OXIDANTS; DAMAGE AB Objective: To determine the preventive effects of curcumin on peroxidative damage under two bed rest conditions. Methods: 20 healthy male (10 with curcumin and 10 without curcumin) volunteers were selected. They were studied before, during, and just on bed rest conditions at -6 degrees head-down-tilt (HDT) bed rest and bed rest position (BD) for 10 days. We measured the salivary and serum oxidative markers such as Malonaldehyde, 8-hydroxydeoxyguanosine, vitamin C and E just before HDT & BD, during HOT & BD experiment, and in course time of recovery with curcumin and without curcumin groups. Results: The values of serum and salivary vitamin C & E showed statistically significant decrease in both bed rest conditions as compared to those of the conditions before and during the recovery stage. However, these levels were not significantly lowered in curcumin groups in contrast to the groups without curcumin (P>0.05). MDA and 8-OHdG, levels showed significant increase in simulating microgravity and zero gravity conditions as compared to those before and in the recovery stage. However, these levels were lower in curcumin groups in contrast to the groups without curcumin(P<0.05). Serum and salivary correlation analysis revealed a strong and highly significant correlation for MDA, vitamin C & E and 8 dihydro-2 deoxyguanosine (8-OHdG) in the conditions before, during and in the recovery periods in both bed rest conditions. Since saliva collection is easy and non-invasive, measurements of salivary marker levels may prove to be useful in the Space research. Conclusions: Curcumin prevents peroxidative damage in both bed rest conditions. Further study is required on antioxidation actions of curcumin in space microgravity conditions. C1 [Rai, Balwant] Catholic Univ Louvain, Sch Dent Oral Pathol & Maxillofacial Surg, Oral Imaging Ctr, B-3000 Louvain, Belgium. [Kaur, Jasdeep] Catholic Univ Louvain, Sch Dent Oral Pathol & Maxillofacial Surg, Forens Odontol Sect, B-3000 Louvain, Belgium. [Catalina, Maria] NASA, SSA NASA JPL Solar Syst Ambassador, Washington, DC USA. RP Rai, B (reprint author), Catholic Univ Louvain, Sch Dent, B-3000 Louvain, Belgium. EM drbalwantraissct@rediffmail.com NR 19 TC 1 Z9 3 U1 1 U2 4 PU ASIAN PACIFIC J TROPICAL MED PI HAIKOU PA HAINAN MED UNIV, RM 318, ADMIN BLDG, XUEYUAN RD, HAIKOU, 571101, PEOPLES R CHINA SN 1995-7645 J9 ASIAN PAC J TROP MED JI Asian Pac. J. Trop. Med. PD AUG PY 2010 VL 3 IS 8 BP 651 EP 654 PG 4 WC Public, Environmental & Occupational Health; Tropical Medicine SC Public, Environmental & Occupational Health; Tropical Medicine GA 664WQ UT WOS:000282994900014 ER PT J AU Inada, N Oguri, M Shin, MS Kayo, I Strauss, MA Hennawi, JF Morokuma, T Becker, RH White, RL Kochanek, CS Gregg, MD Chiu, K Johnston, DE Clocchiatti, A Richards, GT Schneider, DP Frieman, JA Fukugita, M Gott, JR Hall, PB York, DG Castander, FJ Bahcall, NA AF Inada, Naohisa Oguri, Masamune Shin, Min-Su Kayo, Issha Strauss, Michael A. Hennawi, Joseph F. Morokuma, Tomoki Becker, Robert H. White, Richard L. Kochanek, Christopher S. Gregg, Michael D. Chiu, Kuenley Johnston, David E. Clocchiatti, Alejandro Richards, Gordon T. Schneider, Donald P. Frieman, Joshua A. Fukugita, Masataka Gott, J. Richard, III Hall, Patrick B. York, Donald G. Castander, Francisco J. Bahcall, Neta A. TI THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH. IV. STATISTICAL LENS SAMPLE FROM THE FIFTH DATA RELEASE SO ASTRONOMICAL JOURNAL LA English DT Article DE cosmology: observations; gravitational lensing: strong; quasars: general ID 3RD DATA RELEASE; 7TH DATA RELEASE; GRAVITATIONAL LENS; CANDIDATE SELECTION; REDDEST QUASARS; BINARY QUASARS; IMAGING DATA; ACS SURVEY; GALAXY; SDSS AB We present the second report of our systematic search for strongly lensed quasars from the data of the Sloan Digital Sky Survey (SDSS). From extensive follow-up observations of 136 candidate objects, we find 36 lenses in the full sample of 77,429 spectroscopically confirmed quasars in the SDSS Data Release 5. We then define a complete sample of 19 lenses, including 11 from our previous search in the SDSS Data Release 3, from the sample of 36,287 quasars with i < 19.1 in the redshift range 0.6 < z < 2.2, where we require the lenses to have image separations of 1 '' < theta < 20 '' and i-band magnitude differences between the two images smaller than 1.25 mag. Among the 19 lensed quasars, three have quadruple-image configurations, while the remaining 16 show double images. This lens sample constrains the cosmological constant to be Omega(A) = 0.84(-0.08)(+ 0.06) (stat.)(-0.07)(+0.09) (syst.) assuming a flat universe, which is in good agreement with other cosmological observations. We also report the discoveries of seven binary quasars with separations ranging from 1.'' 1 to 16.'' 6, which are identified in the course of our lens survey. This study concludes the construction of our statistical lens sample in the full SDSS-I data set. C1 [Inada, Naohisa] RIKEN, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Inada, Naohisa] Univ Tokyo, Sch Sci, Res Ctr Early Universe, Bunkyo Ku, Tokyo 1130033, Japan. [Oguri, Masamune] Natl Astron Observ, Div Theoret Astron, Mitaka, Tokyo 1818588, Japan. [Oguri, Masamune] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Shin, Min-Su] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Shin, Min-Su; Strauss, Michael A.; Gott, J. Richard, III; Bahcall, Neta A.] Princeton Univ Observ, Princeton, NJ 08544 USA. [Kayo, Issha; Fukugita, Masataka] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778582, Japan. [Hennawi, Joseph F.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Hennawi, Joseph F.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Morokuma, Tomoki] Natl Astron Observ, Opt & Infrared Astron Div, Mitaka, Tokyo 1818588, Japan. [Becker, Robert H.; Gregg, Michael D.] IGPP LLNL, Livermore, CA 94550 USA. [Becker, Robert H.; Gregg, Michael D.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [White, Richard L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Kochanek, Christopher S.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Chiu, Kuenley] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Johnston, David E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Clocchiatti, Alejandro] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. [Richards, Gordon T.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Frieman, Joshua A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Frieman, Joshua A.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Frieman, Joshua A.; York, Donald G.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Fukugita, Masataka] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan. [Fukugita, Masataka] Inst Adv Study, Princeton, NJ 08540 USA. [Hall, Patrick B.] York Univ, Dept Phys & Astron, N York, ON M3J 1P3, Canada. [York, Donald G.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Castander, Francisco J.] IEEC CSIC, Inst Ciencies Espai, Barcelona 08193, Spain. RP Inada, N (reprint author), RIKEN, Cosm Radiat Lab, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. RI Oguri, Masamune/C-6230-2011; Kayo, Issha/A-4389-2011; White, Richard/A-8143-2012 FU RIKEN; MEXT [21740151]; Department of Energy [DE-AC02-76SF00515]; JSPS [467]; NSF [AST-0707266, AST-0406713, AST-0708082]; MIDEPLAN [ICM/P06-045-F]; CONICYT [15010003, PFB 06] FX I. acknowledges support from the Special Postdoctoral Researcher Program of RIKEN, the RIKEN DRI Research Grant, and MEXT KAKENHI 21740151. This work was supported in part by Department of Energy contract DE-AC02-76SF00515. I. K. acknowledges support by Grant-in-Aid for JSPS Fellows and Grant-in-Aid for Scientific Research on Priority Areas No. 467. M.-S. S. and M. A. S. acknowledge the support of NSF grant AST-0707266. A. C. is supported by grants from MIDEPLAN (ICM/P06-045-F) and CONICYT (FONDAP 15010003 and PFB 06). J. R. G acknowledges the support of NSF grant AST-0406713. C. S. K. is supported by NSF grant AST-0708082.; U NR 106 TC 18 Z9 18 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD AUG PY 2010 VL 140 IS 2 BP 403 EP 415 DI 10.1088/0004-6256/140/2/403 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 626HW UT WOS:000279958000009 ER PT J AU Griffith, RL Stern, D AF Griffith, Roger L. Stern, Daniel TI MORPHOLOGIES OF RADIO-, X- RAY-, AND MID-INFRARED-SELECTED ACTIVE GALACTIC NUCLEI SO ASTRONOMICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: evolution; galaxies: structure ID SUPERMASSIVE BLACK-HOLES; WIDE-FIELD SURVEY; HOST GALAXY MORPHOLOGIES; SPITZER-SPACE-TELESCOPE; DIGITAL SKY SURVEY; ARRAY CAMERA IRAC; COSMOS FIELD; MIDINFRARED SELECTION; EDDINGTON RATIOS; SOURCE CATALOG AB We investigate the optical morphologies of candidate active galaxies identified at radio, X-ray, and mid-infrared wavelengths. We use the Advanced Camera for Surveys General Catalog (ACS-GC) to identify 372, 1360, and 1238 active galactic nucleus (AGN) host galaxies from Very Large Array, XMM-Newton, and Spitzer Space Telescope observations of the COSMOS field, respectively. We investigate both quantitative (GALFIT) and qualitative (visual) morphologies of these AGN host galaxies, split by brightness in their selection band. We find that the samples are largely distinct, though extensive overlap exists between certain samples, most particularly for the X-ray-and midIR-selected sources with unresolved optical morphologies. We find that the radio-selected AGNs are most distinct, with a very low incidence of having unresolved optical morphologies and a high incidence of being hosted by early-type galaxies. In comparison to X-ray-selected AGNs, mid-IR-selected AGNs have a slightly higher incidence of being hosted by disk galaxies. These morphological results conform to the results of Hickox et al. who studied the colors and large-scale clustering of AGNs and found a general association of radio-selected AGNs with "red sequence" galaxies, mid-IR-selected AGNs with "blue cloud" galaxies, and X-ray-selected AGNs straddling these samples in the "green valley." We also find that optical brightness scales with X-ray and mid-IR brightnesses, while little correlation is evident between optical and radio brightnesses. This suggests that X-ray-and mid-IR-selected AGNs have similar Eddington ratios, while radio-selected AGNs represent a different accretion mechanism with a lower and wider range of Eddington ratios. In the general scenario where AGN activity marks and regulates the transition from late-type disk galaxies into massive elliptical galaxies, this work suggests that the earlier stages are most evident as mid-IR-selected AGNs. Mid-IR emission is less susceptible to absorption than the relatively soft X-rays probed by XMM-Newton, which are seen at later stages in the transition. Radio-selected AGNs are then typically associated with minor bursts of activity in the most massive galaxies. C1 [Griffith, Roger L.; Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Griffith, RL (reprint author), CALTECH, Jet Prop Lab, MS 169-327,4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU NASA FX We thank the COSMOS team for their exhaustive work and public release of this important survey. In particular, we thank Peter Capak for useful discussions and for allowing us use of the pseudocolor images derived from the Subaru plus HST images. We also thank Leonidas Moustakas for encouragement and useful discussions, Jennifer Lotz for useful suggestions, and the anonymous referee for a timely and helpful report. Finally, we thank Fiona Harrison, Mansi Kasiwal, and Shri Kulkarni for obtaining a spectrum of ID 20135964. The work of R. L. G. and D. S. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 57 TC 25 Z9 25 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD AUG PY 2010 VL 140 IS 2 BP 533 EP 545 DI 10.1088/0004-6256/140/2/533 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 626HW UT WOS:000279958000020 ER PT J AU Desai, KM Chu, YH Gruendl, RA Dluger, W Katz, M Wong, T Chen, CHR Looney, LW Hughes, A Muller, E Ott, J Pineda, JL AF Desai, Karna M. Chu, You-Hua Gruendl, Robert A. Dluger, William Katz, Marshall Wong, Tony Chen, C. -H. Rosie Looney, Leslie W. Hughes, Annie Muller, Erik Ott, Juergen Pineda, Jorge L. TI SUPERNOVA REMNANTS AND STAR FORMATION IN THE LARGE MAGELLANIC CLOUD SO ASTRONOMICAL JOURNAL LA English DT Article DE ISM: supernova remnants; Magellanic Clouds; stars: formation ID YOUNG STELLAR OBJECTS; MOLECULAR CLOUDS; SUPERGIANT SHELLS; NEARBY SUPERNOVA; OB-ASSOCIATIONS; MASSIVE STARS; NOVA REMNANTS; MAIN-SEQUENCE; SOLAR-SYSTEM; SPECTROSCOPY AB It has often been suggested that supernova remnants (SNRs) can trigger star formation. To investigate the relationship between SNRs and star formation, we have examined the known sample of 45 SNRs in the Large Magellanic Cloud (LMC) to search for associated young stellar objects (YSOs) and molecular clouds. We find seven SNRs associated with both YSOs and molecular clouds, three SNRs associated with YSOs but not molecular clouds, and eight SNRs near molecular clouds but not associated with YSOs. Among the 10 SNRs associated with YSOs, the association between the YSOs and SNRs either can be rejected or cannot be convincingly established for eight cases. Only two SNRs have YSOs closely aligned along their rims; however, the time elapsed since the SNR began to interact with the YSOs' natal clouds is much shorter than the contraction timescales of the YSOs, and thus we do not see any evidence of SNR-triggered star formation in the LMC. The 15 SNRs that are near molecular clouds may trigger star formation in the future when the SNR shocks have slowed down to <45 km s(-1). We discuss how SNRs can alter the physical properties and abundances of YSOs. C1 [Desai, Karna M.; Chu, You-Hua; Gruendl, Robert A.; Dluger, William; Katz, Marshall; Wong, Tony; Looney, Leslie W.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Chen, C. -H. Rosie] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Hughes, Annie] Swinburne Univ Technol, Ctr Supercomp & Astrophys, Hawthorn, Vic 3122, Australia. [Hughes, Annie] CSIRO Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Muller, Erik] Nagoya Univ, Dept Phys & Astrophys, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Ott, Juergen] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Pineda, Jorge L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Desai, KM (reprint author), Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. FU NASA [JPL 1290956, JPL 1316421]; NSF [AST 08-07323] FX We thank the referee for his/her thorough reading and useful suggestions that improved the paper. We also thank Dr. Y. Fukui for providing the NANTEN data. This research was supported by NASA grants JPL 1290956 and JPL 1316421 and NSF grant AST 08-07323. J.L.P. was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by Oak Ridge Associated Universities through a contract with NASA. NR 54 TC 21 Z9 22 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD AUG PY 2010 VL 140 IS 2 BP 584 EP 594 DI 10.1088/0004-6256/140/2/584 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 626HW UT WOS:000279958000024 ER PT J AU Dominik, M Jorgensen, UG Rattenbury, NJ Mathiasen, M Hinse, TC Novati, SC Harpsoe, K Bozza, V Anguita, T Burgdorf, MJ Horne, K Hundertmark, M Kerins, E Kjaergaard, P Liebig, C Mancini, L Masi, G Rahvar, S Ricci, D Scarpetta, G Snodgrass, C Southworth, J Street, RA Surdej, J Thone, CC Tsapras, Y Wambsganss, J Zub, M AF Dominik, M. Jorgensen, U. G. Rattenbury, N. J. Mathiasen, M. Hinse, T. C. Novati, S. Calchi Harpsoe, K. Bozza, V. Anguita, T. Burgdorf, M. J. Horne, K. Hundertmark, M. Kerins, E. Kjaergaard, P. Liebig, C. Mancini, L. Masi, G. Rahvar, S. Ricci, D. Scarpetta, G. Snodgrass, C. Southworth, J. Street, R. A. Surdej, J. Thone, C. C. Tsapras, Y. Wambsganss, J. Zub, M. TI Realisation of a fully-deterministic microlensing observing strategy for inferring planet populations SO ASTRONOMISCHE NACHRICHTEN LA English DT Article DE gravitational lensing; planetary systems ID GRAVITATIONAL LENSING EXPERIMENT; HIGH-PRECISION PHOTOMETRY; FOLLOW-UP OBSERVATIONS; EXTRA-SOLAR PLANETS; M-CIRCLE-PLUS; GALACTIC BULGE; DETECTING PLANETS; EARTH MASS; EVENTS; NETWORK AB Within less than 15 years, the count of known planets orbiting stars other than the Sun has risen from none to more than 400 with detections arising from four successfully applied techniques: Doppler-wobbles, planetary transits, gravitational microlensing, and direct imaging. While the hunt for twin Earths is on, a statistically well-defined sample of the population of planets in all their variety is required for probing models of planet formation and orbital evolution so that the origin of planets that harbour life, like and including ours, can be understood. Given the different characteristics of the detection techniques, a complete picture can only arise from a combination of their respective results. Microlensing observations are well-suited to reveal statistical properties of the population of planets orbiting stars in either the Galactic disk or bulge from microlensing observations, but a mandatory requirement is the adoption of strictly-deterministic criteria for selecting targets and identifying signals. Here, we describe a fully-deterministic strategy realised by means of the ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search) system at the Danish 1.54-m telescope at ESO La Silla between June and August 2008 as part of the MiNDSTEp (Microlensing Network for the Detection of Small Terrestrial Exoplanets) campaign, making use of immediate feedback on suspected anomalies recognized by the SIGNAL-MEN anomaly detector. We demonstrate for the first time the feasibility of such an approach, and thereby the readiness for studying planet populations down to Earth mass and even below, with ground-based observations. While the quality of the real-time photometry is a crucial factor on the efficiency of the campaign, an impairment of the target selection by data of bad quality can be successfully avoided. With a smaller slew time, smaller dead time, and higher through-put, modern robotic telescopes could significantly outperform the 1.54-m Danish, whereas lucky-imaging cameras could set new standards for high-precision follow-up monitoring of microlensing events. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Dominik, M.; Horne, K.; Liebig, C.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Jorgensen, U. G.; Mathiasen, M.; Hinse, T. C.; Harpsoe, K.; Kjaergaard, P.; Thone, C. C.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Jorgensen, U. G.] Univ Copenhagen, Ctr Star & Planet Format, DK-1350 Copenhagen O, Denmark. [Rattenbury, N. J.] Univ Auckland, Dept Phys, Auckland 1, New Zealand. [Hinse, T. C.] Armagh Observ, Armagh BT61 9DG, North Ireland. [Novati, S. Calchi; Bozza, V.; Mancini, L.; Scarpetta, G.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84085 Fisciano, SA, Italy. [Novati, S. Calchi; Bozza, V.; Mancini, L.; Scarpetta, G.] Ist Nazl Fis Nucl, Grp Collegato Salerno, Sez Napoli, Milan, Italy. [Novati, S. Calchi; Bozza, V.; Mancini, L.; Scarpetta, G.] IIASS, I-84019 Vietri Sul Mare, SA, Italy. [Anguita, T.; Liebig, C.; Wambsganss, J.; Zub, M.] Heidelberg Univ, Zentrum Astron, Astron Rechen Inst, D-69120 Heidelberg, Germany. [Anguita, T.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago, Chile. [Burgdorf, M. J.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Hundertmark, M.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Burgdorf, M. J.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Kerins, E.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Mancini, L.] Univ Sannio, Dipartimento Ingn, I-82100 Benevento, Italy. [Masi, G.] Bellatrix Astron Observ, I-03023 Ceccano, FR, Italy. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran, Iran. [Ricci, D.; Surdej, J.] Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Snodgrass, C.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Snodgrass, C.] European So Observ, Santiago 19, Chile. [Southworth, J.] Univ Keele, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Street, R. A.; Tsapras, Y.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Thone, C. C.] Osserv Astron Brera, INAF, I-23807 Merate, LC, Italy. [Tsapras, Y.] Univ London, Sch Math Sci, London E1 4NS, England. RP Dominik, M (reprint author), Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. EM md35@st-andrews.ac.uk RI Hundertmark, Markus/C-6190-2015; Rahvar, Sohrab/A-9350-2008; OI Hundertmark, Markus/0000-0003-0961-5231; Rahvar, Sohrab/0000-0002-7084-5725; Dominik, Martin/0000-0002-3202-0343; Thone, Christina/0000-0002-7978-7648; Ricci, Davide/0000-0002-9790-0552; Snodgrass, Colin/0000-0001-9328-2905 FU Danish Natural Science Research Council (FNU); Department of Culture, Arts and Leisure (DCAL) FX We would like to thank the OGLE, MOA, RoboNet-II, PLANET-III, and MicroFUN collaborations for providing real-time data that gave useful guidance to our observations, and in particular substantially improved the event magnification predictions. Even more substantially, we are indebted to the OGLE and MOA survey programmes without which a real-time follow-up programme such as MiNDSTEp would not be possible. We also thank Scott Gaudi for his helpful comments and suggestions, and acknowledge support from the Danish Natural Science Research Council (FNU). Research at the Armagh Observatory is funded by the Department of Culture, Arts and Leisure (DCAL). NR 70 TC 43 Z9 43 U1 0 U2 5 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0004-6337 J9 ASTRON NACHR JI Astro. Nachr. PD AUG PY 2010 VL 331 IS 7 BP 671 EP 691 DI 10.1002/asna.201011400 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635RN UT WOS:000280673900002 ER PT J AU Hall, NR Keisler, R Knox, L Reichardt, CL Ade, PAR Aird, KA Benson, BA Bleem, LE Carlstrom, JE Chang, CL Cho, HM Crawford, TM Crites, AT De Haan, T Dobbs, MA George, EM Halverson, NW Holder, GP Holzapfel, WL Hrubes, JD Joy, M Lee, AT Leitch, EM Lueker, M McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Padin, S Plagge, T Pryke, C Ruhl, JE Schaffer, KK Shaw, L Shirokoff, E Spieler, HG Stalder, B Staniszewski, Z Stark, AA Switzer, ER Vanderlinde, K Vieira, JD Williamson, R Zahn, O AF Hall, N. R. Keisler, R. Knox, L. Reichardt, C. L. Ade, P. A. R. Aird, K. A. Benson, B. A. Bleem, L. E. Carlstrom, J. E. Chang, C. L. Cho, H. -M. Crawford, T. M. Crites, A. T. De Haan, T. Dobbs, M. A. George, E. M. Halverson, N. W. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Joy, M. Lee, A. T. Leitch, E. M. Lueker, M. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Padin, S. Plagge, T. Pryke, C. Ruhl, J. E. Schaffer, K. K. Shaw, L. Shirokoff, E. Spieler, H. G. Stalder, B. Staniszewski, Z. Stark, A. A. Switzer, E. R. Vanderlinde, K. Vieira, J. D. Williamson, R. Zahn, O. TI ANGULAR POWER SPECTRA OF THE MILLIMETER-WAVELENGTH BACKGROUND LIGHT FROM DUSTY STAR-FORMING GALAXIES WITH THE SOUTH POLE TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; galaxies: abundances; large-scale structure of universe; submillimeter: diffuse background; submillimeter: galaxies ID MULTIBAND IMAGING PHOTOMETER; DEEP-FIELD-SOUTH; SOURCE COUNTS; SUBMILLIMETER GALAXIES; EXTRAGALACTIC SOURCES; ENERGY-DISTRIBUTIONS; RADIO-SOURCES; SPITZER; ANISOTROPIES; EMISSION AB We use data from the first 100 deg(2) field observed by the South Pole Telescope (SPT) in 2008 to measure the angular power spectrum of temperature anisotropies contributed by the background of dusty star-forming galaxies (DSFGs) at millimeter wavelengths. From the auto- and cross-correlation of 150 and 220 GHz SPT maps, we significantly detect both Poisson distributed and, for the first time at millimeter wavelengths, clustered components of power from a background of DSFGs. The spectral indices of the Poisson and clustered components are found to be (alpha) over bar alpha(P)(150-220) = 3.86 +/- 0.23 and alpha(C)(150-220) = 3.8 +/- 1.3, implying a steep scaling of the dust emissivity index beta similar to 2. The Poisson and clustered power detected in SPT, BLAST (at 600, 860, and 1200 GHz), and Spitzer (1900 GHz) data can be understood in the context of a simple model in which all galaxies have the same graybody spectrum with dust emissivity index of beta = 2 and dust temperature T-d = 34 K. In this model, half of the 150 GHz background light comes from redshifts greater than 3.2. We also use the SPT data to place an upper limit on the amplitude of the kinetic Sunyaev-Zel'dovich power spectrum at l = 3000 of 13 mu K-2 at 95% confidence. C1 [Hall, N. R.; Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Keisler, R.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Leitch, E. M.; McMahon, J. J.; Meyer, S. S.; Padin, S.; Pryke, C.; Schaffer, K. K.; Switzer, E. R.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Keisler, R.; Bleem, L. E.; Carlstrom, J. E.; Meyer, S. S.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Ade, P. A. R.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; McMahon, J. J.; Meyer, S. S.; Pryke, C.; Schaffer, K. K.; Switzer, E. R.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Leitch, E. M.; Meyer, S. S.; Padin, S.; Pryke, C.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [De Haan, T.; Dobbs, M. A.; Holder, G. P.; Shaw, L.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Joy, M.] NASA, Marshall Space Flight Ctr, Dept Space Sci, Huntsville, AL 35812 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Mohr, J. J.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Mohr, J. J.] Excellence Cluster Univ, D-85748 Garching, Germany. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA. [Stalder, B.; Stark, A. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. RP Hall, NR (reprint author), Univ Calif Davis, Dept Phys, 1 Shields Ave, Davis, CA 95616 USA. EM nrhall@ucdavis.edu RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Williamson, Ross/0000-0002-6945-2975; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169 FU National Science Foundation (NSF) [ANT-0638937, ANT-0130612, PHY-0114422]; United States Antarctic Program; Raytheon Polar Services Company; Kavli Foundation; Gordon and Betty Moore Foundation; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; National Sciences and Engineering Research Council of Canada; Quebec Fonds de recherche sur la nature et les technologies; Canadian Institute for Advanced Research; Fermi Fellowship; GAAN Fellowship; Miller Institute for Basic Research in Science, University of California Berkeley; Alfred P. Sloan Research Fellowship; KICP Fellowships FX We thank Marco Viero and Guilaine Lagache for comparison of calculations as well as Andrew Blain, Douglas Scott, Rashid Sunyaev, Simon White, and George Efstathiou for useful conversations. The SPT team gratefully acknowledges the contributions to the design and construction of the telescope by S. Busetti, E. Chauvin, T. Hughes, P. Huntley, and E. Nichols and his team of ironworkers. We also thank the National Science Foundation (NSF) Office of Polar Programs, the United States Antarctic Program, and the Raytheon Polar Services Company for their support of the project. We are grateful for professional support from the staff of the South Pole station. We thank T. Lanting, J. Leong, A. Loehr, W. Lu, M. Runyan, D. Schwan, M. Sharp, and C. Greer for their early contributions to the SPT project, and J. Joseph and C. Vu for their contributions to the electronics.; The South Pole Telescope is supported by the National Science Foundation through grants ANT-0638937 and ANT-0130612. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, the Quebec Fonds de recherche sur la nature et les technologies, and the Canadian Institute for Advanced Research. The following individuals acknowledge additional support: J.J.M. from a Fermi Fellowship, Z.S. from a GAAN Fellowship, A.T.L. from the Miller Institute for Basic Research in Science, University of California Berkeley, N.W.H. from an Alfred P. Sloan Research Fellowship, and K.S., B.A.B., and E.R.S. from KICP Fellowships. NR 67 TC 92 Z9 92 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2010 VL 718 IS 2 BP 632 EP 646 DI 10.1088/0004-637X/718/2/632 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 626OV UT WOS:000279976200005 ER PT J AU Garcia, J Kallman, TR AF Garcia, J. Kallman, T. R. TI X-RAY REFLECTED SPECTRA FROM ACCRETION DISK MODELS. I. CONSTANT DENSITY ATMOSPHERES SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; atomic processes; black hole physics; line: formation; radiative transfer; X-rays: general ID ACTIVE GALACTIC NUCLEI; K-VACANCY STATES; AUGER DECAY DATA; BLACK-HOLE; COLD MATTER; ATOMIC DATA; IRON LINE; COMPTON REFLECTION; SHELL PHOTOABSORPTION; OPACITY CALCULATIONS AB We present new models for illuminated accretion disks, their structure, and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by simultaneously solving the equations of radiative transfer, energy balance, and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell processes of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent K alpha line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum. C1 [Garcia, J.] Catholic Univ Amer, Dept Phys, IACS, Washington, DC 20064 USA. [Garcia, J.; Kallman, T. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Garcia, J (reprint author), Catholic Univ Amer, Dept Phys, IACS, Washington, DC 20064 USA. EM javier@milkyway.gsfc.nasa.gov; timothy.r.kallman@nasa.gov FU NASA [05-ATP05-18] FX We thank the referee Professor Randy Ross for his valuable comments on the paper. This work was supported by a grant from the NASA astrophysics theory program 05-ATP05-18. This research has made use of NASA's Astrophysics Data System. NR 76 TC 62 Z9 62 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2010 VL 718 IS 2 BP 695 EP 706 DI 10.1088/0004-637X/718/2/695 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 626OV UT WOS:000279976200010 ER PT J AU Abbas, MM Tankosic, D Craven, PD LeClair, AC Spann, JF AF Abbas, M. M. Tankosic, D. Craven, P. D. LeClair, A. C. Spann, J. F. TI LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: COMPLEX ROLE OF SECONDARY ELECTRON EMISSIONS IN SPACE ENVIRONMENTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; planetary systems ID INTERSTELLAR DUST; COSMIC DUST; PHOTOELECTRIC-EMISSION; SOLAR-SYSTEM; PARTICLES; SIZE; GAS; RADIATION; DYNAMICS; ANALOGS AB Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 mu m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress. C1 [Abbas, M. M.; Craven, P. D.; LeClair, A. C.; Spann, J. F.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Tankosic, D.] NASA, George C Marshall Space Flight Ctr, USRA, Huntsville, AL 35805 USA. RP Abbas, MM (reprint author), NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. EM Mian.M.Abbas@nasa.gov FU NASA [08-LASER08] FX The work reported here was supported by the MSFC-IRAD program, and partly funded under the NASA 08-LASER08 program. The Apollo 11 and 17 lunar dust samples employed in the measurements were kindly provided by NASA-Johnson Space Center. The authors are grateful to an anonymous referee for a comprehensive review of the manuscript and many helpful comments and suggestions in improving the quality of the paper. We thank Dr. T. J. Stubbs for useful comments on the manuscript, Dr. Dennis Gallagher for encouragement and support of this program, and Ms. Madison Young for help in the preparation of this manuscript. NR 61 TC 12 Z9 14 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2010 VL 718 IS 2 BP 795 EP 809 DI 10.1088/0004-637X/718/2/795 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 626OV UT WOS:000279976200018 ER PT J AU Rujopakarn, W Eisenstein, DJ Rieke, GH Papovich, C Cool, RJ Moustakas, J Jannuzi, BT Kochanek, CS Rieke, MJ Dey, A Eisenhardt, P Murray, SS Brown, MJI Le Floc'h, E AF Rujopakarn, Wiphu Eisenstein, Daniel J. Rieke, George H. Papovich, Casey Cool, Richard J. Moustakas, John Jannuzi, Buell T. Kochanek, Christopher S. Rieke, Marcia J. Dey, Arjun Eisenhardt, Peter Murray, Steve S. Brown, Michael J. I. Le Floc'h, Emeric TI THE EVOLUTION OF THE STAR FORMATION RATE OF GALAXIES AT 0.0 <= z <= 1.2 SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: evolution; galaxies: high-redshift; infrared: galaxies ID ACTIVE GALACTIC NUCLEI; INFRARED LUMINOSITY FUNCTIONS; SPECTRAL ENERGY-DISTRIBUTION; DEEP-FIELD-SOUTH; MULTIBAND IMAGING PHOTOMETER; X-RAY SOURCES; FORMATION HISTORY; FORMING GALAXIES; SOURCE COUNTS; REDSHIFT SURVEY AB We present the 24 mu m rest-frame luminosity function (LF) of star-forming galaxies in the redshift range 0.0 <= z <= 0.6 constructed from 4047 spectroscopic redshifts from the AGN and Galaxy Evolution Survey of 24 mu m selected sources in the Bootes field of the NOAO Deep Wide-Field Survey. This sample provides the best available combination of large area (9 deg(2)), depth, and statistically complete spectroscopic observations, allowing us to probe the evolution of the 24 mu m LF of galaxies at low and intermediate redshifts while minimizing the effects of cosmic variance. In order to use the observed 24 mu m luminosity as a tracer for star formation, active galactic nuclei (AGNs) that could contribute significantly at 24 mu m are identified and excluded from our star-forming galaxy sample based on their mid-IR spectral energy distributions or the detection of X-ray emission. Optical emission line diagnostics are considered for AGN identification, but we find that 24 mu m emission from optically selected AGNs is usually from star-forming activity and therefore should not be excluded. The evolution of the 24 mu m LF of star-forming galaxies for redshifts of z <= 0.65 is consistent with a pure luminosity evolution where the characteristic 24 mu m luminosity evolves as (1 + z)(3.8 +/- 0.3). We extend our evolutionary study to encompass 0.0 <= z <= 1.2 by combining our data with that of the Far-Infrared Deep Extragalactic Legacy Survey. Over this entire redshift range, the evolution of the characteristic 24 mu m luminosity is described by a slightly shallower power law of (1 + z)(3.4 +/- 0.2). We find a local star formation rate density of (1.09 +/- 0.21) x 10(-2) M(circle dot) yr(-1) Mpc(-3), and that it evolves as (1 + z)(3.5 +/- 0.2) over 0.0 <= z <= 1.2. These estimates are in good agreement with the rates using optical and UV fluxes corrected for the effects of intrinsic extinction in the observed sources. This agreement confirms that star formation at z <= 1.2 is robustly traced by 24 mu m observations and that it largely occurs in obscured regions of galaxies. C1 [Rujopakarn, Wiphu; Eisenstein, Daniel J.; Rieke, George H.; Rieke, Marcia J.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Papovich, Casey] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Cool, Richard J.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Moustakas, John] Univ Calif San Diego, Ctr Astrophys & Space Sci, San Diego, CA 92093 USA. [Jannuzi, Buell T.; Dey, Arjun] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Kochanek, Christopher S.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Kochanek, Christopher S.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Eisenhardt, Peter] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Murray, Steve S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Brown, Michael J. I.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. [Le Floc'h, Emeric] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. RP Rujopakarn, W (reprint author), Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. EM wiphu@as.arizona.edu RI Rujopakarn, Wiphu/E-7849-2012; Brown, Michael/B-1181-2015; OI Brown, Michael/0000-0002-1207-9137; Rujopakarn, Wiphu/0000-0002-0303-499X FU JPL/Caltech [1255094]; Spitzer archival [JPL-1278815]; NSF [AST-0607541]; Thai Government FX We thank Benjamin Weiner, Benjamin Magnelli, Christopher Willmer, and Pablo Perez-Gonzalez for invaluable discussions. W. R. thanks Andrew Hopkins for supplying his rho* compilation and Xinyu Dai for his inputs on the cosmic variance in the Bootes field. This work was supported by the contract 1255094 from JPL/Caltech to the University of Arizona. W. R. was supported by Spitzer archival grant JPL-1278815, NSF AST-0607541, and the Thai Government Scholarship. NR 107 TC 42 Z9 42 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2010 VL 718 IS 2 BP 1171 EP 1185 DI 10.1088/0004-637X/718/2/1171 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 626OV UT WOS:000279976200050 ER PT J AU Fleming, SW Ge, JA Mahadevan, S Lee, B Eastman, JD Siverd, RJ Gaudi, BS Niedzielski, A Sivarani, T Stassun, KG Wolszczan, A Barnes, R Gary, B Nguyen, DC Morehead, RC Wan, XK Zhao, B Liu, JA Guo, PC Kane, SR van Eyken, JC De Lee, NM Crepp, JR Shelden, AC Laws, C Wisniewski, JP Schneider, DP Pepper, J Snedden, SA Pan, KK Bizyaev, D Brewington, H Malanushenko, O Malanushenko, V Oravetz, D Simmons, A Watters, S AF Fleming, Scott W. Ge, Jian Mahadevan, Suvrath Lee, Brian Eastman, Jason D. Siverd, Robert J. Gaudi, B. Scott Niedzielski, Andrzej Sivarani, Thirupathi Stassun, Keivan G. Wolszczan, Alex Barnes, Rory Gary, Bruce Nguyen, Duy Cuong Morehead, Robert C. Wan, Xiaoke Zhao, Bo Liu, Jian Guo, Pengcheng Kane, Stephen R. van Eyken, Julian C. De Lee, Nathan M. Crepp, Justin R. Shelden, Alaina C. Laws, Chris Wisniewski, John P. Schneider, Donald P. Pepper, Joshua Snedden, Stephanie A. Pan, Kaike Bizyaev, Dmitry Brewington, Howard Malanushenko, Olena Malanushenko, Viktor Oravetz, Daniel Simmons, Audrey Watters, Shannon TI DISCOVERY OF A LOW-MASS COMPANION TO A METAL-RICH F STAR WITH THE MARVELS PILOT PROJECT SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; planetary systems; stars: low-mass ID BROWN-DWARF DESERT; HOBBY-EBERLY TELESCOPE; EXTERNALLY DISPERSED INTERFEROMETER; EXTRA-SOLAR PLANETS; SUBSTELLAR COMPANIONS; TIDAL EVOLUTION; CORALIE SURVEY; SPACED DATA; SKY SURVEY; K-DWARF AB We report the discovery of a low-mass companion orbiting the metal-rich, main sequence F star TYC 2949-00557-1 during the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) pilot project. The host star has an effective temperature T(eff) = 6135 +/- 40 K, logg = 4.4 +/- 0.1, and [Fe/H] = 0.32 +/- 0.01, indicating a mass of M = 1.25 +/- 0.09M(circle dot) and R = 1.15 +/- 0.15R(circle dot). The companion has an orbital period of 5.69449 +/- 0.00023 days and straddles the hydrogen burning limit with a minimum mass of 64 M(J), and thus may be an example of the rare class of brown dwarfs orbiting at distances comparable to those of "Hot Jupiters." We present relative photometry that demonstrates that the host star is photometrically stable at the few millimagnitude level on time scales of hours to years, and rules out transits for a companion of radius less than or similar to 0.8R(J) at the 95% confidence level. Tidal analysis of the system suggests that the star and companion are likely in a double synchronous state where both rotational and orbital synchronization have been achieved. This is the first low-mass companion detected with a multi-object, dispersed, fixed-delay interferometer. C1 [Fleming, Scott W.; Ge, Jian; Mahadevan, Suvrath; Lee, Brian; Nguyen, Duy Cuong; Morehead, Robert C.; Wan, Xiaoke; Zhao, Bo; Liu, Jian; Guo, Pengcheng; Kane, Stephen R.; van Eyken, Julian C.; De Lee, Nathan M.; Crepp, Justin R.; Shelden, Alaina C.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Mahadevan, Suvrath; Wolszczan, Alex; Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Mahadevan, Suvrath; Wolszczan, Alex; Schneider, Donald P.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. [Eastman, Jason D.; Siverd, Robert J.; Gaudi, B. Scott] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Niedzielski, Andrzej] Nicholas Copernicus Univ, Torun Ctr Astron, PL-87100 Torun, Poland. [Sivarani, Thirupathi] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Stassun, Keivan G.; Gary, Bruce; Pepper, Joshua] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Stassun, Keivan G.] Fisk Univ, Dept Phys, Nashville, TN 37208 USA. [Barnes, Rory; Laws, Chris; Wisniewski, John P.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Kane, Stephen R.; van Eyken, Julian C.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Crepp, Justin R.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Shelden, Alaina C.; Snedden, Stephanie A.; Pan, Kaike; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Olena; Malanushenko, Viktor; Oravetz, Daniel; Simmons, Audrey; Watters, Shannon] Apache Point Observ, Sunspot, NM 88349 USA. [Watters, Shannon] Inst Astron, Pukalani, HI 96768 USA. RP Fleming, SW (reprint author), Univ Florida, Dept Astron, 211 Bryant Space Sci Ctr, Gainesville, FL 32611 USA. EM scfleming@astro.ufl.edu RI Gaudi, Bernard/I-7732-2012; Kane, Stephen/B-4798-2013; OI Eastman, Jason/0000-0003-3773-5142; Fleming, Scott/0000-0003-0556-027X; Pepper, Joshua/0000-0002-3827-8417 NR 80 TC 17 Z9 17 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2010 VL 718 IS 2 BP 1186 EP 1199 DI 10.1088/0004-637X/718/2/1186 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 626OV UT WOS:000279976200051 ER PT J AU Brown, TM Sweigart, AV Lanz, T Smith, E Landsman, WB Hubeny, I AF Brown, Thomas M. Sweigart, Allen V. Lanz, Thierry Smith, Ed Landsman, Wayne B. Hubeny, Ivan TI THE BLUE HOOK POPULATIONS OF MASSIVE GLOBULAR CLUSTERS SO ASTROPHYSICAL JOURNAL LA English DT Article DE globular clusters: general; globular clusters: individual (NGC 2419, NGC 6273, NGC 6715, NGC 2808, NGC 6388, NGC 6441); stars: atmospheres; stars: evolution; stars: horizontal-branch; ultraviolet:stars ID BLANKETED MODEL ATMOSPHERES; HORIZONTAL-BRANCH STARS; SPACE-TELESCOPE OBSERVATIONS; DOUBLE MAIN-SEQUENCE; DWARF COOLING CURVE; OMEGA-CENTAURI; HELIUM ENRICHMENT; STELLAR POPULATIONS; EVOLVED STARS; ACS SURVEY AB We present new Hubble Space Telescope ultraviolet color-magnitude diagrams of five massive Galactic globular clusters: NGC 2419, NGC 6273, NGC 6715, NGC 6388, and NGC 6441. These observations were obtained to investigate the "blue hook" (BH) phenomenon previously observed in UV images of the globular clusters omega Cen and NGC 2808. Blue hook stars are a class of hot (approximately 35,000 K) subluminous horizontal branch stars that occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. By coupling new stellar evolution models to appropriate non-LTE synthetic spectra, we investigate various theoretical explanations for these stars. Specifically, we compare our photometry to canonical models at standard cluster abundances, canonical models with enhanced helium (consistent with cluster self-enrichment at early times), and flash-mixed models formed via a late helium-core flash on the white dwarf cooling curve. We find that flash-mixed models are required to explain the faint luminosity of the BH stars, although neither the canonical models nor the flash-mixed models can explain the range of color observed in such stars, especially those in the most metal-rich clusters. Aside from the variation in the color range, no clear trends emerge in the morphology of the BH population with respect to metallicity. C1 [Brown, Thomas M.; Smith, Ed] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Sweigart, Allen V.; Landsman, Wayne B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lanz, Thierry] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Hubeny, Ivan] Univ Arizona, Steward Observ, Tucson, AZ 85712 USA. RP Brown, TM (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM tbrown@stsci.edu; allen.v.sweigart@nasa.gov; lanz@astro.umd.edu; edsmith@stsci.edu; wayne.b.landsman@nasa.gov; hubeny@aegis.as.arizona.edu OI Brown, Thomas/0000-0002-1793-9968 FU NASA through STScI [NAS 5-26555] FX Support for proposal 10815 is provided by NASA through a grant from STScI, which is operated by AURA, Inc., under NASA contract NAS 5-26555. We thank the anonymous referee for comments that helped improve the clarity of this paper. NR 65 TC 27 Z9 27 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2010 VL 718 IS 2 BP 1332 EP 1344 DI 10.1088/0004-637X/718/2/1332 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 626OV UT WOS:000279976200061 ER PT J AU Longcope, DW Bradshaw, SJ AF Longcope, D. W. Bradshaw, S. J. TI SLOW SHOCKS AND CONDUCTION FRONTS FROM PETSCHEK RECONNECTION OF SKEWED MAGNETIC FIELDS: TWO-FLUID EFFECTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetohydrodynamics (MHD); plasmas; Sun: flares ID SOLAR-FLARES; GUIDE-FIELD; IONIZED-GAS; PLASMA; WAVE; COLLISIONLESS; MODEL; SIMULATION; MECHANISM; TRANSPORT AB In models of fast magnetic reconnection, flux transfer occurs within a small portion of a current sheet triggering stored magnetic energy to be thermalized by shocks. When the initial current sheet separates magnetic fields which are not perfectly anti-parallel, i.e., they are skewed, magnetic energy is first converted to bulk kinetic energy and then thermalized in slow magnetosonic shocks. We show that the latter resemble parallel shocks or hydrodynamic shocks for all skew angles except those very near the anti-parallel limit. As for parallel shocks, the structures of reconnection-driven slow shocks are best studied using two-fluid equations in which ions and electrons have independent temperature. Time-dependent solutions of these equations can be used to predict and understand the shocks from reconnection of skewed magnetic fields. The results differ from those found using a single-fluid model such as magnetohydrodynamics. In the two-fluid model, electrons are heated indirectly and thus carry a heat flux always well below the free-streaming limit. The viscous stress of the ions is, however, typically near the fluid-treatable limit. We find that for a wide range of skew angles and small plasma beta an electron conduction front extends ahead of the slow shock but remains within the outflow jet. In such cases, conduction will play a more limited role in driving chromospheric evaporation than has been predicted based on single-fluid, anti-parallel models. C1 [Longcope, D. W.] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. [Bradshaw, S. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bradshaw, S. J.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Longcope, D. W.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. RP Longcope, DW (reprint author), Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. FU NSF; DOE; NASA FX D.W.L. thanks Terry Forbes for helpful discussions and also thanks Jim Drake and the UMD Institute for Research in Electronics and Applied Physics for hosting his sabbatical leave. The work was supported by NSF and DOE under a joint grant. S.J.B. is supported by the NASA Living with a Star Program. NR 54 TC 13 Z9 14 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2010 VL 718 IS 2 BP 1491 EP 1508 DI 10.1088/0004-637X/718/2/1491 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 626OV UT WOS:000279976200074 ER PT J AU Abbasi, R Abdou, Y Abu-Zayyad, T Adams, J Aguilar, JA Ahlers, M Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Bay, R Alba, JLB Beattie, K Beatty, JJ Bechet, S Becker, JK Becker, KH Benabderrahmane, ML BenZvi, S Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bissok, M Blaufuss, E Boersma, DJ Bohm, C Boser, S Botner, O Bradley, L Braun, J Buitink, S Carson, M Chirkin, D Christy, B Clem, J Clevermann, F Cohen, S Colnard, C Cowen, DF D'Agostino, MV Danninger, M Davis, JC De Clercq, C Demirors, L Depaepe, O Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dierckxsens, M Dreyer, J Dumm, JP Duvoort, MR Ehrlich, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Feusels, T Filimonov, K Finley, C Foerster, MM Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Geisler, M Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Goodman, JA Grant, D Griesel, T Gross, A Grullon, S Gurtner, M Ha, C Hallgren, A Halzen, F Han, K Hanson, K Helbing, K Herquet, P Hickford, S Hill, GC Hoffman, KD Homeier, A Hoshina, K Hubert, D Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Joseph, JM Kampert, KH Karg, T Karle, A Kelley, JL Kemming, N Kenny, P Kiryluk, J Kislat, F Klein, SR Knops, S Kohne, JH Kohnen, G Kolanoski, H Kopke, L Koskinen, DJ Kowalski, M Kowarik, T Krasberg, M Krings, T Kroll, G Kuehn, K Kuwabara, T Labare, M Lafebre, S Laihem, K Landsman, H Lauer, R Lehmann, R Lennarz, D Lunemann, J Madsen, J Majumdar, P Marotta, A Maruyama, R Mase, K Matis, HS Matusik, M Meagher, K Merck, M Meszaros, P Meures, T Middell, E Milke, N Miller, J Montaruli, T Morse, R Movit, SM Nahnhauer, R Nam, JW Naumann, U Niessen, P Nygren, DR Odrowski, S Olivas, A Olivo, M O'Murchadha, A Ono, M Panknin, S Paul, L de los Heros, CP Petrovic, J Piegsa, A Pieloth, D Porrata, R Posselt, J Price, PB Prikockis, M Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Rizzo, A Rodrigues, JP Roth, P Rothmaier, F Rott, C Roucelle, C Ruhe, T Rutledge, D Ruzybayev, B Ryckbosch, D Sander, HG Santander, M Sarkar, S Schatto, K Schlenstedt, S Schmidt, T Schukraft, A Schultes, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Slipak, A Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stephens, G Stezelberger, T Stokstad, RG Stoyanov, S Strahler, EA Straszheim, T Sullivan, GW Swillens, Q Taavola, H Taboada, I Tamburro, A Tarasova, O Tepe, A Ter-Antonyan, S Tilav, S Toale, PA Toscano, S Tosi, D Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A van Santen, J Voge, M Voigt, B Walck, C Waldenmaier, T Wallraff, M Walter, M Weaver, C Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Wikstrom, G Williams, DR Wischnewski, R Wissing, H Wolf, M Woschnagg, K Xu, C Xu, XW Yodh, G Yoshida, S Zarzhitsky, P AF Abbasi, R. Abdou, Y. Abu-Zayyad, T. Adams, J. Aguilar, J. A. Ahlers, M. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Beatty, J. J. Bechet, S. Becker, J. K. Becker, K. -H. Benabderrahmane, M. L. BenZvi, S. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bissok, M. Blaufuss, E. Boersma, D. J. Bohm, C. Boeser, S. Botner, O. Bradley, L. Braun, J. Buitink, S. Carson, M. Chirkin, D. Christy, B. Clem, J. Clevermann, F. Cohen, S. Colnard, C. Cowen, D. F. D'Agostino, M. V. Danninger, M. Davis, J. C. De Clercq, C. Demiroers, L. Depaepe, O. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dierckxsens, M. Dreyer, J. Dumm, J. P. Duvoort, M. R. Ehrlich, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Feusels, T. Filimonov, K. Finley, C. Foerster, M. M. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Geisler, M. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Goodman, J. A. Grant, D. Griesel, T. Gross, A. Grullon, S. Gurtner, M. Ha, C. Hallgren, A. Halzen, F. Han, K. Hanson, K. Helbing, K. Herquet, P. Hickford, S. Hill, G. C. Hoffman, K. D. Homeier, A. Hoshina, K. Hubert, D. Huelsnitz, W. Huelss, J.-P. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Joseph, J. M. Kampert, K. -H. Karg, T. Karle, A. Kelley, J. L. Kemming, N. Kenny, P. Kiryluk, J. Kislat, F. Klein, S. R. Knops, S. Koehne, J.-H. Kohnen, G. Kolanoski, H. Koepke, L. Koskinen, D. J. Kowalski, M. Kowarik, T. Krasberg, M. Krings, T. Kroll, G. Kuehn, K. Kuwabara, T. Labare, M. Lafebre, S. Laihem, K. Landsman, H. Lauer, R. Lehmann, R. Lennarz, D. Luenemann, J. Madsen, J. Majumdar, P. Marotta, A. Maruyama, R. Mase, K. Matis, H. S. Matusik, M. Meagher, K. Merck, M. Meszaros, P. Meures, T. Middell, E. Milke, N. Miller, J. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Nam, J. W. Naumann, U. Niessen, P. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. O'Murchadha, A. Ono, M. Panknin, S. Paul, L. de los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Porrata, R. Posselt, J. Price, P. B. Prikockis, M. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Rodrigues, J. P. Roth, P. Rothmaier, F. Rott, C. Roucelle, C. Ruhe, T. Rutledge, D. Ruzybayev, B. Ryckbosch, D. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Schlenstedt, S. Schmidt, T. Schukraft, A. Schultes, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Slipak, A. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stephens, G. Stezelberger, T. Stokstad, R. G. Stoyanov, S. Strahler, E. A. Straszheim, T. Sullivan, G. W. Swillens, Q. Taavola, H. Taboada, I. Tamburro, A. Tarasova, O. Tepe, A. Ter-Antonyan, S. Tilav, S. Toale, P. A. Toscano, S. Tosi, D. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. van Santen, J. Voge, M. Voigt, B. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Weaver, Ch. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Wikstroem, G. Williams, D. R. Wischnewski, R. Wissing, H. Wolf, M. Woschnagg, K. Xu, C. Xu, X. W. Yodh, G. Yoshida, S. Zarzhitsky, P. CA IceCube Collaboration TI MEASUREMENT OF THE ANISOTROPY OF COSMIC-RAY ARRIVAL DIRECTIONS WITH ICECUBE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmic rays; neutrinos AB We report the first observation of an anisotropy in the arrival direction of cosmic rays with energies in the multi-TeV region in the Southern sky using data from the IceCube detector. Between 2007 June and 2008 March, the partially deployed IceCube detector was operated in a configuration with 1320 digital optical sensors distributed over 22 strings at depths between 1450 and 2450 m inside the Antarctic ice. IceCube is a neutrino detector, but the data are dominated by a large background of cosmic-ray muons. Therefore, the background data are suitable for high-statistics studies of cosmic rays in the southern sky. The data include 4.3 billion muons produced by downward-going cosmic-ray interactions in the atmosphere; these events were reconstructed with a median angular resolution of 3 degrees and a median energy of similar to 20 TeV. Their arrival direction distribution exhibits an anisotropy in right ascension with a first-harmonic amplitude of (6.4 +/- 0.2 stat. +/- 0.8 syst.) x 10(-4). C1 [Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; BenZvi, S.; Berghaus, P.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Morse, R.; O'Murchadha, A.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Abdou, Y.; Carson, M.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subat & Radiat Phys, B-9000 Ghent, Belgium. [Abu-Zayyad, T.; Madsen, J.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Adams, J.; Gross, A.; Han, K.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Auffenberg, J.; Becker, K. -H.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Matusik, M.; Naumann, U.; Posselt, J.; Schultes, A.; Semburg, B.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Franke, R.; Kislat, F.; Lauer, R.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Schlenstedt, S.; Spiering, C.; Tarasova, O.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany. [Beattie, K.; Buitink, S.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Bechet, S.; Bertrand, D.; Dierckxsens, M.; Hanson, K.; Labare, M.; Marotta, A.; Petrovic, J.; Swillens, Q.] Univ Libre Bruxelles, Sci Fac CP230, B-1050 Brussels, Belgium. [Becker, J. K.; Dreyer, J.; Olivo, M.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; Sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Bissok, M.; Boersma, D. J.; Euler, S.; Geisler, M.; Gluesenkamp, T.; Huelss, J.-P.; Knops, S.; Krings, T.; Laihem, K.; Lennarz, D.; Meures, T.; Paul, L.; Schukraft, A.; Schunck, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wikstroem, G.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wikstroem, G.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Boeser, S.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Botner, O.; Engdegard, O.; Hallgren, A.; Miller, J.; Olivo, M.; de los Heros, C. Perez; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Bradley, L.; Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Ha, C.; Koskinen, D. J.; Lafebre, S.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Slipak, A.; Stephens, G.; Toale, P. A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Clevermann, F.; Koehne, J.-H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Cohen, S.; Demiroers, L.; Ribordy, M.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Colnard, C.; Gross, A.; Odrowski, S.; Resconi, E.; Roucelle, C.; Schulz, O.; Sestayo, Y.; Voge, M.; Wolf, M.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [De Clercq, C.; Depaepe, O.; Hubert, D.; Rizzo, A.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Duvoort, M. R.] Univ Utrecht, Dept Phys & Astron, SRON, NL-3584 CC Utrecht, Netherlands. [Fadiran, O.; Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Grant, D.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Griesel, T.; Koepke, L.; Kowarik, T.; Kroll, G.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Ishihara, A.; Mase, K.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Kemming, N.; Kolanoski, H.; Lehmann, R.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Rawlins, K.] Univ Alaska, Dept Phys & Astron, Anchorage, AK 99508 USA. [Seunarine, S.] Univ W Indies, Dept Phys, BB-11000 Bridgetown, Barbados. [Taboada, I.; Tepe, A.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Taboada, I.; Tepe, A.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Williams, D. R.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Abbasi, R (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM rasha.abbasi@icecube.wisc.edu; paolo.desiati@icecube.wisc.edu RI Taavola, Henric/B-4497-2011; Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Tamburro, Alessio/A-5703-2013; Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011; Beatty, James/D-9310-2011; Botner, Olga/A-9110-2013; Hallgren, Allan/A-8963-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Aguilar Sanchez, Juan Antonio/H-4467-2015; OI Taavola, Henric/0000-0002-2604-2810; Wiebusch, Christopher/0000-0002-6418-3008; Maruyama, Reina/0000-0003-2794-512X; Sarkar, Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Buitink, Stijn/0000-0002-6177-497X; Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479; Perez de los Heros, Carlos/0000-0002-2084-5866; Carson, Michael/0000-0003-0400-7819; Hubert, Daan/0000-0002-4365-865X; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886 FU U.S. National Science Foundation-Office of Polar Program; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; U.S. Department of Energy; National Energy Research Scientific Computing Center FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Program, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice NR 11 TC 74 Z9 74 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 1 PY 2010 VL 718 IS 2 BP L194 EP L198 DI 10.1088/2041-8205/718/2/L194 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 636EI UT WOS:000280710700031 ER PT J AU Burgdorf, M Cruikshank, DP Ore, CMD Sekiguchi, T Nakamura, R Orton, G Quirico, E Schmitt, B AF Burgdorf, M. Cruikshank, D. P. Ore, C. M. Dalle Sekiguchi, T. Nakamura, R. Orton, G. Quirico, E. Schmitt, B. TI A TENTATIVE IDENTIFICATION OF HCN ICE ON TRITON SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planets and satellites: individual (Triton) ID INFRARED-SPECTROSCOPY; CRYSTALLINE HCN; PHYSICAL STATE; PLUTO; SURFACE; INTENSITIES; CENTAURS; HC3N; DCN; N-2 AB Spectra of Triton between 1.8 and 5.5 mu m, obtained in 2007 May and 2009 November, have been analyzed to determine the global surface composition. The spectra were acquired with the grism and the prism of the Infrared Camera on board AKARI with spectral resolutions of 135 and 22, respectively. The data from 4 to 5 mu m are shown in this Letter and compared to the spectra of N-2, CO, and CO2, i.e., all the known ices on this moon that have distinct bands in this previously unexplored wavelength range. We report the detection of a 4 sigma absorption band at 4.76 mu m (2101 cm(-1)), which we attribute tentatively to the presence of solid HCN. This is the sixth ice to be identified on Triton and an expected component of its surface because it is a precipitating photochemical product of Triton's thin N-2 and CH4 atmosphere. It is also formed directly by irradiation of mixtures of N-2 and CH4 ices. Here we consider only pure HCN, although it might be dissolved in N-2 on the surface of Triton because of the evaporation and recondensation of N-2 over its seasonal cycle. The AKARI spectrum of Triton also covers the wavelengths of the fundamental (1-0) band of beta-phase N-2 ice (4.296 mu m, 2328 cm(-1)), which has never been detected in an astronomical body before, and whose presence is consistent with the overtone (2-0) band previously reported. Fundamental bands of CO and CO2 ices are also present. C1 [Burgdorf, M.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Burgdorf, M.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Sekiguchi, T.] Hokkaido Univ, Asahikawa, Hokkaido, Japan. [Nakamura, R.] Natl Inst Adv Ind Sci & Technol, GEO Grid Res Grp, Informat Technol Res Inst, Tsukuba, Ibaraki 3058568, Japan. [Orton, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Quirico, E.; Schmitt, B.] Univ Grenoble 1, Lab Planetol Grenoble, F-38041 Grenoble 9, France. RP Burgdorf, M (reprint author), Univ Stuttgart, Deutsch SOFIA Inst, Pfaffenwaldring 31, D-70569 Stuttgart, Germany. EM mburgdorf@sofia.usra.edu RI Schmitt, Bernard/A-1064-2009; quirico, eric/K-9650-2013 OI Schmitt, Bernard/0000-0002-1230-6627; quirico, eric/0000-0003-2768-0694 NR 29 TC 15 Z9 15 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 1 PY 2010 VL 718 IS 2 BP L53 EP L57 DI 10.1088/2041-8205/718/2/L53 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 636EI UT WOS:000280710700002 ER PT J AU Thalmann, C Grady, CA Goto, M Wisniewski, JP Janson, M Henning, T Fukagawa, M Honda, M Mulders, GD Min, M Moro-Martin, A McElwain, MW Hodapp, KW Carson, J Abe, L Brandner, W Egner, S Feldt, M Fukue, T Golota, T Guyon, O Hashimoto, J Hayano, Y Hayashi, M Hayashi, S Ishii, M Kandori, R Knapp, GR Kudo, T Kusakabe, N Kuzuhara, M Matsuo, T Miyama, S Morino, JI Nishimura, T Pyo, TS Serabyn, E Shibai, H Suto, H Suzuki, R Takami, M Takato, N Terada, H Tomono, D Turner, EL Watanabe, M Yamada, T Takami, H Usuda, T Tamura, M AF Thalmann, C. Grady, C. A. Goto, M. Wisniewski, J. P. Janson, M. Henning, T. Fukagawa, M. Honda, M. Mulders, G. D. Min, M. Moro-Martin, A. McElwain, M. W. Hodapp, K. W. Carson, J. Abe, L. Brandner, W. Egner, S. Feldt, M. Fukue, T. Golota, T. Guyon, O. Hashimoto, J. Hayano, Y. Hayashi, M. Hayashi, S. Ishii, M. Kandori, R. Knapp, G. R. Kudo, T. Kusakabe, N. Kuzuhara, M. Matsuo, T. Miyama, S. Morino, J. -I. Nishimura, T. Pyo, T. -S. Serabyn, E. Shibai, H. Suto, H. Suzuki, R. Takami, M. Takato, N. Terada, H. Tomono, D. Turner, E. L. Watanabe, M. Yamada, T. Takami, H. Usuda, T. Tamura, M. TI IMAGING OF A TRANSITIONAL DISK GAP IN REFLECTED LIGHT: INDICATIONS OF PLANET FORMATION AROUND THE YOUNG SOLAR ANALOG LkCa 15 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE circumstellar matter; planetary systems; stars: individual (LkCa 15); stars: pre-main sequence; techniques: high angular resolution ID PROTOPLANETARY DISCS; X-RAY; EVOLUTIONARY MODELS; DM-TAU; STAR; PHOTOEVAPORATION; RADIATION; MWC-480; GROWTH AB We present H- and K-s-band imaging data resolving the gap in the transitional disk around LkCa 15, revealing the surrounding nebulosity. We detect sharp elliptical contours delimiting the nebulosity on the inside as well as the outside, consistent with the shape, size, ellipticity, and orientation of starlight reflected from the far-side disk wall, whereas the near-side wall is shielded from view by the disk's optically thick bulk. We note that forward scattering of starlight on the near-side disk surface could provide an alternate interpretation of the nebulosity. In either case, this discovery provides confirmation of the disk geometry that has been proposed to explain the spectral energy distributions of such systems, comprising an optically thick disk with an inner truncation radius of similar to 46 AU enclosing a largely evacuated gap. Our data show an offset of the nebulosity contours along the major axis, likely corresponding to a physical pericenter offset of the disk gap. This reinforces the leading theory that dynamical clearing by at least one orbiting body is the cause of the gap. Based on evolutionary models, our high-contrast imagery imposes an upper limit of 21 M-Jup on companions at separations outside of 0 ''.1 and of 13 M-Jup outside of 0 ''.2. Thus, we find that a planetary system around LkCa 15 is the most likely explanation for the disk architecture. C1 [Thalmann, C.; Goto, M.; Henning, T.; Carson, J.; Brandner, W.; Feldt, M.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Grady, C. A.] Eureka Sci & Goddard Space Flight Ctr, Greenbelt, MD USA. [Wisniewski, J. P.] Univ Washington, Seattle, WA 98195 USA. [Janson, M.] Univ Toronto, Toronto, ON, Canada. [Fukagawa, M.; Shibai, H.] Osaka Univ, Osaka, Japan. [Honda, M.] Kanagawa Univ, Fac Sci, Kanagawa, Japan. [Mulders, G. D.] Univ Amsterdam, Astron Inst Anton Pannekoek, Amsterdam, Netherlands. [Mulders, G. D.] Univ Groningen, SRON Netherlands Inst Space Res, Groningen, Netherlands. [Min, M.] Univ Utrecht, Astron Inst, Utrecht, Netherlands. [Moro-Martin, A.] CAB CSIC INTA, Dept Astrophys, Madrid, Spain. [Moro-Martin, A.; McElwain, M. W.; Knapp, G. R.; Turner, E. L.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Hodapp, K. W.] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA. [Carson, J.] Coll Charleston, Charleston, SC 29401 USA. [Abe, L.] Lab Hippolyte Fizeau, Nice, France. [Egner, S.; Golota, T.; Guyon, O.; Hayano, Y.; Hayashi, M.; Hayashi, S.; Ishii, M.; Nishimura, T.; Pyo, T. -S.; Takato, N.; Terada, H.; Tomono, D.; Takami, H.; Usuda, T.] Subaru Telescope, Hilo, HI USA. [Fukue, T.; Hashimoto, J.; Kandori, R.; Kudo, T.; Kusakabe, N.; Kuzuhara, M.; Matsuo, T.; Miyama, S.; Morino, J. -I.; Suto, H.; Suzuki, R.; Tamura, M.] Natl Astron Observ Japan, Tokyo, Japan. [Turner, E. L.] Univ Tokyo, Inst Phys & Math Universe, Tokyo, Japan. [Serabyn, E.] CALTECH, JPL, Pasadena, CA 91125 USA. [Takami, M.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Watanabe, M.] Hokkaido Univ, Dept Cosmosci, Sapporo, Hokkaido, Japan. [Yamada, T.] Tohoku Univ, Astron Inst, Sendai, Miyagi 980, Japan. RP Thalmann, C (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM thalmann@mpia.de RI Turner, Edwin/A-4295-2011; McElwain, Michael/D-3607-2012; MIYAMA, Shoken/A-3598-2015 OI McElwain, Michael/0000-0003-0241-8956; FU MEXT; Mitsubishi Foundation; NSF [AST 08-02230, AST-0901967]; Princeton University; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; Chretien International Research Grant FX We thank Cornelis P. Dullemond and Dmitry Semenov for helpful discussion, and David Lafreniere for generously providing us with the source code for his LOCI algorithm. This work is partly supported by a Grant-in-Aid for Science Research in a Priority Area from MEXT and by the Mitsubishi Foundation. J.P.W. and M.W.M. acknowledge support from NSF Astronomy & Astrophysics Postdoctoral Fellowships AST 08-02230 and AST-0901967, respectively. E.L.T. gratefully acknowledges support from a Princeton University Global Collaborative Research Fund grant and the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. J.P.W. also acknowledges funding from a Chretien International Research Grant. NR 32 TC 82 Z9 83 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 1 PY 2010 VL 718 IS 2 BP L87 EP L91 DI 10.1088/2041-8205/718/2/L87 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 636EI UT WOS:000280710700009 ER PT J AU Van Grootel, V Charpinet, S Fontaine, G Brassard, P Green, EM Randall, SK Silvotti, R Ostensen, RH Kjeldsen, H Christensen-Dalsgaard, J Borucki, WJ Koch, D AF Van Grootel, V. Charpinet, S. Fontaine, G. Brassard, P. Green, E. M. Randall, S. K. Silvotti, R. Ostensen, R. H. Kjeldsen, H. Christensen-Dalsgaard, J. Borucki, W. J. Koch, D. TI EARLY ASTEROSEISMIC RESULTS FROM KEPLER: STRUCTURAL AND CORE PARAMETERS OF THE HOT B SUBDWARF KPD 1943+4058 AS INFERRED FROM g-MODE OSCILLATIONS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE stars: individual (KPD 1943+4058); stars: interiors; stars: oscillations; subdwarfs ID PALOMAR-GREEN; WHITE-DWARFS; STARS; ATMOSPHERES; PHOTOMETRY AB We present a seismic analysis of the pulsating hot B subdwarf KPD 1943+4058 (KIC 005807616) on the basis of the long-period, gravity-mode pulsations recently uncovered by Kepler. This is the first time that g-mode seismology can be exploited quantitatively for stars on the extreme horizontal branch, all previous successful seismic analyses having been confined so far to short-period, p-mode pulsators. We demonstrate that current models of hot B subdwarfs can quite well explain the observed g-mode periods, while being consistent with independent constraints provided by spectroscopy. We identify the 18 pulsations retained in our analysis as low-degree (l = 1 and 2), intermediate-order (k = -9 through -58) g-modes. The periods (frequencies) are recovered, on average, at the 0.22% level, which is comparable to the best results obtained for p-mode pulsators. We infer the following structural and core parameters for KPD 1943+4058 (formal fitting uncertainties only): T-eff = 28,050 +/- 470 K, log g = 5.52 +/- 0.03, M-* = 0.496 +/- 0.002 M circle dot, log (M-env/M-*) = -2.55 +/- 0.07, log (1 - M-core/M-*) = -0.37 +/- 0.01, and X-core(C+O)= 0.261 +/- 0.008. We additionally derive the age of the star since the zero-age extended horizontal branch 18.4 +/- 1.0 Myr, the radius R = 0.203 +/- 0.007 R circle dot, the luminosity L = 22.9 +/- 3.13 L circle dot, the absolute magnitude M-V = 4.21 +/- 0.11, the reddening index E(B - V) = 0.094 +/- 0.017, and the distance d = 1180 +/- 95 pc. C1 [Van Grootel, V.; Charpinet, S.] Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, F-31400 Toulouse, France. [Fontaine, G.; Brassard, P.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Green, E. M.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Randall, S. K.] ESO, D-85748 Garching, Germany. [Silvotti, R.] Osserv Astron Torino, INAF, I-10025 Pino Torinese, Italy. [Ostensen, R. H.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Kjeldsen, H.; Christensen-Dalsgaard, J.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Borucki, W. J.; Koch, D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Van Grootel, V (reprint author), Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, 14 Av E Belin, F-31400 Toulouse, France. EM valerie.vangrootel@ast.obs-mip.fr; stephane.charpinet@ast.obs-mip.fr; fontaine@astro.umontreal.ca; brassard@astro.umontreal.ca; bgreen@as.arizona.edu; srandall@eso.org OI Silvotti, Roberto/0000-0002-1295-8174; Charpinet, Stephane/0000-0002-6018-6180 FU NASA's Science Mission Directorate; Centre National d'Etudes Spatiales (CNES) FX Funding for the Kepler Mission is provided by NASA's Science Mission Directorate. We gratefully acknowledge the Kepler Science Team and all those who have contributed to making the Kepler Mission possible. We thank WG11 members for helpful discussions. V.V.G. acknowledges grant support from the Centre National d'Etudes Spatiales (CNES). NR 23 TC 53 Z9 53 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 1 PY 2010 VL 718 IS 2 BP L97 EP L101 DI 10.1088/2041-8205/718/2/L97 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 636EI UT WOS:000280710700011 ER PT J AU Vandenbroucke, J Buehler, R Ajello, M Bechtol, K Bellini, A Bolte, M Cheung, CC Civano, F Donato, D Fuhrmann, L Funk, S Healey, SE Hill, AB Knigge, C Madejski, GM Romani, RW Santander-Garcia, M Shaw, MS Steeghs, D Torres, MAP Van Etten, A Williams, KA AF Vandenbroucke, J. Buehler, R. Ajello, M. Bechtol, K. Bellini, A. Bolte, M. Cheung, C. C. Civano, F. Donato, D. Fuhrmann, L. Funk, S. Healey, S. E. Hill, A. B. Knigge, C. Madejski, G. M. Romani, R. W. Santander-Garcia, M. Shaw, M. S. Steeghs, D. Torres, M. A. P. Van Etten, A. Williams, K. A. TI DISCOVERY OF A GeV BLAZAR SHINING THROUGH THE GALACTIC PLANE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: active ID LARGE-AREA TELESCOPE; VARIABLE RADIO-SOURCES; NORTHERN MILKY-WAY; GAMMA-RAY EMISSION; GHZ SOURCES; SKY SURVEY; CATALOG; SPECTRA; PATROL AB The Fermi Large Area Telescope (LAT) discovered a new gamma-ray source near the Galactic plane, Fermi J0109+6134, when it flared brightly in 2010 February. The low Galactic latitude (b = -1 degrees.2) indicated that the source could be located within the Galaxy, which motivated rapid multi-wavelength follow-up including radio, optical, and X-ray observations. We report the results of analyzing all 19 months of LAT data for the source, and of X-ray observations with both Swift and the Chandra X-ray Observatory. We determined the source redshift, z = 0.783, using a Keck Low-Resolution Imaging Spectrometer observation. Finally, we compiled a broadband spectral energy distribution (SED) from both historical and new observations contemporaneous with the 2010 February flare. The redshift, SED, optical line width, X-ray absorption, and multi-band variability indicate that this new GeV source is a blazar seen through the Galactic plane. Because several of the optical emission lines have equivalent width > 5 angstrom, this blazar belongs in the flat-spectrum radio quasar category. C1 [Vandenbroucke, J.; Buehler, R.; Ajello, M.; Bechtol, K.; Funk, S.; Healey, S. E.; Madejski, G. M.; Romani, R. W.; Shaw, M. S.; Van Etten, A.] Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol,Dept Phys, Stanford, CA 94305 USA. [Vandenbroucke, J.; Buehler, R.; Ajello, M.; Bechtol, K.; Funk, S.; Healey, S. E.; Madejski, G. M.; Romani, R. W.; Shaw, M. S.; Van Etten, A.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Bellini, A.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Bellini, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Bolte, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Bolte, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Cheung, C. C.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Civano, F.; Torres, M. A. P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Donato, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fuhrmann, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Hill, A. B.] Univ Grenoble 1, CNRS, LAOG, UMR 5571, F-38041 Grenoble 09, France. [Knigge, C.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Santander-Garcia, M.] Inst Astrofis Canarias, E-38205 San Cristobal la Laguna, Tenerife, Spain. [Santander-Garcia, M.] Isaac Newton Grp Telescopes, E-38700 Sta Cruz De La Palms, Spain. [Santander-Garcia, M.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Steeghs, D.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Williams, K. A.] Univ Texas Austin, Dept Astron, Austin, TX 75712 USA. RP Vandenbroucke, J (reprint author), Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol,Dept Phys, Stanford, CA 94305 USA. EM justinv@stanford.edu; buehler@stanford.edu RI Steeghs, Danny/C-5468-2009; Funk, Stefan/B-7629-2015; OI Steeghs, Danny/0000-0003-0771-4746; Funk, Stefan/0000-0002-2012-0080; Hill, Adam/0000-0003-3470-4834; Williams, Kurtis/0000-0002-1413-7679 FU Kavli Foundation; INAF in Italy; CNES in France; NASA in the United States; DOE in the United States; CEA/Irfu in France; IN2P3/CNRS in France; ASI in Italy; INFN in Italy; MEXT in Japan; KEK in Japan; JAXA in Japan; K.A. Wallenberg Foundation, Sweden; Swedish Research Council, Sweden; National Space Board in Sweden FX We thank the Chandra and Swift teams for timely and high-quality X-ray observations. We are grateful for valuable comments on the manuscript from Berrie Giebels. J.V. is supported by a Kavli Fellowship from the Kavli Foundation. The Fermi LAT Collaboration acknowledges support from a number of agencies and institutes for both the development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K.A. Wallenberg Foundation, the Swedish Research Council, and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged. NR 40 TC 12 Z9 12 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 1 PY 2010 VL 718 IS 2 BP L166 EP L170 DI 10.1088/2041-8205/718/2/L166 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 636EI UT WOS:000280710700025 ER PT J AU Bauschlicher, CW Boersma, C Ricca, A Mattioda, AL Cami, J Peeters, E de Armas, FS Saborido, GP Hudgins, DM Allamandola, LJ AF Bauschlicher, C. W., Jr. Boersma, C. Ricca, A. Mattioda, A. L. Cami, J. Peeters, E. de Armas, F. Sanchez Saborido, G. Puerta Hudgins, D. M. Allamandola, L. J. TI THE NASA AMES POLYCYCLIC AROMATIC HYDROCARBON INFRARED SPECTROSCOPIC DATABASE: THE COMPUTED SPECTRA SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE astrochemistry; ISM: lines and bands; methods: laboratory; methods: numerical; molecular data; techniques: spectroscopic ID PHASE PAH MOLECULES; MU-M; INTERSTELLAR DUST; EMISSION FEATURES; BENDING MODES; MICRON REGION; GAS; TEMPERATURE; BANDS; APPROXIMATION AB The astronomical emission features, formerly known as the unidentified infrared bands, are now commonly ascribed to polycyclic aromatic hydrocarbons (PAHs). The laboratory experiments and computational modeling done at the NASA Ames Research Center to create a collection of PAH IR spectra relevant to test and refine the PAH hypothesis have been assembled into a spectroscopic database. This database now contains over 800 PAH spectra spanning 2-2000 mu m (5000-5 cm(-1)). These data are now available on the World Wide Web at www.astrochem.org/pahdb. This paper presents an overview of the computational spectra in the database and the tools developed to analyze and interpret astronomical spectra using the database. A description of the online and offline user tools available on the Web site is also presented. C1 [Bauschlicher, C. W., Jr.; Boersma, C.; Ricca, A.; Mattioda, A. L.; Cami, J.; Peeters, E.; Allamandola, L. J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Boersma, C.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Ricca, A.; Mattioda, A. L.; Cami, J.; Peeters, E.; de Armas, F. Sanchez; Saborido, G. Puerta] SETI Inst, Mountain View, CA 94043 USA. [Cami, J.; Peeters, E.] Univ Western Ontario, Dept Phys & Astron, PAB 213, London, ON N6A 3K7, Canada. [Hudgins, D. M.] NASA Headquarters, Washington, DC 20546 USA. RP Bauschlicher, CW (reprint author), NASA, Ames Res Ctr, MS 230-3, Moffett Field, CA 94035 USA. EM Charles.W.Bauschlicher@nasa.gov RI Boersma, Christiaan/L-7696-2014 OI Boersma, Christiaan/0000-0002-4836-217X FU Netherlands Organization for Scientific Research (NWO) [R 78405]; Spanish Ministry of Science and Innovation; NASA FX We express our sincere appreciation to the anonymous referee who very carefully read the manuscript, explored the Web site and made very detailed suggestions to improve both. The changes we have made in response to the referee's comments and suggestions significantly improved the paper and Web site. We also acknowledge the critical contributions of J. D. Smith, Will Costa, and Aigen Li who tested the Web site and whose suggestions have also led to significant improvements. This work was supported through NASA's Astrophysics Data Analysis, Astrophysics Theory and Fundamental Physics, Long Term Space Astrophysics, Laboratory Astrophysics, Astrobiology and The Spitzer Space Telescope Archival Research Programs. C. B. acknowledges support from the Netherlands Organization for Scientific Research (NWO; grant R 78405). F.S.d.A. and G. P. S. acknowledge support from the INTE-GRANTS program, sponsored by the Spanish Ministry of Science and Innovation. G. P. S. also thanks for the additional financial support from the NASA Astrophysics Data Analysis program. Finally, we are extremely grateful to Xander Tielens for many insightful discussions on astronomical PAHs and encouragement during the long course of this work. NR 50 TC 93 Z9 93 U1 3 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD AUG PY 2010 VL 189 IS 2 BP 341 EP 351 DI 10.1088/0067-0049/189/2/341 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 642HO UT WOS:000281199800007 ER PT J AU Lee, J Kim, J Song, CH Kim, SB Chun, Y Sohn, BJ Holben, BN AF Lee, J. Kim, J. Song, C. H. Kim, S. B. Chun, Y. Sohn, B. J. Holben, B. N. TI Characteristics of aerosol types from AERONET sunphotometer measurements SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Aerosol; Type; Black carbon; Dust ID OPTICAL-PROPERTIES; MODIS DATA; DISCRIMINATION; VARIABILITY; RADIATION; DEPTH AB By using observations from the Aerosol Robotic Network (AERONET), aerosol types are classified according to dominant size mode and radiation absorptivity as determined by fine-mode fraction (FMF) and single-scattering albedo (SSA), respectively. The aerosol type from anthropogenic sources is significantly different with regard to location and season, while dust aerosol is observed persistently over North Africa and the Arabian Peninsula. For four reference locations where different aerosol types are observed, time series and optical properties for each aerosol type are investigated. The results show that aerosol types are strongly affected by their sources and partly affected by relative humidity. The analysis and methodology of this study can be used to compare aerosol classification results from satellite and chemical transport models, as well as to analyze aerosol characteristics on a global scale over land for which satellite observations need to be improved. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Lee, J.; Kim, J.] Yonsei Univ, Inst Earth Astron & Atmosphere, Brain Korea Program 21, Dept Atmospher Sci, Seoul 120749, South Korea. [Song, C. H.] Gwangju Inst Sci & Technol, Adv Environm Monitoring Res Ctr, Kwangju, South Korea. [Kim, S. B.; Chun, Y.] Natl Inst Meteorol Res, Seoul, South Korea. [Sohn, B. J.] Seoul Natl Univ, Sch Earth Environm Sci, Seoul, South Korea. [Holben, B. N.] NASA GSFC, Terr Phys Lab, Greenbelt, MD USA. [Lee, J.; Kim, J.] NASA JPL, Aerosol & Cloud Grp, Pasadena, CA USA. [Lee, J.; Kim, J.] Univ Calif Los Angeles, JIFRESSE, Los Angeles, CA USA. RP Kim, J (reprint author), Yonsei Univ, Inst Earth Astron & Atmosphere, Brain Korea Program 21, Dept Atmospher Sci, Seoul 120749, South Korea. EM jkim2@yonsei.ac.kr FU Korea Ministry of Environment, Republic of Korea [121-071-055]; National Institute of Meteorological Research; Brain Korea 21 (BK21) program FX We thank the principal investigators and their staff for establishing and maintaining the AERONET sites used in this investigation. This research was supported by the Eco-technopia 21 project under grant 121-071-055 by the Korea Ministry of Environment, Republic of Korea, as well as by the R&D project on the construction and application of optical observation of dust by the National Institute of Meteorological Research. This research was partially supported by the Brain Korea 21 (BK21) program for J. Kim and J. Lee. NR 33 TC 51 Z9 53 U1 3 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD AUG PY 2010 VL 44 IS 26 BP 3110 EP 3117 DI 10.1016/j.atmosenv.2010.05.035 PG 8 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 636QU UT WOS:000280754600004 ER PT J AU Bremer, JRA Ditty, JG Turner, JS Saxton, BL AF Bremer, Jaime R. Alvaiado Ditty, James G. Turner, Jennifer S. Saxton, Brandon L. TI Molecular species identification of commercially important penaeid shrimp from the Gulf of Mexico using a multiplex haplotype-specific PCR assay SO BIOCHEMICAL SYSTEMATICS AND ECOLOGY LA English DT Article DE Multiplex PCR; Penneid shrimp; Species identification; Farfantepenaeus aztecus; F brasiliensis; F duorarum; Litopenaeus vannamei; L setiferus; Brown shrimp; Pinkspot shrimp; Pink shrimp; Northern white shrimp; Pacific white shrimp ID WESTERN ATLANTIC; BODY PARTS; PHYLOGENY; AMPLIFICATION; BIOGEOGRAPHY; LARVAE; TRADE AB This study describes a multiplex PCR assay based on the 16S rRNA mitochondrial gene to identify the penaeid shrimp Farfantepenaeus aztecus Farfantepenaeus duorarum Farfante penaeus brasthensis and Litopenaeus setiferus all native to the Gulf of Mexico and the exotic Litopenaeus vannamei The assay was validated using positively identified adult shrimp and confirmed by direct sequencing Samples of postlarvae and early juveniles collected in the eastern and western Gulf of Mexico were tested yielding 119 F aztecus 78 F duorarum and five L setiferus Reliable identification of the morphologically similar early life stages of F azterus and F duorarum has important implications for management and conservation Similarly the ability to identify L vannamei is relevant as early detection could help minimize the ecological impact if this species escapes to the wild (C) 2010 Elsevier Ltd All rights reserved C1 [Bremer, Jaime R. Alvaiado; Turner, Jennifer S.] Texas A&M Univ, Dept Marine Biol, Galveston, TX 77551 USA. [Bremer, Jaime R. Alvaiado; Saxton, Brandon L.] Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA. [Ditty, James G.] Natl Marine Fisheries Serv, NOAA, Galveston, TX 77551 USA. RP Bremer, JRA (reprint author), Texas A&M Univ, Dept Marine Biol, 5007 Ave U, Galveston, TX 77551 USA. RI Ditty, Jim/B-6686-2009 FU Texas Institute of Oceanography (TIO); Texas Sea Grant [424013] FX We thank Dr Jim Tolan of the Texas Parks and Wildlife Department for providing L vannamei specimens Thanks to Dr Ronnie Baker Juan Salas Shawn Hillen Jennifer Doerr Seth King Kirk Kilfoyle Enji Guy from NOAA Galveston laboratory for collecting shrimp in Galveston Bay We thank Dr Ron Hill for providing shrimp from the US Virgin Islands and to Dr Ed Matheson of Florida Freshwater Fish Commission and Dr Maria Criales of NOAA Miami Laboratory for shrimp from Florida waters Thanks also to Dr Darryl Felder and Dr Heather Bracken of the University of Louisiana Lafayette for their technical suggestions Expert technical assistance in the laboratory at the Molecular Ecology and Fisheries Genetics lab (MEFGEN) Texas A&M University at Galveston (TAMUG) was provided by Dr Jordi Vinas Jennifer Atchinson Kristine Hiltunen Heather Walker Danielle Higgins Chris Courtney Carlos Ruiz and Alex Chapman This study was supported with funds provided by the Texas Institute of Oceanography (TIO) and by Texas Sea Grant (Project 424013) NR 34 TC 10 Z9 11 U1 3 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0305-1978 J9 BIOCHEM SYST ECOL JI Biochem. Syst. Ecol. PD AUG PY 2010 VL 38 IS 4 BP 715 EP 721 DI 10.1016/j.bse.2010.05.006 PG 7 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA 684RA UT WOS:000284565800034 ER PT J AU Alwood, JS Yumoto, K Mojarrab, R Limoli, CL Almeida, EAC Searby, ND Globus, RK AF Alwood, J. S. Yumoto, K. Mojarrab, R. Limoli, C. L. Almeida, E. A. C. Searby, N. D. Globus, R. K. TI Heavy ion irradiation and unloading effects on mouse lumbar vertebral microarchitecture, mechanical properties and tissue stresses SO BONE LA English DT Article DE Radiation; Hindlimb unloading; Mechanical testing; Finite element analysis; Spaceflight ID LONG-DURATION SPACEFLIGHT; FINITE-ELEMENT MODELS; TRABECULAR-BONE; CANCELLOUS BONE; MUSCULOSKELETAL DISUSE; ELASTIC PROPERTIES; BODY IRRADIATION; SPACE-FLIGHT; RAT MODEL; MICE AB Astronauts are exposed to both musculoskeletal disuse and heavy ion radiation in space. Disuse alters the magnitude and direction of forces placed upon the skeleton causing bone remodeling, while energy deposited by ionizing radiation causes free radical formation and can lead to DNA strand breaks and oxidative damage to tissues. Radiation and disuse each result in a net loss of mineralized tissue in the adult, although the combined effects, subsequent consequences for mechanical properties and potential for recovery may differ. First, we examined how a high dose (2 Gy) of heavy ion radiation ((56)Fe) causes loss of mineralized tissue in the lumbar vertebrae of skeletally mature (4 months old), male, C57BL/6 mice using microcomputed tomography and determined the influence of structural changes on mechanical properties using whole bone compression tests and finite element analyses. Next, we tested if a low dose (0.5 Gy) of heavy particle radiation prevents skeletal recovery from a 14-day period of hindlimb unloading. Irradiation with a high dose of (56)Fe (2 Gy) caused bone loss (-14%) in the cancellous-rich centrum of the fourth lumbar vertebra (L4) 1 month later, increased trabecular stresses (+27%), increased the propensity for trabecular buckling and shifted stresses to the cortex. As expected, hindlimb unloading (14 days) alone adversely affected microarchitectural and mechanical stiffness of lumbar vertebrae, although the reduction in yield force was not statistically significant (-17%). Irradiation with a low dose of (56)Fe (0.5 Gy) did not affect vertebrae in normally loaded mice, but significantly reduced compressive yield force in vertebrae of unloaded mice relative to sham-irradiated controls (-24%). Irradiation did not impair the recovery of trabecular bone volume fraction that occurs after hindlimb unloaded mice are released to ambulate normally, although microarchitectural differences persisted 28 days later (96% increase in ratio of rod- to plate-like trabeculae). In summary, (56)Fe irradiation (0.5 Gy) of unloaded mice contributed to a reduction in compressive strength and partially prevented recovery of cancellous microarchitecture from adaptive responses of lumbar vertebrae to skeletal unloading. Thus, irradiation with heavy ions may accelerate or worsen the loss of skeletal integrity triggered by musculoskeletal disuse. Published by Elsevier Inc. C1 [Alwood, J. S.; Yumoto, K.; Mojarrab, R.; Almeida, E. A. C.; Searby, N. D.; Globus, R. K.] NASA, Ames Res Ctr, Bone & Signaling Lab, Moffett Field, CA 94035 USA. [Alwood, J. S.] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. [Yumoto, K.; Limoli, C. L.] Univ Calif Irvine, Dept Radiat Oncol, Irvine, CA 92697 USA. RP Globus, RK (reprint author), NASA, Ames Res Ctr, Bone & Signaling Lab, Mail Stop 236-7, Moffett Field, CA 94035 USA. EM alwood@gmail.com; kenjiyum@umich.edu; rose_moj@yahoo.com; climoli@uci.edu; e.almeida@nasa.gov; nancy.d.searby@nasa.gov; ruth.k.globus@nasa.gov FU NASA [NNA04CK68H, NNH04ZUU005N/RAD2004-0000-0110]; DOE-NASA [DE-SC0001507]; Office of Science (BER), U.S. Department of Energy FX Research was supported by a NASA Graduate Student Research Program fellowship NNA04CK68H to JSA, a NASA Grant NNH04ZUU005N/RAD2004-0000-0110, and a DOE-NASA Interagency Award #DE-SC0001507, supported by the Office of Science (BER), U.S. Department of Energy to RKG. We thank D. P. Lindsey, G. S. Beaupre and C. R. Jacobs at the Veterans Affairs Palo Alto Healthcare System for use of the mu CT and mechanical testing systems. We are grateful to D. P. Lindsey, G. S. Beaupre for expert consultation and advice on mechanical testing, FEA, and the manuscript. We acknowledge M. C. H. van der Meulen providing constructive guidance for compression testing. We thank P. Guida, A. Rusek and L Thompson of the NASA Space Radiation Lab at BNL for experimental support. NR 63 TC 21 Z9 23 U1 0 U2 7 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 8756-3282 J9 BONE JI Bone PD AUG PY 2010 VL 47 IS 2 BP 248 EP 255 DI 10.1016/j.bone.2010.05.004 PG 8 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 632SW UT WOS:000280449300011 PM 20466089 ER PT J AU Suselj, K Sood, A AF Suselj, Kay Sood, Abha TI Improving the Mellor-Yamada-Janjic Parameterization for wind conditions in the marine planetary boundary layer SO BOUNDARY-LAYER METEOROLOGY LA English DT Article DE Marine boundary layer; Master length scale; Mellor-Yamada-Janjic scheme; Turbulence closure ID MIXING-LENGTH FORMULATION; 2ND-ORDER CLOSURE MODELS; VERTICAL DIFFUSION; MESOSCALE MODEL; DRY CONVECTION; TURBULENCE; SCALE; SIMULATION; SUBLAYER; SCHEMES AB The structure of the lower part of the marine planetary boundary-layer (PBL) is relevant not only for climate and numerical weather prediction simulations but also for commercial applications such as offshore wind energy harvesting. A proper description of turbulence might have an important influence on the wind field properties such as the mean wind speed, turbulent fluxes and especially the vertical wind profile. In this study, the Mellor-Yamada-JanjiA double dagger boundary-layer and surface-layer parameterizations in the Weather Research and Forecasting Model (WRF) were improved by redefining the master length scale (MLS), which controls the diffusion and dissipation of the turbulent fluxes as well as the pressure- temperature and pressure-strain covariances. In the surface layer, the modified MLS is dependent on the surface stability. In the PBL, the surface stability correction of the MLS is included, which has the strongest influence close to the surface. The non-local effects in the stable boundary layer based on surface heat forcing are also included. WRF model simulations with the original and the new PBL parameterization were compared with measurements. Improvements in the wind-shear simulations in the lower part of the boundary layer (up to around 30 m) with the new parameterization have been found, while its impact higher in the PBL is less pronounced. The simulated wind speed is however only slightly dependent on the boundary layer parameterization. C1 [Suselj, Kay; Sood, Abha] Carl von Ossietzky Univ Oldenburg, D-2900 Oldenburg, Germany. RP Suselj, K (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM kay.suselj@jpl.nasa.gov OI Sood, Abha/0000-0002-0231-5757 FU EU [MRTN-CT-2005-019369]; German Federal Ministry for Environment, Nature conservation and Nuclear Safety FX The work shown here was supported by the EU program Marie-Curie, Early Stage Researcher Program Modobs (MRTN-CT-2005-019369) and OWEA project supported by German Federal Ministry for Environment, Nature conservation and Nuclear Safety. The tower measurement data were provided by the University of Uppsala and German Wind Energy Institute, the SST in the Baltic Sea by German Federal Maritime and Hydrographic Agency and the FNL data by US National Centers for Environmental Prediction. We are also grateful to the developers of WRF for providing the model for public use. We thank A. Rutgersson for useful comments on the manuscript and preparing the Ostergarnsholm observational dataset used in this study. We would also like to thank three anonymous reviewers who helped improve the manuscript. NR 38 TC 17 Z9 18 U1 2 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0006-8314 J9 BOUND-LAY METEOROL JI Bound.-Layer Meteor. PD AUG PY 2010 VL 136 IS 2 BP 301 EP 324 DI 10.1007/s10546-010-9502-3 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 619TS UT WOS:000279453800007 ER PT J AU Smith, AW Lissauer, JJ AF Smith, Andrew W. Lissauer, Jack J. TI Orbital stability of systems of closely-spaced planets, II: configurations with coorbital planets SO CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY LA English DT Article ID MODEL AB We numerically investigate the stability of systems of 1 M(circle plus) planets orbiting a solar-mass star. The systems studied have either 2 or 42 planets per occupied semimajor axis, for a total of 6, 10, 126, or 210 planets, and the planets were started on coplanar, circular orbits with the semimajor axes of the innermost planets at 1 AU. For systems with two planets per occupied orbit, the longitudinal initial locations of planets on a given orbit were separated by either 60A degrees (Trojan planets) or 180A degrees. With 42 planets per semimajor axis, initial longitudes were uniformly spaced. The ratio of the semimajor axes of consecutive coorbital groups in each system was approximately uniform. The instability time for a system was taken to be the first time at which the orbits of two planets with different initial orbital distances crossed. Simulations spanned virtual times of up to 1 x 10(8), 5 x 10(5), and 2 x 10(5) years for the 6- and 10-planet, 126-planet, and 210-planet systems, respectively. Our results show that, for a given class of system (e.g., five pairs of Trojan planets orbiting in the same direction), the relationship between orbit crossing times and planetary spacing is well fit by the functional form log(t (c) /t (0)) = b beta + c, where t (c) is the crossing time, t (0) = 1 year, beta is the separation in initial orbital semimajor axis (in terms of the mutual Hill radii of the planets), and b and c are fitting constants. The same functional form was observed in the previous studies of single planets on nested orbits (Smith and Lissauer 2009). Pairs of Trojan planets are more stable than pairs initially separated by 180A degrees. Systems with retrograde planets (i.e., some planets orbiting in the opposite sense from others) can be packed substantially more closely than can systems with all planets orbiting in the same sense. To have the same characteristic lifetime, systems with 2 or 42 planets per orbit typically need to have about 1.5 or 2 times the orbital separation as orbits occupied by single planets, respectively. C1 [Smith, Andrew W.] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Lissauer, Jack J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. RP Smith, AW (reprint author), Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. EM awsmith@alumni.stanford.edu FU NASA [WBS 811073.02.01.03.89] FX We thank Amanda Hoffmann for her generous donation of CPU time. In addition, we thank Tony Dobrovolskis, Kevin Zahnle, R. Dvorak, and an anonymous reviewer for comments which improved the presentation of the manuscript. This work was supported by NASA's Planetary Geology and Geophysics Program through WBS 811073.02.01.03.89. NR 18 TC 9 Z9 9 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0923-2958 J9 CELEST MECH DYN ASTR JI Celest. Mech. Dyn. Astron. PD AUG PY 2010 VL 107 IS 4 BP 487 EP 500 DI 10.1007/s10569-010-9288-0 PG 14 WC Astronomy & Astrophysics; Mathematics, Interdisciplinary Applications SC Astronomy & Astrophysics; Mathematics GA 622ZE UT WOS:000279705300006 ER PT J AU Kozdon, R Kita, NT Huberty, JM Fournelle, JH Johnson, CA Valley, JW AF Kozdon, Reinhard Kita, Noriko T. Huberty, Jason M. Fournelle, John H. Johnson, Craig A. Valley, John W. TI In situ sulfur isotope analysis of sulfide minerals by SIMS: Precision and accuracy, with application to thermometry of similar to 3.5 Ga Pilbara cherts SO CHEMICAL GEOLOGY LA English DT Article DE Sphalerite; Ion microprobe; SIMS; Sulfur isotopes; NBS-123; Crystal orientation effects ID INDUCED RIPPLE TOPOGRAPHY; ION MICROPROBE ANALYSIS; MASS-SPECTROMETRY; LASER MICROPROBE; S-34/S-32 RATIOS; OXYGEN ISOTOPES; MICROANALYSIS; BOMBARDMENT; FRACTIONATION; ORIENTATION AB Secondary ion mass spectrometry (SIMS) measurement of sulfur isotope ratios is a potentially powerful technique for in situ studies in many areas of Earth and planetary science. Tests were performed to evaluate the accuracy and precision of sulfur isotope analysis by SIMS in a set of seven well-characterized, isotopically homogeneous natural sulfide standards. The spot-to-spot and grain-to-grain precision for delta(34)S is +/- 0.3 parts per thousand for chalcopyrite and pyrrhotite, and +/- 0.2 parts per thousand. for pyrite (2SD) using a 1.6 nA primary beam that was focused to 10 mu m diameter with a Gaussian-beam density distribution. Likewise, multiple delta(34)S measurements within single grains of sphalerite are within +/- 0.3 parts per thousand. However, between individual sphalerite grains, delta(34)S varies by up to 3.4 parts per thousand and the grain-to-grain precision is poor (+/- 1.7 parts per thousand, n = 20). Measured values of delta(34)S correspond with analysis pit microstructures, ranging from smooth surfaces for grains with high delta(34)S values, to pronounced ripples and terraces in analysis pits from grains featuring low delta(34)S values. Electron backscatter diffraction (EBSD) shows that individual sphalerite grains are single crystals, whereas crystal orientation varies from grain-to-grain. The 3.4 parts per thousand variation in measured delta(34)S between individual grains of sphalerite is attributed to changes in instrumental bias caused by different crystal orientations with respect to the incident primary Cs(+) beam. High delta(34)S values in sphalerite correlate to when the Cs(+) beam is parallel to the set of directions < uuw >, from [111] to [110], which are preferred directions for channeling and focusing in diamond-centered cubic crystals. Crystal orientation effects on instrumental bias were further detected in galena. However, as a result of the perfect cleavage along (100) crushed chips of galena are typically cube-shaped and likely to be preferentially oriented, thus crystal orientation effects on instrumental bias may be obscured. Test were made to improve the analytical precision of delta(34)S in sphalerite, and the best results were achieved by either reducing the depth of the analysis pits using a Kohler illuminated primary beam, or by lowering the total impact energy from 20 key to 13 keV. The resulting grain-to-grain precision in delta(34)S improves from +/- 1.7 parts per thousand to better than 0.6%. (2SD) in both procedures. With careful use of appropriate analytical conditions, the accuracy of SIMS analysis for delta(34)S approaches +/- 03 parts per thousand (2SD) for chalcopyrite, pyrite and pyrrhotite and +/- 0.6 parts per thousand for sphalerite. Measurements of delta(34)S in sub-20 mu m grains of pyrite and sphalerite in similar to 3.5 Ga cherts from the Pilbara craton, Western Australia show that this analytical technique is suitable for in situ sulfur isotope thermometry with +/- 50 degrees C accuracy in appropriate samples, however, sulfides are not isotopically equilibrated in analyzed samples. (C) 2010 Elsevier B.V. All rights reserved. C1 [Kozdon, Reinhard; Kita, Noriko T.; Huberty, Jason M.; Fournelle, John H.; Valley, John W.] Univ Wisconsin, Dept Geosci, WiscSIMS, Madison, WI 53706 USA. [Kozdon, Reinhard; Kita, Noriko T.; Huberty, Jason M.; Fournelle, John H.; Valley, John W.] Univ Wisconsin, Dept Geosci, NASA Astrobiol Inst, Madison, WI 53706 USA. [Johnson, Craig A.] US Geol Survey, Denver, CO 80225 USA. RP Kozdon, R (reprint author), Univ Wisconsin, Dept Geosci, WiscSIMS, 1215 W Dayton St, Madison, WI 53706 USA. EM rkozdon@geology.wisc.edu RI Valley, John/B-3466-2011; Kozdon, Reinhard/J-9468-2014; Kita, Noriko/H-8035-2016 OI Valley, John/0000-0003-3530-2722; Kozdon, Reinhard/0000-0001-6347-456X; Kita, Noriko/0000-0002-0204-0765 FU NASA Astrobiology Institute; NSF-EAR [0509639, 0838058, 0319230, 0516725, 0744079]; DOE [93ER14389] FX The authors thank Brian Hess for careful sample preparation; Taka Ushikubo for fruitful discussions; Jim Kern for technical support; Virginia Toy for assistance with EBSD analysis and software handling; Doug Crowe for providing samples, and Arthur Hickman, Aaron Cavosie, and David Valley for assistance in collection of Pilbara cherts. Ian Williams and an anonymous reviewer made helpful comments that improved the manuscript. We thank Roberta Rudnick for editorial handling. This study was funded by The NASA Astrobiology Institute, NSF-EAR (0509639, 0838058), and DOE (93ER14389). WiscSIMS is partly supported by NSF-EAR (0319230, 0516725, 0744079). NR 47 TC 25 Z9 27 U1 4 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 J9 CHEM GEOL JI Chem. Geol. PD AUG PY 2010 VL 275 IS 3-4 BP 243 EP 253 DI 10.1016/j.chemgeo.2010.05.015 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 634VW UT WOS:000280614900012 ER PT J AU Bala, G Caldeira, K Nemani, R AF Bala, Govindasamy Caldeira, K. Nemani, R. TI Fast versus slow response in climate change: implications for the global hydrological cycle SO CLIMATE DYNAMICS LA English DT Article ID VEGETATION FEEDBACKS; CARBON-DIOXIDE; CO2; RUNOFF AB Recent studies have shown that changes in global mean precipitation are larger for solar forcing than for CO2 forcing of similar magnitude. In this paper, we use an atmospheric general circulation model to show that the differences originate from differing fast responses of the climate system. We estimate the adjusted radiative forcing and fast response using Hansen's "fixed-SST forcing" method. Total climate system response is calculated using mixed layer simulations using the same model. Our analysis shows that the fast response is almost 40% of the total response for few key variables like precipitation and evaporation. We further demonstrate that the hydrologic sensitivity, defined as the change in global mean precipitation per unit warming, is the same for the two forcings when the fast responses are excluded from the definition of hydrologic sensitivity, suggesting that the slow response (feedback) of the hydrological cycle is independent of the forcing mechanism. Based on our results, we recommend that the fast and slow response be compared separately in multi-model intercomparisons to discover and understand robust responses in hydrologic cycle. The significance of this study to geoengineering is discussed. C1 [Bala, Govindasamy] Indian Inst Sci, Divecha Ctr Climate Change, Bangalore 560012, Karnataka, India. [Bala, Govindasamy] Indian Inst Sci, Ctr Atmospher & Ocean Sci, Bangalore 560012, Karnataka, India. [Caldeira, K.] Carnegie Inst, Dept Global Ecol, Stanford, CA 94305 USA. [Nemani, R.] NASA, Ames Res Ctr, Moffett Field, Moffett Field, CA 94035 USA. RP Bala, G (reprint author), Indian Inst Sci, Divecha Ctr Climate Change, Bangalore 560012, Karnataka, India. EM bala.gov@gmail.com RI Caldeira, Ken/E-7914-2011 NR 27 TC 81 Z9 82 U1 3 U2 25 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD AUG PY 2010 VL 35 IS 2-3 BP 423 EP 434 DI 10.1007/s00382-009-0583-y PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 629YQ UT WOS:000280237900011 ER PT J AU Hicks, MC Nayagam, V Williams, FA AF Hicks, Michael C. Nayagam, Vedha Williams, Forman A. TI Methanol droplet extinction in carbon-dioxide-enriched environments in microgravity SO COMBUSTION AND FLAME LA English DT Article DE Droplet combustion; Microgravity; Methanol droplet; Carbon-dioxide enriched combustion ID COMBUSTION; VAPORIZATION; NUMBER; WATER AB Diffusive extinction of methanol droplets with initial diameters between 1.25 mm and 1.72 mm, burning in a quiescent microgravity environment at one atmosphere pressure, was obtained experimentally for varying levels of ambient carbon-dioxide concentrations with a fixed oxygen concentration of 21% and a balance of nitrogen. These experiments serve as precursors to those which are beginning to be performed on the International Space Station and are motivated by the need to understand the effectiveness of carbon-dioxide as a fire suppressant in low-gravity environments. In these experiments, the flame standoff distance, droplet diameter, and flame radiation are measured as functions of time. The results show that the droplet extinction diameter depends on both the initial droplet diameter and the ambient concentration of carbon dioxide. Increasing the initial droplet diameter leads to an increased extinction diameter, while increasing the carbon-dioxide concentration leads to a slight decrease in the extinction diameter. These results are interpreted using a critical Damkohler number for extinction as predicted by an earlier theory, which is extended here to be applicable in the presence of effects of heat conduction along the droplet support fibers and of the volume occupied by the support beads. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Nayagam, Vedha] NASA, Glenn Res Ctr, Natl Ctr Space Explorat Res, Cleveland, OH 44135 USA. [Williams, Forman A.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. RP Nayagam, V (reprint author), NASA, Glenn Res Ctr, Natl Ctr Space Explorat Res, Cleveland, OH 44135 USA. EM v.nayagam@grc.nasa.gov FU NASA Glenn Research Center FX The authors would like to thank D. Kralj, W.P. Camperchioli, E.S. Neumann, and the staff at the Zero Gravity Facility for helping with the experiments. This research is sponsored by the NASA Glenn Research Center Microgravity Fire Safety Research Program. NR 20 TC 14 Z9 14 U1 1 U2 7 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD AUG PY 2010 VL 157 IS 8 BP 1439 EP 1445 DI 10.1016/j.combustflame.2010.05.007 PG 7 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 617SF UT WOS:000279300800001 ER PT J AU Harstad, K Bellan, J AF Harstad, Kenneth Bellan, Josette TI A model of reduced kinetics for alkane oxidation using constituents and species: Proof of concept for n-heptane SO COMBUSTION AND FLAME LA English DT Article DE Reduced oxidation kinetics for n-heptane ID DIRECTED RELATION GRAPH; MECHANISM REDUCTION; COMBUSTION; IGNITION; CHEMISTRY AB A methodology for deriving a reduced kinetic mechanism for alkane oxidation is described and applied to n-heptane. The model is based on partitioning the species of the skeletal kinetic mechanism into lights, defined as those having a carbon number smaller than 3, and heavies, which are the complement in the species ensemble. For modeling purposes, the heavy species are mathematically decomposed into constituents, which are similar but not identical to groups in the group additivity theory. From analysis of the LLNL skeletal mechanism in conjunction with CHEMKIN II, it is shown that a similarity variable can be formed such that the appropriately scaled global constituent molar density exhibits a self-similar behavior over a very wide range of equivalence ratios, initial pressures and initial temperatures that is of interest for predicting n-heptane oxidation. Furthermore, the oxygen and water molar densities are shown to display a quasi-linear behavior with respect to the similarity variable. The light species ensemble is partitioned into quasi-steady and unsteady species. The concept is tested by using tabular information from the LLNL skeletal mechanism in conjunction with CHEMKIN II. The test reveals that the similarity concept is indeed justified and that the combustion temperature is well predicted, but that the ignition time is overpredicted. To palliate this deficiency, functional modeling is incorporated into our conceptual reduction. Due to the reduction process, models are also included for the global constituent molar density, the kinetics-induced enthalpy evolution of the heavy species, the contribution to the reaction rate of the unsteady lights from the heavies, the molar density evolution of oxygen and water, the mole fractions of the quasi-steady light species and the mean molar heat capacity of the heavy species. The model is compact in that there are only nine species-related progress variables. Results are presented comparing the performance of the model for predicting the temperature and species evolution with that of the skeletal mechanism. The model reproduces the ignition time over a wide range of equivalence ratios, initial pressure and initial temperature. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Harstad, Kenneth; Bellan, Josette] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bellan, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 125-109, Pasadena, CA 91109 USA. EM Josette.Bellan@jpl.nasa.gov FU Army Research Office FX This study was conducted at the California Institute of Technology, Jet Propulsion Laboratory (JPL), and was sponsored by the Army Research Office, with Dr. Ralph Anthenien as Program Manager. Ms. Elly Ponce of JPL is thanked for the drawing of Fig. 1. NR 26 TC 5 Z9 5 U1 2 U2 8 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD AUG PY 2010 VL 157 IS 8 BP 1594 EP 1609 DI 10.1016/j.combustflame.2010.02.013 PG 16 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 617SF UT WOS:000279300800015 ER PT J AU Maestrini, A Thomas, B Wang, H Jung, C Treuttel, J Jin, Y Chattopadhyay, G Mehdi, I Beaudin, G AF Maestrini, Alain Thomas, Bertrand Wang, Hui Jung, Cecile Treuttel, Jeanne Jin, Yong Chattopadhyay, Goutam Mehdi, Imran Beaudin, Gerard TI Schottky diode-based terahertz frequency multipliers and mixers SO COMPTES RENDUS PHYSIQUE LA English DT Article DE Schottky diode; Heterodyne detection; Frequency multiplier; Mixer; THz; Submillimeter ID BARRIER VARACTOR QUINTUPLER; MILLIMETER-WAVE; SUBMILLIMETER WAVELENGTHS; GHZ; POWER; DOUBLER; TRIPLER; THZ; OPTIMIZATION; PERFORMANCE AB This article presents some aspects of the technology of terahertz heterodyne receiver front-ends dedicated to astrophysics, planetary and atmospheric sciences. It focuses on frequency multipliers and on Schottky mixers. Novel architectures of power-combined frequency multipliers at submillimeter-wavelengths, THz planar fundamental mixers, and integrated receivers will be discussed, as well as the fabrication of submillimeter-wave planar Schottky diodes in France. (C) 2010 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved. C1 [Maestrini, Alain] Univ Paris 06, F-75005 Paris, France. [Maestrini, Alain; Jung, Cecile; Treuttel, Jeanne; Beaudin, Gerard] LERMA, Observ Paris, F-75014 Paris, France. [Thomas, Bertrand; Chattopadhyay, Goutam; Mehdi, Imran] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wang, Hui] STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Jung, Cecile; Jin, Yong] LPN, CNRS, F-91460 Marcoussis, France. RP Maestrini, A (reprint author), Univ Paris 06, 4 Pl Jussieu, F-75005 Paris, France. EM alain.maestrini@obspm.fr; bertrand.c.thomas@jpl.nasa.gov; hui.wang@stfc.ac.uk; yong.jin@lpn.cnrs.fr; imran.mehdi@jpl.nasa.gov NR 61 TC 38 Z9 40 U1 5 U2 33 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1631-0705 J9 CR PHYS JI C. R. Phys. PD AUG-OCT PY 2010 VL 11 IS 7-8 BP 480 EP 495 DI 10.1016/j.crhy.2010.05.002 PG 16 WC Astronomy & Astrophysics; Physics, Multidisciplinary SC Astronomy & Astrophysics; Physics GA 683TQ UT WOS:000284498500008 ER PT J AU Okong'o, N Bellan, J AF Okong'o, Nora Bellan, Josette TI Small-scale dissipation in binary-species, thermodynamically supercritical, transitional mixing layers SO COMPUTERS & FLUIDS LA English DT Article DE Supercritical mixing layers; Dissipation ID DIRECT NUMERICAL-SIMULATION; LARGE-EDDY SIMULATIONS; SHEAR-LAYER; A-PRIORI; TURBULENCE; NITROGEN; HEPTANE; PRESSURES; FLOW; MIXTURES AB The irreversible entropy production (i e the dissipation) has three distinct modes due to viscous, heat and species-mass fluxes Computations of the dissipation and its modes are conducted using transitional states obtained from Direct Numerical Simulations (DNS) of O(2)/H(2) and C(7)H(16)/N(2) temporal mixing layers at thermodynamically supercritical pressure. A non-dimensionalization of the mathematical expression for each dissipation mode is first performed and representative reference values computed using the DNS database are utilized to highlight the order of magnitude of each mode and their relative importance. For more quantitative results, the importance of each dissipative mode is assessed both at the DNS scale and at scales determined by filter sizes from four to sixteen times the DNS grid spacing. The subgrid-scale (SGS) dissipation is computed by subtracting the filtered-field dissipation from the DNS-field dissipation For each species system, three layers are considered having different initial Reynolds number and perturbation wavelength For all layers, it is found that the species-mass flux contribution dominates both the DNS and SGS dissipation due to high density-gradient-magnitude (HDGM) regions which are a distinctive physical aspect of these layers. Backscatter, indicated by regions of negative SGS dissipation, is found in a substantial portion (15-60%) of the domain, and decreases only slightly with increasing filter width Regions of the most Intense negative and positive SGS dissipation strongly correlate with the HDGM regions On a domain-average basis, the proportional contribution of each dissipation mode to the total is similar at the DNS and SGS scales, indicating scale-similarity. The proportion of the species-mass dissipation mode to the total is remarkably similar in value across all simulations whether at the DNS or SGS scale. For each mode and the total, the SGS contribution to the DNS-field dissipation is only species-system and filter-size dependent but nearly independent of the initial Reynolds number and perturbation wavelength The SGS contribution is smaller for O(2)/H(2) layers than for C(7)H(16)/N(2) ones, but increases more rapidly with increasing filter width. The implications of these results for Larger Eddy Simulation modeling are discussed (C) 2010 Elsevier Ltd. All rights reserved. C1 [Okong'o, Nora; Bellan, Josette] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bellan, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 125-109, Pasadena, CA 91109 USA. FU U.S. Air Force Office of Scientific Research (AFOSR) FX This study was conducted at the Jet Propulsion Laboratory (JPL) of the California Institute of Technology (Caltech) under the sponsorship of the U.S. Air Force Office of Scientific Research (AFOSR) with Dr. Julian Tishkoff serving as technical director, under an agreement with the National Aeronautics and Space Administration, and of an AFOSR Grant to Caltech under the technical direction of Drs. Mitat Birkan, Doug Talley (of Edwards Air Force Research Laboratories (AFRL)), Tim Edwards and Cam Carter (both of Wright Patterson AFRL). The computational resources were provided by the JPL Supercomputing Center. NR 38 TC 6 Z9 6 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 J9 COMPUT FLUIDS JI Comput. Fluids PD AUG PY 2010 VL 39 IS 7 BP 1112 EP 1124 DI 10.1016/j.compfluid.2010.02.001 PG 13 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 609NX UT WOS:000278664700003 ER PT J AU Tret'yakov, VI Mitrofanov, IG Bobronitskii, YI Vostrukhin, AV Gunko, NA Kozyrev, AS Krylov, AV Litvak, ML Lopez-Alegria, M Lyagushin, VI Konovalov, AA Korotkov, MP Mazurov, PV Mokrousov, MI Malakhov, AV Nuzhdin, IO Ponomareva, SN Pronin, MA Sanin, AB Timoshenko, GN Tomilina, TM Tyurin, MV Tsygan, AI Shvetsov, VN AF Tret'yakov, V. I. Mitrofanov, I. G. Bobronitskii, Yu I. Vostrukhin, A. V. Gunko, N. A. Kozyrev, A. S. Krylov, A. V. Litvak, M. L. Lopez-Alegria, M. Lyagushin, V. I. Konovalov, A. A. Korotkov, M. P. Mazurov, P. V. Mokrousov, M. I. Malakhov, A. V. Nuzhdin, I. O. Ponomareva, S. N. Pronin, M. A. Sanin, A. B. Timoshenko, G. N. Tomilina, T. M. Tyurin, M. V. Tsygan, A. I. Shvetsov, V. N. TI The first stage of the "BTN-Neutron" space experiment onboard the Russian segment of the International Space Station SO COSMIC RESEARCH LA English DT Article AB The aims and tasks of the space experiment "BTN-Neutron" onboard the Russian segment of the International Space Station are described. The experiment deals with detection of fast and epithermal neutrons, X-rays, and gamma rays. Characteristics and a short description of scientific instrumentation BTN-M1 for this experiment are presented, as well as the first results of operation of the apparatus onboard the station during the first two years of flight. C1 [Tret'yakov, V. I.; Mitrofanov, I. G.; Vostrukhin, A. V.; Kozyrev, A. S.; Litvak, M. L.; Konovalov, A. A.; Mokrousov, M. I.; Malakhov, A. V.; Nuzhdin, I. O.; Sanin, A. B.] Russian Acad Sci, Inst Space Res, Moscow V71, Russia. [Bobronitskii, Yu I.; Korotkov, M. P.; Ponomareva, S. N.; Tomilina, T. M.] Russian Acad Sci, Blagonravov Inst Machine Sci, Moscow, Russia. [Gunko, N. A.; Tsygan, A. I.] Russian Acad Sci, Ioffe Inst Phys & Technol, St Petersburg 196140, Russia. [Krylov, A. V.; Timoshenko, G. N.; Shvetsov, V. N.] Joint Inst Nucl Res, Dubna, Russia. [Lopez-Alegria, M.] NASA, Johnson Space Flight Ctr, Houston, TX USA. [Lyagushin, V. I.; Mazurov, P. V.; Pronin, M. A.] Korolev Rocket & Space Corp Energiya, Korolev, Moscow Oblast, Russia. [Tyurin, M. V.] Gagarin Ctr Cosmonaut Training, Zvezdny, Russia. RP Tret'yakov, VI (reprint author), Russian Acad Sci, Inst Space Res, Moscow V71, Russia. NR 23 TC 5 Z9 6 U1 0 U2 5 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0010-9525 J9 COSMIC RES+ JI Cosmic Res. PD AUG PY 2010 VL 48 IS 4 BP 285 EP 299 DI 10.1134/S0010952510040027 PG 15 WC Engineering, Aerospace; Astronomy & Astrophysics SC Engineering; Astronomy & Astrophysics GA 634PJ UT WOS:000280595100002 ER EF