FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Gaillou, E
Post, JE
Bassim, ND
Zaitsev, AM
Rose, T
Fries, MD
Stroud, RM
Steele, A
Butler, JE
AF Gaillou, E.
Post, J. E.
Bassim, N. D.
Zaitsev, A. M.
Rose, T.
Fries, M. D.
Stroud, R. M.
Steele, A.
Butler, J. E.
TI Spectroscopic and microscopic characterizations of color lamellae in
natural pink diamonds
SO DIAMOND AND RELATED MATERIALS
LA English
DT Article
DE Natural pink diamond; Graining; Deformation twin; Plastic deformation;
405.5 nm center
ID PLASTIC-DEFORMATION; RAMAN-SPECTROSCOPY; OPTICAL-CENTERS; CVD DIAMOND;
CRYSTALS; GROWTH; PHOTOLUMINESCENCE; TEMPERATURE; PRESSURE; STRESS
AB Nineteen natural, untreated, type laAB pink diamonds from various localities were studied. They display microscopic (similar to 1 mu m thick) pink lamellae along {111} in an otherwise colorless diamond. This coloration concentrated in lamellae is commonly referred to as "graining". The diamonds were examined using high spatial resolution spectroscopic methods and transmission electron microscopy. TEM revealed that a pink lamella consists of a cluster of paired microtwins created under stress by plastic deformation. Raman line shift and broadening associated with the twinned pink lamellae indicate the presence of residual stress. Ultraviolet-visible absorption spectra from each of the samples showed a broad absorption band centered at similar to 550 nm, the source of the pink color. Cathodoluminescence spectra of the pink lamellae are different from those of the bulk, colorless diamond matrix. Within the lamellae only, the H3 center is observed along with a less intense N3 center. In some samples, instead of the N3 center a new center with a zero phonon line at 405.5 nm is observed. This previously unreported 405.5 nm center has phonon sidebands qualitatively identical to the N3 center, and may be an N3 center modified by a specific environment. These results suggest that lattice vacancies were created during twinning resulting from plastic deformation, and that impurity centers (such as those containing nitrogen) trap some of the diffusing vacancies. Since the pink lamellae are still under residual stress, new or modified defect centers are created, e.g. H3 and N3. The color center(s) responsible for the pink color (550 nm absorption) was not identified, but likely is only present in diamonds that experienced plastic deformation. Reported annealing of plastically deformed brown diamonds, which results in a residual pink color, suggests that the pink color is stable under these high pressure, high temperature conditions. The reported observations that annealing plastically deformed brown diamonds results in a residual pink color and that the pink color does not anneal out under similar high pressure, high temperature conditions, suggests that the deformation inducing pink color occurs inside the Earth's mantle, whereas brown coloration might be induced during a more recent event such as the ascent of the diamond to the surface in a kimberlitic/lamproitic eruption. Published by Elsevier BM.
C1 [Gaillou, E.; Post, J. E.; Rose, T.] Smithsonian Inst, Dept Mineral Sci, Washington, DC 20560 USA.
[Gaillou, E.; Bassim, N. D.; Stroud, R. M.; Butler, J. E.] USN, Res Lab, Washington, DC 20375 USA.
[Zaitsev, A. M.] CUNY Coll Staten Isl, Staten Isl, NY 10314 USA.
[Fries, M. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Steele, A.] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA.
RP Gaillou, E (reprint author), Smithsonian Inst, Natl Museum Nat Hist, MRC 0119,Natl Hist Bldg W,Loading Dock 10th & Con, Washington, DC 20560 USA.
EM gailloue@si.edu
RI Butler, James/B-7965-2008; Gaillou, Eloise/D-1753-2009; Stroud,
Rhonda/C-5503-2008
OI Butler, James/0000-0002-4794-7176; Gaillou, Eloise/0000-0002-7949-268X;
Stroud, Rhonda/0000-0001-5242-8015
FU Apollo Diamond; JCK Industry Fund; Coralyn Whitney Endowment Fund
(Smithsonian Institution)
FX The authors wish to thank Alan Collins for constructive discussion of
the some spectroscopic results, as well as Fischione and Yoosuff Piccard
for assistance with the Nanomilling of the FIB sections. We gratefully
acknowledge grants from Apollo Diamond, the JCK Industry Fund, and the
Coralyn Whitney Endowment Fund (Smithsonian Institution). We also thank
Dr. Benjamin Rondeau and the anonymous person who reviewed this paper,
and who improved the quality of this manuscript.
NR 60
TC 25
Z9 25
U1 2
U2 20
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0925-9635
J9 DIAM RELAT MATER
JI Diam. Relat. Mat.
PD OCT
PY 2010
VL 19
IS 10
BP 1207
EP 1220
DI 10.1016/j.diamond.2010.06.015
PG 14
WC Materials Science, Multidisciplinary
SC Materials Science
GA 654XB
UT WOS:000282203300014
ER
PT J
AU van Donkelaar, A
Martin, R
Verduzco, C
Brauer, M
Kahn, R
Levy, R
Villeneuve, P
AF van Donkelaar, Aaron
Martin, Randall
Verduzco, Caroline
Brauer, Mike
Kahn, Ralph
Levy, Robert
Villeneuve, Paul
TI A Hybrid Approach for Predicting PM2.5 Exposure Response
SO ENVIRONMENTAL HEALTH PERSPECTIVES
LA English
DT Letter
C1 [van Donkelaar, Aaron; Martin, Randall; Verduzco, Caroline] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada.
[Brauer, Mike] Univ British Columbia, Sch Environm Hlth, Vancouver, BC V5Z 1M9, Canada.
[Kahn, Ralph; Levy, Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Villeneuve, Paul] Hlth Canada, Populat Studies Div, Ottawa, ON K1A 0L2, Canada.
RP van Donkelaar, A (reprint author), Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada.
EM Aaron.van.Donkelaar@dal.ca
NR 3
TC 3
Z9 3
U1 2
U2 10
PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE
PI RES TRIANGLE PK
PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233,
RES TRIANGLE PK, NC 27709-2233 USA
SN 0091-6765
J9 ENVIRON HEALTH PERSP
JI Environ. Health Perspect.
PD OCT
PY 2010
VL 118
IS 10
BP A426
EP A426
DI 10.1289/ehp.1002706R
PG 1
WC Environmental Sciences; Public, Environmental & Occupational Health;
Toxicology
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Toxicology
GA 656YL
UT WOS:000282376900006
ER
PT J
AU Cook, BI
Terando, A
Steiner, A
AF Cook, Benjamin I.
Terando, Adam
Steiner, Allison
TI Ecological forecasting under climatic data uncertainty: a case study in
phenological modeling
SO ENVIRONMENTAL RESEARCH LETTERS
LA English
DT Article
DE ecology; climate; forecasting
ID GLOBAL VEGETATION MODELS; REANALYSIS; ENSEMBLES
AB Forecasting ecological responses to climate change represents a challenge to the ecological community because models are often site-specific and climate data are lacking at appropriate spatial and temporal resolutions. We use a case study approach to demonstrate uncertainties in ecological predictions related to the driving climatic input data. We use observational records, derived observational datasets (e.g. interpolated observations from local weather stations and gridded data products) and output from general circulation models (GCM) in conjunction with site based phenology models to estimate the first flowering date (FFD) for three woody flowering species. Using derived observations over the modern time period, we find that cold biases and temperature trends lead to biased FFD simulations for all three species. Observational datasets resolved at the daily time step result in better FFD predictions compared to simulations using monthly resolution. Simulations using output from an ensemble of GCM and regional climate models over modern and future time periods have large intra-ensemble spreads and tend to underestimate observed FFD trends for the modern period. These results indicate that certain forcing datasets may be missing key features needed to generate accurate hindcasts at the local scale (e.g. trends, temporal resolution), and that standard modeling techniques (e.g. downscaling, ensemble mean, etc) may not necessarily improve the prediction of the ecological response. Studies attempting to simulate local ecological processes under modern and future climate forcing therefore need to quantify and propagate the climate data uncertainties in their simulations.
C1 [Cook, Benjamin I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Cook, Benjamin I.] Lamont Doherty Earth Observ, Palisades, NY 10964 USA.
[Terando, Adam] N Carolina State Univ, Biodivers & Spatial Informat Ctr, Raleigh, NC 27695 USA.
[Steiner, Allison] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA.
RP Cook, BI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA.
EM bc9z@ldeo.columbia.edu; ajterand@ncsu.edu; alsteiner@umich.edu
RI Cook, Benjamin/H-2265-2012; Steiner, Allison/F-4942-2011;
OI Terando, Adam/0000-0002-9280-043X
FU National Science Foundation (NSF) [IOS-0639794]; US Department of Energy
(DoE); National Oceanic and Atmospheric Administration (NOAA); US
Environmental Protection Agency Office of Research and Development (EPA)
FX The authors thank the editor and reviewers whose comments greatly
improved the quality of this manuscript. This project resulted from work
initiated at a USA National Phenology Network Research Coordination
Network meeting held in October 2009 and supported by National Science
Foundation Grant IOS-0639794. Special thanks to the Mohonk Preserve and
the Smiley Family for providing climate and phenology data. We also wish
to thank the North American Regional Climate Change Assessment Program
(NARCCAP) for providing the data used in this paper. NARCCAP is funded
by the National Science Foundation (NSF), the US Department of Energy
(DoE), the National Oceanic and Atmospheric Administration (NOAA), and
the US Environmental Protection Agency Office of Research and
Development (EPA). Lamont contribution 7422.
NR 25
TC 14
Z9 14
U1 0
U2 19
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1748-9326
J9 ENVIRON RES LETT
JI Environ. Res. Lett.
PD OCT-DEC
PY 2010
VL 5
IS 4
AR 044014
DI 10.1088/1748-9326/5/4/044014
PG 7
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA 709EO
UT WOS:000286420700016
ER
PT J
AU Abbasi, R
Abdou, Y
Abu-Zayyad, T
Adams, J
Aguilar, JA
Ahlers, M
Andeen, K
Auffenberg, J
Bai, X
Baker, M
Barwick, SW
Bay, R
Alba, JLB
Beattie, K
Beatty, JJ
Bechet, S
Becker, JK
Becker, KH
Benabderrahmane, ML
BenZvi, S
Berdermann, J
Berghaus, P
Berley, D
Bernardini, E
Bertrand, D
Besson, DZ
Bissok, M
Blaufuss, E
Boersma, DJ
Bohm, C
Boser, S
Botner, O
Bradley, L
Braun, J
Buitink, S
Carson, M
Chirkin, D
Christy, B
Clem, J
Clevermann, F
Cohen, S
Colnard, C
Cowen, DF
D'Agostino, MV
Danninger, M
Davis, JC
De Clercq, C
Demirors, L
Depaepe, O
Descamps, F
Desiati, P
de Vries-Uiterweerd, G
DeYoung, T
Diaz-Velez, JC
Dierckxsens, M
Dreyer, J
Dumm, JP
Duvoort, MR
Ehrlich, R
Eisch, J
Ellsworth, RW
Engdegard, O
Euler, S
Evenson, PA
Fadiran, O
Fazely, AR
Feusels, T
Filimonov, K
Finley, C
Foerster, MM
Fox, BD
Franckowiak, A
Franke, R
Gaisser, TK
Gallagher, J
Geisler, M
Gerhardt, L
Gladstone, L
Glusenkamp, T
Goldschmidt, A
Goodman, JA
Grant, D
Griesel, T
Gross, A
Grullon, S
Gurtner, M
Ha, C
Hallgren, A
Halzen, F
Han, K
Hanson, K
Helbing, K
Herquet, P
Hickford, S
Hill, GC
Hoffman, KD
Homeier, A
Hoshina, K
Hubert, D
Huelsnitz, W
Hulss, JP
Hulth, PO
Hultqvist, K
Hussain, S
Ishihara, A
Jacobsen, J
Japaridze, GS
Johansson, H
Joseph, JM
Kampert, KH
Karg, T
Karle, A
Kelley, JL
Kemming, N
Kenny, P
Kiryluk, J
Kislat, F
Klein, SR
Knops, S
Kohne, JH
Kohnen, G
Kolanoski, H
Kopke, L
Koskinen, DJ
Kowalski, M
Kowarik, T
Krasberg, M
Krings, T
Kroll, G
Kuehn, K
Kuwabara, T
Labare, M
Lafebre, S
Laihem, K
Landsman, H
Lauer, R
Lehmann, R
Lennarz, D
Lunemann, J
Madsen, J
Majumdar, P
Marotta, A
Maruyama, R
Mase, K
Matis, HS
Matusik, M
Meagher, K
Merck, M
Meszaros, P
Meures, T
Middell, E
Milke, N
Miller, J
Montaruli, T
Morse, R
Movit, SM
Nahnhauer, R
Nam, JW
Naumann, U
Niessen, P
Nygren, DR
Odrowski, S
Olivas, A
Olivo, M
O'Murchadha, A
Ono, M
Panknin, S
Paul, L
de los Heros, CP
Petrovic, J
Piegsa, A
Pieloth, D
Porrata, R
Posselt, J
Price, PB
Prikockis, M
Przybylski, GT
Rawlins, K
Redl, P
Resconi, E
Rhode, W
Ribordy, M
Rizzo, A
Rodrigues, JP
Roth, P
Rothmaier, F
Rott, C
Roucelle, C
Ruhe, T
Rutledge, D
Ruzybayev, B
Ryckbosch, D
Sander, HG
Santander, M
Sarkar, S
Schatto, K
Schlenstedt, S
Schmidt, T
Schukraft, A
Schultes, A
Schulz, O
Schunck, M
Seckel, D
Semburg, B
Seo, SH
Sestayo, Y
Seunarine, S
Silvestri, A
Slipak, A
Spiczak, GM
Spiering, C
Stamatikos, M
Stanev, T
Stephens, G
Stezelberger, T
Stokstad, RG
Stoyanov, S
Strahler, EA
Straszheim, T
Sullivan, GW
Swillens, Q
Taavola, H
Taboada, I
Tamburro, A
Tarasova, O
Tepe, A
Ter-Antonyan, S
Tilav, S
Toale, PA
Toscano, S
Tosi, D
Turcan, D
van Eijndhoven, N
Vandenbroucke, J
Van Overloop, A
van Santen, J
Voge, M
Voigt, B
Walck, C
Waldenmaier, T
Wallraff, M
Walter, M
Weaver, C
Wendt, C
Westerhoff, S
Whitehorn, N
Wiebe, K
Wiebusch, CH
Wikstrom, G
Williams, DR
Wischnewski, R
Wissing, H
Wolf, M
Woschnagg, K
Xu, C
Xu, XW
Yodh, G
Yoshida, S
Zarzhitsky, P
AF Abbasi, R.
Abdou, Y.
Abu-Zayyad, T.
Adams, J.
Aguilar, J. A.
Ahlers, M.
Andeen, K.
Auffenberg, J.
Bai, X.
Baker, M.
Barwick, S. W.
Bay, R.
Alba, J. L. Bazo
Beattie, K.
Beatty, J. J.
Bechet, S.
Becker, J. K.
Becker, K. -H.
Benabderrahmane, M. L.
BenZvi, S.
Berdermann, J.
Berghaus, P.
Berley, D.
Bernardini, E.
Bertrand, D.
Besson, D. Z.
Bissok, M.
Blaufuss, E.
Boersma, D. J.
Bohm, C.
Boeser, S.
Botner, O.
Bradley, L.
Braun, J.
Buitink, S.
Carson, M.
Chirkin, D.
Christy, B.
Clem, J.
Clevermann, F.
Cohen, S.
Colnard, C.
Cowen, D. F.
D'Agostino, M. V.
Danninger, M.
Davis, J. C.
De Clercq, C.
Demiroers, L.
Depaepe, O.
Descamps, F.
Desiati, P.
de Vries-Uiterweerd, G.
DeYoung, T.
Diaz-Velez, J. C.
Dierckxsens, M.
Dreyer, J.
Dumm, J. P.
Duvoort, M. R.
Ehrlich, R.
Eisch, J.
Ellsworth, R. W.
Engdegard, O.
Euler, S.
Evenson, P. A.
Fadiran, O.
Fazely, A. R.
Feusels, T.
Filimonov, K.
Finley, C.
Foerster, M. M.
Fox, B. D.
Franckowiak, A.
Franke, R.
Gaisser, T. K.
Gallagher, J.
Geisler, M.
Gerhardt, L.
Gladstone, L.
Gluesenkamp, T.
Goldschmidt, A.
Goodman, J. A.
Grant, D.
Griesel, T.
Gross, A.
Grullon, S.
Gurtner, M.
Ha, C.
Hallgren, A.
Halzen, F.
Han, K.
Hanson, K.
Helbing, K.
Herquet, P.
Hickford, S.
Hill, G. C.
Hoffman, K. D.
Homeier, A.
Hoshina, K.
Hubert, D.
Huelsnitz, W.
Huelss, J. -P.
Hulth, P. O.
Hultqvist, K.
Hussain, S.
Ishihara, A.
Jacobsen, J.
Japaridze, G. S.
Johansson, H.
Joseph, J. M.
Kampert, K. -H.
Karg, T.
Karle, A.
Kelley, J. L.
Kemming, N.
Kenny, P.
Kiryluk, J.
Kislat, F.
Klein, S. R.
Knops, S.
Koehne, J. -H.
Kohnen, G.
Kolanoski, H.
Koepke, L.
Koskinen, D. J.
Kowalski, M.
Kowarik, T.
Krasberg, M.
Krings, T.
Kroll, G.
Kuehn, K.
Kuwabara, T.
Labare, M.
Lafebre, S.
Laihem, K.
Landsman, H.
Lauer, R.
Lehmann, R.
Lennarz, D.
Luenemann, J.
Madsen, J.
Majumdar, P.
Marotta, A.
Maruyama, R.
Mase, K.
Matis, H. S.
Matusik, M.
Meagher, K.
Merck, M.
Meszaros, P.
Meures, T.
Middell, E.
Milke, N.
Miller, J.
Montaruli, T.
Morse, R.
Movit, S. M.
Nahnhauer, R.
Nam, J. W.
Naumann, U.
Niessen, P.
Nygren, D. R.
Odrowski, S.
Olivas, A.
Olivo, M.
O'Murchadha, A.
Ono, M.
Panknin, S.
Paul, L.
de los Heros, C. Perez
Petrovic, J.
Piegsa, A.
Pieloth, D.
Porrata, R.
Posselt, J.
Price, P. B.
Prikockis, M.
Przybylski, G. T.
Rawlins, K.
Redl, P.
Resconi, E.
Rhode, W.
Ribordy, M.
Rizzo, A.
Rodrigues, J. P.
Roth, P.
Rothmaier, F.
Rott, C.
Roucelle, C.
Ruhe, T.
Rutledge, D.
Ruzybayev, B.
Ryckbosch, D.
Sander, H. -G.
Santander, M.
Sarkar, S.
Schatto, K.
Schlenstedt, S.
Schmidt, T.
Schukraft, A.
Schultes, A.
Schulz, O.
Schunck, M.
Seckel, D.
Semburg, B.
Seo, S. H.
Sestayo, Y.
Seunarine, S.
Silvestri, A.
Slipak, A.
Spiczak, G. M.
Spiering, C.
Stamatikos, M.
Stanev, T.
Stephens, G.
Stezelberger, T.
Stokstad, R. G.
Stoyanov, S.
Strahler, E. A.
Straszheim, T.
Sullivan, G. W.
Swillens, Q.
Taavola, H.
Taboada, I.
Tamburro, A.
Tarasova, O.
Tepe, A.
Ter-Antonyan, S.
Tilav, S.
Toale, P. A.
Toscano, S.
Tosi, D.
Turcan, D.
van Eijndhoven, N.
Vandenbroucke, J.
Van Overloop, A.
van Santen, J.
Voge, M.
Voigt, B.
Walck, C.
Waldenmaier, T.
Wallraff, M.
Walter, M.
Weaver, Ch.
Wendt, C.
Westerhoff, S.
Whitehorn, N.
Wiebe, K.
Wiebusch, C. H.
Wikstrom, G.
Williams, D. R.
Wischnewski, R.
Wissing, H.
Wolf, M.
Woschnagg, K.
Xu, C.
Xu, X. W.
Yodh, G.
Yoshida, S.
Zarzhitsky, P.
CA IceCube Collaboration
TI Search for relativistic magnetic monopoles with the AMANDA-II neutrino
telescope
SO EUROPEAN PHYSICAL JOURNAL C
LA English
DT Article
ID HIGH-ENERGY NEUTRINOS; DETECTORS; SELECTION; LIMITS; FIELD; MODEL; DEEP;
FLUX; ICE
AB We present the search for Cherenkov signatures from relativistic magnetic monopoles in data taken with the AMANDA-II detector, a neutrino telescope deployed in the Antarctic ice cap at the Geographic South Pole. The non-observation of a monopole signal in data collected during the year 2000 improves present experimental limits on the flux of relativistic magnetic monopoles: Our flux limit varies between 3.8x10(-17) cm(-2) s(-1) sr(-1) (for monopoles moving at the vacuum speed of light) and 8.8x10(-16) cm(-2) s(-1) sr(-1) (for monopoles moving at a speed beta=v/c=0.76, just above the Cherenkov threshold in ice). These limits apply to monopoles that are energetic enough to penetrate the Earth and enter the detector from below the horizon. The limit obtained for monopoles reaching the detector from above the horizon is less stringent by roughly an order of magnitude, due to the much larger background from down-going atmospheric muons. This looser limit is however valid for a larger class of magnetic monopoles, since the monopoles are not required to pass through the Earth.
C1 [Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; BenZvi, S.; Berghaus, P.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; O'Murchadha, A.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Abdou, Y.; Carson, M.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium.
[Abu-Zayyad, T.; Madsen, J.; Spiczak, G. M.; Tamburro, A.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA.
[Adams, J.; Gross, A.; Han, K.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand.
[Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England.
[Auffenberg, J.; Becker, K. -H.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Matusik, M.; Naumann, U.; Posselt, J.; Schultes, A.; Semburg, B.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany.
[Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
[Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.
[Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Franke, R.; Kislat, F.; Lauer, R.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Schlenstedt, S.; Spiering, C.; Tarasova, O.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany.
[Beattie, K.; Buitink, S.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Bechet, S.; Bertrand, D.; Dierckxsens, M.; Hanson, K.; Labare, M.; Marotta, A.; Petrovic, J.; Swillens, Q.] Univ Libre Bruxelles, Sci Fac CP230, B-1050 Brussels, Belgium.
[Becker, J. K.; Dreyer, J.; Olivo, M.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany.
[Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; Sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA.
[Bissok, M.; Boersma, D. J.; Euler, S.; Geisler, M.; Gluesenkamp, T.; Huelss, J. -P.; Knops, S.; Krings, T.; Laihem, K.; Lennarz, D.; Meures, T.; Paul, L.; Schukraft, A.; Schunck, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany.
[Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wikstrom, G.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.
[Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wikstrom, G.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden.
[Boeser, S.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany.
[Botner, O.; Engdegard, O.; Hallgren, A.; Miller, J.; Olivo, M.; de los Heros, C. Perez; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden.
[Bradley, L.; Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Ha, C.; Koskinen, D. J.; Lafebre, S.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Slipak, A.; Stephens, G.; Toale, P. A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
[Clevermann, F.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany.
[Cohen, S.; Demiroers, L.; Ribordy, M.] Ecole Polytech Fed Lausanne, Lab High Energy Phys, CH-1015 Lausanne, Switzerland.
[Colnard, C.; Gross, A.; Odrowski, S.; Resconi, E.; Roucelle, C.; Schulz, O.; Sestayo, Y.; Voge, M.; Wolf, M.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany.
[Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[De Clercq, C.; Depaepe, O.; Hubert, D.; Rizzo, A.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium.
[Duvoort, M. R.] Utrecht Univ SRON, Dept Phys & Astron, NL-3584 CC Utrecht, Netherlands.
[Fadiran, O.; Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA.
[Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA.
[Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA.
[Grant, D.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada.
[Griesel, T.; Koepke, L.; Kowarik, T.; Kroll, G.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany.
[Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium.
[Ishihara, A.; Mase, K.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan.
[Kemming, N.; Kolanoski, H.; Lehmann, R.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany.
[Montaruli, T.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy.
[Montaruli, T.] Sezione Ist Nazl Fis Nucl, I-70126 Bari, Italy.
[Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA.
[Seunarine, S.] Univ W Indies, Dept Phys, Bridgetown 11000, Barbados.
[Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Taboada, I.; Tepe, A.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.
[Taboada, I.; Tepe, A.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
[Williams, D. R.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA.
RP Abbasi, R (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA.
EM hwissing@icecube.umd.edu
RI Botner, Olga/A-9110-2013; Tjus, Julia/G-8145-2012; Auffenberg,
Jan/D-3954-2014; Koskinen, David/G-3236-2014; Aguilar Sanchez, Juan
Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Sarkar,
Subir/G-5978-2011; Beatty, James/D-9310-2011; Taavola,
Henric/B-4497-2011; Wiebusch, Christopher/G-6490-2012; Kowalski,
Marek/G-5546-2012; Tamburro, Alessio/A-5703-2013; Hallgren,
Allan/A-8963-2013
OI Actis, Oxana/0000-0001-8851-3983; Ter-Antonyan,
Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479;
Auffenberg, Jan/0000-0002-1185-9094; Koskinen,
David/0000-0002-0514-5917; Aguilar Sanchez, Juan
Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X;
Sarkar, Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952;
Taavola, Henric/0000-0002-2604-2810; Wiebusch,
Christopher/0000-0002-6418-3008;
FU US National Science Foundation-Office of Polar Programs; US National
Science Foundation-Physics Division; University of Wisconsin Alumni
Research Foundation; US Department of Energy; National Energy Research
Scientific Computing Center; Louisiana Optical Network Initiative (LONI)
grid computing resources; National Science and Engineering Research
Council of Canada; Swedish Research Council; Swedish Polar Research
Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut
and Alice Wallenberg Foundation, Sweden; German Ministry for Education
and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG) [SFB-676];
Research Department of Plasmas with Complex Interactions (Bochum),
Germany; Fund for Scientific Research (FNRS-FWO); FWO; Flanders
Institute to encourage scientific and technological research in industry
(IWT); Belgian Federal Science Policy Office (Belspo); Marsden Fund, New
Zealand; Japan Society for Promotion of Science (JSPS); Swiss National
Science Foundation (SNSF), Switzerland; EU; Capes Foundation, Ministry
of Education of Brazil
FX We acknowledge the support from the following agencies: US National
Science Foundation-Office of Polar Programs, US National Science
Foundation-Physics Division, University of Wisconsin Alumni Research
Foundation, US Department of Energy, and National Energy Research
Scientific Computing Center, the Louisiana Optical Network Initiative
(LONI) grid computing resources; National Science and Engineering
Research Council of Canada; Swedish Research Council, Swedish Polar
Research Secretariat, Swedish National Infrastructure for Computing
(SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German
Ministry for Education and Research (BMBF), Deutsche
Forschungsgemeinschaft (DFG) SFB-676, Research Department of Plasmas
with Complex Interactions (Bochum), Germany; Fund for Scientific
Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to
encourage scientific and technological research in industry (IWT),
Belgian Federal Science Policy Office (Belspo); Marsden Fund, New
Zealand; Japan Society for Promotion of Science (JSPS); the Swiss
National Science Foundation (SNSF), Switzerland; A. Gross acknowledges
support by the EU Marie Curie OIF Program; J.P. Rodrigues acknowledges
support by the Capes Foundation, Ministry of Education of Brazil.
NR 48
TC 18
Z9 18
U1 0
U2 3
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1434-6044
EI 1434-6052
J9 EUR PHYS J C
JI Eur. Phys. J. C
PD OCT
PY 2010
VL 69
IS 3-4
BP 361
EP 378
DI 10.1140/epjc/s10052-010-1411-6
PG 18
WC Physics, Particles & Fields
SC Physics
GA 669PD
UT WOS:000283361800003
ER
PT J
AU Weikl, MC
Tedder, SA
Seeger, T
Leipertz, A
AF Weikl, M. C.
Tedder, S. A.
Seeger, T.
Leipertz, A.
TI Investigation of porous media combustion by coherent anti-Stokes Raman
spectroscopy
SO EXPERIMENTS IN FLUIDS
LA English
DT Article
ID DUAL-PUMP CARS; SIMULTANEOUS TEMPERATURE; INERT MEDIA; SCATTERING;
BURNERS
AB High efficiency, marginal pollutant emissions and low fuel consumption are desirable standards for modern combustion devices. The porous burner technology is a modern type of energy conversion with a strong potential to achieve these standards. However, due to the solid ceramic framework investigation of the thermodynamic properties of combustion, for example temperature, is difficult. The combustion process inside the ceramic structure of a porous burner was experimentally investigated by coherent anti-Stokes Raman spectroscopy (CARS). In this work, we present measurements using dual-pump dual-broadband CARS (DP-DBB-CARS) of temperature and species concentrations inside the reaction and flue gas zone of a porous media burner. Improvements to the setup and data evaluation procedure in contrast to previous measurements are discussed in detail. The results at varied thermal power and stoichiometry are presented. In addition, measurements at a range of radial positions inside a pore are conducted and correlated with the solid structure of the porous foam, which was determined by X-ray computer tomography.
C1 [Weikl, M. C.; Seeger, T.; Leipertz, A.] LTT, D-91058 Erlangen, Germany.
[Tedder, S. A.] NASA, Adv Sensing & Opt Measurement Branch, Langley Res Ctr, Hampton, VA 23681 USA.
RP Seeger, T (reprint author), LTT, Weichselgarten 8, D-91058 Erlangen, Germany.
EM ts@ltt.uni-erlangen.de
RI Seeger, Thomas/C-3951-2017;
OI Seeger, Thomas/0000-0002-9145-5910; Weikl, Markus/0000-0002-8570-3842
FU German Science Foundation DFG; Erlangen Graduate School in Advanced
Optical Technologies (SAOT)
FX The authors gratefully acknowledge financial support for parts of the
work by the German Science Foundation DFG and for funding the Erlangen
Graduate School in Advanced Optical Technologies (SAOT) within the
framework of the German Excellence Initiative. Also we gratefully
acknowledge the supply of the burner by the Lehrstuhl fur
Stromungsmechanik LSTM in Erlangen. Last but not least, the authors
gratefully acknowledge support from M.Sc. M. Meyer and Prof. W. A.
Kalender, Institute of Medical Physics (IMP) of the University of
Erlangen-Nurnberg for acquisition of the computer tomography data of the
porous foam.
NR 20
TC 8
Z9 8
U1 0
U2 4
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0723-4864
J9 EXP FLUIDS
JI Exp. Fluids
PD OCT
PY 2010
VL 49
IS 4
BP 775
EP 781
DI 10.1007/s00348-010-0903-3
PG 7
WC Engineering, Mechanical; Mechanics
SC Engineering; Mechanics
GA 655BE
UT WOS:000282215500004
ER
PT J
AU Hurst, TP
Laurel, BJ
Ciannelli, L
AF Hurst, Thomas P.
Laurel, Benjamin J.
Ciannelli, Lorenzo
TI Ontogenetic patterns and temperature-dependent growth rates in early
life stages of Pacific cod (Gadus macrocephalus)
SO FISHERY BULLETIN
LA English
DT Article
ID NORTHERN ROCK SOLE; PLAICE PLEURONECTES-PLATESSA; SOUTHEASTERN
BERING-SEA; JUVENILE ATLANTIC COD; CLIMATE-CHANGE;
LEPIDOPSETTA-POLYXYSTRA; THERAGRA-CHALCOGRAMMA; FISH POPULATIONS;
LARVAE; MORHUA
AB Pacific cod (Gadus macrocephalus) is an important component of fisheries and food webs in the North Pacific Ocean and Bering Sea. However, vital rates of early life stages of this species have yet to be described in detail. We determined the thermal sensitivity of growth rates of embryos, preflexion and postflexion larvae, and postsettlement juveniles. Growth rates (length and mass) at each ontogenetic stage were measured in three replicate tanks at four to five temperatures. Nonlinear regression was used to obtain parameters for independent stage-specific growth functions and a unified size- and temperature-dependent growth function. Specific growth rates increased with temperature at all stages and generally decreased with increases in body size. However, these analyses revealed a departure from a strict size-based allometry in growth patterns, as reduced growth rates were observed among preflexion larvae: the reduction in specific growth rate between embryos and free-swimming larvae was greater than expected based on body size differences. Growth reductions in the preflexion larvae appear to be associated with increased metabolic rates and the transition from endogenous to exogenous feeding. In future studies, experiments should be integrated across life transitions to more clearly define intrinsic ontogenetic and size-dependent growth patterns because these are critical for evaluations of spatial and temporal variation in habitat quality.
C1 [Hurst, Thomas P.; Laurel, Benjamin J.] Oregon State Univ, Hatfield Marine Sci Ctr, NOAA, Natl Marine Fisheries Serv,Alaska Fisheries Sci C, Newport, OR 97365 USA.
[Ciannelli, Lorenzo] Oregon State Univ, Coll Atmospher & Oceanog Sci, Corvallis, OR 97331 USA.
RP Hurst, TP (reprint author), Oregon State Univ, Hatfield Marine Sci Ctr, NOAA, Natl Marine Fisheries Serv,Alaska Fisheries Sci C, Newport, OR 97365 USA.
EM thomas.hurst@noaa.gov
RI Hurst, Thomas/N-1401-2013
FU North Pacific Research Board [R0605]
FX We thank T. Tripp, M. Spencer, and B. Knoth for assistance with fish
collection and shipping. Staff and students in the Fisheries Behavioral
Ecology Program, including L. Copeman, S. Haines, M. Ottmar, P. Iseri,
A. Colton, L. Logers, E. Seale, and J. Scheingross assisted with various
laboratory experiments. S. Munch, L. Tomaro, A. Stoner, and three
anonymous reviewers provided helpful comments on earlier versions of
this manuscript. This research was supported in part by a grant from the
North Pacific Research Board (no. R0605). This is publication no. 248 of
the North Pacific Research Board.
NR 48
TC 22
Z9 23
U1 1
U2 7
PU NATL MARINE FISHERIES SERVICE SCIENTIFIC PUBL OFFICE
PI SEATTLE
PA 7600 SAND POINT WAY NE BIN C15700, SEATTLE, WA 98115 USA
SN 0090-0656
J9 FISH B-NOAA
JI Fish. Bull.
PD OCT
PY 2010
VL 108
IS 4
BP 382
EP 392
PG 11
WC Fisheries
SC Fisheries
GA 676XS
UT WOS:000283953000002
ER
PT J
AU Hart, TD
Clemons, JER
Wakefield, WW
Heppell, SS
AF Hart, Ted D.
Clemons, Julia E. R.
Wakefield, W. Waldo
Heppell, Selina S.
TI Day and night abundance, distribution, and activity patterns of demersal
fishes on Heceta Bank, Oregon
SO FISHERY BULLETIN
LA English
DT Article
ID REEF FISHES; HABITAT ASSOCIATIONS; PHOTIC ENVIRONMENT;
CONTINENTAL-SHELF; DIEL VARIATION; SILVER HAKE; DEEP-REEF; SEBASTES;
TRAWL; CATCHABILITY
AB Most shallow-dwelling tropical marine fishes exhibit different activity patterns during the day and night but show similar transition behavior among habitat sites despite the dissimilar assemblages of the species. However, changes in species abundance, distribution, and activity patterns have only rarely been examined in temperate deepwater habitats during the day and night, where day-to-night differences in light intensity are extremely slight. Direct-observation surveys were conducted over several depths and habitat types on Heceta Bank, the largest rocky bank off the Oregon coast. Day and night fish community composition, relative density, and activity levels were compared by using videotape footage from a remotely operated vehicle (ROV) operated along paired transects. Habitat-specific abundance and activity were determined for 31 taxa or groups. General patterns observed were similar to shallow temperate day and night studies, with an overall increase in the abundance and activity of fishes during the day than at night, particularly in shallower cobble, boulder, and rock ridge habitats. Smaller schooling rockfishes (Sebastes spp.) were more abundant and active in day than in night transects, and sharp-chin (S. zacentrus) and harlequin (S. variegatus) rockfish were significantly more abundant in night transects. Most taxa, however, did not exhibit distinct diurnal or nocturnal activity patterns. Rosethorn rockfish (S. helvomaculatus) and hagfishes (Eptatretus spp.) showed the clearest diurnal and nocturnal activity patterns, respectively. Because day and night distributions and activity patterns in demersal fishes are likely to influence both catchability and observability in bottom trawl and direct-count in situ surveys, the patterns observed in the current study should be considered for survey design and interpretation.
C1 [Clemons, Julia E. R.; Wakefield, W. Waldo] Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fishery Resource Anal & Monitoring Div, Newport, OR 97365 USA.
[Hart, Ted D.; Heppell, Selina S.] Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA.
RP Clemons, JER (reprint author), Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fishery Resource Anal & Monitoring Div, 2032 SE OSU Dr, Newport, OR 97365 USA.
EM Julia.Clemons@noaa.gov
RI Bizzarro, Joseph/A-2988-2012
FU West Coast and Polar Regions Undersea Research Center of the National
Oceanographic and Atmospheric Administration (NOAA); Northwest and
Southwest Fisheries Science Centers; NOAA's Pacific Marine Environmental
Laboratory; Cooperative Institute for Marine Resources Studies at Oregon
State University; Oregon Agricultural Experiment Station [ORE00102]; H.
Richard Carlson Scholarship; Collaborative Marine Fisheries Fellowship;
Oregon State University
FX We would especially like to thank the following colleagues who
contributed to this study: B. Barss, B. Embley, G. Hendler, M. Hixon, D.
Markle, B. McCune, S. Merle, B. Tissot, M. Yoklavich, and K. York. A.
Whitmire and T. Cowles generously contributed information on ambient
light levels. L. Britt, C. Whitmire, and L. Ciannelli provided
constructive reviews of the manuscript. This portion of the Heceta Bank
project was funded by the West Coast and Polar Regions Undersea Research
Center of the National Oceanographic and Atmospheric Administration's
(NOAA) National Undersea Research Program, the Northwest and Southwest
Fisheries Science Centers, NOAA's Pacific Marine Environmental
Laboratory, and the Cooperative Institute for Marine Resources Studies
at Oregon State University. We would like to thank the professional
personnel who operated the ROV ROPOS and the NOAA RV Ronald Brown. T.
Hart was supported through the Oregon Agricultural Experiment Station
project ORE00102, the H. Richard Carlson Scholarship, the Collaborative
Marine Fisheries Fellowship and the Bill Wick Award through Oregon State
University.
NR 41
TC 4
Z9 4
U1 2
U2 12
PU NATL MARINE FISHERIES SERVICE SCIENTIFIC PUBL OFFICE
PI SEATTLE
PA 7600 SAND POINT WAY NE BIN C15700, SEATTLE, WA 98115 USA
SN 0090-0656
J9 FISH B-NOAA
JI Fish. Bull.
PD OCT
PY 2010
VL 108
IS 4
BP 466
EP 477
PG 12
WC Fisheries
SC Fisheries
GA 676XS
UT WOS:000283953000009
ER
PT J
AU He, JK
Peltzer, G
AF He, Jiankun
Peltzer, Gilles
TI Poroelastic triggering in the 9-22 January 2008 Nima-Gaize (Tibet)
earthquake sequence
SO GEOLOGY
LA English
DT Article
ID 1992 LANDERS EARTHQUAKE; SAN-ANDREAS FAULT; PORE FLUID-FLOW; STRESS;
PRESSURE; AFTERSHOCKS; CALIFORNIA; DEFORMATION; SHEAR
AB A sequence of three earthquakes of Ms = 6.4, 5.9, and 5.4 occurred in southern central Tibet on 9, 16, and 22 January 2008. Interferometric satellite aperture radar (InSAR) observations indicate that the two largest events occurred on two northeast-trending, northwest-dipping normal faults, separated by similar to 9.5 km, with slip reaching 1.2 m on the main fault and 0.75 m on the second. We develop a three-dimensional finite element model to calculate the Coulomb stress change due to poroelastic deformation in the crust after the first event. Using a uniform permeability of 8 x 10(-15) m(2) for faults and the host rock leads to negligible temporal pore pressure change in the two weeks after the first event. However, assuming higher permeability along faults (10(-14) to 10(-11) m(2)), the second fault channels the flow of pore fluids upward from the deeper region where the pore pressure increase was the largest immediately after the first event. In this case, the poroelastic Coulomb stress on the second fault increased suddenly by similar to 1 x 10(5) Pa after the first earthquake and continued to increase by as much as 70% in the subsequent week. Furthermore, the distribution of Coulomb stress change on the second fault correlates precisely with the slip distribution inferred for the second event. These findings suggest that the first earthquake not only triggered the second event, but the Coulomb stress change it induced on the second fault plane controlled the extent of the second rupture.
C1 [He, Jiankun] Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Continental Collis & Plateau Uplift, Beijing 100085, Peoples R China.
[Peltzer, Gilles] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA.
[Peltzer, Gilles] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP He, JK (reprint author), Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Continental Collis & Plateau Uplift, Beijing 100085, Peoples R China.
EM jkhe@itpcas.ac.cn
FU National Science Foundation of China [40774050]; University of
California-Los Angeles [4-403875-G2-69314]; National Aeronautics and
Space Administration
FX This work was supported by National Science Foundation of China grant
NO. 40774050 to He, and University of California-Los Angeles grant
4-403875-G2-69314 to Peltzer. Part of Peltzer's contribution was done at
the Jet Propulsion Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Administration. Envisat
data were provided by the European Space Agency under Peltzer's
Category-1 project (C1P.4424). We thank the anonymous reviewers for
insightful comments that helped to improve the manuscript. The
poroelastic modeling was developed in collaboration with Huashan Qian
under contract with Beijing Supcompute Technology Co. Ltd.
NR 29
TC 7
Z9 10
U1 2
U2 10
PU GEOLOGICAL SOC AMER, INC
PI BOULDER
PA PO BOX 9140, BOULDER, CO 80301-9140 USA
SN 0091-7613
J9 GEOLOGY
JI Geology
PD OCT
PY 2010
VL 38
IS 10
BP 907
EP 910
DI 10.1130/G31104.1
PG 4
WC Geology
SC Geology
GA 656PL
UT WOS:000282348600012
ER
PT J
AU Carvalhais, N
Reichstein, M
Ciais, P
Collatz, GJ
Mahecha, MD
Montagnani, L
Papale, D
Rambal, S
Seixas, J
AF Carvalhais, Nuno
Reichstein, Markus
Ciais, Philippe
Collatz, G. James
Mahecha, Miguel D.
Montagnani, Leonardo
Papale, Dario
Rambal, Serge
Seixas, Julia
TI Identification of vegetation and soil carbon pools out of equilibrium in
a process model via eddy covariance and biometric constraints
SO GLOBAL CHANGE BIOLOGY
LA English
DT Article
DE carbon pools; CASA model; equifinality; model-data integration; multiple
constraints; net ecosystem production; steady-state assumption
ID NET ECOSYSTEM EXCHANGE; UNCERTAINTY ESTIMATION; PLANT RESPIRATION; DATA
ASSIMILATION; ATMOSPHERIC CO2; USE EFFICIENCY; CLIMATE-CHANGE;
LEAST-SQUARES; FOREST; INVERSION
AB Assumptions of steady-state conditions in biogeochemical modelling are often invoked because knowledge on the development status of the modelling domain is generally unavailable. Here, we investigate the role of vegetation pool sizes on nonequilibrium conditions through model-data integration approaches for a set of sites using eddy covariance CO(2) flux data. The study is based on the Carnegie-Ames-Stanford Approach (CASA) model, modified (CASA(G)) in order to evaluate the sensitivity of simulated net ecosystem production (NEP) fluxes to vegetation pool sizes. The experimental design is based on the inverse model optimization of different parameter vectors performed at the measurement site level. Each parameter vector prescribes different simulation dynamics that embody different model structural assumptions concerning (non)steady-state conditions in vegetation and soil carbon pools. We further explore the potential of assimilating biometric constraints through the cost function for sites where in situ information on aboveground biomass or wood pools is available. The integration of biometric data yields marked improvements in the simulation of vegetation C pools compared to single constraints with eddy flux data. Overall, it is necessary to relax both vegetation and soil carbon pools for consistency with the observed data streams. Multiple constraints approaches also leads to variable model performance among the different experimental setups and model structures. We identify and assess the limitations of various model structures and the role of multiple constraints approaches for tackling issues of equifinality. These studies emphasize the need for establishing consistent data sets of fluxes and biometric data for successful model-data fusion.
C1 [Carvalhais, Nuno; Seixas, Julia] Univ Nova Lisboa, FCT, DCEA, P-2829516 Caparica, Portugal.
[Carvalhais, Nuno; Reichstein, Markus; Mahecha, Miguel D.] Max Planck Inst Biogeochem, D-07745 Jena, Germany.
[Ciais, Philippe] CEA CNRS UVSQ, Lab Sci Climate & Environm, F-91191 Gif Sur Yvette, France.
[Collatz, G. James] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Montagnani, Leonardo] Free Univ Bolzano Bozen, Fac Sci & Technol, I-39100 Bozen Bolzano, Italy.
[Papale, Dario] Univ Tuscia, DISAFRI, I-01100 Viterbo, Italy.
[Rambal, Serge] CNRS, UMR 5175, CEFE, DREAM, F-34293 Montpellier 5, France.
RP Carvalhais, N (reprint author), Univ Nova Lisboa, FCT, DCEA, P-2829516 Caparica, Portugal.
EM ncarvalhais@gmail.com
RI Mahecha, Miguel/F-2443-2010; Reichstein, Markus/A-7494-2011; collatz,
george/D-5381-2012; Seixas, Julia/K-9400-2013; Montagnani,
Leonardo/F-1837-2016;
OI Mahecha, Miguel/0000-0003-3031-613X; Reichstein,
Markus/0000-0001-5736-1112; Seixas, Julia/0000-0003-0355-0465;
Montagnani, Leonardo/0000-0003-2957-9071; rambal,
serge/0000-0001-5869-8382; Carvalhais, Nuno/0000-0003-0465-1436; Papale,
Dario/0000-0001-5170-8648
FU Portuguese Foundation for Science and Technology (FCT)
[PTDC/AGR-CFL/69733/2006, FP7-ENV-2008-1-226701]; European Union [POCI
2010, SFRH/BD/6517/2001]; Max-Planck-Society; CARBOEUROPE-IP
FX We are grateful to Marco Correia, Martin Jung, Gitta Lasslop, Mirco
Migliavacca, Christopher Neigh, Wouter Peters and Enrico Tomelleri for
very helpful comments on the manuscript. We are also very thankful to
three anonymous reviewers for constructive comments that significantly
helped improving the manuscript. This work was supported by the
Portuguese Foundation for Science and Technology (FCT) under the MODNET
project (contract no. PTDC/AGR-CFL/69733/2006) and also by the
CARBO-Extreme project (FP7-ENV-2008-1-226701). NC acknowledges the
support given by the Portuguese Foundation for Science and Technology
(FCT), the European Union under Operational Program 'Science and
Innovation' (POCI 2010), PhD grant ref. SFRH/BD/6517/2001. MR is
grateful to the Max-Planck-Society for supporting the independent junior
research group Biogeochemical Model-Data Integration. Research leading
to flux data and scientific insight was supported by the CARBOEUROPE-IP
project.
NR 77
TC 39
Z9 40
U1 3
U2 38
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1354-1013
J9 GLOBAL CHANGE BIOL
JI Glob. Change Biol.
PD OCT
PY 2010
VL 16
IS 10
BP 2813
EP 2829
DI 10.1111/j.1365-2486.2010.02173.x
PG 17
WC Biodiversity Conservation; Ecology; Environmental Sciences
SC Biodiversity & Conservation; Environmental Sciences & Ecology
GA 648FV
UT WOS:000281676700015
ER
PT J
AU Matsuyama, I
Bills, BG
AF Matsuyama, Isamu
Bills, Bruce G.
TI Global contraction of planetary bodies due to despinning: Application to
Mercury and Iapetus
SO ICARUS
LA English
DT Article
DE Rotational dynamics; Planetary dynamics; Tectonics; Mercury; Iapetus
ID GRAVITATIONAL MOMENTS; ICY SATELLITES; LOBATE SCARPS; TECTONICS;
ROTATION; SURFACE; SHAPES; CORE
AB We extend previous work on the global tectonic patterns generated by despinning with a self-consistent treatment of the isotropic despinning contraction that has been ignored. We provide simple analytic approximations that quantify the effect of the isotropic despinning contraction on the global shape and tectonic pattern. The isotropic despinning contraction of Mercury is similar to 93 m (T/1 day)(-2), where T is the initial rotation period. If we take into account both the isotropic contraction and the degree-2 deformations associated with despinning, the preponderance of compressional tectonic features on Mercury's surface requires an additional isotropic contraction >= 1 km (T/1 day)(-2), presumably due to cooling of the interior and growth of the solid inner core. The isotropic despinning contraction of Iapetus is similar to 9 m (T/ 16 h)(-2), and it is not sensitive to the presence of a core or the thickness of the elastic lithosphere. The tectonic pattern expected for despinning, including the isotropic contraction, does not explain Iapetus' ridge. Furthermore, the ridge remains unexplained with the addition of any isotropic compressional stresses, including those generating by cooling. (C) 2010 Elsevier Inc. All rights reserved.
C1 [Matsuyama, Isamu] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
[Bills, Bruce G.] Jet Prop Lab, Pasadena, CA 90119 USA.
RP Matsuyama, I (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
EM isa@berkeley.edu
OI Matsuyama, Isamu/0000-0002-2917-8633
FU Miller Institute for Basic Research; NASA
FX We thank Tim Van Hoolst and an anonymous referee for their constructive
comments. We acknowledge support from the Miller Institute for Basic
Research. Part of the research described in this publication was carried
out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with NASA.
NR 35
TC 1
Z9 1
U1 1
U2 1
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD OCT
PY 2010
VL 209
IS 2
BP 271
EP 279
DI 10.1016/j.icarus.2010.05.011
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 654VL
UT WOS:000282199000001
ER
PT J
AU Williams, KE
Mckay, CP
Toon, OB
Head, JW
AF Williams, K. E.
Mckay, Christopher P.
Toon, O. B.
Head, James W.
TI Do ice caves exist on Mars?
SO ICARUS
LA English
DT Article
DE Mars, Surface; Mars, Atmosphere; Mars, Climate; Ices
ID GENERAL-CIRCULATION MODEL; MIDLATITUDE SNOWPACKS; FROST FORMATION;
LIQUID WATER; LAVA TUBES; FLOW; VOLCANISM; GLACIERS; SIMULATIONS;
PARAMETERS
AB We have developed a numerical model for assessing the lifetime of ice deposits in martian caves that are open to the atmosphere. Our model results and sensitivity tests indicate that cave ice would be stable over significant portions of the surface of Mars. Ice caves on Earth commonly occur in lava tubes, and Mars has been significantly resurfaced by volcanic activity during its history, including the two main volcanic provinces, the Tharsis and Elysium rises. These areas, known or suspected of having subsurface caves and related voids are among the most favorable regions for the occurrence of ice stability. The martian ice cave model predicts regions which, if caves occur, would potentially be areas of astrobiological importance as well as possible water sources for future human missions to Mars. (C) 2010 Elsevier Inc. All rights reserved.
C1 [Williams, K. E.; Mckay, Christopher P.] NASA, Ames Res Ctr, Div Space Sci & Astrobiol, Moffett Field, CA 94035 USA.
[Toon, O. B.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA.
[Toon, O. B.] Univ Colorado, Atmospher & Space Phys Lab, LASP UCB 392, Boulder, CO 80309 USA.
[Head, James W.] Brown Univ, Dept Geol Sci, Providence, RI 02906 USA.
RP Williams, KE (reprint author), NASA, Ames Res Ctr, Div Space Sci & Astrobiol, Mail Stop 245-3, Moffett Field, CA 94035 USA.
EM kaj.williams@gmail.com
FU NASA
FX The authors would like to thank James Schaeffer for providing the MGCM
data used in this study (AmesMGCM model run # 2009.003). K.E. Williams
would like to thank Andrew Ingersoll for helpful discussions. This paper
also benefited from the comments of two anonymous reviewers. J.W.H.
gratefully acknowledges support from the NASA Mars Data Analysis Program
(MDAP). Thanks are extended to James Dickson for data and image
processing and presentation. K.E. Williams was funded by the NASA
Postdoctoral Program.
NR 56
TC 17
Z9 17
U1 2
U2 9
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD OCT
PY 2010
VL 209
IS 2
BP 358
EP 368
DI 10.1016/j.icarus.2010.03.039
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 654VL
UT WOS:000282199000007
ER
PT J
AU Busch, MW
Kulkarni, SR
Brisken, W
Ostro, SJ
Benner, LAM
Giorgini, JD
Nolan, MC
AF Busch, Michael W.
Kulkarni, Shrinivas R.
Brisken, Walter
Ostro, Steven J.
Benner, Lance A. M.
Giorgini, Jon D.
Nolan, Michael C.
TI Determining asteroid spin states using radar speckles
SO ICARUS
LA English
DT Article
DE Asteroids; Asteroids, Rotation; Asteroids, Dynamics; Radar observations
ID SMALL BINARY ASTEROIDS; 1999 KW4; EARTH; YARKOVSKY; DYNAMICS
AB Knowing the shapes and spin states of near-Earth asteroids is essential to understanding their dynamical evolution because of the Yarkovsky and YORP effects. Delay-Doppler radar imaging is the most powerful ground-based technique for imaging near-Earth asteroids and can obtain spatial resolution of <10 m, but frequently produces ambiguous pole direction solutions. A radar echo from an asteroid consists of a pattern of speckles caused by the interference of reflections from different parts of the surface. It is possible to determine an asteroid's pole direction by tracking the motion of the radar speckle pattern. Speckle tracking can potentially measure the poles of at least several radar targets each year, rapidly increasing the available sample of NEA pole directions. We observed the near-Earth asteroid 2008 EV5 with the Arecibo planetary radar and the Very Long Baseline Array in December 2008. By tracking the speckles moving from the Pie Town to Los Alamos VLBA stations, we have shown that EV5 rotates retrograde. This is the first speckle detection of a near-Earth asteroid. (C) 2010 Elsevier Inc. All rights reserved.
C1 [Busch, Michael W.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.
[Kulkarni, Shrinivas R.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA.
[Brisken, Walter] Natl Radio Astron Observ, Socorro, NM 87801 USA.
[Ostro, Steven J.; Benner, Lance A. M.; Giorgini, Jon D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Nolan, Michael C.] Arecibo Observ, Arecibo, PR 00612 USA.
RP Busch, MW (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.
EM busch@caltech.edu
RI Nolan, Michael/H-4980-2012
OI Nolan, Michael/0000-0001-8316-0680
FU National Aeronautics and Space Administration (NASA); Hertz Foundation
FX The NRAO Socorro & Green Bank, Goldstone Solar System Radar, and NAIC
Arecibo staff helped to obtain the data presented here. A. Galad, B.W.
Koehn, and M.D. Hicks observed EV5 optically and determined its rotation
rate. J.-L. Margot and C. Magri provided very helpful reviews. A.T.
Deller and R.C. Walker provided helpful technical comments. The National
Radio Astronomy Observatory is a facility of the National Science
Foundation operated under cooperative agreement by Associated
Universities, Inc. The Arecibo Observatory is part of the National
Astronomy and Ionosphere Center, which is operated by Cornell University
under a cooperative agreement with the National Science Foundation. Some
of this work was performed at the Jet Propulsion Laboratory, California
Institute of Technology, under contract with the National Aeronautics
and Space Administration (NASA). This paper is based in part on work
funded by NASA under the Science Mission Directorate Research and
Analysis Programs. M.W. Busch was supported by the Hertz Foundation.
NR 31
TC 6
Z9 7
U1 1
U2 2
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD OCT
PY 2010
VL 209
IS 2
BP 535
EP 541
DI 10.1016/j.icarus.2010.05.002
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 654VL
UT WOS:000282199000021
ER
PT J
AU Shestopalov, DI
McFadden, LA
Golubeva, LF
Orujova, LO
AF Shestopalov, D. I.
McFadden, L. A.
Golubeva, L. F.
Orujova, L. O.
TI About mineral composition of geologic units in the northern hemisphere
of Vesta
SO ICARUS
LA English
DT Article
DE Asteroids; Spectrophotometry
ID ASTEROID 4 VESTA; SPECTROSCOPIC SURVEY; BHOLGHATI HOWARDITE; SURFACE;
SPECTRA; PYROXENE; MODEL
AB In the present paper we seek to understand the geologic diversity of units in the northern hemisphere of Vesta using HST observations (Binzel et al., 1997). First, we compare colors R(0.673 mu m)/R(0.953 mu m) and R(0.673 mu m)/R(1.042 mu m) of Vesta's units with those of V-type asteroids (vestoids) as well as howardite, eucrite, and diogenite meteorites (HEDs). This comparative analysis showed that: (i) on the color-color plot, regions on Vesta are clustered whereas vestoids and HEDs cover a wide range in color: (ii) very few vestoids or HEDs fall into Vesta's color region. This implies that Vesta's units are more homogenous than most vestoids and HEDs examined here and material of the units are slightly different from that of vestoids and HEDs. Assuming reasonable choice of end-member materials, an optical model (Shkuratov et al., 1999) was used to simulate intimate mixtures of particles at the surface of Vesta's units. Simulation of albedo, colors, and four-point spectra of Vesta's units reveals that the rock-forming material is nearly equal for all units and has HED-like composition. Diversity of the units depends on the minor constituents such as chromite and a neutral phase. The western units contain more chromite and neutral phase than the eastern, consequently albedo of the western units is lower and their four-point spectra are flatter. Olivine and feldspar are also needed to give the best fit for the calculated and observed albedos and colors of Vesta's units, but being in minor amount in Vesta's rocks they play a secondary role in contributing to the optical properties of the units. Questions about the proportions of HED-like rock and the constituent called neutral phase remain open. Spectrophotometric studies of Vesta with both higher spatial and spectral resolution as expected from NASA's Dawn mission are needed for resolving these problems. (C) 2010 Elsevier Inc. All rights reserved.
C1 [Shestopalov, D. I.; Golubeva, L. F.; Orujova, L. O.] Azerbaijan Acad Sci, Shemakha Astrophys Observ, AZ-3243 Shemakha, Azerbaijan.
[McFadden, L. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Shestopalov, DI (reprint author), Azerbaijan Acad Sci, Shemakha Astrophys Observ, AZ-3243 Shemakha, Azerbaijan.
EM shestopalov_d@mail.ru; lucy.mcfadden@nasa.gov; lara_golubeva@mail.ru;
oleyli@yahoo.com
RI McFadden, Lucy-Ann/I-4902-2013
OI McFadden, Lucy-Ann/0000-0002-0537-9975
FU National Science Foundation [0506716]
FX This research utilizes spectra of meteorites and minerals acquired by
R.P. Binzel, E.A. Cloutis, M.J. Gaffey, T. Hiroi, C.M. Pieters, J.T.
Wasson with the NASA RELAB facility at Brown University. The authors
thank T.H. Burbine for providing the dates and times for the asteroid
spectral observations, which were needed to calculate phase angles. Part
of the data utilized in this publication were obtained and made
available by the MIT-UH-IRTF Joint Campaign for NEO Reconnaissance. The
IRTF is operated by the University of Hawaii under Cooperative Agreement
No. NCC 5-538 with the National Aeronautics and Space Administration,
Office of Space Science, Planetary Astronomy Program. The MIT component
of this work is supported by the National Science Foundation under Grant
No. 0506716. We are very grateful to an anonymous reviewer for his
valuable and well-wishing comments, which have helped to improve greatly
our article.
NR 31
TC 7
Z9 7
U1 0
U2 0
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD OCT
PY 2010
VL 209
IS 2
BP 575
EP 585
DI 10.1016/j.icarus.2010.04.012
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 654VL
UT WOS:000282199000025
ER
PT J
AU De Luise, F
Dotto, E
Fornasier, S
Barucci, MA
Pinilla-Alonso, N
Perna, D
Marzari, F
AF De Luise, F.
Dotto, E.
Fornasier, S.
Barucci, M. A.
Pinilla-Alonso, N.
Perna, D.
Marzari, F.
TI A peculiar family of Jupiter Trojans: The Eurybates
SO ICARUS
LA English
DT Article
DE Trojan asteroids; Asteroids, surface; Asteroids, composition;
Spectroscopy
ID CHARGED-PARTICLE IRRADIATION; VISIBLE SPECTROSCOPIC SURVEY;
SURFACE-COMPOSITION; DYNAMICAL FAMILIES; OPTICAL-CONSTANTS; ION
IRRADIATION; PROPER ELEMENTS; SOLAR-SYSTEM; PHOTOMETRIC SURVEY;
ASTEROIDS
AB The Eurybates family is a compact core inside the Menelaus clan, located in the L(4) swarm of Jupiter Trojans. Fornasier et al. (Fornasier, S., Dotto, E., Hainaut, O., Marzari, F., Boehnhardt, H., De Luise, F., Barucci, M.A. [2007] Icarus 190, 622-642) found that this family exhibits a peculiar abundance of spectrally flat objects, similar to Chiron-like Centaurs and C-type main belt asteroids. On the basis of the visible spectra available in literature, Eurybates family's members seemed to be good candidates for having on their surfaces water/water ice or aqueous altered materials.
To improve our knowledge of the surface composition of this peculiar family, we carried out an observational campaign at the Telescopio Nazionale Galileo (TNG), obtaining near-infrared spectra of 7 members. Our data show a surprisingly absence of any spectral feature referable to the presence of water, ices or aqueous altered materials on the surface of the observed objects. Models of the surface composition are attempted, evidencing that amorphous carbon seems to dominate the surface composition of the observed bodies and some amount of silicates (olivine) could be present. (C) 2010 Elsevier Inc. All rights reserved.
C1 [De Luise, F.] INAF Osservatorio Astron Collurania Teramo, I-64100 Teramo, TE, Italy.
[De Luise, F.; Dotto, E.; Perna, D.] INAF Osservatorio Astron Roma, I-00040 Rome, Italy.
[Fornasier, S.; Barucci, M. A.; Perna, D.] Observ Paris, LESIA, F-92195 Meudon, France.
[Fornasier, S.] Univ Paris 07, F-75013 Paris, France.
[Pinilla-Alonso, N.] Fdn Galileo Galilei, Tenerife 38700, Spain.
[Pinilla-Alonso, N.] Telescopio Nazl Galileo, Tenerife 38700, Spain.
[Pinilla-Alonso, N.] Oak Ridge Associated Univ, NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Perna, D.] Univ Roma Tor Vergata, I-00133 Rome, Italy.
[Marzari, F.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy.
RP De Luise, F (reprint author), INAF Osservatorio Astron Collurania Teramo, Via Mentore Maggini,Snc, I-64100 Teramo, TE, Italy.
EM deluise@oa-teramo.inaf.it
OI De Luise, Fiore/0000-0002-6570-8208; Dotto,
Elisabetta/0000-0002-9335-1656
NR 44
TC 7
Z9 7
U1 0
U2 4
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD OCT
PY 2010
VL 209
IS 2
BP 586
EP 590
DI 10.1016/j.icarus.2010.04.024
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 654VL
UT WOS:000282199000026
ER
PT J
AU Movshovitz, N
Bodenheimer, P
Podolak, M
Lissauer, JJ
AF Movshovitz, Naor
Bodenheimer, Peter
Podolak, Morris
Lissauer, Jack J.
TI Formation of Jupiter using opacities based on detailed grain physics
SO ICARUS
LA English
DT Article
DE Planetary formation; Jovian planets; Jupiter, Interior; Accretion
ID GIANT PLANET FORMATION; SOLAR NEBULA; PROTOPLANETARY ATMOSPHERES;
ACCRETION; CORE; EVOLUTION; MODELS; PLANETESIMALS; VELOCITIES; MIGRATION
AB Numerical simulations, based on the core-nucleated accretion model, are presented for the formation of Jupiter at 5.2 AU in three primordial disks with three different assumed values of the surface density of solid particles. The grain opacities in the envelope of the protoplanet are computed using a detailed model that includes settling and coagulation of grains and that incorporates a recalculation of the grain size distribution at each point in time and space. We generally find lower opacities than the 2% of interstellar values used in previous calculations (Hubickyj, O., Bodenheimer, P., Lissauer, J.J.[2005]. Icarus 179, 415-431; Lissauer, J.J., Hubickyj, O., D'Angelo, G., Bodenheimer, P. [2009]. Icarus 199, 338-350). These lower opacities result in more rapid heat loss from and more rapid contraction of the protoplanetary envelope. For a given surface density of solids, the new calculations result in a substantial speedup in formation time as compared with those previous calculations. Formation times are calculated to be 1.0, 1.9, and 4.0 Myr, and solid core masses are found to be 16.8, 8.9, and 4.7 M(circle dot), for solid surface densities, sigma, of 10, 6, and 4 g cm(-2), respectively. For sigma = 10 and sigma = 6 g cm(-2), respectively, these formation times are reduced by more than 50% and more than 80% compared with those in a previously published calculation with the old approximation to the opacity. (C) 2010 Elsevier Inc. All rights reserved.
C1 [Movshovitz, Naor] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA.
[Movshovitz, Naor; Podolak, Morris] Tel Aviv Univ, Dept Geophys & Planetary Sci, IL-69978 Ramat Aviv, Israel.
[Bodenheimer, Peter] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA.
[Lissauer, Jack J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA.
RP Movshovitz, N (reprint author), Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA.
EM nmovshov@ucsc.edu
OI Podolak, Morris/0000-0003-4801-8691
FU NASA [NNX08AH82G]; Israel Academy of Sciences
FX This work was supported in part by NASA Origins Grant NNX08AH82G. M.P.
acknowledges the support of the Israel Academy of Sciences. N.M.
acknowledges assistance from the Sackler Institute of Astronomy.
NR 33
TC 77
Z9 77
U1 1
U2 1
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD OCT
PY 2010
VL 209
IS 2
BP 616
EP 624
DI 10.1016/j.icarus.2010.06.009
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 654VL
UT WOS:000282199000029
ER
PT J
AU Guerlet, S
Fouchet, T
Bezard, B
Moses, JI
Fletcher, LN
Simon-Miller, AA
Flasar, FM
AF Guerlet, Sandrine
Fouchet, Thierry
Bezard, Bruno
Moses, Julianne I.
Fletcher, Leigh N.
Simon-Miller, Amy A.
Flasar, F. Michael
TI Meridional distribution of CH3C2H and C4H2 in Saturn's stratosphere from
CIRS/Cassini limb and nadir observations
SO ICARUS
LA English
DT Article
DE Saturn; Infrared observations; Atmospheres, Composition
ID ROTOTRANSLATIONAL ABSORPTION-SPECTRA; POLAR ATMOSPHERE; SPECTROSCOPIC
DATABASE; RING ATMOSPHERE; CLOUD STRUCTURE; HAZE FORMATION; OUTER
PLANETS; GIANT PLANETS; CHEMISTRY; JUPITER
AB Limb and nadir spectra acquired by Cassini/CIRS (Composite InfraRed Spectrometer) are analyzed in order to derive, for the first time, the meridional variations of diacetylene (C4H2) and methylacetylene (CH3C2H) mixing ratios in Saturn's stratosphere, from 5 hPa up to 0.05 hPa and 80 degrees S to 45 degrees N. We find that the C4H2 and CH3C2H meridional distributions mimic that of acetylene (C2H2), exhibiting small-scale variations that are not present in photochemical model predictions. The most striking feature of the meridional distribution of both molecules is an asymmetry between mid-southern and mid-northern latitudes. The mid-southern latitudes are found depleted in hydrocarbons relative to their northern counterparts. In contrast, photochemical models predict similar abundances at north and south mid-latitudes. We favor a dynamical explanation for this asymmetry, with upwelling in the south and downwelling in the north, the latter coinciding with the region undergoing ring shadowing. The depletion in hydrocarbons at mid-southern latitudes could also result from chemical reactions with oxygen-bearing molecules.
Poleward of 60 degrees S, at 0.1 and 0.05 hPa, we find that the CH3C2H and C4H2 abundances increase dramatically. This behavior is in sharp contradiction with photochemical model predictions, which exhibit a strong decrease towards the south pole. Several processes could explain our observations, such as subsidence, a large vertical eddy diffusion coefficient at high altitudes, auroral chemistry that enhances CH3C2H and C4H2 production, or shielding from photolysis by aerosols or molecules produced from auroral chemistry. However, problems remain with all these hypotheses, including the lack of similar behavior at lower altitudes.
Our derived mean mixing ratios at 0.5 hPa of (2.4 +/- 0.3) x 10(-10) for C4H2 and of (1.1 +/- 0.3) x 10(-9) for CH3C2H are compatible with the analysis of global-average ISO observations performed by Moses et al. (Moses, J.I., Bezard, B., Lellouch, E., Gladstone, G.R., Feuchtgruber, H., Allen, M. [2000a]. Icarus 143, 244-298). Finally, we provide values for the ratios [CH3C2H]/[C2H2] and [C4H2]/[C2H2] that can constrain the coupled chemistry of these hydrocarbons. (C) 2010 Elsevier Inc. All rights reserved.
C1 [Guerlet, Sandrine; Fouchet, Thierry; Bezard, Bruno] Observ Paris, LESIA, F-92195 Meudon, France.
[Fouchet, Thierry] Univ Paris 06, UMR 8109, F-75006 Paris, France.
[Moses, Julianne I.] Space Sci Inst, Seabrook, TX 77586 USA.
[Fletcher, Leigh N.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Simon-Miller, Amy A.; Flasar, F. Michael] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Guerlet, S (reprint author), Observ Paris, LESIA, 5 Pl Janssen, F-92195 Meudon, France.
EM Sandrine.Guerlet@obspm.fr
RI Fletcher, Leigh/D-6093-2011; Flasar, F Michael/C-8509-2012; Moses,
Julianne/I-2151-2013; Simon, Amy/C-8020-2012; Fouchet,
Thierry/C-6374-2017
OI Fletcher, Leigh/0000-0001-5834-9588; Moses,
Julianne/0000-0002-8837-0035; Simon, Amy/0000-0003-4641-6186; Fouchet,
Thierry/0000-0001-9040-8285
FU Centre National d'Etudes Spatiales (CNES); Programme National de
Planetologie (PNP/INSU); NASA [NNX08AQ79G]
FX We would like to thank the CIRS investigation team involved in planning
the observational sequences and calibration of the data. This research
was supported by the Centre National d'Etudes Spatiales (CNES) and the
Programme National de Planetologie (PNP/INSU). Fletcher was supported by
an appointment to the NASA Postdoctoral Program at the Jet Propulsion
Laboratory, California Institute of Technology, under contract for the
National Aeronautics and Space Administration (NASA), administered by
Oak Ridge Associated Universities through a contract with NASA. Moses
acknowledges support from the NASA Cassini Data Analysis Program, Grant
Number NNX08AQ79G. We thank the two referees for their useful comments.
NR 55
TC 17
Z9 17
U1 0
U2 3
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
EI 1090-2643
J9 ICARUS
JI Icarus
PD OCT
PY 2010
VL 209
IS 2
BP 682
EP 695
DI 10.1016/j.icarus.2010.03.033
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 654VL
UT WOS:000282199000035
ER
PT J
AU Cassidy, TA
Johnson, RE
AF Cassidy, T. A.
Johnson, R. E.
TI Collisional spreading of Enceladus' neutral cloud
SO ICARUS
LA English
DT Article
DE Enceladus; Saturn, Magnetosphere; Satellites, Atmospheres
ID CROSS-SECTIONS; WATER-VAPOR; SATURN; MAGNETOSPHERE; ATMOSPHERE;
HYDROGEN; TORI; IONIZATION; MORPHOLOGY; TRITON
AB We describe a direct simulation Monte Carlo (DSMC) model of Enceladus' neutral cloud and compare its results to observations of OH and O orbiting Saturn. The OH and O are observed far from Enceladus (at 3.95 R(S)), as far out as 25 R(S) for O. Previous DSMC models attributed this breadth primarily to ion/neutral scattering (including charge exchange) and molecular dissociation. However, the newly reported O observations and a reinterpretation of the OH observations (Melin, H., Shemansky, D.E., Liu, X. [2009] Planet. Space Sci., 57, 1743-1753, PS&S) showed that the cloud is broader than previously thought. We conclude that the addition of neutral/neutral scattering (Farmer, A.J. [2009] Icarus, 202, 280-286), which was underestimated by previous models, brings the model results in line with the new observations. Neutral/neutral collisions primarily happen in the densest part of the cloud, near Enceladus' orbit, but contribute to the spreading by pumping up orbital eccentricity. Based on the cloud model presented here Enceladus maybe the ultimate source of oxygen for the upper atmospheres of Titan and Saturn. We also predict that large quantities of OH, O and H(2)O bombard Saturn's icy satellites. (C) 2010 Elsevier Inc. All rights reserved.
RP Cassidy, TA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 183-601, Pasadena, CA 91109 USA.
EM timothy.a.cassidy@jpl.nasa.gov
NR 47
TC 59
Z9 59
U1 3
U2 10
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD OCT
PY 2010
VL 209
IS 2
BP 696
EP 703
DI 10.1016/j.icarus.2010.04.010
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 654VL
UT WOS:000282199000036
ER
PT J
AU Blackburn, DG
Buratti, BJ
Ulrich, R
Mosher, JA
AF Blackburn, David G.
Buratti, Bonnie J.
Ulrich, Richard
Mosher, Joel A.
TI Solar phase curves and phase integrals for the leading and trailing
hemispheres of Iapetus from the Cassini Visual Infrared Mapping
Spectrometer
SO ICARUS
LA English
DT Article
DE Iapetus; Photometry; Satellites, Surfaces
ID VOYAGER PHOTOMETRY; SATURNS SATELLITES; DICHOTOMY; SURFACES; PHOEBE
AB We performed photometry of Cassini Visual Infrared Mapping Spectrometer observations of Iapetus to produce the first phase integrals calculated directly from solar phase curves of Iapetus for the leading hemisphere and to estimate the phase integrals for the trailing hemisphere. We also explored the phase integral dependence on wavelength and geometric albedo. The extreme dichotomy of the brightness of the leading and trailing sides of Iapetus is reflected in their phase integrals. Our phase integrals, which are lower than the results of Morrison et al. (Morrison, D., Jones, T.J., Cruikshank, D.P., Murphy, R.E. [1975]. Icarus 24, 157-171) and Squyres et al. (Squyres, S.W., Buratti, B.J., Veverka, J., Sagan, C. [1984]. Icarus 59, 426-435), have profound implications on the energy balance and volatile transport on this icy satellite. (C) 2010 Elsevier Inc. All rights reserved.
C1 [Blackburn, David G.; Ulrich, Richard] Univ Arkansas, Arkansas Ctr Space & Planetary Sci, Fayetteville, AR 72701 USA.
[Buratti, Bonnie J.; Mosher, Joel A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Blackburn, DG (reprint author), Univ Arkansas, Arkansas Ctr Space & Planetary Sci, 202 Old Museum Bldg, Fayetteville, AR 72701 USA.
EM dgblackb@uark.edu
FU National Aeronautics and Space Administration; University of Arkansas;
Arkansas Space Grant Consortium
FX This research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, and was sponsored by the National
Aeronautics and Space Administration's Space Grant Program. We would
like to thank the University of Arkansas and the Arkansas Space Grant
Consortium for support, as well as helpful conversation with Mike Hicks,
Ken Lawrence, Karly Pitman, and Sean Faulk. We would also like to thank
the comments and suggestions from two anonymous reviewers who improved
the quality of our manuscript.
NR 19
TC 2
Z9 2
U1 0
U2 0
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD OCT
PY 2010
VL 209
IS 2
BP 738
EP 744
DI 10.1016/j.icarus.2010.04.011
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 654VL
UT WOS:000282199000040
ER
PT J
AU Reach, WT
AF Reach, William T.
TI Structure of the Earth's circumsolar dust ring
SO ICARUS
LA English
DT Article
DE Interplanetary dust; Infrared observations; Resonances, Orbital
ID BACKGROUND EXPERIMENT SEARCH; SPITZER-SPACE-TELESCOPE; RESONANT
SIGNATURES; ZODIACAL CLOUD; DEBRIS DISKS; ORIGIN; IRAS; SATELLITE;
EMISSION; MISSION
AB Interplanetary dust particles from comets and asteroids pervade the Solar System and become temporarily trapped into orbital resonances with Earth, leading to a circumsolar dust ring. Using the unique vantage point of the Spitzer Space Telescope from its Earth-trailing solar orbit, we have measured for the first time the azimuthal structure of the Earth's resonant dust ring. There is a relative paucity of particles within 0.1 AU of the Earth, followed by an enhancement in a cloud that is centered 0.2 AU behind Earth with a width of 0.08 AU along the Earth's orbit. The North ecliptic pole is similar to 3% brighter at 8 pm wavelength when viewed from inside the enhancement. The presence of azimuthal asymmetries in debris disks around other stars is considered strong evidence for planets. By measuring the properties of the Earth's resonant ring, we can provide "ground truth" to models for interactions of planets and debris disks, possibly leading to improved predictions for detecrability of life-bearing planets. The low amplitude of the azimuthal asymmetry in the Earth's circumsolar ring suggests significant contributions to the zodiacal light from particles that are large (>30 mu m) or have large orbital eccentricity that makes capture into mean motion resonances inefficient. (C) 2010 Elsevier Inc. All rights reserved.
C1 [Reach, William T.] NASA, Ames Res Ctr, Stratospher Observ Infrared Astron, Univ Space Res Assoc, Moffett Field, CA 94035 USA.
[Reach, William T.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA.
RP Reach, WT (reprint author), NASA, Ames Res Ctr, Stratospher Observ Infrared Astron, Univ Space Res Assoc, Mail Stop 211-3, Moffett Field, CA 94035 USA.
EM wreach@sofia.usra.edu
OI Reach, William/0000-0001-8362-4094
NR 22
TC 9
Z9 9
U1 0
U2 3
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD OCT
PY 2010
VL 209
IS 2
BP 848
EP 850
DI 10.1016/j.icarus.2010.06.034
PG 3
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 654VL
UT WOS:000282199000049
ER
PT J
AU Rubincam, DP
Paddack, SJ
AF Rubincam, David Parry
Paddack, Stephen J.
TI Zero secular torque on asteroids from impinging solar photons in the
YORP effect: A simple proof
SO ICARUS
LA English
DT Article
DE Asteroids; Asteroids, Rotation; Asteroids, Dynamics; Rotational
dynamics; Celestial mechanics
ID RADIATION PRESSURE; EVOLUTION
AB YORP torques, where "YORP" stands for "Yarokovsky-O'Keefe-Radzievskii-Paddack," arise mainly from sunlight reflected off a Solar System object and the infrared radiation emitted by it. We show here, through the most elementary demonstration that we can devise, that secular torques from impinging solar photons are generally negligible and thus cause little secular evolution of an asteroid's obliquity or spin rate. Published by Elsevier Inc.
C1 [Rubincam, David Parry] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA.
[Paddack, Stephen J.] USN Acad, Dept Aerosp Engn, Annapolis, MD 21402 USA.
RP Rubincam, DP (reprint author), NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA.
EM David.P.Rubincam@nasa.gov; Stephen.Paddack@verizon.net
RI Rubincam, David/D-2918-2012
NR 12
TC 6
Z9 6
U1 2
U2 2
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0019-1035
J9 ICARUS
JI Icarus
PD OCT
PY 2010
VL 209
IS 2
BP 863
EP 865
DI 10.1016/j.icarus.2010.05.015
PG 3
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 654VL
UT WOS:000282199000053
ER
PT J
AU Schmalzel, J
Bracey, A
Rawls, S
Morris, J
Turowski, M
Franzl, R
Figueroa, F
AF Schmalzel, John
Bracey, Andrew
Rawls, Stephen
Morris, Jon
Turowski, Mark
Franzl, Richard
Figueroa, Fernando
TI Smart Sensor Demonstration Payload
SO IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE
LA English
DT Article
C1 [Schmalzel, John] Rowan Univ, ECE Dept, Glassboro, NJ USA.
[Schmalzel, John] NASA, John C Stennis Space Ctr, MS IPA, Washington, DC USA.
RP Schmalzel, J (reprint author), Rowan Univ, ECE Dept, Glassboro, NJ USA.
EM j.schmalzel@ieee.org
FU NASA-SSC; NASA-HQ
FX A year ago (as of this writing), the SiSP field team was swatting
mosquitoes on Wallops Island during the final week of installation and
checkout. The project could never have gotten to that point without the
leadership of the NESC, the support of the NASA-SSC Innovative
Partnerships Program, the NASA-HQ Technical Excellence Initiative
Program, and the many contributing NASA centers. L. Langford and W.
Mitchell provided continuing systems engineering and technical support.
P. Mease (Rowan University) fabricated our abrasive water jet parts. All
are gratefully acknowledged.
NR 7
TC 2
Z9 2
U1 1
U2 1
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1094-6969
J9 IEEE INSTRU MEAS MAG
JI IEEE Instrum. Meas. Mag.
PD OCT
PY 2010
VL 13
IS 5
BP 8
EP 15
PG 8
WC Engineering, Electrical & Electronic; Instruments & Instrumentation
SC Engineering; Instruments & Instrumentation
GA 669NQ
UT WOS:000283357900003
ER
PT J
AU Lopes, CG
Satorius, EH
Estabrook, P
Sayed, AH
AF Lopes, C. G.
Satorius, E. H.
Estabrook, P.
Sayed, A. H.
TI Adaptive Carrier Tracking for Mars to Earth Communications During Entry,
Descent, and Landing
SO IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS
LA English
DT Article
ID CONVEX COMBINATION; MAXIMUM-LIKELIHOOD; FILTERS; FREQUENCY; PREDICTION;
ALGORITHM
AB We propose a robust and low complexity scheme to estimate and track carrier frequency from signals traveling under low signal-to-noise ratio (SNR) conditions in highly nonstationary channels. These scenarios arise in planetary exploration missions subject to high dynamics, such as the Mars exploration rover missions. The method comprises a bank of adaptive linear predictors (ALP) supervised by a convex combiner that dynamically aggregates the individual predictors. The adaptive combination is able to outperform the best individual estimator in the set, which leads to a universal scheme for frequency estimation and tracking. A simple technique for bias compensation considerably improves the ALP performance. It is also shown that retrieval of frequency content by a fast Fourier transform (FFT)-search method, instead of only inspecting the angle of a particular root of the error predictor filter, enhances performance, particularly at very low SNR levels. Simple techniques that enforce frequency continuity improve further the overall performance. In summary we illustrate by extensive simulations that adaptive linear prediction methods render a robust and competitive frequency tracking technique.
C1 [Lopes, C. G.] Univ Sao Paulo, Escola Politecn, Dept Elect Syst, Sao Paulo, Brazil.
[Satorius, E. H.; Estabrook, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Sayed, A. H.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
RP Lopes, CG (reprint author), Univ Sao Paulo, Escola Politecn, Dept Elect Syst, Sao Paulo, Brazil.
EM sayed@ee.ucla.edu
RI Sayed, Ali/D-6251-2012
OI Sayed, Ali/0000-0002-5125-5519
FU Jet Propulsion Laboratory [1276256]; National Science Foundation
[ECS-0601266]; CAPES, Brazil [1168/01-0]
FX This material was supported by the Jet Propulsion Laboratory under Award
1276256 and by the National Science Foundation Award ECS-0601266.; The
work of C. G. Lopes was also supported by a fellowship from CAPES,
Brazil, under Award 1168/01-0.
NR 22
TC 9
Z9 10
U1 0
U2 3
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9251
J9 IEEE T AERO ELEC SYS
JI IEEE Trans. Aerosp. Electron. Syst.
PD OCT
PY 2010
VL 46
IS 4
BP 1865
EP 1879
DI 10.1109/TAES.2010.5595600
PG 15
WC Engineering, Aerospace; Engineering, Electrical & Electronic;
Telecommunications
SC Engineering; Telecommunications
GA 701SE
UT WOS:000285842800022
ER
PT J
AU Martin, RA
AF Martin, Rodney A.
TI A State-Space Approach to Optimal Level-Crossing Prediction for Linear
Gaussian Processes
SO IEEE TRANSACTIONS ON INFORMATION THEORY
LA English
DT Article
DE Alarm systems; approximation methods; Kalman filtering; level-crossing
problems; prediction methods
ID FAILURE-DETECTION; ALGORITHMS; ALARM
AB In this paper, approximations of an optimal level-crossing predictor for a zero-mean stationary linear dynamical system driven by Gaussian noise in state-space form are investigated. The study of this problem is motivated by the practical implications for design of an optimal alarm system, which will elicit the fewest false alarms for a fixed detection probability in this context. This work introduces the use of Kalman filtering in tandem with the optimal level-crossing prediction problem. It is shown that there is a negligible loss in overall accuracy when using approximations to the theoretically optimal predictor, at the advantage of greatly reduced computational complexity.
C1 [Martin, Rodney A.] NASA, Intelligent Syst Div, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Martin, Rodney A.] NASA, Intelligent Data Understanding Grp, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Martin, RA (reprint author), NASA, Intelligent Syst Div, Ames Res Ctr, Moffett Field, CA 94035 USA.
EM rodney.martin@nasa.gov
FU NASA's Aeronautics Research Mission Directorate
FX Manuscript received March 31, 2007; revised November 17, 2009. Date of
current version September 15, 2010. This work was supported in part by
the Integrated Vehicle Health Management (IVHM) project, funded by the
Aviation Safety Program of NASA's Aeronautics Research Mission
Directorate.
NR 20
TC 4
Z9 4
U1 0
U2 0
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9448
J9 IEEE T INFORM THEORY
JI IEEE Trans. Inf. Theory
PD OCT
PY 2010
VL 56
IS 10
BP 5083
EP 5096
DI 10.1109/TIT.2010.2059930
PG 14
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic
SC Computer Science; Engineering
GA 668ID
UT WOS:000283260900021
ER
PT J
AU Adell, PC
Edmonds, L
McPeak, R
Scheick, L
McClure, SS
AF Adell, Philippe C.
Edmonds, Larry
McPeak, Richard
Scheick, Leif
McClure, Steve S.
TI An Approach to Single Event Testing of SDRAMs
SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE
LA English
DT Article
DE Micro-displacement; SDRAMs; single event effects; stuck bits
ID BULK DAMAGE
AB A unique testing approach based on error-pattern identification with a graphical mapping and color-coding of the full SDRAM memory during single-event characterization is proposed. Results about unique SEFI modes and the role of temperature are discussed.
C1 [Adell, Philippe C.; Edmonds, Larry; McPeak, Richard; Scheick, Leif; McClure, Steve S.] CALTECH, Jet Prop Lab, Pasadena, CA 91101 USA.
RP Adell, PC (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91101 USA.
EM philippe.c.adell@jpl.nasa.gov; rfmcpeak@gmail.com
FU National Aeronautics and Space Administration
FX The research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.
NR 10
TC 4
Z9 4
U1 0
U2 1
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9499
J9 IEEE T NUCL SCI
JI IEEE Trans. Nucl. Sci.
PD OCT
PY 2010
VL 57
IS 5
BP 2923
EP 2928
DI 10.1109/TNS.2010.2059711
PN 3
PG 6
WC Engineering, Electrical & Electronic; Nuclear Science & Technology
SC Engineering; Nuclear Science & Technology
GA 670PS
UT WOS:000283440400016
ER
PT J
AU Pellish, JA
Xapsos, MA
LaBel, KA
Marshall, PW
Heidel, DF
Rodbell, KP
Hakey, MC
Dodd, PE
Shaneyfelt, MR
Schwank, JR
Baumann, RC
Deng, XW
Marshall, A
Sierawski, BD
Black, JD
Reed, RA
Schrimpf, RD
Kim, HS
Berg, MD
Campola, MJ
Friendlich, MR
Perez, CE
Phan, AM
Seidleck, CM
AF Pellish, Jonathan A.
Xapsos, Michael A.
LaBel, Kenneth A.
Marshall, Paul W.
Heidel, David F.
Rodbell, Kenneth P.
Hakey, Mark C.
Dodd, Paul E.
Shaneyfelt, Marty R.
Schwank, James R.
Baumann, Robert C.
Deng, Xiaowei
Marshall, Andrew
Sierawski, Brian D.
Black, Jeffrey D.
Reed, Robert A.
Schrimpf, Ronald D.
Kim, Hak S.
Berg, Melanie D.
Campola, Michael J.
Friendlich, Mark R.
Perez, Christopher E.
Phan, Anthony M.
Seidleck, Christina M.
TI Heavy Ion Testing With Iron at 1 GeV/amu
SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE
LA English
DT Article
DE FPGA; galactic cosmic ray; heavy ion testing; SRAM
ID MODULAR REDUNDANCY CIRCUITS; SINGLE-EVENT-UPSETS; NM SOI SRAM; XILINX
FPGAS; ANGLE
AB A 1 GeV/amu (56)Fe ion beam allows for true 90 degrees tilt irradiations of various microelectronic components and reveals relevant upset trends at the GCR flux energy peak. Three SRAMs and an SRAM-based FPGA evaluated at the NASA Space Radiation Effects Laboratory demonstrate that a 90 degrees tilt irradiation yields a unique device response. These tilt angle effects need to be screened for, and if found, pursued with radiation transport simulations to quantify their impact on event rate calculations.
C1 [Pellish, Jonathan A.; Xapsos, Michael A.; LaBel, Kenneth A.] NASA GSFC, Radiat Effects & Anal Grp, Greenbelt, MD 20771 USA.
[Marshall, Paul W.] NASA, Brookneal, VA 24528 USA.
[Heidel, David F.; Rodbell, Kenneth P.] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA.
[Hakey, Mark C.] IBM Syst & Technol Grp, Essex Jct, VT 05452 USA.
[Dodd, Paul E.; Shaneyfelt, Marty R.; Schwank, James R.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Sierawski, Brian D.; Black, Jeffrey D.; Reed, Robert A.; Schrimpf, Ronald D.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA.
[Kim, Hak S.; Berg, Melanie D.; Campola, Michael J.; Friendlich, Mark R.; Perez, Christopher E.; Phan, Anthony M.; Seidleck, Christina M.] MEI Technol NASA GSFC, Greenbelt, MD USA.
RP Pellish, JA (reprint author), NASA GSFC, Radiat Effects & Anal Grp, Code 561-4, Greenbelt, MD 20771 USA.
EM jonathan.a.pellish@nasa.gov
RI Schrimpf, Ronald/L-5549-2013
OI Schrimpf, Ronald/0000-0001-7419-2701
FU NASA; Defense Threat Reduction Agency [09-4587I, 09-4584I]; NASA/JSC;
United States Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX This work was supported in part by the NASA Electronic Parts and
Packaging program, the Space Radiation Element Human Research program at
NASA/JSC, and the Defense Threat Reduction Agency Radiation Hardened
Microelectronics Program under IACRO #09-4587I to NASA and #09-4584I to
SNL. Sandia is a multi-program laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United States Department
of Energy's National Nuclear Security Administration under Contract
DE-AC04-94AL85000.
NR 25
TC 5
Z9 5
U1 0
U2 5
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0018-9499
J9 IEEE T NUCL SCI
JI IEEE Trans. Nucl. Sci.
PD OCT
PY 2010
VL 57
IS 5
BP 2948
EP 2954
DI 10.1109/TNS.2010.2066575
PN 3
PG 7
WC Engineering, Electrical & Electronic; Nuclear Science & Technology
SC Engineering; Nuclear Science & Technology
GA 670PS
UT WOS:000283440400019
ER
PT J
AU Sparks, WB
McGrath, M
Hand, K
Ford, HC
Geissler, P
Hough, JH
Turner, EL
Chyba, CF
Carlson, R
Turnbull, M
AF Sparks, W. B.
McGrath, M.
Hand, K.
Ford, H. C.
Geissler, P.
Hough, J. H.
Turner, E. L.
Chyba, C. F.
Carlson, R.
Turnbull, M.
TI Hubble Space Telescope observations of Europa in and out of eclipse
SO INTERNATIONAL JOURNAL OF ASTROBIOLOGY
LA English
DT Article; Proceedings Paper
CT 4th Conference of the Astrobiology-Society-of-Britain
CY APR 07-09, 2010
CL Egham, ENGLAND
SP Astrobiol Soc Britain, STFC
DE Europa; Hubble; satellites; spectroscopy
ID H2O ICE; ATMOSPHERE; LUMINESCENCE; ULTRAVIOLET; SURFACE
AB Europa is a prime target for astrobiology and has been prioritized as the next target for a National Aeronautics and Space Administration flagship mission. It is important, therefore, that we advance our understanding of Europa, its ocean and physical environment as much as possible. Here, we describe observations of Europa obtained during its orbital eclipse by Jupiter using the Hubble Space Telescope. We obtained Advanced Camera for Surveys Solar Blind Channel far ultraviolet low-resolution spectra that show oxygen line emission both in and out of eclipse. We also used the Wide-Field and Planetary Camera-2 and searched for broad-band optical emission from fluorescence of the surface material, arising from the very high level of incident energetic particle radiation on ices and potentially organic substances. The high-energy particle radiation at the surface of Europa is extremely intense and is responsible for the production of a tenuous oxygen atmosphere and associated FUV line emission. Approximately 50% of the oxygen emission lasts at least a few hours into the eclipse. We discuss the detection limits of the optical emission, which allow us to estimate the fraction of incident energy reradiated at optical wavelengths, through electron-excited emission, Cherenkov radiation in the ice and fluorescent processes.
C1 [Sparks, W. B.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[McGrath, M.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
[Hand, K.; Carlson, R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Ford, H. C.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Geissler, P.] US Geol Survey, Ctr Astrogeol, Flagstaff, AZ 86001 USA.
[Hough, J. H.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England.
[Turner, E. L.; Chyba, C. F.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Turner, E. L.] Univ Tokyo, Tokyo 1138654, Japan.
[Turnbull, M.] Global Sci Inst, Antigo, WI 54409 USA.
RP Sparks, WB (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
EM sparks@stsci.edu
RI Turner, Edwin/A-4295-2011
NR 19
TC 2
Z9 2
U1 1
U2 7
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 1473-5504
J9 INT J ASTROBIOL
JI Int. J. Astrobiol.
PD OCT
PY 2010
VL 9
IS 4
SI SI
BP 265
EP 271
DI 10.1017/S1473550410000285
PG 7
WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary
SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics;
Geology
GA 674VU
UT WOS:000283779200011
ER
PT J
AU Smith, RN
Chao, Y
Li, PP
Caron, DA
Jones, BH
Sukhatme, GS
AF Smith, Ryan N.
Chao, Yi
Li, Peggy P.
Caron, David A.
Jones, Burton H.
Sukhatme, Gaurav S.
TI Planning and Implementing Trajectories for Autonomous Underwater
Vehicles to Track Evolving Ocean Processes Based on Predictions from a
Regional Ocean Model
SO INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH
LA English
DT Article
DE Algal bloom; autonomous glider; autonomous underwater vehicles; feature
tracking; ocean model predictions; path planning
ID SOUTHERN CALIFORNIA BIGHT; SYSTEM; EXPLICIT; GLIDERS
AB Path planning and trajectory design for autonomous underwater vehicles (AUVs) is of great importance to the oceanographic research community because automated data collection is becoming more prevalent. Intelligent planning is required to maneuver a vehicle to high-valued locations to perform data collection. In this paper, we present algorithms that determine paths for AUVs to track evolving features of interest in the ocean by considering the output of predictive ocean models. While traversing the computed path, the vehicle provides near-real-time, in situ measurements back to the model, with the intent to increase the skill of future predictions in the local region. The results presented here extend preliminary developments of the path planning portion of an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. This extension is the incorporation of multiple vehicles to track the centroid and the boundary of the extent of a feature of interest. Similar algorithms to those presented here are under development to consider additional locations for multiple types of features. The primary focus here is on algorithm development utilizing model predictions to assist in solving the motion planning problem of steering an AUV to high-valued locations, with respect to the data desired. We discuss the design technique to generate the paths, present simulation results and provide experimental data from field deployments for tracking dynamic features by use of an AUV in the Southern California coastal ocean.
C1 [Smith, Ryan N.; Sukhatme, Gaurav S.] Univ So Calif, Robot Embedded Syst Lab, Los Angeles, CA 90089 USA.
[Chao, Yi; Li, Peggy P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Caron, David A.; Jones, Burton H.] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA.
RP Smith, RN (reprint author), Univ So Calif, Robot Embedded Syst Lab, Los Angeles, CA 90089 USA.
EM ryannsmi@usc.edu
FU NOAA [NA05NOS4781228]; NSF [CCR-0120778, N00014-09-1-1031,
N00014-08-1-0693]
FX This work was supported in part by the NOAA MERHAB program under grant
NA05NOS4781228 and by NSF as part of the Center for Embedded Network
Sensing (CENS) under grant CCR-0120778, by NSF grants CNS-0520305 and
CNS-0540420, by the ONR MURI program (grants N00014-09-1-1031 and
N00014-08-1-0693), by the ONR SoA program and by a gift from the Okawa
Foundation. The ROMS ocean modeling research described in this paper was
carried out by the Jet Propulsion Laboratory (JPL), California Institute
of Technology, under a contract with the National Aeronautics and Space
Administration (NASA).
NR 33
TC 56
Z9 57
U1 4
U2 34
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0278-3649
J9 INT J ROBOT RES
JI Int. J. Robot. Res.
PD OCT
PY 2010
VL 29
IS 12
SI SI
BP 1475
EP 1497
DI 10.1177/0278364910377243
PG 23
WC Robotics
SC Robotics
GA 659WE
UT WOS:000282597000003
ER
PT J
AU Zuo, QH
Disilvestro, D
Richter, JD
AF Zuo, Q. H.
Disilvestro, D.
Richter, J. D.
TI A crack-mechanics based model for damage and plasticity of brittle
materials under dynamic loading
SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
LA English
DT Article
DE Continuum damage; Crack mechanics; Damage evolution; Brittle materials;
Dynamic loading
ID SILICON-CARBIDE; BORON-CARBIDE; INELASTIC DEFORMATION; CONSTITUTIVE
MODEL; SHOCK RESPONSE; IMPACT; CONCRETE; BEHAVIOR; FRAGMENTATION;
STRENGTH
AB A rate-dependent model for damage and plastic deformation of brittle materials under dynamic loading is presented. The model improves upon a recently developed micromechanical damage model (Zuo et al., 2006) by incorporating plastic deformation of the material. The distribution of the microcracks in the material is assumed to remain isotropic, and the damage evolution is through the growth of the average crack size. Plasticity is considered through an additive decomposition of the total strain rate, and a rate-independent, von Mises model is used. The model was applied to simulate the response of a model material (SiC) under uniaxial strain loading. To further examine the behavior of the model, cyclic loading and large-strain compressive loading were considered. Numerical results of the model predictions are presented, and comparisons with those from a previous model are provided. (C) 2010 Elsevier Ltd. All rights reserved.
C1 [Zuo, Q. H.; Disilvestro, D.; Richter, J. D.] Univ Alabama, Dept Mech & Aerosp Engn, Huntsville, AL 35899 USA.
[Richter, J. D.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
RP Zuo, QH (reprint author), Univ Alabama, Dept Mech & Aerosp Engn, Huntsville, AL 35899 USA.
EM zuo@eng.uah.edu
RI Davidi, Gal/E-7089-2011
FU University Transportation Center for Alabama (UTCA) [09301]; National
Science Foundation (NSF) [DBI-0923402]; University of Alabama in
Huntsville
FX The authors are grateful for technical discussions with F.L. Addessio,
J.K. Dienes, J.A. Gilbert, R.M. Hackett, R.R. Little, Jeremy R. Rice and
H.A. Toutanji, and for the contributions of M. Bailey to the work. The
authors are also grateful to two anonymous reviewers for many
constructive comments, including suggestion of the value for the yield
stress for SiC used in the paper. The work was supported in part by
University Transportation Center for Alabama (UTCA#: 09301), the
National Science Foundation (NSF#: DBI-0923402), and a research startup
fund from the University of Alabama in Huntsville.
NR 47
TC 9
Z9 12
U1 1
U2 17
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0020-7683
J9 INT J SOLIDS STRUCT
JI Int. J. Solids Struct.
PD OCT 1
PY 2010
VL 47
IS 20
BP 2790
EP 2798
DI 10.1016/j.ijsolstr.2010.06.009
PG 9
WC Mechanics
SC Mechanics
GA 642AT
UT WOS:000281175800016
ER
PT J
AU Chamis, CC
AF Chamis, Christos C.
TI DYNAMIC BUCKLING AND POSTBUCKLING OF A COMPOSITE SHELL
SO INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS
LA English
DT Article; Proceedings Paper
CT 2nd International Conference on Bucking and Postbuckling Behaviour of
Composite Laminated Shell Structures
CY SEP 03-05, 2008
CL Braunschweig, GERMANY
DE Finite element; updated Lagrangian; accelerations; velocities;
displacements
AB A computationally effective method for evaluating the dynamic buckling and postbuckling of thin composite shells is described. It is a judicious combination of available computer codes for finite element, composite mechanics and incremental structural analysis. The solution method is an incrementally updated Lagrangian. It is illustrated by applying it to a thin composite cylindrical shell subjected to dynamic loads. Buckling loads are evaluated to demonstrate the er effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different dynamic loading rates. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. They also show that the updated solution can be carried out in the postbuckling regime until the shell collapses completely. Comparisons with published literature indicate reasonable agreement.
C1 NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
RP Chamis, CC (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
EM Christos.C.Chamis@nasa.gov
NR 11
TC 3
Z9 3
U1 0
U2 6
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0219-4554
J9 INT J STRUCT STAB DY
JI Int. J. Struct. Stab. Dyn.
PD OCT
PY 2010
VL 10
IS 4
BP 791
EP 805
DI 10.1142/S0219455410003749
PG 15
WC Engineering, Civil; Engineering, Mechanical; Mechanics
SC Engineering; Mechanics
GA 641CU
UT WOS:000281103000013
ER
PT J
AU Zeng, XW
He, CM
Wilkinson, A
AF Zeng, Xiangwu
He, Chunmei
Wilkinson, Allen
TI Geotechnical Properties of NT-LHT-2M Lunar Highland Simulant
SO JOURNAL OF AEROSPACE ENGINEERING
LA English
DT Article
DE Exploration; Geotechnical; Lunar simulant
ID SOIL; MECHANICS
AB Future lunar explorations require a thorough understanding of the geotechnical properties of lunar soils. However, the small amount of lunar soil that was brought back to earth cannot satisfy the needs. A new lunar soil simulant, NU-LHT-2M, has been developed to simulate lunar regolith in the lunar highlands region. It is characterized to help the development of regolith-moving machines and vehicles that will be used in future missions to the moon. The simulant's particle size distribution, specific gravity, maximum and minimum densities, compaction characteristics, shear strength parameters and compressibility have been studied; and the results are compared with the information about lunar regolith provided in the Lunar Sourcebook.
C1 [Zeng, Xiangwu; He, Chunmei] Case Western Reserve Univ, Cleveland, OH 44106 USA.
[Wilkinson, Allen] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
RP Zeng, XW (reprint author), Case Western Reserve Univ, 10900 Euclid Ave, Cleveland, OH 44106 USA.
EM xxz16@cwru.edu
FU NASA [NNX07A078G]
FX The work reported here was carried out with support from NASA Grant No.
NNX07A078G. The writers would like to thank Steve Wilson and Doug
Stoeser of USGS for providing the NU-LHT-2M sample used in this study.
NR 19
TC 8
Z9 10
U1 1
U2 6
PU ASCE-AMER SOC CIVIL ENGINEERS
PI RESTON
PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA
SN 0893-1321
EI 1943-5525
J9 J AEROSPACE ENG
JI J. Aerosp. Eng.
PD OCT
PY 2010
VL 23
IS 4
BP 213
EP 218
DI 10.1061/(ASCE)AS.1943-5525.0000026
PG 6
WC Engineering, Aerospace; Engineering, Civil
SC Engineering
GA 650BY
UT WOS:000281824000001
ER
PT J
AU Bender, LC
Howden, SD
Dodd, D
Guinasso, NL
AF Bender, L. C., III
Howden, S. D.
Dodd, D.
Guinasso, N. L., Jr.
TI Wave Heights during Hurricane Katrina: An Evaluation of PPP and PPK
Measurements of the Vertical Displacement of the GPS Antenna
SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY
LA English
DT Article
ID BUOY
AB In August 2005 the eye of Hurricane Katrina passed 49 n mi to the west of a 3-m discus buoy operated by the Central Gulf of Mexico Ocean Observing System (CenGOOS). Buoy motions were measured with a strapped-down 6 degrees of freedom accelerometer, a three-axis magnetometer, and a survey-grade GPS receiver. The significant wave heights were computed from the buoy's accelerometer record and from the dual-frequency GPS measurements that were processed in two different ways. The first method was postprocessed kinematic (PPK) GPS, which requires another GPS receiver at a fixed known location, and the other was precise point positioning (PPP) GPS, which is another postprocessed positioning technique that yields absolute rather than differential positions. Unlike inertial measurement units, either GPS technique can be used to obtain both waves and water levels. The purpose of this note is to demonstrate the excellent reliability and accuracy of both methods for determining wave heights and periods from a GPS record. When the motion of the GPS antenna is properly understood as the motion of the buoy deck and not the true vertical motion of the sea surface, the GPS wave heights are as reliable as a strapped-down 1D accelerometer.
C1 [Bender, L. C., III; Guinasso, N. L., Jr.] Texas A&M Univ, Geochem & Environm Res Grp, College Stn, TX 77845 USA.
[Howden, S. D.; Dodd, D.] Univ So Mississippi, Stennis Space Ctr, Dept Marine Sci, Hattiesburg, MS 39406 USA.
RP Bender, LC (reprint author), Texas A&M Univ, Geochem & Environm Res Grp, 833 Graham Rd, College Stn, TX 77845 USA.
EM les@gerg.tamu.edu
RI Guinasso, Norman/D-3567-2012
OI Guinasso, Norman/0000-0003-2271-8550
FU ONR [N00014-03-1-0546]; NOAA [NA05NOS4731077]
FX The authors wish to thank the assistance of the NOAA National Data Buoy
Center for calibration services, quality control, and quality assurance.
The U.S. Coast Guard cutter Cypress deployed the buoy and the Canadian
Coast Guard ship Sir William Alexander recovered the buoy for USM after
Hurricane Katrina. We wish to thank the commanding officers and crews of
these vessels for their exceptional work. This work was supported by the
following contracts and grants: ONR N00014-03-1-0546 and NOAA
NA05NOS4731077.
NR 10
TC 5
Z9 5
U1 4
U2 9
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0739-0572
J9 J ATMOS OCEAN TECH
JI J. Atmos. Ocean. Technol.
PD OCT
PY 2010
VL 27
IS 10
BP 1760
EP 1768
DI 10.1175/2010JTECHO761.1
PG 9
WC Engineering, Ocean; Meteorology & Atmospheric Sciences
SC Engineering; Meteorology & Atmospheric Sciences
GA 665OB
UT WOS:000283044100014
ER
PT J
AU Kennedy, AD
Dong, XQ
Xi, BK
Minnis, P
Del Genio, AD
Wolf, AB
Khaiyer, MM
AF Kennedy, Aaron D.
Dong, Xiquan
Xi, Baike
Minnis, Patrick
Del Genio, Anthony D.
Wolf, Audrey B.
Khaiyer, Mandana M.
TI Evaluation of the NASA GISS Single-Column Model Simulated Clouds Using
Combined Surface and Satellite Observations
SO JOURNAL OF CLIMATE
LA English
DT Article
ID CLIMATE MODELS; PARAMETERIZATION; RADAR; SENSITIVITY; FRACTION; CERES
AB Three years of surface and Geostationary Operational Environmental Satellite (GOES) data from the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are used to evaluate the NASA GISS Single Column Model (SCM) simulated clouds from January 1999 to December 2001. The GOES-derived total cloud fractions for both 0.58 degrees and 2.5 degrees grid boxes are in excellent agreement with surface observations, suggesting that ARM point observations can represent large areal observations. Low (< 2 km), middle (2-6 km), and high (> 6 km) levels of cloud fractions, however, have negative biases as compared to the ARM results due to multilayer cloud scenes that can either mask lower cloud layers or cause misidentifications of cloud tops. Compared to the ARM observations, the SCM simulated most midlevel clouds, overestimated low clouds (4%), and underestimated total and high clouds by 7% and 15%, respectively. To examine the dependence of the modeled high and low clouds on the large-scale synoptic patterns, variables such as relative humidity (RH) and vertical pressure velocity (omega) from North American Regional Reanalysis (NARR) data are included. The successfully modeled and missed high clouds are primarily associated with a trough and ridge upstream of the ARM SGP, respectively. The PDFs of observed high and low occurrence as a function of RH reveal that high clouds have a Gaussian-like distribution with mode RH values of similar to 40%-50%, whereas low clouds have a gammalike distribution with the highest cloud probability occurring at RH similar to 75%-85%. The PDFs of modeled low clouds are similar to those observed; however, for high clouds the PDFs are shifted toward higher values of RH. This results in a negative bias for the modeled high clouds because many of the observed clouds occur at RH values below the SCM-specified stratiform parameterization threshold RH of 60%. Despite many similarities between PDFs derived from the NARR and ARM forcing datasets for RH and omega, differences do exist. This warrants further investigation of the forcing and reanalysis datasets.
C1 [Kennedy, Aaron D.; Dong, Xiquan; Xi, Baike] Univ N Dakota, Dept Atmospher Sci, Grand Forks, ND 58202 USA.
[Minnis, Patrick] NASA Langley Res Ctr, Hampton, VA USA.
[Del Genio, Anthony D.] NASA Goddard Inst Space Studies, New York, NY USA.
[Wolf, Audrey B.] Columbia Univ, New York, NY USA.
[Khaiyer, Mandana M.] Sci Syst & Applicat Inc, Hampton, VA USA.
RP Kennedy, AD (reprint author), Univ N Dakota, Dept Atmospher Sci, Box 9006,4149 Campus Rd, Grand Forks, ND 58202 USA.
EM aaron.kennedy@und.edu
RI Del Genio, Anthony/D-4663-2012; Minnis, Patrick/G-1902-2010;
OI Del Genio, Anthony/0000-0001-7450-1359; Minnis,
Patrick/0000-0002-4733-6148; Dong, Xiquan/0000-0002-3359-6117
FU NASAMAP [NNG06GB59G]; University of North Dakota; North Dakota Space
Grant Consortium; NASA [NNL04AA11G, NNX07AW05G]; NSF [ATM0649549]
FX The authors thank a variety of individuals and organizations. Anonymous
reviewers provided many helpful suggestions that led to a more concise
and complete manuscript. The SGP continuous forcing dataset was kindly
supplied by Shaocheng Xie and the ARM program. NARR reanalysis data were
provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, from their Web site at
(http://www.esrl.noaa.gov/psd/). This research was primarily supported
by the NASAMAP project under Grant NNG06GB59G at the University of North
Dakota. The first author was also supported by the North Dakota Space
Grant Consortium fellowship. The University of North Dakota authors were
also supported by the NASA CERES project under Grant NNL04AA11G, the
NASA NEWS project under Grant NNX07AW05G, and NSF under Grant
ATM0649549.
NR 33
TC 20
Z9 21
U1 1
U2 4
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
EI 1520-0442
J9 J CLIMATE
JI J. Clim.
PD OCT
PY 2010
VL 23
IS 19
BP 5175
EP 5192
DI 10.1175/2010JCLI3353.1
PG 18
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 662RY
UT WOS:000282830500008
ER
PT J
AU Romanou, A
Tselioudis, G
Zerefos, CS
Clayson, CA
Curry, JA
Andersson, A
AF Romanou, A.
Tselioudis, G.
Zerefos, C. S.
Clayson, C. -A.
Curry, J. A.
Andersson, A.
TI Evaporation-Precipitation Variability over the Mediterranean and the
Black Seas from Satellite and Reanalysis Estimates
SO JOURNAL OF CLIMATE
LA English
DT Article
ID NORTH-ATLANTIC OSCILLATION; FRESH-WATER FLUX; CLIMATE-CHANGE; HEAT;
PRODUCTS; PROJECT; BUDGET; TRENDS
AB Satellite retrievals of surface evaporation and precipitation from the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS-3) dataset are used to document the distribution of evaporation, precipitation, and freshwater flux over the Mediterranean and Black Seas. An analysis is provided of the major scales of temporal and spatial variability of the freshwater budget and the atmospheric processes responsible for the water flux changes. The satellite evaporation fluxes are compared with fields from three different reanalysis datasets [40-yr ECMWF Re-Analysis (ERA-40), ERA-Interim, and NCEP].
The results show a water deficit in the Mediterranean region that averages to about 2.4 mm day(-1) but with a significant east-west asymmetry ranging from 3.5 mm day(-1) in the eastern part to about 1.1 mm day(-1) in the western part of the basin. The zonal asymmetry in the water deficit is driven by evaporation differences that are in turn determined by variability in the air-sea humidity difference in the different parts of the Mediterranean basin. The Black Sea freshwater deficit is 0.5 mm day(-1), with maxima off the northern coast (0.9 mm day(-1)) that are attributed to both evaporation maxima and precipitation minima there.
The trend analysis of the freshwater budget shows that the freshwater deficit increases in the 1988-2005 period. The prominent increase in the eastern part of the basin is present in the satellite and all three reanalysis datasets. The water deficit is due to increases in evaporation driven by increasing sea surface temperature, while precipitation does not show any consistent trends in the period. Similarly, in the Black Sea, trends in the freshwater deficit are mainly due to evaporation, although year-to-year variability is due to precipitation patterns.
C1 [Romanou, A.; Tselioudis, G.] Columbia Univ, Dept Appl Math & Appl Phys, New York, NY 10025 USA.
[Romanou, A.; Tselioudis, G.] NASA GISS, New York, NY USA.
[Romanou, A.; Tselioudis, G.] Acad Athens, Ctr Atmospher Phys & Climatol, Athens, Greece.
[Zerefos, C. S.] Univ Athens, Dept Geol, Athens, Greece.
[Zerefos, C. S.] Acad Athens, Ctr Atmospher Phys & Climatol, Athens, Greece.
[Clayson, C. -A.] Florida State Univ, Dept Meteorol, Tallahassee, FL 32306 USA.
[Curry, J. A.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA.
[Andersson, A.] Univ Hamburg, Inst Meteorol, D-2000 Hamburg, Germany.
RP Romanou, A (reprint author), Columbia Univ, Dept Appl Math & Appl Phys, 2880 Broadway, New York, NY 10025 USA.
EM ar2235@columbia.edu
FU NASA [GIT G-35-C56-G1]
FX The authors wish to thank the project groups at the Hamburg Ocean
Atmosphere Parameters and Fluxes from Satellite Data Center, the
European Centre for Medium-Range Weather Forecasts, and the NOAA
National Center for Environmental Prediction for making their datasets
readily available for this study, and Prof. D. A. Metaxas for useful
discussions. NAO Index data were provided by the Climate Analysis
Section, NCAR, Boulder, Colorado. A significant part of the work was
carried out at the Centre of Atmospheric Physics and Climatology at the
Academy of Athens in Greece. Funding was partially provided by the NASA
Energy and Water Cycle Study program under NASA NEWS Grant GIT
G-35-C56-G1. NCEP Reanalysis-derived data were provided by the
NOAA/OAR/ESRL PSD, Boulder, Colorado, from their Web site (available
online at http://www.esrl.noaa.gov/psd/).
NR 29
TC 40
Z9 40
U1 0
U2 7
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
J9 J CLIMATE
JI J. Clim.
PD OCT
PY 2010
VL 23
IS 19
BP 5268
EP 5287
DI 10.1175/2010JCLI3525.1
PG 20
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 662RY
UT WOS:000282830500014
ER
PT J
AU Loeb, NG
Su, WY
AF Loeb, Norman G.
Su, Wenying
TI Direct Aerosol Radiative Forcing Uncertainty Based on a Radiative
Perturbation Analysis
SO JOURNAL OF CLIMATE
LA English
DT Article
ID SKY RADIANCE MEASUREMENTS; OPTICAL-PROPERTIES; AERONET; CLOUDS;
ASSESSMENTS; SCATTERING; RETRIEVAL; NETWORK; SUN
AB To provide a lower bound for the uncertainty in measurement-based clear- and all-sky direct aerosol radiative forcing (DARF), a radiative perturbation analysis is performed for the ideal case in which the perturbations in global mean aerosol properties are given by published values of systematic uncertainty in Aerosol Robotic Network (AERONET) aerosol measurements. DARF calculations for base-state climatological cloud and aerosol properties over ocean and land are performed, and then repeated after perturbing individual aerosol optical properties (aerosol optical depth, single-scattering albedo, asymmetry parameter, scale height, and anthropogenic fraction) from their base values, keeping all other parameters fixed. The total DARF uncertainty from all aerosol parameters combined is 0.5-1.0 W m(-2), a factor of 2-4 greater than the value cited in the Intergovernmental Panel on Climate Change's (IPCC's) Fourth Assessment Report. Most of the total DARF uncertainty in this analysis is associated with single-scattering albedo uncertainty. Owing to the greater sensitivity to single-scattering albedo in cloudy columns, DARF uncertainty in all-sky conditions is greater than in clear- sky conditions, even though the global mean clear- sky DARF is more than twice as large as the all-sky DARF.
C1 [Loeb, Norman G.] NASA Langley Res Ctr, Hampton, VA 23681 USA.
[Su, Wenying] SSAI, Hampton, VA USA.
RP Loeb, NG (reprint author), NASA Langley Res Ctr, Mail Stop 420, Hampton, VA 23681 USA.
EM norman.g.loeb@nasa.gov
FU NASA Research Opportunities in Space and Earth Sciences (ROSES)
[NNH05ZDA001N-CCST]
FX The work was supported by the NASA Research Opportunities in Space and
Earth Sciences (ROSES) (NNH05ZDA001N-CCST).
NR 30
TC 41
Z9 41
U1 2
U2 9
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
EI 1520-0442
J9 J CLIMATE
JI J. Clim.
PD OCT
PY 2010
VL 23
IS 19
BP 5288
EP 5293
DI 10.1175/2010JCLI3543.1
PG 6
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 662RY
UT WOS:000282830500015
ER
PT J
AU Butchart, N
Cionni, I
Eyring, V
Shepherd, TG
Waugh, DW
Akiyoshi, H
Austin, J
Bruhl, C
Chipperfield, MP
Cordero, E
Dameris, M
Deckert, R
Dhomse, S
Frith, SM
Garcia, RR
Gettelman, A
Giorgetta, MA
Kinnison, DE
Li, F
Mancini, E
McLandress, C
Pawson, S
Pitari, G
Plummer, DA
Rozanov, E
Sassi, F
Scinocca, JF
Shibata, K
Steil, B
Tian, W
AF Butchart, Neal
Cionni, I.
Eyring, V.
Shepherd, T. G.
Waugh, D. W.
Akiyoshi, H.
Austin, J.
Bruehl, C.
Chipperfield, M. P.
Cordero, E.
Dameris, M.
Deckert, R.
Dhomse, S.
Frith, S. M.
Garcia, R. R.
Gettelman, A.
Giorgetta, M. A.
Kinnison, D. E.
Li, F.
Mancini, E.
McLandress, C.
Pawson, S.
Pitari, G.
Plummer, D. A.
Rozanov, E.
Sassi, F.
Scinocca, J. F.
Shibata, K.
Steil, B.
Tian, W.
TI Chemistry-Climate Model Simulations of Twenty-First Century
Stratospheric Climate and Circulation Changes
SO JOURNAL OF CLIMATE
LA English
DT Article
ID MIDDLE ATMOSPHERE MODEL; GRAVITY-WAVE DRAG; BREWER-DOBSON CIRCULATION;
MIXED GREENHOUSE GASES; ANTARCTIC OZONE HOLE; METEOROLOGICAL ANALYSES;
INTERACTIVE CHEMISTRY; TROPOSPHERE EXCHANGE; CLOUD FORMATION;
WATER-VAPOR
AB The response of stratospheric climate and circulation to increasing amounts of greenhouse gases (GHGs) and ozone recovery in the twenty-first century is analyzed in simulations of 11 chemistry-climate models using near-identical forcings and experimental setup. In addition to an overall global cooling of the stratosphere in the simulations (0.59 +/- 6 0.07 K decade(-1) at 10 hPa), ozone recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and, on average, changes from 0.8 to 0.48 K decade(-1) at 100 hPa as the rate of recovery declines from the first to the second half of the century. In the winter northern polar lower stratosphere the increased radiative cooling from the growing abundance of GHGs is, in most models, balanced by adiabatic warming from stronger polar downwelling. In the Antarctic lower stratosphere the models simulate an increase in low temperature extremes required for polar stratospheric cloud (PSC) formation, but the positive trend is decreasing over the twenty-first century in all models. In the Arctic, none of the models simulates a statistically significant increase in Arctic PSCs throughout the twenty-first century. The subtropical jets accelerate in response to climate change and the ozone recovery produces a westward acceleration of the lower-stratospheric wind over the Antarctic during summer, though this response is sensitive to the rate of recovery projected by the models. There is a strengthening of the Brewer-Dobson circulation throughout the depth of the stratosphere, which reduces the mean age of air nearly everywhere at a rate of about 0.05 yr decade(-1) in those models with this diagnostic. On average, the annual mean tropical upwelling in the lower stratosphere (similar to 70 hPa) increases by almost 2% decade(-1), with 59% of this trend forced by the parameterized orographic gravity wave drag in the models. This is a consequence of the eastward acceleration of the subtropical jets, which increases the upward flux of (parameterized) momentum reaching the lower stratosphere in these latitudes.
C1 [Butchart, Neal] Hadley Ctr, Met Off, Exeter EX1 3PB, Devon, England.
[Cionni, I.; Eyring, V.; Dameris, M.; Deckert, R.] Deutsch Zentrum Luft & Raumfahrt, Oberpfaffenhofen, Germany.
[Shepherd, T. G.; McLandress, C.] Univ Toronto, Toronto, ON, Canada.
[Waugh, D. W.] Johns Hopkins Univ, Baltimore, MD USA.
[Akiyoshi, H.] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan.
[Austin, J.] Geophys Fluid Dynam Lab, Princeton, NJ USA.
[Bruehl, C.; Steil, B.] Max Planck Inst Chem, D-55128 Mainz, Germany.
[Chipperfield, M. P.; Dhomse, S.; Tian, W.] Univ Leeds, Leeds, W Yorkshire, England.
[Cordero, E.] San Jose State Univ, San Jose, CA 95192 USA.
[Frith, S. M.] Sci Syst & Applicat Inc, Lanham, MD USA.
[Garcia, R. R.; Gettelman, A.; Kinnison, D. E.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Giorgetta, M. A.] Max Planck Inst Meteorol, Hamburg, Germany.
[Li, F.] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA.
[Mancini, E.; Pitari, G.] Univ Aquila, I-67100 Laquila, Italy.
[Pawson, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Plummer, D. A.] Environm Canada, Toronto, ON, Canada.
[Rozanov, E.] World Radiat Ctr, Phys Meteorol Observ, Davos, Switzerland.
[Rozanov, E.] Swiss Fed Inst Technol, Zurich, Switzerland.
[Sassi, F.] USN, Res Lab, Washington, DC 20375 USA.
[Scinocca, J. F.] Univ Victoria, Meteorol Serv Canada, Victoria, BC, Canada.
[Shibata, K.] Meteorol Res Inst, Tsukuba, Ibaraki 305, Japan.
RP Butchart, N (reprint author), Hadley Ctr, Met Off, FitzRoy Rd, Exeter EX1 3PB, Devon, England.
EM neal.butchart@metoffice.gov.uk
RI Dhomse, Sandip/C-8198-2011; Rozanov, Eugene/A-9857-2012; Li,
Feng/H-2241-2012; Eyring, Veronika/O-9999-2016; Chipperfield,
Martyn/H-6359-2013; Pawson, Steven/I-1865-2014; Waugh,
Darryn/K-3688-2016; Pitari, Giovanni/O-7458-2016
OI Dhomse, Sandip/0000-0003-3854-5383; Rozanov, Eugene/0000-0003-0479-4488;
Eyring, Veronika/0000-0002-6887-4885; Mancini, Eva/0000-0001-7071-0292;
Sassi, Fabrizio/0000-0002-9492-7434; Chipperfield,
Martyn/0000-0002-6803-4149; Pawson, Steven/0000-0003-0200-717X; Waugh,
Darryn/0000-0001-7692-2798; Pitari, Giovanni/0000-0001-7051-9578
FU European Commission [505390-GOCE-CT-2004]; DECC [GA01101]; Defra
[GA01101]; MoD [CBC/2B/0417_Annex C5]; SCOUT [O3]; Ministry of the
Environment (MOE) of Japan [A-071]; Canadian Foundation for Climate and
Atmospheric Sciences
FX The authors acknowledge the Chemistry-Climate Model Validation Activity
(CCMVal) of the WCRP's (World Climate Research Programme) SPARC
(Stratospheric Processes and their Role in Climate) project for
organizing and coordinating the model data analysis activity, and the
British Atmospheric Data Centre (BADC) for collecting and archiving the
CCMVal model output. The European groups acknowledge support of the EC
Integrated Project SCOUT-O3 (505390-GOCE-CT-2004) funded by the European
Commission. Dr. Butchart's research was supported by the Joint DECC,
Defra, and MoD Integrated Climate Programme-DECC/Defra (GA01101), MoD
(CBC/2B/0417_Annex C5), and SCOUT-O3. CCSR/NIES research was supported
by the Global Environmental Research Fund (GERF) of the Ministry of the
Environment (MOE) of Japan (A-071). The CMAM research was supported by
the Canadian Foundation for Climate and Atmospheric Sciences through the
C-SPARC project. GEOS CCM simulations were conducted on NASA's
High-Performance computing resources at NASA Ames Research Center. The
MRI simulation was made with the supercomputer at the National Institute
for Environmental Studies, Japan.
NR 81
TC 136
Z9 137
U1 4
U2 79
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
EI 1520-0442
J9 J CLIMATE
JI J. Clim.
PD OCT
PY 2010
VL 23
IS 20
BP 5349
EP 5374
DI 10.1175/2010JCLI3404.1
PG 26
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 681IW
UT WOS:000284306200001
ER
PT J
AU Kalarus, M
Schuh, H
Kosek, W
Akyilmaz, O
Bizouard, C
Gambis, D
Gross, R
Jovanovic, B
Kumakshev, S
Kutterer, H
Cerveira, PJM
Pasynok, S
Zotov, L
AF Kalarus, M.
Schuh, H.
Kosek, W.
Akyilmaz, O.
Bizouard, Ch.
Gambis, D.
Gross, R.
Jovanovic, B.
Kumakshev, S.
Kutterer, H.
Cerveira, P. J. Mendes
Pasynok, S.
Zotov, L.
TI Achievements of the Earth orientation parameters prediction comparison
campaign
SO JOURNAL OF GEODESY
LA English
DT Article
DE Earth orientation parameters; Predictions; Combined solution; Polar
motion; UT1; Universal time
AB Precise transformations between the international celestial and terrestrial reference frames are needed for many advanced geodetic and astronomical tasks including positioning and navigation on Earth and in space. To perform this transformation at the time of observation, that is for real-time applications, accurate predictions of the Earth orientation parameters (EOP) are needed. The Earth orientation parameters prediction comparison campaign (EOP PCC) that started in October 2005 was organized for the purpose of assessing the accuracy of EOP predictions. This paper summarizes the results of the EOP PCC after nearly two and a half years of operational activity. The ultra short-term (predictions to 10 days into the future), short-term (30 days), and medium-term (500 days) EOP predictions submitted by the participants were evaluated by the same statistical technique based on the mean absolute prediction error using the IERS EOP 05 C04 series as a reference. A combined series of EOP predictions computed as a weighted mean of all submissions available at a given prediction epoch was also evaluated. The combined series is shown to perform very well, as do some of the individual series, especially those using atmospheric angular momentum forecasts. A main conclusion of the EOP PCC is that no single prediction technique performs the best for all EOP components and all prediction intervals.
C1 [Kalarus, M.; Kosek, W.] Polish Acad Sci, Space Res Ctr, PL-00716 Warsaw, Poland.
[Schuh, H.; Cerveira, P. J. Mendes] Vienna Univ Technol, Inst Geodesy & Geophys, A-1040 Vienna, Austria.
[Kosek, W.] Agr Univ Krakow, PL-30198 Krakow, Poland.
[Akyilmaz, O.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey.
[Bizouard, Ch.; Gambis, D.] Observ Paris, F-75014 Paris, France.
[Gross, R.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Jovanovic, B.] Astron Observ, Belgrade 11050, Serbia.
[Kumakshev, S.] Russian Acad Sci, Inst Problems Mech, Moscow, Russia.
[Kutterer, H.] Leibniz Univ Hannover, Hannover, Germany.
[Pasynok, S.; Zotov, L.] Moscow MV Lomonosov State Univ, Moscow, Russia.
RP Kalarus, M (reprint author), Polish Acad Sci, Space Res Ctr, Ul Bartycka 18A, PL-00716 Warsaw, Poland.
EM kalma@cbk.waw.pl
RI Kumakshev, Sergey/G-1736-2015; Kosek, Wieslaw/E-1962-2017
OI Kumakshev, Sergey/0000-0002-2395-4339;
FU Advisory Board of the "Descartes-nutation project"
FX Maciej Kalarus is grateful to the Advisory Board of the
"Descartes-nutation project" for the financial support. The work of RG
described in this paper was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under contract with the National
Aeronautics and Space Administration. We are grateful to Editor-in-Chief
for his comments on the manuscript. We also thank Jeff Freymeuller, Jim
Ray, and one anonymous reviewer for helpful remarks which led to an
improvement of the paper.
NR 23
TC 22
Z9 38
U1 3
U2 14
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0949-7714
J9 J GEODESY
JI J. Geodesy
PD OCT
PY 2010
VL 84
IS 10
BP 587
EP 596
DI 10.1007/s00190-010-0387-1
PG 10
WC Geochemistry & Geophysics; Remote Sensing
SC Geochemistry & Geophysics; Remote Sensing
GA 652CZ
UT WOS:000281980100001
ER
PT J
AU Eck, TF
Holben, BN
Sinyuk, A
Pinker, RT
Goloub, P
Chen, H
Chatenet, B
Li, Z
Singh, RP
Tripathi, SN
Reid, JS
Giles, DM
Dubovik, O
O'Neill, NT
Smirnov, A
Wang, P
Xia, X
AF Eck, T. F.
Holben, B. N.
Sinyuk, A.
Pinker, R. T.
Goloub, P.
Chen, H.
Chatenet, B.
Li, Z.
Singh, R. P.
Tripathi, S. N.
Reid, J. S.
Giles, D. M.
Dubovik, O.
O'Neill, N. T.
Smirnov, A.
Wang, P.
Xia, X.
TI Climatological aspects of the optical properties of fine/coarse mode
aerosol mixtures
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID SKY RADIANCE MEASUREMENTS; BLACK CARBON AEROSOLS; ACE-ASIA;
LIGHT-ABSORPTION; WAVELENGTH DEPENDENCE; SIZE DISTRIBUTION; COLUMN
CLOSURE; SOURCE REGIONS; DUST AEROSOLS; WATER-VAPOR
AB Aerosol mixtures composed of coarse mode desert dust combined with fine mode combustion generated aerosols (from fossil fuel and biomass burning sources) were investigated at three locations that are in and/or downwind of major global aerosol emission source regions. Multiyear monitoring data at Aerosol Robotic Network sites in Beijing (central eastern China), Kanpur (Indo-Gangetic Plain, northern India), and Ilorin (Nigeria, Sudanian zone of West Africa) were utilized to study the climatological characteristics of aerosol optical properties. Multiyear climatological averages of spectral single scattering albedo (SSA) versus fine mode fraction (FMF) of aerosol optical depth at 675 nm at all three sites exhibited relatively linear trends up to similar to 50% FMF. This suggests the possibility that external linear mixing of both fine and coarse mode components (weighted by FMF) dominates the SSA variation, where the SSA of each component remains relatively constant for this range of FMF only. However, it is likely that a combination of other factors is also involved in determining the dynamics of SSA as a function of FMF, such as fine mode particles adhering to coarse mode dust. The spectral variation of the climatological averaged aerosol absorption optical depth (AAOD) was nearly linear in logarithmic coordinates over the wavelength range of 440-870 nm for both the Kanpur and Ilorin sites. However, at two sites in China (Beijing and Xianghe), a distinct nonlinearity in spectral AAOD in logarithmic space was observed, suggesting the possibility of anomalously strong absorption in coarse mode aerosols increasing the 870 nm AAOD.
C1 [Eck, T. F.; Holben, B. N.; Sinyuk, A.; Giles, D. M.; Smirnov, A.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA.
[Eck, T. F.] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA.
[Sinyuk, A.; Giles, D. M.] Sigma Space Corp, Lanham, MD USA.
[Pinker, R. T.; Li, Z.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA.
[Goloub, P.; Dubovik, O.] Univ Lille 1, Opt Atmospher Lab, F-59655 Villeneuve Dascq, France.
[Chen, H.] Chinese Acad Sci, Div Middle Atmosphere & Remote Sensing, Beijing 100029, Peoples R China.
[Chatenet, B.] Univ Paris Est Paris Diderot Paris 7, CNRS, LISA, F-94010 Creteil, France.
[Singh, R. P.] Chapman Univ, Orange, CA 92866 USA.
[Tripathi, S. N.] Indian Inst Technol, Dept Civil Engn, Kanpur 208016, Uttar Pradesh, India.
[Reid, J. S.] USN, Res Lab, Marine Meteorol Div, Monterey, CA 93943 USA.
[O'Neill, N. T.] Univ Sherbrooke, CARTEL, Sherbrooke, PQ J1K 2R1, Canada.
[Wang, P.; Xia, X.] Chinese Acad Sci, Inst Atmospher Phys, LAGEO, Beijing 100029, Peoples R China.
RP Eck, TF (reprint author), NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA.
EM thomas.f.eck@nasa.gov
RI Pinker, Rachel/F-6565-2010; Smirnov, Alexander/C-2121-2009; ECK,
THOMAS/D-7407-2012; Singh, Ramesh/G-7240-2012; Xia, Xiangao/G-5545-2011;
Dubovik, Oleg/A-8235-2009; Reid, Jeffrey/B-7633-2014; Tripathi,
Sachchida/J-4840-2016; Li, Zhanqing/F-4424-2010
OI Smirnov, Alexander/0000-0002-8208-1304; Xia,
Xiangao/0000-0002-4187-6311; Dubovik, Oleg/0000-0003-3482-6460; Reid,
Jeffrey/0000-0002-5147-7955; Li, Zhanqing/0000-0001-6737-382X
FU NASA; Department of Science and Technology, ICRP; Indian Space Research
Organisation; ISRO-GBP
FX The AERONET project was supported by Michael D. King, retired in 2008
from the NASA EOS project office, and by Hal B. Maring, Radiation
Sciences Program, NASA Headquarters. S. N. Tripathi acknowledges support
from Department of Science and Technology, ICRP and Indian Space
Research Organisation GBP programmes. S. N. Tripathi was also supported
in part by appointment to the NASA Postdoctoral Program at Goddard Space
Flight Center, administered by Oak Ridge Associated Universities through
a contract with NASA. The authors are indebted to Harish Vishwakarma for
his efforts in the operation of Kanpur AERONET instruments and to
ISRO-GBP for financial support to R. P. Singh through a research
project.
NR 67
TC 153
Z9 154
U1 4
U2 35
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD OCT 1
PY 2010
VL 115
AR D19205
DI 10.1029/2010JD014002
PG 20
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 658RQ
UT WOS:000282507500011
ER
PT J
AU Reichle, RH
Kumar, SV
Mahanama, SPP
Koster, RD
Liu, Q
AF Reichle, Rolf H.
Kumar, Sujay V.
Mahanama, Sarith P. P.
Koster, Randal D.
Liu, Q.
TI Assimilation of Satellite-Derived Skin Temperature Observations into
Land Surface Models
SO JOURNAL OF HYDROMETEOROLOGY
LA English
DT Article
ID ENSEMBLE KALMAN FILTER; SOIL-MOISTURE; BRIGHTNESS TEMPERATURE; ENERGY
BALANCE; SYSTEM; PERFORMANCE; EVAPORATION; ALGORITHM; RADIANCES; ERROR
AB Land surface (or "skin'') temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. In this research LST retrievals from the International Satellite Cloud Climatology Project (ISCCP) are assimilated into the Noah land surface model and Catchment land surface model (CLSM) using an ensemble-based, offline land data assimilation system. LST is described very differently in the two models. A priori scaling and dynamic bias estimation approaches are applied because satellite and model LSTs typically exhibit different mean values and variabilities. Performance is measured against 27 months of in situ measurements from the Coordinated Energy and Water Cycle Observations Project at 48 stations. LST estimates from Noah and CLSM without data assimilation ("open loop'') are comparable to each other and superior to ISCCP retrievals. For LST, the RMSE values are 4.9 K (CLSM), 5.5 K(Noah), and 7.6 K(ISCCP), and the anomaly correlation coefficients (R) are 0.61 (CLSM), 0.63 (Noah), and 0.52 (ISCCP). Assimilation of ISCCP retrievals provides modest yet statistically significant improvements (over an open loop, as indicated by nonoverlapping 95% confidence intervals) of up to 0.7 K in RMSE and 0.05 in the anomaly R. The skill of the latent and sensible heat flux estimates from the assimilation integrations is essentially identical to the corresponding open loop skill. Noah assimilation estimates of ground heat flux, however, can be significantly worse than open loop estimates. Provided the assimilation system is properly adapted to each land model, the benefits from the assimilation of LST retrievals are comparable for both models.
C1 [Reichle, Rolf H.; Mahanama, Sarith P. P.; Koster, Randal D.; Liu, Q.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA.
[Kumar, Sujay V.; Liu, Q.] Sci Applicat Int Corp, Beltsville, MD USA.
[Kumar, Sujay V.] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA.
[Mahanama, Sarith P. P.] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA.
RP Reichle, RH (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Mail Code 610-1,8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
EM rolf.reichle@nasa.gov
RI Reichle, Rolf/E-1419-2012; Koster, Randal/F-5881-2012; Kumar,
Sujay/B-8142-2015
OI Koster, Randal/0000-0001-6418-6383;
FU NASA [NNX08AH36G]; Air Force Weather Agency [F2BBBJ7080G001]
FX Thanks to Michael Bosilovich, John Eylander, Peter Norris, and Christa
Peters-Lidard for helpful comments. Partial support for this study was
provided through NASA (NNX08AH36G) and the Air Force Weather Agency
(F2BBBJ7080G001). We are grateful for access to the many datasets that
supported this work, in particular the CEOP and ISCCP projects. Surface
meteorological data were provided by H. Kato, J. Meng, and M. Rodell of
the GLDAS project, with data contributions from the NOAA Earth System
Research Laboratory. Computing was supported by the NASA High End
Computing Program.
NR 54
TC 54
Z9 55
U1 0
U2 13
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 1525-755X
EI 1525-7541
J9 J HYDROMETEOROL
JI J. Hydrometeorol.
PD OCT
PY 2010
VL 11
IS 5
BP 1103
EP 1122
DI 10.1175/2010JHM1262.1
PG 20
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 661DE
UT WOS:000282702400003
ER
PT J
AU Bagge, L
Epp, L
Kaul, AR
Kaul, AB
AF Bagge, Leif
Epp, Larry
Kaul, Abdur R.
Kaul, Anupama B.
TI Modeling and In-Situ Observation of Mechanical Resonances in Single,
Vertically-Oriented Carbon Nanofibers
SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
LA English
DT Article
DE Mechanical Resonators; Carbon Nanostructures; Nanoelectronics;
Nano-Electro-Mechanical-Systems (NEMS); 3D Electronics
ID MEMS
AB In this paper, we have analyzed mechanical resonances in carbon nanotubes (CNTs) based on single, vertically-oriented tubes for their potential application in high-frequency, high-Q, miniaturized resonators. The nano-electro-mechanical (NEM) resonators were modeled using a commercially available finite-element-simulator, where the electro-mechanical coupling of the CNT to an incoming AC signal on a probe in close proximity was examined. The modeling results confirmed that the mechanical resonance was maximized when the frequency of the input signal was equal to the first order harmonic of the CNT. An investigation of the resonance frequency was also performed for various geometrical parameters of our unique three-dimensional (3D) NEMS architecture. Finally, in-situ observations of mechanical resonance in single, vertically oriented tubes is also reported, where such measurements were conducted inside a scanning-electron-microscope. This work suggests that our vertically oriented tubes are potentially well-suited for resonator applications, such as filter banks in communication systems or for mass sensing applications.
C1 [Bagge, Leif; Epp, Larry; Kaul, Abdur R.; Kaul, Anupama B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Bagge, Leif] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA.
[Kaul, Abdur R.] Univ So Calif, Keck Sch Med, Los Angeles, CA 90089 USA.
RP Kaul, AB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
FU National Aeronautics and Space Administration
FX We would like to thank Robert Kowalczyk for PECVD growth chamber
support, and Bophan Chim for assistance with in-situ SEM measurements at
the Kavli Nanoscience Institute, California Institute of Technology
(Caltech). We would also like to acknowledge Krikor Megerian, Richard
Baron, and Julia R. Greer and Andrew T. Jennings both of Caltech, for
useful discussions. This research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration and was funded through
the internal Research and Technology Development (R&TD) program.
NR 11
TC 1
Z9 1
U1 0
U2 3
PU AMER SCIENTIFIC PUBLISHERS
PI STEVENSON RANCH
PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA
SN 1533-4880
J9 J NANOSCI NANOTECHNO
JI J. Nanosci. Nanotechnol.
PD OCT
PY 2010
VL 10
IS 10
BP 6388
EP 6394
DI 10.1166/jnn.2010.3134
PG 7
WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 631QA
UT WOS:000280361400015
PM 21137735
ER
PT J
AU Ray, CS
Reis, ST
Sen, S
O'Dell, JS
AF Ray, C. S.
Reis, S. T.
Sen, S.
O'Dell, J. S.
TI JSC-1A lunar soil simulant: Characterization, glass formation, and
selected glass properties
SO JOURNAL OF NON-CRYSTALLINE SOLIDS
LA English
DT Article; Proceedings Paper
CT 12th International Conference on the Physics of Non-Crystalline Solids
(PNCS12)
CY SEP 06-09, 2009
CL Foz do Iguacu, BRAZIL
DE Lunar soil simulant; Glass formation; XRD; DTA; Mossbauer
AB The chemical composition of a volcanic ash deposited near Flagstaff, Arizona, USA closely resembles that of the soil from the Maria geological terrain of the Moon. After mining and processing, this volcanic ash was designated as JSC-1A lunar simulant, and made available by NASA to the scientific research community in support of its future exploration programs on the lunar surface. The present paper describes characterization of the JSC-1A lunar simulant using DTA, TGA, XRD, chemical analysis and Mossbauer spectroscopy and the feasibility of developing glass and ceramic materials using in-situ resources on the surface of the Moon. The overall chemical composition of the JSC-1A lunar simulant is close to that of the actual lunar soil collected by Apollo 17 mission, and the total iron content in the simulant and the lunar soil is nearly the same. The JSC-1A lunar simulant contains both Fe(2+) (similar to 76%) and Fe(3+) (similar to 24%) ions as opposed to the actual lunar soil which contains only Fe(2+) ions, as expected. The glass forming characteristics of the melt of this simulant as determined by measuring its critical cooling rate for glass formation suggests that the simulant easily forms glass when melted and cooled at nominal rates between 50 and 55 degrees C/min. The coefficient of thermal expansion of the glass measured by dilatometry is in close agreement with that of alumina or YSZ, which makes the glass suitable for use as a coating and sealing material on these ceramics. Potential applications envisaged up to this time of these glass/ceramics on the surface of the Moon are also discussed. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Ray, C. S.; Reis, S. T.] Missouri Univ Sci & Technol, Mat Res Ctr, Rolla, MO 65409 USA.
[Sen, S.] NASA, BAE Syst, Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
[O'Dell, J. S.] Plasma Proc Inc, Huntsville, AL 35811 USA.
RP Reis, ST (reprint author), Missouri Univ Sci & Technol, Mat Res Ctr, Rolla, MO 65409 USA.
EM reis@mst.edu
NR 16
TC 15
Z9 16
U1 1
U2 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3093
J9 J NON-CRYST SOLIDS
JI J. Non-Cryst. Solids
PD OCT 1
PY 2010
VL 356
IS 44-49
SI SI
BP 2369
EP 2374
DI 10.1016/j.jnoncrysol.2010.04.049
PG 6
WC Materials Science, Ceramics; Materials Science, Multidisciplinary
SC Materials Science
GA 694GD
UT WOS:000285282100017
ER
PT J
AU Volkov, DL
Fu, LL
AF Volkov, Denis L.
Fu, Lee-Lueng
TI On the Reasons for the Formation and Variability of the Azores Current
SO JOURNAL OF PHYSICAL OCEANOGRAPHY
LA English
DT Article
ID NORTH-ATLANTIC OCEAN; FRONT-CURRENT SYSTEM; EDDY KINETIC-ENERGY;
SUBTROPICAL GYRE; MEDITERRANEAN OUTFLOW; CIRCULATION PATTERNS; SURFACE
CIRCULATION; MEAN CIRCULATION; CANARY BASIN; GEOSAT DATA
AB Recent studies have shown that the formation of the well-defined, zonally oriented Azores Current may be the result of water mass transformation associated with the Mediterranean outflow in the Gulf of Cadiz. As the denser Mediterranean water descends down the continental slope, it entrains overlying North Atlantic Central Water. It is believed that the Azores Current then forms as part of the horizontal recirculating gyre generated through the beta-plume mechanism. In this study, the authors further explore this hypothesis by performing a series of numerical experiments. These experiments are based on a high-resolution general circulation model that includes the Mediterranean Sea and that realistically simulates the water mass exchange through the Strait of Gibraltar and the transport and variability of the Azores Current. The authors show that the divergence of the relative vorticity flux and the planetary vorticity flux, associated with planetary waves, are the main factors determining the variability of the Azores Current. It is shown experimentally that the closure of the Strait of Gibraltar leads to a complete disappearance of the Azores Current. On the other hand, with the open Strait of Gibraltar, the Azores Current persists even when the wind forcing over the region is turned off. The atmospheric forcing is thus not responsible for the formation of the Azores Current, but it affects the variability of the current with a minor effect on its magnitude. Numerical experiments suggest that the strength and the variability of the Azores Current depend on the magnitude of the water mass exchange through the Strait of Gibraltar but not on its seasonal variability.
C1 [Volkov, Denis L.; Fu, Lee-Lueng] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Volkov, Denis L.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA.
RP Volkov, DL (reprint author), CALTECH, Jet Prop Lab, MS 300-314,4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM denis.volkov@jpl.nasa.gov
RI Volkov, Denis/A-6079-2011
OI Volkov, Denis/0000-0002-9290-0502
FU National Aeronautics and Space Administration (NASA)
FX This research was carried out at Jet Propulsion Laboratory, California
Institute of Technology, within the framework of the ECCO2 project
(available online at http://www.ecco2.org), sponsored by the National
Aeronautics and Space Administration (NASA) Physical Oceanography
program. We thank Michael Schodlok for helping with the model setup. The
authors thank Lynne Talley and two anonymous reviewers for their
constructive remarks that helped to improve the manuscript.
NR 61
TC 17
Z9 17
U1 0
U2 6
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0022-3670
EI 1520-0485
J9 J PHYS OCEANOGR
JI J. Phys. Oceanogr.
PD OCT
PY 2010
VL 40
IS 10
BP 2197
EP 2220
DI 10.1175/2010JPO4326.1
PG 24
WC Oceanography
SC Oceanography
GA 665RO
UT WOS:000283053400001
ER
PT J
AU Qu, TD
Gao, S
Fukumori, I
Fine, RA
Lindstrom, EJ
AF Qu, Tangdong
Gao, Shan
Fukumori, Ichiro
Fine, Rana A.
Lindstrom, Eric J.
TI The Obduction of Equatorial 13 degrees C Water in the Pacific Identified
by a Simulated Passive Tracer
SO JOURNAL OF PHYSICAL OCEANOGRAPHY
LA English
DT Article
ID EASTERN TROPICAL PACIFIC; SEA-SURFACE TEMPERATURE; COSTA-RICA DOME;
SUBSURFACE COUNTERCURRENTS; INDONESIAN THROUGHFLOW; TSUCHIYA JET; ANNUAL
CYCLE; OCEAN; CIRCULATION; DYNAMICS
AB The obduction of equatorial 13 degrees C Water in the Pacific is investigated using a simulated passive tracer of the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO). The result shows that the 13 degrees C Water initialized in the region 8 degrees N-8 degrees S, 130 degrees-90 degrees W enters the surface mixed layer in the eastern tropical Pacific, mainly through upwelling near the equator, in the Costa Rica Dome, and along the coast of Peru. Approximately two-thirds of this obduction occurs within 10 years after the 13 degrees C Water being initialized, with the upper portion of the water mass reaching the surface mixed layer in only about a month. The obduction of the 13 degrees C Water helps to maintain a cool sea surface temperature year-round, equivalent to a surface heat flux of about -6.0 W m(-2) averaged over the eastern tropical Pacific (15 degrees S-15 degrees N, 130 degrees W-eastern boundary) for the period of integration (1993-2006). During El Nino years, when the thermocline deepens as a consequence of the easterly wind weakening, the obduction of the 13 degrees C Water is suppressed, and the reduced vertical entrainment generates a warming anomaly of up to 10 W m(-2) in the eastern tropical Pacific and in particular along the coast of Peru, providing explanations for the warming of sea surface temperature that cannot be accounted for by local winds alone. The situation is reversed during La Nina years.
C1 [Qu, Tangdong] Univ Hawaii Manoa, IPRC, SOEST, Honolulu, HI 96822 USA.
[Gao, Shan] Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China.
[Fukumori, Ichiro] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
[Fine, Rana A.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA.
[Lindstrom, Eric J.] NASA, Sci Miss Directorate, Washington, DC 20546 USA.
RP Qu, TD (reprint author), Univ Hawaii Manoa, IPRC, SOEST, 1680 East West Rd, Honolulu, HI 96822 USA.
EM tangdong@hawaii.edu
RI Gao, Shan/H-7959-2013
OI Gao, Shan/0000-0003-4510-5028
FU National Science Foundation [OCE06-23533]; Japan Agency for Marine-Earth
Science and Technology; National Aeronautics and Space Administration
(NASA); National Ocean and Atmosphere Administration through their
sponsorship of research activities at the International Pacific Research
Center (IPRC); Chinese Academy of Sciences [KZCX3-SW-222]; National
Science Foundation of China [40876011]
FX This research was supported by the National Science Foundation through
Grant OCE06-23533 and by the Japan Agency for Marine-Earth Science and
Technology, the National Aeronautics and Space Administration (NASA),
and the National Ocean and Atmosphere Administration through their
sponsorship of research activities at the International Pacific Research
Center (IPRC). S. Gao was supported by the Knowledge Innovation Program
of the Chinese Academy of Sciences through Grant KZCX3-SW-222 and the
National Science Foundation of China through Grant 40876011. Work by I.
Fukumori was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with NASA. The authors are
grateful to, R. Furue, Z. Yu, R. Lukas, and J. McCreary for useful
discussions throughout the study; to W. S. Kessler and an anonymous
reviewer for their thoughtful comments and constructive suggestions on
an earlier version of this manuscript; and to Z. Xing, I.-L. Tang, O.
Wang, and Y. Shen for their constant assistance in processing the ECCO
outputs.
NR 41
TC 2
Z9 2
U1 1
U2 5
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0022-3670
J9 J PHYS OCEANOGR
JI J. Phys. Oceanogr.
PD OCT
PY 2010
VL 40
IS 10
BP 2282
EP 2297
DI 10.1175/2010JPO4358.1
PG 16
WC Oceanography
SC Oceanography
GA 665RO
UT WOS:000283053400005
ER
PT J
AU Parker, PA
Vining, GG
Wilson, SR
Szarka, JL
Johnson, NG
AF Parker, Peter A.
Vining, G. Geoffrey
Wilson, Sara R.
Szarka, John L., III
Johnson, Nels G.
TI The Prediction Properties of Classical and Inverse Regression for the
Simple Linear Calibration Problem
SO JOURNAL OF QUALITY TECHNOLOGY
LA English
DT Article
DE Calibration Intervals; Mathematical Modeling; Measurement-Uncertainty
Analysis; Response-Surface Methodology.
AB The calibration of measurement systems is a fundamental but understudied problem within industrial statistics. In the classical context of this problem, standards produced by the National Institute of Standards and Technology (NIST) are used in chemical, mechanical, electrical, and materials-engineering analyses. Often, applications cast into this calibration framework do not provide "gold standards" such as the standards provided by NIST. This paper considers the classical calibration approach, in which the experiment treats the standards as the regressor and the observed values as the response to calibrate the instrument. The analyst then must invert the resulting regression model in order to use the instrument to make actual measurements in practice. This paper compares this classical approach to inverse regression, which treats the standards as the response and the observed measurements as the regressor in the calibration experiment. Such an approach is intuitively appealing because it is simple and easily implemented in most software. However, it violates some of the basic regression assumptions. In this paper, we study the properties of classical and inverse regression applied to calibration problems, compare their performance, and provide guidance to practitioners.
C1 [Parker, Peter A.; Wilson, Sara R.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
[Vining, G. Geoffrey; Szarka, John L., III; Johnson, Nels G.] Virginia Tech, Dept Stat, Blacksburg, VA 24061 USA.
[Vining, G. Geoffrey] ASQ, Blacksburg, VA 24061 USA.
RP Parker, PA (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA.
EM peter.a.parker@nasa.gov; vining@vt.edu; sara.r.wilson@nasa.gov;
szarkajl@vt.edu; nels@vt.edu
FU NASA
FX We appreciate the support of Mr. Ray Rhew, AirSTAR's project manager at
NASA, for funding this research effort and providing guidance on its
practical implications. In addition, we acknowledge our fruitful
collaboration with Dr. Margaret Pippin and Dr. Mary Kleb of NASA
Langley's Science Directorate in initially motivating this research with
a satellite to ground measurement correlation study. Last, we appreciate
the helpful suggestions and comments from the reviewers, which have
greatly improved our paper.
NR 17
TC 6
Z9 6
U1 0
U2 6
PU AMER SOC QUALITY CONTROL-ASQC
PI MILWAUKEE
PA 600 N PLANKINTON AVE, MILWAUKEE, WI 53203 USA
SN 0022-4065
J9 J QUAL TECHNOL
JI J. Qual. Technol.
PD OCT
PY 2010
VL 42
IS 4
BP 332
EP 347
PG 16
WC Engineering, Industrial; Operations Research & Management Science;
Statistics & Probability
SC Engineering; Operations Research & Management Science; Mathematics
GA 656RN
UT WOS:000282354400002
ER
PT J
AU Tennyson, J
Bernath, PF
Brown, LR
Campargue, A
Csaszar, AG
Daumont, L
Gamache, RR
Hodges, JT
Naumenko, OV
Polyansky, OL
Rothman, LS
Toth, RA
Vandaele, AC
Zobov, NF
Fally, S
Fazliev, AZ
Furtenbacher, T
Gordon, IE
Hu, SM
Mikhailenko, SN
Voronin, BA
AF Tennyson, Jonathan
Bernath, Peter F.
Brown, Linda R.
Campargue, Alain
Csaszar, Attila G.
Daumont, Ludovic
Gamache, Robert R.
Hodges, Joseph T.
Naumenko, Olga V.
Polyansky, Oleg L.
Rothman, Laurence S.
Toth, Robert A.
Vandaele, Ann Carine
Zobov, Nikolai F.
Fally, Sophie
Fazliev, Alexander Z.
Furtenbacher, Tibor
Gordon, Iouli E.
Hu, Shui-Ming
Mikhailenko, Semen N.
Voronin, Boris A.
TI IUPAC critical evaluation of the rotational-vibrational spectra of water
vapor. Part II Energy levels and transition wavenumbers for (HDO)-O-16,
(HDO)-O-17, and (HDO)-O-18
SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER
LA English
DT Article
DE Water vapor; Transition wavenumbers; Atmospheric physics; Energy levels;
MARVEL; Information system; Database; W@DIS; Infrared spectra; Microwave
spectra; (HDO)-O-16; (HDO)-O-17; (HDO)-O-18
ID FOURIER-TRANSFORM SPECTROSCOPY; LASER-ABSORPTION SPECTROSCOPY;
BEAM-MASER SPECTROSCOPY; HETERODYNE FREQUENCY MEASUREMENTS;
LORENTZ-BROADENING COEFFICIENTS; LINE-SHIFT COEFFICIENTS;
HIGH-RESOLUTION; CM(-1) REGION; MU-M; HYPERFINE STRUCTURE
AB This is the second of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, pressure dependences, and energy levels, with associated critically reviewed assignments and uncertainties, for all the main isotopologues of water. This article presents energy levels and line positions of the following singly deuterated isotopologues of water: (HDO)-O-16, (HDO)-O-17, and (HDO)-O-18. The MARVEL (measured active rotational-vibrational energy levels) procedure is used to determine the levels, the lines, and their self-consistent uncertainties for the spectral regions 0-22708, 0-1674, and 0-12 105 cm(-1) for (HDO)-O-16, (HDO)-O-17, and (HDO)-O-18, respectively. For (HDO)-O-16, 54 740 transitions were analyzed from 76 sources, the lines come from spectra recorded both at room temperature and from hot samples. These lines correspond to 36 690 distinct assignments and 8818 energy levels. For (HDO)-O-17, only 485 transitions could be analyzed from three sources; the lines correspond to 162 MARVEL energy levels. For (HDO)-O-18, 8729 transitions were analyzed from 11 sources and these lines correspond to 1864 energy levels. The energy levels are checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators. This comparison shows that the measured transitions account for about 86% of the anticipated absorbance of (HDO)-O-16 at 296 K and that the transitions predicted by the MARVEL energy levels account for essentially all the remaining absorbance. The extensive list of MARVEL lines and levels obtained are given in the Supplementary Material of this article, as well as in a distributed information system applied to water, W@DIS, where they can easily be retrieved. In addition, the transition and energy level information for (H2O)-O-17 and (H2O)-O-18, given in the first paper of this series [Tennyson, et al. J Quant Spectr Rad Transfer 2009;110:573-96], has been updated. (C) 2010 Elsevier Ltd. All rights reserved.
C1 [Tennyson, Jonathan; Polyansky, Oleg L.] Univ London Univ Coll, Dept Phys & Astron, London WC1E 6BT, England.
[Bernath, Peter F.] Univ York, York YO10 5DD, N Yorkshire, England.
[Brown, Linda R.; Toth, Robert A.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Campargue, Alain] Univ Grenoble 1, Grenoble, France.
[Csaszar, Attila G.; Furtenbacher, Tibor] Eotvos Lorand Univ, Budapest, Hungary.
[Daumont, Ludovic] Univ Reims, Reims, France.
[Gamache, Robert R.] Univ Massachusetts, Lowell, MA USA.
[Hodges, Joseph T.] NIST, Gaithersburg, MD 20899 USA.
[Naumenko, Olga V.; Fazliev, Alexander Z.; Mikhailenko, Semen N.; Voronin, Boris A.] Russian Acad Sci, VE Zuev Inst Atmospher Opt, Tomsk 634021, Russia.
[Polyansky, Oleg L.; Zobov, Nikolai F.] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod, Russia.
[Rothman, Laurence S.; Gordon, Iouli E.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Vandaele, Ann Carine] Inst Aeron Spatiale Belgique, B-1180 Brussels, Belgium.
[Fally, Sophie] Univ Libre Bruxelles, Brussels, Belgium.
[Hu, Shui-Ming] Univ Sci & Technol China, Lab Bond Select Chem, Hefei 230026, Peoples R China.
RP Tennyson, J (reprint author), Univ London Univ Coll, Dept Phys & Astron, Gower St, London WC1E 6BT, England.
EM j.tennyson@ucl.ac.UK
RI Csaszar, Attila/A-5241-2009; Hu, Shuiming/C-4287-2008; Bernath,
Peter/B-6567-2012; Tennyson, Jonathan/I-2222-2012; Voronin,
Boris/A-3444-2014;
OI Hu, Shuiming/0000-0002-1565-8468; Bernath, Peter/0000-0002-1255-396X;
Tennyson, Jonathan/0000-0002-4994-5238; Voronin,
Boris/0000-0002-8743-5554; Gordon, Iouli/0000-0003-4763-2841; Rothman,
Laurence/0000-0002-3837-4847
FU International Union of Pure and Applied Chemistry [2004-035-1-100]; UK
Natural Environment Research Council, the Royal Society
[WWLC-008535-(reintegration) MCA FP6 EC]; Scientific Research Fund. of
Hungary [OTKA K77825]; European Union; Russian Foundation for Basic
Research; Belgian Federal Science Policy Office [EV/35/3A, SD/AT/01A,
PRODEX 1514901NLSFe(IC)]; Communaute de Belgique (Action de Recherche
Concertees); NASA [NNX08AD92G]; National Science Foundation
[ATM-0803135]; CNRS (INSU)
FX We all thank the International Union of Pure and Applied Chemistry for
funding under project 2004-035-1-100 (A database of water transitions
from experiment and theory). In addition, this work has received partial
support from the UK Natural Environment Research Council, the Royal
Society, Grant WWLC-008535-(reintegration) MCA FP6 EC, the Scientific
Research Fund. of Hungary (Grant OTKA K77825), the European Union
QUASAAR Marie Curie research training network, NATO, the Russian
Foundation for Basic Research, the Belgian Federal Science Policy Office
(contracts EV/35/3A, SD/AT/01A, PRODEX 1514901NLSFe(IC)), the Belgian
National Fund for Scientific Research (FRFC contracts), the Communaute
de Belgique (Action de Recherche Concertees), the NASA laboratory
astrophysics program, NASA Earth Observing System (E0S), under Grant
NNX08AD92G, the National Science Foundation, through Grant no.
ATM-0803135, and the Programme National LEFE (CHAT) of CNRS (INSU). Part
of the research described in this paper was performed at the Jet
Propulsion Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Administration.
NR 150
TC 82
Z9 89
U1 8
U2 46
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0022-4073
EI 1879-1352
J9 J QUANT SPECTROSC RA
JI J. Quant. Spectrosc. Radiat. Transf.
PD OCT
PY 2010
VL 111
IS 15
SI SI
BP 2160
EP 2184
DI 10.1016/j.jqsrt.2010.06.012
PG 25
WC Optics; Spectroscopy
SC Optics; Spectroscopy
GA 643CE
UT WOS:000281269800004
ER
PT J
AU Carpenter, MH
Nordstrom, J
Gottlieb, D
AF Carpenter, Mark H.
Nordstrom, Jan
Gottlieb, David
TI Revisiting and Extending Interface Penalties for Multi-domain
Summation-by-Parts Operators
SO JOURNAL OF SCIENTIFIC COMPUTING
LA English
DT Article
DE Summation-by-parts (SBP); High-order finite difference; Finite element;
DG; Numerical stability; Interface conditions; Conservation; Applied and
numerical mathematics
ID FINITE-DIFFERENCE APPROXIMATIONS; DISCONTINUOUS GALERKIN METHODS;
NAVIER-STOKES EQUATIONS; BOUNDARY-VALUE-PROBLEMS; ELLIPTIC PROBLEMS;
SPECTRAL METHODS; ORDER; DISSIPATION; ACCURACY; SYSTEMS
AB A general interface procedure is presented for multi-domain collocation methods satisfying the summation-by-parts (SBP) spatial discretization convention. Unlike more traditional operators (e.g. FEM) applied to the advection-diffusion equation, the new procedure penalizes the solution and the first p derivatives across the interface. The combined interior/interface operators are proven to be pointwise stable, and conservative, although accuracy deteriorates for pa parts per thousand yen2. Penalties between two different sets of variables are compared (motivated by FEM primal and flux formulations), and are shown to be equivalent for certain choices of penalty parameters. Extensive validation studies are presented using two classes of high-order SBP operators: (1) central finite difference, and (2) Legendre spectral collocation.
C1 [Carpenter, Mark H.] NASA, Langley Res Ctr, Computat Aerosci Branch, Hampton, VA 23681 USA.
[Nordstrom, Jan] FOI, Computat Phys Dept, S-16490 Stockholm, Sweden.
[Nordstrom, Jan] Dept Informat Technol, S-75105 Uppsala, Sweden.
[Nordstrom, Jan] KTH Royal Inst Technol, Dept Aeronaut & Vehicle Engn, S-10044 Stockholm, Sweden.
RP Carpenter, MH (reprint author), NASA, Langley Res Ctr, Computat Aerosci Branch, Hampton, VA 23681 USA.
EM mark.h.carpenter@nasa.gov; Jan.Nordstrom@foi.se
OI Nordstrom, Jan/0000-0002-7972-6183
NR 31
TC 28
Z9 28
U1 0
U2 3
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0885-7474
J9 J SCI COMPUT
JI J. Sci. Comput.
PD OCT
PY 2010
VL 45
IS 1-3
BP 118
EP 150
DI 10.1007/s10915-009-9301-5
PG 33
WC Mathematics, Applied
SC Mathematics
GA 642WB
UT WOS:000281250600007
ER
PT J
AU Schiller, NH
Cabell, RH
Fuller, CR
AF Schiller, Noah H.
Cabell, Randolph H.
Fuller, Chris R.
TI Decentralized control of sound radiation using iterative loop recovery
SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
LA English
DT Article
ID STRUCTURAL ACOUSTIC CONTROL; ACTIVE CONTROL; PANELS; NOISE
AB A decentralized model-based control strategy is designed to reduce low-frequency sound radiation from periodically stiffened panels. While decentralized control systems tend to be scalable, performance can be limited due to modeling error introduced by the unmodeled interaction between neighboring control units. Since bounds on modeling error are not known in advance, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is evaluated numerically using a model of a stiffened aluminum panel that is representative of the sidewall of an aircraft. Simulations demonstrate that the iterative approach can achieve significant reductions in radiated sound power from the stiffened panel without destabilizing neighboring control units. (C) 2010 Acoustical Society of America. [DOI: 10.1121/1.3479541]
C1 [Schiller, Noah H.; Cabell, Randolph H.] NASA, Langley Res Ctr, Struct Acoust Branch, Hampton, VA 23681 USA.
[Fuller, Chris R.] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA.
RP Schiller, NH (reprint author), NASA, Langley Res Ctr, Struct Acoust Branch, Mail Stop 463, Hampton, VA 23681 USA.
EM noah.h.schiller@nasa.gov
NR 24
TC 1
Z9 2
U1 1
U2 3
PU ACOUSTICAL SOC AMER AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 0001-4966
J9 J ACOUST SOC AM
JI J. Acoust. Soc. Am.
PD OCT
PY 2010
VL 128
IS 4
BP 1729
EP 1737
DI 10.1121/1.3479541
PN 1
PG 9
WC Acoustics; Audiology & Speech-Language Pathology
SC Acoustics; Audiology & Speech-Language Pathology
GA 669FA
UT WOS:000283331100029
PM 20968346
ER
PT J
AU Tan, Y
Longtin, JP
Sampath, S
Zhu, DM
AF Tan, Yang
Longtin, Jon P.
Sampath, Sanjay
Zhu, Dongming
TI Temperature-Gradient Effects in Thermal Barrier Coatings: An
Investigation Through Modeling, High Heat Flux Test, and Embedded Sensor
SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
LA English
DT Article
ID PLASMA-SPRAYED YSZ; STABILIZED CUBIC ZIRCONIA; REFRACTIVE-INDEX;
CONDUCTIVITY; MICROSTRUCTURE; DELAMINATION; DIFFUSIVITY; YTTRIA
AB The harsh thermal environment in gas turbines, including elevated temperatures and high heat fluxes, induces significant thermal gradients in ceramic thermal barrier coatings (TBCs), which are used to protect metallic components. However, the thermal conductivity of plasma-sprayed TBC increases with exposure at high temperatures mainly due to sintering phenomena and possible phase transformation, resulting in coating performance degradation and potential thermal runaway issues. An analytical thermal model and experimentally obtained coating thermal conductivity data are used to determine the coating through-thickness temperature profile and effective thermal conductivity under gradient conditions at high temperatures. High heat flux tests are then performed on TBCs to evaluate coating thermal behavior under temperature gradients close to service conditions. Coating internal temperature during the tests was also measured by thermally sprayed embedded thermocouples within the top coat. This combined approach provides a sintering map with a new model and allows for the assessment of temperature-gradient effects on the thermal performance of plasma-sprayed TBCs.
C1 [Tan, Yang; Sampath, Sanjay] SUNY Stony Brook, Dept Mat Sci & Engn, Ctr Thermal Spray Res, Stony Brook, NY 11794 USA.
[Tan, Yang; Longtin, Jon P.; Sampath, Sanjay] SUNY Stony Brook, Dept Mech Engn, Stony Brook, NY 11794 USA.
[Zhu, Dongming] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
RP Tan, Y (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Ctr Thermal Spray Res, Stony Brook, NY 11794 USA.
EM yangtan@gmail.com
FU U.S. National Science Foundation [DMI-0428708]
FX This work was supported by the U.S. National Science Foundation under
Award DMI-0428708.
NR 33
TC 1
Z9 1
U1 3
U2 14
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0002-7820
J9 J AM CERAM SOC
JI J. Am. Ceram. Soc.
PD OCT
PY 2010
VL 93
IS 10
BP 3418
EP 3426
DI 10.1111/j.1551-2916.2010.03889.x
PG 9
WC Materials Science, Ceramics
SC Materials Science
GA 660JN
UT WOS:000282637200096
ER
PT J
AU Jain, R
Yeo, H
Chopra, I
AF Jain, Rohit
Yeo, Hyeonsoo
Chopra, Inderjit
TI Computational Fluid Dynamics-Computational Structural Dynamics Analysis
of Active Control of Helicopter Rotor for Performance Improvement
SO JOURNAL OF THE AMERICAN HELICOPTER SOCIETY
LA English
DT Article; Proceedings Paper
CT 65th Annual forum on American-Helicopter-Society
CY MAY 27-29, 2009
CL Grapevine, TX
SP Amer Helicopter Soc
ID SMART STRUCTURES; PREDICTION; TECHNOLOGY; AIRLOADS; SYSTEMS
AB Three morphing rotor concepts, namely trailing-edge deflection (TED), leading-edge deflection (LED), and active twist, are investigated to improve rotor performance. This is a simulation-based investigation using both computational fluid dynamics (CFD)-computational structural dynamics (CSD) coupling and lifting-line-based comprehensive analysis. Coupled aero-structural simulations are performed to account for blade structural response due to aerodynamic loading generated by rotor morphing and pilot control to maintain the rotor trim state. A full-scale UH-60A Blackhawk rotor at two key flight conditions high-speed forward flight and high-thrust forward flight is studied. Numerical experiments are conducted for harmonic and nonharmonic deployment strategies of the three morphing concepts. It is found that at high-speed forward flight TED and active twist are more effective than LED; the improvements in rotor lift-over-effective drag (L/D(e)) are about 8.4% and 7.3%, respectively. The improvements are due to the additional lift that is generated on the advancing side in the region of negative blade tip loading without any drag increase. They result from an increase in the blade angle of attack due to the pitch-up moments induced by the TED, and in the case of active twist direct change in blade pitch. At the high-thrust condition, LED performs better than the other two concepts the improvement in L/D(e) is about 18.2%. Retreating side stall alleviation is the main cause for this improvement.
C1 [Jain, Rohit] HyPerComp Inc, Westlake Village, CA USA.
[Chopra, Inderjit] Univ Maryland, Alfred Gessow Rotorcraft Ctr, College Pk, MD 20742 USA.
[Yeo, Hyeonsoo] NASA, Ames Res Ctr, USA Res Dev & Engn Command, Aeroflightdynam Directorate AMRDEC, Moffett Field, CA 94035 USA.
RP Jain, R (reprint author), HyPerComp Inc, Westlake Village, CA USA.
EM rkj@hypercomp.net
NR 35
TC 10
Z9 11
U1 1
U2 6
PU AMER HELICOPTER SOC INC
PI ALEXANDRIA
PA 217 N WASHINGTON ST, ALEXANDRIA, VA 22314 USA
SN 0002-8711
J9 J AM HELICOPTER SOC
JI J. Am. Helicopter Soc.
PD OCT
PY 2010
VL 55
IS 4
AR 042004
DI 10.4050/JAHS.55.042004
PG 14
WC Engineering, Aerospace
SC Engineering
GA 745TJ
UT WOS:000289189100004
ER
PT J
AU Ameri, AA
Rigby, DL
Steinthorsson, E
Heidmann, J
Fabian, JC
AF Ameri, Ali A.
Rigby, David L.
Steinthorsson, Erlendur
Heidmann, James
Fabian, John C.
TI Unsteady Analysis of Blade and Tip Heat Transfer as Influenced by the
Upstream Momentum and Thermal Wakes
SO JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME
LA English
DT Article
DE blades; cooling; engines; rotors; turbines; wakes
ID TURBINE; EFFICIENCY; STAGE
AB The effect of the upstream wake on the time averaged rotor blade heat transfer was numerically investigated. The geometry and flow conditions of the first stage turbine blade of GE's E(3) engine with a tip clearance equal to 2% of the span were utilized. The upstream wake had both a total pressure and temperature deficit. The rotor inlet conditions were determined from a steady analysis of the cooled upstream vane. Comparisons between the time average of the unsteady rotor blade heat transfer and the steady analysis, which used the average inlet conditions of unsteady cases, are made to illuminate the differences between the steady and unsteady calculations. To help in the understanding of the differences between steady and unsteady results on one hand and to evaluate the effect of the total temperature wake on the other, separate calculations were performed to obtain the rotor heat transfer and adiabatic wall temperatures. It was found that the Nusselt number distribution for the time average of unsteady heat transfer is invariant if normalized by the difference in the adiabatic and wall temperatures. It appeared though that near the endwalls the Nusselt number distribution did depend on the thermal wake strength. Differences between steady and time averaged unsteady heat transfer results of up to 20% were seen on the blade surface. Differences were less on the blade tip surface. [DOI: 10.1115/1.3213549]
C1 [Ameri, Ali A.] Ohio State Univ, Dept Aerosp Engn, Columbus, OH 43210 USA.
[Rigby, David L.] NASA, Glenn Res Ctr, ASRC Aerosp, Cleveland, OH 44135 USA.
[Steinthorsson, Erlendur] A&E Consulting, Westlake, OH 44140 USA.
RP Ameri, AA (reprint author), Ohio State Univ, Dept Aerosp Engn, Columbus, OH 43210 USA.
NR 20
TC 1
Z9 1
U1 0
U2 0
PU ASME-AMER SOC MECHANICAL ENG
PI NEW YORK
PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0889-504X
J9 J TURBOMACH
JI J. Turbomach.-Trans. ASME
PD OCT
PY 2010
VL 132
IS 4
AR 041007
DI 10.1115/1.3213549
PG 7
WC Engineering, Mechanical
SC Engineering
GA 594ZI
UT WOS:000277580000007
ER
PT J
AU Kopasakis, G
Connolly, JW
Paxson, DE
Ma, P
AF Kopasakis, George
Connolly, Joseph W.
Paxson, Daniel E.
Ma, Peter
TI Volume Dynamics Propulsion System Modeling for Supersonics Vehicle
Research
SO JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME
LA English
DT Article
DE aerospace components; aerospace propulsion; aircraft; compressors;
elasticity; jet engines; vehicle dynamics
AB Under the NASA Fundamental Aeronautics Program, the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long, slim body aircrafts with pronounced aeroservoelastic modes. These modes can potentially couple with propulsion system dynamics, leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena, an integrated model is needed that includes both airframe structural dynamics and the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle aeropropulsoservoelastic model and for propulsion efficiency studies. [DOI: 10.1115/1.3192148]
C1 [Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
[Ma, Peter] Univ Florida, Gainesville, FL 32611 USA.
RP Kopasakis, G (reprint author), NASA, Glenn Res Ctr, 21000 Brookpk Rd,Mail Stop 77-1, Cleveland, OH 44135 USA.
EM gkopasakis@nasa.gov
NR 8
TC 2
Z9 2
U1 0
U2 4
PU ASME-AMER SOC MECHANICAL ENG
PI NEW YORK
PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0889-504X
J9 J TURBOMACH
JI J. Turbomach.-Trans. ASME
PD OCT
PY 2010
VL 132
IS 4
AR 041003
DI 10.1115/1.3192148
PG 8
WC Engineering, Mechanical
SC Engineering
GA 594ZI
UT WOS:000277580000003
ER
PT J
AU Collinson, GA
Kataria, DO
AF Collinson, Glyn A.
Kataria, Dhiren O.
TI On variable geometric factor systems for top-hat electrostatic space
plasma analyzers
SO MEASUREMENT SCIENCE AND TECHNOLOGY
LA English
DT Article
DE variable geometric factor; space plasma analyzer; electrostatic
analyzer; electron spectrometer
ID MISSION; SPECTROMETER; CLUSTER
AB Even in the relatively small region of space that is the Earth's magnetosphere, ion and electron fluxes can vary by several orders of magnitude. Top-hat electrostatic analyzers currently do not possess the dynamic range required to sample plasma under all conditions. The purpose of this study was to compare, through computer simulation, three new electrostatic methods that would allow the sensitivity of a sensor to be varied through control of its geometric factor (GF) (much like an aperture on a camera). The methods studied were inner filter plates, split hemispherical analyzer (SHA) and top-cap electrode. This is the first discussion of the filter plate concept and also the first study where all three systems are studied within a common analyzer design, so that their relative merits could be fairly compared. Filter plates were found to have the important advantage that they facilitate the reduction in instrument sensitivity whilst keeping all other instrument parameters constant. However, it was discovered that filter plates have numerous disadvantages that make such a system impracticable for a top-hat electrostatic analyzer. It was found that both the top-cap electrode and SHA are promising variable geometric factor system (VGFS) concepts for implementation into a top-hat electrostatic analyzer, each with distinct advantages over the other.
C1 [Collinson, Glyn A.; Kataria, Dhiren O.] Mullard Space Sci Lab, Holmbury, England.
[Collinson, Glyn A.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA.
RP Collinson, GA (reprint author), Mullard Space Sci Lab, Holmbury, England.
EM gac@mssl.ucl.ac.uk
RI Collinson, Glyn/D-5700-2012
FU UK Science and Technology Facilities Council
FX This work was supported by UK Science and Technology Facilities Council
studentship funding. The authors wish to thank Rudy Frahm for assistance
in preparing the manuscript, and Robert Beddington for his input on
optimizing our simulation method.
NR 22
TC 4
Z9 4
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0957-0233
EI 1361-6501
J9 MEAS SCI TECHNOL
JI Meas. Sci. Technol.
PD OCT
PY 2010
VL 21
IS 10
AR 105903
DI 10.1088/0957-0233/21/10/105903
PG 16
WC Engineering, Multidisciplinary; Instruments & Instrumentation
SC Engineering; Instruments & Instrumentation
GA 649QG
UT WOS:000281787100059
ER
PT J
AU Radcliffe, E
Naguib, A
Humphreys, WM
AF Radcliffe, E.
Naguib, A.
Humphreys, W. M., Jr.
TI A novel design of a feedback-controlled optical microphone for
aeroacoustics research
SO MEASUREMENT SCIENCE AND TECHNOLOGY
LA English
DT Article
DE aeroacoustics and atmospheric sound; acoustical measurements and
instrumentation; control systems; fibre-optic instruments
ID DISPLACEMENT DETECTION
AB This study constitutes a proof of concept of a new feedback-controlled optical microphone for potential use in phased 'beam-forming' arrays utilized in aeroacoustics research. In the new microphone design, a fiber-optic lever sensor is employed as a means for measuring the center displacement of a stretched thin membrane caused by incident acoustic pressure. The membrane is constructed from polyvinylidene-fluoride which exhibits piezoelectric properties allowing actuation of the membrane in a feedback system to nullify the optically detected deflection. The feedback provision was used to actively modify sensor parameters, most notably membrane stiffness, resonant frequency and damping. Testing of a prototype microphone was performed using a plane wave tube calibrator. Using feedback control, the fundamental resonant frequency of the prototype capsule was increased from 3.61 to 5.1 kHz, a 41% increase. Also, feedback was used for dc attenuation, equivalent to 'stiffening' of the microphone membrane. The results demonstrate that feedback control is an effective method for improving the microphone's transient response, as well as for 'self-tuning' and matching of microphone parameters in sensing arrays.
C1 [Radcliffe, E.; Naguib, A.] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA.
[Humphreys, W. M., Jr.] NASA, Adv Sensing & Opt Measurement Branch, Langley Res Ctr, Hampton, VA 23681 USA.
RP Radcliffe, E (reprint author), Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA.
EM radcli14@msu.edu; naguib@egr.msu.edu; william.m.humphreys@nasa.gov
FU NASA [NNX08AO07H]
FX This work was generously supported by the NASA GSRP fellowship, grant no
NNX08AO07H. Additionally, gratitude is extended toward Dr Allan
Zuckerwar at NASA Langley Research Center for his shared expertise in
fiber-optic sensing and microphone design.
NR 28
TC 2
Z9 2
U1 2
U2 11
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0957-0233
EI 1361-6501
J9 MEAS SCI TECHNOL
JI Meas. Sci. Technol.
PD OCT
PY 2010
VL 21
IS 10
AR 105208
DI 10.1088/0957-0233/21/10/105208
PG 11
WC Engineering, Multidisciplinary; Instruments & Instrumentation
SC Engineering; Instruments & Instrumentation
GA 649QG
UT WOS:000281787100017
ER
PT J
AU Atli, KC
Karaman, I
Noebe, RD
Garg, A
Chumlyakov, YI
Kireeva, IV
AF Atli, K. C.
Karaman, I.
Noebe, R. D.
Garg, A.
Chumlyakov, Y. I.
Kireeva, I. V.
TI Improvement in the Shape Memory Response of Ti50.5Ni24.5Pd25
High-Temperature Shape Memory Alloy with Scandium Microalloying
SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND
MATERIALS SCIENCE
LA English
DT Article
ID THERMOELASTIC MARTENSITIC TRANSFORMATIONS; TI-PD; THERMODYNAMIC
ANALYSIS; SITE PREFERENCE; NITI ALLOY; ADDITIONS; BEHAVIOR; CU;
MICROSTRUCTURE; HYSTERESIS
AB A Ti50.5Ni24.5Pd25 high-temperature shape memory alloy (HTSMA) is microalloyed with 0.5 at. pct scandium (Sc) to enhance its shape-memory characteristics, in particular, dimensional stability under repeated thermomechanical cycles. For both Ti50.5Ni24.5Pd25 and the Sc-alloyed material, differential scanning calorimetry is conducted for multiple cycles to characterize cyclic stability of the transformation temperatures. The microstructure is evaluated using electron microscopy, X-ray diffractometry, and wavelength dispersive spectroscopy. Isobaric thermal cycling experiments are used to determine transformation temperatures, dimensional stability, and work output as a function of stress. The Sc-doped alloy displays more stable shape memory response with smaller irrecoverable strain and narrower thermal hysteresis than the baseline ternary alloy. This improvement in performance is attributed to the solid solution hardening effect of Sc.
C1 [Atli, K. C.; Karaman, I.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA.
[Noebe, R. D.; Garg, A.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
[Chumlyakov, Y. I.; Kireeva, I. V.] Siberian Phy Tech Inst, Tomsk 634050, Russia.
RP Atli, KC (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA.
EM ikaraman@tamu.edu
RI Karaman, Ibrahim/E-7450-2010; yuriy, chumlyakov/C-6033-2009; Atli,
Kadri/D-6978-2013; Kireeva, Irina/E-1817-2014; Chumlyakov,
Yuriy/R-6496-2016
OI Karaman, Ibrahim/0000-0001-6461-4958; Atli, Kadri/0000-0002-4807-2113;
FU NASA [NNX07AB56A]
FX This study has been supported by the NASA Fundamental Aeronautics
Program, Subsonic Fixed Wing Project, through Cooperative Agreement No.
NNX07AB56A. The authors thank Dr. Ray Guillemette, Texas A&M University
Geology & Geophysics Department, for the microprobe analyses and the
Shape Memory Alloy and Active Structures Group, NASA Glenn Research
Center, for insightful discussions.
NR 41
TC 29
Z9 32
U1 6
U2 17
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1073-5623
J9 METALL MATER TRANS A
JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci.
PD OCT
PY 2010
VL 41A
IS 10
BP 2485
EP 2497
DI 10.1007/s11661-010-0245-z
PG 13
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 643UD
UT WOS:000281323900008
ER
PT J
AU Jenniskens, P
Shaddad, MH
AF Jenniskens, P.
Shaddad, M. H.
TI 2008 TC3: The small asteroid with an impact
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Editorial Material
C1 [Jenniskens, P.] NASA Ames Res Ctr, Washington, DC USA.
[Shaddad, M. H.] Univ Khartoum, Dept Phys, Khartoum, Sudan.
NR 0
TC 6
Z9 6
U1 0
U2 1
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1086-9379
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD OCT-NOV
PY 2010
VL 45
IS 10-11
BP 1553
EP 1556
DI 10.1111/j.1945-5100.2010.01156.x
PG 4
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 700QP
UT WOS:000285759700001
ER
PT J
AU Shaddad, MH
Jenniskens, P
Numan, D
Kudoda, AM
Elsir, S
Riyad, IF
Ali, AE
Alameen, M
Alameen, NM
Eid, O
Osman, AT
AbuBaker, MI
Yousif, M
Chesley, SR
Chodas, PW
Albers, J
Edwards, WN
Brown, PG
Kuiper, J
Friedrich, JM
AF Shaddad, Muawia H.
Jenniskens, Peter
Numan, Diyaa
Kudoda, Ayman M.
Elsir, Saadia
Riyad, Ihab F.
Ali, Awad Elkareem
Alameen, Mohammed
Alameen, Nada M.
Eid, Omer
Osman, Ahmed T.
AbuBaker, Mohamed I.
Yousif, Mohamed
Chesley, Steven R.
Chodas, Paul W.
Albers, Jim
Edwards, Wayne N.
Brown, Peter G.
Kuiper, Jacob
Friedrich, Jon M.
TI The recovery of asteroid 2008 TC3
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Article
ID TAGISH LAKE METEORITE; FALL; DYNAMICS; ORBIT
AB On October 7, 2008, asteroid 2008 TC3 impacted Earth and fragmented at 37 km altitude above the Nubian Desert in northern Sudan. The area surrounding the asteroid's approach path was searched, resulting in the first recovery of meteorites from an asteroid observed in space. This was also the first recovery of remains from a fragile "cometary" PE = IIIa/b type fireball. In subsequent searches, over 600 mostly small 0.2-379 g meteorites (named "Almahata Sitta") with a total mass 10.7 kg were recovered from a 30 x 7 km area. Meteorites fell along the track at 1.3 kg km-1, nearly independent of mass between 1 and 400 g, with a total fallen mass of 39 +/- 6 kg. The strewn field was shifted nearly 1.8 km south from the calculated approach path. The influence of winds on the distribution of the meteorites, and on the motion of the dust train, is investigated. The majority of meteorites are ureilites with densities around 2.8 g cm-3, some of an anomalous (porous, high in carbon) polymict ureilite variety with densities as low as 1.5 g cm-3. In addition, an estimated 20-30% (in mass) of recovered meteorites were ordinary, enstatite, and carbonaceous chondrites. Their fresh look and matching distribution of fragments in the strewn field imply that they were part of 2008 TC3. For that reason, they are all referred to as "Almahata Sitta." No ureilite meteorites were found that still held foreign clasts, suggesting that the asteroid's clasts were only loosely bound.
C1 [Jenniskens, Peter; Albers, Jim] Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA.
[Shaddad, Muawia H.; Numan, Diyaa; Kudoda, Ayman M.; Riyad, Ihab F.; Alameen, Mohammed; Alameen, Nada M.; Eid, Omer; Osman, Ahmed T.; AbuBaker, Mohamed I.; Yousif, Mohamed] Univ Khartoum, Dept Phys, Khartoum 11115, Sudan.
[Elsir, Saadia] Juba Univ, Dept Phys, Khartoum 11115, Juba, Sudan.
[Ali, Awad Elkareem] Univ Khartoum, Dept Chem, Khartoum 11115, Sudan.
[Chesley, Steven R.; Chodas, Paul W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Edwards, Wayne N.; Brown, Peter G.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada.
[Edwards, Wayne N.] Nat Resources Canada, Canadian Hazards Informat Serv, Ottawa, ON K1A 0Y3, Canada.
[Kuiper, Jacob] Royal Netherlands Meteorol Inst, NL-3732 GK De Bilt, Netherlands.
[Friedrich, Jon M.] Fordham Univ, Dept Chem, Bronx, NY 10458 USA.
[Friedrich, Jon M.] Amer Museum Nat Hist, Dept Earth & Planetary Sci, New York, NY 10025 USA.
RP Jenniskens, P (reprint author), Carl Sagan Ctr, SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA.
EM petrus.m.jenniskens@nasa.gov
FU University of Khartoum, Department of Physics; National Science
Foundation-Earth Sciences [EAR-0622171]; Department of
Energy-Geosciences [DE-FG02-94ER14466]; State of Illinois; U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]; NASA [NNX09AD92, NNX08AO64G]; Faculty of Sciences
FX We thank the many students and staff of the University of Khartoum for
their support in recovering the meteorites. The University of Khartoum,
Department of Physics and the Faculty of Sciences sponsored the search
efforts. Portions of this work were performed at GeoSoilEnviroCARS
(Sector 13), Advanced Photon Source (APS), of Argonne National
Laboratory. GeoSoilEnviroCARS is supported by the National Science
Foundation-Earth Sciences (EAR-0622171), Department of
Energy-Geosciences (DE-FG02-94ER14466) and the State of Illinois. Use of
the Advanced Photon Source was supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357. The authors would like to thank the
British Atmospheric Data Centre (BADC) for the UKMO meteorological data.
J.M.F. is supported by NASA under the Planetary Geology and Geophysics
program through grant NNX09AD92. P.J. is supported by NASA under the
Planetary Astronomy program through grant NNX08AO64G.
NR 22
TC 23
Z9 23
U1 0
U2 7
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1086-9379
EI 1945-5100
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD OCT-NOV
PY 2010
VL 45
IS 10-11
BP 1557
EP 1589
DI 10.1111/j.1945-5100.2010.01116.x
PG 33
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 700QP
UT WOS:000285759700002
ER
PT J
AU Jenniskens, P
Vaubaillon, J
Binzel, RP
DeMeo, FE
Nesvorny, D
Bottke, WF
Fitzsimmons, A
Hiroi, T
Marchis, F
Bishop, JL
Vernazza, P
Zolensky, ME
Herrin, JS
Welten, KC
Meier, MMM
Shaddad, MH
AF Jenniskens, Peter
Vaubaillon, Jeremie
Binzel, Richard P.
DeMeo, Francesca E.
Nesvorny, David
Bottke, William F.
Fitzsimmons, Alan
Hiroi, Takahiro
Marchis, Franck
Bishop, Janice L.
Vernazza, Pierre
Zolensky, Michael E.
Herrin, Jason S.
Welten, Kees C.
Meier, Matthias M. M.
Shaddad, Muawia H.
TI Almahata Sitta (=asteroid 2008 TC3) and the search for the ureilite
parent body
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Review
ID NEAR-EARTH ASTEROIDS; DIGITAL SKY SURVEY; SOLAR-SYSTEM; MAIN-BELT;
VISIBLE SPECTROSCOPY; ANTARCTIC UREILITES; TERRESTRIAL PLANETS; BASALTIC
ASTEROIDS; THERMAL EVOLUTION; 3200 PHAETHON
AB This article explores what the recovery of 2008 TC3 in the form of the Almahata Sitta meteorites may tell us about the source region of ureilites in the main asteroid belt. An investigation is made into what is known about asteroids with roughly the same spectroscopic signature as 2008 TC3. A population of low-inclination near-Earth asteroids is identified with spectra similar to 2008 TC3. Five asteroid families in the Main Belt, as well as a population of ungrouped asteroids scattered in the inner and central belts, are identified as possible source regions for this near-Earth population and 2008 TC3. Three of the families are ruled out on dynamical and spectroscopic grounds. New near-infrared spectra of 142 Polana and 1726 Hoffmeister, lead objects in the two other families, also show a poor match to Almahata Sitta. Thus, there are no Main Belt spectral analogs to Almahata Sitta currently known. Space weathering effects on ureilitic materials have not been investigated, so that it is unclear how the spectrum of the Main Belt progenitor may look different from the spectra of 2008 TC3 and the Almahata Sitta meteorites. Dynamical arguments are discussed, as well as ureilite petrogenesis and parent body evolution models, but these considerations do not conclusively point to a source region either, other than that 2008 TC3 probably originated in the inner asteroid belt.
C1 [Jenniskens, Peter; Marchis, Franck; Bishop, Janice L.] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA.
[Vaubaillon, Jeremie] IMCCE, Observ Paris, FR-75014 Paris, France.
[Binzel, Richard P.; DeMeo, Francesca E.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA.
[DeMeo, Francesca E.] LESIA, Observ Paris, FR-92195 Meudon, France.
[Nesvorny, David; Bottke, William F.] SW Res Inst, Dept Space Studies, Boulder, CO 80302 USA.
[Fitzsimmons, Alan] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland.
[Hiroi, Takahiro] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA.
[Vernazza, Pierre] ESTEC, ESA, NL-2200 AG Noordwijk, Netherlands.
[Zolensky, Michael E.; Herrin, Jason S.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
[Welten, Kees C.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Meier, Matthias M. M.] ETH, Dept Earth Sci, CH-8092 Zurich, Switzerland.
[Shaddad, Muawia H.] Univ Khartoum, Dept Phys & Astron, Khartoum 11115, Sudan.
RP Jenniskens, P (reprint author), SETI Inst, Carl Sagan Ctr, 189 Bernardo Ave, Mountain View, CA 94043 USA.
EM pjenniskens@mail.arc.nasa.gov
RI Marchis, Franck/H-3971-2012;
OI Herrin, Jason/0000-0002-2452-244X; Meier, Matthias/0000-0002-7179-4173
FU National Science Foundation [0506716]; Hayabusa program; NASA
FX This article was improved greatly from comments by referees Alberto
Cellino, Edward Scott, David W. Mittlefehldt, and associate editor
Cyrena Goodrich. We also thank Lucy McFadden for helpful discussions,
and Beth E. Clark and Schelte J. Bus for sharing published data. We
thank the many students and staff of the University of Khartoum for
their support in recovering the meteorites. The near-IR spectra
discussed in this article were measured at the IRTF telescope at Manua
Kea, Hawaii in October and November of 2009, as part of the MIT-UH-IRTF
Joint Campaign for NEO Spectral Reconnaissance. All of the data utilized
in this publication (unless so specified) were obtained and made
available by the MIT-UH-IRTF Joint Campaign for NEO Reconnaissance. The
IRTF is operated by the University of Hawaii under Cooperative Agreement
no. NCC 5-538 with the National Aeronautics and Space Administration,
Office of Space Science, Planetary Astronomy Program. The MIT component
of this work is supported by the National Science Foundation under Grant
No. 0506716. M. E. Z. acknowledges support from the Hayabusa program. P.
J. is supported by a grant from the NASA Planetary Astronomy Program.
NR 138
TC 24
Z9 24
U1 0
U2 9
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1086-9379
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD OCT-NOV
PY 2010
VL 45
IS 10-11
BP 1590
EP 1617
DI 10.1111/j.1945-5100.2010.01153.x
PG 28
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 700QP
UT WOS:000285759700003
ER
PT J
AU Zolensky, M
Herrin, J
Mikouchi, T
Ohsumi, K
Friedrich, J
Steele, A
Rumble, D
Fries, M
Sandford, S
Milam, S
Hagiya, K
Takeda, H
Satake, W
Kurihara, T
Colbert, M
Hanna, R
Maisano, J
Ketcham, R
Goodrich, C
Le, L
Robinson, G
Martinez, J
Ross, K
Jenniskens, P
Shaddad, MH
AF Zolensky, Michael
Herrin, Jason
Mikouchi, Takashi
Ohsumi, Kazumasa
Friedrich, Jon
Steele, Andrew
Rumble, Douglas
Fries, Marc
Sandford, Scott
Milam, Stefanie
Hagiya, Kenji
Takeda, Hiroshi
Satake, Wataru
Kurihara, Taichi
Colbert, Matthew
Hanna, Romy
Maisano, Jessie
Ketcham, Richard
Goodrich, Cyrena
Le, Loan
Robinson, GeorgAnn
Martinez, James
Ross, Kent
Jenniskens, Peter
Shaddad, Muawia H.
TI Mineralogy and petrography of the Almahata Sitta ureilite
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Article
ID PARENT BODY; ANTARCTIC UREILITES; POLYMICT UREILITE; CRYSTAL-CHEMISTRY;
ORIGIN; METEORITES; CHONDRITES; PIGEONITE; EVOLUTION; IMPACT
AB We performed a battery of analyses on 17 samples of the Almahata Sitta meteorite, identifying three main lithologies and several minor ones present as clasts. The main lithologies are (1) a pyroxene-dominated, very porous, highly reduced lithology, (2) a pyroxene-dominated compact lithology, and (3) an olivine-dominated compact lithology. Although it seems possible that all three lithologies grade smoothly into each other at the kg-scale, at the g-scale this is not apparent. The meteorite is a polymict ureilite, with some intriguing features including exceptionally variable porosity and pyroxene composition. Although augite is locally present in Almahata Sitta, it is a minor phase in most (but not all) samples we have observed. Low-calcium pyroxene (< 5 mole% wollastonite) is more abundant than compositionally defined pigeonite; however, we found that even the low-Ca pyroxene in Almahata Sitta has the monoclinic pigeonite crystal structure, and thus is properly termed pigeonite. As the major pyroxene in Almahata Sitta is pigeonite, and the abundance of pigeonite is generally greater than that of olivine, this meteorite might be called a pigeonite-olivine ureilite, rather than the conventional olivine-pigeonite ureilite group. The wide variability of lithologies in Almahata Sitta reveals a complex history, including asteroidal igneous crystallization, impact disruption, reheating and partial vaporization, high-temperature reduction and carbon burning, and re-agglomeration.
C1 [Zolensky, Michael] NASA, ARES, Johnson Space Ctr, Houston, TX 77058 USA.
[Herrin, Jason; Le, Loan; Robinson, GeorgAnn; Martinez, James; Ross, Kent] ESCG Jacobs, Houston, TX 77058 USA.
[Mikouchi, Takashi; Takeda, Hiroshi; Satake, Wataru; Kurihara, Taichi] Univ Tokyo, Dept Earth & Planetary Sci, Bunkyo Ku, Tokyo 1130033, Japan.
[Friedrich, Jon] Fordham Univ, Dept Chem, Bronx, NY 10458 USA.
[Ohsumi, Kazumasa] JASRI, Sayo, Hyogo 6795198, Japan.
[Friedrich, Jon] Amer Museum Nat Hist, Dept Earth & Planetary Sci, New York, NY 10024 USA.
[Steele, Andrew; Rumble, Douglas] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA.
[Fries, Marc] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Sandford, Scott] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Milam, Stefanie] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Hagiya, Kenji] Univ Hyogo, Grad Sch Life Sci, Kamigori, Hyogo 6781297, Japan.
[Colbert, Matthew; Hanna, Romy; Maisano, Jessie; Ketcham, Richard] Univ Texas Austin, Univ Texas High Resolut Xray CT Facil, Austin, TX 78712 USA.
[Goodrich, Cyrena] Planetary Sci Inst, Tucson, AZ 85719 USA.
[Jenniskens, Peter] SETI Inst, Mountain View, CA 94043 USA.
[Shaddad, Muawia H.] Univ Khartoum, Dept Phys & Astron, Khartoum 11115, Sudan.
RP Zolensky, M (reprint author), NASA, ARES, Johnson Space Ctr, Houston, TX 77058 USA.
EM michael.e.zolensky@nasa.gov
RI Ketcham, Richard/B-5431-2011; Milam, Stefanie/D-1092-2012;
OI Ketcham, Richard/0000-0002-2748-0409; Milam,
Stefanie/0000-0001-7694-4129; Herrin, Jason/0000-0002-2452-244X
FU NASA [NNX07AI48G]
FX We are happy to acknowledge the work of the many alert individuals who
discovered, observed, tracked, predicted the asteroid landing site, and
finally located asteroid 2008 TC3. We especially thank the many students
of the University of Khartoum who worked hard to recover the final
asteroid samples in a harsh environment. None of us had grant funding
specifically to support study of Almahata Sitta, but fortunately our
grant institutions were lenient for such a fascinating project. Reviews
by and other discussions with Makoto Kimura and Paul Warren resulted in
a greatly improved manuscript. M. Z. was supported by the Hayabusa
Mission and the Stardust Sample Analysis Program. P. J. was supported by
a grant from NASA's Planetary Astronomy Program. D. R. thanks NASA for
grant NNX07AI48G which supported oxygen isotope analyses.
NR 54
TC 31
Z9 31
U1 0
U2 8
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1086-9379
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD OCT-NOV
PY 2010
VL 45
IS 10-11
BP 1618
EP 1637
DI 10.1111/j.1945-5100.2010.01128.x
PG 20
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 700QP
UT WOS:000285759700004
ER
PT J
AU Cloutis, EA
Hudon, P
Romanek, CS
Bishop, JL
Reddy, V
Gaffey, MJ
Hardersen, PS
AF Cloutis, E. A.
Hudon, Pierre
Romanek, Christopher S.
Bishop, Janice L.
Reddy, Vishnu
Gaffey, Michael J.
Hardersen, Paul S.
TI Spectral reflectance properties of ureilites
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Review
ID NORTHWEST AFRICA 1500; ANTARCTIC UREILITES; COOLING HISTORY;
ORTHO-PYROXENE; CARBONACEOUS CHONDRITES; ASTEROID 25143-ITOKAWA;
ISOTOPIC COMPOSITION; OPTICAL-PROPERTIES; CRYSTAL-CHEMISTRY; METEORITE
SPECTRA
AB The 0.35-2.6 mu m reflectance spectra of 18 ureilites have been examined in order to improve our understanding of the spectral reflectance properties of this meteorite class. Across this spectral range, ureilite spectra are characterized by a steep rise in reflectance over the 0.3 to approximately 0.7 mu m range, low overall reflectance (< 25%) and weak mafic iron silicate absorption bands in the 1 and 2 mu m region. The weakness of these bands and the low reflectance are attributed to the presence of dispersed graphite and related carbonaceous phases, metal, and possibly shock. Wavelength positions of the mafic silicate absorption bands span a range of values, but are consistent with the presence of pyroxene and olivine. Ureilite spectra generally exhibit blue slopes across the 0.7-2.6 mu m interval and exhibit many overall similarities to some carbonaceous chondrites. The weak features and spectral diversity of ureilites make reflectance spectroscopy-based identification of a ureilite parent body challenging. As terrestrial alteration of ureilites is prevalent, spectral studies of falls are most useful for determining the spectral properties of likely parent bodies.
C1 [Cloutis, E. A.] Univ Winnipeg, Dept Geog, Winnipeg, MB R3B 2E9, Canada.
[Hudon, Pierre] NASA, Astromat Res & Explorat Sci Off, Johnson Space Ctr, Houston, TX 77058 USA.
[Hudon, Pierre] McGill Univ, Dept Min & Mat Engn, Montreal, PQ H3A 2B2, Canada.
[Romanek, Christopher S.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
[Romanek, Christopher S.] Univ Georgia, Dept Geol, Aiken, SC 29802 USA.
[Bishop, Janice L.] NASA, Carl Sagan Ctr, SETI Inst, Ames Res Ctr, Mountain View, CA 94043 USA.
[Reddy, Vishnu; Gaffey, Michael J.; Hardersen, Paul S.] Univ N Dakota, Dept Space Studies, Grand Forks, ND 58202 USA.
RP Cloutis, EA (reprint author), Univ Winnipeg, Dept Geog, 515 Portage Ave, Winnipeg, MB R3B 2E9, Canada.
EM e.cloutis@uwinnipeg.ca
RI Hardersen, Paul/N-9343-2014;
OI Hardersen, Paul/0000-0002-0440-9095; Reddy, Vishnu/0000-0002-7743-3491
FU National Research Council of the United States; NSERC; Canadian Space
Agency; University of Winnipeg
FX We are grateful to John E. Gruener for collecting the X-ray patterns and
to David W. Mittlefehldt and Craig S. Schwandt for help with the
electron probe microanalysis. We thank the Meteorite Research Group of
the NASA Johnson Space Center, the National Museum of Natural History of
the Smithsonian Institution, and the Antarctic Meteorite Research Center
of the National Institute of Polar Research for the allocations of
meteorites. Thanks also to Tom Burbine, Lucy McFadden, and Dale
Cruikshank for their reviews of this study and excellent comments. P.
Hudon was supported by a Research Associateship Award of the National
Research Council of the United States. E. Cloutis was supported by
research grants and contracts from NSERC, the Canadian Space Agency, and
the University of Winnipeg.
NR 139
TC 22
Z9 22
U1 1
U2 3
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1086-9379
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD OCT-NOV
PY 2010
VL 45
IS 10-11
BP 1668
EP 1694
DI 10.1111/j.1945-5100.2010.01065.x
PG 27
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 700QP
UT WOS:000285759700007
ER
PT J
AU Glavin, DP
Aubrey, AD
Callahan, MP
Dworkin, JP
Elsila, JE
Parker, ET
Bada, JL
Jenniskens, P
Shaddad, MH
AF Glavin, Daniel P.
Aubrey, Andrew D.
Callahan, Michael P.
Dworkin, Jason P.
Elsila, Jamie E.
Parker, Eric T.
Bada, Jeffrey L.
Jenniskens, Peter
Shaddad, Muawia H.
TI Extraterrestrial amino acids in the Almahata Sitta meteorite
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Article
ID EARLY SOLAR SYSTEM; MURCHISON METEORITE; CARBONACEOUS CHONDRITES;
LIQUID-CHROMATOGRAPHY; MONOCARBOXYLIC ACIDS; UREILITE METEORITES;
CATALYTIC SYNTHESIS; MASS SPECTROMETRY; ALKANOIC ACIDS; ORGANIC MATTER
AB Amino acid analysis of a meteorite fragment of asteroid 2008 TC(3) called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, beta-amino-n-butyric acid, 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (d/l similar to 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other nonprotein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2-methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five-carbon amino acids in Almahata Sitta compared to CI, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC(3) cooled to lower temperatures, or introduced as a contaminant from unrelated meteorite clasts and chemically altered by alpha-decarboxylation.
C1 [Glavin, Daniel P.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Aubrey, Andrew D.] NASA, Jet Prop Lab, CALTECH, Pasadena, CA 91109 USA.
[Parker, Eric T.; Bada, Jeffrey L.] Univ Calif San Diego, Scripps Inst Oceanog, Geosci Res Div, La Jolla, CA 92093 USA.
[Jenniskens, Peter] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA.
[Shaddad, Muawia H.] Univ Khartoum, Dept Phys & Astron, Khartoum 11115, Sudan.
RP Glavin, DP (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM daniel.p.glavin@nasa.gov
RI Elsila, Jamie/C-9952-2012; Callahan, Michael/D-3630-2012; Glavin,
Daniel/D-6194-2012; Dworkin, Jason/C-9417-2012
OI Glavin, Daniel/0000-0001-7779-7765; Dworkin, Jason/0000-0002-3961-8997
FU National Aeronautics and Space Administration (NASA) Astrobiology
Institute; Goddard Center for Astrobiology; NASA; NASA at the Goddard
Space Flight Center
FX We thank the University of Khartoum and the students and staff of the
Physics and Astronomy Department of the Faculty of Sciences for their
efforts to recover the meteorites from the Nubian Desert; A. Lewis for
optimizing the LC analytical separation conditions at GSFC. We are also
grateful to C. Alexander and P. Ehrenfreund for providing helpful
comments. D. P. G., J. P. D., and J. E. E. acknowledge funding support
from the National Aeronautics and Space Administration (NASA)
Astrobiology Institute and the Goddard Center for Astrobiology, and the
NASA Cosmochemistry and Astrobiology: Exobiology and Evolutionary
Biology Programs. The research carried out at the Jet Propulsion
Laboratory, California Institute of Technology, was performed so under a
contract with NASA and supported by an appointment to the NASA
Postdoctoral Program at JPL, administered by Oak Ridge Associated
Universities through a contract with NASA. M. P. C. also acknowledges
support from the NASA Postdoctoral Program at the Goddard Space Flight
Center, administered by Oak Ridge Associated Universities through a
contract with NASA.
NR 65
TC 24
Z9 25
U1 2
U2 15
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1086-9379
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD OCT-NOV
PY 2010
VL 45
IS 10-11
BP 1695
EP 1709
DI 10.1111/j.1945-5100.2010.01094.x
PG 15
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 700QP
UT WOS:000285759700008
ER
PT J
AU Rumble, D
Zolensky, ME
Friedrich, JM
Jenniskens, P
Shaddad, MH
AF Rumble, Douglas
Zolensky, Michael E.
Friedrich, Jon M.
Jenniskens, Peter
Shaddad, Muawia H.
TI The oxygen isotope composition of Almahata Sitta
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Article
ID POLYMICT UREILITE; LASER; RATIOS; MINERALS; GARNET
AB Eleven fragments of the meteorite Almahata Sitta (AHS) have been analyzed for oxygen isotopes. The fragments were separately collected as individual stones from the meteorite's linear strewn field in the Nubian Desert. Each of the fragments represents a sample of a different and distinct portion of asteroid 2008 TC(3). Ten of the fragments span the same range of values of delta 18O, delta 17O, and Delta 17O, and follow the same trend along the carbonaceous chondrite anhydrous minerals (CCAM) line as monomict and polymict members of the ureilite family of meteorites. The oxygen isotope composition of fragment #25 is consistent with its resemblance petrographically to an H5 ordinary chondrite. Our results demonstrate that a single small asteroidal parent body, asteroid 2008 TC(3), only 4 m in length, encompassed the entire range of variation in oxygen isotope compositions measured for monomict and polymict ureilites.
C1 [Rumble, Douglas] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA.
[Zolensky, Michael E.] NASA, Johnson Space Flight Ctr, Houston, TX 77058 USA.
[Friedrich, Jon M.] Fordham Univ, Dept Chem, Bronx, NY 10458 USA.
[Jenniskens, Peter] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA.
[Shaddad, Muawia H.] Univ Khartoum, Dept Phys & Astron, Khartoum 11115, Sudan.
RP Rumble, D (reprint author), Carnegie Inst Washington, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA.
EM rumble@gl.ciw.edu
FU NASA [NNX07AI48G, NNX09AD92G]
FX This study would have been impossible without hard work by students and
staff of the University of Khartoum in collecting samples from the
Nubian Desert strewn field. We are grateful to our Sudanese colleagues
for making samples available for study. H. Downes, C. A. Goodrich, and
N. T. Kita contributed to this study through helpful discussion and
criticism. Rumble thanks NASA's Cosmochemistry program for support
through grant NNX07AI48G. Portions of this work were supported by NASA
under the Planetary Geology and Geophysics program through grant
NNX09AD92G to Friedrich. Jenniskens is supported by a grant from NASA's
Planetary Astronomy program.
NR 17
TC 11
Z9 11
U1 0
U2 4
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1086-9379
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD OCT-NOV
PY 2010
VL 45
IS 10-11
BP 1765
EP 1770
DI 10.1111/j.1945-5100.2010.01099.x
PG 6
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 700QP
UT WOS:000285759700014
ER
PT J
AU Herrin, JS
Zolensky, ME
Ito, M
Le, L
Mittlefehldt, DW
Jenniskens, P
Ross, AJ
Shaddad, MH
AF Herrin, Jason S.
Zolensky, Michael E.
Ito, Motoo
Le, Loan
Mittlefehldt, David W.
Jenniskens, Peter
Ross, Aidan J.
Shaddad, Muawia H.
TI Thermal and fragmentation history of ureilitic asteroids: Insights from
the Almahata Sitta fall
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Article
ID POLYMICT UREILITE; PARENT BODY; NEBULAR PROCESSES; IRON-METEORITES;
ORTHO-PYROXENE; NOBLE-GASES; ORIGIN; IMPACT; MESOSIDERITES; CONSTRAINTS
AB The Almahata Sitta fall event provides a unique opportunity to gain insight into the nature of ureilitic objects in space and the delivery of ureilite meteorites to Earth. From thermal events recorded in the mineralogy, petrology, and chemistry of ureilites recovered from the fall area, we reconstruct a timeline of events that led to their genesis. This history is similar to that of other known ureilites and supportive of a disrupted ureilite parent body hypothesis. Temperatures of final mantle equilibrium were 1200-1300 degrees C, but this high-temperature history was abruptly terminated by rapid cooling and reduction associated with pressure loss. The onset of late reduction reactions and onset of rapid cooling must have been essentially simultaneous, most likely engendered by the same event. Cooling rates of 0.05-2 degrees C h-1 determined from reversely zoned olivines and pyroxenes in Almahata Sitta imply rapid disassembly into fragments tens meters in size or smaller. This phenomenon seems to have affected all known portions of the ureilite parent body mantle, implying an event of global significance rather than localized unroofing. Reaccretion of one or more daughter asteroids occurred only after significant heat loss at minimum time scales of weeks to months, during which time the debris cloud surrounding the disrupted parent was inefficient at retaining heat. Fragments initially dislodged from the ureilite parent body mantle underwent subsequent size reduction and mixed with various chondritic bodies, giving rise to polylithologic aggregate objects such as asteroid 2008 TC(3).
C1 [Herrin, Jason S.; Zolensky, Michael E.; Ito, Motoo; Le, Loan; Mittlefehldt, David W.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
[Herrin, Jason S.; Le, Loan] ESCG Astromat Res Grp, Houston, TX 77058 USA.
[Ito, Motoo] USRA, Lunar & Planetary Inst, Houston, TX 77058 USA.
[Jenniskens, Peter] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA.
[Ross, Aidan J.] UCL, Birkbeck Res Sch Earth Sci, Ctr Planetary Sci, London WC1E 6BT, England.
[Ross, Aidan J.] Nat Hist Museum, Dept Mineral, IARC, London SW7 5BD, England.
[Shaddad, Muawia H.] Univ Khartoum, Dept Phys & Astron, Khartoum 11115, Sudan.
RP Herrin, JS (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA.
EM jason.s.herrin@nasa.gov
OI Herrin, Jason/0000-0002-2452-244X
FU NASA; Hayabusa mission; NERC
FX Thank you to the University of Khartoum, Department of Physics and
Astronomy and all of the students from the University of Khartoum who
aided in the recovery of Almahata Sitta, especially D. Aldhawi and R.
Alderdeeri, as well as the various observers who tracked asteroid 2008
TC3. The ANSMET program and the U.S. Antarctic Meteorite Program
provided recovery and allocation of other ureilites examined as part of
this study. P. Abell, J. Jones, T. Mikouchi, J. Park, and P. Warren
provided helpful discussion. H. Downes, S. Singletary, E. Scott, and T.
Jull provided constructive comments and reviews. This work was supported
in part by a grant from the NASA Cosmochemistry Program to D. W. M. M.
E. Z. was supported by the Hayabusa mission. P. J. was supported by the
NASA Planetary Astronomy program. A. J. R. was supported by a NERC CASE
Studentship.
NR 86
TC 21
Z9 21
U1 0
U2 7
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1086-9379
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD OCT-NOV
PY 2010
VL 45
IS 10-11
BP 1789
EP 1803
DI 10.1111/j.1945-5100.2010.01136.x
PG 15
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 700QP
UT WOS:000285759700017
ER
PT J
AU Mikouchi, T
Zolensky, ME
Ohnishi, I
Suzuki, T
Takeda, H
Jenniskens, P
Shaddad, MH
AF Mikouchi, Takashi
Zolensky, Michael E.
Ohnishi, Ichiro
Suzuki, Toshiaki
Takeda, Hiroshi
Jenniskens, Peter
Shaddad, Muawia H.
TI Electron microscopy of pyroxene in the Almahata Sitta ureilite
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Article
ID ANTARCTIC UREILITES; PARENT BODY; METEORITES; MINERALOGY; ORIGIN;
CLINOPYROXENE; PIGEONITES; IMPACT; TEM
AB We performed scanning electron microscope-electron backscatter diffraction (SEM-EBSD) and focused ion beam-transmission electron microscopy (FIB-TEM) investigations of pyroxene in the Almahata Sitta ureilite (sample #7). The pyroxenes (mg# = similar to 0.92) are present as minute individual grains (10-20 mu m in size) showing a polycrystalline texture, and they are both low-Ca and high-Ca pyroxenes. Although their Ca contents are as low as Wo(2-3), the EBSD analysis shows that low-Ca pyroxenes are clinopyroxene (P2(1)/c). The obtained pyroxene equilibration temperature (1240-1280 degrees C) is consistent with the previous studies on many ureilites. In low-Ca pigeonite, (001) augite exsolution lamellae (10-15 nm wide) develop in the pigeonite host (20-45 nm wide), and a similar exsolution texture was observed in augite. The exsolution wavelength of pyroxene (typically 30-60 nm) gives the cooling rate of 0.2-5 degrees C h-1. Such a rapid cooling probably records quenching from high temperature (1240-1280 degrees C) down to 1000 degrees C (estimated from the exsolution pair) due to the breakup of the ureilite parent body (UPB) while it was still hot. The pyroxene microstructure of Almahata Sitta is within the range of known ureilites and is most similar to that of Allan Hills (ALH) A81101 with the affinity of polycrystalline texture. The coarser exsolution texture of ALHA81101 pyroxene suggests slower cooling history than Almahata Sitta. However, direct comparison is difficult because of different pyroxene compositions. Because ALHA77257 has a similar pyroxene composition to Almahata Sitta and does not show visible pyroxene exsolution, it should have cooled faster than Almahata Sitta. Rapid, albeit variable cooling rates observed in different ureilite samples may suggest that they originated from UPB fragments of different size.
C1 [Mikouchi, Takashi; Takeda, Hiroshi] Univ Tokyo, Grad Sch Sci, Dept Earth & Planetary Sci, Bunkyo Ku, Tokyo 1130033, Japan.
[Zolensky, Michael E.] NASA, ARES, Johnson Space Ctr, Houston, TX 77058 USA.
[Ohnishi, Ichiro] JEOL Ltd, EM Business Unit, Tokyo 1968558, Japan.
[Suzuki, Toshiaki] JEOL Ltd, SM Business Unit, Tokyo 1968558, Japan.
[Jenniskens, Peter] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA.
[Shaddad, Muawia H.] Univ Khartoum, Dept Phys & Astron, Khartoum 11115, Sudan.
RP Mikouchi, T (reprint author), Univ Tokyo, Grad Sch Sci, Dept Earth & Planetary Sci, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan.
EM mikouchi@eps.s.u-tokyo.ac.jp
FU Japanese Ministry of Education, Culture, Sports, Science and Technology
[20740305]; NIPR [P-8]; Ocean Research Institute [005]; University of
Tokyo; JAXA-NASA Hayabusa Mission; NASA
FX We thank the students and staff of the University of Khartoum who
recovered the Almahata Sitta meteorites and the many astronomers that
tracked the fall of asteroid 2008 TC3. We especially thank JEOL for
offering us an opportunity to use their instruments with technical
assistance. The insightful comments by referees Mario Tribaudino, David
Mittlefehldt, Alan Rubin, and Christine Floss helped to improve the
original manuscript and are greatly appreciated. This work was supported
in part by the Grant-in-Aid for Young Scientists (B) by the Japanese
Ministry of Education, Culture, Sports, Science and Technology No.
20740305 and by NIPR Research Project Funds, P-8 (evolution of the early
solar system materials) (TM). This work is further supported in part by
funds from the cooperative program (No. 005, 2007) provided by Ocean
Research Institute, the University of Tokyo (HT) and by the JAXA-NASA
Hayabusa Mission and the NASA Stardust Sample Analysis Program (MZ). P.
J. is supported by NASA's Planetary Astronomy program. The SEM work was
performed in the Electron Microbeam Analysis Facility for Mineralogy at
the Department of Earth and Planetary Science, University of Tokyo.
NR 36
TC 7
Z9 7
U1 1
U2 11
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1086-9379
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD OCT-NOV
PY 2010
VL 45
IS 10-11
BP 1812
EP 1820
DI 10.1111/j.1945-5100.2010.01111.x
PG 9
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 700QP
UT WOS:000285759700019
ER
PT J
AU Greenhall, CA
AF Greenhall, Charles A.
TI An approach to power-law phase-noise models through generalized
functions
SO METROLOGIA
LA English
DT Article
ID FREQUENCY STABILITY; FLICKER-NOISE; VARIANCE; STATISTICS; SIMULATION;
STANDARDS; FREEDOM
AB This paper has two purposes: first, as a tutorial on the use of generalized autocovariances for deriving covariance properties of phase-noise models with power-law spectra; second, to connect the subject to the theory of generalized functions, also called tempered distributions. Proofs of theorems are available in an online supplement (stacks.iop.org/Met/47/605/mmedia).
C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Greenhall, CA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 298, Pasadena, CA 91109 USA.
EM cgreenhall@jpl.nasa.gov
FU National Aeronautics and Space Administration
FX This work was performed by the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics
and Space Administration.
NR 36
TC 0
Z9 0
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0026-1394
J9 METROLOGIA
JI Metrologia
PD OCT
PY 2010
VL 47
IS 5
BP 605
EP 615
DI 10.1088/0026-1394/47/5/011
PG 11
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA 653CB
UT WOS:000282060200014
ER
PT J
AU Rastogi, G
Osman, S
Kukkadapu, R
Engelhard, M
Vaishampayan, PA
Andersen, GL
Sani, RK
AF Rastogi, Gurdeep
Osman, Shariff
Kukkadapu, Ravi
Engelhard, Mark
Vaishampayan, Parag A.
Andersen, Gary L.
Sani, Rajesh K.
TI Microbial and Mineralogical Characterizations of Soils Collected from
the Deep Biosphere of the Former Homestake Gold Mine, South Dakota
SO MICROBIAL ECOLOGY
LA English
DT Article
ID 16S RIBOSOMAL-RNA; MOSSBAUER-SPECTROSCOPY; SUBSURFACE; DIVERSITY; DNA;
MICROARRAY; COMMUNITY; SHEWANELLA; EXTRACTION; REDUCTION
AB A microbial census on deep biosphere (1.34 km depth) microbial communities was performed in two soil samples collected from the Ross and number 6 Winze sites of the former Homestake gold mine, Lead, South Dakota using high-density 16S microarrays (PhyloChip). Soil mineralogical characterization was carried out using X-ray diffraction, X-ray photoelectron, and Mossbauer spectroscopic techniques which demonstrated silicates and iron minerals (phyllosilicates and clays) in both samples. Microarray data revealed extensive bacterial diversity in soils and detected the largest number of taxa in Proteobacteria phylum followed by Firmicutes and Actinobacteria. The archael communities in the deep gold mine environments were less diverse and belonged to phyla Euryarchaeota and Crenarchaeota. Both the samples showed remarkable similarities in microbial communities (1,360 common OTUs) despite distinct geochemical characteristics. Fifty-seven phylotypes could not be classified even at phylum level representing a hitherto unidentified diversity in deep biosphere. PhyloChip data also suggested considerable metabolic diversity by capturing several physiological groups such as sulfur-oxidizer, ammonia-oxidizers, iron-oxidizers, methane-oxidizers, and sulfate-reducers in both samples. High-density microarrays revealed the greatest prokaryotic diversity ever reported from deep subsurface habitat of gold mines.
C1 [Rastogi, Gurdeep; Sani, Rajesh K.] S Dakota Sch Mines & Technol, Dept Chem & Biol Engn, Rapid City, SD 57701 USA.
[Osman, Shariff; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Div Earth Sci, Berkeley, CA 94720 USA.
[Kukkadapu, Ravi; Engelhard, Mark] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA.
[Vaishampayan, Parag A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Sani, RK (reprint author), S Dakota Sch Mines & Technol, Dept Chem & Biol Engn, Rapid City, SD 57701 USA.
EM Rajesh.Sani@sdsmt.edu
RI Engelhard, Mark/F-1317-2010; Andersen, Gary/G-2792-2015;
OI Andersen, Gary/0000-0002-1618-9827; Engelhard, Mark/0000-0002-5543-0812
FU South Dakota Board of Regents [SDBOR/SDSMT 2010-09-05]; Department of
Energy's Office of Biological and Environmental Research at Pacific
Northwest National Laboratory
FX This research was funded by the South Dakota Board of Regents
Competitive Research Grant (Award No. SDBOR/SDSMT 2010-09-05). Powder
XRD, XPS, and Mossbauer spectroscopy measurements were conducted using
EMSL, a national scientific user facility sponsored by the Department of
Energy's Office of Biological and Environmental Research located at
Pacific Northwest National Laboratory. We would like to acknowledge
Colleen Russell (PNNL) for her help in XRD measurements and Mossbauer
sample preparations. Authors appreciate the assistance provided by Dr.
L. D. Stetler of Department of Geology and Geological Engineering,
SDSM&T in sample collection. We also would like to thank the anonymous
reviewers whose critiques were instrumental in improving the quality of
manuscript.
NR 42
TC 29
Z9 30
U1 0
U2 18
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0095-3628
J9 MICROB ECOL
JI Microb. Ecol.
PD OCT
PY 2010
VL 60
IS 3
BP 539
EP 550
DI 10.1007/s00248-010-9657-y
PG 12
WC Ecology; Marine & Freshwater Biology; Microbiology
SC Environmental Sciences & Ecology; Marine & Freshwater Biology;
Microbiology
GA 664OK
UT WOS:000282971400007
PM 20386898
ER
PT J
AU Hou, Z
Banday, AJ
Gorski, KM
Elsner, F
Wandelt, BD
AF Hou, Zhen
Banday, A. J.
Gorski, Krzysztof M.
Elsner, Franz
Wandelt, Benjamin D.
TI The primordial non-Gaussianity of local type (flocal(NL)) in the WMAP
5-year data: the length distribution of CMB skeleton
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE methods: data analysis; cosmic background radiation
ID MICROWAVE BACKGROUND MAPS; LARGE-SCALE STRUCTURE; MINKOWSKI FUNCTIONALS;
INFLATIONARY UNIVERSE; FOREGROUND EMISSION; PERTURBATION-THEORY; PROBE;
TEMPERATURE; ANISOTROPIES
AB We present skeleton studies of non-Gaussianity in the cosmic microwave background temperature anisotropy observed in the 5-yr Wilkinson Microwave Anisotropy Probe (WMAP) data. The local skeleton is traced on the 2D sphere by cubic spline interpolation which leads to more accurate estimation of the intersection positions between the skeleton and the secondary pixels than conventional linear interpolation. We demonstrate that the skeleton-based estimator of non-Gaussianity of the local type (flocal(NL)) - the departure of the length distribution from the corresponding Gaussian expectation - yields an unbiased and sufficiently converged likelihood function for flocal(NL).
We analyse the skeleton statistics in the WMAP 5-yr combined V- and W-band data outside the Galactic base-mask determined from the KQ75 sky coverage. The results are consistent with Gaussian simulations of the best-fitting cosmological model, but deviate from the previous results determined using the WMAP 1-yr data. We show that it is unlikely that the improved skeleton tracing method, the omission of Q-band data, the modification of the foreground-template fitting method or the absence of six extended regions in the new mask contribute to such a deviation. However, the application of the Kp0 base-mask in data processing does improve the consistency with the WMAP1 results.
The flocal(NL)-likelihood functions of the data are estimated at nine different smoothing levels. It is unexpected that the best-fitting values show positive correlation with the smoothing scales. Further investigation argues against a point source or goodness-of-fit explanation but finds that about 30 per cent of either Gaussian or f(NL) samples having better goodness-of-fit than the WMAP 5-yr data show a similar correlation. We present the estimate flocal(NL) = 47.3 +/- 34.9 (1 Sigma error) determined from the first four smoothing angles and flocal(NL) = 76.8 +/- 43.1 for the combination of all nine. The former result may be overestimated at the 0.21 Sigma level because of point sources.
C1 [Hou, Zhen] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China.
[Hou, Zhen; Banday, A. J.; Elsner, Franz] Max Planck Inst Astrophys, D-85741 Garching, Germany.
[Hou, Zhen] Nanjing Univ, Purple Mt Observ, Joint Ctr Particle Nucl Phys & Cosmol, Nanjing 210093, Peoples R China.
[Hou, Zhen] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China.
[Banday, A. J.] Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France.
[Gorski, Krzysztof M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Gorski, Krzysztof M.] CALTECH, Pasadena, CA 91125 USA.
[Gorski, Krzysztof M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland.
[Wandelt, Benjamin D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Wandelt, Benjamin D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA.
RP Hou, Z (reprint author), Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China.
EM houzhen@pmo.ac.cn
FU Max-Planck-Gesellschaft Chinese Academy of Sciences; NASA Office of
Space Science
FX ZH acknowledges the support by Max-Planck-Gesellschaft Chinese Academy
of Sciences Joint Doctoral Promotion Programme (MPG-CAS-DPP), and some
useful discussions with H. K. Eriksen, Jun Pan and Xi Kang. We give
special thanks to Stephane Colombi for suggestions on improving the
manuscript. The computations were performed at the Rechenzentrum
Garching (RZG) of Max-Planck-Gesellschaft and the GPU cluster of the
cosmology group in Purple Mountain Observatory (PMO). Some of the
results in this paper have been derived using the HEALPix (Gorski et al.
2005) software and analysis package. We acknowledge use of the Legacy
Archive for Microwave Background Data Analysis (LAMBDA) supported by the
NASA Office of Space Science.
NR 35
TC 4
Z9 4
U1 0
U2 1
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD OCT 1
PY 2010
VL 407
IS 4
BP 2141
EP 2156
DI 10.1111/j.1365-2966.2010.17098.x
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 651ST
UT WOS:000281948100009
ER
PT J
AU Nicholls, SD
Mohr, KI
AF Nicholls, Stephen D.
Mohr, Karen I.
TI An Analysis of the Environments of Intense Convective Systems in West
Africa in 2003
SO MONTHLY WEATHER REVIEW
LA English
DT Article
ID VERTICAL WIND SHEAR; LIVED SQUALL LINES; EASTERLY WAVES; PART I; SUMMER
MONSOON; LIGHTNING CHARACTERISTICS; PRECIPITATION FEATURES; PASSIVE
MICROWAVE; CONCEPTUAL-MODEL; TROPICAL OCEANS
AB The local- and regional-scale environments associated with intense convective systems in West Africa during 2003 were diagnosed from soundings, operational analysis, and space-based datasets. Convective system cases were identified from the Tropical Rainfall Measuring Mission (TRMM) microwave imagery and classified by the system minimum 85-GHz brightness temperature and the estimated elapsed time of propagation from terrain greater than 500 m. The speed of the midlevel jet, the magnitude of the low-level shear, and the surface equivalent potential temperature theta(e) were greater for the intense cases compared to the nonintense cases, although the differences between the means tended to be small: less than 3 K for surface theta(e) and less than 2 x 10(-3) s(-1) for low-level wind shear. Hypothesis testing of a series of commonly used intensity prediction metrics resulted in significant results only for low-level metrics such as convective available potential energy and not for any of the mid-or upper-level metrics such as the 700-hPa theta(e). None of the environmental variables or intensity metrics by themselves or in combination appeared to be reliable direct predictors of intensity. In the regional-scale analysis, the majority of intense convective systems occurred in the surface baroclinic zone where surface theta(e) exceeded 344 K and the 700-hPa zonal wind speeds were less than -6 m s(-1). Fewer intense cases compared to nonintense cases were associated with African easterly wave troughs. Fewer than 25% of these cases occurred in environments with detectable Saharan dust loads, and the results for intense and nonintense cases were similar. Although the discrimination between the intense and nonintense environments was narrow, the results were robust and consistent with the seasonal movement of the West African monsoon, regional differences in topography, and African easterly wave energetics.
C1 [Mohr, Karen I.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA.
[Nicholls, Stephen D.] SUNY Albany, Dept Earth & Atmospher Sci, Albany, NY 12222 USA.
RP Nicholls, SD (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Code 613-1, Greenbelt, MD 20771 USA.
EM karen.mohr-1@nasa.gov
RI Mohr, Karen/E-4331-2012
FU NASA [NNX07AD45G]; NSF [ATM0538164]
FX We obtained the ECMWF operational analysis from the NCAR Research Data
Archive, the in situ sounding data from the University of Wyoming
atmospheric sounding Web site (see online at
http://weather.uwyo.edu/upperair/sounding.html), the TRMM 1B11
brightness temperature product from the NASA GSFC Distributed Active
Archive (see online at http://mirador.gsfc.nasa.gov), and the MODIS
aerosol optical depth product from the NASA-GSFC Level 2 and Atmosphere
Archive and Distribution System(see online at
http://ladsweb.nascom.nasa.gov/). R. Hucek assisted with the processing
and interpretation of the MODIS product. G. Berry and A. Srock provided
code and advice for the AEW analysis. We had important conversations
with L. Oolman, P. Roundy, J.-S. Hsieh, R. Kahn, S. Braun, and M.
Weisman. C. Thorncroft provided comments on the thesis from which this
manuscript is derived. The work of M. LeMone and two anonymous reviewers
greatly improved this manuscript. We had support from NASA Precipitation
Measuring Mission Grant NNX07AD45G and NSF Grant ATM0538164.
NR 93
TC 14
Z9 14
U1 2
U2 4
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0027-0644
J9 MON WEATHER REV
JI Mon. Weather Rev.
PD OCT
PY 2010
VL 138
IS 10
BP 3721
EP 3739
DI 10.1175/2010MWR3321.1
PG 19
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 668JM
UT WOS:000283264600002
ER
PT J
AU Suh, J
LaHaye, MD
Echternach, PM
Schwab, KC
Roukes, ML
AF Suh, Junho
LaHaye, Matthew D.
Echternach, Pierre M.
Schwab, Keith C.
Roukes, Michael L.
TI Parametric Amplification and Back-Action Noise Squeezing by a
Qubit-Coupled Nanoresonator
SO NANO LETTERS
LA English
DT Article
DE NEMS; Cooper-pair-box qubit; dispersive coupling; parametric
amplification; noise squeezing; squeezed state
ID QUANTUM-NOISE; NANOMECHANICAL RESONATOR; SUPERCONDUCTING QUBIT;
MECHANICAL RESONATOR; GROUND-STATE; PHOTON; CONVERSION; AMPLIFIERS;
CIRCUIT; MOTION
AB We demonstrate the parametric amplification and noise squeezing of nanomechanical motion utilizing dispersive coupling to a Cooper-pair box qubit By modulating the qubit bias and resulting mechanical resonance shift, we achieve gain of 30 dB and noise squeezing of 4 dB This qubit-mediatal effect is 3000 times more effective than that resulting from the weak nonlinearity of capacitance to a nearby electrode This technique may be used to prepare nanomechanical squeezed states
C1 [Suh, Junho; Roukes, Michael L.] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA.
[LaHaye, Matthew D.] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA.
[Echternach, Pierre M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Roukes, ML (reprint author), CALTECH, Kavli Nanosci Inst, MC 114-36, Pasadena, CA 91125 USA.
OI Suh, Junho/0000-0002-0112-0499; LaHaye, Matthew/0000-0003-1911-0704
FU National Aeronautics and Space Administration
FX The authors thank to M Cross, R Lifshitz and R Karabalin for discussions
and R E Muller for electron beam lithography This research was partially
carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space
Administration
NR 35
TC 41
Z9 41
U1 0
U2 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD OCT
PY 2010
VL 10
IS 10
BP 3990
EP 3994
DI 10.1021/nl101844r
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 661KQ
UT WOS:000282727600032
PM 20843059
ER
PT J
AU Pallister, JS
McCausland, WA
Jonsson, S
Lu, Z
Zahran, HM
El Hadidy, S
Aburukbah, A
Stewart, ICF
Lundgren, PR
White, RA
Moufti, MRH
AF Pallister, John S.
McCausland, Wendy A.
Jonsson, Sigurjon
Lu, Zhong
Zahran, Hani M.
El Hadidy, Salah
Aburukbah, Abdallah
Stewart, Ian C. F.
Lundgren, Paul R.
White, Randal A.
Moufti, Mohammed R. H.
TI Broad accommodation of rift-related extension recorded by dyke intrusion
in Saudi Arabia
SO NATURE GEOSCIENCE
LA English
DT Article
ID ALKALI BASALT PROVINCE; RED-SEA; WESTERN ARABIA; BENEATH; EARTHQUAKES;
VOLCANO; AFAR; CONSTRAINTS; SEISMOLOGY; MAGNITUDE
AB The extensive harrat lava province of Arabia formed during the past 30 million years in response to Red Sea rifting and mantle upwelling. The area was regarded as seismically quiet, but between April and June 2009 a swarm of more than 30,000 earthquakes struck one of the lava fields in the province, Harrat Lunayyir, northwest Saudi Arabia. Concerned that larger damaging earthquakes might occur, the Saudi Arabian government evacuated 40,000 people from the region. Here we use geologic, geodetic and seismic data to show that the earthquake swarm resulted from magmatic dyke intrusion. We document a surface fault rupture that is 8 km long with 91 cm of offset. Surface deformation is best modelled by the shallow intrusion of a north-west trending dyke that is about 10 km long. Seismic waves generated during the earthquakes exhibit overlapping very low-and high-frequency components. We interpret the low frequencies to represent intrusion of magma and the high frequencies to represent fracturing of the crystalline basement rocks. Rather than extension being accommodated entirely by the central Red Sea rift axis, we suggest that the broad deformation observed in Harrat Lunayyir indicates that rift margins can remain as active sites of extension throughout rifting. Our analyses allowed us to forecast the likelihood of a future eruption or large earthquake in the region and informed the decisions made by the Saudi Arabian government to return the evacuees.
C1 [Pallister, John S.; McCausland, Wendy A.; Lu, Zhong; White, Randal A.] US Geol Survey, Volcano Disaster Assistance Program, Cascades Volcano Observ, Vancouver, WA 98683 USA.
[Jonsson, Sigurjon] King Abdullah Univ Sci & Technol, Thuwal 23955, Saudi Arabia.
[Zahran, Hani M.; El Hadidy, Salah; Aburukbah, Abdallah; Stewart, Ian C. F.] Natl Ctr Earthquakes & Volcanoes, Saudi Geol Survey, Jeddah 21514, Saudi Arabia.
[Lundgren, Paul R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Moufti, Mohammed R. H.] King Abdulaziz Univ, Fac Earth Sci, Jeddah 21589, Saudi Arabia.
RP Pallister, JS (reprint author), US Geol Survey, Volcano Disaster Assistance Program, Cascades Volcano Observ, 1300 SE Cardinal Court, Vancouver, WA 98683 USA.
EM jpallist@usgs.gov
RI Jonsson, Sigurjon/G-4353-2015
OI Jonsson, Sigurjon/0000-0001-5378-7079
FU USAID's Office of Foreign Disaster Assistance; USGS
FX This work is the result of a joint effort of the Saudi Arabian
Geological Survey (SGS), and the US Geological Survey (USGS), conducted
with the assistance of the US Consulate, Jeddah, Saudi Arabia. We thank
many SGS colleagues (too numerous to list individually here) who
participated in field and laboratory work and contributed to the success
of the crisis response. We also acknowledge support to the Volcano
Disaster Assistance Program provided by USAID's Office of Foreign
Disaster Assistance and the USGS Volcano Hazards Program, and we thank
SGS President Z. Nawab for facilitating our work together. Original
Envisat radar raw data are copyrighted by the European Space Agency
(ESA) and were provided by ESA. We also acknowledge the Nature
Geoscience reviewers and editor Whitchurch, whose contributions
substantially improved this paper.
NR 46
TC 76
Z9 76
U1 0
U2 15
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1752-0894
EI 1752-0908
J9 NAT GEOSCI
JI Nat. Geosci.
PD OCT
PY 2010
VL 3
IS 10
BP 705
EP 712
DI 10.1038/NGEO966
PG 8
WC Geosciences, Multidisciplinary
SC Geology
GA 657LJ
UT WOS:000282413900014
ER
PT J
AU Ray, RD
Byrne, DA
AF Ray, Richard D.
Byrne, Deirdre A.
TI Bottom pressure tides along a line in the southeast Atlantic Ocean and
comparisons with satellite altimetry
SO OCEAN DYNAMICS
LA English
DT Article
DE Oceanic tides; Satellite altimetry; Ocean bottom pressure
ID INTERNAL TIDES; TOPEX/POSEIDON; EUROPE; MODELS
AB Seafloor pressure records, collected at 11 stations aligned along a single ground track of the Topex/Poseidon and Jason satellites, are analyzed for their tidal content. With very low background noise levels and approximately 27 months of high-quality records, tidal constituents can be estimated with unusually high precision. This includes many high-frequency lines up through the seventh-diurnal band. The station deployment provides a unique opportunity to compare with tides estimated from satellite altimetry, point by point along the satellite track, in a region of moderately high mesoscale variability. That variability can significantly corrupt altimeter-based tide estimates, even with 17 years of data. A method to improve the along-track altimeter estimates by correcting the data for non-tidal variability is found to yield much better agreement with the bottom-pressure data. The technique should prove useful in certain demanding applications, such as altimetric studies of internal tides.
C1 [Ray, Richard D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Byrne, Deirdre A.] Univ Maine, Sch Marine Sci, Orono, ME USA.
RP Ray, RD (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
EM richard.ray@nasa.gov; dbyrne@umeoce.maine.edu
RI Ray, Richard/D-1034-2012
FU US National Aeronautics and Space Administration; National Science
Foundation [OCE-0099177]; CNES
FX Brian Beckley is thanked for his help in processing Topex/Poseidon and
Jason-1 altimeter data. Those data were obtained as Geophysical Data
Records from PODAAC, Jet Propulsion Laboratory, Pasadena. The
altimeter-based sea-level anomaly grids used here as a correction were
produced by SSALTO/DUACS and distributed by AVISO with support from
CNES. This work was supported by the Ocean Surface Topography program of
the US National Aeronautics and Space Administration and by grant
OCE-0099177 from the National Science Foundation.
NR 28
TC 14
Z9 14
U1 0
U2 3
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1616-7341
EI 1616-7228
J9 OCEAN DYNAM
JI Ocean Dyn.
PD OCT
PY 2010
VL 60
IS 5
BP 1167
EP 1176
DI 10.1007/s10236-010-0316-0
PG 10
WC Oceanography
SC Oceanography
GA 655AO
UT WOS:000282213200008
ER
PT J
AU VanZwieten, TS
VanZwieten, JH
Balas, MJ
Driscoll, FR
AF VanZwieten, Tannen S.
VanZwieten, James H., Jr.
Balas, Mark J.
Driscoll, Frederick R.
TI Development of an adaptive disturbance rejection system for the rapidly
deployable stable platform-Part 2 Controller design and closed loop
response
SO OCEAN ENGINEERING
LA English
DT Article
DE Sea basing; Crane ship; SPAR; Disturbance rejection; Adaptive control;
Saturation constraints; Rapidly deployable stable platform; RDSP; RDSC;
MRAC
AB Currently, both military and civilian operations that require at-sea cargo transfers are severely limited by environmental conditions and loading forces that induce vessel motions. To increase the robustness of at-sea cargo transfer to these environmental conditions and loading forces, efforts have recently been made toward an actively controlled, rapidly deployable stable platform (RDSP). The purpose of the research presented here is to implement an output feedback adaptive controller and adaptive disturbance rejection scheme that will mitigate the effect of environmental conditions and reject disturbances caused by various loading situations. Because of the controller's distinct ability to adapt to various operating conditions, anticipate and reject load disturbances of unknown magnitude, and adjust to stay within input saturation constraints, the framework is a good fit for the RDSP. Three missions are considered using a previously developed 3 degree of freedom simulation of a 1/10th scale RDSP prototype. Results show successful mitigation of load disturbances and a significant reduction in pitch motions using a control command that remains within the given amplitude and rate constraints. In the case of cargo transfer operations, the adaptive control system is able to significantly increase the cargo throughput by rejecting the disturbances before they are able to cause large pitching dynamics. (C) 2010 Elsevier Ltd. All rights reserved.
C1 [VanZwieten, James H., Jr.] Florida Atlantic Univ, Ctr Ocean Energy Technol, Dania, FL 33004 USA.
[VanZwieten, Tannen S.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
[Balas, Mark J.] Univ Wyoming, Dept Elect & Comp Engn, Laramie, WY 82071 USA.
[Driscoll, Frederick R.] Natl Renewable Energy Lab, Natl Wind Technol Ctr, Golden, CO 80401 USA.
RP VanZwieten, JH (reprint author), Florida Atlantic Univ, Ctr Ocean Energy Technol, 101 N Beach Rd, Dania, FL 33004 USA.
EM tannen.s.vanzwieten@nasa.gov; jvanzwi@fau.edu; mbalas@uwyo.edu;
frederick.driscoll@nrel.gov
FU NASA; Office of Naval Research [N00014-06-1-0461]
FX The authors would like to thank the NASA Graduate Student Researchers
Program for providing partial funding for this research under the
direction of Dr. Mark Whorton.; The authors gratefully acknowledge the
Office of Naval Research, code 33, program manager Kelly Cooper for
partially funding this work under Grant N00014-06-1-0461.
NR 35
TC 1
Z9 1
U1 0
U2 4
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0029-8018
J9 OCEAN ENG
JI Ocean Eng.
PD OCT
PY 2010
VL 37
IS 14-15
BP 1367
EP 1379
DI 10.1016/j.oceaneng.2010.07.005
PG 13
WC Engineering, Marine; Engineering, Civil; Engineering, Ocean;
Oceanography
SC Engineering; Oceanography
GA 657ZW
UT WOS:000282459200011
ER
PT J
AU Smialek, JL
Humphrey, DL
Noebe, RD
AF Smialek, James L.
Humphrey, Donald L.
Noebe, Ronald D.
TI Comparative Oxidation Kinetics of a NiPtTi High Temperature Shape Memory
Alloy
SO OXIDATION OF METALS
LA English
DT Article
DE Isothermal oxidation; Parabolic rate constants; Activation energy; Ni-Ti
alloys; Shape memory alloys; TiO(2) scales; NiO scales
ID BEHAVIOR
AB A high temperature shape memory alloy, Ni-30Pt-50Ti (at.%), with an Ms near 600 degrees C, was isothermally oxidized in air for 100 h over the temperature range of 500-900 degrees C. Nearly parabolic kinetics were observed in log-log and parabolic plots, with no indication of initial fast transient oxidation. On average the rates were about a factor of 4 lower than values measured here for a binary Ni-49Ti commercial SMA. The overall behavior could be best described by the Arrhenius relationships:
NiPtTi: k(p) 1: 54 x 10(12) exp[(-250 kJ= mol_RT]mg(2) = cm(4)h
NiTi: k(p) 6: 39 x 10(12) exp[(249 kJ/mol/RT]mg(2) /cm(4)h
The activation energy was consistent with literature values for TiO2 scale growth measured for elemental Ti and some NiTi alloys, at similar to 210- 260 kJ/ol. However, a number of other studies produced activation energies in the range of 135-150 kJ/mol. This divergence may be related to various complex scale layers and depletion zones, however, no specific correlation can be identified at present.
C1 [Smialek, James L.; Noebe, Ronald D.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
[Humphrey, Donald L.] ASRC Aerosp Corp, Cleveland, OH 44135 USA.
RP Smialek, JL (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
EM james.l.smialek@nasa.gov
FU NASA
FX This work was supported by the NASA Fundamental Aeronautics Program,
Supersonics Project, Dale Hopkins, Assoc. Principal Investigator.
NR 26
TC 3
Z9 3
U1 0
U2 4
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0030-770X
J9 OXID MET
JI Oxid. Met.
PD OCT
PY 2010
VL 74
IS 3-4
BP 125
EP 144
DI 10.1007/s11085-010-9202-x
PG 20
WC Metallurgy & Metallurgical Engineering
SC Metallurgy & Metallurgical Engineering
GA 648WO
UT WOS:000281725300002
ER
PT J
AU Jacobson, N
Hull, D
AF Jacobson, Nathan
Hull, David
TI Characterization and Oxidation Behavior of Rayon-Derived Carbon Fibers
SO OXIDATION OF METALS
LA English
DT Article
DE Carbon; Carbon/carbon; Composite; Oxidation
ID MATRIX COMPOSITES; CARBON/CARBON; REACTIVITY
AB Rayon-derived fibers are the central constituent of reinforced carbon/carbon (RCC) composites. Optical, scanning electron, and transmission electron microscopy were used to characterize the as-fabricated fibers and the fibers after oxidation. Oxidation rates were measured with weight loss techniques in air and oxygen. The as-received fibers are similar to 10 mu m in diameter and characterized by grooves or crenulations around the edges. Below 800 A degrees C, in the reaction-controlled region, preferential attack began in the crenulations and appeared to occur down fissures in the fibers.
C1 [Jacobson, Nathan; Hull, David] NASA Glenn Res Ctr, Cleveland, OH 44135 USA.
RP Jacobson, N (reprint author), NASA Glenn Res Ctr, Cleveland, OH 44135 USA.
EM nathan.s.jacobson@nasa.gov
RI Jacobson, Nathan/A-9411-2009
NR 17
TC 4
Z9 4
U1 1
U2 10
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0030-770X
J9 OXID MET
JI Oxid. Met.
PD OCT
PY 2010
VL 74
IS 3-4
BP 193
EP 203
DI 10.1007/s11085-010-9208-4
PG 11
WC Metallurgy & Metallurgical Engineering
SC Metallurgy & Metallurgical Engineering
GA 648WO
UT WOS:000281725300007
ER
PT J
AU Weber, RC
Bills, BG
Johnson, CL
AF Weber, R. C.
Bills, B. G.
Johnson, C. L.
TI A simple physical model for deep moonquake occurrence times
SO PHYSICS OF THE EARTH AND PLANETARY INTERIORS
LA English
DT Article
DE Moon; Moonquakes; Lunar interior; Lunar seismology
ID TIDAL STRESSES; LUNAR SEISMICITY; MOON; CONSTITUTION; TECTONICS
AB The physical process that results in moonquakes is not yet fully understood. The periodic occurrence times of events from individual clusters are clearly related to tidal stress, but also exhibit departures from the temporal regularity this relationship would seem to imply. Even simplified models that capture some of the relevant physics require a large number of variables. However, a single, easily accessible variable - the time interval I(n) between events - can be used to reveal behavior not readily observed using typical periodicity analyses (e.g., Fourier analyses). The delay-coordinate (DC) map, a particularly revealing way to display data from a time series, is a map of successive intervals: I(n + 1) plotted vs. I(n). We use a DC approach to characterize the dynamics of moonquake occurrence.
Moonquake-like DC maps can be reproduced by combining sequences of synthetic events that occur with variable probability at tidal periods. Though this model gives a good description of what happens, it has little physical content, thus providing only little insight into why moonquakes occur. We investigate a more mechanistic model.
In this study, we present a series of simple models of deep moonquake occurrence, with consideration of both tidal stress and stress drop during events. We first examine the behavior of inter-event times in a delay-coordinate context, and then examine the output, in that context, of a sequence of simple models of tidal forcing and stress relief. We find, as might be expected, that the stress relieved by moonquakes influences their occurrence times. Our models may also provide an explanation for the opposite-polarity events observed at some clusters. Published by Elsevier B.V.
C1 [Weber, R. C.] USGS Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA.
[Bills, B. G.] NASA, Jet Prop Lab, Pasadena, CA USA.
[Johnson, C. L.] UBC Dept Earth & Ocean Sci, Vancouver, BC, Canada.
RP Weber, RC (reprint author), USGS Astrogeol Sci Ctr, 2255 N Gemini Dr, Flagstaff, AZ 86001 USA.
EM rweber@usgs.gov
FU NASA [NNH08AH55I, NNX08AL49G]; NSERC
FX This work was supported by the Eugene M. Shoemaker Planetary Geology and
Geophysics Fellowship awarded to RCW (Planetary Geology and Geophysics
grant, NASA NNH08AH55I), and by a Planetary Geology and Geophysics
grant, NASA NNX08AL49G, and NSERC grant to CLJ.
NR 20
TC 1
Z9 1
U1 1
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0031-9201
J9 PHYS EARTH PLANET IN
JI Phys. Earth Planet. Inter.
PD OCT
PY 2010
VL 182
IS 3-4
BP 152
EP 160
DI 10.1016/j.pepi.2010.07.009
PG 9
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 670GA
UT WOS:000283408000003
ER
PT J
AU Stalport, F
Guan, YY
Audrey, N
Coll, P
Szopa, C
Macari, F
Person, A
Chaput, D
Raulin, F
Cottin, H
AF Stalport, Fabien
Guan, Yuan Yong
Audrey, Noblet
Coll, Patrice
Szopa, Cyril
Macari, Frederique
Person, Alain
Chaput, Didier
Raulin, Francois
Cottin, Herve
TI UVolution, a photochemistry experiment in low earth orbit: Investigation
of the photostability of carbonates exposed to martian-like UV radiation
conditions
SO PLANETARY AND SPACE SCIENCE
LA English
DT Article
DE Mars; Astrobiology; UV radiation; Carbonates; Biominerals; Low Earth
orbit
ID EXPERIMENTAL SIMULATIONS; ORGANIC-COMPOUNDS; MERIDIANI-PLANUM; EARLY
MARS; SEARCH; LIFE; CHEMISTRY; METHANE; SURFACE; IDENTIFICATION
AB The detection and identification of carbonates on Mars are of prime importance to establish the evolution of its atmosphere, correlated to the history of the liquid water, or even to determine the existence of a possible ancient biological activity. Till date, no large deposits of carbonates have been found. In fact, their detection is specific to local areas and in very low amounts. The absence of such deposits is commonly attributed to the harsh environmental conditions at the surface of Mars. Additionally, the presence of UV radiation has been proposed to explain their photodecomposition and hence their absence. However, contradictory results from laboratory experiments mimicking Mars' surface UV radiation did not resolve the behaviour of carbonates in such an environment, which is why we exposed, in low Earth orbit and in laboratory experiments, both abiotic and biotic calcium carbonates to UV radiation of wavelength above 200 nm, the same spectral distribution as the one reaching the surface of Mars. For low Earth orbit (LEO) exposure, this was done for the UVolution experiment on board the BIOPAN ESA module, which was set outside a Russian Foton automated capsule, and exposed to space conditions for 12 days in September 2007. The targeted carbonates are biominerals and abiotic samples. Our laboratory results mainly show that the exposed carbonates appear to be stable to UV radiation if directly exposed to it. The LEO experiment results tend to the same conclusion, but the integrated exposition time to Solar UV during the experiment is not sufficient to be conclusive. However, the stability of the biominerals derived from the laboratory experiment could strengthen the interest to explore deeper their potential as life records at Mars. Hence, they should be considered as primary targets for in situ analyses during future missions. (c) 2010 Elsevier Ltd. All rights reserved.
C1 [Stalport, Fabien] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Stalport, Fabien; Guan, Yuan Yong; Audrey, Noblet; Coll, Patrice; Macari, Frederique; Raulin, Francois; Cottin, Herve] Univ Paris 07, LISA, UMR 7583, CNRS,CMC, F-94010 Creteil, France.
[Stalport, Fabien; Guan, Yuan Yong; Audrey, Noblet; Coll, Patrice; Macari, Frederique; Raulin, Francois; Cottin, Herve] Univ Paris 12, LISA, UMR 7583, CNRS,CMC, F-94010 Creteil, France.
[Szopa, Cyril] Univ Versailles St Quentin, F-75005 Paris, France.
[Szopa, Cyril] LATMOS IPSL, CNRS INSU, F-75005 Paris, France.
[Person, Alain] Univ Paris 06, Lab Biomineralisat & Paleoenvironm, F-75005 Paris, France.
[Chaput, Didier] Ctr Natl Etud Spatiales, F-31401 Toulouse 9, France.
RP Stalport, F (reprint author), NASA, Goddard Space Flight Ctr, Code 699,8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
EM Fabien.Stalport@lisa.univ-paris12.fr
RI Cottin, Herve/H-5654-2013; szopa, cyril/C-6865-2015
OI Cottin, Herve/0000-0001-9170-5265; szopa, cyril/0000-0002-0090-4056
FU ESA; CNES; French Program for Planetology (PNP); COMAT aerospace
(Toulouse, France); Kayser Threde (Munchen, Germany)
FX This program has been selected by ESA in the frame of the AO Life and
Physical Sciences and Applied Research Projects 2004. The authors would
like to acknowledge the support of ESA (especially Rene Demets), CNES
(especially Michel Viso for the human, financial, and technical
supports), French Program for Planetology (PNP), COMAT aerospace
(Toulouse, France), and Kayser Threde (Munchen, Germany). The authors
also acknowledge Jennifer Stern and Amy Houghton for helpful comments.
NR 50
TC 4
Z9 4
U1 0
U2 12
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0032-0633
J9 PLANET SPACE SCI
JI Planet Space Sci.
PD OCT
PY 2010
VL 58
IS 12
BP 1617
EP 1624
DI 10.1016/j.pss.2010.08.005
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 670GB
UT WOS:000283408100009
ER
PT J
AU Daescu, DN
Todling, R
AF Daescu, Dacian N.
Todling, Ricardo
TI Adjoint sensitivity of the model forecast to data assimilation system
error covariance parameters
SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY
LA English
DT Article
DE state analysis; parameter estimation; forecast impact; covariance tuning
ID VARIATIONAL DATA ASSIMILATION; ENSEMBLE KALMAN FILTER; ATMOSPHERIC DATA
ASSIMILATION; 4D-VAR DATA ASSIMILATION; OBSERVATION IMPACT;
BACKGROUND-ERROR; STATISTICS; DIAGNOSIS; APPROXIMATIONS; FORMULATION
AB The development of the adjoint of the forecast model and of the adjoint of the data assimilation system (adjoint-DAS) makes feasible the evaluation of the local sensitivity of a model forecast aspect with respect to a large number of parameters in the DAS. In this study it is shown that, by exploiting sensitivity properties that are intrinsic to the analyses derived from a minimization principle, the adjoint-DAS software tools developed at numerical weather prediction centres for observation and background sensitivity may be used to estimate the forecast sensitivity to observation-and background-error covariance parameters and for forecast impact assessment. All-at-once sensitivity to error covariance weighting coefficients and first-order impact estimates are derived as a particular case of the error covariance perturbation analysis. The use of the sensitivity information as a DAS diagnostic tool and for implementing gradient-based error covariance tuning algorithms is illustrated in idealized data assimilation experiments with the Lorenz 40-variable model. Preliminary results of forecast sensitivity to observation-and background-error covariance weight parameters are presented using the fifth-generation NASA Goddard Earth Observing System (GEOS-5) atmospheric DAS and its adjoint developed at the Global Modeling and Assimilation Office. Copyright (C) 2010 Royal Meteorological Society
C1 [Daescu, Dacian N.] Portland State Univ, Portland, OR 97207 USA.
[Todling, Ricardo] NASA, Global Modeling & Assimilat Off, GSFC, Greenbelt, MD USA.
RP Daescu, DN (reprint author), Portland State Univ, POB 751, Portland, OR 97207 USA.
EM daescu@pdx.edu
FU NASA [NNG06GC67G]; National Science Foundation [DMS-0914937]
FX The work of D. N. Daescu was supported by the NASA Modeling, Analysis,
and Prediction Program under award NNG06GC67G and by the National
Science Foundation under award DMS-0914937. Resources supporting this
work were provided by the NASA High-End Computing (HEC) Program through
the NASA Center for Computational Sciences (NCCS) at Goddard Space
Flight Center.
NR 55
TC 12
Z9 12
U1 0
U2 10
PU JOHN WILEY & SONS LTD
PI CHICHESTER
PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND
SN 0035-9009
J9 Q J ROY METEOR SOC
JI Q. J. R. Meteorol. Soc.
PD OCT
PY 2010
VL 136
IS 653
BP 2000
EP 2012
DI 10.1002/qj.693
PN B
PG 13
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 694QO
UT WOS:000285312900006
ER
PT J
AU Tong, JJ
Velicogna, I
AF Tong, Jinjun
Velicogna, Isabella
TI A Comparison of AMSR-E/Aqua Snow Products with in situ Observations and
MODIS Snow Cover Products in the Mackenzie River Basin, Canada
SO REMOTE SENSING
LA English
DT Article
DE snow water equivalent; snow cover extent; AMSR-E; MODIS; Mackenzie River
Basin
AB Since 2002, global snow water equivalent (SWE) estimates have been generated using Advanced Microwave Scanning Radiometer (AMSR-E)/Aqua data. Accurate estimates of SWE are important to improve monitoring and managing of water resources in specific regions. SWE and snow map product accuracy are functions of topography and of land cover type because landscape characteristics have a strong influence on redistribution and physical properties of snow cover, and influence the microwave properties of the surface. Here we evaluate the AMSR-E SWE and derived snow map products in the Mackenzie River Basin (MRB), Canada, which is characterized by complex topography and varying land cover types from tundra to boreal forest. We compare in situ snow depth observations and Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover maps from January 2003 to December 2007 with passive microwave remotely sensed SWE from AMSR-E and derived snow cover maps. In the MRB the mean absolute error ranges from 12 mm in the early winter season to 50 mm in the late winter season and overestimations of snow cover maps based on a 1 mm threshold of AMSR-E SWE varies from 4% to 8%. The optimal threshold for AMSR-E SWE to classify the pixels as snow ranges from 6 mm to 9 mm. The overall accuracy of new snow cover maps from AMSR-E varies from 91% to 94% in different sub-basins in the MRB.
C1 [Tong, Jinjun; Velicogna, Isabella] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA.
[Velicogna, Isabella] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Tong, JJ (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA.
EM jinjunt@uci.edu; isabella.velicogna@gmail.com
FU NASA
FX This work is supported by grants from NASA's Cryospheric Science
Program, Solid Earth and Natural Hazards Program, Terrestrial Hydrology
Program. The authors also thank Ross Brown and Chris Derksen in
Environment Canada for supplying the snow density data and their
constructive comments. Comments by three anonymous referees greatly
improved the paper.
NR 17
TC 8
Z9 10
U1 1
U2 8
PU MDPI AG
PI BASEL
PA POSTFACH, CH-4005 BASEL, SWITZERLAND
SN 2072-4292
J9 REMOTE SENS-BASEL
JI Remote Sens.
PD OCT
PY 2010
VL 2
IS 10
BP 2313
EP 2322
DI 10.3390/rs2102313
PG 10
WC Remote Sensing
SC Remote Sensing
GA V24HR
UT WOS:000208402000001
ER
PT J
AU Kurtoglu, T
Tumer, IY
Jensen, DC
AF Kurtoglu, Tolga
Tumer, Irem Y.
Jensen, David C.
TI A functional failure reasoning methodology for evaluation of conceptual
system architectures
SO RESEARCH IN ENGINEERING DESIGN
LA English
DT Article
DE Conceptual design; Functional failure reasoning; Failure-informed
trade-off analysis; System architecture design; Model-based reasoning;
Behavioral simulation
ID FAULT-DIAGNOSIS; EVENT TREES; DESIGN; BEHAVIOR
AB In this paper, we introduce a new methodology for reasoning about the functional failures during early design of complex systems. The proposed approach is based on the notion that a failure happens when a functional element in the system does not perform its intended task. Accordingly, a functional criticality is defined depending on the role of functionality in accomplishing designed tasks. A simulation-based failure analysis tool is then used to analyze functional failures and reason about their impact on overall system functionality. The analysis results are then integrated into an early stage system architecture analysis framework that analyzes the impact of functional failures and their propagation to guide system-level architectural design decisions. With this method, a multitude of failure scenarios can be quickly analyzed to determine the effects of architectural design decisions on overall system functionality. Using this framework, design teams can systematically explore risks and vulnerabilities during the early (functional design) stage of system development prior to the selection of specific components. Application of the presented method to the design of a representative aerospace electrical power system (EPS) testbed demonstrates these capabilities.
C1 [Tumer, Irem Y.; Jensen, David C.] Oregon State Univ, Complex Engn Syst Design Lab, Corvallis, OR 97331 USA.
[Kurtoglu, Tolga] NASA, Ames Res Ctr, Intelligent Syst Div, Moffett Field, CA 94035 USA.
RP Tumer, IY (reprint author), Oregon State Univ, Complex Engn Syst Design Lab, Corvallis, OR 97331 USA.
EM tolga.kurtoglu@nasa.gov; irem.tumer@oregonstate.edu;
jensend@onid.orst.edu
FU Air Force Office of Scientific Research [AFOSR FA9550-08-1-0158]
FX This research is supported by the Air Force Office of Scientific
Research under Grant Number AFOSR FA9550-08-1-0158. Any opinions or
findings of this work are the responsibility of the authors and do not
necessarily reflect the views of the sponsors or collaborators.
NR 51
TC 47
Z9 48
U1 0
U2 5
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 0934-9839
J9 RES ENG DES
JI Res. Eng. Design
PD OCT
PY 2010
VL 21
IS 4
BP 209
EP 234
DI 10.1007/s00163-010-0086-1
PG 26
WC Engineering, Multidisciplinary; Engineering, Industrial; Engineering,
Manufacturing
SC Engineering
GA 655AD
UT WOS:000282212100002
ER
PT J
AU Beiersdorfer, P
Brown, GV
Clementson, J
Dunn, J
Morris, K
Wang, E
Kelley, RL
Kilbourne, CA
Porter, FS
Bitter, M
Feder, R
Hill, KW
Johnson, D
Barnsley, R
AF Beiersdorfer, P.
Brown, G. V.
Clementson, J.
Dunn, J.
Morris, K.
Wang, E.
Kelley, R. L.
Kilbourne, C. A.
Porter, F. S.
Bitter, M.
Feder, R.
Hill, K. W.
Johnson, D.
Barnsley, R.
TI The ITER core imaging x-ray spectrometer: X-ray calorimeter performance
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 18th Topical Conference on High-Temperature Plasma Diagnostics
CY MAY 16-20, 2010
CL Wildwood, NJ
ID MICROCALORIMETER SPECTROMETER; XRS MICROCALORIMETER; RESOLUTION
AB We describe the anticipated performance of an x-ray microcalorimeter instrument on ITER. As part of the core imaging x-ray spectrometer, the instrument will augment the imaging crystal spectrometers by providing a survey of the concentration of heavy ion plasma impurities in the core and possibly ion temperature values from the emission lines of different elemental ions located at various radial positions. (C) 2010 American Institute of Physics. [doi:10.1063/1.3495789]
C1 [Beiersdorfer, P.; Brown, G. V.; Clementson, J.; Dunn, J.; Morris, K.; Wang, E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Bitter, M.; Feder, R.; Hill, K. W.; Johnson, D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Barnsley, R.] Cadarache Ctr, ITER Cadarache JWS, F-13108 St Paul Les Durance, France.
RP Beiersdorfer, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RI Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012
OI Porter, Frederick/0000-0002-6374-1119;
NR 13
TC 11
Z9 11
U1 0
U2 2
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0034-6748
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD OCT
PY 2010
VL 81
IS 10
AR 10E323
DI 10.1063/1.3495789
PG 4
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA 674NQ
UT WOS:000283754000220
PM 21034021
ER
PT J
AU Magee, EW
Dunn, J
Brown, GV
Cone, KV
Park, J
Porter, FS
Kilbourne, CA
Kelley, RL
Beiersdorfer, P
AF Magee, E. W.
Dunn, J.
Brown, G. V.
Cone, K. V.
Park, J.
Porter, F. S.
Kilbourne, C. A.
Kelley, R. L.
Beiersdorfer, P.
TI Calibration of a high resolution grating soft x-ray spectrometer
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 18th Topical Conference on High-Temperature Plasma Diagnostics
CY MAY 16-20, 2010
CL Wildwood, NJ
ID BEAM ION-TRAP; PLASMAS
AB The calibration of the soft x-ray spectral response of a large radius of curvature, high resolution grating spectrometer (HRGS) with a back-illuminated charge-coupled device detector is reported. The instrument is cross-calibrated for the 10-50 angstrom waveband at the Lawrence Livermore National Laboratory electron beam ion trap (EBIT) x-ray source with the EBIT calorimeter spectrometer. The HRGS instrument is designed for laser-produced plasma experiments and is important for making high dynamic range measurements of line intensities, line shapes, and x-ray sources. (C) 2010 American Institute of Physics. [doi:10.1063/1.3494276]
C1 [Magee, E. W.; Dunn, J.; Brown, G. V.; Cone, K. V.; Park, J.; Beiersdorfer, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Cone, K. V.; Park, J.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA.
[Porter, F. S.; Kilbourne, C. A.; Kelley, R. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA.
RP Dunn, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM dunn6@llnl.gov
RI Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012
OI Porter, Frederick/0000-0002-6374-1119;
NR 14
TC 3
Z9 3
U1 0
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0034-6748
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD OCT
PY 2010
VL 81
IS 10
AR 10E314
DI 10.1063/1.3494276
PG 3
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA 674NQ
UT WOS:000283754000211
PM 21034013
ER
PT J
AU Park, J
Brown, GV
Schneider, MB
Baldis, HA
Beiersdorfer, P
Cone, KV
Kelley, RL
Kilbourne, CA
Magee, EW
May, MJ
Porter, FS
AF Park, J.
Brown, G. V.
Schneider, M. B.
Baldis, H. A.
Beiersdorfer, P.
Cone, K. V.
Kelley, R. L.
Kilbourne, C. A.
Magee, E. W.
May, M. J.
Porter, F. S.
TI Calibration of a flat field soft x-ray grating spectrometer for laser
produced plasmas
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article; Proceedings Paper
CT 18th Topical Conference on High-Temperature Plasma Diagnostics
CY MAY 16-20, 2010
CL Wildwood, NJ
AB We have calibrated the x-ray response of a variable line spaced grating spectrometer, known as the VSG, at the Fusion and Astrophysics Data and Diagnostic Calibration Facility at the Lawrence Livermore National Laboratory (LLNL). The VSG has been developed to diagnose laser produced plasmas, such as those created at the Jupiter Laser Facility and the National Ignition Facility at LLNL and at both the Omega and Omega EP lasers at the University of Rochester's Laboratory for Laser Energetics. The bandwidth of the VSG spans the range of similar to 6-60 angstrom. The calibration results presented here include the VSG's dispersion and quantum efficiency. The dispersion is determined by measuring the x rays emitted from the hydrogenlike and heliumlike ions of carbon, nitrogen, oxygen, neon, and aluminum. The quantum efficiency is calibrated to an accuracy of 30% or better by normalizing the x-ray intensities recorded by the VSG to those simultaneously recorded by an x-ray microcalorimeter spectrometer. (C) 2010 American Institute of Physics. [doi:10.1063/1.3495790]
C1 [Park, J.; Brown, G. V.; Schneider, M. B.; Beiersdorfer, P.; Cone, K. V.; Magee, E. W.; May, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Park, J.; Baldis, H. A.; Cone, K. V.] Univ Calif Davis, Davis, CA 95616 USA.
[Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA.
RP Park, J (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA.
EM park29@llnl.gov
RI Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012
OI Porter, Frederick/0000-0002-6374-1119;
NR 16
TC 10
Z9 10
U1 1
U2 6
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0034-6748
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD OCT
PY 2010
VL 81
IS 10
AR 10E319
DI 10.1063/1.3495790
PG 3
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA 674NQ
UT WOS:000283754000216
PM 21034017
ER
PT J
AU Holman, MJ
Fabrycky, DC
Ragozzine, D
Ford, EB
Steffen, JH
Welsh, WF
Lissauer, JJ
Latham, DW
Marcy, GW
Walkowicz, LM
Batalha, NM
Jenkins, JM
Rowe, JF
Cochran, WD
Fressin, F
Torres, G
Buchhave, LA
Sasselov, DD
Borucki, WJ
Koch, DG
Basri, G
Brown, TM
Caldwell, DA
Charbonneau, D
Dunham, EW
Gautier, TN
Geary, JC
Gilliland, RL
Haas, MR
Howell, SB
Ciardi, DR
Endl, M
Fischer, D
Furesz, G
Hartman, JD
Isaacson, H
Johnson, JA
MacQueen, PJ
Moorhead, AV
Morehead, RC
Orosz, JA
AF Holman, Matthew J.
Fabrycky, Daniel C.
Ragozzine, Darin
Ford, Eric B.
Steffen, Jason H.
Welsh, William F.
Lissauer, Jack J.
Latham, David W.
Marcy, Geoffrey W.
Walkowicz, Lucianne M.
Batalha, Natalie M.
Jenkins, Jon M.
Rowe, Jason F.
Cochran, William D.
Fressin, Francois
Torres, Guillermo
Buchhave, Lars A.
Sasselov, Dimitar D.
Borucki, William J.
Koch, David G.
Basri, Gibor
Brown, Timothy M.
Caldwell, Douglas A.
Charbonneau, David
Dunham, Edward W.
Gautier, Thomas N., III
Geary, John C.
Gilliland, Ronald L.
Haas, Michael R.
Howell, Steve B.
Ciardi, David R.
Endl, Michael
Fischer, Debra
Fueresz, Gabor
Hartman, Joel D.
Isaacson, Howard
Johnson, John A.
MacQueen, Phillip J.
Moorhead, Althea V.
Morehead, Robert C.
Orosz, Jerome A.
TI Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star,
Confirmed by Timing Variations
SO SCIENCE
LA English
DT Article
ID EXTRA-SOLAR PLANETS; SUPER-EARTHS; SOLID EXOPLANETS; HARPS SEARCH; MASS;
RESONANCES; DYNAMICS; MOTION; PERFORMANCE; STABILITY
AB The Kepler spacecraft is monitoring more than 150,000 stars for evidence of planets transiting those stars. We report the detection of two Saturn-size planets that transit the same Sun-like star, based on 7 months of Kepler observations. Their 19.2- and 38.9-day periods are presently increasing and decreasing at respective average rates of 4 and 39 minutes per orbit; in addition, the transit times of the inner body display an alternating variation of smaller amplitude. These signatures are characteristic of gravitational interaction of two planets near a 2: 1 orbital resonance. Six radial-velocity observations show that these two planets are the most massive objects orbiting close to the star and substantially improve the estimates of their masses. After removing the signal of the two confirmed giant planets, we identified an additional transiting super-Earth-size planet candidate with a period of 1.6 days.
C1 [Holman, Matthew J.; Fabrycky, Daniel C.; Ragozzine, Darin; Latham, David W.; Fressin, Francois; Torres, Guillermo; Buchhave, Lars A.; Sasselov, Dimitar D.; Charbonneau, David; Geary, John C.; Fueresz, Gabor; Hartman, Joel D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Ford, Eric B.; Moorhead, Althea V.; Morehead, Robert C.] Univ Florida, Gainesville, FL 32611 USA.
[Steffen, Jason H.] Fermilab Ctr Particle Astrophys, Batavia, IL 60510 USA.
[Welsh, William F.; Orosz, Jerome A.] San Diego State Univ, San Diego, CA 92182 USA.
[Lissauer, Jack J.; Jenkins, Jon M.; Rowe, Jason F.; Borucki, William J.; Koch, David G.; Caldwell, Douglas A.; Haas, Michael R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Lissauer, Jack J.] Stanford Univ, Stanford, CA 94305 USA.
[Marcy, Geoffrey W.; Walkowicz, Lucianne M.; Basri, Gibor; Isaacson, Howard] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Batalha, Natalie M.] San Jose State Univ, San Jose, CA 95192 USA.
[Jenkins, Jon M.; Caldwell, Douglas A.] SETI Inst, Mountain View, CA 94043 USA.
[Cochran, William D.; Endl, Michael; MacQueen, Phillip J.] Univ Texas Austin, Austin, TX 78712 USA.
[Buchhave, Lars A.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Ciardi, David R.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA.
[Brown, Timothy M.] Global Telescope, Las Cumbres Observ, Goleta, CA 93117 USA.
[Dunham, Edward W.] Lowell Observ, Flagstaff, AZ 86001 USA.
[Gautier, Thomas N., III] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Gilliland, Ronald L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Howell, Steve B.] Natl Opt Astron Observ, Tucson, AZ 85719 USA.
[Fischer, Debra] Yale Univ, New Haven, CT 06510 USA.
[Brown, Timothy M.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
RP Holman, MJ (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
EM mholman@cfa.harvard.edu
RI Steffen, Jason/A-4320-2013; Ragozzine, Darin/C-4926-2013; Caldwell,
Douglas/L-7911-2014;
OI Caldwell, Douglas/0000-0003-1963-9616; Buchhave, Lars
A./0000-0003-1605-5666; Ciardi, David/0000-0002-5741-3047; Fabrycky,
Daniel/0000-0003-3750-0183
FU NASA's Science Mission Directorate; NASA [NCC2-1390]; NSF [0707203]
FX Funding for this Discovery mission is provided by NASA's Science Mission
Directorate. We acknowledge NASA Cooperative Agreement NCC2-1390. D. C.
F. acknowledges support from the Michelson Fellowship, supported by NASA
and administered by the NASA Exoplanet Science Institute. This material
is based on work supported by the NSF under grant no. 0707203. This work
is based, in part, on observations obtained at the W. M. Keck
Observatory, which is operated by the Univ. of California and the
California Institute of Technology. Some of the observations in this
paper were obtained at Kitt Peak National Observatory, National Optical
Astronomy Observatory, which is operated by the Association of
Universities for Research in Astronomy under cooperative agreement with
the NSF. J.F.R. is a NASA postdoctoral program fellow. We are grateful
to N. Haghighipour for many helpful comments and suggestions.
NR 44
TC 213
Z9 213
U1 1
U2 11
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD OCT 1
PY 2010
VL 330
IS 6000
BP 51
EP 54
DI 10.1126/science.1195778
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 656KW
UT WOS:000282334500030
PM 20798283
ER
PT J
AU Nishimura, Y
Bortnik, J
Li, W
Thorne, RM
Lyons, LR
Angelopoulos, V
Mende, SB
Bonnell, JW
Le Contel, O
Cully, C
Ergun, R
Auster, U
AF Nishimura, Y.
Bortnik, J.
Li, W.
Thorne, R. M.
Lyons, L. R.
Angelopoulos, V.
Mende, S. B.
Bonnell, J. W.
Le Contel, O.
Cully, C.
Ergun, R.
Auster, U.
TI Identifying the Driver of Pulsating Aurora
SO SCIENCE
LA English
DT Article
ID SOURCE REGION; THEMIS; CHORUS; ELECTRONS
AB Pulsating aurora, a spectacular emission that appears as blinking of the upper atmosphere in the polar regions, is known to be excited by modulated, downward-streaming electrons. Despite its distinctive feature, identifying the driver of the electron precipitation has been a long-standing problem. Using coordinated satellite and ground-based all-sky imager observations from the THEMIS mission, we provide direct evidence that a naturally occurring electromagnetic wave, lower-band chorus, can drive pulsating aurora. Because the waves at a given equatorial location in space correlate with a single pulsating auroral patch in the upper atmosphere, our findings can also be used to constrain magnetic field models with much higher accuracy than has previously been possible.
C1 [Nishimura, Y.; Bortnik, J.; Li, W.; Thorne, R. M.; Lyons, L. R.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA.
[Nishimura, Y.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan.
[Angelopoulos, V.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA.
[Angelopoulos, V.; Mende, S. B.; Bonnell, J. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Angelopoulos, V.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA.
[Le Contel, O.] UPMC Paris Sud 11, Ecole Polytech, CNRS, Lab Phys Plasmas, F-94107 St Maur Des Fosses, France.
[Cully, C.] Swedish Inst Space Phys, SE-98128 Uppsala, Sweden.
[Ergun, R.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA.
[Auster, U.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany.
RP Nishimura, Y (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA.
EM toshi@atmos.ucla.edu
RI Li, Wen/F-3722-2011; Cully, Christopher/P-2539-2016
FU NASA [NAS5-02099, 9F007-046101]; NSF [ATM-0802843, AGS-0840178]; Japan
Society for the Promotion of Science; CNES; CNRS
FX This work was supported by NASA contract NAS5-02099, 9F007-046101; NSF
grants ATM-0802843 and AGS-0840178; and a Research Fellowship from the
Japan Society for the Promotion of Science. The French involvement
(Search-coil magnetometer) on THEMIS is supported by CNES and CNRS.
NR 29
TC 89
Z9 90
U1 1
U2 12
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD OCT 1
PY 2010
VL 330
IS 6000
BP 81
EP 84
DI 10.1126/science.1193186
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 656KW
UT WOS:000282334500038
PM 20929809
ER
PT J
AU Canal, C
Pasareanu, CS
AF Canal, Carlos
Pasareanu, Corina S.
TI Special Issue on Selected papers of the 5th International Workshop on
Formal Aspects of Component Software (FACS'08) Preface
SO SCIENCE OF COMPUTER PROGRAMMING
LA English
DT Editorial Material
C1 [Canal, Carlos] Univ Malaga, E-29071 Malaga, Spain.
[Pasareanu, Corina S.] Carnegie Mellon Univ, NASA Ames, Pittsburgh, PA 15213 USA.
RP Canal, C (reprint author), Univ Malaga, E-29071 Malaga, Spain.
EM canal@lcc.uma.es; Corina.S.Pasareanu@nasa.gov
RI Canal, Carlos/H-4782-2015
OI Canal, Carlos/0000-0002-8002-0372
NR 0
TC 0
Z9 0
U1 1
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-6423
J9 SCI COMPUT PROGRAM
JI Sci. Comput. Program.
PD OCT 1
PY 2010
VL 75
IS 10
SI SI
BP 809
EP 810
DI 10.1016/j.scico.2010.03.001
PG 2
WC Computer Science, Software Engineering
SC Computer Science
GA 638SZ
UT WOS:000280917600001
ER
PT J
AU Wolff, CL
Patrone, PN
AF Wolff, Charles L.
Patrone, Paul N.
TI A New Way that Planets Can Affect the Sun
SO SOLAR PHYSICS
LA English
DT Article
DE Convection; Solar activity; Solar interior motions; Sun - planet
interactions
ID SOLAR CONVECTION ZONE; G-MODES; SUNSPOTS; MOTION; TACHOCLINE; ROTATION;
CYCLE
AB We derive a perturbation inside a rotating star that occurs when the star is accelerated by orbiting bodies. If a fluid element has rotational and orbital components of angular momentum with respect to the inertially fixed point of a planetary system that are of opposite sign, then the element may have potential energy that could be released by a suitable flow. We demonstrate the energy with a very simple model in which two fluid elements of equal mass exchange positions, calling to mind a turbulent field or natural convection. The exchange releases potential energy that, with a minor exception, is available only in the hemisphere facing the barycenter of the planetary system. We calculate its strength and spatial distribution for the strongest case ("vertical") and for weaker horizontal cases whose motions are all perpendicular to gravity. The vertical cases can raise the kinetic energy of a few well positioned convecting elements in the Sun's envelope by a factor a parts per thousand currency sign7. This is the first physical mechanism by which planets can have a nontrivial effect on internal solar motions. Occasional small mass exchanges near the solar center and in a recently proposed mixed shell centered at 0.16R (s) would carry fresh fuel to deeper levels. This would cause stars like the Sun with appropriate planetary systems to burn somewhat more brightly and have shorter lifetimes than identical stars without planets. The helioseismic sound speed and the long record of sunspot activity offer several bits of evidence that the effect may have been active in the Sun's core, its envelope, and in some vertically stable layers. Additional proof will require direct evidence from helioseismology or from transient waves on the solar surface.
C1 [Wolff, Charles L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Patrone, Paul N.] Univ Maryland, College Pk, MD 20742 USA.
RP Wolff, CL (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM charles.wolff@nasa.gov; ppatrone@umd.edu
OI Wolff, Charles/0000-0001-8854-507X
FU Heliophysics Science Division of Goddard Space Flight Center
FX We appreciate support from the Heliophysics Science Division of Goddard
Space Flight Center.
NR 29
TC 22
Z9 24
U1 0
U2 4
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0038-0938
J9 SOL PHYS
JI Sol. Phys.
PD OCT
PY 2010
VL 266
IS 2
BP 227
EP 246
DI 10.1007/s11207-010-9628-y
PG 20
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 655EO
UT WOS:000282228700001
ER
PT J
AU Sych, RA
Nakariakov, VM
Anfinogentov, SA
Ofman, L
AF Sych, R. A.
Nakariakov, V. M.
Anfinogentov, S. A.
Ofman, L.
TI Web-Based Data Processing System for Automated Detection of Oscillations
with Applications to the Solar Atmosphere
SO SOLAR PHYSICS
LA English
DT Article
DE Coronal oscillations; Coronal waves; EUV
ID LONGITUDINAL INTENSITY OSCILLATIONS; SLOW MAGNETOACOUSTIC WAVES; CORONAL
LOOPS; MEASURED PARAMETERS; ACTIVE-REGION; TRACE; EUV; EIT
AB A web-based, interactive system for the remote processing of imaging data sets (i.e., EUV, X-ray, and microwave) and the automated interactive detection of wave and oscillatory phenomena in the solar atmosphere is presented. The system targets localized, but spatially resolved, phenomena such as kink, sausage, and longitudinal propagating and standing waves. The system implements the methods of Periodmapping for pre-analysis, and Pixelized Wavelet Filtering for detailed analysis of the imaging data cubes. The system is implemented on the dedicated data-processing server http://pwf.iszf.irk.ru, which is situated at the Institute of Solar-Terrestrial Physics, Irkutsk, Russia. Input data in the .sav, .fits, or .txt formats can be submitted via the local and/or global network (the Internet). The output data can be in the png, jpeg, and binary formats, on the user's request. The output data are periodmaps; narrowband amplitude, power, phase and correlation maps of the wave's sources at significant harmonics and in the chosen spectral intervals, and mpeg movies of their evolution. The system was tested by the analysis of the EUV and microwave emission from the active region NOAA 10756 on 4 May 2005 observed with TRACE and the Nobeyama Radioheliograph. The similarity of the spatial localization of three-minute propagating waves, near the footpoint of locally open magnetic-field lines determined by the potential-field extrapolation, in both the transition region and the corona was established. In the transition region the growth of the three-minute amplitude was found to be accompanied by the decrease in the line-of-sight angle to the wave-propagation direction.
C1 [Sych, R. A.; Anfinogentov, S. A.] Inst Solar Terr Phys, Irkutsk, Russia.
[Nakariakov, V. M.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Ofman, L.] Catholic Univ, Washington, DC USA.
[Ofman, L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Sych, RA (reprint author), Inst Solar Terr Phys, 126 Lermontov St, Irkutsk, Russia.
EM sych@iszf.irk.ru; V.Nakariakov@warwick.ac.uk; Leon.Ofman@nasa.gov
RI Nakariakov, Valery/E-2375-2013; Sych, Robert/D-1499-2013; Lee,
SungHwan/O-2563-2013; Anfinogentov, Sergey/A-6836-2014
OI Nakariakov, Valery/0000-0001-6423-8286; Sych,
Robert/0000-0003-4693-0660; Anfinogentov, Sergey/0000-0002-1107-7420
FU Royal Society UK-Russian International; RFBR [10-02-00153a,
08-02-13633-ofi-c, 08-02-91860-KO-a, 08-02-92204-GFEN-a]; NASA; NRL
FX The work was supported by the Royal Society UK-Russian International
Joint Project, the grants RFBR 10-02-00153a, 08-02-13633-ofi-c,
08-02-91860-KO-a and 08-02-92204-GFEN-a. LO was supported by NASA and
NRL grants to Catholic University of America. The TRACE and NoRH data
were obtained from the TRACE and NoRH database. The authors acknowledge
the TRACE and NoRH consortia for operating the instruments and
performing the basic data reduction, and especially for the open data
policy. Wavelet software was provided by C. Torrence and G. Compo and is
available at URL: http://paos.colorado.edu/research/wavelets/.
NR 28
TC 13
Z9 14
U1 0
U2 2
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0038-0938
J9 SOL PHYS
JI Sol. Phys.
PD OCT
PY 2010
VL 266
IS 2
BP 349
EP 367
DI 10.1007/s11207-010-9616-2
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 655EO
UT WOS:000282228700009
ER
PT J
AU Petrosyan, A
Balogh, A
Goldstein, ML
Leorat, J
Marsch, E
Petrovay, K
Roberts, B
von Steiger, R
Vial, JC
AF Petrosyan, A.
Balogh, A.
Goldstein, M. L.
Leorat, J.
Marsch, E.
Petrovay, K.
Roberts, B.
von Steiger, R.
Vial, J. C.
TI Turbulence in the Solar Atmosphere and Solar Wind
SO SPACE SCIENCE REVIEWS
LA English
DT Review
DE Turbulence in the sun and heliosphere; Observations of turbulence in the
solar corona and solar wind; Models of magnetohydrodynamic turbulence;
Numerical simulations of turbulence; Cascading and scaling; Observations
and models of intermittency
ID CORONAL LOOP OSCILLATIONS; MAGNETIC-FLUX TUBES; LARGE-EDDY SIMULATION;
COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE; ELECTROMAGNETIC
PROTON/PROTON INSTABILITIES; INTERPLANETARY ALFVENIC FLUCTUATIONS;
LONGITUDINAL INTENSITY OSCILLATIONS; EUV TRANSIENT BRIGHTENINGS; SLOW
MAGNETOACOUSTIC WAVES; FULLY-DEVELOPED TURBULENCE
AB The objective of this review article is to critically analyze turbulence and its role in the solar atmosphere and solar wind, as well as to provide a tutorial overview of topics worth clarification. Although turbulence is a ubiquitous phenomenon in the sun and its heliosphere, many open questions exist concerning the physical mechanisms of turbulence generation in solar environment. Also, the spatial and temporal evolution of the turbulence in the solar atmosphere and solar wind are still poorly understood. We limit the scope of this paper (leaving out the solar interior and convection zone) to the magnetized plasma that reaches from the photosphere and chromosphere upwards to the corona and inner heliosphere, and place particular emphasis on the magnetic field structures and fluctuations and their role in the dynamics and radiation of the coronal plasma. To attract the attention of scientists from both the fluid-dynamics and space-science communities we give in the first two sections a phenomenological overview of turbulence-related processes, in the context of solar and heliospheric physics and with emphasis on the photosphere-corona connection and the coupling between the solar corona and solar wind. We also discuss the basic tools and standard concepts for the empirical analysis and theoretical description of turbulence. The last two sections of this paper give a concise review of selected aspects of oscillations and waves in the solar atmosphere and related fluctuations in the solar wind. We conclude with some recommendations and suggest topics for future research.
C1 [Petrosyan, A.] Russian Acad Sci, Space Res Inst, Moscow, Russia.
[Balogh, A.; von Steiger, R.] ISSI, Bern, Switzerland.
[Balogh, A.] Univ London Imperial Coll Sci Technol & Med, London, England.
[Goldstein, M. L.] NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Greenbelt, MD 20771 USA.
[Leorat, J.] Observ Paris, LUTH, F-92195 Meudon, France.
[Marsch, E.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany.
[Petrovay, K.] Eotvos Lorand Univ, Dept Astron, H-1518 Budapest, Hungary.
[Petrovay, K.] ASIAA Natl Tsing Hua Univ TIARA, Hsinchu, Taiwan.
[Roberts, B.] Univ St Andrews, Math Inst, St Andrews KY16 9SS, Fife, Scotland.
[Vial, J. C.] Univ Paris, F-75252 Paris, France.
RP Petrosyan, A (reprint author), Russian Acad Sci, Space Res Inst, Moscow, Russia.
EM apetrosy@iki.rssi.ru
RI Goldstein, Melvyn/B-1724-2008; Von Steiger, Rudolf/F-6822-2011;
OI Von Steiger, Rudolf/0000-0002-3350-0023; Petrovay,
Kristof/0000-0002-1714-2027
FU National Science Council in Taiwan [NSC95-2752-M-007-006-PAE]; Hungarian
Science Research Fund (OTKA) [K67746]; European Commission
[MRTN-CT-2006-035484]
FX K. Petrovay's work on this project was supported by the Theoretical
Institute for Advanced Research in Astrophysics (TIARA) operated under
Academia Sinica and the National Science Council Excellence Projects
program in Taiwan administered through grant number
NSC95-2752-M-007-006-PAE, as well as by the Hungarian Science Research
Fund (OTKA) under grant No. K67746.; The collaboration of several of the
authors of this paper has been facilitated by the European Commission
through the RTN programme SOLAIRE (contract MRTN-CT-2006-035484).
NR 421
TC 33
Z9 33
U1 3
U2 10
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0038-6308
EI 1572-9672
J9 SPACE SCI REV
JI Space Sci. Rev.
PD OCT
PY 2010
VL 156
IS 1-4
BP 135
EP 238
DI 10.1007/s11214-010-9694-3
PG 104
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 726WX
UT WOS:000287758700005
ER
PT J
AU Gizon, L
Schunker, H
Baldner, CS
Basu, S
Birch, AC
Bogart, RS
Braun, DC
Cameron, R
Duvall, TL
Hanasoge, SM
Jackiewicz, J
Roth, M
Stahn, T
Thompson, MJ
Zharkov, S
AF Gizon, L.
Schunker, H.
Baldner, C. S.
Basu, S.
Birch, A. C.
Bogart, R. S.
Braun, D. C.
Cameron, R.
Duvall, T. L., Jr.
Hanasoge, S. M.
Jackiewicz, J.
Roth, M.
Stahn, T.
Thompson, M. J.
Zharkov, S.
TI Helioseismology of Sunspots: A Case Study of NOAA Region 9787 (vol 144,
pg 249, 2009)
SO SPACE SCIENCE REVIEWS
LA English
DT Correction
C1 [Gizon, L.; Schunker, H.; Cameron, R.; Hanasoge, S. M.; Stahn, T.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany.
[Baldner, C. S.; Basu, S.] Yale Univ, Dept Astron, New Haven, CT 06520 USA.
[Birch, A. C.; Braun, D. C.] Colorado Res Associates, NWRA, Boulder, CO 80301 USA.
[Bogart, R. S.] Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA.
[Duvall, T. L., Jr.] NASA, Goddard Space Flight Ctr, Lab Solar Phys, Greenbelt, MD 20771 USA.
[Jackiewicz, J.] New Mexico State Univ, Las Cruces, NM 88003 USA.
[Roth, M.] Kiepenheuer Inst Sonnenphys, D-79104 Freiburg, Germany.
[Thompson, M. J.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA.
[Zharkov, S.] Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England.
RP Gizon, L (reprint author), Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany.
EM gizon@mps.mpg.de
RI Duvall, Thomas/C-9998-2012; Gizon, Laurent/B-9457-2008; Basu,
Sarbani/B-8015-2014
OI Basu, Sarbani/0000-0002-6163-3472
NR 1
TC 6
Z9 6
U1 0
U2 0
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0038-6308
J9 SPACE SCI REV
JI Space Sci. Rev.
PD OCT
PY 2010
VL 156
IS 1-4
BP 257
EP 258
DI 10.1007/s11214-010-9688-1
PG 2
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 726WX
UT WOS:000287758700008
ER
PT J
AU Daigle, MJ
Koutsoukos, XD
Biswas, G
AF Daigle, Matthew J.
Koutsoukos, Xenofon D.
Biswas, Gautam
TI An event-based approach to integrated parametric and discrete fault
diagnosis in hybrid systems
SO TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL
LA English
DT Article
DE discrete-event systems; electrical power distribution systems; hybrid
bond graphs; hybrid systems; model-based diagnosis
ID MODELS
AB Fault diagnosis is crucial for ensuring the safe operation of complex engineering systems. These systems often exhibit hybrid behaviours, therefore, model-based diagnosis methods have to be based on hybrid system models. Most previous work in hybrid systems diagnosis has focused either on parametric or discrete faults. In this paper, we develop an integrated approach for hybrid diagnosis of parametric and discrete faults by incorporating the effects of both types of faults into our event-based qualitative fault signature framework. The framework allows for systematic design of event-based diagnosers that facilitate diagnosability analysis. Experimental results from a case study performed on an electrical power distribution system demonstrate the effectiveness of the approach.
C1 [Daigle, Matthew J.] NASA, Ames Res Ctr, Moffett Field, CA 94025 USA.
[Daigle, Matthew J.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA.
[Koutsoukos, Xenofon D.; Biswas, Gautam] Vanderbilt Univ, Dept EECS, Inst Software Integrated Syst, Nashville, TN USA.
RP Daigle, MJ (reprint author), NASA, Ames Res Ctr, M-S 269-1, Moffett Field, CA 94025 USA.
EM matthew.j.daigle@nasa.gov
OI Daigle, Matthew/0000-0002-4616-3302
FU NSF [CNS-0615214, CNS-0347440]; NASA [USRA 08020-013, NRA NNX07AD12A]
FX This work was supported in part by grants NSF CNS-0615214, NASA USRA
08020-013, NASA NRA NNX07AD12A, and NSF CNS-0347440.
NR 18
TC 14
Z9 14
U1 0
U2 7
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0142-3312
J9 T I MEAS CONTROL
JI Trans. Inst. Meas. Control
PD OCT
PY 2010
VL 32
IS 5
BP 487
EP 510
DI 10.1177/0142331208097840
PG 24
WC Automation & Control Systems; Instruments & Instrumentation
SC Automation & Control Systems; Instruments & Instrumentation
GA 656HZ
UT WOS:000282321200004
ER
PT J
AU Pirtle, JL
Stoner, AW
AF Pirtle, Jodi L.
Stoner, Allan W.
TI Red king crab (Paralithodes camtschaticus) early post-settlement habitat
choice: Structure, food, and ontogeny
SO JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY
LA English
DT Article
DE Biogenic habitat; King crab; Nursery habitat; Paralithodes camtschaticus
ID CARIBBEAN SPINY LOBSTER; AMERICAN LOBSTER; DUNGENESS CRAB;
CANCER-MAGISTER; RECRUITMENT; ALASKA; GLAUCOTHOE; JUVENILES; SUBSTRATE;
SURVIVAL
AB Little is known about nursery habitat function for red king crab (Paralithodes camtschaticus), a commercially important species that associates with complex benthic habitats from settlement through the first two years of life. During settlement, the red king crab actively seeks complex benthic habitats, with high availability of vertical structure and crevice space. Habitat choice for early juvenile red king crab may be driven by habitat complexity, or a function of several potential mechanisms, including foraging requirements, and shifting ontogeny. We established habitat preference and foraging behavior for two size classes of age-0 red king crab (small 2-4 mm, and large 7.5-9 mm carapace length) with laboratory experiments using habitat treatments composed of individual complex substrates that were living, biogenic substrates, including structural invertebrates, bryozoans and hydroids, and macroalgae in branched and blade forms. Non-living structural mimics of the biogenic substrates were presented to crabs as clean and fouled mimic treatments. We quantified the proportion of crab associations and foraging activity with single habitat treatments within a 24 h period. Substrates that were statistically attractive to small crabs were paired to test small crab foraging behavior. A variety of substrates were statistically attractive to red king crab. Small crabs associated with complex biogenic habitats and fouled mimics (group mean +/- SE 64% +/- 4%) more often than clean mimics (29% +/- 4%), and preferred to forage on the structural invertebrates (foraging frequency 81%) when presented with paired biogenic and fouled mimic substrates. Large crabs associated with habitats composed of structural invertebrates (group mean +/- SE 78% +/- 2%) statistically more often than macroalgae and fouled and clean mimics (32% +/- 5%). Strong attraction to structural invertebrates by early juvenile red king crab is likely driven by foraging opportunities. Our experiments demonstrate that biological habitat features may be functionally more important to early juvenile red king crab than complex physical structure alone. Habitats formed by structural invertebrates, in particular, may enhance growth and survival of early post-settlement stage red king crab in excess of other highly structured habitats, including macroalgae and complex physical substrates. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Pirtle, Jodi L.] Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, Juneau, AK 99801 USA.
NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Fisheries Behav Ecol Program, Newport, OR 97365 USA.
RP Pirtle, JL (reprint author), Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, 17101 Point Lena Loop Rd, Juneau, AK 99801 USA.
EM jlpirtle@alaska.edu; al.stoner@noaa.gov
FU Alaska Sea Grant Program; North Pacific Research Board; NOAA
FX Funding for the dissertation research of J. Pirtle at the University
Alaska Fairbanks, School of Fisheries and Ocean Sciences, Juneau, AK,
was provided by the Alaska Sea Grant Program and the North Pacific
Research Board. The Alutiiq Pride Shellfish Hatchery, Seward, AK,
provided crabs for this study as a part of the AKCRRAB Program (Alaska
King Crab Research, Rehabilitation, and Biology) funded by the NOAA
Aquaculture Program and the Alaska Sea Grant Program. Crabs were
produced, cared for, and shipped by B. Daly and J. Swingle, who provided
advice on crab husbandry with M. Westphal. G. Eckert, D. Okamoto, and S.
Tamone assisted with biogenic substrate collection near Juneau. S.
Haines, J. Unrein, and L Loegers cared for the crabs in Newport, and
assisted with the laboratory trials. M. Ottmar assisted with providing
seawater systems in Newport. C. Leroux, AKCRRAB, provided the photo for
Fig. 1. G. Eckert, T. Quinn, J. Reynolds, C. Ryer, B. Tissot, M.
Westphal, and D. Woodby provided helpful criticisms of the manuscript.
[SS]
NR 44
TC 25
Z9 25
U1 0
U2 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-0981
J9 J EXP MAR BIOL ECOL
JI J. Exp. Mar. Biol. Ecol.
PD SEP 30
PY 2010
VL 393
IS 1-2
BP 130
EP 137
DI 10.1016/j.jembe.2010.07.012
PG 8
WC Ecology; Marine & Freshwater Biology
SC Environmental Sciences & Ecology; Marine & Freshwater Biology
GA 657ER
UT WOS:000282396500017
ER
PT J
AU Stoner, AW
Ottmar, ML
Copeman, LA
AF Stoner, Allan W.
Ottmar, Michele L.
Copeman, Louise A.
TI Temperature effects on the molting, growth, and lipid composition of
newly-settled red king crab
SO JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY
LA English
DT Article
DE Bioenergetics; Culture; Fatty acid; Growth; Lipid; Paralithodes
camtschaticus; Temperature
ID FATTY-ACID COMPOSITION; EASTERN BERING-SEA; PARALITHODES-CAMTSCHATICUS;
CLIMATE-CHANGE; BLUE CRABS; CALLINECTES-SAPIDUS; OXYGEN-CONSUMPTION;
LITHODES-SANTOLLA; STOCK ENHANCEMENT; SCYLLA-SERRATA
AB Red king crab (RKC) (Paralithodes camtschaticus Tilesius, 1815) is one of the most important fishery resource species in Alaska. It is threatened by heavy fishing pressure and changing climate conditions, yet little is known about the species' first year of post-settlement life. This study was undertaken to explore how temperature mediates growth and energy allocation in newly metamorphosed juveniles. RKC were reared using four temperature treatments ranging from 1.5 degrees to 12 degrees C for a period of 60 days, both individually and in low-density populations. Temperature had no significant effect on survival of RKC, and there was no consistent difference in survival between individually cultured crabs and those in populations. Growth was very slow at 1.5 degrees C, and increased rapidly with temperature with both a contracted intermolt period and small increase in growth increment. Twenty percent of the crabs held at 1.5 degrees C never molted, while more than 90% of the crabs in 12 degrees C reached juvenile stage 4 or higher. Overall growth increased as an exponential function of temperature, with slightly higher growth rates observed in populations than for isolated individuals. Growth records for individuals revealed an inverse exponential relationship between water temperature and intermolt period. There was also a small increase in growth increment from juvenile stage 1 to stage 2 with increasing temperature that appeared to be linear. Lipid class analysis revealed a trend towards higher proportions of storage lipids in larger crabs cultured at 12 degrees C than in crabs cultured at low temperatures. High proportions of essential fatty acids in all crab groups coupled with elevated levels of triacylglycerols in 12 degrees C animals, indicate that rapid growth does not negatively affect condition in juvenile RKC. Data provided by this study will help to model temperature-dependent growth and survival in the field, and assist in designing the best possible temperatures and diets for hatchery production of seed stock intended for enhancement of depleted RKC stocks. Published by Elsevier B.V.
C1 [Stoner, Allan W.; Ottmar, Michele L.] Natl Ocean & Atmospher Adm, Fisheries Behav Ecol Program, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Newport, OR 97365 USA.
[Copeman, Louise A.] Oregon State Univ, Cooperat Inst Marine Resources Studies, Hatfield Marine Sci Ctr, Newport, OR 97365 USA.
RP Stoner, AW (reprint author), Natl Ocean & Atmospher Adm, Fisheries Behav Ecol Program, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2030 S Marine Sci Dr, Newport, OR 97365 USA.
EM al.stoner@noaa.gov
FU NOAA; Alaska Sea Grant College Program
FX This study was conducted as part of the AKCRRAB Program (Alaska King
Crab Research, Rehabilitation, and Biology) funded by the NOAA
Aquaculture Program and the Alaska Sea Grant College Program. Crabs were
provided by the Alutiiq Pride Shellfish Hatchery, Seward, AK, with
special thanks to B. Daly and J. Swingle who cared for and shipped the
experimental animals, and offered advice on crab husbandry. S. Haines
helped care for the crabs in Newport, and J. Unrein assisted in building
the experimental apparatus. We are grateful to J. Wells and T. Hooper as
well as all the technical staff in Dr. Christopher Parrish's lab (Ocean
Sciences Centre, Memorial University, Newfoundland, Canada) for the
chromatography of lipid classes and fatty acids. B. Stevens offered
advice on the topic of crustacean growth and biology. M. Westphal and T.
Hurst provided helpful comments on the manuscript. [SS]
NR 63
TC 27
Z9 30
U1 2
U2 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-0981
EI 1879-1697
J9 J EXP MAR BIOL ECOL
JI J. Exp. Mar. Biol. Ecol.
PD SEP 30
PY 2010
VL 393
IS 1-2
BP 138
EP 147
DI 10.1016/j.jembe.2010.07.011
PG 10
WC Ecology; Marine & Freshwater Biology
SC Environmental Sciences & Ecology; Marine & Freshwater Biology
GA 657ER
UT WOS:000282396500018
ER
PT J
AU Arvidson, RE
Bell, JF
Bellutta, P
Cabrol, NA
Catalano, JG
Cohen, J
Crumpler, LS
Marais, DJD
Estlin, TA
Farrand, WH
Gellert, R
Grant, JA
Greenberger, RN
Guinness, EA
Herkenhoff, KE
Herman, JA
Iagnemma, KD
Johnson, JR
Klingelhofer, G
Li, R
Lichtenberg, KA
Maxwell, SA
Ming, DW
Morris, RV
Rice, MS
Ruff, SW
Shaw, A
Siebach, KL
de Souza, PA
Stroupe, AW
Squyres, SW
Sullivan, RJ
Talley, KP
Townsend, JA
Wang, A
Wright, JR
Yen, AS
AF Arvidson, R. E.
Bell, J. F., III
Bellutta, P.
Cabrol, N. A.
Catalano, J. G.
Cohen, J.
Crumpler, L. S.
Marais, D. J. Des
Estlin, T. A.
Farrand, W. H.
Gellert, R.
Grant, J. A.
Greenberger, R. N.
Guinness, E. A.
Herkenhoff, K. E.
Herman, J. A.
Iagnemma, K. D.
Johnson, J. R.
Klingelhoefer, G.
Li, R.
Lichtenberg, K. A.
Maxwell, S. A.
Ming, D. W.
Morris, R. V.
Rice, M. S.
Ruff, S. W.
Shaw, A.
Siebach, K. L.
de Souza, P. A.
Stroupe, A. W.
Squyres, S. W.
Sullivan, R. J.
Talley, K. P.
Townsend, J. A.
Wang, A.
Wright, J. R.
Yen, A. S.
TI Spirit Mars Rover Mission: Overview and selected results from the
northern Home Plate Winter Haven to the side of Scamander crater
SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
LA English
DT Article
ID THERMODYNAMIC BEHAVIOR; THEORETICAL PREDICTION; AQUEOUS ELECTROLYTES;
HIGH PRESSURES; TEMPERATURES; DEPOSITS; LIFE
AB This paper summarizes Spirit Rover operations in the Columbia Hills, Gusev crater, from sol 1410 (start of the third winter campaign) to sol 2169 (when extrication attempts from Troy stopped to winterize the vehicle) and provides an overview of key scientific results. The third winter campaign took advantage of parking on the northern slope of Home Plate to tilt the vehicle to track the sun and thus survive the winter season. With the onset of the spring season, Spirit began circumnavigating Home Plate on the way to volcanic constructs located to the south. Silica-rich nodular rocks were discovered in the valley to the north of Home Plate. The inoperative right front wheel drive actuator made climbing soil-covered slopes problematical and led to high slip conditions and extensive excavation of subsurface soils. This situation led to embedding of Spirit on the side of a shallow, 8 m wide crater in Troy, located in the valley to the west of Home Plate. Examination of the materials exposed during embedding showed that Spirit broke through a thin sulfate-rich soil crust and became embedded in an underlying mix of sulfate and basaltic sands. The nature of the crust is consistent with dissolution and precipitation in the presence of soil water within a few centimeters of the surface. The observation that sulfate-rich deposits in Troy and elsewhere in the Columbia Hills are just beneath the surface implies that these processes have operated on a continuing basis on Mars as landforms have been shaped by erosion and deposition.
C1 [Arvidson, R. E.; Catalano, J. G.; Greenberger, R. N.; Guinness, E. A.; Lichtenberg, K. A.; Shaw, A.; Siebach, K. L.; Wang, A.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA.
[Bell, J. F., III; Rice, M. S.; Squyres, S. W.; Sullivan, R. J.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA.
[Bellutta, P.; Estlin, T. A.; Herman, J. A.; Maxwell, S. A.; Stroupe, A. W.; Talley, K. P.; Townsend, J. A.; Wright, J. R.; Yen, A. S.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
[Cabrol, N. A.; Marais, D. J. Des] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Cabrol, N. A.] SETI Inst, Mountain View, CA USA.
[Cohen, J.] Honeybee Robot Spacecraft Mech Corp, New York, NY 10001 USA.
[Crumpler, L. S.] New Mexico Museum Nat Hist & Sci, Albuquerque, NM 87104 USA.
[Farrand, W. H.] Space Sci Inst, Boulder, CO 80301 USA.
[Gellert, R.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada.
[Grant, J. A.] Smithsonian Inst, Ctr Earth & Planetary Studies, Washington, DC 20013 USA.
[Herkenhoff, K. E.; Johnson, J. R.] US Geol Survey, Flagstaff, AZ 86001 USA.
[Iagnemma, K. D.] MIT, Dept Mech Engn, Cambridge, MA 02139 USA.
[Klingelhoefer, G.] Johannes Gutenberg Univ Mainz, Inst Anorgan & Analyt Chem, D-55099 Mainz, Germany.
[Li, R.] Ohio State Univ, Dept Civil & Environm Engn & Geodet Sci, Columbus, OH 43210 USA.
[Ming, D. W.; Morris, R. V.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
[Ruff, S. W.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA.
[de Souza, P. A.] CSIRO, Informat & Commun Technol Ctr, Hobart, Tas 7001, Australia.
RP Arvidson, RE (reprint author), Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA.
EM arvidson@rsmail.wustl.edu
RI de Souza, Paulo/B-8961-2008; Centre, TasICT/D-1212-2011; Catalano,
Jeffrey/A-8322-2013; Johnson, Jeffrey/F-3972-2015;
OI de Souza, Paulo/0000-0002-0091-8925; Catalano,
Jeffrey/0000-0001-9311-977X; Siebach, Kirsten/0000-0002-6628-6297;
Greenberger, Rebecca/0000-0003-1583-0261
FU NASA
FX We thank the capable team of engineers and scientists at the Jet
Propulsion Laboratory and elsewhere who made the Spirit mission
possible. We also thank support from NASA for the science team.
NR 34
TC 40
Z9 41
U1 1
U2 16
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9097
EI 2169-9100
J9 J GEOPHYS RES-PLANET
JI J. Geophys. Res.-Planets
PD SEP 30
PY 2010
VL 115
AR E00F03
DI 10.1029/2010JE003633
PG 19
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 658TF
UT WOS:000282511600003
ER
PT J
AU Greeley, R
Waller, DA
Cabrol, NA
Landis, GA
Lemmon, MT
Neakrase, LDV
Hoffer, MP
Thompson, SD
Whelley, PL
AF Greeley, Ronald
Waller, Devin A.
Cabrol, Nathalie A.
Landis, Geoffrey A.
Lemmon, Mark T.
Neakrase, Lynn D. V.
Hoffer, Mary Pendleton
Thompson, Shane D.
Whelley, Patrick L.
TI Gusev Crater, Mars: Observations of three dust devil seasons
SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
LA English
DT Article
ID CONVECTIVE VORTICES; PATHFINDER; CAMERA
AB Spirit began operations in Gusev Crater in January 2004 and has returned data on three seasons of dust devil (DD) activity. Total DDs observed were 533 in season one, 101 in season two, and 127 in season three. Their general characteristics are the same within factors of 2 among the seasons, with median diameters of 19 m in season one, 24 m in season two, and 39 m in season three, and dust flux values for individual vortices ranging from 4.0 x 10(-9) to 4.6 x 10(-4) kg m(-2) s(-1) in season one, 5.2 x 10(-7) to 6.2 x 10(-5) kg m(-2) s(-1) in season two, and 1.5 x 10(-7) to 1.6 x 10(-4) kg m(-2) s(-1) in season three. All three seasons were initiated with the onset of southern Martian spring within 14 sols of the same L-s (181 degrees) and their frequency increased to the period corresponding to late southern spring. The occurrences decreased monotonically in seasons one and three but apparently ended abruptly in season two when a large dust storm occurred; although the dusty atmosphere might have precluded the detection of active DDs, the abrupt cessation could result from conditions such as thermal stability of the atmosphere due to the presence of dust which could halt DD formation. Dust devils can contribute significant quantities of dust to the atmosphere, although it is unclear as to whether this dust stays locally or is injected into higher-altitude winds and is distributed elsewhere. In the three DD seasons observed through Spirit, DDs in Gusev Crater injected a minimum average of similar to 18 x 10(6) kg of material into the atmosphere each season.
C1 [Greeley, Ronald; Waller, Devin A.; Neakrase, Lynn D. V.; Hoffer, Mary Pendleton; Thompson, Shane D.; Whelley, Patrick L.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA.
[Cabrol, Nathalie A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Landis, Geoffrey A.] NASA, John Glenn Res Ctr, Cleveland, OH 44135 USA.
[Lemmon, Mark T.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA.
RP Greeley, R (reprint author), Arizona State Univ, Sch Earth & Space Explorat, Box 871404, Tempe, AZ 85287 USA.
EM greeley@asu.edu; devin.waller@asu.edu; Nathalie.A.Cabrol@nasa.gov;
geoffrey.landis@nasa.gov; lemmon@tamu.edu; neakrase@gmail.com;
pwhelley@buffalo.edu
RI Lemmon, Mark/E-9983-2010; Whelley, Patrick/B-9560-2012
OI Lemmon, Mark/0000-0002-4504-5136; Whelley, Patrick/0000-0003-3266-9772
FU NASA
FX This work was performed for the Jet Propulsion Laboratory, California
Institute of Technology, sponsored by NASA. Support was provided through
NASA's Mars Exploration Rover project and the planetary Geology and
Geophysics Program. We thank the diligent work of the entire MER science
and engineering team for the continued success in the operation of the
rovers. We also acknowledge the ASU Space Photography Laboratory for
data analysis facilities, Sue Selkirk for graphics support, and
Stephanie Holaday for preparation of the final manuscript. The report
benefited from helpful comments by two anonymous reviewers.
NR 49
TC 34
Z9 34
U1 0
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9097
EI 2169-9100
J9 J GEOPHYS RES-PLANET
JI J. Geophys. Res.-Planets
PD SEP 30
PY 2010
VL 115
AR E00F02
DI 10.1029/2010JE003608
PG 18
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 658TF
UT WOS:000282511600002
ER
PT J
AU Forbes, KF
St Cyr, OC
AF Forbes, Kevin F.
St Cyr, O. C.
TI An anatomy of space weather's electricity market impact: Case of the PJM
power grid and the performance of its 500 kV transformers
SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS
LA English
DT Article
ID GEOMAGNETICALLY INDUCED CURRENTS; SEMIANNUAL VARIATION
AB The PJM Interconnection is a regional electricity transmission organization which as of 30 April 2004 coordinated the dispatch of electricity over 320,000 km of transmission lines. The backbone of PJM's transmission system is a series of 500 kilovolt (kV) transmission lines and transformers. PJM operates both hourly real-time and day-ahead markets for energy. The differences between PJM's real-time and day-ahead prices reflect unexpected operating conditions. Using ground-based magnetometer data as a proxy for geomagnetically induced currents (GICs), we present evidence that the differences between PJM's real-time and day-ahead prices are statistically related with the GIC proxy. Extra high voltage energy losses and a measure of real-time congestion costs are also shown to be statistically related with the GIC proxy. The paper investigates these statistical linkages by examining the incidence of declared constraints in the 500 kV transformers. The relationship between the GIC proxy and the incidence of declared constraints in the transformers is examined using a multivariate regression model with a dependent variable that is binary. The model is estimated using hourly data over the period 1 April 2002 through 30 April 2004. The results indicate that GICs can contribute to conditions in which the system operator declares one or more of the 500 kV transformers to be constrained. This finding takes into account forecasted load, load forecasting errors, ambient temperature, a proxy for known transmission constraints, and scheduled flows with other power grids. The results are also consistent with published findings that GICs can contribute to overheating problems in transformers.
C1 [Forbes, Kevin F.] Catholic Univ Amer, Dept Econ & Business, Washington, DC 20064 USA.
[St Cyr, O. C.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA.
[St Cyr, O. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Forbes, KF (reprint author), Catholic Univ Amer, Dept Econ & Business, Washington, DC 20064 USA.
EM forbes@cua.edu
FU National Science Foundation [0318582, 0921964]
FX This research was made possible by grants from the National Science
Foundation (awards 0318582 and 0921964). We thank the editor and an
anonymous reviewer for their helpful comments and suggestions. We thank
Michael A. Forbes for writing the software that processed the
geomagnetic data used in this study and the staff of PJM Interconnection
for providing access to their data series and for answering our many
questions. We also thank Michael Shields, Anna Galati, and Cynthia
Schmitt for their excellent research assistance. We have also benefited
from discussions with Antti Pulkkinen and Mark Lively. We thank the
United States Geological Survey for making its geomagnetic data
available. We also thank Intermagnet (www.intermagnet.org) for promoting
high standards of magnetic observatory practice and for providing an
efficient mechanism for the distribution of the data. Any errors are the
full responsibility of the authors.
NR 35
TC 7
Z9 7
U1 0
U2 3
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1542-7390
J9 SPACE WEATHER
JI Space Weather
PD SEP 30
PY 2010
VL 8
AR S09004
DI 10.1029/2009SW000498
PG 24
WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology &
Atmospheric Sciences
GA 657TN
UT WOS:000282436600001
ER
PT J
AU Drouin, BJ
Pearson, JC
Dick, MJ
AF Drouin, Brian J.
Pearson, John C.
Dick, Michael J.
TI Reply to "Comment on 'Collisional cooling investigation of THz
rotational transitions of water' "
SO PHYSICAL REVIEW A
LA English
DT Article
ID CARBON-MONOXIDE
AB This response describes the authors' reaction to a critique of recent work on the ultracold physics of water. The possibility of spin-selective adsorption occurring in the context of the collisional cooling experiment is discussed.
C1 [Drouin, Brian J.; Pearson, John C.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
[Dick, Michael J.] Bubble Technol Ind, Chalk River, ON, Canada.
RP Drouin, BJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA.
EM brian.j.drouin@jpl.nasa.gov
NR 7
TC 3
Z9 3
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD SEP 29
PY 2010
VL 82
IS 3
AR 036704
DI 10.1103/PhysRevA.82.036704
PG 2
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 655SF
UT WOS:000282269100024
ER
PT J
AU Gettelman, A
Liu, X
Ghan, SJ
Morrison, H
Park, S
Conley, AJ
Klein, SA
Boyle, J
Mitchell, DL
Li, JLF
AF Gettelman, A.
Liu, X.
Ghan, S. J.
Morrison, H.
Park, S.
Conley, A. J.
Klein, S. A.
Boyle, J.
Mitchell, D. L.
Li, J. -L. F.
TI Global simulations of ice nucleation and ice supersaturation with an
improved cloud scheme in the Community Atmosphere Model
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID PHASE STRATIFORM CLOUDS; GENERAL-CIRCULATION MODELS; LARGE-SCALE MODELS;
MICROPHYSICS SCHEME; VERSION-3 CAM3; CIRRUS CLOUDS; ARCTIC CLOUD;
WATER-VAPOR; PART II; RELATIVE-HUMIDITY
AB A process-based treatment of ice supersaturation and ice nucleation is implemented in the National Center for Atmospheric Research Community Atmosphere Model (CAM). The new scheme is designed to allow (1) supersaturation with respect to ice, (2) ice nucleation by aerosol particles, and (3) ice cloud cover consistent with ice microphysics. The scheme is implemented with a two-moment microphysics code and is used to evaluate ice cloud nucleation mechanisms and supersaturation in CAM. The new model is able to reproduce field observations of ice mass and mixed phase cloud occurrence better than previous versions. The model is able to reproduce observed patterns and frequency of ice supersaturation. Simulations indicate homogeneous freezing of sulfate and heterogeneous freezing on dust are both important ice nucleation mechanisms, in different regions. Simulated cloud forcing and climate is sensitive to different formulations of the ice microphysics. Arctic surface radiative fluxes are sensitive to the parameterization of ice clouds. These results indicate that ice clouds are potentially an important part of understanding cloud forcing and potential cloud feedbacks, particularly in the Arctic.
C1 [Gettelman, A.; Morrison, H.; Park, S.; Conley, A. J.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80305 USA.
[Liu, X.; Ghan, S. J.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Klein, S. A.; Boyle, J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Mitchell, D. L.] Desert Res Inst, Reno, NV 89512 USA.
[Li, J. -L. F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Gettelman, A (reprint author), Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80305 USA.
EM andrew@ucar.edu
RI Liu, Xiaohong/E-9304-2011; Ghan, Steven/H-4301-2011; Klein,
Stephen/H-4337-2016
OI Liu, Xiaohong/0000-0002-3994-5955; Ghan, Steven/0000-0001-8355-8699;
Klein, Stephen/0000-0002-5476-858X
FU National Science Foundation (NSF); NSF Science and Technology Center for
MultiScale Modeling of Atmospheric; Colorado State University
[ATM-0425247]
FX The National Center for Atmospheric Research is sponsored by the U. S.
National Science Foundation (NSF). H. Morrison is partially supported by
the NSF Science and Technology Center for MultiScale Modeling of
Atmospheric Processes, managed by Colorado State University under
cooperative agreement ATM-0425247. Support for S. A. Klein and J. S.
Boyle was provided by the Atmospheric Radiation Measurement and Climate
Change Prediction Programs of the Office of Science at the U. S.
Department of Energy. The contribution of S. A. Klein and J. S. Boyle to
this work was performed under the auspices of the U. S. Department of
Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Amy Solomon is thanked for providing selected M-PACE
cloud property retrieval data. X. Liu and S. J. Ghan were funded by the
U. S. Department of Energy, Office of Science, Atmospheric Radiation
Measurement, Scientific Discovery through Advanced Computing (SciDAC)
program and by the NASA Interdisciplinary Science Program under grant
NNX07AI56G. The Pacific Northwest National Laboratory is operated for
Department of Energy by Battelle Memorial Institute under contract
DE-AC06-76RLO 1830. A. Conley was supported by the SciDAC project from
the Department of Energy. We thank J. Kay, S. Massie, and two anonymous
reviewers for their comments.
NR 85
TC 155
Z9 157
U1 1
U2 40
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 28
PY 2010
VL 115
AR D18216
DI 10.1029/2009JD013797
PG 19
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 658RJ
UT WOS:000282506800006
ER
PT J
AU Jethva, H
Satheesh, SK
Srinivasan, J
Levy, RC
AF Jethva, H.
Satheesh, S. K.
Srinivasan, J.
Levy, R. C.
TI Improved retrieval of aerosol size-resolved properties from moderate
resolution imaging spectroradiometer over India: Role of aerosol model
and surface reflectance
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID SULFUR-DIOXIDE EMISSIONS; COMBUSTION; INVENTORY; ALGORITHM; ASIA
AB We have compared the total as well as fine mode aerosol optical depth (tau and tau(fine)) retrieved by Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua (2001-2005) with the equivalent parameters derived by Aerosol Robotic Network (AERONET) at Kanpur (26.45 degrees N, 80.35 degrees E), northern India. MODIS Collection 005 (C005)-derived tau(0.55) was found to be in good agreement with the AERONET measurements. The tau(fine) and eta (tau(fine)/tau) were, however, biased low significantly in most matched cases. A new set of retrieval with the use of absorbing aerosol model (SSA similar to 0.87) with increased visible surface reflectance provided improved tau and tau(fine) at Kanpur. The new derivation of eta also compares well qualitatively with an independent set of in situ measurements of accumulation mass fraction over much of the southern India. This suggests that though MODIS land algorithm has limited information to derive size properties of aerosols over land, more accurate parameterization of aerosol and surface properties within the existing C005 algorithm may improve the accuracy of size-resolved aerosol optical properties. The results presented in this paper indicate that there is a need to reconsider the surface parameterization and assumed aerosol properties in MODIS C005 algorithm over the Indian region in order to retrieve more accurate aerosol optical and size properties, which are essential to quantify the impact of human-made aerosols on climate.
C1 [Jethva, H.] Hampton Univ, Dept Atmospher & Planetary Sci, Hampton, VA 23668 USA.
[Satheesh, S. K.] Indian Inst Sci, Ctr Atmospher & Ocean Sci, Bangalore 560012, Karnataka, India.
[Srinivasan, J.] Indian Inst Sci, Divecha Ctr Climate Change, Bangalore 560012, Karnataka, India.
[Levy, R. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Jethva, H (reprint author), Hampton Univ, Dept Atmospher & Planetary Sci, 21 E Tyler St, Hampton, VA 23668 USA.
EM hiren.jethva@hamptonu.edu; satheesh@caos.iisc.ernet.in;
jayes@caos.iisc.ernet.in; robert.c.levy@nasa.gov
RI Jethva, Hiren/H-2258-2012; Levy, Robert/M-7764-2013
OI Jethva, Hiren/0000-0002-5408-9886; Levy, Robert/0000-0002-8933-5303
NR 26
TC 11
Z9 11
U1 0
U2 0
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 28
PY 2010
VL 115
AR D18213
DI 10.1029/2009JD013218
PG 10
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 658RJ
UT WOS:000282506800002
ER
PT J
AU Su, WY
Loeb, NG
Xu, KM
Schuster, GL
Eitzen, ZA
AF Su, Wenying
Loeb, Norman G.
Xu, Kuan-Man
Schuster, Gregory L.
Eitzen, Zachary A.
TI An estimate of aerosol indirect effect from satellite measurements with
concurrent meteorological analysis
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID STRATIFORM CLOUDS; GLOBAL SURVEY; WATER CLOUDS; REFLECTANCE; PARAMETERS;
RETRIEVAL; POLLUTION; IMPACT; ALBEDO; ISCCP
AB Many studies have used satellite retrievals to investigate the effect of aerosols on cloud properties, but these retrievals are subject to artifacts that can confound interpretation. Additionally, large-scale meteorological differences over a study region dominate cloud dynamics and must be accounted for when studying aerosol and cloud interactions. We have developed an analysis method which minimizes the effect of retrieval artifacts and large-scale meteorology on the assessment of the aerosol indirect effect. The method divides an oceanic study region into 1 degrees x 1 degrees grid boxes and separates the grid boxes into two populations according to back trajectory analysis: one population contains aerosols of oceanic origin, and the other population contains aerosols of continental origin. We account for variability in the large-scale dynamical and thermodynamical conditions by stratifying these two populations according to vertical velocity (at 700 hPa) and estimated inversion strength and analyze differences in the aerosol optical depths, cloud properties, and top of atmosphere (TOA) albedos. We also stratify the differences by cloud liquid water path (LWP) in order to quantify the first aerosol indirect effect. We apply our method to a study region off the west coast of Africa and only consider single-layer low-level clouds. We find that grid boxes associated with aerosols of continental origin have higher cloud fraction than those associated with oceanic origin. Additionally, we limit our analysis to those grid boxes with cloud fractions larger than 80% to ensure that the two populations have similar retrieval biases. This is important for eliminating the retrieval biases in our difference analysis. We find a significant reduction in cloud droplet effective radius associated with continental aerosols relative to that associated with oceanic aerosols under all LWP ranges; the overall reduction is about 1.0 mu m, when cloud fraction is not constrained, and is about 0.5 mu m, when cloud fraction is constrained to be larger than 80%. We also find significant increases in cloud optical depth and TOA albedo associated with continental aerosols relative to those associated with oceanic aerosols under all LWP ranges. The overall increase in cloud optical depth is about 0.6, and the overall increase in TOA albedo is about 0.021, when we do not constrained cloud fraction. The overall increases in cloud optical depth and TOA albedo are 0.4 and 0.008, when we only use grid boxes with cloud fraction larger than 80%.
C1 [Su, Wenying; Eitzen, Zachary A.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA.
[Loeb, Norman G.; Xu, Kuan-Man; Schuster, Gregory L.] NASA, Langley Res Ctr, Hampton, VA 23666 USA.
RP Su, WY (reprint author), Sci Syst & Applicat Inc, Hampton, VA 23666 USA.
EM wenying.su-1@nasa.gov
RI Xu, Kuan-Man/B-7557-2013
OI Xu, Kuan-Man/0000-0001-7851-2629
FU NASA
FX This research has been supported by NASA Interdisciplinary Research in
Earth Science, Aerosol Impacts on Clouds, Precipitation, and the
Hydrologic Cycle, and by the NASA CALIPSO project. The CERES SSF data
were obtained from the Atmospheric Sciences Data Center at the NASA
Langley Research Center. ECMWF ERA-Interim data used in this study have
been obtained from the ECMWF data server. W. Su would like to thank
Roland Draxler for his help with HYSPLIT. We thank Patrick Minnis and
Sunny Sun-Mack for helpful discussions.
NR 47
TC 11
Z9 11
U1 0
U2 10
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 28
PY 2010
VL 115
AR D18219
DI 10.1029/2010JD013948
PG 14
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 658RJ
UT WOS:000282506800008
ER
PT J
AU Anderson, MS
AF Anderson, Mark S.
TI Nonplasmonic surface enhanced Raman spectroscopy using silica
microspheres
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID SILVER ELECTRODE; MICROCAVITIES; RESONATORS; SCATTERING; PYRIDINE;
SPECTRA; WAVES
AB Surface enhanced Raman spectroscopy is presented using a nonplasmonic mechanism based on whispering gallery modes in silica microspheres. Sensitive Raman analysis of molecular films is demonstrated by using 5-10 mu m sized silica spheres. The advantages of this nonplasmonic approach are the active substrate is chemically inert, thermally stable, and relatively simple to fabricate. Applications include trace organic analysis particularly for in situ planetary instruments that require robust sensors with consistent response. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3493657]
C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Anderson, MS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 125-109, Pasadena, CA 91109 USA.
EM mark.s.anderson@jpl.nasa.gov
NR 21
TC 12
Z9 12
U1 2
U2 20
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD SEP 27
PY 2010
VL 97
IS 13
AR 131116
DI 10.1063/1.3493657
PG 3
WC Physics, Applied
SC Physics
GA 657UU
UT WOS:000282443800016
ER
PT J
AU Sutton, A
McKenzie, K
Ware, B
Shaddock, DA
AF Sutton, Andrew
McKenzie, Kirk
Ware, Brent
Shaddock, Daniel A.
TI Laser ranging and communications for LISA
SO OPTICS EXPRESS
LA English
DT Article
AB The Laser Interferometer Space Antenna (LISA) will use Time Delay Interferometry (TDI) to suppress the otherwise dominant laser frequency noise. The technique uses sub-sample interpolation of the recorded optical phase measurements to form a family of interferometric combinations immune to frequency noise. This paper reports on the development of a Pseudo-Random Noise laser ranging system used to measure the sub-sample interpolation time shifts required for TDI operation. The system also includes an optical communication capability that meets the 20 kbps LISA requirement. An experimental demonstration of an integrated LISA phase measurement and ranging system achieved a approximate to 0.19 m rms absolute range error with a 0.5Hz signal bandwidth, surpassing the 1 m rms LISA specification. The range measurement is limited by mutual interference between the ranging signals exchanged between spacecraft and the interaction of the ranging code with the phase measurement.
C1 [Sutton, Andrew; Shaddock, Daniel A.] Australian Natl Univ, Ctr Gravitat Phys, Canberra, ACT 0200, Australia.
[McKenzie, Kirk; Ware, Brent; Shaddock, Daniel A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Sutton, A (reprint author), Australian Natl Univ, Ctr Gravitat Phys, GPO Box 4, Canberra, ACT 0200, Australia.
EM andrew.sutton@anu.edu.au
RI Shaddock, Daniel/A-7534-2011
OI Shaddock, Daniel/0000-0002-6885-3494
FU Australian Research Council [DP0986003]; National Aeronautics and Space
Administration (NASA)
FX This research was supported under Australian Research Council's
Discovery Projects funding scheme (project number DP0986003). Part of
this research was performed at the Jet Propulsion Laboratory, California
Institute of Technology, under contract with the National Aeronautics
and Space Administration (NASA).
NR 17
TC 14
Z9 14
U1 0
U2 4
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD SEP 27
PY 2010
VL 18
IS 20
BP 20759
EP 20773
DI 10.1364/OE.18.020759
PG 15
WC Optics
SC Optics
GA 673QX
UT WOS:000283679200023
PM 20940971
ER
PT J
AU Josset, D
Zhai, PW
Hu, YX
Pelon, J
Lucker, PL
AF Josset, Damien
Zhai, Peng-Wang
Hu, Yongxiang
Pelon, Jacques
Lucker, Patricia L.
TI Lidar equation for ocean surface and subsurface
SO OPTICS EXPRESS
LA English
DT Article
ID BIDIRECTIONAL REFLECTANCE; CLOUDS; RADIANCE; WATER; BACKSCATTER;
CALIBRATION; WHITECAPS; AEROSOLS; MISSION; LAYERS
AB The lidar equation for ocean at optical wavelengths including subsurface signals is revisited using the recent work of the radiative transfer and ocean color community for passive measurements. The previous form of the specular and subsurface echo term are corrected from their heritage, which originated from passive remote sensing of whitecaps, and is improved for more accurate use in future lidar research. A corrected expression for specular and subsurface lidar return is presented. The previous formalism does not correctly address angular dependency of specular lidar return and overestimates the subsurface term by a factor ranging from 89% to 194% for a nadir pointing lidar. Suggestions for future improvements to the lidar equation are also presented. (C) 2010 Optical Society of America
C1 [Josset, Damien] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Josset, Damien; Zhai, Peng-Wang] SSAI, Hampton, VA 23666 USA.
[Hu, Yongxiang] NASA, Langley Res Ctr, MS 475, Hampton, VA 23681 USA.
[Pelon, Jacques] Univ Paris 06, LATMOS, CNRS, UMR 8190, F-75252 Paris 05, France.
[Lucker, Patricia L.] NASA, Langley Res Ctr, SSAI, MS 475, Hampton, VA 23681 USA.
RP Josset, D (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA.
EM damien.josset@aero.jussieu.fr
RI Hu, Yongxiang/K-4426-2012
FU NASA at NASA Langley Research Center; Science Systems and Applications
Inc. (SSAI)
FX This work has been supported by NASA Postdoctoral Program (NPP) at NASA
Langley Research Center administered by Oak Ridge Associated
Universities. Science Systems and Applications Inc. (SSAI) is greatly
acknowledged for their support. We would like to thank the two anonymous
reviewers for suggesting corrections and improvements to the manuscript.
NR 31
TC 5
Z9 6
U1 1
U2 6
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD SEP 27
PY 2010
VL 18
IS 20
BP 20862
EP 20875
DI 10.1364/OE.18.020862
PG 14
WC Optics
SC Optics
GA 673QX
UT WOS:000283679200033
PM 20940981
ER
PT J
AU Sayres, DS
Pfister, L
Hanisco, TF
Moyer, EJ
Smith, JB
St Clair, JM
O'Brien, AS
Witinski, MF
Legg, M
Anderson, JG
AF Sayres, D. S.
Pfister, L.
Hanisco, T. F.
Moyer, E. J.
Smith, J. B.
St Clair, J. M.
O'Brien, A. S.
Witinski, M. F.
Legg, M.
Anderson, J. G.
TI Influence of convection on the water isotopic composition of the
tropical tropopause layer and tropical stratosphere
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID TROPOSPHERE EXCHANGE; VAPOR; TRANSPORT; OZONE; DEHYDRATION; AIRCRAFT;
AIR
AB [1] We present the first in situ measurements of HDO across the tropical tropopause, obtained by the integrated cavity output spectroscopy (ICOS) and Hoxotope water isotope instruments during the Costa Rica Aura Validation Experiment (CR-AVE) and Tropical Composition, Cloud and Climate Coupling (TC4) aircraft campaigns out of Costa Rica in winter and summer, respectively. We use these data to explore the role convection plays in delivering water to the tropical tropopause layer (TTL) and stratosphere. We find that isotopic ratios within the TTL are inconsistent with gradual ascent and dehydration by in-situ cirrus formation and suggest that convective ice lofting and evaporation play a strong role throughout the TTL. We use a convective influence model and a simple parameterized model of dehydration along back trajectories to demonstrate that the convective injection of isotopically heavy water can account for the predominant isotopic profile in the TTL. Air parcels with significantly enhanced water vapor and isotopic composition can be linked via trajectory analysis to specific convective events in the Western Tropical Pacific, Southern Pacific Ocean, and South America. Using a simple model of dehydration and hydration along trajectories we show that convection during the summertime TC4 campaign moistened the upper part of the TTL by as much as 2.0 ppmv water vapor. The results suggest that deep convection is significant for the moisture budget of the tropical near-tropopause region and must be included to fully model the dynamics and chemistry of the TTL and lower stratosphere.
C1 [Sayres, D. S.; Hanisco, T. F.; Moyer, E. J.; Smith, J. B.; St Clair, J. M.; O'Brien, A. S.; Witinski, M. F.; Anderson, J. G.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA.
[Pfister, L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Legg, M.] BAERI, Sonoma, CA 95476 USA.
RP Sayres, DS (reprint author), Harvard Univ, Sch Engn & Appl Sci, 12 Oxford St, Cambridge, MA 02138 USA.
EM sayres@huarp.harvard.edu
FU NASA [NNG05G056G, NNG05GJ81G]
FX The authors wish to thank the WB-57 pilots and crew for their hard work
and dedication without which these measurements would not be possible.
We also wish to thank A.E. Dessler for his comments and suggestions on
this manuscript. Support from NASA grants NNG05G056G and NNG05GJ81G is
gratefully acknowledged.
NR 40
TC 33
Z9 33
U1 1
U2 18
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 25
PY 2010
VL 115
AR D00J20
DI 10.1029/2009JD013100
PG 13
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 656IF
UT WOS:000282322100005
ER
PT J
AU Fisher, K
Chang, CI
AF Fisher, Kevin
Chang, Chein-I
TI Progressive band selection for satellite hyperspectral data compression
and transmission
SO JOURNAL OF APPLIED REMOTE SENSING
LA English
DT Article
DE Backward progressive band selection (BPBS); Forward progressive band
selection (FPBS); Progressive band selection; Virtual dimensionality
(VD)
ID SUBSPACE PROJECTION; CLASSIFICATION; IMAGERY
AB Efficient data transmission is an important part of satellite communication, particularly when large data volumes need to be downlinked to the Earth. One general approach to dealing with this dilemma is data compression, either lossless or lossy. For hyperspectral data, compression is specifically crucial due to its high inter-band spectral correlation, resulting from the use of hundreds of high spectral resolution bands for data collection. This paper develops a new approach, called progressive band selection (PBS), to achieve both data compression and data transmission, in the sense that data can be compressed and transmitted progressively. First, PBS prioritizes each spectral band by assigning a priority score based on its information content measured by a certain criterion. Then, bands are selected progressively according to the priority scores assigned to each spectral band. Consequently, data can be compressed and transmitted in a progressive fashion to meet the application's requirements; this task cannot be accomplished by most data compression techniques. Most importantly, PBS can be implemented in two opposite manners. One is forward progressive band selection (FPBS), which starts with a low number of bands and gradually improves data quality by including more bands progressively, based on their priority scores, until data quality is satisfactory. The other is backward progressive band selection (BPBS), which begins with a high number of spectral bands and progressively removes them in accordance with their priority scores, until data quality falls below a given tolerance level. In order to determine the lower and upper bounds on the number of bands used for FPBS and BPBS, we use a recently developed concept called virtual dimensionality (VD). We demonstrate the utility of PBS in compression and transmission for satellite communication with an experiment in land use and cover classification, which uses a dataset collected by the Hyperion instrument aboard NASA's EO-1 satellite.
C1 [Fisher, Kevin] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Chang, Chein-I] Univ Maryland, Dept Comp Sci & Elect Engn, Baltimore, MD 21250 USA.
RP Fisher, K (reprint author), NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA.
NR 18
TC 1
Z9 1
U1 1
U2 4
PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA
SN 1931-3195
J9 J APPL REMOTE SENS
JI J. Appl. Remote Sens.
PD SEP 24
PY 2010
VL 4
AR 041770
DI 10.1117/1.3502036
PG 17
WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic
Technology
SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science &
Photographic Technology
GA 704RG
UT WOS:000286069500001
ER
PT J
AU Di Girolamo, L
Liang, LS
Platnick, S
AF Di Girolamo, Larry
Liang, Lusheng
Platnick, Steven
TI A global view of one-dimensional solar radiative transfer through
oceanic water clouds
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID INDEPENDENT PIXEL APPROXIMATION; OPTICAL DEPTH
AB Solar radiative transfer through a cloudy atmosphere is commonly computed assuming clouds to be one-dimensional, i.e., plane-parallel. Here we provide a global perspective on how often and with what degree oceanic water clouds may be considered plane-parallel by fusing multi-view-angle and multi-spectral satellite data. We show that the view-angular distribution of the retrieved reflectance, spherical albedo and cloud optical thickness measured at 1 km resolution are indistinguishable from plane-parallel clouds 24%, 25% and 79% of the time, respectively, at the 95% confidence level of our measurement method. These plane-parallel clouds occur most frequently within regions dominated by stratiform clouds under solar zenith angles <60 degrees. For all other regions or sun-angles, the frequency in which clouds are indistinguishable from plane-parallel drops sharply to as low as a few percent. Our results provide a basis for interpreting space-time variability within many satellite-retrieved variables and reveal a need for continued efforts to handle three-dimensional radiative transfer in environmental modeling and monitoring systems. Citation: Di Girolamo, L., L. Liang, and S. Platnick (2010), A global view of one-dimensional solar radiative transfer through oceanic water clouds, Geophys. Res. Lett., 37, L18809, doi:10.1029/2010GL044094.
C1 [Di Girolamo, Larry; Liang, Lusheng] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61801 USA.
[Platnick, Steven] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA.
RP Di Girolamo, L (reprint author), Univ Illinois, Dept Atmospher Sci, 105 S Gregory Ave, Urbana, IL 61801 USA.
EM larry@atmos.uiuc.edu
RI liang, lusheng/E-1538-2014; Platnick, Steven/J-9982-2014
OI Platnick, Steven/0000-0003-3964-3567
FU NASA
FX We are grateful to the NASA Langley Research Center Atmospheric Sciences
Data Center and the NASA Goddard Space Flight Center Atmosphere Archive
Distribution System for archiving and distributing the MISR and MODIS
datasets. Funding was provided by NASA through the New Investigator
Program and the Earth and Space Science Fellowship Program, as well as
through the MISR project managed by the Jet Propulsion Laboratory of the
California Institute of Technology.
NR 14
TC 18
Z9 18
U1 0
U2 8
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD SEP 24
PY 2010
VL 37
AR L18809
DI 10.1029/2010GL044094
PG 5
WC Geosciences, Multidisciplinary
SC Geology
GA 656HL
UT WOS:000282319500001
ER
PT J
AU Liu, CX
Liu, Y
Cai, ZN
Gao, ST
Bian, JC
Liu, XO
Chance, K
AF Liu, Chuanxi
Liu, Yi
Cai, Zhaonan
Gao, Shouting
Bian, Jianchun
Liu, Xiong
Chance, Kelly
TI Dynamic formation of extreme ozone minimum events over the Tibetan
Plateau during northern winters 1987-2001
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID MADDEN-JULIAN OSCILLATION; TROPOSPHERIC OZONE; LOWER STRATOSPHERE;
CLIMATOLOGY; TROPOPAUSE; HEMISPHERE; PACIFIC; HOLES
AB Wintertime extreme ozone minima in the total column ozone over the Tibetan Plateau (TP) between 1978 and 2001 are analyzed using observations from the Total Ozone Mapping Spectrometer (TOMS), Global Ozone Monitoring Experiment (GOME), and reanalysis data from both National Centers for Environmental Prediction and European Centre for Medium-Range Weather Forecasts. Results show that total column ozone reduction in nine persistent (lasting for at least 2 days) and four transient events can be substantially attributed to ozone reduction in the upper troposphere and lower stratosphere region (below 25 km). This reduction is generally caused by uplift of the local tropopause and northward transport of tropical ozone-poor air associated with an anomalous anticyclone in the upper troposphere. These anticyclonic anomalies are closely related to anomalous tropical deep convective heating, which is, however, not necessarily phase locked with the tropical Madden-Julian Oscillation as in our earlier case study. Considering stratospheric processes, the selected 13 events can be combined into nine independent events. Moreover, five of the nine independent events, especially the persistent events, are coupled with contributions from stratospheric dynamics between 25 and 40 km, i.e., 15%-40% derived from GOME observations for events in November 1998, February 1999, and December 2001. On the basis of these events, stratospheric column ozone reduction over the TP region can be attributed to the dynamics (development and/or displacement) of the two main stratospheric systems, namely, the polar vortex and the Aleutian High. The effect of a "low-ozone pocket" inside the Aleutian High on the total column ozone in East Asia requires further study.
C1 [Liu, Chuanxi; Liu, Yi; Cai, Zhaonan; Bian, Jianchun] Chinese Acad Sci, Inst Atmospher Phys, Key Lab Middle Atmosphere & Global Environm Obser, Beijing 100029, Peoples R China.
[Liu, Xiong; Chance, Kelly] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Gao, Shouting] Chinese Acad Sci, Inst Atmospher Phys, LACS, Beijing 100029, Peoples R China.
[Liu, Xiong] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA.
[Liu, Chuanxi; Cai, Zhaonan] Chinese Acad Sci, Grad Univ, Beijing 100029, Peoples R China.
RP Liu, CX (reprint author), Chinese Acad Sci, Inst Atmospher Phys, Key Lab Middle Atmosphere & Global Environm Obser, Beijing 100029, Peoples R China.
RI Liu, Xiong/P-7186-2014;
OI Liu, Xiong/0000-0003-2939-574X; Chance, Kelly/0000-0002-7339-7577
FU National Basic Research Program of China [2010CB428604]; National
Science Foundation of China [40633015]; Dragon 2 Programme [5311]; NASA;
Smithsonian Institution
FX This work was funded by the National Basic Research Program of China
(grant 2010CB428604), National Science Foundation of China (grant
40633015), and the Dragon 2 Programme (ID: 5311). We thank the European
Space Agency and the German Aerospace Center for their ongoing
cooperation in the GOME program. The meteorological analysis was kindly
provided by ECMWF and NCEP. Research at SAO was funded by NASA and the
Smithsonian Institution.
NR 46
TC 6
Z9 7
U1 0
U2 17
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 24
PY 2010
VL 115
AR D18311
DI 10.1029/2009JD013130
PG 14
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 656ID
UT WOS:000282321800001
ER
PT J
AU France, K
McCray, R
Heng, K
Kirshner, RP
Challis, P
Bouchet, P
Crotts, A
Dwek, E
Fransson, C
Garnavich, PM
Larsson, J
Lawrence, SS
Lundqvist, P
Panagia, N
Pun, CSJ
Smith, N
Sollerman, J
Sonneborn, G
Stocke, JT
Wang, LF
Wheeler, JC
AF France, Kevin
McCray, Richard
Heng, Kevin
Kirshner, Robert P.
Challis, Peter
Bouchet, Patrice
Crotts, Arlin
Dwek, Eli
Fransson, Claes
Garnavich, Peter M.
Larsson, Josefin
Lawrence, Stephen S.
Lundqvist, Peter
Panagia, Nino
Pun, Chun S. J.
Smith, Nathan
Sollerman, Jesper
Sonneborn, George
Stocke, John T.
Wang, Lifan
Wheeler, J. Craig
TI Observing Supernova 1987A with the Refurbished Hubble Space Telescope
SO SCIENCE
LA English
DT Article
ID BALMER-DOMINATED SHOCKS; SNR 1987A; REVERSE SHOCK; CIRCUMSTELLAR RING;
OPTICAL-EMISSION; LINE EMISSION; SN-1987A; ULTRAVIOLET; REMNANTS; NEBULA
AB Observations with the Hubble Space Telescope (HST), conducted since 1990, now offer an unprecedented glimpse into fast astrophysical shocks in the young remnant of supernova 1987A. Comparing observations taken in 2010 with the use of the refurbished instruments on HST with data taken in 2004, just before the Space Telescope Imaging Spectrograph failed, we find that the Ly alpha and H alpha lines from shock emission continue to brighten, whereas their maximum velocities continue to decrease. We observe broad, blueshifted Ly alpha, which we attribute to resonant scattering of photons emitted from hot spots on the equatorial ring. We also detect N v lambda lambda 1239, 1243 angstrom line emission, but only to the red of Ly alpha. The profiles of the N v lines differ markedly from that of H alpha, suggesting that the N(4+) ions are scattered and accelerated by turbulent electromagnetic fields that isotropize the ions in the collisionless shock.
C1 [Heng, Kevin] ETH, Inst Astron, CH-8093 Zurich, Switzerland.
[France, Kevin; Stocke, John T.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA.
[McCray, Richard] Univ Colorado, JILA, Boulder, CO 80309 USA.
[Heng, Kevin] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA.
[Kirshner, Robert P.; Challis, Peter] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Bouchet, Patrice] Commissariat Energie Atom & Energies Alternat, Serv Astrophys, FR-91191 Gif Sur Yvette, France.
[Crotts, Arlin] Columbia Univ, Dept Astron, New York, NY 10027 USA.
[Dwek, Eli; Sonneborn, George] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Fransson, Claes; Larsson, Josefin; Sollerman, Jesper] Stockholm Univ, Oskar Klein Ctr, Dept Astron, S-10691 Stockholm, Sweden.
[Garnavich, Peter M.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Lawrence, Stephen S.] Hofstra Univ, Dept Phys & Astron, Hempstead, NY 11549 USA.
[Panagia, Nino] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Panagia, Nino] Osserv Astrofis Catania, Inst Nazl Astrofis, I-95123 Catania, Italy.
[Pun, Chun S. J.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
[Smith, Nathan] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Wang, Lifan] Texas A&M Univ, Dept Phys & Astron, College Stn, TX USA.
[Wheeler, J. Craig] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA.
RP Heng, K (reprint author), ETH, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland.
EM kheng@phys.ethz.ch
RI Dwek, Eli/C-3995-2012; Sonneborn, George/D-5255-2012;
OI Sollerman, Jesper/0000-0003-1546-6615; /0000-0003-0065-2933
FU Space Telescope Science Institute [GO-11181]; NASA [NAS5-26555]
FX K.F. thanks M. Beasley for enjoyable discussions. Support for this
research was provided by NASA through grant GO-11181 from the Space
Telescope Science Institute, which is operated by the Association of
Universities for Research in Astronomy, under NASA contract NAS5-26555.
NR 25
TC 12
Z9 12
U1 0
U2 12
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD SEP 24
PY 2010
VL 329
IS 5999
BP 1624
EP 1627
DI 10.1126/science.1192134
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 653NK
UT WOS:000282098100034
PM 20813921
ER
PT J
AU Heavens, NG
Benson, JL
Kass, DM
Kleinbohl, A
Abdou, WA
McCleese, DJ
Richardson, MI
Schofield, JT
Shirley, JH
Wolkenberg, PM
AF Heavens, N. G.
Benson, J. L.
Kass, D. M.
Kleinboehl, A.
Abdou, W. A.
McCleese, D. J.
Richardson, M. I.
Schofield, J. T.
Shirley, J. H.
Wolkenberg, P. M.
TI Water ice clouds over the Martian tropics during northern summer
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID GENERAL-CIRCULATION MODEL; INTERANNUAL VARIABILITY; MARS; ATMOSPHERE;
TES
AB Atmospheric models suggest that infrared heating due to water ice clouds over the tropics of Mars during early northern summer has a significant impact on the thermal structure of the tropics at cloud level and of the middle atmosphere near the south pole. Retrievals from limb observations by the Mars Climate Sounder on Mars Reconnaissance Orbiter during early northern summer show that water ice clouds over the northern tropics are thinner and higher than in published model results. Later in this season, the latitudinal extent, apparent mass mixing ratio (and infrared heating rate), and altitude of nighttime tropical clouds significantly increase, reaching a maximum just before northern fall equinox. Published model results do not show this transition. By underestimating the altitude at which water ice clouds form, models also may underestimate the intensity of the meridional circulation at higher altitudes in the tropics during northern summer. Citation: Heavens, N. G., J. L. Benson, D. M. Kass, A. Kleinbohl, W. A. Abdou, D. J. McCleese, M. I. Richardson, J. T. Schofield, J. H. Shirley, and P. M. Wolkenberg (2010), Water ice clouds over the Martian tropics during northern summer, Geophys. Res. Lett., 37, L18202, doi: 10.1029/2010GL044610.
C1 [Heavens, N. G.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91109 USA.
[Benson, J. L.; Kass, D. M.; Kleinboehl, A.; Abdou, W. A.; McCleese, D. J.; Schofield, J. T.; Shirley, J. H.; Wolkenberg, P. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Richardson, M. I.] Ashima Res, Pasadena, CA 91106 USA.
RP Heavens, NG (reprint author), Cornell Univ, Dept Earth & Atmospher Sci, 1118 Bradfield Hall, Ithaca, NY 14850 USA.
EM heavens@cornell.edu
OI Heavens, Nicholas/0000-0001-7654-503X
FU Jet Propulsion Laboratory, California Institute of Technology; National
Aeronautics and Space Administration
FX We thank John Wilson and an anonymous reviewer for helpful comments on
this manuscript. We also thank Bob Haberle for useful discussion. This
work was funded by and performed in part at the Jet Propulsion
Laboratory, California Institute of Technology under contract with the
National Aeronautics and Space Administration as part of the Mars
Reconnaissance Orbiter project.
NR 18
TC 19
Z9 19
U1 1
U2 8
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD SEP 23
PY 2010
VL 37
AR L18202
DI 10.1029/2010GL044610
PG 5
WC Geosciences, Multidisciplinary
SC Geology
GA 656HG
UT WOS:000282318900002
ER
PT J
AU Smith, AK
Marsh, DR
Mlynczak, MG
Mast, JC
AF Smith, Anne K.
Marsh, Daniel R.
Mlynczak, Martin G.
Mast, Jeffrey C.
TI Temporal variations of atomic oxygen in the upper mesosphere from SABER
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID HYDROXYL AIRGLOW; TERRESTRIAL ATMOSPHERE; SEMIANNUAL OSCILLATION;
SEMIDIURNAL TIDE; BAND EMISSION; DENSITIES; PROFILES; MODEL; RATES
AB One of the atmospheric constituents that can be retrieved from observations by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is atomic oxygen in the upper mesosphere. Atomic oxygen can be determined during both day and night using two different techniques that both rely on ozone chemistry. The O concentrations retrieved from SABER data are higher by a factor of 2-5 compared to concentrations determined from other measurements and techniques and compiled in current empirical models. This paper presents variability of atomic oxygen with a focus on the diurnal cycle in low latitudes and the seasonal cycle of daily mean atomic oxygen globally. The results show a large diurnal variation, ranging from a factor of 2 to more than a factor of 10, of atomic oxygen near the equator. The relative magnitude varies with season (larger near the equinoxes) and with altitude (largest near 85 km). Vertical transport by the migrating diurnal tide explains the observed variation. The semiannual variation in tidal amplitude affects the seasonal variation of daily average atomic oxygen, which likely indicates that there is irreversible transport by the tides. At high latitudes, the atomic oxygen variation is characterized by wintertime maxima over the altitude range 80-95 km and summertime maxima above. The wintertime peaks are associated with the downwelling from the mean circulation and are particularly strong in late winter of 2004, 2006, and 2009, responding to the unusual dynamical situations in those years.
C1 [Smith, Anne K.; Marsh, Daniel R.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA.
[Mlynczak, Martin G.] NASA Langley Res Ctr, Hampton, VA 23681 USA.
[Mast, Jeffrey C.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA.
RP Smith, AK (reprint author), Natl Ctr Atmospher Res, Div Atmospher Chem, POB 3000, Boulder, CO 80307 USA.
EM aksmith@ucar.edu
RI Mlynczak, Martin/K-3396-2012; Marsh, Daniel/A-8406-2008
OI Marsh, Daniel/0000-0001-6699-494X
FU NASA; National Science Foundation
FX The authors gratefully acknowledge the SABER science, algorithm, and
data support teams. Support for this work was provided by the NASA
Heliospheric Guest Investigator Program. The National Center for
Atmospheric Research is sponsored by the National Science Foundation.
Any opinions, findings, and conclusions or recommendations expressed in
the publication are those of the authors and do not necessarily reflect
the views of the National Science Foundation.
NR 60
TC 55
Z9 55
U1 3
U2 23
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 23
PY 2010
VL 115
AR D18309
DI 10.1029/2009JD013434
PG 18
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 656IB
UT WOS:000282321500004
ER
PT J
AU Tilmes, S
Pan, LL
Hoor, P
Atlas, E
Avery, MA
Campos, T
Christensen, LE
Diskin, GS
Gao, RS
Herman, RL
Hintsa, EJ
Loewenstein, M
Lopez, J
Paige, ME
Pittman, JV
Podolske, JR
Proffitt, MR
Sachse, GW
Schiller, C
Schlager, H
Smith, J
Spelten, N
Webster, C
Weinheimer, A
Zondlo, MA
AF Tilmes, S.
Pan, L. L.
Hoor, P.
Atlas, E.
Avery, M. A.
Campos, T.
Christensen, L. E.
Diskin, G. S.
Gao, R. -S.
Herman, R. L.
Hintsa, E. J.
Loewenstein, M.
Lopez, J.
Paige, M. E.
Pittman, J. V.
Podolske, J. R.
Proffitt, M. R.
Sachse, G. W.
Schiller, C.
Schlager, H.
Smith, J.
Spelten, N.
Webster, C.
Weinheimer, A.
Zondlo, M. A.
TI An aircraft-based upper troposphere lower stratosphere O-3, CO, and H2O
climatology for the Northern Hemisphere (vol 115, D14303, 2010)
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Correction
C1 [Avery, M. A.; Diskin, G. S.; Sachse, G. W.] NASA Langley Res Ctr, Hampton, VA 23681 USA.
RI hoor, peter/G-5421-2010; Schiller, Cornelius/B-1004-2013; Gao,
Ru-Shan/H-7455-2013; Atlas, Elliot/J-8171-2015; Zondlo, Mark/R-6173-2016
OI hoor, peter/0000-0001-6582-6864; Zondlo, Mark/0000-0003-2302-9554
NR 2
TC 0
Z9 0
U1 0
U2 5
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 23
PY 2010
VL 115
AR D18310
DI 10.1029/2010JD014867
PG 1
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 656IB
UT WOS:000282321500007
ER
PT J
AU Hayes, AG
Wolf, AS
Aharonson, O
Zebker, H
Lorenz, R
Kirk, RL
Paillou, P
Lunine, J
Wye, L
Callahan, P
Wall, S
Elachi, C
AF Hayes, A. G.
Wolf, A. S.
Aharonson, O.
Zebker, H.
Lorenz, R.
Kirk, R. L.
Paillou, P.
Lunine, J.
Wye, L.
Callahan, P.
Wall, S.
Elachi, C.
TI Bathymetry and absorptivity of Titan's Ontario Lacus
SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
LA English
DT Article
ID LAKES; ETHANE
AB [1] Ontario Lacus is the largest and best characterized lake in Titan's south polar region. In June and July 2009, the Cassini RADAR acquired its first Synthetic Aperture Radar (SAR) images of the area. Together with closest approach altimetry acquired in December 2008, these observations provide a unique opportunity to study the lake's nearshore bathymetry and complex refractive properties. Average radar backscatter is observed to decrease exponentially with distance from the local shoreline. This behavior is consistent with attenuation through a deepening layer of liquid and, if local topography is known, can be used to derive absorptive dielectric properties. Accordingly, we estimate nearshore topography from a radar altimetry profile that intersects the shoreline on the East and West sides of the lake. We then analyze SAR backscatter in these regions to determine the imaginary component of the liquid's complex index of refraction (kappa). The derived value, kappa = (6.1(-1.3)(+1.7)) x 10(-4), Corresponds to a loss tangent of tan Delta = (9.2(-2.0)(+2.5)) x 10(-4) and is consistent with a composition dominated by liquid hydrocarbons. This value can be used to test compositional models once the microwave optical properties of candidate materials have been measured. In areas that do not intersect altimetry profiles, relative slopes can be calculated assuming the index of refraction is constant throughout the liquid. Accordingly, we construct a coarse bathymetry map for the nearshore region by measuring bathymetric slopes for eleven additional areas around the lake. These slopes vary by a factor of similar to 5 and correlate well with observed shoreline morphologies.
C1 [Hayes, A. G.; Wolf, A. S.; Aharonson, O.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.
[Callahan, P.; Wall, S.; Elachi, C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Kirk, R. L.] US Geol Survey, Astrogeol Team, Flagstaff, AZ 86001 USA.
[Lorenz, R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA.
[Lunine, J.] Univ Rome, Dept Phys, I-00173 Rome, Italy.
[Paillou, P.] Univ Bordeaux 2, Aquitaine Sci Ctr, F-33270 Floirac, France.
[Zebker, H.; Wye, L.] Stanford Univ, Stanford, CA 94305 USA.
[Paillou, P.] Univ Bordeaux, Aquitaine Sci Ctr, Floirac, France.
RP Hayes, AG (reprint author), CALTECH, Div Geol & Planetary Sci, MC 150-21, Pasadena, CA 91125 USA.
EM hayes@gps.caltech.edu
RI Hayes, Alexander/P-2024-2014; Lorenz, Ralph/B-8759-2016
OI Hayes, Alexander/0000-0001-6397-2630; Lorenz, Ralph/0000-0001-8528-4644
FU Cassini Project; NASA; NASA's Graduate Student Researchers Program; NSF
Graduate Research Fellowship Program
FX The authors would like to thank Bryan Stiles for helpful discussions and
the Cassini engineering team, without whom the data presented here would
not have been possible. This work was supported by the Cassini Project,
managed by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with NASA as well as by NASA's Graduate
Student Researchers Program and the NSF Graduate Research Fellowship
Program.
NR 37
TC 34
Z9 34
U1 0
U2 5
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9097
EI 2169-9100
J9 J GEOPHYS RES-PLANET
JI J. Geophys. Res.-Planets
PD SEP 23
PY 2010
VL 115
AR E09009
DI 10.1029/2009JE003557
PG 11
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 656JD
UT WOS:000282326000002
ER
PT J
AU Searls, ML
Mellon, MT
Cull, S
Hansen, CJ
Sizemore, HG
AF Searls, M. L.
Mellon, M. T.
Cull, S.
Hansen, C. J.
Sizemore, H. G.
TI Seasonal defrosting of the Phoenix landing site
SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
LA English
DT Article
ID SUBLIMATION-DRIVEN ACTIVITY; GROUND ICE; HIRISE OBSERVATIONS;
POLAR-REGION; MARS; SURFACE; CAP; TES; STABILITY; DEPOSITS
AB [1] The retreat of the seasonal polar cap at the Phoenix landing site is analyzed through observations of high resolution images and thermal modeling of the CO(2) frost mass. Numerical simulations indicate that the onset of CO(2) frost formation occurs around L(s) = 220 degrees at 68 degrees N; however, the polar hood prevented imaging of the surface during this time. In the late winter/early spring a continuous layer of frost coated the surface obscuring the underlying polygonal patterns; however, rocks are clearly evident indicating that the frost depth was relatively shallow. Rare dark fans originating from rocks are also observed in an image from early spring. Frost dissipated from the polygon centers first and lingered longer in polygon troughs. Polygon centers were first exposed on L(s) = 13.9 degrees, and the polygon troughs were frost free by L(s) similar to 57 degrees. Frost distributions varied slightly between geologic units; however, in general, global observations at similar latitudes are consistent with what is seen in the Phoenix region. A series of hypotheses is also explored to explain the preference for the CO(2) frost to linger in the troughs: lower thermal inertia material in the troughs, aeolian redistribution of frost, burial of the ice table via aeolian redistribution of dust, and shadowing. Each of these hypotheses has drawbacks to explaining this phenomenon as stand-alone components. Shadows do play a role in keeping the CO(2) frost on the surface; however, this effect is small and cannot alone account for the observations.
C1 [Searls, M. L.; Mellon, M. T.; Sizemore, H. G.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
[Hansen, C. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Cull, S.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63112 USA.
RP Searls, ML (reprint author), Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
EM mindi.searls@lasp.colorado.edu
RI Mellon, Michael/C-3456-2016
FU NASA [NNX08AE33G]
FX We wish to thank the HiRISE, MRO, and Phoenix teams for their dedicated
hard work which resulted in two successful missions. Numerical modeling
was supported in part by NASA grant NNX08AE33G. We would also like to
thank the reviewers for their thoughtful and constructive comments and
Kim Seelos for providing a geologic map of the Phoenix landing region.
NR 38
TC 4
Z9 4
U1 0
U2 7
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0148-0227
J9 J GEOPHYS RES-PLANET
JI J. Geophys. Res.-Planets
PD SEP 23
PY 2010
VL 115
AR E00E24
DI 10.1029/2009JE003438
PG 12
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 656JD
UT WOS:000282326000001
ER
PT J
AU Sahraoui, F
Goldstein, ML
Belmont, G
Canu, P
Rezeau, L
AF Sahraoui, F.
Goldstein, M. L.
Belmont, G.
Canu, P.
Rezeau, L.
TI Three Dimensional Anisotropic k Spectra of Turbulence at Subproton
Scales in the Solar Wind
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID WEAKLY COLLISIONAL PLASMAS; DISSIPATION RANGE; MAGNETIC FLUCTUATIONS;
DYNAMICS; MAGNETOSHEATH; CASCADE; MHD
AB We show the first three dimensional (3D) dispersion relations and k spectra of magnetic turbulence in the solar wind at subproton scales. We used the Cluster data with short separations and applied the k-filtering technique to the frequency range where the transition to subproton scales occurs. We show that the cascade is carried by highly oblique kinetic Alfven waves with omega(plas) <= 0.1 omega(ci) down to k(perpendicular to)rho(i) similar to 2. Each k spectrum in the direction perpendicular to B(0) shows two scaling ranges separated by a breakpoint (in the interval [0.4, 1]k(perpendicular to)rho(i)): a Kolmogorov scaling k(perpendicular to)(-1.7) followed by a steeper scaling similar to k(perpendicular to)(-4.5). We conjecture that the turbulence undergoes a transition range, where part of the energy is dissipated into proton heating via Landau damping and the remaining energy cascades down to electron scales where electron Landau damping may predominate.
C1 [Sahraoui, F.] CNRS Ecole Polytech UPMC, Observ St Maur, Lab Phys Plasmas, F-94107 St Maur Des Fosses, France.
[Goldstein, M. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Belmont, G.; Canu, P.; Rezeau, L.] CNRS Ecole Polytech UPMC, Lab Phys Plasmas, F-91128 Palaiseau, France.
RP Sahraoui, F (reprint author), CNRS Ecole Polytech UPMC, Observ St Maur, Lab Phys Plasmas, 4 Ave Neptune, F-94107 St Maur Des Fosses, France.
EM fouad.sahraoui@lpp.polytechnique.fr
RI Goldstein, Melvyn/B-1724-2008
FU NASA/GSFC
FX The FGM and cluster ion spectrometry experiment data come from the CAA
(ESA) and AMDA (CESR, France). We thank A. Vinas for providing the
electron data. F. Sahraoui is funded partly by the NPP program at
NASA/GSFC.
NR 32
TC 203
Z9 204
U1 0
U2 15
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD SEP 23
PY 2010
VL 105
IS 13
AR 131101
DI 10.1103/PhysRevLett.105.131101
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 653YZ
UT WOS:000282136600002
PM 21230758
ER
PT J
AU Cohen, MB
Inan, US
Said, RK
Briggs, MS
Fishman, GJ
Connaughton, V
Cummer, SA
AF Cohen, M. B.
Inan, U. S.
Said, R. K.
Briggs, M. S.
Fishman, G. J.
Connaughton, V.
Cummer, S. A.
TI A lightning discharge producing a beam of relativistic electrons into
space
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID GAMMA-RAY FLASHES; SPRITES
AB Strong electric fields associated with lightning generate brief (similar to 1 ms) but intense Terrestrial Gamma-ray Flashes (TGFs), detected by spacecrafts. A few events are thought to be the signature of a relativistic electron beam escaping the atmosphere, which is distinguishable from a TGF since the lightning discharge is along the geomagnetic field line from the spacecraft, rather than below. We refer to this event herein as a 'Terrestrial Energetic-electron Flash' (TEF), and present the first TEF with associated discharge. The TEF was detected by the Gamma-ray Burst Monitor aboard the Fermi satellite, and is correlated with a lightning discharge detected by three Stanford University AWESOME ELF/VLF receivers, a Duke University ULF receiver, and by the GLD360 lightning geolocation network. The discharge, nearly simultaneous with the generated electrons, was of intense peak current and of positive polarity, and with a modest total charge transfer, similar to TGF-associated discharges. Citation: Cohen, M. B., U. S. Inan, R. K. Said, M. S. Briggs, G. J. Fishman, V. Connaughton, and S. A. Cummer (2010), A lightning discharge producing a beam of relativistic electrons into space, Geophys. Res. Lett., 37, L18806, doi: 10.1029/2010GL044481.
C1 [Cohen, M. B.; Inan, U. S.; Said, R. K.] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA.
[Inan, U. S.] Koc Univ, Dept Elect Engn, Istanbul, Turkey.
[Briggs, M. S.] Univ Alabama, CSPAR, Huntsville, AL 35805 USA.
[Fishman, G. J.; Connaughton, V.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA.
[Cummer, S. A.] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA.
RP Cohen, MB (reprint author), Stanford Univ, Dept Elect Engn, 350 Sierra Mall, Stanford, CA 94305 USA.
EM mcohen@stanford.edu
RI Cummer, Steven/A-6118-2008; Cohen, Morris/A-3684-2012
OI Cummer, Steven/0000-0002-0002-0613; Cohen, Morris/0000-0002-7920-5759
FU NSF [OPP-0233955, ATM-0642757]; DARPA [HR0011-10-1-0058]; NASA
FX This work was supported by NSF grant OPP-0233955 to Stanford University,
and also by the DARPA NIMBUS program under grant HR0011-10-1-0058.
GLD360 lightning discharge data are provided under a cooperative
agreement with Vaisala, Inc. The Fermi satellite is supported by NASA.
Duke University effort is supported by NSF grant ATM-0642757. We thank
Brant Carlson and Nikolai Lehtinen for helpful discussions.
NR 25
TC 17
Z9 17
U1 0
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD SEP 22
PY 2010
VL 37
AR L18806
DI 10.1029/2010GL044481
PG 4
WC Geosciences, Multidisciplinary
SC Geology
GA 656HB
UT WOS:000282318200008
ER
PT J
AU Feofilov, AG
Petelina, SV
AF Feofilov, A. G.
Petelina, S. V.
TI Relation between mesospheric ice clouds, temperature, and water vapor
determined from Odin/OSIRIS and TIMED/SABER data
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID NONLOCAL THERMODYNAMIC-EQUILIBRIUM; ACCELERATED LAMBDA ITERATION;
NOCTILUCENT CLOUDS; PLANETARY-ATMOSPHERES; NORTHERN-HEMISPHERE; SUMMER
MESOSPHERE; MIDDLE ATMOSPHERE; MU-M; SPACECRAFT; PARTICLES
AB Altitude, brightness, and occurrence rate of polar mesospheric clouds (PMCs) with respect to kinetic temperature, pressure, and water vapor volume mixing ratio (VMR) in the ice formation area are studied. Cloud and atmospheric parameters are measured by the Optical Spectrograph and Infrared Imager System and by the Sounding of the Atmosphere using Broadband Emission Radiometry satellite instruments, correspondingly. The analysis has been done for all northern and southern PMC seasons of 2002-2008 for both zonal averages and nearly simultaneous common volume measurements performed by two instruments. It has been found that PMC peak altitudes correlate well with mesopause altitudes, although the former experience lower seasonal variability. Mesopause temperatures anticorrelate with PMC occurrence rates and, in the Northern Hemisphere, show larger seasonal variability at high latitudes poleward of 75 degrees N compared to 55 degrees N-65 degrees N. OSIRIS PMC brightness correlates with the vertical extent of the frost area and water vapor VMR below PMC (hydration effect) and anticorrelates with the mesopause temperature and water vapor VMR in the frost area (freeze-drying effect).
C1 [Feofilov, A. G.] Catholic Univ Amer, Washington, DC 20064 USA.
[Feofilov, A. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Petelina, S. V.] La Trobe Univ, Melbourne, Vic 3086, Australia.
RP Feofilov, AG (reprint author), Catholic Univ Amer, Washington, DC 20064 USA.
EM artem-feofilov@cua-nasa-gsfc.info
RI Feofilov, Artem/A-2271-2015
OI Feofilov, Artem/0000-0001-9924-4846
FU NASA [NNX08AG41G]; Sweden (SNSB); Canada (CSA); France (CNES); Finland
(Tekes)
FX This research was partially supported under NASA grant NNX08AG41G. The
authors are grateful to the SABER science, data processing, and flight
operations for their ongoing support of this work. Odin is a Swedish-led
satellite project funded jointly by Sweden (SNSB), Canada (CSA), France
(CNES), and Finland (Tekes). Odin is presently a third party mission for
the European Space Agency (ESA) and the OSIRIS data are provided by ESA.
NR 53
TC 3
Z9 3
U1 0
U2 0
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 22
PY 2010
VL 115
AR D18305
DI 10.1029/2009JD013619
PG 12
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 656IA
UT WOS:000282321400006
ER
PT J
AU Gerber, EP
Baldwin, MP
Akiyoshi, H
Austin, J
Bekki, S
Braesicke, P
Butchart, N
Chipperfield, M
Dameris, M
Dhomse, S
Frith, SM
Garcia, RR
Garny, H
Gettelman, A
Hardiman, SC
Karpechko, A
Marchand, M
Morgenstern, O
Nielsen, JE
Pawson, S
Peter, T
Plummer, DA
Pyle, JA
Rozanov, E
Scinocca, JF
Shepherd, TG
Smale, D
AF Gerber, Edwin P.
Baldwin, Mark P.
Akiyoshi, Hideharu
Austin, John
Bekki, Slimane
Braesicke, Peter
Butchart, Neal
Chipperfield, Martyn
Dameris, Martin
Dhomse, Sandip
Frith, Stacey M.
Garcia, Rolando R.
Garny, Hella
Gettelman, Andrew
Hardiman, Steven C.
Karpechko, Alexey
Marchand, Marion
Morgenstern, Olaf
Nielsen, J. Eric
Pawson, Steven
Peter, Tom
Plummer, David A.
Pyle, John A.
Rozanov, Eugene
Scinocca, John F.
Shepherd, Theodore G.
Smale, Dan
TI Stratosphere-troposphere coupling and annular mode variability in
chemistry-climate models
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID NORTH-ATLANTIC OSCILLATION; ZONAL INDEX; DOWNWARD PROPAGATION; ARCTIC
OSCILLATION; TIME-SCALE; REANALYSIS; FEEDBACK; CIRCULATION; PERSISTENCE;
HEMISPHERE
AB The internal variability and coupling between the stratosphere and troposphere in CCMVal-2 chemistry-climate models are evaluated through analysis of the annular mode patterns of variability. Computation of the annular modes in long data sets with secular trends requires refinement of the standard definition of the annular mode, and a more robust procedure that allows for slowly varying trends is established and verified. The spatial and temporal structure of the models' annular modes is then compared with that of reanalyses. As a whole, the models capture the key features of observed intraseasonal variability, including the sharp vertical gradients in structure between stratosphere and troposphere, the asymmetries in the seasonal cycle between the Northern and Southern hemispheres, and the coupling between the polar stratospheric vortices and tropospheric midlatitude jets. It is also found that the annular mode variability changes little in time throughout simulations of the 21st century. There are, however, both common biases and significant differences in performance in the models. In the troposphere, the annular mode in models is generally too persistent, particularly in the Southern Hemisphere summer, a bias similar to that found in CMIP3 coupled climate models. In the stratosphere, the periods of peak variance and coupling with the troposphere are delayed by about a month in both hemispheres. The relationship between increased variability of the stratosphere and increased persistence in the troposphere suggests that some tropospheric biases may be related to stratospheric biases and that a well-simulated stratosphere can improve simulation of tropospheric intraseasonal variability.
C1 [Gerber, Edwin P.] NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY 10016 USA.
[Baldwin, Mark P.] NW Res Associates, Redmond, WA 98052 USA.
[Akiyoshi, Hideharu] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan.
[Austin, John] Princeton Univ, GFDL, Princeton, NJ 08540 USA.
[Bekki, Slimane; Marchand, Marion] UPMC, IPSL, UVSQ, LATMOS,INSU,CNRS, F-75231 Paris, France.
[Braesicke, Peter; Pyle, John A.] Univ Cambridge, Ctr Atmospher Sci, Dept Chem, Cambridge CB2 1EW, England.
[Chipperfield, Martyn; Dhomse, Sandip] Univ Leeds, Inst Climate & Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England.
[Dameris, Martin; Garny, Hella] Inst Phys Atmosphare, Deutsch Zentrum Luft & Raumfaht, D-82234 Wessling, Germany.
[Frith, Stacey M.] NASA, GSFC, Atmospher Chem & Dynam Branch, Greenbelt, MD 20071 USA.
[Garcia, Rolando R.; Gettelman, Andrew] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Karpechko, Alexey] Finnish Meteorol Inst, FI-00101 Helsinki, Finland.
[Morgenstern, Olaf; Smale, Dan] Natl Inst Water & Atmospher Res, Lauder, New Zealand.
[Nielsen, J. Eric; Pawson, Steven] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA.
[Peter, Tom; Rozanov, Eugene] WRC, PMOD, CH-8092 Zurich, Switzerland.
[Plummer, David A.; Scinocca, John F.] Univ Victoria, Canadian Ctr Climate Modelling & Anal, Victoria, BC V8W 3V6, Canada.
[Shepherd, Theodore G.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada.
RP Gerber, EP (reprint author), NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY 10016 USA.
EM gerber@cims.nyu.edu
RI Dhomse, Sandip/C-8198-2011; Rozanov, Eugene/A-9857-2012; Baldwin,
Mark/J-6720-2012; Chipperfield, Martyn/H-6359-2013; bekki,
slimane/J-7221-2015; Braesicke, Peter/D-8330-2016; Pawson,
Steven/I-1865-2014;
OI Dhomse, Sandip/0000-0003-3854-5383; Rozanov, Eugene/0000-0003-0479-4488;
Chipperfield, Martyn/0000-0002-6803-4149; bekki,
slimane/0000-0002-5538-0800; Braesicke, Peter/0000-0003-1423-0619;
Pawson, Steven/0000-0003-0200-717X; Gerber, Edwin/0000-0002-6010-6638;
Morgenstern, Olaf/0000-0002-9967-9740
FU National Science Foundation (NSF); Joint DECC [GA01101]; Office of
Science, U. S. Department of Energy; Ministry of the Environment of
Japan [A-071]
FX We thank Judith Perlwitz and two anonymous reviewers for constructive
comments on earlier manuscript. E.P.G. acknowledges support from the
National Science Foundation (NSF) under the Atmospheric and Geospace
Sciences program. M.P.B. was funded by the NSF under the US CLIVAR
program and the Office of Polar Programs. N.B. and S.H. were supported
by the Joint DECC and Defra Integrated Climate Programme-DECC/Defra
(GA01101). We acknowledge the modeling groups for making their
simulations available for this analysis, the CCMVal Activity for WCRP's
SPARC (Stratospheric Processes and their Role in Climate) project for
organizing and coordinating the CCM data analysis activity, the British
Atmospheric Data Center (BADC) for collecting and archiving the CCMVal
model output, and the Program for Climate Model Diagnosis and
Intercomparison (PCMDI) and the WCRP's Working Group on Coupled Modeling
(WGCM) for their roles in making available the WCRP CMIP3 multimodel
data set. Support for the CMIP3 data set is provided by the Office of
Science, U. S. Department of Energy. CCSRNIES research was supported by
the Global Environmental Research Fund of the Ministry of the
Environment of Japan (A-071), and simulations were completed with the
super computer at CGER, NIES.
NR 45
TC 48
Z9 48
U1 0
U2 25
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 22
PY 2010
VL 115
AR D00M06
DI 10.1029/2009JD013770
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 656IA
UT WOS:000282321400007
ER
PT J
AU Verkhoglyadova, OP
Tsurutani, BT
Lakhina, GS
AF Verkhoglyadova, Olga P.
Tsurutani, Bruce T.
Lakhina, Gurbax S.
TI Properties of obliquely propagating chorus
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID DRIVEN ELECTRON ACCELERATION; WHISTLER-MODE CHORUS; STORM-TIME CHORUS;
RELATIVISTIC ENERGIES; RADIATION BELT; EMISSIONS; MAGNETOSPHERE
AB We discuss chorus wave magnetic and electric field polarizations as functions on angle of propagation relative to the ambient magnetic field B(0). For the first time, it is shown using a cold plasma approximation that the general whistler wave has circularly polarized magnetic fields for oblique propagation. This theoretical result is verified by observations. The electric field polarization plane is not orthogonal to the wave vector k and is in general highly elliptically polarized. Both the magnetic and the electric polarizations have important consequences for cyclotron resonant electron pitch angle scattering and for electron energization, respectively. A special case of the whistler wave called the Gendrin mode is discussed.
C1 [Verkhoglyadova, Olga P.; Tsurutani, Bruce T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Lakhina, Gurbax S.] India Inst Geomagnetism, Navi Mumbai 410218, Maharashtra, India.
[Verkhoglyadova, Olga P.] Univ Alabama, Ctr Space Plasma & Aeronom Res, Huntsville, AL 35899 USA.
RP Verkhoglyadova, OP (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM olga.verkhoglyadova@jpl.nasa.gov
RI Lakhina, Gurbax /C-9295-2012;
OI Lakhina, Gurbax /0000-0002-8956-486X; Verkhoglyadova,
Olga/0000-0002-9295-9539
FU NASA; Indian National Science Academy, New Delhi
FX Portions of this research were done at the Jet Propulsion Laboratory,
California Institute of Technology under contract with NASA. G.S.L.
thanks the Indian National Science Academy, New Delhi, for support under
the Senior Scientist Scheme.
NR 32
TC 22
Z9 22
U1 0
U2 0
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0148-0227
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD SEP 22
PY 2010
VL 115
AR A00F19
DI 10.1029/2009JA014809
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 656JN
UT WOS:000282327100001
ER
PT J
AU Cohen, MI
Cutler, C
Vallisneri, M
AF Cohen, Michael I.
Cutler, Curt
Vallisneri, Michele
TI Searches for cosmic-string gravitational-wave bursts in Mock LISA Data
SO CLASSICAL AND QUANTUM GRAVITY
LA English
DT Article
ID MONTE-CARLO METHODS; RADIATION; EFFICIENT; BINARIES
AB A network of observable, macroscopic cosmic (super-)strings may well have formed in the early Universe. If so, the cusps that generically develop on cosmic-string loops emit bursts of gravitational radiation that could be detectable by gravitational-wave interferometers, such as the ground-based LIGO/Virgo detectors and the planned, space-based LISA detector. Here we report on two versions of a LISA-oriented string-burst search pipeline that we have developed and tested within the context of the Mock LISA Data Challenges. The two versions rely on the publicly available MultiNest and PyMC software packages, respectively. To reduce the effective dimensionality of the search space, our implementations use the F-statistic to analytically maximize over the signal's amplitude and polarization, A and psi, and use the FFT to search quickly over burst arrival times t(C). The standard F-statistic is essentially a frequentist statistic that maximizes the likelihood; we also demonstrate an approximate, Bayesian version of the F-statistic that incorporates realistic priors on A and psi. We calculate how accurately LISA can expect to measure the physical parameters of string-burst sources, and compare to results based on the Fisher-matrix approximation. To understand LISA's angular resolution for string-burst sources, we draw maps of the waveform fitting factor (maximized over (A, psi, t(C))) as a function of the sky position; these maps dramatically illustrate why (for LISA) inferring the correct sky location of the emitting string loop will often be practically impossible. In addition, we identify and elucidate several symmetries that are imbedded in this search problem, and we derive the distribution of cut-off frequencies f(max) for observable bursts.
C1 [Cohen, Michael I.; Cutler, Curt; Vallisneri, Michele] CALTECH, Pasadena, CA 91125 USA.
[Cutler, Curt; Vallisneri, Michele] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Cohen, MI (reprint author), CALTECH, Pasadena, CA 91125 USA.
EM Curt.J.Cutler@jpl.nasa.gov
FU National Aeronautics and Space Administration; NASA [NNX07AM80G]
FX This research relied crucially on the hard work of the developers of
open-source scientific software: we thank the authors and maintainers
the of NumPy and SciPy Python libraries, and especially F Feroz and
colleagues (MultiNest) and C Fonnesbeck and colleagues (PyMC). We thank
J Gair, N Cornish and J Shapiro Key for useful interactions. The
numerical computation for this work was performed primarily with
computing resources from the Caltech Center for Advanced Computing
Research. Much of the research described in this paper was carried out
at the Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Administration.
MC, CC and MV also gratefully acknowledge support from the NASA grant
NNX07AM80G.
NR 35
TC 6
Z9 6
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0264-9381
J9 CLASSICAL QUANT GRAV
JI Class. Quantum Gravity
PD SEP 21
PY 2010
VL 27
IS 18
AR 185012
DI 10.1088/0264-9381/27/18/185012
PG 27
WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles
& Fields
SC Astronomy & Astrophysics; Physics
GA 638UR
UT WOS:000280923100013
ER
PT J
AU Fujiwara, M
Vomel, H
Hasebe, F
Shiotani, M
Ogino, SY
Iwasaki, S
Nishi, N
Shibata, T
Shimizu, K
Nishimoto, E
Canossa, JMV
Selkirk, HB
Oltmans, SJ
AF Fujiwara, M.
Voemel, H.
Hasebe, F.
Shiotani, M.
Ogino, S-Y.
Iwasaki, S.
Nishi, N.
Shibata, T.
Shimizu, K.
Nishimoto, E.
Valverde Canossa, J. M.
Selkirk, H. B.
Oltmans, S. J.
TI Seasonal to decadal variations of water vapor in the tropical lower
stratosphere observed with balloon-borne cryogenic frost point
hygrometers
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID HALOGEN OCCULTATION EXPERIMENT; TROPOPAUSE TEMPERATURES; QBO VARIATIONS;
REANALYSIS; DEHYDRATION; AIR; TROPOSPHERE; TRANSPORT; PACIFIC; BOULDER
AB We investigated water vapor variations in the tropical lower stratosphere on seasonal, quasi-biennial oscillation (QBO), and decadal time scales using balloon-borne cryogenic frost point hygrometer data taken between 1993 and 2009 during various campaigns including the Central Equatorial Pacific Experiment (March 1993), campaigns once or twice annually during the Soundings of Ozone and Water in the Equatorial Region (SOWER) project in the eastern Pacific (1998-2003) and in the western Pacific and Southeast Asia (2001-2009), and the Ticosonde campaigns and regular sounding at Costa Rica (2005-2009). Quasi-regular sounding data taken at Costa Rica clearly show the tape recorder signal. The observed ascent rates agree well with the ones from the Halogen Occultation Experiment (HALOE) satellite sensor. Average profiles from the recent five SOWER campaigns in the equatorial western Pacific in northern winter and from the three Ticosonde campaigns at Costa Rica (10 N) in northern summer clearly show two effects of the QBO. One is the vertical displacement of water vapor profiles associated with the QBO meridional circulation anomalies, and the other is the concentration variations associated with the QBO tropopause temperature variations. Time series of cryogenic frost point hygrometer data averaged in a lower stratospheric layer together with HALOE and Aura Microwave Limb Sounder data show the existence of decadal variations: The mixing ratios were higher and increasing in the 1990s, lower in the early 2000s, and probably slightly higher again or recovering after 2004. Thus linear trend analysis is not appropriate to investigate the behavior of the tropical lower stratospheric water vapor.
C1 [Fujiwara, M.; Hasebe, F.; Shimizu, K.] Hokkaido Univ, Grad Sch Environm Sci, Sapporo, Hokkaido 0600810, Japan.
[Iwasaki, S.] Natl Def Acad, Yokosuka, Kanagawa 2398686, Japan.
[Nishi, N.] Kyoto Univ, Grad Sch Sci, Kyoto 6068502, Japan.
[Ogino, S-Y.] Japan Agcy Marine Earth Sci & Technol, Yokosuka, Kanagawa 2370061, Japan.
[Oltmans, S. J.] NOAA, Global Monitoring Div, Earth Syst Res Lab, Boulder, CO 80305 USA.
[Selkirk, H. B.] Univ Maryland Baltimore Cty, Goddard Space Flight Ctr, Goddard Earth Sci & Technol Ctr, NASA, Greenbelt, MD 20771 USA.
[Shibata, T.] Nagoya Univ, Grad Sch Environm Studies, Nagoya, Aichi 4648601, Japan.
[Shiotani, M.; Nishimoto, E.] Kyoto Univ, Res Inst Sustainable Humanosphere, Uji, Kyoto 6110011, Japan.
[Valverde Canossa, J. M.] Univ Nacl, Heredia 863000, Costa Rica.
[Voemel, H.] Deutsch Wetterdienst, Meteorol Observ Lindenberg, D-15848 Tauche Lindenberg, Germany.
[Shimizu, K.] Meisei Elect Co Ltd, Isesaki, Japan.
RP Fujiwara, M (reprint author), Hokkaido Univ, Grad Sch Environm Sci, N10 W5, Sapporo, Hokkaido 0600810, Japan.
EM fuji@ees.hokudai.ac.jp
RI Fujiwara, Masatomo/F-7852-2012; Selkirk, Henry/H-2021-2012
FU Sumitomo Foundation; Asahi Breweries Foundation; Japanese Ministry of
Education, Culture, Sports, Science and Technology (MEXT) [10041103,
11219201, 15204043, 18204041, 19740283]; Ministry of the Environment
[A-1, A-071]; RISH, Kyoto University
FX The balloon-borne water vapor measurements presented in this paper have
been conducted with strong, long-term support from the Instituto
Nacional de Meteorologia e Hidrologia (INAMHI), Ecuador, the Indonesian
National Institute of Aeronautics and Space (LAPAN), Indonesia, the
National Hydro-Meteorological Service, Ministry of Natural Resources and
Environment, Vietnam, the Kiribati Meteorological Service, Kiribati, and
Universidad Nacional, Costa Rica. The SOWER project has been financially
supported by the Sumitomo Foundation, the Asahi Breweries Foundation,
the Japanese Ministry of Education, Culture, Sports, Science and
Technology (MEXT) through Grants-in-Aid for Scientific Research
(10041103, 11219201, 15204043, 18204041, and 19740283), the Ministry of
the Environment through the Global Environment Research Fund (A-1 and
A-071), and RISH, Kyoto University. Support for the sounding program in
Costa Rica has been provided by the NASA Upper Atmosphere Research
Program, the Radiation Sciences Program, and the Aura Satellite Project.
The HALOE data were provided by GATS, Inc., through their Web site. The
EOS Aura MLS data were provided by the NASA/JPL through their Web site.
The ERA40 and ERA-Interim data were provided by the ECMWF through their
Web site (the ERA40 data were actually obtained through an authorized
Web site at RISH, Kyoto University). The JRA25/JCDAS data were provided
by the JMA and CRIEPI. The NCEP1 and NCEP2 reanalysis data were provided
by the NOAA/OAR/ESRL PSD. We thank Takashi Imamura, Masanori Niwano, and
Takatoshi Sakazaki for valuable discussion. We also thank Stephan
Fueglistaler and two anonymous reviewers for valuable comments. All
figures were produced using the GFD-DENNOU Library.
NR 52
TC 29
Z9 29
U1 0
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 21
PY 2010
VL 115
AR D18304
DI 10.1029/2010JD014179
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 656HW
UT WOS:000282320900006
ER
PT J
AU Selkirk, HB
Vomel, H
Canossa, JMV
Pfister, L
Diaz, JA
Fernandez, W
Amador, J
Stolz, W
Peng, GS
AF Selkirk, Henry B.
Voemel, Holger
Valverde Canossa, Jessica Maria
Pfister, Leonhard
Andres Diaz, Jorge
Fernandez, Walter
Amador, Jorge
Stolz, Werner
Peng, Grace S.
TI Detailed structure of the tropical upper troposphere and lower
stratosphere as revealed by balloon sonde observations of water vapor,
ozone, temperature, and winds during the NASA TCSP and TC4 campaigns
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID LOW-LEVEL JET; CIRRUS CLOUDS; AIRCRAFT MEASUREMENTS; TROPOPAUSE LAYER;
DEEP CONVECTION; ANNUAL CYCLE; DEHYDRATION; TRANSPORT; PACIFIC;
CLIMATOLOGY
AB We report on balloon sonde measurements of water vapor and ozone using the cryogenic frost point hygrometer and electrochemical concentration cell ozonesondes made at Alajuela, Costa Rica (10.0 degrees N, 84.2 degrees W) during two NASA airborne campaigns: the Tropical Convective Systems and Processes (TCSP) mission in July 2005 and the Tropical Composition, Clouds, and Climate Coupling Experiment (TC4), July-August 2007. In both campaigns we found an upper troposphere that was frequently supersaturated but no evidence that deep convection had reached the tropopause. The balloon sondes were complemented by campaigns of 4 times daily high-resolution radiosondes from mid-June through mid-August in both years. The radiosonde data reveal vertically propagating equatorial waves that caused a large increase in the variability of temperature in the tropical tropopause layer (TTL). These waves episodically produced cold point tropopauses (CPTs) above 18 km, yet in neither campaign was saturation observed above similar to 380 K or 17 km. The averages of the water vapor minima below this level were 5.2 ppmv in TCSP and 4.8 ppmv in TC4, and the individual profile minima all lay at or above similar to 360 K. The average minima in this 360-380 K layer provide a better estimate of the effective stratospheric entry value than the average mixing ratio at the CPT. We refer to this upper portion of the TTL as the tropopause saturation layer and consider it to be the locus of the final dehydration of nascent stratospheric air. As such, it is the local equivalent to the tape head of the water vapor tape recorder.
C1 [Amador, Jorge] Univ Costa Rica, Ctr Geophys Res, San Jose 2060, Costa Rica.
[Andres Diaz, Jorge; Fernandez, Walter; Amador, Jorge] Univ Costa Rica, Sch Phys, San Jose 2060, Costa Rica.
[Peng, Grace S.] Aerosp Corp, Los Angeles, CA 90009 USA.
[Pfister, Leonhard] NASA, Ames Res Ctr, Div Earth Sci, Moffett Field, CA 94035 USA.
[Stolz, Werner] Natl Meteorol Inst, San Jose, Costa Rica.
[Valverde Canossa, Jessica Maria] Natl Univ, Sch Environm Sci, Heredia 3000, Costa Rica.
[Voemel, Holger] Meteorol Observ, Deutsch Wetterdienst, D-15848 Lindenburg, Germany.
[Selkirk, Henry B.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA.
RP Selkirk, HB (reprint author), NASA, Goddard Space Flight Ctr, Code 613-3, Greenbelt, MD 20771 USA.
EM henry.b.selkirk@nasa.gov
RI Selkirk, Henry/H-2021-2012;
OI Fernandez Rojas, Walter/0000-0001-5329-5410
FU NASA; Upper Atmosphere Research Project; Atmospheric Chemistry Modeling
and Analysis; Climate Dynamics; Johns Hopkins University; University of
Maryland, Baltimore County; Hal Maring of the Radiation Sciences; Costa
Rica-USA Foundation (CRUSA) in Costa Rica; National Science Foundation;
NOAA Office
FX Funding for the Ticosonde project since 2004 at NASA has been provided
through the Radiation Sciences Program, the Upper Atmosphere Research
Project, the Atmospheric Chemistry Modeling and Analysis Program, and
the Climate Dynamics Program. Donald Anderson (now at Johns Hopkins
University), Michael Kurylo (now at the University of Maryland,
Baltimore County), and Hal Maring of the Radiation Sciences Program were
early advocates for and continuing supporters of this scientific
collaboration between Costa Rica and the United States. The authors are
grateful to Mark Schoeberl and Anne Douglass of the NASA Aura Science
Team without whose support the CFH/SHADOZ Costa Rica launch program
would never have become a reality. We would like to acknowledge the
Costa Rica-USA Foundation (CRUSA) in Costa Rica, the National Science
Foundation, and the NOAA Office for Global Programs for their support of
the Ticosonde/NAME program and Ramesh Kakar of the NASA Atmospheric
Dynamics program for his support of Ticosonde/TCSP. The Ticosonde data
sets are a tribute to the enthusiasm and dedication of the launch teams
from UNA, UCR, and IMN. In this regard, we are especially grateful to
Victor Hernandez at IMN; Victor Beita, Karla Cerna, Diana Gonzales, and
Jose Pablo Sibaja at UNA; and Kristel Heinrich, Marcial Garbanzo, and
Gustavo Garbanzo at UCR. The Earth Science Project Office at NASA Ames
Research Center has generously assisted the Ticosonde effort from the
beginning and wish to thank Mike Gaunce, Mike Craig, and Marilyn Vasquez
in particular. We also wish to acknowledge the important contributions
in the field by Ticosonde Co-Investigators Jimena Lopez, formerly of the
Bay Area Environmental Research (BAER) Institute, Sonoma, CA; Robert
Bergstrom of the BAER Institute; Patrick Hamill of the San Jose State
University, San Jose, CA; and Eladio Zarate, formerly of the National
Meteorological Institute of Costa Rica and now at the Regional Committee
on Hydrological Resources (CRRH). We are also thankful for the
programming support at NASA Ames Research Center by Marion Legg and
administrative support by Marion Williams and Mark Sittloh, all of the
BAER Institute. We wish to thank Pedro Leon (now at Earth University)
and Gustavo Otarola and their staff at the Costa Rican National Center
for High Technology (CeNAT) who provided critical administrative and
logistical support, as was also provided by the Regional Environmental
Hub at the United States Embassy in San Jose and CRRH whose director is
Max Campos. We thank Joan Alexander of Colorado Research Associates for
useful suggestions and assistance in the crossspectral analysis.
Finally, we wish to thank the anonymous reviewers for very constructive
critiques.
NR 64
TC 29
Z9 29
U1 0
U2 14
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 21
PY 2010
VL 115
AR D00J19
DI 10.1029/2009JD013209
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 656HW
UT WOS:000282320900002
ER
PT J
AU Yang, K
Liu, XO
Bhartia, PK
Krotkov, NA
Carn, SA
Hughes, EJ
Krueger, AJ
Spurr, RJD
Trahan, SG
AF Yang, Kai
Liu, Xiong
Bhartia, Pawan K.
Krotkov, Nickolay A.
Carn, Simon A.
Hughes, Eric J.
Krueger, Arlin J.
Spurr, Robert J. D.
Trahan, Samuel G.
TI Direct retrieval of sulfur dioxide amount and altitude from spaceborne
hyperspectral UV measurements: Theory and application
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID OZONE MONITORING INSTRUMENT; VOLCANIC-ERUPTIONS; SO2; CLOUDS; SATELLITE;
ALGORITHM; DOAS; GOME; TRANSPORT; TRACKING
AB We describe the physical processes by which a vertically localized absorber perturbs the top-of-atmosphere solar backscattered ultraviolet (UV) radiance. The distinct spectral responses to perturbations of an absorber in its column amount and layer altitude provide the basis for a practical satellite retrieval technique, the Extended Iterative Spectral Fitting (EISF) algorithm, for the simultaneous retrieval of these quantities of a SO2 plume. In addition, the EISF retrieval provides an improved UV aerosol index for quantifying the spectral contrast of apparent scene reflectance at the bottom of atmosphere bounded by the surface and/or cloud; hence it can be used for detection of the presence or absence of UV absorbing aerosols. We study the performance and characterize the uncertainties of the EISF algorithm using synthetic backscattered UV radiances, retrievals from which can be compared with those used in the simulation. Our findings indicate that the presence of aerosols (both absorbing and nonabsorbing) does not cause large errors in EISF retrievals under most observing conditions when they are located below the SO2 plume. The EISF retrievals assuming a homogeneous field of view can provide accurate column amounts for inhomogeneous scenes, but they always underestimate the plume altitudes. The EISF algorithm reduces systematic errors present in existing linear retrieval algorithms that use prescribed SO2 plume heights. Applying the EISF algorithm to Ozone Monitoring Instrument satellite observations of the recent Kasatochi volcanic eruption, we demonstrate the successful retrieval of effective plume altitude of volcanic SO2, and we also show the improvement in accuracy in the corresponding SO2 columns.
C1 [Yang, Kai; Liu, Xiong; Bhartia, Pawan K.; Krotkov, Nickolay A.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA.
[Carn, Simon A.] Michigan Technol Univ, Houghton, MI 49931 USA.
[Hughes, Eric J.; Krueger, Arlin J.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA.
[Spurr, Robert J. D.] RT Solut Inc, Cambridge, MA 02138 USA.
[Trahan, Samuel G.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21228 USA.
[Yang, Kai; Krotkov, Nickolay A.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA.
RP Yang, K (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Mail Code 613-3, Greenbelt, MD 20771 USA.
EM kai.yang-1@nasa.gov; xliu@umbc.edu; pawan.bhartia@nasa.gov;
nickolay.a.krotkov@nasa.gov; scarn@mtu.edu; eric.hughes@noaa.gov;
akrueger@umbc.edu; rtsolutions@verizon.net
RI Krotkov, Nickolay/E-1541-2012; Liu, Xiong/P-7186-2014; Bhartia,
Pawan/A-4209-2016
OI Krotkov, Nickolay/0000-0001-6170-6750; Liu, Xiong/0000-0003-2939-574X;
Bhartia, Pawan/0000-0001-8307-9137
FU NASA [NNX10AG60G]; U.S. OMI Science Team
FX This work was supported in part by NASA under grant NNX10AG60G (A
Combined EOS Data and GEOS-Chem Modeling Study of the Direct Radiative
Forcing of Volcanic Sulfate Aerosols) and by the U.S. OMI Science Team.
NR 42
TC 40
Z9 40
U1 1
U2 17
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 21
PY 2010
VL 115
AR D00L09
DI 10.1029/2010JD013982
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 656HW
UT WOS:000282320900005
ER
PT J
AU Christoffersen, P
Tulaczyk, S
Behar, A
AF Christoffersen, Poul
Tulaczyk, Slawek
Behar, Alberto
TI Basal ice sequences in Antarctic ice stream: Exposure of past hydrologic
conditions and a principal mode of sediment transfer
SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE
LA English
DT Article
ID PLEISTOCENE-HOLOCENE RETREAT; LAST GLACIAL MAXIMUM; WEST ANTARCTICA;
ROSS SEA; CONTINENTAL-SHELF; SUBGLACIAL SEDIMENTS; DEBRIS ENTRAINMENT;
FREEZE-ON; TILL DEFORMATION; GROUNDING-LINE
AB The brightness distribution of sequentially extracted borehole camera imagery shows two distinct sequences of basal ice in Kamb Ice Stream. The upper sequence (7.3 m) comprises clear ice and layers with dispersed and stratified debris. The lower sequence (8.2 m) consists of accretion ice with alternating layers of stratified and solid debris. The two sequences have volumetric debris contents of about 5% and 20%, respectively. We infer that the upper sequence formed in a tributary where subglacial meltwater was abundant and that the lower sequence formed on the Siple Coast plain where basal freezing currently dominates the basal thermal regime. The basal ice layer contains the equivalent of 2.1 +/- 0.4 m of frozen sediment. The high volume of sediment is a result of debris-rich layers interpreted to have formed by accretion in the stagnant phase of ice stream on/off cycles. Fast ice streaming punctuated by entrainment of debris during stagnation episodes is consistent with inferred past flow of adjacent ice streams and geologic features in the Ross Sea. Our results show that sediment wedges near grounding lines may form by melt out of basal ice debris. This is different from previous studies where it was assumed that sediment transfer occurs through sediment deformation within layers of subglacial till. Cumulative freezing in recurring ice stream cycles shows that entrainment of sediment by basal freeze-on is an important erosion mechanism and that high sediment fluxes can occur when ice streams override Coulomb-plastic substrates.
C1 [Christoffersen, Poul] Univ Cambridge, Scott Polar Res Inst, Cambridge CB2 1ER, England.
[Behar, Alberto] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Tulaczyk, Slawek] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA.
RP Christoffersen, P (reprint author), Univ Cambridge, Scott Polar Res Inst, Cambridge CB2 1ER, England.
EM pc350@cam.ac.uk
RI Christoffersen, Poul/C-7328-2013
OI Christoffersen, Poul/0000-0003-2643-8724
FU Natural Environment Research Council (NERC); National Science Foundation
Office of Polar Programs (NSF-OPP); NASA
FX Support for this study was provided by grants to Poul Christoffersen and
Slawek Tulaczyk from the Natural Environment Research Council (NERC) and
the National Science Foundation Office of Polar Programs (NSF-OPP).
Alberto Behar performed his contribution at the Jet Propulsion
Laboratory, California Institute of Technology, under contract with
NASA. Acquisition of borehole imagery took place as part of a larger
study funded by NSF OPP grants to Barclay Kamb and Hermann Engelhardt.
We are grateful to both of them for their kind support. Editorial
comments from Bryn Hubbard and reviews by Denis Samyn, Michael Hambrey,
Simon Cook, and one anonymous person were helpful.
NR 100
TC 28
Z9 28
U1 2
U2 22
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9003
EI 2169-9011
J9 J GEOPHYS RES-EARTH
JI J. Geophys. Res.-Earth Surf.
PD SEP 21
PY 2010
VL 115
AR F03034
DI 10.1029/2009JF001430
PG 12
WC Geosciences, Multidisciplinary
SC Geology
GA 656IK
UT WOS:000282322700001
ER
PT J
AU Martins, F
Donati, JF
Marcolino, WLF
Bouret, JC
Wade, GA
Escolano, C
Howarth, ID
AF Martins, F.
Donati, J. -F.
Marcolino, W. L. F.
Bouret, J. -C.
Wade, G. A.
Escolano, C.
Howarth, I. D.
CA MiMeS Collaboration
TI Detection of a magnetic field on HD 108: clues to extreme magnetic
braking and the Of?p phenomenon
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE stars: magnetic field; stars: massive; stars: winds; outflows
ID DRIVEN STELLAR WINDS; O-TYPE STARS; DYNAMICAL SIMULATIONS; CONFINED
WIND; ORION NEBULA; EVOLUTION; HD-191612; ROTATION; EMISSION;
VARIABILITY
AB We report the detection of a magnetic field on the Of? p star HD 108. Spectropolarimetric observations conducted in 2007, 2008 and 2009, respectively, with NARVAL@ Telescope Bernard Lyot (TBL) and Echelle SpectroPolarimetric Device for the Observation of Stars at Canada-France-Hawaii Telescope (ESPaDOnS@CFHT) reveal a clear Zeeman signature in the average Stokes V profile, stable on time-scales of days to months and slowly increasing in amplitude on time-scales of years. We speculate that this time-scale is the same as that on which Ha emission is varying and is equal to the rotation period of the star. The corresponding longitudinal magnetic field, measured during each of the three seasons, increases slowly from 100 to 150 G, implying that the polar strength of the putatively dipolar large-scale magnetic field of HD 108 is at least 0.5 kG and most likely of the order of 1-2 kG.
The stellar and wind properties are derived through a quantitative spectroscopic analysis with the code CMFGEN. The effective temperature is difficult to constrain because of the unusually strong He lambda lambda 4471, 5876 lines. Values in the range of 33 000-37 000K are preferred. A mass-loss rate of about 10(-7) M(circle dot) yr(-1) (with a clumping factor f = 0.01) and a wind terminal velocity of 2000 km s(-1) are derived. The wind confinement parameter. eta(star) is larger than 100, implying that the wind of HD 108 is magnetically confined.
Stochastic short-term variability is observed in the wind-sensitive lines but not in the photospheric lines, excluding the presence of pulsations. Material infall in the confined wind is the most likely origin for lines formed in the inner wind. Wind clumping also probably causes part of the Ha variability. The projected rotational velocity of HD 108 is lower than 50 km s-1, consistent with the spectroscopic and photometric variation time-scales of a few decades. Overall, HD 108 is very similar to the magnetic O star HD 191612 except for an even slower rotation.
C1 [Martins, F.] CNRS, GRAAL, UMR5024, F-34095 Montpellier 05, France.
[Martins, F.] Univ Montpellier 2, F-34095 Montpellier 05, France.
[Donati, J. -F.] CNRS, LATT, UMR 5572, F-31400 Toulouse, France.
[Donati, J. -F.] Univ Toulouse, F-31400 Toulouse, France.
[Marcolino, W. L. F.; Bouret, J. -C.; Escolano, C.] CNRS, LAM, UMR 6110, F-13388 Marseille 13, France.
[Marcolino, W. L. F.; Bouret, J. -C.; Escolano, C.] Univ Provence, F-13388 Marseille 13, France.
[Marcolino, W. L. F.] Observ Nacl MCT, BR-20921400 Rio De Janeiro, Brazil.
[Bouret, J. -C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Wade, G. A.] Royal Mil Coll Canada, Dept Phys, Stn Forces, Kingston, ON K7K 7B4, Canada.
[Howarth, I. D.] UCL, Dept Phys & Astron, London WC1E 6BT, England.
RP Martins, F (reprint author), CNRS, GRAAL, UMR5024, Pl Eugene Bataillon, F-34095 Montpellier 05, France.
EM martins@graal.univ-montp2.fr
RI 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; Marcolino,
Wagner/M-7428-2014
FU Natural Science and Engineering Research Council of Canada (NSERC);
French National Research Agency (ANR) [ANR-06-BLAN-0105]
FX We thank John Hillier for making his code CMFGEN available and for
constant help with it. We also thank the generous time allocation from
the TBL TAC and the MagIcS initiative under which MiMeS is carried out.
We acknowledge the help of the TBL and CFHT staff for service and QSO
observing, respectively. GAW acknowledges Discovery Grant support from
the Natural Science and Engineering Research Council of Canada (NSERC).
JCB and WLFM acknowledge financial support from the French National
Research Agency (ANR) through programme number ANR-06-BLAN-0105.
NR 43
TC 54
Z9 54
U1 0
U2 1
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD SEP 21
PY 2010
VL 407
IS 3
BP 1423
EP 1432
DI 10.1111/j.1365-2966.2010.17005.x
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 649TX
UT WOS:000281797900005
ER
PT J
AU Nurge, MA
Perusich, SA
AF Nurge, Mark A.
Perusich, Stephen A.
TI In-line capacitance sensor for real-time water absorption measurements
SO SENSORS AND ACTUATORS B-CHEMICAL
LA English
DT Article
DE Capacitance; Sensor; Water; Absorbent; Desiccant; Dielectric constant
AB A capacitance/dielectric sensor was designed, constructed. and used to measure in real time the in situ water concentration in a desiccant water bed. Measurements were carried out with two experimental setups. (1) passing nitrogen through a humidity generator and allowing the gas stream to become saturated at a measured temperature and pressure, and (2) injecting water via a syringe pump Into a nitrogen stream. Both water vapor generating devices were attached to a downstream vertically mounted water capture bed filled with 19 5 g of Moisture Gone (TM) desiccant The sensor consisted of two electrodes (1) a 1/8 in dia stainless steel rod placed in the middle of the bed and (2) the outer shell of the stainless steel bed concentric with the rod All phases of the water capture process (background, heating, absorption. desorption, and cooling) were monitored with capacitance The measured capacitance was found to vary linearly with the water content in the bed at frequencies above 100 kHz indicating dipolar motion dominated the signal: below this frequency, ionic motion caused nonlinearities in the water concentration/capacitance relationship The desiccant exhibited a dielectric relaxation whose activation energy was lowered upon addition of water indicating either a less hindered rotational motion or crystal reorientation. (C) 2010 Elsevier B V All rights reserved
C1 [Perusich, Stephen A.] ASRC Aerosp Corp, Appl Sci & Technol, John F Kennedy Space Ctr, Kennedy Space Ctr, FL 32899 USA.
[Nurge, Mark A.] NASA, Appl Phys Lab, John F Kennedy Space Ctr, Kennedy Space Ctr, FL 32899 USA.
RP Perusich, SA (reprint author), ASRC Aerosp Corp, Appl Sci & Technol, John F Kennedy Space Ctr, Mail Code ASRC-24, Kennedy Space Ctr, FL 32899 USA.
EM Stephen.A.Perusich@nasa.gov
FU KSC NASA
FX The authors wish to thank Dr. Steve Trigwell for using his XPS expertise
to uncover critical information concerning the desiccant composition In
addition, thanks to many NASA and ASRC Aerospace personnel involved with
the Regolith and Environment Science and Oxygen and Lunar Volatile
Extraction (RESOLVE) project for their insightful comments throughout
this project. Financial support was graciously provided by the KSC NASA
ISRU program.
NR 7
TC 3
Z9 4
U1 2
U2 6
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0925-4005
J9 SENSOR ACTUAT B-CHEM
JI Sens. Actuator B-Chem.
PD SEP 21
PY 2010
VL 150
IS 1
BP 105
EP 111
DI 10.1016/j.snb.2010.07.035
PG 7
WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
SC Chemistry; Electrochemistry; Instruments & Instrumentation
GA 661KC
UT WOS:000282726200015
ER
PT J
AU Brodwin, M
Ruel, J
Ade, PAR
Aird, KA
Andersson, K
Ashby, MLN
Bautz, M
Bazin, G
Benson, BA
Bleem, LE
Carlstrom, JE
Chang, CL
Crawford, TM
Crites, AT
De Haan, T
Desai, S
Dobbs, MA
Dudley, JP
Fazio, GG
Foley, RJ
Forman, WR
Garmire, G
George, EM
Gladders, MD
Gonzalez, AH
Halverson, NW
High, FW
Holder, GP
Holzapfel, WL
Hrubes, JD
Jones, C
Joy, M
Keisler, R
Knox, L
Lee, AT
Leitch, EM
Lueker, M
Marrone, DP
McMahon, JJ
Mehl, J
Meyer, SS
Mohr, JJ
Montroy, TE
Murray, SS
Padin, S
Plagge, T
Pryke, C
Reichardt, CL
Rest, A
Ruhl, JE
Schaffer, KK
Shaw, L
Shirokoff, E
Song, J
Spieler, HG
Stalder, B
Stanford, SA
Staniszewski, Z
Stark, AA
Stubbs, CW
Vanderlinde, K
Vieira, JD
Vikhlinin, A
Williamson, R
Yang, Y
Zahn, O
Zenteno, A
AF Brodwin, M.
Ruel, J.
Ade, P. A. R.
Aird, K. A.
Andersson, K.
Ashby, M. L. N.
Bautz, M.
Bazin, G.
Benson, B. A.
Bleem, L. E.
Carlstrom, J. E.
Chang, C. L.
Crawford, T. M.
Crites, A. T.
De Haan, T.
Desai, S.
Dobbs, M. A.
Dudley, J. P.
Fazio, G. G.
Foley, R. J.
Forman, W. R.
Garmire, G.
George, E. M.
Gladders, M. D.
Gonzalez, A. H.
Halverson, N. W.
High, F. W.
Holder, G. P.
Holzapfel, W. L.
Hrubes, J. D.
Jones, C.
Joy, M.
Keisler, R.
Knox, L.
Lee, A. T.
Leitch, E. M.
Lueker, M.
Marrone, D. P.
McMahon, J. J.
Mehl, J.
Meyer, S. S.
Mohr, J. J.
Montroy, T. E.
Murray, S. S.
Padin, S.
Plagge, T.
Pryke, C.
Reichardt, C. L.
Rest, A.
Ruhl, J. E.
Schaffer, K. K.
Shaw, L.
Shirokoff, E.
Song, J.
Spieler, H. G.
Stalder, B.
Stanford, S. A.
Staniszewski, Z.
Stark, A. A.
Stubbs, C. W.
Vanderlinde, K.
Vieira, J. D.
Vikhlinin, A.
Williamson, R.
Yang, Y.
Zahn, O.
Zenteno, A.
TI SPT-CL J0546-5345: A MASSIVE z > 1 GALAXY CLUSTER SELECTED VIA THE
SUNYAEV-ZEL'DOVICH EFFECT WITH THE SOUTH POLE TELESCOPE
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: clusters: individual (SPT-CL J0546-5345); galaxies: distances
and redshifts; galaxies: evolution
ID IRAC SHALLOW SURVEY; X-RAY; VELOCITY DISPERSIONS; PHOTOMETRIC REDSHIFTS;
TEMPERATURE RELATION; COSMOLOGY; CHANDRA; PROFILES; SAMPLE; GAS
AB We report the spectroscopic confirmation of SPT-CL J0546-5345 at < z > = 1.067. To date this is the most distant cluster to be spectroscopically confirmed from the 2008 South Pole Telescope (SPT) catalog, and indeed the first z > 1 cluster discovered by the Sunyaev-Zel'dovich Effect (SZE). We identify 21 secure spectroscopic members within 0.9 Mpc of the SPT cluster position, 18 of which are quiescent, early-type galaxies. From these quiescent galaxies we obtain a velocity dispersion of 1179-(+232)(167) km s(-1), ranking SPT-CL J0546-5345 as the most dynamically massive cluster yet discovered at z > 1. Assuming that SPT-CL J0546-5345 is virialized, this implies a dynamical mass of M(200) = 1.0(-0.4)(+0.6) x 10(15) M(circle dot), in agreement with the X-ray and SZE mass measurements. Combining masses from several independent measures leads to a best-estimate mass of M(200) = (7.95 +/- 0.92) x 10(14) M(circle dot). The spectroscopic confirmation of SPT-CL J0546-5345, discovered in the wide-angle, mass-selected SPT cluster survey, marks the onset of the high-redshift SZE-selected galaxy cluster era.
C1 [Brodwin, M.; Ashby, M. L. N.; Fazio, G. G.; Foley, R. J.; Forman, W. R.; Jones, C.; Murray, S. S.; Stalder, B.; Stark, A. A.; Stubbs, C. W.; Vikhlinin, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Ruel, J.; High, F. W.; Rest, A.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA.
[Ade, P. A. R.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales.
[Aird, K. A.; Hrubes, J. D.; Marrone, D. P.] Univ Chicago, Chicago, IL 60637 USA.
[Andersson, K.; Bautz, M.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA.
[Bazin, G.; Mohr, J. J.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany.
[Bazin, G.; Mohr, J. J.; Zenteno, A.] Excellence Cluster Univ, D-85758 Garching, Germany.
[Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; Keisler, R.; Leitch, E. M.; Marrone, D. P.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Padin, S.; Pryke, C.; Schaffer, K. K.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; McMahon, J. J.; Meyer, S. S.; Pryke, C.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA.
[Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Padin, S.; Plagge, T.; Pryke, C.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[De Haan, T.; Dobbs, M. A.; Dudley, J. P.; Holder, G. P.; Shaw, L.; Vanderlinde, K.] McGill Univ, Dept Phys, Quebec City, PQ H3A 2T8, Canada.
[Desai, S.; Song, J.; Yang, Y.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA.
[Garmire, G.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[George, E. M.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Plagge, T.; Reichardt, C. L.; Shirokoff, E.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA.
[Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.
[Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA.
[Joy, M.] NASA Marshall Space Flight Ctr, Dept Space Sci, Huntsville, AL 35812 USA.
[Knox, L.; Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA.
[McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA.
[Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, CERCA, Cleveland, OH 44106 USA.
[Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA.
RP Brodwin, M (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
RI Stubbs, Christopher/C-2829-2012; Williamson, Ross/H-1734-2015;
Holzapfel, William/I-4836-2015;
OI Stark, Antony/0000-0002-2718-9996; Stubbs,
Christopher/0000-0003-0347-1724; Williamson, Ross/0000-0002-6945-2975;
Aird, Kenneth/0000-0003-1441-9518; Reichardt,
Christian/0000-0003-2226-9169
FU National Science Foundation [ANT-0638937]; NSF Physics Frontier Center
[PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation;
NASA; Chandra Xray Observatory [SV4-74018, A31]; W. M. Keck Foundation;
Brinson Foundation
FX Visiting astronomer, Cerro Tololo Inter-American Observatory, National
Optical Astronomy Observatory, under contract with the National Science
Foundation; The SPT is supported by the National Science Foundation
through grant ANT-0638937. Partial support is also provided by the NSF
Physics Frontier Center grant PHY-0114422 to the Kavli Institute of
Cosmological Physics at the University of Chicago, the Kavli Foundation,
and the Gordon and Betty Moore Foundation. This work is based in part on
observations made with the Spitzer Space Telescope, which is operated by
the Jet Propulsion Laboratory, California Institute of Technology under
a contract with NASA. Support for this work was provided by NASA through
an award issued by JPL/Caltech. This paper includes data gathered with
the 6.5 meter Magellan Telescopes located at Las Campanas Observatory,
Chile. This work is based in part on observations obtained with the
Chandra Xray Observatory, under contract SV4-74018, A31 with the
Smithsonian Astrophysical Observatory which operates the Chandra for
NASA. We are very grateful for the efforts of the Spitzer, Chandra,
Magellan, and CTIO support staff without whom this paper would not be
possible. Support for M. B. was provided by the W. M. Keck Foundation.
B. S. acknowledges support from the Brinson Foundation.
NR 60
TC 74
Z9 75
U1 1
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 20
PY 2010
VL 721
IS 1
BP 90
EP 97
DI 10.1088/0004-637X/721/1/90
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 654TI
UT WOS:000282192900007
ER
PT J
AU Bally, J
Aguirre, J
Battersby, C
Bradley, ET
Cyganowski, C
Dowell, D
Drosback, M
Dunham, MK
Evans, NJ
Ginsburg, A
Glenn, J
Harvey, P
Mills, E
Merello, M
Rosolowsky, E
Schlingman, W
Shirley, YL
Stringfellow, GS
Walawender, J
Williams, J
AF Bally, John
Aguirre, James
Battersby, Cara
Bradley, Eric Todd
Cyganowski, Claudia
Dowell, Darren
Drosback, Meredith
Dunham, Miranda K.
Evans, Neal J., II
Ginsburg, Adam
Glenn, Jason
Harvey, Paul
Mills, Elisabeth
Merello, Manuel
Rosolowsky, Erik
Schlingman, Wayne
Shirley, Yancy L.
Stringfellow, Guy S.
Walawender, Josh
Williams, Jonathan
TI THE BOLOCAM GALACTIC PLANE SURVEY: lambda = 1.1 AND 0.35 mm DUST
CONTINUUM EMISSION IN THE GALACTIC CENTER REGION
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE dust, extinction; Galaxy: center; ISM: clouds; stars: formation; surveys
ID CENTER MOLECULAR CLOUDS; SUPERMASSIVE BLACK-HOLE; GAMMA-RAY EMISSION;
STAR-FORMATION; MILKY-WAY; ARCHES CLUSTER; SAGITTARIUS B2; X-RAY;
STATISTICAL PROPERTIES; INTERSTELLAR-MEDIUM
AB The Bolocam Galactic Plane Survey (BGPS) data for a 6 deg(2) region of the Galactic plane containing the Galactic center are analyzed and compared to infrared and radio continuum data. The BGPS 1.1 mm emission consists of clumps interconnected by a network of fainter filaments surrounding cavities, a few of which are filled with diffuse near-IR emission indicating the presence of warm dust or with radio continuum characteristic of H II regions or supernova remnants. New 350 mu m images of the environments of the two brightest regions, Sgr A and B, are presented. Sgr B2 is the brightest millimeter-emitting clump in the Central Molecular Zone (CMZ) and may be forming the closest analog to a super star cluster in the Galaxy. The CMZ contains the highest concentration of millimeter- and submillimeter-emitting dense clumps in the Galaxy. Most 1.1 mm features at positive longitudes are seen in silhouette against the 3.6-24 mu m background observed by the Spitzer Space Telescope. However, only a few clumps at negative longitudes are seen in absorption, confirming the hypothesis that positive longitude clumps in the CMZ tend to be on the near side of the Galactic center, consistent with the suspected orientation of the central bar in our Galaxy. Some 1.1 mm cloud surfaces are seen in emission at 8 mu m, presumably due to polycyclic aromatic hydrocarbons. A similar to 0 degrees.2 (similar to 30 pc) diameter cavity and infrared bubble between l approximate to 0 degrees.0 and 0 degrees.2 surround the Arches and Quintuplet clusters and Sgr A. The bubble contains several clumpy dust filaments that point toward Sgr A*; its potential role in their formation is explored. Bania's Clump 2, a feature near l = 3 degrees-3 degrees.5 which exhibits extremely broad molecular emission lines (Delta V > 150 km s(-1)), contains dozens of 1.1 mm clumps. These clumps are deficient in near-and mid-infrared emission in the Spitzer images when compared to both the inner Galactic plane and the CMZ. Thus, Bania's Clump 2 is either inefficient in forming stars or is in a pre-stellar phase of clump evolution. The Bolocat catalog of 1.1 mm clumps contains 1428 entries in the Galactic center between l = 358 degrees.5 and l = 4 degrees.5 of which about 80% are likely to be within about 500 pc of the center. The mass spectrum above about 80 M(circle dot) can be described by a power-law Delta N/Delta M = N(0)M(-2.14(+ 0.1,-0.4)). The power-law index is somewhat sensitive to systematic grain temperature variations, may be highly biased by source confusion, and is very sensitive to the spatial filtering inherent in the data acquisition and reduction.
C1 [Bally, John; Battersby, Cara; Ginsburg, Adam; Glenn, Jason; Harvey, Paul; Stringfellow, Guy S.] Univ Colorado, CASA, UCB 389, Boulder, CO 80309 USA.
[Aguirre, James] Univ Penn, Dept Phys & Astron, Philadelphia, PA USA.
[Bradley, Eric Todd] Univ Cent Florida, Dept Phys & Astron, Orlando, FL 32816 USA.
[Cyganowski, Claudia] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA.
[Dowell, Darren] CALTECH, Jet Prop Lab, Pasadena, CA 91104 USA.
[Drosback, Meredith] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA.
[Dunham, Miranda K.; Evans, Neal J., II; Merello, Manuel] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA.
[Mills, Elisabeth] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Rosolowsky, Erik] Univ British Columbia, Dept Phys & Astron, Kelowna, BC V1V 1V7, Canada.
[Schlingman, Wayne; Shirley, Yancy L.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA.
[Walawender, Josh] Univ Hawaii, Inst Astron IfA, Hilo, HI 96720 USA.
[Williams, Jonathan] Univ Hawaii, Inst Astron IfA, Honolulu, HI 96822 USA.
RP Bally, J (reprint author), Univ Colorado, CASA, UCB 389, Boulder, CO 80309 USA.
EM John.Bally@casa.colorado.edu; jaguirre@sas.upenn.edu;
Cara.Battersby@colorado.edu; tbradley@physics.ucf.edu;
ccyganow@astro.wisc.edu; cdd@submm.caltech.edu; drosback@virginia.edu;
nordhaus@astro.as.utexas.edu; nje@astro.as.utexas.edu;
Adam.Ginsburg@colorado.edu; Jason.Glenn@colorado.edu;
pmh@astro.as.utexas.edu; millsb@astro.ucla.edu;
manuel@astro.as.utexas.edu; erik.rosolowsky@ubc.ca;
wschlingman@as.arizona.edu; yshirley@as.arizona.edu;
Guy.Stringfellow@colorado.edu; joshw@ifa.hawaii.edu; jpw@ifa.hawaii.edu
RI Ginsburg, Adam/E-6413-2011
FU National Science Foundation [AST-0708403, AST-9980846, AST-0206158,
AST-0607793, AST-05-40882, AST-0838261]; National Radio Astronomy
Observatory (NRAO)
FX The BGPS project is supported in part by the National Science Foundation
through NSF grant AST-0708403. J.A. was supported by a Jansky Fellowship
from the National Radio Astronomy Observatory (NRAO). The first
observing runs for BGPS were supported by travel funds provided by NRAO.
Support for the development of Bolocam was provided by NSF grants
AST-9980846 and AST-0206158. N.J.E. and M. K. D. were supported by NSF
grant AST-0607793. This research was performed at the Caltech
Submillimeter Observatory (CSO), supported by NSF grants AST-05-40882
and AST-0838261. C. B. and C. C. were supported by a National Science
Foundation Graduate Research Fellowship. We thank Farhad Yusef-Zadeh for
providing his 20 cm radio image. We thank an anonymous referee for very
helpful comments that improved the manuscript.
NR 111
TC 48
Z9 48
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 20
PY 2010
VL 721
IS 1
BP 137
EP 163
DI 10.1088/0004-637X/721/1/137
PG 27
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 654TI
UT WOS:000282192900010
ER
PT J
AU Zemcov, M
Blain, A
Halpern, M
Levenson, L
AF Zemcov, Michael
Blain, Andrew
Halpern, Mark
Levenson, Louis
TI CONTRIBUTION OF LENSED SCUBA GALAXIES TO THE COSMIC INFRARED BACKGROUND
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmic background radiation; gravitational lensing: strong;
submillimeter: galaxies
ID DEEP SUBMILLIMETER SURVEY; DEGREE EXTRAGALACTIC SURVEY; 14 HOUR FIELD;
NUMBER COUNTS; VELOCITY DISPERSIONS; HIGH-REDSHIFT; LENSING CLUSTERS;
ABELL CLUSTERS; STAR-FORMATION; EVOLUTION
AB The surface density of submillimeter (sub-mm) galaxies as a function of flux, usually termed the source number counts, constrains models of the evolution of the density and luminosity of starburst galaxies. At the faint end of the distribution, direct detection and counting of galaxies are not possible. However, gravitational lensing by clusters of galaxies allows detection of sources which would otherwise be too dim to study. We have used the largest catalog of sub-mm-selected sources along the line of sight to galaxy clusters to estimate the faint end of the 850 mu m number counts; integrating to S = 0.10 mJy, the equivalent flux density at 850 mu m is nu I(nu) = 0.24 +/- 0.03 nW m(-2) sr(-1). This provides a lower limit to the extragalactic far-infrared background and is consistent with direct estimates of the full intensity from the FIRAS. The results presented here can help to guide strategies for upcoming surveys carried out with single-dish sub-mm instruments.
C1 [Zemcov, Michael; Blain, Andrew; Levenson, Louis] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA.
[Zemcov, Michael] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Halpern, Mark] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
RP Zemcov, M (reprint author), CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA.
FU NASA
FX M.Z.'s research was supported in part by a NASA Postdoctoral Fellowship.
Many thanks to K. Coppin for the kind sharing of many of the data used
in Figures 2 and 3, E. Jullo for help with LENSTOOL and other useful
discussions, E. Valiante for valuable insights which improved this
paper, and A. Conley for catching problems quickly. Thanks also to an
anonymous referee whose comments and suggestions substantially improved
this work. This work made use of the Canadian Astronomy Data Centre,
which is operated by the Herzberg Institute of Astrophysics, National
Research Council of Canada.
NR 56
TC 22
Z9 22
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 20
PY 2010
VL 721
IS 1
BP 424
EP 430
DI 10.1088/0004-637X/721/1/424
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 654TI
UT WOS:000282192900028
ER
PT J
AU Juhasz, A
Bouwman, J
Henning, T
Acke, B
van den Ancker, ME
Meeus, G
Dominik, C
Min, M
Tielens, AGGM
Waters, LBFM
AF Juhasz, A.
Bouwman, J.
Henning, Th.
Acke, B.
van den Ancker, M. E.
Meeus, G.
Dominik, C.
Min, M.
Tielens, A. G. G. M.
Waters, L. B. F. M.
TI DUST EVOLUTION IN PROTOPLANETARY DISKS AROUND HERBIG Ae/Be STARS-THE
SPITZER VIEW
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE circumstellar matter; infrared: planetary systems; infrared: stars;
stars: formation; stars: pre-main sequence
ID INTERSTELLAR SILICATE MINERALOGY; INFRARED-ABSORPTION SPECTRA;
MILLIMETER-WAVE PROPERTIES; MAIN-SEQUENCE STARS; VEGA-LIKE SYSTEMS;
T-TAURI STARS; COMPOSITIONAL DEPENDENCE; CRYSTALLINE SILICATES;
MAGNESIUM SILICATES; REFLECTION SPECTRA
AB In this paper, we present mid-infrared spectra of a comprehensive set of Herbig Ae/Be stars observed with the Spitzer Space Telescope. The signal-to-noise ratio of these spectra is very high, ranging between about a hundred and several hundreds. During the analysis of these data we tested the validity of standardized protoplanetary dust models and studied grain growth and crystal formation. On the basis of the analyzed spectra, the major constituents of protoplanetary dust around Herbig Ae/Be stars are amorphous silicates with olivine and pyroxene stoichiometry, crystalline forsterite, and enstatite and silica. No other solid-state features, indicating other abundant dust species, are present in the Spitzer spectra. Deviations of the synthetic spectra from the observations are most likely related to grain shape effects and uncertainties in the iron content of the dust grains. Our analysis revealed that larger grains are more abundant in the disk atmosphere of flatter disks than in that of flared disks, indicating that grain growth and sedimentation decrease the disk flaring. We did not find, however, correlations between the value of crystallinity and any of the investigated system parameters. Our analysis shows that enstatite is more concentrated toward the warm inner disk than forsterite, in contrast to predictions of equilibrium condensation models. None of the three crystal formation mechanisms proposed so far can alone explain all our findings. It is very likely that all three play at least some role in the formation of crystalline silicates.
C1 [Juhasz, A.; Bouwman, J.; Henning, Th.] Max Planck Inst Astron, D-69117 Heidelberg, Germany.
[Acke, B.; Waters, L. B. F. M.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium.
[van den Ancker, M. E.] European So Observ, D-85748 Garching, Germany.
[Meeus, G.; Min, M.; Waters, L. B. F. M.] Astrophys Inst Potsdam, D-14482 Potsdam, Germany.
[Dominik, C.] Univ Amsterdam, Astron Inst, NL-1098 AJ Amsterdam, Netherlands.
[Tielens, A. G. G. M.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands.
[Tielens, A. G. G. M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Juhasz, A (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany.
NR 73
TC 81
Z9 83
U1 0
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 20
PY 2010
VL 721
IS 1
BP 431
EP 455
DI 10.1088/0004-637X/721/1/431
PG 25
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 654TI
UT WOS:000282192900029
ER
PT J
AU Hosokawa, T
Yorke, HW
Omukai, K
AF Hosokawa, Takashi
Yorke, Harold W.
Omukai, Kazuyuki
TI EVOLUTION OF MASSIVE PROTOSTARS VIA DISK ACCRETION
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE accretion, accretion disks; stars: early-type; stars: evolution; stars:
formation; stars: pre-main sequence
ID MAIN-SEQUENCE STARS; 1ST STARS; MOLECULAR CLOUDS; CIRCLE-DOT; CORES;
FRAGMENTATION; CANDIDATES; TURBULENT; EMISSION; SYSTEMS
AB Mass accretion onto (proto-)stars at high accretion rates (M) over dot(*) > 10(-4) M(circle dot) yr(-1) is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of "cold" disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10(-3) M(circle dot) yr(-1), the radius of a protostar is initially small, R(*) similar or equal to a few R(circle dot). After several solar masses have accreted, the protostar begins to bloat up and for M* similar or equal to 10 M(circle dot) the stellar radius attains its maximum of 30-400 R(circle dot). The large radius similar to 100 R(circle dot) is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M(*) similar or equal to 30 M(circle dot), independent of the accretion geometry. For accretion rates exceeding several 10(-3) M(circle dot) yr(-1), the protostar never contracts to the ZAMS. The very large radius of several hundreds R(circle dot) results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions.
C1 [Hosokawa, Takashi; Omukai, Kazuyuki] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan.
[Hosokawa, Takashi; Yorke, Harold W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Hosokawa, Takashi; Omukai, Kazuyuki] Natl Astron Observ, Div Theoret Astron, Tokyo 1818588, Japan.
RP Hosokawa, T (reprint author), Kyoto Univ, Dept Phys, Kyoto 6068502, Japan.
EM hosokawa@tap.scphys.kyoto-u.ac.jp; Harold.Yorke@jpl.nasa.gov;
omukai@tap.scphys.kyoto-u.ac.jp
FU Japan Society for the Promotion of Science for Young Scientists;
Ministry of Education, Science and Culture of Japan [18740117, 18026008,
19047004]
FX We thank Peter Bodenheimer for a careful critique of the manuscript. We
also thank Neal Turner for fruitful comments and discussions. This study
is supported in part by Research Fellowships of the Japan Society for
the Promotion of Science for Young Scientists (T. H.) and by the
Grants-in-Aid by the Ministry of Education, Science and Culture of Japan
(18740117, 18026008, 19047004: KO). Portions of this work were conducted
at the Jet Propulsion Laboratory, California Institute of Technology,
operating under a contract with the National Aeronautics and Space
Administration (NASA).
NR 47
TC 82
Z9 82
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 20
PY 2010
VL 721
IS 1
BP 478
EP 492
DI 10.1088/0004-637X/721/1/478
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 654TI
UT WOS:000282192900032
ER
PT J
AU Pineda, JL
Goldsmith, PF
Chapman, N
Snell, RL
Li, D
Cambresy, L
Brunt, C
AF Pineda, Jorge L.
Goldsmith, Paul F.
Chapman, Nicholas
Snell, Ronald L.
Li, Di
Cambresy, Laurent
Brunt, Chris
TI THE RELATION BETWEEN GAS AND DUST IN THE TAURUS MOLECULAR CLOUD
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE dust, extinction; ISM: molecules; ISM: structure
ID INTER-STELLAR CLOUDS; DARK CLOUD; CARBON-MONOXIDE; COLUMN DENSITY;
PROBABILITY-DISTRIBUTION; INTERSTELLAR-MEDIUM; STAR-FORMATION;
ULTRAVIOLET SURVEY; HIGH-RESOLUTION; MILKY-WAY
AB We report a study of the relation between dust and gas over a 100 deg(2) area in the Taurus molecular cloud. We compare the H-2 column density derived from dust extinction with the CO column density derived from the (CO)-C-12 and (CO)-C-13 J = 1 -> 0 lines. We derive the visual extinction from reddening determined from 2MASS data. The comparison is done at an angular size of 200 '' corresponding to 0.14 pc at a distance of 140 pc. We find that the relation between visual extinction AV and N(CO) is linear between A(V) similar or equal to 3 and 10 mag in the region associated with the B213-L1495 filament. In other regions, the linear relation is flattened for A(V) greater than or similar to 4 mag. We find that the presence of temperature gradients in the molecular gas affects the determination of N(CO) by similar to 30%-70% with the largest difference occurring at large column densities. Adding a correction for this effect and accounting for the observed relation between the column density of CO and CO2 ices and A(V), we find a linear relationship between the column of carbon monoxide and dust for observed visual extinctions up to the maximum value in our data similar or equal to 23 mag. We have used these data to study a sample of dense cores in Taurus. Fitting an analytical column density profile to these cores we derive an average volume density of about 1.4 x 10(4) cm(-3) and a CO depletion age of about 4.2 x 10(5) yr. At visual extinctions smaller than similar to 3 mag, we find that the CO fractional abundance is reduced by up to two orders of magnitude. The data show a large scatter suggesting a range of physical conditions of the gas. We estimate the H-2 mass of Taurus to be about 1.5 x 10(4) M-circle dot, independently derived from the A(V) and N(CO) maps. We derive a CO integrated intensity to H-2 conversion factor of about 2.1 x 10(20) cm(-2) (K km s(-1))(-1), which applies even in the region where the [CO]/[H-2] ratio is reduced by up to two orders of magnitude. The distribution of column densities in our Taurus maps resembles a log-normal function but shows tails at large and low column densities. The length scale at which the high column density tail starts to be noticeable is about 0.4 pc.
C1 [Pineda, Jorge L.; Goldsmith, Paul F.; Chapman, Nicholas; Li, Di] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Snell, Ronald L.] Univ Massachusetts, Dept Astron, LGRT 619, Amherst, MA 01003 USA.
[Cambresy, Laurent] Observ Astron, F-67000 Strasbourg, France.
[Brunt, Chris] Univ Exeter, Astrophys Grp, Sch Phys, Exeter EX4 4QL, Devon, England.
RP Pineda, JL (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM Jorge.Pineda@jpl.nasa.gov
RI Goldsmith, Paul/H-3159-2016
FU NASA at the Jet Propulsion Laboratory, California Institute of
Technology; National Science Foundation
FX We thank Douglas Whittet for the idea to add the column density of
CO-ices to the gas-phase CO column densities, Jonathan Foster for
providing sample extinction maps that were used to test the
implementation of the NICER algorithm used here, John Black, Edwine van
Dishoeck, and Ruud Visser for helpful discussions about the
formation/destruction processes affecting CO at low column densities,
specially Ruud Visser for providing results of his recent calculations,
Kostas Tassis for discussions about the nature of column density
distributions in molecular clouds, and Marko Krco for sharing his Hi map
of Taurus. J.L.P was supported by an appointment to the NASA
Postdoctoral Program at the Jet Propulsion Laboratory, California
Institute of Technology, administered by Oak Ridge Associated
Universities through a contract with NASA. This research was carried out
at the Jet Propulsion Laboratory, California Institute of Technology and
was supported by a grant from the National Science Foundation. This
research has made use of NASA's Astrophysics Data System Abstract
Service.
NR 75
TC 84
Z9 84
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 20
PY 2010
VL 721
IS 1
BP 686
EP 708
DI 10.1088/0004-637X/721/1/686
PG 23
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 654TI
UT WOS:000282192900050
ER
PT J
AU Osten, RA
Godet, O
Drake, S
Tueller, J
Cummings, J
Krimm, H
Pye, J
Pal'shin, V
Golenetskii, S
Reale, F
Oates, SR
Page, MJ
Melandri, A
AF Osten, Rachel A.
Godet, Olivier
Drake, Stephen
Tueller, Jack
Cummings, Jay
Krimm, Hans
Pye, John
Pal'shin, Valentin
Golenetskii, Sergei
Reale, Fabio
Oates, Samantha R.
Page, Mat J.
Melandri, Andrea
TI THE MOUSE THAT ROARED: A SUPERFLARE FROM THE dMe FLARE STAR EV LAC
DETECTED BY SWIFT AND KONUS-WIND
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE stars: activity; stars: coronae; stars: flare; stars: individual (EV
Lac); stars: late-type; X-rays: stars
ID X-RAY FLARE; K-ALPHA EMISSION; RADIATIVE HYDRODYNAMIC MODELS;
SOLAR-FLARES; EV-LACERTAE; ULTRAVIOLET EMISSION; MAGNETIC-FIELDS;
STELLAR FLARES; M-DWARFS; IMPULSIVE PHASE
AB We report on a large stellar flare from the nearby dMe flare star EV Lac observed by the Swift and Konus-Wind satellites and the Liverpool Telescope. It is the first large stellar flare from a dMe flare star to result in a Swift trigger based on its hard X-ray intensity. Its peak f(X) from 0.3 to 100 keV of 5.3 x 10(-8) erg cm(-2) s(-1) is nearly 7000 times larger than the star's quiescent coronal flux, and the change in magnitude in the white filter is >= 4.7. This flare also caused a transient increase in EV Lac's bolometric luminosity (L-bol) during the early stages of the flare, with a peak estimated L-X/L-bol similar to 3.1. We apply flare loop hydrodynamic modeling to the plasma parameter temporal changes to derive a loop semi-length of l/R-star = 0.37 +/- 0.07. The soft X-ray spectrum of the flare reveals evidence of iron K alpha emission at 6.4 keV. We model the K alpha emission as fluorescence from the hot flare source irradiating the photospheric iron, and derive loop heights of h/R-star = 0.1, consistent within factors of a few with the heights inferred from hydrodynamic modeling. The K alpha emission feature shows variability on timescales of similar to 200 s which is difficult to interpret using the pure fluorescence hypothesis. We examine K alpha emission produced by collisional ionization from accelerated particles, and find parameter values for the spectrum of accelerated particles which can accommodate the increased amount of K alpha flux and the lack of observed nonthermal emission in the 20-50 keV spectral region.
C1 [Osten, Rachel A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Godet, Olivier] Univ Toulouse, UPS, CESR, F-31028 Toulouse 9, France.
[Drake, Stephen; Tueller, Jack; Cummings, Jay; Krimm, Hans] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Pye, John] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England.
[Pal'shin, Valentin; Golenetskii, Sergei] AF Ioffe Phys Tech Inst, Expt Astrophys Lab, St Petersburg 194021, Russia.
[Reale, Fabio] Univ Palermo, Sez Astron, Dip Sci Fis & Astron, I-90134 Palermo, Italy.
[Oates, Samantha R.; Page, Mat J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England.
[Melandri, Andrea] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England.
RP Osten, RA (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA.
EM osten@stsci.edu; Olivier.Godet@cesr.fr
RI Tueller, Jack/D-5334-2012; Pal'shin, Valentin/F-3973-2014; Golenetskii,
Sergey/B-3818-2015;
OI Reale, Fabio/0000-0002-1820-4824
FU Russian Space Agency; RFBR [09-02-00166a]
FX This work made use of data supplied by the UK Swift Science Data Centre
at the University of Leicester. The Konus-Wind experiment is supported
by a Russian Space Agency contract and RFBR grant 09-02-00166a. We thank
the Swift team for the ToO on Swift similar to 1 year after the flare to
determine the quiescent level of EV Lac in several UVOT filters.
NR 68
TC 39
Z9 39
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 20
PY 2010
VL 721
IS 1
BP 785
EP 801
DI 10.1088/0004-637X/721/1/785
PG 17
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 654TI
UT WOS:000282192900058
ER
PT J
AU Pott, JU
Woillez, J
Ragland, S
Wizinowich, PL
Eisner, JA
Monnier, JD
Akeson, RL
Ghez, AM
Graham, JR
Hillenbrand, LA
Millan-Gabet, R
Appleby, E
Berkey, B
Colavita, MM
Cooper, A
Felizardo, C
Herstein, J
Hrynevych, M
Medeiros, D
Morrison, D
Panteleeva, T
Smith, B
Summers, K
Tsubota, K
Tyau, C
Wetherell, E
AF Pott, J. -U.
Woillez, J.
Ragland, S.
Wizinowich, P. L.
Eisner, J. A.
Monnier, J. D.
Akeson, R. L.
Ghez, A. M.
Graham, J. R.
Hillenbrand, L. A.
Millan-Gabet, R.
Appleby, E.
Berkey, B.
Colavita, M. M.
Cooper, A.
Felizardo, C.
Herstein, J.
Hrynevych, M.
Medeiros, D.
Morrison, D.
Panteleeva, T.
Smith, B.
Summers, K.
Tsubota, K.
Tyau, C.
Wetherell, E.
TI PROBING LOCAL DENSITY INHOMOGENEITIES IN THE CIRCUMSTELLAR DISK OF A Be
STAR USING THE NEW SPECTRO-ASTROMETRY MODE AT THE KECK INTERFEROMETER
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE circumstellar matter; infrared: stars; stars: emission-line, Be; stars:
individual (48 Lib); techniques: interferometric; techniques:
spectroscopic
ID ONE-ARMED OSCILLATIONS; ZETA TAURI; INFRARED INTERFEROMETRY; CYCLIC
VARIABILITY; GAMMA-CASSIOPEIAE; NEAR-IR; LINES; CONSTRAINTS; GEOMETRY;
ENVELOPE
AB We report on the successful science verification phase of a new observing mode at the Keck Interferometer, which provides a line-spread function width and sampling of 150 km s(-1) at the K '-band, at a current limiting magnitude of K ' similar to 7 mag with a spatial resolution of lambda/2B approximate to 2.7 mas and a measured differential phase stability of unprecedented precision (3 mrad at K = 5 mag, which represents 3 mu as on the sky or a centroiding precision of 10(-3)). The scientific potential of this mode is demonstrated by the presented observations of the circumstellar disk of the evolved Be-star 48 Lib. In addition to indirect methods such as multi-wavelength spectroscopy and polarimetry, the spectro-interferometric astrometry described here provides a new tool to directly constrain the radial density structure in the disk. For the first time, we resolve several Pfund emission lines, in addition to Br gamma, in a single interferometric spectrum, with adequate spatial and spectral resolution and precision to analyze the radial disk structure in 48 Lib. The data suggest that the continuum and Pf-emission originates in significantly more compact regions, inside the Br gamma-emission zone. Thus, spectro-interferometric astrometry opens the opportunity to directly connect the different observed line profiles of Br gamma and Pfund in the total and correlated flux to different disk radii. The gravitational potential of a rotationally flattened Be star is expected to induce a one-armed density perturbation in the circumstellar disk. Such a slowly rotating disk oscillation has been used to explain the well-known periodic V/R spectral profile variability in these stars, as well as the observed V/R cycle phase shifts between different disk emission lines. The differential line properties and linear constraints set by our data are consistent with theoretical models and lend direct support to the existence of a radius-dependent disk density perturbation. The data also show decreasing gas rotation velocities at increasing stellocentric radii as expected for Keplerian disk rotation, assumed by those models.
C1 [Pott, J. -U.] Max Planck Inst Astron, D-69117 Heidelberg, Germany.
[Pott, J. -U.; Woillez, J.; Ragland, S.; Wizinowich, P. L.; Appleby, E.; Berkey, B.; Cooper, A.; Hrynevych, M.; Medeiros, D.; Morrison, D.; Panteleeva, T.; Smith, B.; Summers, K.; Tsubota, K.; Tyau, C.; Wetherell, E.] Calif Assoc Res Astron, WM Keck Observ, Kamuela, HI 96743 USA.
[Pott, J. -U.; Ghez, A. M.] Univ Calif Los Angeles, Div Astron & Astrophys, Los Angeles, CA 90095 USA.
[Eisner, J. A.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA.
[Monnier, J. D.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Akeson, R. L.; Millan-Gabet, R.; Felizardo, C.; Herstein, J.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA.
[Ghez, A. M.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA.
[Graham, J. R.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Colavita, M. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
RP Pott, JU (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany.
EM jpott@mpia.de
FU NSF MRI [AST-0619965]; W. M. Keck Foundation; National Aeronautics and
Space Administration
FX We are grateful to W. D. Vacca and A. Seifahrt for many useful
discussions and contributions to this work. The excellent support of the
KI team at WMKO and NExScI helped to make these observations a success.
The realization of the KI-ASTRA upgrade is supported by the NSF MRI
grant AST-0619965. The data presented herein were obtained at the W. M.
Keck Observatory, which is operated as a scientific partnership among
the California Institute of Technology, the University of California,
and the National Aeronautics and Space Administration. The Observatory
was made possible by the generous financial support of the W. M. Keck
Foundation. The authors recognize and acknowledge the very significant
cultural role and reverence that the summit of Mauna Kea has always had
within the indigenous Hawaiian community. We are most fortunate to have
the opportunity to conduct observations from this mountain. The Keck
Interferometer is funded by the National Aeronautics and Space
Administration as part of its Exoplanet Exploration program. This
research has made use of the SIMBAD database, operated at CDS,
Strasbourg, France. This research has made use of NASA's Astrophysics
Data System Bibliographic Services. This work has made use of the BeSS
database, operated at GEPI, Observatoire de Meudon, France.
NR 40
TC 18
Z9 18
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 20
PY 2010
VL 721
IS 1
BP 802
EP 808
DI 10.1088/0004-637X/721/1/802
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 654TI
UT WOS:000282192900059
ER
PT J
AU Gopalswamy, N
Makela, P
AF Gopalswamy, Nat
Makela, Pertti
TI LONG-DURATION LOW-FREQUENCY TYPE III BURSTS AND SOLAR ENERGETIC PARTICLE
EVENTS
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE Sun: coronal mass ejections (CMEs); Sun: flares; Sun: particle emission;
Sun: radio radiation
ID CORONAL MASS EJECTIONS; RADIO-BURSTS; SEP EVENTS; SHOCKS; FLARES
AB We analyzed the coronal mass ejections (CMEs), flares, and type II radio bursts associated with a set of three complex, long-duration, low-frequency (<14 MHz) type III bursts from active region 10588 in 2004 April. The durations were measured at 1 and 14 MHz using data from Wind/WAVES and were well above the threshold value (>15 minutes) normally used to define these bursts. One of the three type III bursts was not associated with a type II burst, which also lacked a solar energetic particle (SEP) event at energies >25 MeV. The 1 MHz duration of the type III burst (28 minutes) for this event was near the median value of type III durations found for gradual SEP events and ground level enhancement events. Yet, there was no sign of an SEP event. On the other hand, the other two type III bursts from the same active region had similar duration but were accompanied by WAVES type II bursts; these bursts were also accompanied by SEP events detected by SOHO/ERNE. The CMEs for the three events had similar speeds, and the flares also had similar size and duration. This study suggests that the occurrence of a complex, long-duration, low-frequency type III burst is not a good indicator of an SEP event.
C1 [Gopalswamy, Nat; Makela, Pertti] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Makela, Pertti] Catholic Univ Amer, Washington, DC 20064 USA.
RP Gopalswamy, N (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RI Gopalswamy, Nat/D-3659-2012
FU NASA
FX This work was supported by NASA's LWS TR&T program. We thank Roger Hess
for providing high-resolution Wind/WAVES data and the anonymous referee
for helpful comments. SOHO is a project of international cooperation
between ESA and NASA.
NR 19
TC 10
Z9 10
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD SEP 20
PY 2010
VL 721
IS 1
BP L62
EP L66
DI 10.1088/2041-8205/721/1/L62
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647HY
UT WOS:000281610300014
ER
PT J
AU Robinson, TD
Meadows, VS
Crisp, D
AF Robinson, Tyler D.
Meadows, Victoria S.
Crisp, David
TI DETECTING OCEANS ON EXTRASOLAR PLANETS USING THE GLINT EFFECT
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE astrobiology; Earth; planets and satellites: composition; radiative
transfer; scattering; techniques: photometric
ID DISK-AVERAGED SPECTRA; WEBB-SPACE-TELESCOPE; EARTHS ALBEDO;
LIGHT-CURVES; DETECTABILITY; MODEL
AB Glint, the specular reflection of sunlight off Earth's oceans, may reveal the presence of oceans on an extrasolar planet. As an Earth-like planet nears crescent phases, the size of the ocean glint spot increases relative to the fraction of the illuminated disk, while the reflectivity of this spot increases. Both effects change the planet's visible reflectivity as a function of phase. However, strong forward scattering of radiation by clouds can also produce increases in a planet's reflectivity as it approaches crescent phases, and surface glint can be obscured by Rayleigh scattering and atmospheric absorption. Here, we explore the detectability of glint in the presence of an atmosphere and realistic phase-dependent scattering from oceans and clouds. We use the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model to simulate Earth's broadband visible brightness and reflectivity over an orbit. Our validated simulations successfully reproduce phase-dependent Earthshine observations. We find that the glinting Earth can be as much as 100% brighter at crescent phases than simulations that do not include glint, and that the effect is dependent on both orbital inclination and wavelength, where the latter dependence is caused by Rayleigh scattering limiting sensitivity to the surface. We show that this phenomenon may be observable using the James Webb Space Telescope paired with an external occulter.
C1 [Robinson, Tyler D.; Meadows, Victoria S.] Univ Washington, Dept Astron, Seattle, WA 98195 USA.
[Crisp, David] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David] NASA, Astrobiol Inst, Washington, DC USA.
RP Robinson, TD (reprint author), Univ Washington, Dept Astron, Seattle, WA 98195 USA.
EM robinson@astro.washington.edu
FU NASA Astrobiology Institute's Virtual Planetary Laboratory
[NNH05ZDA001C]
FX This work was performed by the NASA Astrobiology Institute's Virtual
Planetary Laboratory, supported under solicitation no. NNH05ZDA001C.
NR 25
TC 32
Z9 32
U1 0
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD SEP 20
PY 2010
VL 721
IS 1
BP L67
EP L71
DI 10.1088/2041-8205/721/1/L67
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647HY
UT WOS:000281610300015
ER
PT J
AU Fiedler, J
Feiveson, AH
Hayat, MJ
Vaksman, Z
Boyd, JL
Putcha, L
AF Fiedler, James
Feiveson, Alan H.
Hayat, Matthew J.
Vaksman, Zalman
Boyd, Jason L.
Putcha, Lakshmi
TI Joint modeling of performance and subjective reporting to assess
sensitivity to drug-induced sleepiness
SO STATISTICS IN MEDICINE
LA English
DT Article
DE Bayesian analysis; latent variable; WinBUGS; ordered probit;
hierarchical Bayesian modeling
ID MEASUREMENT ERROR; BINARY
AB In an NASA ground study, two forms of cognitive tests were evaluated in terms of their sensitivity to sleepiness induced by the drug promethazine (PMZ). Performance for the two test modes (Y(1) and Y(2)), PMZ concentration, and a self-reported sleepiness using the Karolinska Sleepiness Scale (KSS) were monitored for 12 h post dose. A problem arises when using KSS to establish an association between true sleepiness and performance because KSS scores are discrete and also because they tend to concentrate on certain values. Therefore, we define a latent sleepiness measure X* as an unobserved continuous random variable describing a subject's actual state of sleepiness. Under the assumption that drug concentration affects X*, which then affects Y(1), Y(2), and KSS, we use Bayesian methods to estimate joint equations that permit unbiased comparison of the performance measures' sensitivity to X*. The equations incorporate subject random effects and include a negativity constraint on subject-specific slopes of performance with respect to sleepiness. Published in 2010 by John Wiley & Sons, Ltd.
C1 [Feiveson, Alan H.; Putcha, Lakshmi] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
[Fiedler, James] Natl Space Biomed Res Inst, Houston, TX 77030 USA.
[Fiedler, James; Hayat, Matthew J.; Boyd, Jason L.] Univ Space Res Assoc, Div Space Life Sci, Houston, TX 77058 USA.
[Hayat, Matthew J.] Johns Hopkins Univ, Sch Nursing, Baltimore, MD 21205 USA.
[Vaksman, Zalman] Univ Texas HMC, Dept Microbiol & Mol Genet, Houston, TX 77021 USA.
RP Feiveson, AH (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 Nasa Pkwy,Mail Code SK3, Houston, TX 77058 USA.
EM alan.h.feiveson@nasa.gov
NR 22
TC 0
Z9 0
U1 0
U2 1
PU JOHN WILEY & SONS LTD
PI CHICHESTER
PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND
SN 0277-6715
J9 STAT MED
JI Stat. Med.
PD SEP 20
PY 2010
VL 29
IS 21
BP 2246
EP 2259
DI 10.1002/sim.3973
PG 14
WC Mathematical & Computational Biology; Public, Environmental &
Occupational Health; Medical Informatics; Medicine, Research &
Experimental; Statistics & Probability
SC Mathematical & Computational Biology; Public, Environmental &
Occupational Health; Medical Informatics; Research & Experimental
Medicine; Mathematics
GA 646AC
UT WOS:000281506300008
PM 20564417
ER
PT J
AU Shen, BW
Tao, WK
Wu, MLC
AF Shen, Bo-Wen
Tao, Wei-Kuo
Wu, Man-Li C.
TI African easterly waves in 30-day high-resolution global simulations: A
case study during the 2006 NAMMA period
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID 3-DIMENSIONAL STRUCTURE; ATLANTIC HURRICANES; JET; DISTURBANCES;
MAINTENANCE; DYNAMICS; INTENSE
AB In this study, extended-range (30-day) high-resolution simulations with the NASA global mesoscale model are conducted to simulate the initiation and propagation of six consecutive African easterly waves (AEWs) from late August to September 2006 and their association with hurricane formation. It is shown that the statistical characteristics of individual AEWs are realistically simulated with larger errors in the 5th and 6th AEWs. Remarkable simulations of a mean African easterly jet (AEJ) are also obtained. Nine additional 30-day experiments suggest that although land surface processes might contribute to the predictability of the AEJ and AEWs, the initiation and detailed evolution of AEWs still depend on the accurate representation of dynamic and land surface initial conditions and their time-varying nonlinear interactions. Of interest is the potential to extend the lead time for predicting hurricane formation (e. g., a lead time of up to 22 days) as the 4th AEW is realistically simulated. Citation: Shen, B.-W., W.-K. Tao, and M.-L. C. Wu (2010), African easterly waves in 30-day high-resolution global simulations: A case study during the 2006 NAMMA period, Geophys. Res. Lett., 37, L18803, doi: 10.1029/2010GL044355.
C1 [Shen, Bo-Wen] UMCP, ESSIC, College Pk, MD USA.
[Shen, Bo-Wen; Tao, Wei-Kuo; Wu, Man-Li C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Shen, BW (reprint author), UMCP, ESSIC, College Pk, MD USA.
EM bo-wen.shen-1@nasa.gov
FU NASA ESTO; AIST; MAP Program; NEWS; NSF STC
FX We would like to thank reviewers for their valuable suggestions, which
have substantially improved the manuscript. We are grateful for the
following organizations for supporting this study: NASA ESTO; AIST
Program; MAP Program; NEWS and NSF STC. We would also like to thank
Steve Lang for reviewing this manuscript and Karen More for helpful
discussion. Acknowledgment is also made to the NASA HEC Program, the
NASA NAS and NCCS for the computer time used in this research.
NR 18
TC 6
Z9 6
U1 1
U2 1
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD SEP 18
PY 2010
VL 37
AR L18803
DI 10.1029/2010GL044355
PG 6
WC Geosciences, Multidisciplinary
SC Geology
GA 652MD
UT WOS:000282009900004
ER
PT J
AU Smith, DE
Zuber, MT
Neumann, GA
Lemoine, FG
Mazarico, E
Torrence, MH
McGarry, JF
Rowlands, DD
Head, JW
Duxbury, TH
Aharonson, O
Lucey, PG
Robinson, MS
Barnouin, OS
Cavanaugh, JF
Sun, XL
Liiva, P
Mao, DD
Smith, JC
Bartels, AE
AF Smith, David E.
Zuber, Maria T.
Neumann, Gregory A.
Lemoine, Frank G.
Mazarico, Erwan
Torrence, Mark H.
McGarry, Jan F.
Rowlands, David D.
Head, James W., III
Duxbury, Thomas H.
Aharonson, Oded
Lucey, Paul G.
Robinson, Mark S.
Barnouin, Olivier S.
Cavanaugh, John F.
Sun, Xiaoli
Liiva, Peter
Mao, Dan-dan
Smith, James C.
Bartels, Arlin E.
TI Initial observations from the Lunar Orbiter Laser Altimeter (LOLA)
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID SCALE ROUGHNESS; MISSION; TOPOGRAPHY; REGION; MOON; MARS
AB As of June 19, 2010, the Lunar Orbiter Laser Altimeter, an instrument on the Lunar Reconnaissance Orbiter, has collected over 2.0 x 10(9) measurements of elevation that collectively represent the highest resolution global model of lunar topography yet produced. These altimetric observations have been used to improve the lunar geodetic grid to similar to 10 m radial and similar to 100 m spatial accuracy with respect to the Moon's center of mass. LOLA has also provided the highest resolution global maps yet produced of slopes, roughness and the 1064-nm reflectance of the lunar surface. Regional topography of the lunar polar regions allows precise characterization of present and past illumination conditions. LOLA's initial global data sets as well as the first high-resolution digital elevation models (DEMs) of polar topography are described herein. Citation: Smith, D. E., et al. (2010), Initial observations from the Lunar Orbiter Laser Altimeter (LOLA), Geophys. Res. Lett., 37, L18204, doi: 10.1029/2010GL043751.
C1 [Smith, David E.; Zuber, Maria T.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA.
[Smith, David E.; Neumann, Gregory A.; Lemoine, Frank G.; Mazarico, Erwan; McGarry, Jan F.; Rowlands, David D.; Sun, Xiaoli] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD USA.
[Torrence, Mark H.] SGT Inc, Greenbelt, MD 20770 USA.
[Head, James W., III] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA.
[Duxbury, Thomas H.] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA.
[Aharonson, Oded] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.
[Lucey, Paul G.] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA.
[Robinson, Mark S.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA.
[Barnouin, Olivier S.] Johns Hopkins Univ, Appl Phys Lab, Dept Space, Laurel, MD 20723 USA.
[Cavanaugh, John F.; Smith, James C.; Bartels, Arlin E.] NASA, Goddard Space Flight Ctr, Adv Engn & Technol Directorate, Greenbelt, MD 20771 USA.
[Liiva, Peter; Mao, Dan-dan] Sigma Space Corp, Lanham, MD 20706 USA.
RP Smith, DE (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA.
EM zuber@mit.edu
RI Rowlands, David/D-2751-2012; Mazarico, Erwan/N-6034-2014; Barnouin,
Olivier/I-7475-2015; Sun, Xiaoli/B-5120-2013; McGarry, Jan/C-4109-2013;
Lemoine, Frank/D-1215-2013; Neumann, Gregory/I-5591-2013
OI Mazarico, Erwan/0000-0003-3456-427X; Barnouin,
Olivier/0000-0002-3578-7750; Neumann, Gregory/0000-0003-0644-9944
FU NASA Exploration Systems Mission Directorate
FX The LOLA investigation is supported by the LRO Project under contract
from the NASA Exploration Systems Mission Directorate. We thank Patrick
McGovern and Hiroshi Araki for helpful reviews. LOLA data and products
are downloadable from
http://pds-geosciences.wustl.edu/missions/lro/lola.htm.
NR 20
TC 146
Z9 164
U1 1
U2 15
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD SEP 18
PY 2010
VL 37
AR L18204
DI 10.1029/2010GL043751
PG 6
WC Geosciences, Multidisciplinary
SC Geology
GA 652MD
UT WOS:000282009900001
ER
PT J
AU Jenkins, G
Kucera, P
Joseph, E
Fuentes, J
Gaye, A
Gerlach, J
Roux, F
Viltard, N
Papazzoni, M
Protat, A
Bouniol, D
Reynolds, A
Arnault, J
Badiane, D
Kebe, F
Camara, M
Sall, S
Ndiaye, SA
Deme, A
AF Jenkins, G.
Kucera, P.
Joseph, E.
Fuentes, J.
Gaye, A.
Gerlach, J.
Roux, F.
Viltard, N.
Papazzoni, M.
Protat, A.
Bouniol, D.
Reynolds, A.
Arnault, J.
Badiane, D.
Kebe, F.
Camara, M.
Sall, S.
Ndiaye, S. A.
Deme, A.
TI Coastal observations of weather features in Senegal during the African
Monsoon Multidisciplinary Analysis Special Observing Period 3
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID TROPICAL SQUALL-LINE; WEST-AFRICAN; ICE-SCATTERING; RADAR;
PRECIPITATION; RAINFALL; CLOUDS; SCHEME; COPT-81; PROJECT
AB During 15 August through 30 September 2006 (Special Observing Period 3, SOP3), key weather measurements are obtained from ground and aircraft platforms during the African Monsoon Multidisciplinary Analysis campaign. Key measurements are aimed at investigating African easterly waves (AEWs) and mesoscale convective systems in a coastal environment as they transition to the eastern Atlantic Ocean. Ground and aircraft instruments include polarimetric radar, a coarse and a high-density rain gauge network, surface chemical measurements, 12 m meteorological measurement, broadband IR, solar and microwave measurements, rawinsonde, aircraft dropsonde, lidar, and cloud radar measurements. Ground observations during SOP3 show that Senegal was influenced by 5 squall lines, 6 Saharan air layer intrusions, and 10 AEWs. Downstream tropical cyclones developed were associated with the passage of four AEWs. FA-20 aircraft measurements of microphysical aspects of 22 September squall line and several nondeveloping AEWs over the extreme eastern Atlantic Ocean are presented.
C1 [Jenkins, G.; Joseph, E.] Howard Univ, Dept Phys & Astron, Washington, DC 20059 USA.
[Kucera, P.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Fuentes, J.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA.
[Gaye, A.; Badiane, D.; Kebe, F.; Sall, S.; Ndiaye, S. A.; Deme, A.] Cheikh Anta Diop Univ, Lab Atmospher Ocean Simeon Fongang LPAO SF, Dakar, Senegal.
[Gerlach, J.] NASA, Wallops Flight Facil, Wallops Isl, VA 23337 USA.
[Viltard, N.; Papazzoni, M.; Protat, A.] Observat Spatiales, LATMOS Lab Atmospheres Milieux, Velizy Villacoublay, France.
[Protat, A.] CAWCR, Melbourne, Vic, Australia.
[Bouniol, D.] CNRS Meteo France, GAME CNRM, Toulouse, France.
[Roux, F.; Arnault, J.] Observ Midi Pyrenees, Lab Aerol, F-31400 Toulouse, France.
[Reynolds, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA.
[Camara, M.] Univ Ziguinchor, Dept Phys, Ziguinchor, Senegal.
RP Jenkins, G (reprint author), Howard Univ, Dept Phys & Astron, Washington, DC 20059 USA.
EM gregory.s.jenkins@gmail.com
FU NASA [NNX06AC78G]
FX We are thank U. S. and Senegalese students Nyasha George, Deanne Grant,
Marcia DeLonge, Aaron Pratt, Stephen Chan, Daniel Robertson, Segayle
Walford, Tamara Battle, Christopher Foltz, Aaron Pratt, Andrew Newmann,
Samo Diatta, and Thioro Fall for their extraordinary efforts during
SOP3. We also thank D. Tanre for use of the Mbour AERONET data. This
work was funded by NASA grant NNX06AC78G.
NR 46
TC 6
Z9 6
U1 0
U2 2
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 18
PY 2010
VL 115
AR D18108
DI 10.1029/2009JD013022
PG 29
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 652MZ
UT WOS:000282012400001
ER
PT J
AU Spinei, E
Carn, SA
Krotkov, NA
Mount, GH
Yang, K
Krueger, A
AF Spinei, Elena
Carn, Simon A.
Krotkov, Nickolay A.
Mount, George H.
Yang, Kai
Krueger, Arlin
TI Validation of ozone monitoring instrument SO2 measurements in the Okmok
volcanic cloud over Pullman, WA, July 2008
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID TRANSFORM INFRARED-SPECTROSCOPY; SOUFRIERE-HILLS VOLCANO;
SULFUR-DIOXIDE; EL-CHICHON; EMISSIONS; STRATOSPHERE; ERUPTIONS;
SCIAMACHY; RETRIEVAL; SPECTRA
AB The ozone monitoring instrument (OMI), launched on the EOS/Aura satellite in July 2004, makes daily global observations of natural and anthropogenic SO2 emissions with unprecedented spatial resolution. Here we present the first robust comparison of OMI volcanic SO2 retrievals with ground-based instrumentation, using direct Sun observations of the Okmok volcanic cloud from Washington State University (WSU) in Pullman, WA on 18-20 July 2008. These measurements were made by the multifunction differential optical absorption spectroscopy (MFDOAS) instrument developed at WSU, as the Okmok cloud drifted over Pullman in the upper troposphere and lower stratosphere (UTLS). Observation conditions were favorable with cloud-free skies and a relatively homogeneous volcanic cloud distribution on OMI ground pixel scales (similar to 20-50 km). Movement of the Okmok cloud north and south of Pullman over a period of several days permitted comparison with three OMI overpasses with SO2 column amounts above the SO2 background level. The total SO2 columns measured by MFDOAS during OMI overpasses were 3.11 +/- 0.23 Dobson units (DU), 1.75 +/- 0.16 DU and 1.22 +/- 0.18 DU (1 DU = 2.69 x 10(16) molecules/cm(2) = 0.029 g/m(2)). Comparison of ground-based direct Sun and operational and off-line OMI retrievals show an excellent agreement, providing the first validation of OMI measurements of volcanic SO2 in the UTLS.
C1 [Spinei, Elena; Mount, George H.] Washington State Univ, Lab Atmospher Res, Dept Civil & Environm Engn, Pullman, WA 99164 USA.
[Carn, Simon A.] Michigan Technol Univ, Dept Geol & Min Engn & Sci, Houghton, MI 49931 USA.
[Krotkov, Nickolay A.; Yang, Kai] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA.
[Krueger, Arlin] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA.
RP Spinei, E (reprint author), Washington State Univ, Lab Atmospher Res, Dept Civil & Environm Engn, Pullman, WA 99164 USA.
EM espinei@wsu.edu; scarn@mtu.edu; krotkov@chescat.gsfc.nasa.gov;
gmount@wsu.edu; Kai.Yang.1@gsfc.nasa.gov; akrueger@umbc.edu
RI Krotkov, Nickolay/E-1541-2012
OI Krotkov, Nickolay/0000-0001-6170-6750
FU U.S. OMI operational team; NASA [NNG06GI00G, NNG06GJ02G, NNS06AA05G,
NNG05GR56G]
FX The Dutch-Finnish built OMI instrument is part of the NASA EOS Aura
satellite payload. The OMI project is managed by NIVR and KNMI in
Netherlands. The authors would like to thank the KNMI OMI team for
producing L1B radiance data and the U.S. OMI operational team for
SO2 analysis and continuing support. Nickolay Krotkov, Arlin
Krueger, and Simon Carn acknowledge NASA funding of OMI SO2 research and
validation (grants NNG06GI00G and NNG06GJ02G); Arlin Krueger, Simon
Carn, and Kai Yang also acknowledge NASA CAN (NNS06AA05G) funding. The
WSU instrument and field activities were supported by grant NNG05GR56G
from NASA to Washington State University. The MFDOAS instrument was
built in the WSU instrument shop by Kurt Hutchinson and Gary Held.
NR 93
TC 30
Z9 31
U1 1
U2 11
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 18
PY 2010
VL 115
AR D00L08
DI 10.1029/2009JD013492
PG 14
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 652MZ
UT WOS:000282012400004
ER
PT J
AU Zhang, K
Kimball, JS
Nemani, RR
Running, SW
AF Zhang, Ke
Kimball, John S.
Nemani, Ramakrishna R.
Running, Steven W.
TI A continuous satellite-derived global record of land surface
evapotranspiration from 1983 to 2006
SO WATER RESOURCES RESEARCH
LA English
DT Article
ID CARBON-DIOXIDE EXCHANGE; ECOSYSTEM CO2 EXCHANGE; ELEVATED ATMOSPHERIC
CO2; ENERGY-BALANCE CLOSURE; NORTHERN GREAT-PLAINS; BOREAL FOREST;
STREAM TEMPERATURE; PASSIVE MICROWAVE; DECIDUOUS FOREST; AIR-TEMPERATURE
AB We applied a satellite remote sensing-based evapotranspiration ( ET) algorithm to assess global terrestrial ET from 1983 to 2006. The algorithm quantifies canopy transpiration and soil evaporation using a modified Penman-Monteith approach with biome-specific canopy conductance determined from the normalized difference vegetation index (NDVI) and quantifies open water evaporation using a Priestley-Taylor approach. These algorithms were applied globally using advanced very high resolution radiometer (AVHRR) GIMMS NDVI, NCEP/NCAR Reanalysis (NNR) daily surface meteorology, and NASA/GEWEX Surface Radiation Budget Release-3.0 solar radiation inputs. We used observations from 34 FLUXNET tower sites to parameterize an NDVI-based canopy conductance model and then validated the global ET algorithm using measurements from 48 additional, independent flux towers. Two sets of monthly ET estimates at the tower level, driven by in situ meteorological measurements and meteorology interpolated from coarse resolution NNR meteorology reanalysis, agree favorably ( root mean square error (RMSE) = 13.0-15.3 mm month(-1); R-2 = 0.80-0.84) with observed tower fluxes from globally representative land cover types. The global ET results capture observed spatial and temporal variations at the global scale and also compare favorably ( RMSE = 186.3 mm yr(-1); R-2 = 0.80) with ET inferred from basin-scale water balance calculations for 261 basins covering 61% of the global vegetated area. The results of this study provide a relatively long term global ET record with well-quantified accuracy for assessing ET climatologies, terrestrial water, and energy budgets and long-term water cycle changes.
C1 [Zhang, Ke; Kimball, John S.] Univ Montana, Flathead Lake Biol Stn, Polson, MT 59860 USA.
[Nemani, Ramakrishna R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Zhang, Ke; Kimball, John S.; Running, Steven W.] Univ Montana, Numer Terradynam Simulat Grp, Missoula, MT 59812 USA.
RP Zhang, K (reprint author), Univ Montana, Flathead Lake Biol Stn, 32125 Bio Stn Lane, Polson, MT 59860 USA.
EM zhang@ntsg.umt.edu
RI Zhang, Ke/B-3227-2012
OI Zhang, Ke/0000-0001-5288-9372
FU NASA; Terrestrial Ecology; Earth System Science Fellowship
FX This work was supported by the NASA Hydrology, Terrestrial Ecology, and
Earth System Science Fellowship programs. The flux tower measurement
data were provided by AmeriFlux, ORNL-DAAC, and individual tower site
principal investigators. We gratefully acknowledge all tower site
principle investigators and their teams for providing the evaporation
and meteorological data used in this study. The NASA/GEWEX solar
radiation data were obtained from the NASA Langley Research Center
Atmospheric Science Data Center. We also gratefully acknowledge MATLAB
code developed by Hiekki Haario and associates, Lappeenranta U. of
Technology, Helsinki, Finland, and their work in adaptive MCMC methods.
NR 140
TC 121
Z9 129
U1 6
U2 63
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0043-1397
EI 1944-7973
J9 WATER RESOUR RES
JI Water Resour. Res.
PD SEP 18
PY 2010
VL 46
AR W09522
DI 10.1029/2009WR008800
PG 21
WC Environmental Sciences; Limnology; Water Resources
SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water
Resources
GA 652XF
UT WOS:000282044800002
ER
PT J
AU Han, SC
Yeo, IY
Alsdorf, D
Bates, P
Boy, JP
Kim, H
Oki, T
Rodell, M
AF Han, Shin-Chan
Yeo, In-Young
Alsdorf, Doug
Bates, Paul
Boy, Jean-Paul
Kim, Hyungjun
Oki, Taikan
Rodell, Matthew
TI Movement of Amazon surface water from time-variable satellite gravity
measurements and implications for water cycle parameters in land surface
models
SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
LA English
DT Article
DE Amazon basin; hydrology; GRACE; time-variable gravity; land surface
model; runoff routing
ID GLOBAL-SCALE; RIVER-BASIN; REGIONAL EVAPOTRANSPIRATION;
CONTINENTAL-SCALE; CLIMATE MODELS; SCHEMES; FLOW; EVAPORATION;
DISCHARGE; RUNOFF
AB The large-scale observations of terrestrial water storage from GRACE satellites over the Amazon are analyzed with land surface model (LSM) outputs of runoff and soil moisture. A simple yet effective runoff routing method based on a continuity equation is implemented to model horizontal transport of surface water within the Amazon basin. The GRACE observations are analyzed separately for soil moisture and surface water storages (generated from runoff), relying on their distinct spatial patterns, being disperse for soil moisture and localized for surface water. Various effective velocities for storage transport are tested against the GRACE observations. When the model runoff is routed with an uniform velocity of 30 cm/s, the annual variation of the resulting surface water storage is generally found to be larger than the satellite measurements and ground gauge data by a factor of 1.5 or higher. The peak annual anomaly of surface water storage is observed around the midstream of the Amazon main stem. However, the runoff routing simulations present the peak amplitude consistently around the delta (downstream), unless the increasing velocity in a downstream region is used. As complements to the ground gauge data, the satellite observations provide unique 'spatial' information of water cycle parameters. Our analysis indicates possible shortcomings in the certain LSM mass transport scheme between atmosphere and land surface, particularly the production of too large seasonal variations in runoff (and maybe too little variations in evapotranspiration), and the dynamic characteristics of surface water transport within the Amazon basins.
C1 [Han, Shin-Chan; Boy, Jean-Paul] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA.
[Han, Shin-Chan] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA.
[Yeo, In-Young] Univ Maryland, Dept Geog, College Pk, MD 20742 USA.
[Alsdorf, Doug] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA.
[Bates, Paul] Univ Bristol, Sch Geog Sci, Bristol BS8 1SS, Avon, England.
[Boy, Jean-Paul] UdS, IPGS, UMR 7516, EOST,CNRS, F-67084 Strasbourg, France.
[Kim, Hyungjun; Oki, Taikan] Univ Tokyo, Inst Ind Sci, Meguro Ku, Tokyo 1538505, Japan.
[Rodell, Matthew] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA.
RP Han, SC (reprint author), NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, 8300 Greenbelt Rd, Greenbelt, MD 20771 USA.
EM shin-chan.han@nasa.gov
RI Oki, Taikan/E-5778-2010; Rodell, Matthew/E-4946-2012; Han,
Shin-Chan/A-2022-2009; Bates, Paul/C-8026-2012; KIM,
HYUNGJUN/I-5099-2014; Boy, Jean-Paul/E-6677-2017
OI Oki, Taikan/0000-0003-4067-4678; Rodell, Matthew/0000-0003-0106-7437;
Bates, Paul/0000-0001-9192-9963; KIM, HYUNGJUN/0000-0003-1083-8416; Boy,
Jean-Paul/0000-0003-0259-209X
FU NASA; Earth Surface and Interior program; NASA Goddard Space Flight
Center [PIOF-GA2008-221753]
FX This work was supported by NASA GRACE projects and the Earth Surface and
Interior program. Scott Luthcke and David Rowlands are acknowledged for
computing the precise orbits of the GRACE satellites. We would like to
thank the German Space Operations Center of the German Aerospace Center,
DLR, for providing continuously and nearly 100% of the raw telemetry
data of the twin GRACE satellites. JPB is currently visiting NASA
Goddard Space Flight Center with a Marie Curie International Outgoing
Fellowship (PIOF-GA2008-221753). The comments from anonymous reviewers
helped to improve the manuscript.
NR 37
TC 9
Z9 9
U1 0
U2 10
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 1525-2027
J9 GEOCHEM GEOPHY GEOSY
JI Geochem. Geophys. Geosyst.
PD SEP 17
PY 2010
VL 11
AR Q09007
DI 10.1029/2010GC003214
PG 20
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 652LV
UT WOS:000282009100001
ER
PT J
AU Head, JW
Fassett, CI
Kadish, SJ
Smith, DE
Zuber, MT
Neumann, GA
Mazarico, E
AF Head, James W., III
Fassett, Caleb I.
Kadish, Seth J.
Smith, David E.
Zuber, Maria T.
Neumann, Gregory A.
Mazarico, Erwan
TI Global Distribution of Large Lunar Craters: Implications for Resurfacing
and Impactor Populations
SO SCIENCE
LA English
DT Article
ID INNER SOLAR-SYSTEM; MARE BASALTS; AGES; STRATIGRAPHY; VOLCANISM
AB By using high-resolution altimetric measurements of the Moon, we produced a catalog of all impact craters >= 20 kilometers in diameter on the lunar surface and analyzed their distribution and population characteristics. The most-densely cratered portion of the highlands reached a state of saturation equilibrium. Large impact events, such as Orientale Basin, locally modified the prebasin crater population to similar to 2 basin radii from the basin center. Basins such as Imbrium, Orientale, and Nectaris, which are important stratigraphic markers in lunar history, are temporally distinguishable on the basis of crater statistics. The characteristics of pre- and postmare crater populations support the hypothesis that there were two populations of impactors in early solar system history and that the transition occurred near the time of the Orientale Basin event.
C1 [Head, James W., III; Fassett, Caleb I.; Kadish, Seth J.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA.
[Smith, David E.; Zuber, Maria T.; Mazarico, Erwan] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02129 USA.
[Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Mazarico, Erwan] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA.
RP Head, JW (reprint author), Brown Univ, Dept Geol Sci, Providence, RI 02912 USA.
EM james_head@brown.edu
RI Neumann, Gregory/I-5591-2013; Mazarico, Erwan/N-6034-2014;
OI Neumann, Gregory/0000-0003-0644-9944; Mazarico,
Erwan/0000-0003-3456-427X; Fassett, Caleb/0000-0001-9155-3804
FU NASA [NNX09AM54G]
FX We thank the LRO and LOLA mission teams for their efforts, which made
the observations in this study possible, and T. Kneissl for developing
the CraterTools extension to ArcMap. Funding was provided by NASA grant
NNX09AM54G for LOLA.
NR 19
TC 65
Z9 65
U1 1
U2 8
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD SEP 17
PY 2010
VL 329
IS 5998
BP 1504
EP 1507
DI 10.1126/science.1195050
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 650RK
UT WOS:000281869000035
PM 20847265
ER
PT J
AU Greenhagen, BT
Lucey, PG
Wyatt, MB
Glotch, TD
Allen, CC
Arnold, JA
Bandfield, JL
Bowles, NE
Hanna, KLD
Hayne, PO
Song, E
Thomas, IR
Paige, DA
AF Greenhagen, Benjamin T.
Lucey, Paul G.
Wyatt, Michael B.
Glotch, Timothy D.
Allen, Carlton C.
Arnold, Jessica A.
Bandfield, Joshua L.
Bowles, Neil E.
Hanna, Kerri L. Donaldson
Hayne, Paul O.
Song, Eugenie
Thomas, Ian R.
Paige, David A.
TI Global Silicate Mineralogy of the Moon from the Diviner Lunar Radiometer
SO SCIENCE
LA English
DT Article
ID PLANETARY SURFACES; SPECTROSCOPY; EMISSION; EVOLUTION; VOLCANISM;
FEATURES; CRUST; TES
AB We obtained direct global measurements of the lunar surface using multispectral thermal emission mapping with the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Most lunar terrains have spectral signatures that are consistent with known lunar anorthosite and basalt compositions. However, the data have also revealed the presence of highly evolved, silica-rich lunar soils in kilometer-scale and larger exposures, expanded the compositional range of the anorthosites that dominate the lunar crust, and shown that pristine lunar mantle is not exposed at the lunar surface at the kilometer scale. Together, these observations provide compelling evidence that the Moon is a complex body that has experienced a diverse set of igneous processes.
C1 [Greenhagen, Benjamin T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Lucey, Paul G.] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA.
[Wyatt, Michael B.; Hanna, Kerri L. Donaldson] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA.
[Glotch, Timothy D.; Arnold, Jessica A.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA.
[Allen, Carlton C.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
[Bandfield, Joshua L.; Song, Eugenie] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA.
[Bowles, Neil E.; Thomas, Ian R.] Univ Oxford, Dept Atmospher Ocean & Planetary Phys, Oxford OX1 3PU, England.
[Hayne, Paul O.; Paige, David A.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA.
RP Greenhagen, BT (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM benjamin.t.greenhagen@jpl.nasa.gov
RI Greenhagen, Benjamin/C-3760-2016
FU NASA; Diviner science budget
FX This research was carried out in part at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with NASA. This
work was funded by the Diviner science budget and the NASA LRO
Participating Scientist program.
NR 36
TC 55
Z9 55
U1 1
U2 8
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD SEP 17
PY 2010
VL 329
IS 5998
BP 1507
EP 1509
DI 10.1126/science.1192196
PG 3
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 650RK
UT WOS:000281869000036
PM 20847266
ER
PT J
AU Glotch, TD
Lucey, PG
Bandfield, JL
Greenhagen, BT
Thomas, IR
Elphic, RC
Bowles, N
Wyatt, MB
Allen, CC
Hanna, KD
Paige, DA
AF Glotch, Timothy D.
Lucey, Paul G.
Bandfield, Joshua L.
Greenhagen, Benjamin T.
Thomas, Ian R.
Elphic, Richard C.
Bowles, Neil
Wyatt, Michael B.
Allen, Carlton C.
Hanna, Kerri Donaldson
Paige, David A.
TI Highly Silicic Compositions on the Moon
SO SCIENCE
LA English
DT Article
ID LUNAR RED SPOTS; VOLCANISM; SURFACE; SPECTROSCOPY; GRUITHUISEN;
SEPARATION; REGION; DOMES
AB Using data from the Diviner Lunar Radiometer Experiment, we show that four regions of the Moon previously described as "red spots" exhibit mid-infrared spectra best explained by quartz, silica-rich glass, or alkali feldspar. These lithologies are consistent with evolved rocks similar to lunar granites in the Apollo samples. The spectral character of these spots is distinct from surrounding mare and highlands material and from regions composed of pure plagioclase feldspar. The variety of landforms associated with the silicic spectral character suggests that both extrusive and intrusive silicic magmatism occurred on the Moon. Basaltic underplating is the preferred mechanism for silicic magma generation, leading to the formation of extrusive landforms. This mechanism or silicate liquid immiscibility could lead to the formation of intrusive bodies.
C1 [Glotch, Timothy D.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA.
[Lucey, Paul G.] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA.
[Bandfield, Joshua L.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA.
[Greenhagen, Benjamin T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Thomas, Ian R.; Bowles, Neil] Univ Oxford, Dept Phys, Oxford, England.
[Elphic, Richard C.; Hanna, Kerri Donaldson] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Wyatt, Michael B.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA.
[Allen, Carlton C.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
[Paige, David A.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA.
RP Glotch, TD (reprint author), SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA.
EM tglotch@notes.cc.sunysb.edu
RI Greenhagen, Benjamin/C-3760-2016
FU Diviner science budget; NASA
FX This work was funded in part by the Diviner science budget. T. D. G.,
J.L.B., M. B. W., and R. C. E. were supported by the NASA Lunar
Reconnaissance Orbiter Participating Scientist program.
NR 29
TC 67
Z9 68
U1 3
U2 16
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD SEP 17
PY 2010
VL 329
IS 5998
BP 1510
EP 1513
DI 10.1126/science.1192148
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 650RK
UT WOS:000281869000037
PM 20847267
ER
PT J
AU Badavi, FF
Adams, DO
Wilson, JW
AF Badavi, Francis F.
Adams, Daniel O.
Wilson, John W.
TI On the validity of the aluminum equivalent approximation in space
radiation shielding applications
SO ADVANCES IN SPACE RESEARCH
LA English
DT Article
DE Aluminum equivalent approximation; GCR; ISS; HZETRN
AB The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range 1 <= Z <= 28 (H-Ni) and secondary neutrons through selected target materials. The coupling of the GCR extremes to HZETRN allows for the examination of the induced environment within the interior of an idealized spacecraft as approximated by a spherical shell shield, and the effects of the aluminum equivalent approximation for a good polymeric shield material such as generic polyethylene (PE). The shield thickness is represented by a 25 g/cm(2) spherical shell. Although, one could imagine the progression to greater thickness, the current range will be sufficient to evaluate the qualitative usefulness of the aluminum equivalent approximation. Upon establishing the inaccuracies of the aluminum equivalent approximation through numerical simulations of the GCR radiation field attenuation for PE and aluminum equivalent PE spherical shells, we further present results for a limited set of commercially available, hydrogen rich, multifunctional polymeric constituents to assess the effect of the aluminum equivalent approximation on their radiation attenuation response as compared to the generic PE. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved.
C1 [Badavi, Francis F.] Christopher Newport Univ, Newport News, VA 23606 USA.
[Adams, Daniel O.] Univ Utah, Salt Lake City, UT 84112 USA.
[Wilson, John W.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
RP Badavi, FF (reprint author), Christopher Newport Univ, 1 Univ Pl, Newport News, VA 23606 USA.
EM francis.f.badavi@nasa.gov; adams@mech.utah.edu; jwilson61@cox.net
NR 18
TC 5
Z9 5
U1 3
U2 7
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0273-1177
J9 ADV SPACE RES
JI Adv. Space Res.
PD SEP 15
PY 2010
VL 46
IS 6
BP 719
EP 727
DI 10.1016/j.asr.2010.04.006
PG 9
WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences
GA 643KZ
UT WOS:000281296600006
ER
PT J
AU Thomas, EA
Weislogel, MM
Klaus, DM
AF Thomas, Evan A.
Weislogel, Mark M.
Klaus, David M.
TI Design considerations for sustainable spacecraft water management
systems
SO ADVANCES IN SPACE RESEARCH
LA English
DT Article
DE Sustainable; Life support; Wastewater; Fouling
AB It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable over time.
This paper presents design strategies and testing considerations for improving the reliability of water handling technologies. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence. Two representative boundary applications are presented. The first is a short term application where reduced gravity flight tests demonstrated a static phase separator prototype that achieved nearly 100% separation of gas from liquids under widely varying wetting conditions correlated to anticipated ranges of wastewater fouling. The second is a design concept for a lunar outpost water recovery system where wastewater is allowed to age and form biofilms and precipitates that can be filtered through lunar regolith media as the water is reclaimed. Both applications are supported by similar underlying principles of facilitating sustainable fluid handling in the presence of fouled surfaces. Published by Elsevier Ltd. on behalf of COSPAR.
C1 [Thomas, Evan A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
[Weislogel, Mark M.] Portland State Univ, Dept Mech & Mat Engn, Portland, OR 97207 USA.
[Klaus, David M.] Univ Colorado, Boulder, CO 80309 USA.
RP Thomas, EA (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy,Mailcode EC3, Houston, TX 77058 USA.
EM evan.a.thomas@nasa.gov; mmw@mme.pdx.edu; Klaus@colorado.edu
NR 13
TC 6
Z9 6
U1 2
U2 10
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0273-1177
J9 ADV SPACE RES
JI Adv. Space Res.
PD SEP 15
PY 2010
VL 46
IS 6
BP 761
EP 767
DI 10.1016/j.asr.2010.04.005
PG 7
WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences
GA 643KZ
UT WOS:000281296600011
ER
PT J
AU Slaba, TC
Blattnig, SR
Clowdsley, MS
Walker, SA
Badavi, FF
AF Slaba, T. C.
Blattnig, S. R.
Clowdsley, M. S.
Walker, S. A.
Badavi, F. F.
TI An improved neutron transport algorithm for HZETRN
SO ADVANCES IN SPACE RESEARCH
LA English
DT Article
DE Neutron transport; Radiation constraints; Space radiation; Dose; Space
radiation transport; HZETRN
AB Long-term human presence in space requires the inclusion of radiation constraints in mission planning and the design of shielding materials, structures and vehicles. It is necessary to expose the numerical tools commonly used in radiation analyses to extensive verification, validation and uncertainty quantification. In this paper, the numerical error associated with energy discretization in HZETRN is addressed. An inadequate numerical integration scheme in the transport algorithm is shown to produce large errors in the low energy portion of the neutron and light ion fluence spectra. It is further shown that the errors result from the narrow energy domain of the neutron elastic cross section spectral distributions and that an extremely fine energy grid is required to resolve the problem under the current formulation. Since adding a sufficient number of energy points will render the code computationally inefficient, we revisit the light ion and neutron transport theory developed for HZETRN and focus on neutron elastic interactions. Two numerical methods (average value and collocation) are developed to provide adequate resolution in the energy domain and more accurately resolve the neutron elastic interactions. An energy grid convergence study is conducted to demonstrate the improved stability of the new methods. Based on the results of the convergence study and the ease of implementation, the average value method with a 100 point energy grid is found to be suitable for future use in HZETRN. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved.
C1 [Slaba, T. C.; Walker, S. A.] Old Dominion Univ, Norfolk, VA 23529 USA.
[Blattnig, S. R.; Clowdsley, M. S.] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
[Badavi, F. F.] Christopher Newport Univ, Newport News, VA 23607 USA.
RP Slaba, TC (reprint author), Old Dominion Univ, E&CS Bldg,Elkhorn Ave, Norfolk, VA 23529 USA.
EM Tony.C.Slaba@nasa.gov; Steve.R.Blattnig@nasa.gov;
Martha.S.Clowdsley@nasa.gov; Steven.A.Walker@nasa.gov;
Francis.F.Badavi@nasa.gov
NR 13
TC 12
Z9 12
U1 0
U2 0
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0273-1177
J9 ADV SPACE RES
JI Adv. Space Res.
PD SEP 15
PY 2010
VL 46
IS 6
BP 800
EP 810
DI 10.1016/j.asr.2010.03.005
PG 11
WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences
GA 643KZ
UT WOS:000281296600016
ER
PT J
AU Kminek, G
Rummel, JD
Cockell, CS
Atlas, R
Barlow, N
Beaty, D
Boynton, W
Carr, M
Clifford, S
Conley, CA
Davila, AF
Debus, A
Doran, P
Hecht, M
Heldmann, J
Helbert, J
Hipkin, V
Horneck, G
Kieft, TL
Klingelhoefer, G
Meyer, M
Newsom, H
Ori, GG
Parnell, J
Prieur, D
Raulin, F
Schulze-Makuch, D
Spry, JA
Stabekis, PE
Stackebrandt, E
Vago, J
Viso, M
Voytek, M
Wells, L
Westall, F
AF Kminek, G.
Rummel, J. D.
Cockell, C. S.
Atlas, R.
Barlow, N.
Beaty, D.
Boynton, W.
Carr, M.
Clifford, S.
Conley, C. A.
Davila, A. F.
Debus, A.
Doran, P.
Hecht, M.
Heldmann, J.
Helbert, J.
Hipkin, V.
Horneck, G.
Kieft, T. L.
Klingelhoefer, G.
Meyer, M.
Newsom, H.
Ori, G. G.
Parnell, J.
Prieur, D.
Raulin, F.
Schulze-Makuch, D.
Spry, J. A.
Stabekis, P. E.
Stackebrandt, E.
Vago, J.
Viso, M.
Voytek, M.
Wells, L.
Westall, F.
TI Report of the COSPAR Mars Special Regions Colloquium
SO ADVANCES IN SPACE RESEARCH
LA English
DT Article
DE Special regions; Mars; Planetary protection; Forward contamination; Low
temperature; Water activity
ID UPPER MARTIAN SURFACE; SOUTH-POLE SNOW; SEA-ICE; GROUND ICE;
BACTERIAL-ACTIVITY; WATER-VAPOR; SPACECRAFT SURFACES; HIGH OBLIQUITY;
NEAR-SURFACE; LIQUID WATER
AB In this paper we present the findings of a COSPAR Mars Special Regions Colloquium held in Rome in 2007. We review and discuss the definition of Mars Special Regions, the physical parameters used to define Mars Special Regions, and physical features on Mars that can be interpreted as Mars Special Regions. We conclude that any region experiencing temperatures > -25 degrees C for a few hours a year and a water activity > 0.5 can potentially allow the replication of terrestrial microorganisms. Physical features on Mars that can be interpreted as meeting these conditions constitute a Mars Special Region. Based on current knowledge of the martian environment and the conservative nature of planetary protection, the following features constitute Mars Special regions: Gullies and bright streaks associated with them, pasted-on terrain, deep subsurface, dark streaks only on a case-by-case basis, others to be determined. The parameter definition and the associated list of physical features should be re-evaluated on a regular basis. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved.
C1 [Cockell, C. S.] Open Univ, Milton Keynes MK7 6AA, Bucks, England.
[Kminek, G.; Vago, J.] ESA, Estec, NL-2200 Noordwijk, Netherlands.
[Rummel, J. D.] E Carolina Univ, Greenville, NC 27858 USA.
[Atlas, R.] Univ Louisville, Louiseville, KY 40292 USA.
[Barlow, N.] No Arizona Univ, Flagstaff, AZ 86011 USA.
[Beaty, D.; Hecht, M.; Spry, J. A.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA.
[Boynton, W.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA.
[Carr, M.] US Geol Survey, Pacific Sci Ctr, Santa Cruz, CA 95060 USA.
[Clifford, S.] Lunar & Planetary Inst, Houston, TX 77058 USA.
[Conley, C. A.; Meyer, M.; Stabekis, P. E.; Voytek, M.] NASA Headquarters, Washington, DC 20546 USA.
[Davila, A. F.; Heldmann, J.] NASA, Ames Res Ctr, Mountain View, CA 94043 USA.
[Debus, A.; Viso, M.] Agence Franaise Espace, CNES, F-31401 Toulouse 9, France.
[Doran, P.] Univ Illinois, Chicago, IL 60607 USA.
[Helbert, J.] DLR, Inst Planetenforsch, Berlin, Germany.
[Hipkin, V.] Canadian Space Agcy, St Hubert, PQ J3Y 8Y9, Canada.
[Horneck, G.] DLR, D-51147 Cologne, Germany.
[Kieft, T. L.] New Mexico Inst Min & Technol, Socorro, NM 87801 USA.
[Klingelhoefer, G.] Johannes Gutenberg Univ Mainz, D-55131 Mainz, Germany.
[Newsom, H.] Univ New Mexico, Albuquerque, NM 87131 USA.
[Ori, G. G.] Univ Annunzio, IRSPS, I-65127 Pescara, Italy.
[Parnell, J.] Univ Aberdeen, Aberdeen AB24 3UE, Scotland.
[Prieur, D.] Univ Brest, Brest, France.
[Raulin, F.] CNRS, F-94010 Creteil, France.
[Raulin, F.] Univ Paris, F-94010 Creteil, France.
[Schulze-Makuch, D.] Washington State Univ, Pullman, WA 99164 USA.
[Stackebrandt, E.] Deutsch Sammlung Mikroorganism Zellkultur GmbH, D-38124 Braunschweig, Germany.
[Wells, L.] Univ Penn, Philadelphia, PA 19014 USA.
[Westall, F.] CNRS, F-45100 Orleans, France.
RP Cockell, CS (reprint author), Open Univ, Milton Keynes MK7 6AA, Bucks, England.
EM c.s.cockell@open.ac.uk
RI Davila, Alfonso/A-2198-2013; Atlas, Robert/A-5963-2011;
OI Davila, Alfonso/0000-0002-0977-9909; Atlas, Robert/0000-0002-0706-3560;
Helbert, Jorn/0000-0001-5346-9505; ORI, Gian
Gabriele/0000-0002-6460-1476
NR 114
TC 25
Z9 25
U1 0
U2 22
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0273-1177
J9 ADV SPACE RES
JI Adv. Space Res.
PD SEP 15
PY 2010
VL 46
IS 6
BP 811
EP 829
DI 10.1016/j.asr.2010.04.039
PG 19
WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences
GA 643KZ
UT WOS:000281296600017
ER
PT J
AU Crochet, AP
Kabir, MM
Francis, MB
Paavola, CD
AF Crochet, Amanda P.
Kabir, Mohiuddin M.
Francis, Matthew B.
Paavola, Chad D.
TI Site-selective dual modification of periplasmic binding proteins for
sensing applications
SO BIOSENSORS & BIOELECTRONICS
LA English
DT Article
DE Periplasmic binding proteins (PBPs); Glutamine binding protein;
Reagentless sensor; Fluorescence resonance energy transfer (FRET);
Transamination
ID RESONANCE ENERGY-TRANSFER; FLUORESCENT NANOSENSORS; TRANSPORT-SYSTEMS;
CELLS; TRANSAMINATION; CONSTRUCTION; BIOSENSOR; RELEASE; SENSORS; FAMILY
AB We have developed three sensitive and specific amino acid sensors based on bacterial periplasmic solute binding proteins A site-specific amino-terminal transamination reaction provides a useful complement to cysteine chemistry for the covalent modification of biomolecules in this application. We demonstrate this combination to attach two different chromophores to a single biomolecule in two locations The periplasmic glutamine binding protein from E colt was modified with a pair of dyes suitable for fluorescence resonance energy transfer, and this conjugate exhibited an L-glutamine dependent optical response Two periplasmic binding proteins from the thermophilic organism Thermotoga maritima, for arginine and aliphatic amino acids, were modified and evaluated similarly. All three conjugates manifested signal changes mediated by resonant energy transfer upon binding their respective ligands, with nanomolar dissociation constants and stereochemical specificity This represents a readily generalizable method for construction of reagentless biosensors The double-labeling strategy was also exploited for the surface attachment of a dye-labeled glutamine binding protein via a biotin-streptavidin interaction. Published by Elsevier B.V.
C1 [Paavola, Chad D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Crochet, Amanda P.; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Crochet, Amanda P.; Francis, Matthew B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Kabir, Mohiuddin M.] SETI Inst, Mountain View, CA 94043 USA.
RP Paavola, CD (reprint author), NASA, Ames Res Ctr, Mail Stop 239-15, Moffett Field, CA 94035 USA.
FU National Aeronautics and Space Administration [ASTID04-0000-0108,
07-ASTID07-0092]
FX This work was supported by National Aeronautics and Space
Administration, Astrobiology Science and Technology Instrument
Development program grants ASTID04-0000-0108 and 07-ASTID07-0092.
NR 32
TC 8
Z9 9
U1 0
U2 6
PU ELSEVIER ADVANCED TECHNOLOGY
PI OXFORD
PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON,
OXFORD OX5 1GB, OXON, ENGLAND
SN 0956-5663
J9 BIOSENS BIOELECTRON
JI Biosens. Bioelectron.
PD SEP 15
PY 2010
VL 26
IS 1
BP 55
EP 61
DI 10.1016/j.bios.2010.05.012
PG 7
WC Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical;
Electrochemistry; Nanoscience & Nanotechnology
SC Biophysics; Biotechnology & Applied Microbiology; Chemistry;
Electrochemistry; Science & Technology - Other Topics
GA 659IP
UT WOS:000282560500009
PM 20541393
ER
PT J
AU Luck, M
Maumenee, N
Whited, D
Lucotch, J
Chilcote, S
Lorang, M
Goodman, D
McDonald, K
Kimball, J
Stanford, J
AF Luck, Matthew
Maumenee, Niels
Whited, Diane
Lucotch, John
Chilcote, Samantha
Lorang, Mark
Goodman, Daniel
McDonald, Kyle
Kimball, John
Stanford, Jack
TI Remote sensing analysis of physical complexity of North Pacific Rim
rivers to assist wild salmon conservation
SO EARTH SURFACE PROCESSES AND LANDFORMS
LA English
DT Article
DE physical complexity; rivers; ranking; geomorphology; salmon
ID FALL CHINOOK SALMON; COHO SALMON; SOCKEYE-SALMON; ONCORHYNCHUS-KISUTCH;
BRITISH-COLUMBIA; LANDSCAPE CHARACTERISTICS; SPAWNING HABITAT; JUVENILE
CHINOOK; CLIMATE; LEVEL
AB Salmon populations are highly variable in both space and time. Accurate forecasting of the productivity of salmon stocks makes effective management and conservation of the resource extremely challenging. Furthermore, widespread and consistent data on the productivity of species-specific and total salmon stocks in a river are almost nonexistent. Ranking rivers based on physical complexity derived from remote sensing allows rivers to be objectively compared. Our approach considered rivers with great geomorphic complexity (e.g. having expansive, multichanneled floodplains and/or on-channel lakes) as likely to have greater productivity of salmon than rivers flowing in constrained or canyon-bound channels. Our objective was to develop a database of landscape metrics that could be used to rank the rivers in relation to potential salmon productivity. We then examined the rankings in relation to existing empirical (monitoring) data describing productivity of salmon stocks. To extract the metrics for each river basin we used a digital elevation model and multispectral satellite imagery. We developed procedures to extract channel networks, floodplains, on-channel lakes and other catchment features; variables such as catchment area, channel elevation, main channel length, floodplain area, and density of hydrojunctions (nodes) were measured. We processed 1509 catchments in the North Pacific Rim including the Kamchatka Peninsula in Russia and western North America. Overall, catchments were most physically complex in western Kamchatka and western Alaska, and particularly on the Arctic North Slope of Alaska. We could not directly examine coherence between potential and measured productivity except for a few rivers, but the expected relationship generally held. The resulting database and systematic ranking are objective tools that can be used to address questions about landscape structure and biological productivity at regional to continental extents, and provide a way to begin to efficiently prioritize the allocation of funding and resources towards salmon management and conservation. Copyright (C) 2010 John Wiley & Sons, Ltd.
C1 [Luck, Matthew; Maumenee, Niels; Whited, Diane; Lucotch, John; Chilcote, Samantha; Lorang, Mark; Kimball, John; Stanford, Jack] Univ Montana, Flathead Lake Biol Stn, Polson, MT 59860 USA.
[Goodman, Daniel] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA.
[McDonald, Kyle] CALTECH, Jet Prop Lab, Pasadena, CA USA.
RP Stanford, J (reprint author), Univ Montana, Flathead Lake Biol Stn, 32125 Bio Stn Lane Polson, Polson, MT 59860 USA.
EM jack.stanford@umontana.edu
OI Luck, Matt/0000-0003-0691-6100
NR 51
TC 12
Z9 12
U1 2
U2 17
PU JOHN WILEY & SONS LTD
PI CHICHESTER
PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND
SN 0197-9337
J9 EARTH SURF PROC LAND
JI Earth Surf. Process. Landf.
PD SEP 15
PY 2010
VL 35
IS 11
BP 1330
EP 1343
DI 10.1002/esp.2044
PG 14
WC Geography, Physical; Geosciences, Multidisciplinary
SC Physical Geography; Geology
GA 652VH
UT WOS:000282038300007
ER
PT J
AU Zheng, X
Albrecht, B
Minnis, P
Ayers, K
Jonson, HH
AF Zheng, Xue
Albrecht, Bruce
Minnis, Patrick
Ayers, Kirk
Jonson, Haflidi H.
TI Observed aerosol and liquid water path relationships in marine
stratocumulus
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID CLOUDS
AB The stratocumulus-topped marine boundary layer (BL), aerosol, and cloud properties observed on research flights made off the coast of northern Chile in the Southeastern Pacific (20 degrees S, 72 degrees W) during the VAMOS Ocean-Cloud-Atmosphere-Land Study-Regional Experiment (VOCALS-REx) were used to examine the variation of liquid water path (LWP) and cloud condensation nuclei (CCN). Ten flights were made under similar meteorological conditions where the BL structure was well-mixed, clouds were solid, and the conditions at the surface and at the top of the BL were similar. A strong positive correlation between the LWP, which varied from 15 to 73 gm(-2), and the BL CCN, which ranged from 190 to 565 cm(-3), was observed. Analysis of the highest and the lowest CCN concentration cases confirms that the differences in the thermodynamic jumps at the top of the BL and the turbulent fluxes at the surface cannot explain the observed differences in the LWP. Cloud properties from satellite retrievals combined with a back trajectories analysis demonstrated that the LWP differences observed at the time of the aircraft flights are also prevalent during the night-time hours prior to the aircraft observations. These results provide evidence for CCN and LWP relationships that are not fully explained by current hypotheses from numerical modeling. Citation: Zheng, X., B. Albrecht, P. Minnis, K. Ayers, and H. Jonson (2010), Observed aerosol and liquid water path relationships in marine stratocumulus, Geophys. Res. Lett., 37, L17803, doi: 10.1029/2010GL044095.
C1 [Zheng, Xue; Albrecht, Bruce] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Div Meteorol & Phys Oceanog, Miami, FL 33149 USA.
[Minnis, Patrick; Ayers, Kirk] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
[Jonson, Haflidi H.] USN, Postgrad Sch, Monterey, CA 93933 USA.
RP Zheng, X (reprint author), Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Div Meteorol & Phys Oceanog, 4600 Rickenbacker Causeway, Miami, FL 33149 USA.
EM xzheng@rsmas.miami.edu
RI Minnis, Patrick/G-1902-2010; Zheng, Xue/F-9988-2016
OI Minnis, Patrick/0000-0002-4733-6148; Zheng, Xue/0000-0002-9372-1776
FU ONR [N000140810465]; Department of Energy [DE-A102-07ER64546]
FX We are grateful for the dedicated efforts of several individuals in
making the observations from the CIRPAS Twin Otter during VOCALS-REx.
Graham Feingold and Patrick Chuang provided key scientific input on the
observing strategies employed and interpretation of the initial results.
Shaunna Donaher, Dione Rossiter, and Virendra Ghate, provided critical
support as airborne scientists. Djamal Khelif kindly provided the high
temporal resolution observations for estimating turbulence quantities.
Pilots Mike Hubble and Chris McGuire skillfully executed the flight
plans and endured the long ferry of the Twin Otter aircraft to Iquique
Chile and back. This research was supported by ONR grant N000140810465.
Patrick Minnis and Kirk Ayers were supported by the Department of Energy
ARM Program through DE-A102-07ER64546.
NR 15
TC 5
Z9 5
U1 0
U2 3
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD SEP 15
PY 2010
VL 37
AR L17803
DI 10.1029/2010GL044095
PG 4
WC Geosciences, Multidisciplinary
SC Geology
GA 652MA
UT WOS:000282009600001
ER
PT J
AU Saba, VS
Friedrichs, MAM
Carr, ME
Antoine, D
Armstrong, RA
Asanuma, I
Aumont, O
Bates, NR
Behrenfeld, MJ
Bennington, V
Bopp, L
Bruggeman, J
Buitenhuis, ET
Church, MJ
Ciotti, AM
Doney, SC
Dowell, M
Dunne, J
Dutkiewicz, S
Gregg, W
Hoepffner, N
Hyde, KJW
Ishizaka, J
Kameda, T
Karl, DM
Lima, I
Lomas, MW
Marra, J
McKinley, GA
Melin, F
Moore, JK
Morel, A
O'Reilly, J
Salihoglu, B
Scardi, M
Smyth, TJ
Tang, SL
Tjiputra, J
Uitz, J
Vichi, M
Waters, K
Westberry, TK
Yool, A
AF Saba, Vincent S.
Friedrichs, Marjorie A. M.
Carr, Mary-Elena
Antoine, David
Armstrong, Robert A.
Asanuma, Ichio
Aumont, Olivier
Bates, Nicholas R.
Behrenfeld, Michael J.
Bennington, Val
Bopp, Laurent
Bruggeman, Jorn
Buitenhuis, Erik T.
Church, Matthew J.
Ciotti, Aurea M.
Doney, Scott C.
Dowell, Mark
Dunne, John
Dutkiewicz, Stephanie
Gregg, Watson
Hoepffner, Nicolas
Hyde, Kimberly J. W.
Ishizaka, Joji
Kameda, Takahiko
Karl, David M.
Lima, Ivan
Lomas, Michael W.
Marra, John
McKinley, Galen A.
Melin, Frederic
Moore, J. Keith
Morel, Andre
O'Reilly, John
Salihoglu, Baris
Scardi, Michele
Smyth, Tim J.
Tang, Shilin
Tjiputra, Jerry
Uitz, Julia
Vichi, Marcello
Waters, Kirk
Westberry, Toby K.
Yool, Andrew
TI Challenges of modeling depth-integrated marine primary productivity over
multiple decades: A case study at BATS and HOT
SO GLOBAL BIOGEOCHEMICAL CYCLES
LA English
DT Article
ID ATLANTIC SUBTROPICAL GYRE; OCEAN PRIMARY PRODUCTION; NORTH
PACIFIC-OCEAN; TIME-SERIES; OCEANOGRAPHIC CONDITIONS; INTERANNUAL
VARIABILITY; SATELLITE CHLOROPHYLL; GENERALIZED-MODEL; SKILL ASSESSMENT;
SARGASSO SEA
AB The performance of 36 models (22 ocean color models and 14 biogeochemical ocean circulation models (BOGCMs)) that estimate depth-integrated marine net primary productivity (NPP) was assessed by comparing their output to in situ C-14 data at the Bermuda Atlantic Time series Study (BATS) and the Hawaii Ocean Time series (HOT) over nearly two decades. Specifically, skill was assessed based on the models' ability to estimate the observed mean, variability, and trends of NPP. At both sites, more than 90% of the models underestimated mean NPP, with the average bias of the BOGCMs being nearly twice that of the ocean color models. However, the difference in overall skill between the best BOGCM and the best ocean color model at each site was not significant. Between 1989 and 2007, in situ NPP at BATS and HOT increased by an average of nearly 2% per year and was positively correlated to the North Pacific Gyre Oscillation index. The majority of ocean color models produced in situ NPP trends that were closer to the observed trends when chlorophyll-alpha was derived from high-performance liquid chromatography (HPLC), rather than fluorometric or SeaWiFS data. However, this was a function of time such that average trend magnitude was more accurately estimated over longer time periods. Among BOGCMs, only two individual models successfully produced an increasing NPP trend (one model at each site). We caution against the use of models to assess multiannual changes in NPP over short time periods. Ocean color model estimates of NPP trends could improve if more high quality HPLC chlorophyll-alpha time series were available.
C1 [Antoine, David; Morel, Andre] Univ Paris 06, Lab Oceanog Villefranche, UMR 7093, CNRS, F-06238 Villefranche Sur Mer, France.
[Armstrong, Robert A.] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA.
[Asanuma, Ichio] Tokyo Univ Informat Sci, Chiba 2658501, Japan.
[Aumont, Olivier] UPMC, Lab Oceanog Experimentat & Approche Numer, IPSL, IRD,CNRS,Ctr IRD Bretagne, F-29280 Plouzane, France.
[Bates, Nicholas R.; Lomas, Michael W.] Bermuda Inst Ocean Sci, St Georges GE01, Bermuda.
[Behrenfeld, Michael J.; Westberry, Toby K.] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA.
[Bennington, Val; McKinley, Galen A.] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI 53706 USA.
[Bopp, Laurent] UVSQ, Lab Sci Climat & Environm, IPSL, CEA,CNRS,CEN Saclay, F-91191 Gif Sur Yvette, France.
[Bruggeman, Jorn] Vrije Univ Amsterdam, Dept Theoret Biol, Fac Earth & Life Sci, NL-1081 HV Amsterdam, Netherlands.
[Buitenhuis, Erik T.] Univ E Anglia, Lab Global Marine & Atmospher Chem, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England.
[Carr, Mary-Elena] Columbia Univ, Columbia Climate Ctr, Earth Inst, New York, NY 10027 USA.
[Church, Matthew J.; Karl, David M.] Univ Hawaii Manoa, Dept Oceanog, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA.
[Ciotti, Aurea M.] Univ Estadual Paulista, BR-11330900 Sao Paulo, Brazil.
[Doney, Scott C.; Lima, Ivan] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA.
[Dowell, Mark; Hoepffner, Nicolas; Melin, Frederic] Commiss European Communities, Joint Res Ctr, I-21020 Ispra, Italy.
[Dunne, John] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA.
[Dutkiewicz, Stephanie] MIT, Cambridge, MA 02139 USA.
[Saba, Vincent S.; Friedrichs, Marjorie A. M.] Virginia Inst Marine Sci, Coll William & Mary, Gloucester Point, VA 23062 USA.
[Gregg, Watson] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Hyde, Kimberly J. W.; O'Reilly, John] NOAA, Natl Marine Fisheries Serv, Narragansett Lab, Narragansett, RI 02882 USA.
[Ishizaka, Joji] Nagoya Univ, Hydrospher Atmospher Res Ctr, Chikusa Ku, Nagoya, Aichi 4648601, Japan.
[Kameda, Takahiko] Natl Res Inst Far Seas Fisheries, Grp Oceanog, Shizuoka 4248633, Japan.
[Marra, John] CUNY Brooklyn Coll, Dept Geol, Brooklyn, NY 11210 USA.
[Moore, J. Keith] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA.
Middle E Tech Univ, Inst Marine Sci, TR-33731 Erdemli Mersin, Turkey.
[Scardi, Michele] Univ Roma Tor Vergata, Dept Biol, I-00133 Rome, Italy.
[Smyth, Tim J.] Plymouth Marine Lab, Plymouth PL1 3DH, Devon, England.
[Tang, Shilin] Fisheries & Oceans Canada, Inst Freshwater, Winnipeg, MB R3T 2N6, Canada.
[Tjiputra, Jerry] Univ Bergen, Inst Geophys, N-5007 Bergen, Norway.
[Uitz, Julia] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA.
[Vichi, Marcello] Ctr Euro Mediterraneo & Cambiamenti Climatici, Ist Nazl Geofis & Vulcanol, I-40127 Bologna, Italy.
[Waters, Kirk] NOAA, Coastal Serv Ctr, Charleston, SC 29405 USA.
[Yool, Andrew] Natl Oceanog Ctr, Southampton SO14 3ZH, Hants, England.
RP Saba, VS (reprint author), Princeton Univ, Atmospher & Ocean Sci Program, 300 Forrestal Rd,Sayre Hall, Princeton, NJ 08544 USA.
EM vsaba@princeton.edu
RI Doney, Scott/F-9247-2010; Ciotti, Aurea Maria/B-7188-2011; Buitenhuis,
Erik/A-7692-2012; Yool, Andrew/B-4799-2012; Dunne, John/F-8086-2012;
Westberry, Toby/A-9871-2013; Antoine, David/C-3817-2013; Lima,
Ivan/A-6823-2016; Salihoglu, Baris/D-1376-2010; Smyth, Tim/D-2008-2012;
Vichi, Marcello/B-8719-2008;
OI Doney, Scott/0000-0002-3683-2437; Ciotti, Aurea
Maria/0000-0001-7163-8819; Buitenhuis, Erik/0000-0001-6274-5583; Yool,
Andrew/0000-0002-9879-2776; Dunne, John/0000-0002-8794-0489; Antoine,
David/0000-0002-9082-2395; Lima, Ivan/0000-0001-5345-0652; Salihoglu,
Baris/0000-0002-7510-7713; Bruggeman, Jorn/0000-0003-2493-2323; Vichi,
Marcello/0000-0002-0686-9634; Friedrichs, Marjorie/0000-0003-2828-7595;
Lomas, Michael/0000-0003-1209-3753; Tjiputra, Jerry/0000-0002-4600-2453
FU National Aeronautics and Space Agency [NNG06GA03G]
FX This research was supported by a grant from the National Aeronautics and
Space Agency Ocean Biology and Biogeochemistry program (NNG06GA03G). We
are also grateful for the hard work of the many scientists who helped
acquire the BATS and HOT database. We also thank Richard Barber and an
anonymous reviewer for helpful comments that improved the quality of
this paper. This is Contribution 3083 of the Virginia Institute of
Marine Science, College of William and Mary.
NR 68
TC 68
Z9 70
U1 1
U2 63
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0886-6236
EI 1944-9224
J9 GLOBAL BIOGEOCHEM CY
JI Glob. Biogeochem. Cycle
PD SEP 15
PY 2010
VL 24
AR GB3020
DI 10.1029/2009GB003655
PG 21
WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric
Sciences
GA 652MG
UT WOS:000282010300001
ER
PT J
AU Balasubramaniam, R
Gokoglu, S
Hegde, U
AF Balasubramaniam, R.
Gokoglu, S.
Hegde, U.
TI The reduction of lunar regolith by carbothermal processing using methane
SO INTERNATIONAL JOURNAL OF MINERAL PROCESSING
LA English
DT Article
DE Carbothermal processing; Lunar regolith; Pyrolysis; Kinetics
AB The processing of lunar regolith for the production of oxygen is a key component of the In-Situ Resource Utilization plans currently being developed by NASA. In the carbothermal process, a portion of the surface of the regolith in a container is heated by exposure to a heat source so that a small zone of molten regolith is established. A continuous flow of methane is maintained over the molten regolith zone. In this paper, we discuss the development of a chemical conversion model of the carbothermal process to predict the rate of production of carbon monoxide. Our model is based on a mechanism where methane pyrolyzes when it comes in contact with the surface of the hot molten regolith to form solid carbon and hydrogen gas. Carbon is deposited on the surface of the melt, and hydrogen is released into the gas stream above the melt surface. We assume that the deposited carbon mixes in the molten regolith and reacts with metal oxides in a reduction reaction by which gaseous carbon monoxide is liberated. Carbon monoxide bubbles through the melt and is released into the gas stream. It is further processed downstream to ultimately produce oxygen. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Balasubramaniam, R.; Hegde, U.] NCSER, Cleveland, OH 44135 USA.
[Gokoglu, S.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA.
RP Balasubramaniam, R (reprint author), NCSER, Cleveland, OH 44135 USA.
EM bala@grc.nasa.gov; suleyman.gokoglu@nasa.gov; uday.g.hegde@nasa.gov
FU NASA
FX The authors would like to thank K. Sacksteder and D. Linne of NASA Glenn
Research Center and R. Gustafson and B. White of Orbitec, Madison,
Wisconsin, for discussions and comments during the course of the
investigation. Support for this work was obtained from the In-Situ
Resource Utilization (ISRU) project which is a part of the NASA
Exploration Technology Development Program, for which we are grateful.
NR 10
TC 5
Z9 5
U1 2
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-7516
J9 INT J MINER PROCESS
JI Int. J. Miner. Process.
PD SEP 15
PY 2010
VL 96
IS 1-4
BP 54
EP 61
DI 10.1016/j.minpro.2010.06.001
PG 8
WC Engineering, Chemical; Mineralogy; Mining & Mineral Processing
SC Engineering; Mineralogy; Mining & Mineral Processing
GA 650VZ
UT WOS:000281883200006
ER
PT J
AU Kindel, BC
Schmidt, KS
Pilewskie, P
Baum, BA
Yang, P
Platnick, S
AF Kindel, Bruce C.
Schmidt, K. Sebastian
Pilewskie, Peter
Baum, Bryan A.
Yang, Ping
Platnick, Steven
TI Observations and modeling of ice cloud shortwave spectral albedo during
the Tropical Composition, Cloud and Climate Coupling Experiment (TC4)
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID SINGLE-SCATTERING PROPERTIES; SATELLITE RADIANCE MEASUREMENTS;
REMOTE-SENSING PROBLEMS; EARTH RADIATION BUDGET; CIRRUS CLOUD;
OPTICAL-THICKNESS; MULTIPLE-SCATTERING; PHOTON TRANSPORT;
LIGHT-SCATTERING; EFFECTIVE RADIUS
AB Ice cloud optical thickness and effective radius have been retrieved from hyperspectral irradiance and discrete spectral radiance measurements for four ice cloud cases during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4) over a range of solar zenith angle (23 degrees-53 degrees) and high (46-90) and low (5-15) optical thicknesses. The retrieved optical thickness and effective radius using measurements at only two wavelengths from the Solar Spectral Flux Radiometer (SSFR) irradiance and the Moderate Resolution Imaging Spectroradiometer Airborne Simulator (MAS) were input to a radiative transfer model using two libraries of ice crystal single-scattering optical properties to reproduce spectral albedo over the spectral range from 400 to 2130 nm. The two commonly used ice single-scattering models were evaluated by examining the residuals between observed spectral and predicted spectral albedo. The SSFR and MAS retrieved optical thickness and effective radius were found to be in close agreement for the low to moderately optically thick clouds with a mean difference of 3.42 in optical thickness (SSFR lower relative to MAS) and 3.79 mu m in effective radius (MAS smaller relative to SSFR). The higher optical thickness case exhibited a larger difference in optical thickness (40.5) but nearly identical results for effective radius. The single-scattering libraries were capable of reproducing the spectral albedo in most cases examined to better than 0.05 for all wavelengths. Systematic differences between the model and measurements increased with increasing optical thickness and approached 0.10 between 400 and 600 nm and selected wavelengths between 1200 and 1300 nm. Differences between radiance and irradiance based retrievals of optical thickness and effective radius error sources in the modeling of ice single-scattering properties are examined.
C1 [Kindel, Bruce C.; Pilewskie, Peter] Univ Colorado, Atmospher & Space Phys Lab, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA.
[Baum, Bryan A.] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA.
[Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA.
[Platnick, Steven] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Kindel, BC (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Dept Atmospher & Ocean Sci, CB 392, Boulder, CO 80309 USA.
EM kindel@lasp.colorado.edu
RI Yang, Ping/B-4590-2011; SCHMIDT, KONRAD SEBASTIAN/C-1258-2013; Baum,
Bryan/B-7670-2011; Platnick, Steven/J-9982-2014
OI SCHMIDT, KONRAD SEBASTIAN/0000-0003-3899-228X; Baum,
Bryan/0000-0002-7193-2767; Platnick, Steven/0000-0003-3964-3567
FU NASA [NNX07AL12G, NNX08AF81G]; SSFR
FX Bruce Kindel was supported through a NASA grant (NNX07AL12G). Bryan Baum
acknowledges support through a NASA grant (NNX08AF81G). MAS analysis was
made possible with support from various elements of the NASA Radiation
Sciences Program. The authors wish to thank Warren Gore and Tony Trias
(NASA Ames Research Center) for their support of SSFR during
TC4, and Tom Arnold and Galina Wind (NASA Goddard Research
Center) for their help with MAS data analysis.
NR 66
TC 10
Z9 10
U1 2
U2 8
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 15
PY 2010
VL 115
AR D00J18
DI 10.1029/2009JD013127
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 652MQ
UT WOS:000282011500003
ER
PT J
AU Goldsby, JC
AF Goldsby, Jon C.
TI Temperature-dependent electrical and micromechanical properties of
lanthanum titanate with additions of yttria
SO MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE
MATERIALS
LA English
DT Article
DE Ceramics; Oxides; Electron states; Ionic conduction; Grain boundary
ID LA2TI2O7; BEHAVIOR; CRYSTAL; ALUMINA
AB Temperature-dependent elastic properties were determined by establishing continuous flexural vibrations in the material at its lowest resonance frequency of 3 kHz. The imaginary part of the complex impedance plotted as a function of frequency and temperature reveals a thermally activated peak, which decreases in magnitude as the temperature increases. Additions of yttria do not degrade the electromechanical in particularly the elastic and anelastic properties of lanthanum titanate. Y(2)O(3)/La(2)Ti(2)O(7) exhibits extremely low internal friction and hence may be more mechanical fatigue-resistant at low strains. Published by Elsevier B.V.
C1 [Goldsby, Jon C.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
RP Goldsby, JC (reprint author), NASA, Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH 44135 USA.
EM Jon.C.Goldsby@nasa.gov
NR 11
TC 0
Z9 0
U1 1
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-5107
J9 MATER SCI ENG B-ADV
JI Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater.
PD SEP 15
PY 2010
VL 172
IS 3
BP 248
EP 252
DI 10.1016/j.mseb.2010.05.025
PG 5
WC Materials Science, Multidisciplinary; Physics, Condensed Matter
SC Materials Science; Physics
GA 639PP
UT WOS:000280987000007
ER
PT J
AU Bera, PP
Nuevo, M
Milam, SN
Sandford, SA
Lee, TJ
AF Bera, Partha P.
Nuevo, Michel
Milam, Stefanie N.
Sandford, Scott A.
Lee, Timothy J.
TI Mechanism for the abiotic synthesis of uracil via UV-induced oxidation
of pyrimidine in pure H2O ices under astrophysical conditions
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID POLYCYCLIC AROMATIC-HYDROCARBONS; MIDINFRARED LABORATORY SPECTRA; FOCK
PERTURBATION-THEORY; SIDE-GROUP ADDITION; CYTOSINE BASE-PAIR;
ULTRAVIOLET-IRRADIATION; MURCHISON METEORITE; PROTON-TRANSFER; SOLID
H2O; INTERSTELLAR
AB The UV photoirradiation of pyrimidine in pure H2O ices has been explored using second-order Moller-Plesset perturbation theory and density functional theory methods, and compared with experimental results. Mechanisms studied include those starting with neutral pyrimidine or cationic pyrimidine radicals, and reacting with OH radical. The ab initio calculations reveal that the formation of some key species, including the nucleobase uracil, is energetically favored over others. The presence of one or several water molecules is necessary in order to abstract a proton which leads to the final products. Formation of many of the photoproducts in UV-irradiated H2O:pyrimidine = 20:1 ice mixtures was established in a previous experimental study. Among all the products, uracil is predicted by quantum chemical calculations to be the most favored, and has been identified in experimental samples by two independent chromatography techniques. The results of the present study strongly support the scenario in which prebiotic molecules, such as the nucleobase uracil, can be formed under abiotic processes in astrophysically relevant environments, namely in condensed phase on the surface of icy, cold grains before being delivered to the telluric planets, like Earth. (c) 2010 American Institute of Physics. [doi:10.1063/1.3478524]
C1 [Bera, Partha P.; Nuevo, Michel; Milam, Stefanie N.; Sandford, Scott A.; Lee, Timothy J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA.
[Milam, Stefanie N.] SETI Inst, Mountain View, CA 94043 USA.
RP Bera, PP (reprint author), NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA.
EM partha.p.bera@nasa.gov; timothy.j.lee@nasa.gov
RI Milam, Stefanie/D-1092-2012; Lee, Timothy/K-2838-2012; Bera, Partha
/K-8677-2012
OI Milam, Stefanie/0000-0001-7694-4129;
FU NASA [08-APRA08-0050]; Origins of Solar Systems and Astrobiology
Programs; Oak Ridge Associated Universities
FX P.P.B. and M.N. gratefully acknowledge fellowship awards by the NASA
Postdoctoral Program administered by Oak Ridge Associated Universities.
T.J.L. gratefully acknowledges support from NASA (Grant No.
08-APRA08-0050) and S.A.S. gratefully acknowledges support from NASA
grants from the Origins of Solar Systems and Astrobiology Programs.
NR 45
TC 14
Z9 14
U1 0
U2 25
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD SEP 14
PY 2010
VL 133
IS 10
AR 104303
DI 10.1063/1.3478524
PG 7
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 658FH
UT WOS:000282475400017
PM 20849168
ER
PT J
AU Matteini, L
Landi, S
Velli, M
Hellinger, P
AF Matteini, Lorenzo
Landi, Simone
Velli, Marco
Hellinger, Petr
TI Kinetics of parametric instabilities of Alfven waves: Evolution of ion
distribution functions
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID SOLAR-WIND; MODULATIONAL INSTABILITY; FINITE-AMPLITUDE; NONLINEAR
EVOLUTION; DECAY INSTABILITY; MAGNETIC-FIELD; PLASMA; SIMULATIONS;
PARALLEL; FLUCTUATIONS
AB Using numerical simulations in a hybrid regime, we studied the evolution of large-amplitude Alfven waves subject to modulational and decay instabilities, including the effects of ion kinetics. We considered both a monochromatic and incoherent spectrum of waves, different wave polarizations and amplitudes, and different plasma regimes, ranging from beta < 1 to beta > 1. We found in all cases that ion dynamics affects the instability evolution and saturation; as a feedback, wave-particle interactions provide a nonlinear trapping of resonant particles that importantly change the properties of the ion velocity distribution functions. In particular, we observed a proton acceleration along the magnetic field and in some cases the formation of a parallel velocity beam traveling faster than the rest of the distribution. For the range of parameters used in our simulations, the fundamental ingredient in generating an ion beam is observed to be the parallel electric field carried by the density fluctuations driven by the ion-acoustic modes generated by the parametric instabilities.
C1 [Matteini, Lorenzo] LESIA, Observ Paris, F-92195 Meudon, France.
[Landi, Simone] Univ Florence, Dipartimento Astron & Sci Spazio, I-50125 Florence, Italy.
[Velli, Marco] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Hellinger, Petr] Acad Sci Czech Republic, Astron Inst, Prague, Czech Republic.
RP Matteini, L (reprint author), LESIA, Observ Paris, 5 Pl Jules Janssen, F-92195 Meudon, France.
EM matteini@arcetri.astro.it
RI Hellinger, Petr/F-5267-2014; Landi, Simone/G-7282-2015
OI Hellinger, Petr/0000-0002-5608-0834; Landi, Simone/0000-0002-1322-8712
FU National Aeronautics and Space Administration; Italian Space Agency [ASI
I/015/07/0]
FX The research described in this paper was carried out in part at the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration. It was
also supported by the Italian Space Agency contract ASI I/015/07/0
"Solar System Exploration." We thank Luca Del Zanna and Andre Mangeney
for useful discussions during the preparation of the manuscript.
NR 48
TC 40
Z9 40
U1 0
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0148-0227
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD SEP 14
PY 2010
VL 115
AR A09106
DI 10.1029/2009JA014987
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 652OL
UT WOS:000282016900002
ER
PT J
AU Qian, LY
Burns, AG
Chamberlin, PC
Solomon, SC
AF Qian, Liying
Burns, Alan G.
Chamberlin, Phillip C.
Solomon, Stanley C.
TI Flare location on the solar disk: Modeling the thermosphere and
ionosphere response
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID GENERAL-CIRCULATION MODEL; TOTAL ELECTRON-CONTENT; ELECTRODYNAMICS;
ATMOSPHERE
AB Solar flare enhancements to the soft X-ray (XUV) and extreme ultraviolet (EUV) spectral irradiance depend on the location of the flare on the solar disk. Most emission lines in the XUV region (similar to 0.1 to similar to 25 nm) are optically thin and are weakly dependent on the location of the flare, but in the EUV region (similar to 25 to similar to 120 nm), many important lines and continua are optically thick, so enhancements are relatively smaller for flares located near the solar limb, due to absorption by the solar atmosphere. The flare irradiance spectral model (FISM) was used to illustrate these location effects, assuming two X17 flares that are identical except that one occurs near disk center and the other near the limb. FISM spectra of these two flares were used as solar input to the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) to investigate the ionosphere/thermosphere (I/T) response. Model simulations showed that in the E region ionosphere, where XUV dominates ionization, flare location does not affect I/T response. However, flare-driven changes in the F region ionosphere, total electron content (TEC), and neutral density in the upper thermosphere, are 2-3 times stronger for a disk-center flare than for a limb flare, due to the importance of EUV enhancement. Flare location did not affect the timing of the ionospheric response, but the thermospheric response was similar to 20 min faster for the disk-center flare. Model simulations of I/T responses to an X17 flare on 28 October 2003 were consistent with measurements of TEC and neutral density changes.
C1 [Qian, Liying; Burns, Alan G.; Solomon, Stanley C.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80301 USA.
[Chamberlin, Phillip C.] NASA Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD 20771 USA.
RP Qian, LY (reprint author), Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80301 USA.
EM lqian@ucar.edu
RI Chamberlin, Phillip/C-9531-2012; Solomon, Stanley/J-4847-2012; Qian,
Liying/D-9236-2013; Burns, Alan/L-1547-2013
OI Chamberlin, Phillip/0000-0003-4372-7405; Solomon,
Stanley/0000-0002-5291-3034; Qian, Liying/0000-0003-2430-1388;
FU NASA [NNX07AC61G, NNX08AQ31G, NNX09AJ60G]; Center for Integrated Space
Weather Modeling (CISM); National Science Foundation
FX The authors thank Anthea Coster for helping with the GPS TEC data. This
research was supported by NASA grants NNX07AC61G, NNX08AQ31G, and
NNX09AJ60G to the National Center for Atmospheric Research (NCAR), and
by the Center for Integrated Space Weather Modeling (CISM). NCAR and
CISM are supported by the National Science Foundation.
NR 34
TC 30
Z9 30
U1 0
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD SEP 14
PY 2010
VL 115
AR A09311
DI 10.1029/2009JA015225
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 652OL
UT WOS:000282016900004
ER
PT J
AU Gribakin, GF
Young, JA
Surko, CM
AF Gribakin, G. F.
Young, J. A.
Surko, C. M.
TI Positron-molecule interactions: Resonant attachment, annihilation, and
bound states
SO REVIEWS OF MODERN PHYSICS
LA English
DT Article
ID SCHWINGER MULTICHANNEL METHOD; LOW-ENERGY POSITRONS; VIBRATIONAL
FESHBACH RESONANCES; KOHN VARIATIONAL METHOD; GALACTIC-CENTER REGION;
QUANTUM MONTE-CARLO; GAMMA-RAY SPECTRA; NOBLE-GAS ATOMS; TRAP-BASED
BEAM; CONFIGURATION-INTERACTION
AB This article presents an overview of current understanding of the interaction of low-energy positrons with molecules with emphasis on resonances, positron attachment, and annihilation. Measurements of annihilation rates resolved as a function of positron energy reveal the presence of vibrational Feshbach resonances (VFRs) for many polyatomic molecules. These resonances lead to strong enhancement of the annihilation rates. They also provide evidence that positrons bind to many molecular species. A quantitative theory of VFR-mediated attachment to small molecules is presented. It is tested successfully for selected molecules (e.g., methyl halides and methanol) where all modes couple to the positron continuum. Combination and overtone resonances are observed and their role is elucidated. Molecules that do not bind positrons and hence do not exhibit such resonances are discussed. In larger molecules, annihilation rates from VFR far exceed those explicable on the basis of single-mode resonances. These enhancements increase rapidly with the number of vibrational degrees of freedom, approximately as the fourth power of the number of atoms in the molecule. While the details are as yet unclear, intramolecular vibrational energy redistribution (IVR) to states that do not couple directly to the positron continuum appears to be responsible for these enhanced annihilation rates. In connection with IVR, experimental evidence indicates that inelastic positron escape channels are relatively rare. Downshifts of the VFR from the vibrational mode energies, obtained by measuring annihilate rates as a function of incident positron energy, have provided binding energies for 30 species. Their dependence upon molecular parameters and their relationship to positron-atom and positron-molecule binding-energy calculations are discussed. Feshbach resonances and positron binding to molecules are compared with the analogous electron-molecule (negative-ion) cases. The relationship of VFR-mediated annihilation to other phenomena such as Doppler broadening of the gamma-ray annihilation spectra, annihilation of thermalized positrons in gases, and annihilation-induced fragmentation of molecules is discussed. Possible areas for future theoretical and experimental investigation are also discussed.
C1 [Gribakin, G. F.] Queens Univ Belfast, Dept Appl Math & Theoret Phys, Belfast BT7 1NN, Antrim, North Ireland.
[Young, J. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Surko, C. M.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
RP Gribakin, GF (reprint author), Queens Univ Belfast, Dept Appl Math & Theoret Phys, Belfast BT7 1NN, Antrim, North Ireland.
EM g.gribakin@qub.ac.uk; jyoung@physics.ucsd.edu; csurko@ucsd.edu
FU NSF [PHY 07-55809]
FX We are indebted to many colleagues for their contributions to the topics
reviewed here. In particular, we acknowledge the collaboration of L. D.
Barnes, J. R. Danielson, L. Dunlop, P. Gill, R. G. Greaves, D. Green, K.
Iwata, C. Kurz, C. M. R. Lee, M. Leventhal, J. Ludlow, J. Marler, T. J.
Murphy, A. Passner, and J. P. Sullivan. We also gladly acknowledge
helpful conversations with M. Allan, M. Bromley, S. Buckman, M.
Charlton, P. Coleman, I. Fabrikant, F. Gianturco, H. Hotop, and M. Lima.
G. F. G. is grateful to V. Flambaum for arousing his interest in the
problem of low-energy positron interaction with atoms and molecules and
for much of what he learned during seven years at UNSW (Sydney,
Australia). The experimental work at UCSD was supported by the NSF,
Grant No. PHY 07-55809. The work at UCSD benefited greatly from the
technical assistance of E. A. Jerzewski.
NR 243
TC 108
Z9 108
U1 2
U2 16
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0034-6861
EI 1539-0756
J9 REV MOD PHYS
JI Rev. Mod. Phys.
PD SEP 14
PY 2010
VL 82
IS 3
BP 2557
EP 2607
DI 10.1103/RevModPhys.82.2557
PG 51
WC Physics, Multidisciplinary
SC Physics
GA 650RN
UT WOS:000281869500001
ER
PT J
AU Mishchenko, MI
AF Mishchenko, Michael I.
TI Poynting-Stokes tensor and radiative transfer in discrete random media:
The microphysical paradigm
SO OPTICS EXPRESS
LA English
DT Article
ID MULTIPLE-SCATTERING; TRANSFER EQUATION; PARTICLES
AB This paper solves the long-standing problem of establishing the fundamental physical link between the radiative transfer theory and macroscopic electromagnetics in the case of elastic scattering by a sparse discrete random medium. The radiative transfer equation (RTE) is derived directly from the macroscopic Maxwell equations by computing theoretically the appropriately defined so-called Poynting-Stokes tensor carrying information on both the direction, magnitude, and polarization characteristics of local electromagnetic energy flow. Our derivation from first principles shows that to compute the local Poynting vector averaged over a sufficiently long period of time, one can solve the RTE for the direction-dependent specific intensity column vector and then integrate the direction-weighted specific intensity over all directions. Furthermore, we demonstrate that the specific intensity (or specific intensity column vector) can be measured with a well-collimated radiometer (photopolarimeter), which provides the ultimate physical justification for the use of such instruments in radiation-budget and particle-characterization applications. However, the specific intensity cannot be interpreted in phenomenological terms as signifying the amount of electromagnetic energy transported in a given direction per unit area normal to this direction per unit time per unit solid angle. Also, in the case of a densely packed scattering medium the relation of the measurement with a well-collimated radiometer to the time-averaged local Poynting vector remains uncertain, and the theoretical modeling of this measurement is likely to require a much more complicated approach than solving an RTE. (C) 2010 Optical Society of America
C1 NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
RP Mishchenko, MI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA.
EM mmishchenko@giss.nasa.gov
RI Mishchenko, Michael/D-4426-2012
FU NASA
FX The author thanks Brian Cairns, Joop Hovenier, Nikolai Khlebtsov, Daniel
Mackowski, Pinar Menguc, and Victor Tishkovets for numerous illuminating
discussions. This research was supported by the NASA Radiation Sciences
Program managed by Hal Maring and by the NASA Glory Mission project.
NR 44
TC 14
Z9 14
U1 1
U2 4
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD SEP 13
PY 2010
VL 18
IS 19
BP 19770
EP 19791
DI 10.1364/OE.18.019770
PG 22
WC Optics
SC Optics
GA 693ZI
UT WOS:000285263500020
PM 20940872
ER
PT J
AU Santamaria, L
Ohme, F
Ajith, P
Brugmann, B
Dorband, N
Hannam, M
Husa, S
Mosta, P
Pollney, D
Reisswig, C
Robinson, EL
Seiler, J
Krishnan, B
AF Santamaria, L.
Ohme, F.
Ajith, P.
Bruegmann, B.
Dorband, N.
Hannam, M.
Husa, S.
Moesta, P.
Pollney, D.
Reisswig, C.
Robinson, E. L.
Seiler, J.
Krishnan, B.
TI Matching post-Newtonian and numerical relativity waveforms: Systematic
errors and a new phenomenological model for nonprecessing black hole
binaries
SO PHYSICAL REVIEW D
LA English
DT Article
ID INSPIRALING COMPACT BINARIES; GRAVITATIONAL-RADIATION; SPIN;
COALESCENCE; EQUATIONS; ORDER; FIELD
AB We present a new phenomenological gravitational waveform model for the inspiral and coalescence of nonprecessing spinning black hole binaries. Our approach is based on a frequency-domain matching of post-Newtonian inspiral waveforms with numerical relativity based binary black hole coalescence waveforms. We quantify the various possible sources of systematic errors that arise in matching post-Newtonian and numerical relativity waveforms, and we use a matching criteria based on minimizing these errors; we find that the dominant source of errors are those in the post-Newtonian waveforms near the merger. An analytical formula for the dominant mode of the gravitational radiation of nonprecessing black hole binaries is presented that captures the phenomenology of the hybrid waveforms. Its implementation in the current searches for gravitational waves should allow cross-checks of other inspiral-merger-ringdown waveform families and improve the reach of gravitational-wave searches.
C1 [Santamaria, L.; Ohme, F.; Dorband, N.; Robinson, E. L.; Krishnan, B.] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Golm, Germany.
[Ajith, P.] CALTECH, LIGO Lab, Pasadena, CA 91125 USA.
[Bruegmann, B.] Univ Jena, Theoret Phys Inst, D-07743 Jena, Germany.
[Hannam, M.] Univ Vienna, Fac Phys, A-1090 Vienna, Austria.
[Husa, S.; Pollney, D.] Univ Illes Balears, Dept Fis, E-07122 Palma De Mallorca, Spain.
[Seiler, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Santamaria, L (reprint author), Albert Einstein Inst, Max Planck Inst Gravitat Phys, Muhlenberg 1, D-14476 Golm, Germany.
RI Santamaria, Lucia/A-7269-2012;
OI Seiler, Jennifer/0000-0003-2855-3945; Husa, Sascha/0000-0002-0445-1971;
Santamaria, Lucia/0000-0002-5986-0449; Reisswig,
Christian/0000-0001-6855-9351
FU DAAD [A/06/12630]; FWF Lise-Meitner at the University of Vienna
[M1178-N16]; Spanish Ministry of Science [D/07/13385, FPA-2007-60220,
CSD-2007-00042]; Bundesministerium fur Bildung und Forschung, Germany
FX We thank Doreen Muller for carrying out some of the BAH simulations, and
Stas Babak, Vitor Cardoso, Steve Fairhurst, Ian Hinder, Doreen Muller,
Dirk Putzfeld, Bangalore Sathyaprakash and Bernard Schutz for useful
comments and discussions. L. S. has been partially supported by DAAD
Grant No. A/06/12630. M. H. was supported by FWF Lise-Meitner Project
No. M1178-N16 at the University of Vienna. S. H. was supported by DAAD
Grant No. D/07/13385 and Grant No. FPA-2007-60220 from the Spanish
Ministry of Science. D. P. has been supported by Grant No.
CSD-2007-00042 of the Spanish Ministry of Science. D. P. and C. R.
received support from the Bundesministerium fur Bildung und Forschung,
Germany. BAH simulations were performed at computer centers LRZ Munich,
ICHEC Dublin, VSC Vienna, CESGA Santiago the Compostela and at
MareNostrum at Barcelona Supercomputing Center-Centro Nacional de
Supercomputacion (Spanish National Supercomputing Center). This work was
supported in part by the DFG Grant No. SFB/Transregio 7
"Gravitational-wave astronomy'' and by the DLR (Deutsches Zentrum fur
Luft- und Raumfahrttechnik).
NR 113
TC 151
Z9 151
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD SEP 13
PY 2010
VL 82
IS 6
AR 064016
DI 10.1103/PhysRevD.82.064016
PG 21
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 649RS
UT WOS:000281791300004
ER
PT J
AU Cohen, J
Foster, J
Barlow, M
Saito, K
Jones, J
AF Cohen, Judah
Foster, James
Barlow, Mathew
Saito, Kazuyuki
Jones, Justin
TI Winter 2009-2010: A case study of an extreme Arctic Oscillation event
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID SNOW COVER; VARIABILITY; ANOMALIES
AB Winter 2009-2010 made headlines for extreme cold and snow in most of the major population centers of the industrialized countries of the Northern Hemisphere (NH). The major teleconnection patterns of the Northern Hemisphere, El Nino/Southern Oscillation (ENSO) and the Arctic Oscillation (AO) were of moderate to strong amplitude, making both potentially key players during the winter of 2009-2010. The dominant NH winter circulation pattern can be shown to have originated with a two-way stratosphere-troposphere interaction forced by Eurasian land surface and lower tropospheric atmospheric conditions during autumn. This cycle occurred twice in relatively quick succession contributing to the record low values of the AO observed. Using a skillful winter temperature forecast, it is shown that the AO explained a greater variance of the observed temperature pattern across the extratropical landmasses of the NH than did ENSO. Citation: Cohen, J., J. Foster, M. Barlow, K. Saito, and J. Jones (2010), Winter 2009-2010: A case study of an extreme Arctic Oscillation event, Geophys. Res. Lett., 37, L17707, doi:10.1029/2010GL044256.
C1 [Cohen, Judah; Jones, Justin] Atmospher & Environm Res Inc, Lexington, MA 02421 USA.
[Barlow, Mathew] Univ Massachusetts, Lowell, MA 01854 USA.
[Foster, James] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Saito, Kazuyuki] Univ Alaska, Int Arctic Res Ctr, Fairbanks, AK 99775 USA.
[Saito, Kazuyuki] Japan Agcy Marine Earth Sci & Technol, Res Inst Global Change, Kanagawa, Japan.
RP Cohen, J (reprint author), Atmospher & Environm Res Inc, 131 Hartwell Ave, Lexington, MA 02421 USA.
EM jcohen@aer.com
FU National Science Foundation [ARC-0909459, ARC-0909457, 0909272]
FX JC is supported by the National Science Foundation grants ARC-0909459
and ARC-0909457. Barlow was supported by NSF 0909272.
NR 17
TC 90
Z9 93
U1 0
U2 20
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD SEP 11
PY 2010
VL 37
AR L17707
DI 10.1029/2010GL044256
PG 6
WC Geosciences, Multidisciplinary
SC Geology
GA 649GB
UT WOS:000281755000004
ER
PT J
AU Jackson, B
Miller, N
Barnes, R
Raymond, SN
Fortney, JJ
Greenberg, R
AF Jackson, Brian
Miller, Neil
Barnes, Rory
Raymond, Sean N.
Fortney, Jonathan J.
Greenberg, Richard
TI The roles of tidal evolution and evaporative mass loss in the origin of
CoRoT-7 b
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE celestial mechanics; planets and satellites: atmospheres; planets and
satellites: individual: CoRoT-7 b
ID SOLAR GIANT PLANETS; HOT-JUPITERS; EXTRASOLAR PLANETS; SUPER-EARTH;
TERRESTRIAL PLANETS; HYDRODYNAMIC ESCAPE; ATMOSPHERIC LOSS; GJ 1214B;
EXOPLANETS; HYDROGEN
AB CoRoT-7 b is the first confirmed rocky exoplanet, but, with an orbital semimajor axis of 0.0172 au, its origins may be unlike any rocky planet in our Solar system. In this study, we consider the roles of tidal evolution and evaporative mass loss in CoRoT-7 b's history, which together have modified the planet's mass and orbit. If CoRoT-7 b has always been a rocky body, evaporation may have driven off almost half its original mass, but the mass loss may depend sensitively on the extent of tidal decay of its orbit. As tides caused CoRoT-7 b's orbit to decay, they brought the planet closer to its host star, thereby enhancing the mass loss rate. Such a large mass loss also suggests the possibility that CoRoT-7 b began as a gas giant planet and had its original atmosphere completely evaporated. In this case, we find that CoRoT-7 b's original mass probably did not exceed 200 Earth masses (about two-third of a Jupiter mass). Tides raised on the host star by the planet may have significantly reduced the orbital semimajor axis, perhaps causing the planet to migrate through mean-motion resonances with the other planet in the system, CoRoT-7 c. The coupling between tidal evolution and mass loss may be important not only for CoRoT-7 b but also for other close-in exoplanets, and future studies of mass loss and orbital evolution may provide insight into the origin and fate of close-in planets, both rocky and gaseous.
C1 [Jackson, Brian] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Miller, Neil; Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
[Barnes, Rory] Univ Washington, Dept Astron, Seattle, WA 98195 USA.
[Raymond, Sean N.] Univ Bordeaux, Observ Aquitain Sci Univers, F-33271 Floirac, France.
[Raymond, Sean N.] CNRS, Lab Astrophys Bordeaux, UMR 5804, F-75700 Paris, France.
[Greenberg, Richard] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA.
RP Jackson, B (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
EM brian.k.jackson@nasa.gov
OI Fortney, Jonathan/0000-0002-9843-4354
FU NASA [NNH05ZDA001C, NNG05GH65G]; NASA Astrobiology Institute's Virtual
Planetary Laboratory lead team
FX We thank Doug Hamilton, Dan Fabrycky, Maki Hattori, Diana Valencia, Marc
Kuchner and John Debes for useful conversations and suggestions. We also
thank our referee for a helpful and thorough review. BJ acknowledges
support from the NASA Post-doctoral Program. RB acknowledges funding
from NASA Astrobiology Institute's Virtual Planetary Laboratory lead
team, supported by NASA under Cooperative Agreement No. NNH05ZDA001C. RG
acknowledges support from NASA's Planetary Geology and Geophysics
program, grant no. NNG05GH65G.
NR 66
TC 46
Z9 46
U1 0
U2 0
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD SEP 11
PY 2010
VL 407
IS 2
BP 910
EP 922
DI 10.1111/j.1365-2966.2010.17012.x
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 646OG
UT WOS:000281551300014
ER
PT J
AU Zhekov, SA
Park, S
McCray, R
Racusin, JL
Burrows, DN
AF Zhekov, Svetozar A.
Park, Sangwook
McCray, Richard
Racusin, Judith L.
Burrows, David N.
TI Evolution of the Chandra CCD spectra of SNR 1987A: probing the
reflected-shock picture
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE supernovae: individual (SNR 1987A); ISM: supernova remnants; X-rays: ISM
ID SUPERNOVA REMNANT 1987A; X-RAY-EMISSION; SPACE-TELESCOPE OBSERVATIONS;
LARGE-MAGELLANIC-CLOUD; TRIPLE-RING NEBULA; CIRCUMSTELLAR RING; RADIO
REMNANT; LINE EMISSION; REVERSE SHOCK; HOT-SPOTS
AB We continue to explore the validity of the reflected-shock structure (RSS) picture in SNR 1987A that was proposed in our previous analyses of the X-ray emission from this object. We used an improved version of our RSS model in a global analysis of 14 CCD spectra from the monitoring program with Chandra. In the framework of the RSS picture, we are able to match both the expansion velocity curve deduced from the analysis of the X-ray images and light curve. Using a simplified analysis, we also show that the X-rays and the non-thermal radio emission may originate from the same shock structure (the blast wave). We believe that using the RSS model in the analysis of grating data from the Chandra monitoring program of SNR 1987A that cover a long enough time interval will allow us to build a more realistic physical picture and model of SNR 1987A.
C1 [Zhekov, Svetozar A.; McCray, Richard] Univ Colorado, JILA, Boulder, CO 80309 USA.
[Park, Sangwook; Burrows, David N.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA.
[Racusin, Judith L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Zhekov, SA (reprint author), Univ Colorado, JILA, Boulder, CO 80309 USA.
EM zhekovs@colorado.edu; park@astro.psu.edu; richard.mccray@colorado.edu;
judith.racusin@nasa.gov; burrows@astro.psu.edu
RI Racusin, Judith/D-2935-2012
FU Bulgarian National Science Fund [DO-02-85]
FX SAZ acknowledges financial support from Bulgarian National Science Fund
grant DO-02-85. The authors thank an anonymous referee for valuable
comments and criticism.
NR 78
TC 12
Z9 12
U1 0
U2 1
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD SEP 11
PY 2010
VL 407
IS 2
BP 1157
EP 1169
DI 10.1111/j.1365-2966.2010.16967.x
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 646OG
UT WOS:000281551300034
ER
PT J
AU Blacksberg, J
Rossman, GR
Gleckler, A
AF Blacksberg, Jordana
Rossman, George R.
Gleckler, Anthony
TI Time-resolved Raman spectroscopy for in situ planetary mineralogy
SO APPLIED OPTICS
LA English
DT Article
ID FT-RAMAN; FLUORESCENCE BANDS; MERIDIANI-PLANUM; MARS; VENUS;
SPECTROMETER; EXCITATION; SPECTRA; PHOBOS; WATER
AB Planetary mineralogy can be revealed through a variety of remote sensing and in situ investigations that precede any plans for eventual sample return. We briefly review those techniques and focus on the capabilities for on-surface in situ examination of Mars, Venus, the Moon, asteroids, and other bodies. Over the past decade, Raman spectroscopy has continued to develop as a prime candidate for the next generation of in situ planetary instruments, as it provides definitive structural and compositional information of minerals in their natural geological context. Traditional continuous-wave Raman spectroscopy using a green laser suffers from fluorescence interference, which can be large (sometimes saturating the detector), particularly in altered minerals, which are of the greatest geophysical interest. Taking advantage of the fact that fluorescence occurs at a later time than the instantaneous Raman signal, we have developed a time-resolved Raman spectrometer that uses a streak camera and pulsed miniature microchip laser to provide picosecond time resolution. Our ability to observe the complete time evolution of Raman and fluorescence spectra in minerals makes this technique ideal for exploration of diverse planetary environments, some of which are expected to contain strong, if not overwhelming, fluorescence signatures. We discuss performance capability and present time-resolved pulsed Raman spectra collected from several highly fluorescent and Mars-relevant minerals. In particular, we have found that conventional Raman spectra from fine grained clays, sulfates, and phosphates exhibited large fluorescent signatures, but high quality spectra could be obtained using our time-resolved approach. (C) 2010 Optical Society of America
C1 [Blacksberg, Jordana] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Rossman, George R.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.
[Gleckler, Anthony] GEOST Inc, Tucson, AZ 85741 USA.
RP Blacksberg, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM jordana.blacksberg@jpl.nasa.gov
OI Rossman, George/0000-0002-4571-6884
FU National Aeronautics and Space Administration (NASA)
FX We acknowledge invaluable discussions on Mars 2018 with Sabrina Feldman
at the Jet Propulsion Laboratory (JPL). The research described in this
publication was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics
and Space Administration (NASA). Continuous-wave Raman measurements were
performed at the Mineral Spectroscopy Laboratory in the Department of
Geological and Planetary Sciences at the California Institute of
Technology, and time-resolved experiments at the JPL.
NR 39
TC 16
Z9 16
U1 3
U2 27
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1559-128X
EI 2155-3165
J9 APPL OPTICS
JI Appl. Optics
PD SEP 10
PY 2010
VL 49
IS 26
BP 4951
EP 4962
DI 10.1364/AO.49.004951
PG 12
WC Optics
SC Optics
GA 648PN
UT WOS:000281706500014
PM 20830184
ER
PT J
AU Bulbul, GE
Hasler, N
Bonamente, M
Joy, M
AF Bulbul, G. Esra
Hasler, Nicole
Bonamente, Massimiliano
Joy, Marshall
TI AN ANALYTIC MODEL OF THE PHYSICAL PROPERTIES OF GALAXY CLUSTERS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: individual (Abell 1835, Abell 2204); X-rays: galaxies:
clusters
ID X-RAY MEASUREMENTS; ZELDOVICH EFFECT DATA; DARK ENERGY; CHANDRA
OBSERVATIONS; INTRACLUSTER MEDIUM; PROFILES; GAS; CONSTRAINTS;
TEMPERATURE; MASS
AB We introduce an analytic model of the diffuse intergalactic medium in galaxy clusters based on a polytropic equation of state for the gas in hydrostatic equilibrium with the cluster gravitational potential. This model is directly applicable to the analysis of X-ray and Sunyaev-Zel'dovich effect observations from the cluster core to the virial radius, with five global parameters and three parameters describing the cluster core. We validate the model using Chandra X-ray observations of two polytropic clusters, MS 1137.5+6625 and CL J1226.9+3332, and two cool core clusters, 1835 and A2204. We show that the model accurately describes the spatially resolved spectroscopic and imaging data, including the cluster core region where significant cooling of the plasma is observed.
C1 [Bulbul, G. Esra; Hasler, Nicole; Bonamente, Massimiliano] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA.
[Bonamente, Massimiliano; Joy, Marshall] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA.
RP Bulbul, GE (reprint author), Univ Alabama, Dept Phys, Huntsville, AL 35899 USA.
NR 39
TC 21
Z9 21
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 10
PY 2010
VL 720
IS 2
BP 1038
EP 1044
DI 10.1088/0004-637X/720/2/1038
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647ND
UT WOS:000281624300007
ER
PT J
AU Andersson, BG
Potter, SB
AF Andersson, B-G
Potter, S. B.
TI OBSERVATIONS OF ENHANCED RADIATIVE GRAIN ALIGNMENT NEAR HD 97300
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE dust, extinction; ISM: individual objects (Chamaeleon I)
ID I DARK CLOUD; INTERSTELLAR LINEAR-POLARIZATION; NEARBY MOLECULAR CLOUDS;
STAR-FORMING REGION; CHAMELEON-I; INFRARED POLARIMETRY; WAVELENGTH
DEPENDENCE; MAGNETIC-FIELDS; DUST; EXTINCTION
AB We have obtained optical multi-band polarimetry toward sightlines through the Chamaeleon I cloud, particularly in the vicinity of the young B9/A0 star HD 97300. We show, in agreement with earlier studies, that the radiation field impinging on the cloud in the projected vicinity of the star is dominated by the flux from the star, as evidenced by a local enhancement in the grain heating. By comparing the differential grain heating with the differential change in the location of the peak of the polarization curve, we show that the grain alignment is enhanced by the increase in the radiation field. We also find a weak, but measurable, variation in the grain alignment with the relative angle between the radiation field anisotropy and the magnetic field direction. Such an anisotropy in the grain alignment is consistent with a unique prediction of modern radiative alignment torque theory and provides direct support for radiatively driven grain alignment.
C1 [Andersson, B-G] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA.
[Potter, S. B.] S African Astron Observ, ZA-7935 Cape Town, South Africa.
RP Andersson, BG (reprint author), NASA, Ames Res Ctr, SOFIA Sci Ctr, MS N211-3, Moffett Field, CA 94035 USA.
EM bg@sofia.usra.edu; sbp@saao.ac.za
OI Andersson, B-G/0000-0001-6717-0686
NR 59
TC 20
Z9 20
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 10
PY 2010
VL 720
IS 2
BP 1045
EP 1054
DI 10.1088/0004-637X/720/2/1045
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647ND
UT WOS:000281624300008
ER
PT J
AU Gould, A
Dong, S
Gaudi, BS
Udalski, A
Bond, IA
Greenhill, J
Street, RA
Dominik, M
Sumi, T
Szymanski, MK
Han, C
Allen, W
Bolt, G
Bos, M
Christie, GW
Depoy, DL
Drummond, J
Eastman, JD
Gal-Yam, A
Higgins, D
Janczak, J
Kaspi, S
Kozlowski, S
Lee, CU
Mallia, F
Maury, A
Maoz, D
McCormick, J
Monard, LAG
Moorhouse, D
Morgan, N
Natusch, T
Ofek, EO
Park, BG
Pogge, RW
Polishook, D
Santallo, R
Shporer, A
Spector, O
Thornley, G
Yee, JC
Kubiak, M
Pietrzynski, G
Soszynski, I
Szewczyk, O
Wyrzykowski, E
Ulaczyk, K
Poleski, R
Abe, F
Bennett, DP
Botzler, CS
Douchin, D
Freeman, M
Fukui, A
Furusawa, K
Hearnshaw, JB
Hosaka, S
Itow, Y
Kamiya, K
Kilmartin, PM
Korpela, A
Lin, W
Ling, CH
Makita, S
Masuda, K
Matsubara, Y
Miyake, N
Muraki, Y
Nagaya, M
Nishimoto, K
Ohnishi, K
Okumura, T
Perrott, YC
Philpott, L
Rattenbury, N
Saito, T
Sako, T
Sullivan, DJ
Sweatman, WL
Tristram, PJ
von Seggern, E
Yock, PCM
Albrow, M
Batista, V
Beaulieu, JP
Brillant, S
Caldwell, J
Calitz, JJ
Cassan, A
Cole, A
Cook, K
Coutures, C
Dieters, S
Prester, DD
Donatowicz, J
Fouque, P
Hill, K
Hoffman, M
Jablonski, F
Kane, SR
Kains, N
Kubas, D
Marquette, JB
Martin, R
Martioli, E
Meintjes, P
Menzies, J
Pedretti, E
Pollard, K
Sahu, KC
Vinter, C
Wambsganss, J
Watson, R
Williams, A
Zub, M
Allan, A
Bode, MF
Bramich, DM
Burgdorf, MJ
Clay, N
Fraser, S
Hawkins, E
Horne, K
Kerins, E
Lister, TA
Mottram, C
Saunders, ES
Snodgrass, C
Steele, IA
Tsapras, Y
Jorgensen, UG
Anguita, T
Bozza, V
Novati, SC
Harpsoe, K
Hinse, TC
Hundertmark, M
Kjaergaard, P
Liebig, C
Mancini, L
Masi, G
Mathiasen, M
Rahvar, S
Ricci, D
Scarpetta, G
Southworth, J
Surdej, J
Thone, CC
AF Gould, A.
Dong, Subo
Gaudi, B. S.
Udalski, A.
Bond, I. A.
Greenhill, J.
Street, R. A.
Dominik, M.
Sumi, T.
Szymanski, M. K.
Han, C.
Allen, W.
Bolt, G.
Bos, M.
Christie, G. W.
DePoy, D. L.
Drummond, J.
Eastman, J. D.
Gal-Yam, A.
Higgins, D.
Janczak, J.
Kaspi, S.
Kozlowski, S.
Lee, C. -U.
Mallia, F.
Maury, A.
Maoz, D.
McCormick, J.
Monard, L. A. G.
Moorhouse, D.
Morgan, N.
Natusch, T.
Ofek, E. O.
Park, B. -G.
Pogge, R. W.
Polishook, D.
Santallo, R.
Shporer, A.
Spector, O.
Thornley, G.
Yee, J. C.
Kubiak, M.
Pietrzynski, G.
Soszynski, I.
Szewczyk, O.
Wyrzykowski, E.
Ulaczyk, K.
Poleski, R.
Abe, F.
Bennett, D. P.
Botzler, C. S.
Douchin, D.
Freeman, M.
Fukui, A.
Furusawa, K.
Hearnshaw, J. B.
Hosaka, S.
Itow, Y.
Kamiya, K.
Kilmartin, P. M.
Korpela, A.
Lin, W.
Ling, C. H.
Makita, S.
Masuda, K.
Matsubara, Y.
Miyake, N.
Muraki, Y.
Nagaya, M.
Nishimoto, K.
Ohnishi, K.
Okumura, T.
Perrott, Y. C.
Philpott, L.
Rattenbury, N.
Saito, To.
Sako, T.
Sullivan, D. J.
Sweatman, W. L.
Tristram, P. J.
von Seggern, E.
Yock, P. C. M.
Albrow, M.
Batista, V.
Beaulieu, J. P.
Brillant, S.
Caldwell, J.
Calitz, J. J.
Cassan, A.
Cole, A.
Cook, K.
Coutures, C.
Dieters, S.
Prester, D. Dominis
Donatowicz, J.
Fouque, P.
Hill, K.
Hoffman, M.
Jablonski, F.
Kane, S. R.
Kains, N.
Kubas, D.
Marquette, J. -B.
Martin, R.
Martioli, E.
Meintjes, P.
Menzies, J.
Pedretti, E.
Pollard, K.
Sahu, K. C.
Vinter, C.
Wambsganss, J.
Watson, R.
Williams, A.
Zub, M.
Allan, A.
Bode, M. F.
Bramich, D. M.
Burgdorf, M. J.
Clay, N.
Fraser, S.
Hawkins, E.
Horne, K.
Kerins, E.
Lister, T. A.
Mottram, C.
Saunders, E. S.
Snodgrass, C.
Steele, I. A.
Tsapras, Y.
Jorgensen, U. G.
Anguita, T.
Bozza, V.
Novati, S. Calchi
Harpsoe, K.
Hinse, T. C.
Hundertmark, M.
Kjaergaard, P.
Liebig, C.
Mancini, L.
Masi, G.
Mathiasen, M.
Rahvar, S.
Ricci, D.
Scarpetta, G.
Southworth, J.
Surdej, J.
Thone, C. C.
CA FUN Collaboration
OGLE Collaboration
MOA Collaboration
PLANET Collaboration
RoboNet Collaboration
MiNDSTEp Consortium
TI FREQUENCY OF SOLAR-LIKE SYSTEMS AND OF ICE AND GAS GIANTS BEYOND THE
SNOW LINE FROM HIGH-MAGNIFICATION MICROLENSING EVENTS IN 2005-2008
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE gravitational lensing: micro; planetary systems
ID GRAVITATIONAL LENSING EXPERIMENT; EXTRASOLAR PLANETS; GALACTIC BULGE;
MASS PLANET; EARTH-MASS; JUPITER/SATURN ANALOG; COMPANIONS; SEARCH;
CONSTRAINTS; STELLAR
AB We present the first measurement of the planet frequency beyond the "snow line," for the planet-to-star mass-ratio interval -4.5 < log q < -2, corresponding to the range of ice giants to gas giants. We find
d(2)N(pl)/d log q d log s = (0.36 +/- 0.15) dex(-2)
at the mean mass ratio q = 5 x 10(-4) with no discernible deviation from a flat (Opik's law) distribution in log-projected separation s. The determination is based on a sample of six planets detected from intensive follow-up observations of high-magnification (A > 200) microlensing events during 2005-2008. The sampled host stars have a typical mass M(host) similar to 0.5M(circle dot), and detection is sensitive to planets over a range of planet-star-projected separations (s(max)(-1)R(E), s(max)R(E)), where R(E) similar to 3.5 AU(M(host)/M(circle dot))(1/2) is the Einstein radius and s(max) similar to (q/10(-4.3))(1/3). This corresponds to deprojected separations roughly three times the " snow line." We show that the observations of these events have the properties of a "controlled experiment," which is what permits measurement of absolute planet frequency. High-magnification events are rare, but the survey-plus-follow-up high-magnification channel is very efficient: half of all high-mag events were successfully monitored and half of these yielded planet detections. The extremely high sensitivity of high-mag events leads to a policy of monitoring them as intensively as possible, independent of whether they show evidence of planets. This is what allows us to construct an unbiased sample. The planet frequency derived from microlensing is a factor 8 larger than the one derived from Doppler studies at factor similar to 25 smaller star-planet separations (i.e., periods 2-2000 days). However, this difference is basically consistent with the gradient derived from Doppler studies (when extrapolated well beyond the separations from which it is measured). This suggests a universal separation distribution across 2 dex in planet-star separation, 2 dex in mass ratio, and 0.3 dex in host mass. Finally, if all planetary systems were "analogs" of the solar system, our sample would have yielded 18.2 planets (11.4 "Jupiters," 6.4 "Saturns," 0.3 "Uranuses," 0.2 "Neptunes") including 6.1 systems with two or more planet detections. This compares to six planets including one twoplanet system in the actual sample, implying a first estimate of 1/6 for the frequency of solar-like systems.
C1 [Gould, A.; Gaudi, B. S.; Eastman, J. D.; Janczak, J.; Kozlowski, S.; Morgan, N.; Pogge, R. W.; Yee, J. C.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Dong, Subo] Inst Adv Study, Princeton, NJ 08540 USA.
[Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Ulaczyk, K.; Poleski, R.] Univ Warsaw Observ, PL-00478 Warsaw, Poland.
[Bond, I. A.; Lin, W.; Ling, C. H.; Sweatman, W. L.] Massey Univ, Inst Informat & Math Sci, N Shore Mail Ctr, Auckland, New Zealand.
[Greenhill, J.; Cole, A.; Hill, K.; Watson, R.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia.
[Street, R. A.; Hawkins, E.; Lister, T. A.; Saunders, E. S.; Tsapras, Y.] Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA.
[Street, R. A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Dominik, M.; Kains, N.; Pedretti, E.; Horne, K.; Liebig, C.] Univ St Andrews, SUPA Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland.
[Sumi, T.; Abe, F.; Fukui, A.; Furusawa, K.; Hosaka, S.; Itow, Y.; Kamiya, K.; Makita, S.; Masuda, K.; Matsubara, Y.; Miyake, N.; Nagaya, M.; Nishimoto, K.; Okumura, T.; Sako, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan.
[Han, C.] Chungbuk Natl Univ, Inst Basic Sci Res, Dept Phys, Chonju 361763, South Korea.
[Allen, W.] Vintage Lane Observ, Blenheim, New Zealand.
[Bolt, G.] Craigie Observ, Perth, WA, Australia.
[Bos, M.] Molehill Astron Observ, Auckland, New Zealand.
[Christie, G. W.] Auckland Observ, Auckland, New Zealand.
[DePoy, D. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX USA.
[Drummond, J.] Possum Observ, Patutahi, New Zealand.
[Gal-Yam, A.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel.
[Higgins, D.] Hunters Hill Observ, Canberra, ACT, Australia.
[Kaspi, S.; Maoz, D.; Polishook, D.; Shporer, A.; Spector, O.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Kaspi, S.; Maoz, D.; Polishook, D.; Shporer, A.; Spector, O.] Tel Aviv Univ, Wise Observ, IL-69978 Tel Aviv, Israel.
[Kaspi, S.] Dept Phys, IL-32000 Haifa, Israel.
[Lee, C. -U.; Park, B. -G.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea.
[Mallia, F.; Maury, A.] Campo Catino Austral Observ, San Pedro, Chile.
[McCormick, J.] Ctr Backyard Astrophys, Farm Cove Observ, Auckland, New Zealand.
[Monard, L. A. G.] Ctr Backyard Astrophys, Bronberg Observ, Pretoria, South Africa.
[Moorhouse, D.; Thornley, G.] Kumeu Observ, Kumeu, New Zealand.
[Natusch, T.] AUT Univ, Auckland, New Zealand.
[Santallo, R.] So Stars Observ, Tahiti, Fr Polynesia.
[Pietrzynski, G.; Szewczyk, O.] Univ Concepcion, Dept Fis, Concepcion, Chile.
[Wyrzykowski, E.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England.
[Bennett, D. P.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
[Botzler, C. S.; Douchin, D.; Freeman, M.; Perrott, Y. C.; Philpott, L.; Rattenbury, N.; von Seggern, E.; Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland, New Zealand.
[Hearnshaw, J. B.; Albrow, M.; Pollard, K.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand.
[Kilmartin, P. M.; Tristram, P. J.] Mt John Observ, Lake Tekapo 8780, New Zealand.
[Korpela, A.; Sullivan, D. J.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand.
[Muraki, Y.] Konan Univ, Dept Phys, Kobe, Hyogo 6588501, Japan.
[Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan.
[Saito, To.] Tokyo Metropolitan Coll Ind Technol, Tokyo 1168523, Japan.
[Batista, V.; Beaulieu, J. P.; Cassan, A.; Dieters, S.; Marquette, J. -B.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France.
[Brillant, S.; Kubas, D.; Snodgrass, C.] European So Observ, Santiago 19, Chile.
[Caldwell, J.] McDonald Observ, Ft Davis, TX 79734 USA.
[Calitz, J. J.; Hoffman, M.; Meintjes, P.] Univ Orange Free State, Dept Phys, Fac Nat & Agr Sci, ZA-9300 Bloemfontein, South Africa.
[Cook, K.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA.
[Coutures, C.] CEA Saclay, F-91191 Gif Sur Yvette, France.
[Prester, D. Dominis] Univ Rijeka, Dept Phys, Omladinska 51000, Rijeka, Croatia.
[Donatowicz, J.] Vienna Univ Technol, A-1040 Vienna, Austria.
[Fouque, P.] Univ Toulouse, CNRS, LATT, Toulouse, France.
[Jablonski, F.; Martioli, E.] Inst Nacl Pesquisas Espaciais, Sao Jose Dos Campos, SP, Brazil.
[Kane, S. R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA.
[Martin, R.; Williams, A.] Perth Observ, Perth, WA 6076, Australia.
[Menzies, J.] S African Astron Observ, ZA-7935 Cape Town, South Africa.
[Sahu, K. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Vinter, C.; Jorgensen, U. G.; Harpsoe, K.; Hinse, T. C.; Kjaergaard, P.; Mathiasen, M.; Thone, C. C.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark.
[Wambsganss, J.; Zub, M.; Anguita, T.; Liebig, C.] Univ Heidelberg, Zent Astron, Astronom Rechen Inst, D-69120 Heidelberg, Germany.
[Zub, M.] Univ Zielona Gora, Inst Astron, PL-66265 Zielona Gora, Poland.
[Allan, A.; Saunders, E. S.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
[Bode, M. F.; Clay, N.; Fraser, S.; Mottram, C.; Steele, I. A.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool CH41 1LD, Merseyside, England.
[Bramich, D. M.] European So Observ, D-85748 Garching, Germany.
[Burgdorf, M. J.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany.
[Burgdorf, M. J.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA.
[Kerins, E.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England.
[Snodgrass, C.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany.
[Tsapras, Y.] Univ London, Sch Math Sci, Astron Unit, London E1 4NS, England.
[Jorgensen, U. G.] Univ Copenhagen, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark.
[Anguita, T.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago, Chile.
[Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] Univ Salerno, Dipartimento Fis E R Caianiello, I-84085 Fisciano, SA, Italy.
[Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] Ist Nazl Fis Nucl, Gruppo Collegato Salerno, Sez Napoli, Milan, Italy.
[Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] IIASS, I-84019 Vietri Sul Mare, SA, Italy.
[Hinse, T. C.] Armagh Observ, Armagh BT61 9DG, North Ireland.
[Hundertmark, M.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany.
[Mancini, L.] Univ Sannio, Dipartimento Ingn, I-82100 Benevento, Italy.
[Masi, G.] Bellatrix Astron Observ, I-03023 Ceccano, FR, Italy.
[Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran 111559161, Iran.
[Ricci, D.; Surdej, J.] Inst Astrophys & Geophys, B-4000 Liege, Belgium.
[Southworth, J.] Univ Keele, Astrophys Grp, Keele ST5 5BG, Staffs, England.
[Thone, C. C.] INAF, Osservatorio Astron Brera, I-23806 Merate, LC, Italy.
EM gould@astronomy.ohio-state.edu; dong@ias.edu;
gaudi@astronomy.ohio-state.edu; udalski@astrouw.edu.pl;
i.a.bond@massey.ac.nz; John.Greenhill@utas.edu.au;
md35@st-andrews.ac.uk; sumi@stelab.nagoya-u.ac.jp; msz@astrouw.edu;
cheongho@astroph.chungbuk.ac.kr; whallen@xtra.co.nz; gbolt@iinet.net.au;
molehill@ihug.co.nz; gwchristie@christie.org.nz; depoy@physics.tamu.edu;
john_drummond@xtra.co.nz; jdeast@astronomy.ohio-state.edu;
avishay.gal-yam@weizmann.ac.il; dhi67540@bigpond.net.au;
shai@wise.tau.ac.il; simkoz@astronomy.ohio-state.edu; leecu@kasi.re.kr;
francomallia@campocatinobservatory.org; alain@spaceobs.com;
dani@wise.tau.ac.il; farmcoveobs@xtra.co; lagmonar@nmisa.org;
acrux@orcon.net.nz; nick.morgan@alum.mit.edu; tim.natusch@aut.ac.nz;
eran@astro.caltech.edu; bgpark@kasi.re.kr;
pogge@astronomy.ohio-state.edu; david@wise.tau.ac.il;
obs930@southernstars-observatory.org; shporer@wise.tau.ac.il;
odedspec@wise.tau.ac; guy.thornley@gmail.com;
jyee@astronomy.ohio-state.edu; mk@astrouw.edu.pl;
pietrzyn@astrouw.edu.pl; soszynsk@astrouw.edu.pl;
szewczyk@astro-udec.cl; wyrzykow@ast.cam.ac.uk; kulaczyk@astrouw.edu.pl;
rpoleski@astrouw.edu.pl; abe@stelab.nagoya-u.ac.jp; bennett@nd.edu;
c.botzler@auckland.ac.nz; afukui@stelab.nagoya-u.ac.jp;
furusawa@stelab.nagoya-u.ac.jp; itow@stelab.nagoya-u.ac.jp;
kkamiya@stelab.nagoya-u.ac.jp; a.korpela@niwa.co.nz; w.lin@massey.ac.nz;
c.h.ling@massey.ac.nz; kmasuda@stelab.nagoya-u.ac.jp;
ymatsu@stelab.nagoya-u.ac.jp; nmiyake@stelab.nagoya-u.ac.jp;
nmiyake@stelab.nagya-u.ac.jp; mnagaya@stelab.nagoya-u.ac.jp;
okumurat@stelab.nagoya-u.ac.jp; yper006@aucklanduni.ac.nz;
sako@stelab.nagoya-u.ac.jp; denis.sullivan@vuw.ac.nz;
w.sweatman@massey.ac.nz; p.yock@auckland.ac.nz; beaulieu@iap.fr;
sbrillan@eso.org; caldwell@astro.as.utexas.edu;
HoffmaMJ.SCI@mail.uovs.ac.za; Andrew.Cole@utas.edu.au; kcook@llnl.gov;
coutures@iap.fr; donatowicz@tuwien.ac.at; pfouque@ast.obs-mip.fr;
skane@ipac.caltech.edu; nk87@st-andrews.ac.uk; dkubas@eso.org;
marquett@iap.fr; rmartin@physics.uwa.edu.au; ep41@st-andrews.ac.uk;
andrew@physics.uwa.edu.au; kdh1@st-andrews.ac.uk;
Eamonn.Kerins@manchester.ac.uk
RI Gaudi, Bernard/I-7732-2012; Dong, Subo/J-7319-2012; Kane,
Stephen/B-4798-2013; Greenhill, John/C-8367-2013; Kozlowski,
Szymon/G-4799-2013; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013;
Williams, Andrew/K-2931-2013; Hundertmark, Markus/C-6190-2015; Rahvar,
Sohrab/A-9350-2008;
OI Cole, Andrew/0000-0003-0303-3855; Eastman, Jason/0000-0003-3773-5142;
Thone, Christina/0000-0002-7978-7648; Ricci, Davide/0000-0002-9790-0552;
Snodgrass, Colin/0000-0001-9328-2905; Dominik,
Martin/0000-0002-3202-0343; Kozlowski, Szymon/0000-0003-4084-880X;
Williams, Andrew/0000-0001-9080-0105; Hundertmark,
Markus/0000-0003-0961-5231; Rahvar, Sohrab/0000-0002-7084-5725;
Philpott, Lydia/0000-0002-5286-8528
FU NSF [AST 0757888, AST-0708890]; NASA [1277721]; Polish MNiSW
[N20303032/4275]; Marsden Fund of New Zealand; JSPS; MEXT of Japan;
PPARC (Particle Physics and Astronomy Research Council); STFC (Science
and Technology Facilities Council); National Research Foundation of
Korea [2009-0081561]; EU; Minerva Foundation, Benoziyo Center for
Astrophysics; Weizmann Institute; Technion; Israel-Niedersachsen
collaboration program; [JSPS18749004]; [JSPS20740104]; [MEXT19015005]
FX Work by A. G. was supported in part by NSF grant AST 0757888 and in part
by NASA grant 1277721 issued by JPL/Caltech. Work by S. D. was performed
under contract with the California Institute of Technology (Caltech)
funded by NASA through the Sagan Fellowship Program. This work was
supported in part by an allocation of computing time from the Ohio
Supercomputer Center. The OGLE project is partially supported by the
Polish MNiSW grant N20303032/4275 to AU. The MOA collaboration was
supported by the Marsden Fund of New Zealand. The MOA collaboration and
a part of authors are supported by the Grant-in-Aid for Scientific
Research, JSPS Research fellowships and the Global COE Program "Quest
for Fundamental Principles in the Universe" from JSPS and MEXT of Japan.
T. S. acknowledges support from grants JSPS18749004, JSPS20740104, and
MEXT19015005. The RoboNet project acknowledges support from PPARC
(Particle Physics and Astronomy Research Council) and STFC (Science and
Technology Facilities Council). C. H. was supported by Creative Research
Initiative Program (2009-0081561) of National Research Foundation of
Korea. AGY's activity is supported by a Marie Curie IRG grant from the
EU, and by the Minerva Foundation, Benoziyo Center for Astrophysics, a
research grant from Peter and Patricia Gruber Awards, and the William Z.
and Eda Bess Novick New Scientists Fund at the Weizmann Institute. D. P.
B. was supported by grants AST-0708890 from the NSF and NNX07AL71G from
NASA. Work by S. K. was supported at the Technion by the Kitzman
Fellowship and by a grant from the Israel-Niedersachsen collaboration
program. Mt Canopus observatory is financially supported by Dr. David
Warren.
NR 62
TC 152
Z9 152
U1 2
U2 16
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 10
PY 2010
VL 720
IS 2
BP 1073
EP 1089
DI 10.1088/0004-637X/720/2/1073
PG 17
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647ND
UT WOS:000281624300011
ER
PT J
AU Beccari, G
Spezzi, L
De Marchi, G
Paresce, F
Young, E
Andersen, M
Panagia, N
Balick, B
Bond, H
Calzetti, D
Carollo, CM
Disney, MJ
Dopita, MA
Frogel, JA
Hall, DNB
Holtzman, JA
Kimble, RA
McCarthy, PJ
O'Connell, RW
Saha, A
Silk, JI
Trauger, JT
Walker, AR
Whitmore, BC
Windhorst, RA
AF Beccari, Giacomo
Spezzi, Loredana
De Marchi, Guido
Paresce, Francesco
Young, Erick
Andersen, Morten
Panagia, Nino
Balick, Bruce
Bond, Howard
Calzetti, Daniela
Carollo, C. Marcella
Disney, Michael J.
Dopita, Michael A.
Frogel, Jay A.
Hall, Donald N. B.
Holtzman, Jon A.
Kimble, Randy A.
McCarthy, Patrick J.
O'Connell, Robert W.
Saha, Abhijit
Silk, Joseph I.
Trauger, John T.
Walker, Alistair R.
Whitmore, Bradley C.
Windhorst, Rogier A.
TI PROGRESSIVE STAR FORMATION IN THE YOUNG GALACTIC SUPER STAR CLUSTER NGC
3603
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE open clusters and associations: individual (NGC 3603); stars: pre-main
sequence
ID INITIAL MASS FUNCTION; NEAREST STARBURST CLUSTER; MAIN-SEQUENCE STARS; H
II REGIONS; GLOBULAR-CLUSTERS; MAGELLANIC-CLOUD; STELLAR CONTENT;
NGC-3603; EVOLUTION; ACCRETION
AB Early Release Science observations of the cluster NGC 3603 with the WFC3 on the refurbished Hubble Space Telescope allow us to study its recent star formation history. Our analysis focuses on stars with H alpha excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with H alpha excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.
C1 [Beccari, Giacomo; Spezzi, Loredana; De Marchi, Guido; Andersen, Morten] European Space Agcy, Dept Space Sci, NL-2200 AG Noordwijk, Netherlands.
[Paresce, Francesco] INAF Ist Astrofis Spaziale & Fis Cosm, I-40129 Bologna, Italy.
[Young, Erick] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Panagia, Nino; Bond, Howard; Whitmore, Bradley C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Panagia, Nino] Osserv Astrofis Catania, INAF CT, I-95123 Catania, Italy.
[Balick, Bruce] Univ Washington, Dept Astron, Seattle, WA 98195 USA.
[Calzetti, Daniela] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA.
[Carollo, C. Marcella] ETH, Dept Phys, CH-8093 Zurich, Switzerland.
[Disney, Michael J.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
[Dopita, Michael A.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia.
[Frogel, Jay A.] Assoc Univ Res Astron, Washington, DC 20005 USA.
[Hall, Donald N. B.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
[Holtzman, Jon A.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA.
[Kimble, Randy A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[McCarthy, Patrick J.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA.
[O'Connell, Robert W.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA.
[Saha, Abhijit] Natl Opt Astron Observ, Tucson, AZ 85726 USA.
[Silk, Joseph I.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England.
[Trauger, John T.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA.
[Walker, Alistair R.] Cerro Tololo Interamer Observ, La Serena, Chile.
[Windhorst, Rogier A.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA.
RP Beccari, G (reprint author), European Space Agcy, Dept Space Sci, Keplerlaan 1, NL-2200 AG Noordwijk, Netherlands.
RI Kimble, Randy/D-5317-2012; Dopita, Michael/P-5413-2014;
OI Dopita, Michael/0000-0003-0922-4986; silk, joe/0000-0002-1566-8148
FU Space Telescope Science Institute
FX We are indebted to an anonymous referee for valuable comments and
suggestions that have helped us to improve the presentation of our work.
We thank Vera Kozhurina-Platais for providing FORTRAN codes for WFC3
geometric distortion corrections and Max Mutchler for producing the
drizzled images shown in Figures 1 and 7. This paper is based on Early
Release Science observations made by the WFC3 Scientific Oversight
Committee. We are grateful to the Director of the Space Telescope
Science Institute for awarding Director's Discretionary time for this
program. Finally, we are deeply indebted to the brave astronauts of
STS-125 for rejuvenating HST.
NR 50
TC 46
Z9 46
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 10
PY 2010
VL 720
IS 2
BP 1108
EP 1117
DI 10.1088/0004-637X/720/2/1108
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647ND
UT WOS:000281624300014
ER
PT J
AU Thejappa, G
MacDowall, RJ
AF Thejappa, G.
MacDowall, R. J.
TI LOCALIZATION OF A TYPE III RADIO BURST OBSERVED BY THE STEREO SPACECRAFT
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE solar wind; Sun: flares; Sun: radio radiation
ID SOLAR CORONA; EMISSION; DIRECTIVITY; OCCULTATION; REFLECTION; MISSION;
DENSITY; WIND; SUN
AB Ray tracing calculations show that (1) emissions from a localized source escape as direct and reflected waves along different paths, (2) the reflected waves experience higher attenuation and group delay because they travel longer path lengths in regions of reduced refractive index, and (3) widely separated spacecraft "A" and "B" can detect the direct as well as reflected emissions escaping along different directions. It is proposed that the source of a radio burst observed by twin spacecraft "A" and "B" can be localized if at a given frequency the emission at one of them is identified as the direct emission and is identified at the other as the reflected emission by comparing the observed time delays Delta T, as well as intensity ratios I(B)/I(A) with the corresponding values of the direct and reflected emissions obtained for a given coronal model. A type III event observed by the STEREO spacecraft "A" and "B" shows that its characteristics are consistent with direct and reflected emissions by being less intense and delayed at "A" in comparison to that at "B." By applying the proposed technique to this event, the location of its source is found to lie between the turning point of the ray and the harmonic layer corresponding to f(pe) = f/2, where f and f(pe) are the frequency of the emission and the electron plasma frequency, respectively. The comparisons of the widths of the fundamental and harmonic emission cones with the angular separation of spacecraft "A" and "B" indicate that the mode of the observed emission is probably the harmonic.
C1 [Thejappa, G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[MacDowall, R. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Thejappa, G (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
EM thejappa@astro.umd.edu; Robert.MacDowall@nasa.gov
RI MacDowall, Robert/D-2773-2012
FU NASA [NNX08AO02G, NNX09AB19G]
FX The research of T.G. is supported by the NASA Grants NNX08AO02G and
NNX09AB19G.
NR 32
TC 6
Z9 6
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 10
PY 2010
VL 720
IS 2
BP 1395
EP 1404
DI 10.1088/0004-637X/720/2/1395
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647ND
UT WOS:000281624300040
ER
PT J
AU Lamb, DA
DeForest, CE
Hagenaar, HJ
Parnell, CE
Welsch, BT
AF Lamb, D. A.
DeForest, C. E.
Hagenaar, H. J.
Parnell, C. E.
Welsch, B. T.
TI SOLAR MAGNETIC TRACKING. III. APPARENT UNIPOLAR FLUX EMERGENCE IN
HIGH-RESOLUTION OBSERVATIONS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE Sun: granulation; Sun: photosphere; Sun: surface magnetism
ID OPTICAL TELESCOPE; QUIET-SUN; FIELD; PATTERNS; MISSION; REGIONS
AB Understanding the behavior of weak magnetic fields near the detection limit of current instrumentation is important for determining the flux budget of the solar photosphere at small spatial scales. Using 0 ''.3-resolution magnetograms from the Solar Optical Telescope's Narrowband Filter Imager (NFI) on the Hinode spacecraft, we confirm that the previously reported apparent unipolar magnetic flux emergence seen in intermediate-resolution magnetograms is indeed the coalescence of previously existing flux. We demonstrate that similar but smaller events seen in NFI magnetograms are also likely to correspond to the coalescence of previously existing weak fields. The uncoalesced flux, detectable only in the ensemble average of hundreds of these events, accounts for 50% of the total flux within 3 Mm of the detected features. The spatial scale at which apparent unipolar emergence can be directly observed as coalescence remains unknown. The polarity of the coalescing flux is more balanced than would be expected given the imbalance of the data set, however without further study we cannot speculate whether this implies that the flux in the apparent unipolar emergence events is produced by a granulation-scale dynamo or is recycled from existing field.
C1 [Lamb, D. A.] Catholic Univ Amer, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[DeForest, C. E.] SW Res Inst, Boulder, CO 80302 USA.
[Hagenaar, H. J.] Org ADBS, Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA.
[Parnell, C. E.] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland.
[Welsch, B. T.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
RP Lamb, DA (reprint author), Catholic Univ Amer, NASA, Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA.
EM dlamb@spd.aas.org
OI Lamb, Derek/0000-0002-6061-6443
FU NASA [NX08AJ06G]
FX The authors thank T. Tarbell for discussions regarding the NFI
calibration and help in selecting suitable data sets. This work was
supported by NASA grant NX08AJ06G (SHP-GI program). The authors thank
the SOHO-MDI and Hinode teams for making their data publicly available.
SOHO is a project of international collaboration between ESA and NASA.
Hinode is a Japanese mission developed and launched by ISAS/JAXA, with
NAOJ as domestic partner and NASA and STFC (UK) as international
partners. It is operated by these agencies in co-operation with ESA and
NSC (Norway).
NR 22
TC 26
Z9 27
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 10
PY 2010
VL 720
IS 2
BP 1405
EP 1416
DI 10.1088/0004-637X/720/2/1405
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647ND
UT WOS:000281624300041
ER
PT J
AU Brosius, JW
Holman, GD
AF Brosius, Jeffrey W.
Holman, Gordon D.
TI EARLY CHROMOSPHERIC RESPONSE DURING A SOLAR MICROFLARE OBSERVED WITH
SOHO's CDS AND RHESSI
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE Sun: activity; Sun: corona; Sun: flares; Sun: transition region; Sun: UV
radiation; Sun: X-rays, gamma rays
ID CORONAL DIAGNOSTIC SPECTROMETER; LOOP RADIATIVE HYDRODYNAMICS; HIGH TIME
RESOLUTION; BRAGG CRYSTAL SPECTROMETER; X-RAY SPECTROSCOPY;
EXTREME-ULTRAVIOLET; IMPULSIVE PHASE; CA-XIX; FLARE; EVAPORATION
AB We observed a solar microflare with RHESSI and SOHO's Coronal Diagnostic Spectrometer (CDS) on 2009 July 5. With CDS we obtained rapid cadence (7 s) stare spectra within a narrow field of view toward the center of AR 11024. The spectra contain emission lines from ions that cover a wide range of temperature, including He I (<0.025 MK), O V (0.25 MK), Si XII (2 MK), and Fe XIX (8 MK). The start of a precursor burst of He I and O V line emission preceded the steady increase of Fe XIX line emission by about 1 minute and the emergence of 3-12 keV X-ray emission by about 4 minutes. Thus, the onset of the microflare was observed in upper chromospheric (He I) and transition region (O V) line emission before it was detected in high-temperature flare plasma emission. Redshifted O V emission during the precursor suggests explosive chromospheric evaporation, but no corresponding blueshifts were found with either Fe XIX (which was very weak) or Si XII. Similarly, in subsequent microflare brightenings the O V and He I intensities increased (between 49 s and almost 2 minutes) before emissions from the hot flare plasma. Although these time differences likely indicate heating by a nonthermal particle beam, the RHESSI spectra provide no additional evidence for such a beam. In intervals lasting up to about 3 minutes during several bursts, the He I and O V emission line profiles showed secondary, highly blueshifted (similar to-200 km s(-1)) components; during intervals lasting nearly 1 minute the velocities of the primary and secondary components were oppositely directed. Combined with no corresponding blueshifts in either Fe XIX or Si XII, this indicates that explosive chromospheric evaporation occurred predominantly at either comparatively cool temperatures (<2 MK) or within a hot temperature range to which our observations were not sensitive (e.g., between 2 and 8 MK).
C1 [Brosius, Jeffrey W.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Catholic Univ Amer, Greenbelt, MD 20771 USA.
RP Brosius, JW (reprint author), NASA, Goddard Space Flight Ctr, Solar Phys Lab, Catholic Univ Amer, Code 671, Greenbelt, MD 20771 USA.
EM Jeffrey.W.Brosius@nasa.gov; Gordon.D.Holman@nasa.gov
RI Holman, Gordon/C-9548-2012
FU NASA [NNX07AI09G]; RHESSI Project
FX J.W.B. acknowledges NASA support through SR&T grant NNX07AI09G. G.D.H.
acknowledges partial support from SR&T grant NNX07AI09G and the RHESSI
Project. We thank the referee for comments that helped to improve the
manuscript.
NR 56
TC 15
Z9 15
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 10
PY 2010
VL 720
IS 2
BP 1472
EP 1482
DI 10.1088/0004-637X/720/2/1472
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647ND
UT WOS:000281624300045
ER
PT J
AU Kann, DA
Klose, S
Zhang, B
Malesani, D
Nakar, E
Pozanenko, A
Wilson, AC
Butler, NR
Jakobsson, P
Schulze, S
Andreev, M
Antonelli, LA
Bikmaev, IF
Biryukov, V
Bottcher, M
Burenin, RA
Ceron, JMC
Castro-Tirado, AJ
Chincarini, G
Cobb, BE
Covino, S
D'Avanzo, P
D'Elia, V
Della Valle, M
Postigo, AD
Efimov, Y
Ferrero, P
Fugazza, D
Fynbo, JPU
Galfalk, M
Grundahl, F
Gorosabel, J
Gupta, S
Guziy, S
Hafizov, B
Hjorth, J
Holhjem, K
Ibrahimov, M
Im, M
Israel, GL
Jelinek, M
Jensen, BL
Karimov, R
Khamitov, IM
Kiziloglu, U
Klunko, E
Kubanek, P
Kutyrev, AS
Laursen, P
Levan, AJ
Mannucci, F
Martin, CM
Mescheryakov, A
Mirabal, N
Norris, JP
Ovaldsen, JE
Paraficz, D
Pavlenko, E
Piranomonte, S
Rossi, A
Rumyantsev, V
Salinas, R
Sergeev, A
Sharapov, D
Sollerman, J
Stecklum, B
Stella, L
Tagliaferri, G
Tanvir, NR
Telting, J
Testa, V
Updike, AC
Volnova, A
Watson, D
Wiersema, K
Xu, D
AF Kann, D. A.
Klose, S.
Zhang, B.
Malesani, D.
Nakar, E.
Pozanenko, A.
Wilson, A. C.
Butler, N. R.
Jakobsson, P.
Schulze, S.
Andreev, M.
Antonelli, L. A.
Bikmaev, I. F.
Biryukov, V.
Boettcher, M.
Burenin, R. A.
Castro Ceron, J. M.
Castro-Tirado, A. J.
Chincarini, G.
Cobb, B. E.
Covino, S.
D'Avanzo, P.
D'Elia, V.
Della Valle, M.
Postigo, A. de Ugarte
Efimov, Yu.
Ferrero, P.
Fugazza, D.
Fynbo, J. P. U.
Galfalk, M.
Grundahl, F.
Gorosabel, J.
Gupta, S.
Guziy, S.
Hafizov, B.
Hjorth, J.
Holhjem, K.
Ibrahimov, M.
Im, M.
Israel, G. L.
Jelinek, M.
Jensen, B. L.
Karimov, R.
Khamitov, I. M.
Kiziloglu, Ue
Klunko, E.
Kubanek, P.
Kutyrev, A. S.
Laursen, P.
Levan, A. J.
Mannucci, F.
Martin, C. M.
Mescheryakov, A.
Mirabal, N.
Norris, J. P.
Ovaldsen, J. -E.
Paraficz, D.
Pavlenko, E.
Piranomonte, S.
Rossi, A.
Rumyantsev, V.
Salinas, R.
Sergeev, A.
Sharapov, D.
Sollerman, J.
Stecklum, B.
Stella, L.
Tagliaferri, G.
Tanvir, N. R.
Telting, J.
Testa, V.
Updike, A. C.
Volnova, A.
Watson, D.
Wiersema, K.
Xu, D.
TI THE AFTERGLOWS OF SWIFT-ERA GAMMA-RAY BURSTS. I. COMPARING PRE-SWIFT AND
SWIFT-ERA LONG/SOFT (TYPE II) GRB OPTICAL AFTERGLOWS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE dust, extinction; gamma-ray burst: general
ID HIGH-RESOLUTION SPECTROSCOPY; COSMIC CHEMICAL EVOLUTION; BAND SPECTRAL
EVOLUTION; FOLLOW-UP OBSERVATIONS; STAR-FORMATION RATE; HIGH-REDSHIFT
GRBS; EARLY X-RAY; HOST-GALAXY; LIGHT CURVES; MG-II
AB We have gathered optical photometry data from the literature on a large sample of Swift-era gamma-ray burst (GRB) afterglows including GRBs up to 2009 September, for a total of 76 GRBs, and present an additional three pre-Swift GRBs not included in an earlier sample. Furthermore, we publish 840 additional new photometry data points on a total of 42 GRB afterglows, including large data sets for GRBs 050319, 050408, 050802, 050820A, 050922C, 060418, 080413A, and 080810. We analyzed the light curves of all GRBs in the sample and derived spectral energy distributions for the sample with the best data quality, allowing us to estimate the host-galaxy extinction. We transformed the afterglow light curves into an extinction-corrected z = 1 system and compared their luminosities with a sample of pre-Swift afterglows. The results of a former study, which showed that GRB afterglows clustered and exhibited a bimodal distribution in luminosity space, are weakened by the larger sample. We found that the luminosity distribution of the two afterglow samples (Swift-era and pre-Swift) is very similar, and that a subsample for which we were not able to estimate the extinction, which is fainter than the main sample, can be explained by assuming a moderate amount of line-of-sight host extinction. We derived bolometric isotropic energies for all GRBs in our sample, and found only a tentative correlation between the prompt energy release and the optical afterglow luminosity at 1 day after the GRB in the z = 1 system. A comparative study of the optical luminosities of GRB afterglows with echelle spectra (which show a high number of foreground absorbing systems) and those without, reveals no indication that the former are statistically significantly more luminous. Furthermore, we propose the existence of an upper ceiling on afterglow luminosities and study the luminosity distribution at early times, which was not accessible before the advent of the Swift satellite. Most GRBs feature afterglows that are dominated by the forward shock from early times on. Finally, we present the first indications of a class of long GRBs, which form a bridge between the typical high-luminosity, high-redshift events and nearby low-luminosity events (which are also associated with spectroscopic supernovae) in terms of energetics and observed redshift distribution, indicating a continuous distribution overall.
C1 [Kann, D. A.; Klose, S.; Schulze, S.; Ferrero, P.; Rossi, A.; Stecklum, B.] Thuringer Landessternwarte Tautenburg, D-07778 Tautenburg, Germany.
[Zhang, B.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA.
[Malesani, D.; Castro Ceron, J. M.; Fynbo, J. P. U.; Hjorth, J.; Jensen, B. L.; Laursen, P.; Paraficz, D.; Sollerman, J.; Watson, D.; Xu, D.] Univ Copenhagen, Dark Cosmol Ctr, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark.
[Nakar, E.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA.
[Nakar, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Pozanenko, A.; Burenin, R. A.; Mescheryakov, A.] Space Res Inst IKI, Moscow 117997, Russia.
[Wilson, A. C.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA.
[Butler, N. R.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Butler, N. R.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Jakobsson, P.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England.
[Jakobsson, P.; Schulze, S.] Univ Iceland, Inst Sci, Ctr Astrophys & Cosmol, IS-107 Reykjavik, Iceland.
[Andreev, M.; Sergeev, A.] RAS, Terskol Branch, Inst Astron, Kabardino Balkaria Repub 361605, Russia.
[Andreev, M.; Sergeev, A.] NASU, Int Ctr Astron & Medicoecol Res, UA-03680 Kiev, Ukraine.
[Antonelli, L. A.; D'Elia, V.; Israel, G. L.; Piranomonte, S.; Stella, L.; Testa, V.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, RM, Italy.
[Bikmaev, I. F.] Kazan VI Lenin State Univ, Kazan 420008, Russia.
[Bikmaev, I. F.] Acad Sci Tatarstan, Kazan, Russia.
[Biryukov, V.; Pavlenko, E.; Rumyantsev, V.] SRI Crimean Astrophys Observ, UA-98409 Nauchnyi, Crimea, Ukraine.
[Boettcher, M.; Gupta, S.] Ohio Univ, Inst Astrophys, Dept Phys & Astron, Athens, OH 45701 USA.
[Biryukov, V.; Efimov, Yu.] Sternberg Astron Inst, Crimean Lab, UA-98409 Nauchnyi, Crimea, Ukraine.
[Castro Ceron, J. M.; Kubanek, P.] European Space Agcy, European Space Astron Ctr, Madrid 28691, Spain.
[Castro-Tirado, A. J.; Gorosabel, J.; Guziy, S.; Jelinek, M.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain.
[Chincarini, G.; Covino, S.; Postigo, A. de Ugarte; Fugazza, D.; Tagliaferri, G.] Osserv Astron Brera, INAF, I-23807 Merate, LC, Italy.
[Chincarini, G.; D'Avanzo, P.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy.
[Cobb, B. E.] Yale Univ, Dept Astron, New Haven, CT 06520 USA.
[Cobb, B. E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[D'Avanzo, P.] Univ Insubria, Dipartimento Matemat & Fis, I-22100 Como, Italy.
[D'Elia, V.] ASI Sci Data Ctr, I-00044 Frascati, Italy.
[Della Valle, M.] Osserv Astron Capodimonte, INAF, I-80131 Naples, Italy.
[Della Valle, M.] European So Observ, D-85748 Garching, Germany.
[Della Valle, M.] Int Ctr Relativist Astrophys Network, Pescara, Abruzzo, Italy.
[Ferrero, P.] Inst Astrofis Canarias, E-38205 San Cristobal la Laguna, Tenerife, Spain.
[Galfalk, M.; Sollerman, J.] Stockholm Univ, AlbaNova Univ Ctr, Stockholm Observ, Dept Astron, S-10691 Stockholm, Sweden.
[Grundahl, F.] Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus C, Denmark.
[Hafizov, B.; Ibrahimov, M.; Karimov, R.; Sharapov, D.; Telting, J.] Ulugh Beg Astron Inst, Tashkent 700052, Uzbekistan.
[Holhjem, K.] Nord Opt Telescope, Santa Cruz De La Palma, Spain.
[Holhjem, K.] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany.
[Im, M.] Seoul Natl Univ, CEOU, Astron Program, Dept Phys & Astron, Seoul, South Korea.
[Khamitov, I. M.] TUBITAK Natl Observ, Antalya, Turkey.
[Kiziloglu, Ue] Middle E Tech Univ, TR-06531 Ankara, Turkey.
[Klunko, E.] Inst Solar Terr Phys, Irkutsk 664033, Russia.
[Kutyrev, A. S.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA.
[Levan, A. J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Mannucci, F.] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy.
[Martin, C. M.] Loyola Coll, Baltimore, MD 21210 USA.
[Mirabal, N.] Univ Complutense Madrid, Dpto Fis Atom Mol & Nucl, Madrid, Spain.
[Norris, J. P.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA.
[Ovaldsen, J. -E.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway.
[Salinas, R.] Univ Concepcion, Astron Grp, Fac Ciencias Fis & Matemat, Concepcion, Chile.
[Tanvir, N. R.; Wiersema, K.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England.
[Updike, A. C.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA.
[Volnova, A.] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow 119992, Russia.
[Wiersema, K.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands.
RP Kann, DA (reprint author), Thuringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg, Germany.
RI Im, Myungshin/B-3436-2013; Kubanek, Petr/G-7209-2014; Fynbo,
Johan/L-8496-2014; Hjorth, Jens/M-5787-2014; Watson, Darach/E-4521-2015;
Jensen, Brian Lindgren/E-1275-2015; Jakobsson, Pall/L-9950-2015;
Jelinek, Martin/E-5290-2016; Rossi, Andrea/N-4674-2015;
OI de Ugarte Postigo, Antonio/0000-0001-7717-5085; Covino,
Stefano/0000-0001-9078-5507; Tagliaferri, Gianpiero/0000-0003-0121-0723;
Testa, Vincenzo/0000-0003-1033-1340; Castro-Tirado, A.
J./0000-0003-2999-3563; D'Elia, Valerio/0000-0002-7320-5862; Della
Valle, Massimo/0000-0003-3142-5020; Sollerman,
Jesper/0000-0003-1546-6615; Rumyantsev, Vasilij/0000-0003-1894-7019;
Salinas, Ricardo/0000-0002-1206-1930; Israel,
GianLuca/0000-0001-5480-6438; Schulze, Steve/0000-0001-6797-1889; Im,
Myungshin/0000-0002-8537-6714; Fynbo, Johan/0000-0002-8149-8298; Hjorth,
Jens/0000-0002-4571-2306; Watson, Darach/0000-0002-4465-8264; Jensen,
Brian Lindgren/0000-0002-0906-9771; Jakobsson, Pall/0000-0002-9404-5650;
Jelinek, Martin/0000-0003-3922-7416; Rossi, Andrea/0000-0002-8860-6538;
mannucci, filippo/0000-0002-4803-2381
FU DFG [Kl 766/13-2]; NASA [NNG 05GC22G, NNG06GH62G]; Spanish research
programs [ESP2005-07714-C03-03, AYA2004-01515]; Instrument Center for
Danish Astrophysics; Danish National Science Fundation
[G2007101421517916]; CRDF [RP1-2394-MO-02]; TUBITAK; IKI; KSU [RTT150,
998,999]; Korea government (MEST) [2010-0000712]; [NSh-4224.2008.2];
[RFBR-09-02-97013-p-povolzh'e-a]
FX We thank the anonymous referee for helpful comments that improved this
paper. D. A. K. thanks C. Guidorzi for helpful comments as well as the
GRB 061007 calibration, D. A. Perley for "better-late-than-never"
comments, and A. Zeh for the fitting scripts. D.A.K., S.K., and P.F.
acknowledge financial support by DFG grant Kl 766/13-2. B.Z.
acknowledges NASA NNG 05GC22G and NNG06GH62G for support. The research
activity of J.G. is supported by Spanish research programs
ESP2005-07714-C03-03 and AYA2004-01515. D. M. thanks the Instrument
Center for Danish Astrophysics for support. The Dark Cosmology Centre is
funded by the Danish National Science Fundation. A.U. acknowledges
travel grant Sigma Xi Grant G2007101421517916. We are grateful to K.
Antoniuk (CrAO) for observation of the GRB 060927. A.P. acknowledges the
CRDF grant RP1-2394-MO-02 which supported observations in CrAO in
2003-2005. S. S. acknowledges support by a Grant of Excellence from the
Icelandic Research Fund. I.B., R.B., I.K. and A.G. express thanks to
TUBITAK, IKI, and KSU for partial support in using RTT150
(Russian-Turkish 1.5-m telescope in Antalya) with project number
998,999. I.B. and A.G. are grateful for partial support by grants
"NSh-4224.2008.2" and "RFBR-09-02-97013-p-povolzh'e-a." M. I.
acknowledges the support from the Creative Research Initiative program,
No. 2010-0000712, of the Korea Science and Engineering Foundation
(KOSEF) funded by the Korea government (MEST). Furthermore, we thank
Scott Barthelmy, NASA, for the upkeep of the GCN Circulars, Jochen
Greiner, Garching, for the "GRB Big List," Robert Quimby et al. for
GRBlog and D. A. Perley et al. for GRBOX. This work made use of data
supplied by the UK Swift Science Data Centre at the University of
Leicester.
NR 702
TC 147
Z9 149
U1 1
U2 18
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 10
PY 2010
VL 720
IS 2
BP 1513
EP 1558
DI 10.1088/0004-637X/720/2/1513
PG 46
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647ND
UT WOS:000281624300049
ER
PT J
AU Dauphas, N
Remusat, L
Chen, JH
Roskosz, M
Papanastassiou, DA
Stodolna, J
Guan, Y
Ma, C
Eiler, JM
AF Dauphas, N.
Remusat, L.
Chen, J. H.
Roskosz, M.
Papanastassiou, D. A.
Stodolna, J.
Guan, Y.
Ma, C.
Eiler, J. M.
TI NEUTRON-RICH CHROMIUM ISOTOPE ANOMALIES IN SUPERNOVA NANOPARTICLES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE meteorites, meteors, meteoroids; nuclear reactions, nucleosynthesis,
abundances; protoplanetary disks; supernovae: general
ID EARLY SOLAR-SYSTEM; X-RAY-MICROANALYSIS; IA SUPERNOVAE; MASSIVE STARS;
PRESOLAR GRAINS; ABUNDANCE STRATIFICATION; CARBONACEOUS CHONDRITES;
S-PROCESS; NUCLEOSYNTHESIS; ALLENDE
AB Neutron-rich isotopes with masses near that of iron are produced in Type Ia and II supernovae (SNeIa and SNeII). Traces of such nucleosynthesis are found in primitive meteorites in the form of variations in the isotopic abundance of (54)Cr, the most neutron-rich stable isotope of chromium. The hosts of these isotopic anomalies must be presolar grains that condensed in the outflows of SNe, offering the opportunity to study the nucleosynthesis of iron-peak nuclei in ways that complement spectroscopic observations and can inform models of stellar evolution. However, despite almost two decades of extensive search, the carrier of (54)Cr anomalies is still unknown, presumably because it is fine grained and is chemically labile. Here, we identify in the primitive meteorite Orgueil the carrier of (54)Cr anomalies as nanoparticles (<100 nm), most likely spinels that show large enrichments in (54)Cr relative to solar composition ((54)Cr/(52)Cr ratio >3.6 x solar). Such large enrichments in (54)Cr can only be produced in SNe. The mineralogy of the grains supports condensation in the O/Ne-O/C zones of an SNII, although a Type Ia origin cannot be excluded. We suggest that planetary materials incorporated different amounts of these nanoparticles, possibly due to late injection by a nearby SN that also delivered (26)Al and (60)Fe to the solar system. This idea explains why the relative abundance of (54)Cr and other neutron-rich isotopes vary between planets and meteorites. We anticipate that future isotopic studies of the grains identified here will shed new light on the birth of the solar system and the conditions in SNe.
C1 [Dauphas, N.] Univ Chicago, Dept Geophys Sci, Origins Lab, Chicago, IL 60637 USA.
[Dauphas, N.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Dauphas, N.; Remusat, L.; Papanastassiou, D. A.; Guan, Y.; Ma, C.; Eiler, J. M.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.
[Remusat, L.] Museum Natl Hist Nat, CNRS, Lab Mineral & Cosmochim Museum, UMR 7202, F-75231 Paris, France.
[Chen, J. H.; Papanastassiou, D. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Roskosz, M.; Stodolna, J.] Univ Lille 1, CNRS, Unite Mat & Transformat, UMR 8207, F-59655 Villeneuve Dascq, France.
RP Dauphas, N (reprint author), Univ Chicago, Dept Geophys Sci, Origins Lab, 5734 S Ellis Ave, Chicago, IL 60637 USA.
EM dauphas@uchicago.edu
RI Dauphas, Nicolas/E-4568-2011; Remusat, Laurent/A-8298-2016; IMPMC,
Geobio/F-8819-2016
FU Conseil Regional du Nord-Pas de Calais; European Regional Development
Fund (ERDF); Institut National des Sciences de l'Univers (INSU, CNRS);
NASA Cosmochemistry; Packard fellowship; France Chicago Center;
California Institute of Technology; NASA; NSF [NNX09AG59G, EAR-0820807]
FX Discussions with B. S. Meyer, F. K. Thielemann, T. Rauscher, R. Yokochi,
A. M. Davis, and P. R. Craddock were appreciated. We thank T. Stephan
and F.J. Stadermann for their help in our attempt to acquire Auger data
on the 54Cr-rich grains. Constructive comments from an
anonymous referee greatly improved the manuscript. The TEM national
facility in Lille (France) is supported by the Conseil Regional du
Nord-Pas de Calais, the European Regional Development Fund (ERDF), and
the Institut National des Sciences de l'Univers (INSU, CNRS). J.H.C. and
the laboratories at JPL were supported by NASA Cosmochemistry. This work
was supported by a Packard fellowship, the France Chicago Center, a
Moore Distinguished Scholarship at the California Institute of
Technology, and NASA and NSF through grants NNX09AG59G and EAR-0820807
to N.D.
NR 73
TC 67
Z9 69
U1 1
U2 23
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 10
PY 2010
VL 720
IS 2
BP 1577
EP 1591
DI 10.1088/0004-637X/720/2/1577
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647ND
UT WOS:000281624300052
ER
PT J
AU Hathi, NP
Ryan, RE
Cohen, SH
Yan, H
Windhorst, RA
McCarthy, PJ
O'Connell, RW
Koekemoer, AM
Rutkowski, MJ
Balick, B
Bond, HE
Calzetti, D
Disney, MJ
Dopita, MA
Frogel, JA
Hall, DNB
Holtzman, JA
Kimble, RA
Paresce, F
Saha, A
Silk, JI
Trauger, JT
Walker, AR
Whitmore, BC
Young, ET
AF Hathi, N. P.
Ryan, R. E., Jr.
Cohen, S. H.
Yan, H.
Windhorst, R. A.
McCarthy, P. J.
O'Connell, R. W.
Koekemoer, A. M.
Rutkowski, M. J.
Balick, B.
Bond, H. E.
Calzetti, D.
Disney, M. J.
Dopita, M. A.
Frogel, Jay A.
Hall, D. N. B.
Holtzman, J. A.
Kimble, R. A.
Paresce, F.
Saha, A.
Silk, J. I.
Trauger, J. T.
Walker, A. R.
Whitmore, B. C.
Young, E. T.
TI UV-DROPOUT GALAXIES IN THE GOODS-SOUTH FIELD FROM WFC3 EARLY RELEASE
SCIENCE OBSERVATIONS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: evolution; galaxies: high-redshift; galaxies: luminosity
function, mass function
ID LYMAN-BREAK GALAXIES; ULTRA DEEP FIELD; HIGH-REDSHIFT GALAXIES;
STAR-FORMING GALAXIES; STELLAR MASS DENSITY; TO 8 GALAXIES; LUMINOSITY
FUNCTION; FORMATION HISTORY; SPECTROSCOPY; ULTRAVIOLET
AB We combine new high sensitivity ultraviolet (UV) imaging from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) with existing deep HST/Advanced Camera for Surveys optical images from the Great Observatories Origins Deep Survey (GOODS) program to identify UV-dropouts, which are Lyman break galaxy (LBG) candidates at z similar or equal to 1-3. These new HST/WFC3 observations were taken over 50 arcmin(2) in the GOODS-South field as a part of the Early Release Science program. The uniqueness of these new UV data is that they are observed in three UV/optical (WFC3 UVIS) channel filters (F225W, F275W, and F336W), which allows us to identify three different sets of UV-dropout samples. We apply Lyman break dropout selection criteria to identify F225W-, F275W-, and F336W-dropouts, which are z similar or equal to 1.7, 2.1, and 2.7 LBG candidates, respectively. We use multi-wavelength imaging combined with available spectroscopic and photometric redshifts to carefully access the validity of our UV-dropout candidates. Our results are as follows: (1) these WFC3 UVIS filters are very reliable in selecting LBGs with z similar or equal to 2.0, which helps to reduce the gap between the well-studied z greater than or similar to 3 and z similar to 0 regimes; (2) the combined number counts with average redshift z similar or equal to 2.2 agree very well with the observed change in the surface densities as a function of redshift when compared with the higher redshift LBG samples; and (3) the best-fit Schechter function parameters from the rest-frame UV luminosity functions at three different redshifts fit very well with the evolutionary trend of the characteristic absolute magnitude, M*, and the faint-end slope, alpha, as a function of redshift. This is the first study to illustrate the usefulness of the WFC3 UVIS channel observations to select z less than or similar to 3 LBGs. The addition of the new WFC3 on the HST has made it possible to uniformly select LBGs from z similar or equal to 1 to z similar or equal to 9 and significantly enhance our understanding of these galaxies using HST sensitivity and resolution.
C1 [Hathi, N. P.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA.
[Ryan, R. E., Jr.] Univ Calif Davis, Dept Phys & Astron, Davis, CA 92616 USA.
[Cohen, S. H.; Windhorst, R. A.; Rutkowski, M. J.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA.
[Yan, H.] Ohio State Univ, Ctr Cosmol & AstroParticle Phys, Columbus, OH 43210 USA.
[McCarthy, P. J.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA.
[O'Connell, R. W.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA.
[Koekemoer, A. M.; Bond, H. E.; Whitmore, B. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Balick, B.] Univ Washington, Dept Astron, Seattle, WA 98195 USA.
[Calzetti, D.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA.
[Disney, M. J.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
[Dopita, M. A.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia.
[Frogel, Jay A.] Assoc Univ Res Astron, Washington, DC 20005 USA.
[Hall, D. N. B.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
[Holtzman, J. A.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA.
[Kimble, R. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Paresce, F.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-40129 Bologna, Italy.
[Saha, A.] Natl Opt Astron Observ, Tucson, AZ 85726 USA.
[Silk, J. I.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England.
[Trauger, J. T.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA.
[Walker, A. R.] Cerro Tololo Interamer Observ, La Serena, Chile.
[Young, E. T.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Hathi, NP (reprint author), Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA.
EM Nimish.Hathi@ucr.edu
RI Kimble, Randy/D-5317-2012; Dopita, Michael/P-5413-2014; Hathi,
Nimish/J-7092-2014;
OI Koekemoer, Anton/0000-0002-6610-2048; Dopita,
Michael/0000-0003-0922-4986; Hathi, Nimish/0000-0001-6145-5090; silk,
joe/0000-0002-1566-8148
FU Space Telescope Science Institute; Space Telescope Science Institute
[11359]; NASA [NAS 5-26555]
FX We thank the referee for helpful comments and suggestions that
significantly improved this paper. We thank M. Nonino, C. Ly, and their
collaborators for providing their LBG number counts. This paper is based
on Early Release Science observations made by the WFC3 Scientific
Oversight Committee. We are grateful to the Director of the Space
Telescope Science Institute for awarding Director's Discretionary time
for this program. Finally, we are deeply indebted to the brave
astronauts of STS-125 for rejuvenating HST. Support for program 11359
was provided by the NASA through a grant from the Space Telescope
Science Institute, which is operated by the Association of Universities
for Research in Astronomy, Inc., under the NASA contract NAS 5-26555.
NR 44
TC 45
Z9 45
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 10
PY 2010
VL 720
IS 2
BP 1708
EP 1716
DI 10.1088/0004-637X/720/2/1708
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647ND
UT WOS:000281624300063
ER
PT J
AU Champion, DJ
Hobbs, GB
Manchester, RN
Edwards, RT
Backer, DC
Bailes, M
Bhat, NDR
Burke-Spolaor, S
Coles, W
Demorest, PB
Ferdman, RD
Folkner, WM
Hotan, AW
Kramer, M
Lommen, AN
Nice, DJ
Purver, MB
Sarkissian, JM
Stairs, IH
van Straten, W
Verbiest, JPW
Yardley, DRB
AF Champion, D. J.
Hobbs, G. B.
Manchester, R. N.
Edwards, R. T.
Backer, D. C.
Bailes, M.
Bhat, N. D. R.
Burke-Spolaor, S.
Coles, W.
Demorest, P. B.
Ferdman, R. D.
Folkner, W. M.
Hotan, A. W.
Kramer, M.
Lommen, A. N.
Nice, D. J.
Purver, M. B.
Sarkissian, J. M.
Stairs, I. H.
van Straten, W.
Verbiest, J. P. W.
Yardley, D. R. B.
TI MEASURING THE MASS OF SOLAR SYSTEM PLANETS USING PULSAR TIMING
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE planets and satellites: general; planets and satellites: individual
(Jupiter); pulsars: general
ID GRAVITY-FIELD; TRACKING DATA; EPHEMERIS; PACKAGE; TEMPO2; MODEL
AB High-precision pulsar timing relies on a solar system ephemeris in order to convert times of arrival (TOAs) of pulses measured at an observatory to the solar system barycenter. Any error in the conversion to the barycentric TOAs leads to a systematic variation in the observed timing residuals; specifically, an incorrect planetary mass leads to a predominantly sinusoidal variation having a period and phase associated with the planet's orbital motion about the Sun. By using an array of pulsars (PSRs J0437-4715, J1744-1134, J1857+0943, J1909-3744), the masses of the planetary systems from Mercury to Saturn have been determined. These masses are consistent with the best-known masses determined by spacecraft observations, with the mass of the Jovian system, 9.547921(2) x 10(-4) M(circle dot), being significantly more accurate than the mass determined from the Pioneer and Voyager spacecraft, and consistent with but less accurate than the value from the Galileo spacecraft. While spacecraft are likely to produce the most accurate measurements for individual solar system bodies, the pulsar technique is sensitive to planetary system masses and has the potential to provide the most accurate values of these masses for some planets.
C1 [Champion, D. J.; Hobbs, G. B.; Manchester, R. N.; Edwards, R. T.; Burke-Spolaor, S.; Sarkissian, J. M.; Yardley, D. R. B.] Australia Telescope Natl Facil, CSIRO Astron & Space Sci, Epping, NSW 1710, Australia.
[Champion, D. J.; Kramer, M.; Verbiest, J. P. W.] Max Planck Inst Radioastron, D-53121 Bonn, Germany.
[Edwards, R. T.] Kilmore Int Sch, Kilmore, Vic 3764, Australia.
[Backer, D. C.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Backer, D. C.] Univ Calif Berkeley, Radio Astron Lab, Berkeley, CA 94720 USA.
[Bailes, M.; Bhat, N. D. R.; Burke-Spolaor, S.; van Straten, W.] Swinburne Univ Technol, Hawthorn, Vic 3122, Australia.
[Coles, W.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Demorest, P. B.] Natl Radio Astron Observ, Charlottesville, VA 22901 USA.
[Ferdman, R. D.; Purver, M. B.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England.
[Folkner, W. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Hotan, A. W.] Curtin Univ, Curtin Inst Radio Astron, Bentley, WA 6102, Australia.
[Lommen, A. N.] Franklin & Marshall Coll, Lancaster, PA 17604 USA.
[Nice, D. J.] Lafayette Coll, Dept Phys, Easton, PA 18042 USA.
[Stairs, I. H.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
[Yardley, D. R. B.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia.
RP Champion, DJ (reprint author), Australia Telescope Natl Facil, CSIRO Astron & Space Sci, POB 76, Epping, NSW 1710, Australia.
EM champion@pulsarastronomy.net
RI Bhat, Ramesh/B-7396-2013;
OI Champion, David/0000-0003-1361-7723; Nice, David/0000-0002-6709-2566;
van Straten, Willem/0000-0003-2519-7375
FU Australian Research Council Federation [FF0348478]; Australian Research
Council [DP0878388]; NSF [AST-0647820, AST-0748580]; Commonwealth of
Australia
FX We thank R. A. Jacobson for useful information about the planetary mass
determinations, and F. A. Jenet, S. Oslowski, E. Splaver, K. Xilouris,
and X. P. You for assistance with the observations and analysis. We also
thank the referee for constructive comments. This work is undertaken as
part of the Parkes Pulsar Timing Array project which was supported by
R.N.M.'s Australian Research Council Federation Fellowship (FF0348478).
G. H. is the recipient of an Australian Research Council QEII Fellowship
(DP0878388), D.N. is the recipient of an NSF grant (AST-0647820) and A.
L. is the recipient of a National Science Foundation CAREER award
(AST-0748580). Pulsar research at UBC is funded by an NSERC Discovery
Grant. The Parkes radio telescope is part of the Australia Telescope,
which is funded by the Commonwealth of Australia for operation as a
National Facility managed by the Commonwealth Scientific and Industrial
Research Organisation.
NR 21
TC 38
Z9 39
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD SEP 10
PY 2010
VL 720
IS 2
BP L201
EP L205
DI 10.1088/2041-8205/720/2/L201
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647HX
UT WOS:000281610200015
ER
PT J
AU Matranga, M
Drake, JJ
Kashyap, VL
Marengo, M
Kuchner, MJ
AF Matranga, M.
Drake, J. J.
Kashyap, V. L.
Marengo, M.
Kuchner, M. J.
TI CLOSE BINARIES WITH INFRARED EXCESS: DESTROYERS OF WORLDS?
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE binaries: close; circumstellar matter; infrared: stars; stars:
individual (AR Psc, II Peg, UX Ari)
ID RS CANUM-VENATICORUM; SUN-LIKE; DEBRIS DISKS; PHOTOMETRIC-OBSERVATIONS;
RESONANT SIGNATURES; PLANETARY SYSTEMS; ACTIVE STARS; SPITZER MIPS; WARM
DUST; II PEGASI
AB We present the results of a Spitzer photometric investigation into the IR excesses of close binary systems. In a sample of 10 objects, excesses in Infrared Array Camera and MIPS24 bands implying the presence of warm dust are found for 3. For two objects, we do not find excesses reported in earlier IRAS studies. We discuss the results in the context of the scenario suggested by Rhee and co-workers, in which warm dust is continuously created by destructive collisions between planetary bodies. A simple numerical model for the steady-state distribution of dust in one IR excess system shows a central clearing of radius 0.22 AU caused by dynamical perturbations from the binary star. This is consistent with the size of the central clearing derived from the Spitzer spectral energy distribution. We conclude that close binaries could be efficient "destroyers of worlds" and lead to destabilization of the orbits of their planetary progeny by magnetically driven angular momentum loss and secular shrinkage of the binary separation.
C1 [Matranga, M.; Drake, J. J.; Kashyap, V. L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Marengo, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Kuchner, M. J.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab Greenbelt, Greenbelt, MD 20771 USA.
RP Matranga, M (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
RI Kuchner, Marc/E-2288-2012
FU Spitzer [1279130]; NASA [NAS8-39073, 1407]
FX M. Matranga was supported by Spitzer contract 1279130. J.J.D. and V. L.
K. were funded by the NASA contract NAS8-39073 to the Chandra X-ray
Center. Observations were made with Spitzer, operated by JPL under the
NASA contract 1407.
NR 47
TC 5
Z9 6
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD SEP 10
PY 2010
VL 720
IS 2
BP L164
EP L168
DI 10.1088/2041-8205/720/2/L164
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647HX
UT WOS:000281610200008
ER
PT J
AU Sada, PV
Deming, D
Jackson, B
Jennings, DE
Peterson, SW
Haase, F
Bays, K
O'Gorman, E
Lundsford, A
AF Sada, Pedro V.
Deming, Drake
Jackson, Brian
Jennings, Donald E.
Peterson, Steven W.
Haase, Flynn
Bays, Kevin
O'Gorman, Eamon
Lundsford, Alan
TI RECENT TRANSITS OF THE SUPER-EARTH EXOPLANET GJ 1214b
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE eclipses; infrared: planetary systems; planets and satellites:
fundamental parameters; techniques: photometric
ID PLANET
AB We report recent ground-based photometry of the transiting super-Earth exoplanet GJ 1214b at several wavelengths, including the infrared near 1.25 mu m (J band). We observed a J-band transit with the FLAMINGOS infrared imager and the 2.1 m telescope on Kitt Peak, and we observed several optical transits using a 0.5 m telescope on Kitt Peak and the 0.36 m Universidad de Monterrey Observatory telescope. Our high-precision J-band observations exploit the brightness of the M dwarf host star at this infrared wavelength as compared with the optical and are significantly less affected by stellar activity and limb darkening. We fit the J-band transit to obtain an independent determination of the planetary and stellar radii. Our radius for the planet (2.61(-0.11)(+0.30)R(circle plus)) is in excellent agreement with the discovery value reported by Charbonneau et al. based on optical data. We demonstrate that the planetary radius is insensitive to degeneracies in the fitting process. We use all of our observations to improve the transit ephemeris, finding P = 1.5804043 +/- 0.0000005 days and T(0) = 2454964.94390 +/- 0.00006 BJD.
C1 [Sada, Pedro V.] Univ Monterrey, Monterrey, Mexico.
[Deming, Drake; Jackson, Brian; Jennings, Donald E.] NASA, Goddard Space Flight Ctr, Planetary Syst Lab, Greenbelt, MD 20771 USA.
[Peterson, Steven W.; Haase, Flynn; Bays, Kevin] Kitt Peak Natl Observ, Natl Opt Astron Observ, Tucson, AZ 85719 USA.
[O'Gorman, Eamon] Univ Dublin Trinity Coll, Dublin 2, Ireland.
[Lundsford, Alan] Catholic Univ, Amer & Planetary Syst Lab, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Sada, PV (reprint author), Univ Monterrey, Monterrey, Mexico.
RI Jennings, Donald/D-7978-2012
NR 9
TC 20
Z9 21
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD SEP 10
PY 2010
VL 720
IS 2
BP L215
EP L218
DI 10.1088/2041-8205/720/2/L215
PG 4
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647HX
UT WOS:000281610200018
ER
PT J
AU Snow, TP
Destree, JD
Burgh, EB
Ferguson, RM
Danforth, CW
Cordiner, M
AF Snow, Theodore P.
Destree, Joshua D.
Burgh, Eric B.
Ferguson, Ryan M.
Danforth, Charles W.
Cordiner, Martin
TI COSMIC ORIGINS SPECTROGRAPH OBSERVATIONS OF TRANSLUCENT CLOUDS: Cyg OB2
8A
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE dust, extinction; ISM: abundances; ISM: atoms; ISM: molecules;
ultraviolet: ISM
ID RESONANCE-ABSORPTION LINES; INTERSTELLAR-MEDIUM; WAVELENGTHS LONGWARD;
MOLECULAR CLOUDS; LYMAN LIMIT; ATOMIC DATA; STARS; TEMPERATURES;
EMISSION; ELEMENTS
AB Data from the Cosmic Origins Spectrograph ( COS) are presented for the first highly reddened target (Cyg OB2 8A) under the COS Science Team's guaranteed time allocation. Column densities of ionic, atomic, and molecular species are reported and implications are discussed. Data from Cyg OB2 8A demonstrate the ability to analyze highly reddened interstellar sight lines with the COS that were unavailable to previous UV instruments. Measured column densities indicate that the Cyg OB2 8A line of sight contains multiple diffuse clouds rather than a dominant translucent cloud.
C1 [Snow, Theodore P.; Destree, Joshua D.; Burgh, Eric B.; Ferguson, Ryan M.; Danforth, Charles W.] Univ Colorado, Ctr Astrophys & Space Astron, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.
[Cordiner, Martin] NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, Greenbelt, MD 20771 USA.
RP Snow, TP (reprint author), Univ Colorado, Ctr Astrophys & Space Astron, Dept Astrophys & Planetary Sci, Campus Box 391, Boulder, CO 80309 USA.
EM tsnow@casa.colorado.edu; destree@colorado.edu; eric.burgh@colorado.edu;
ryan.m.ferguson@colorado.edu; danforth@casa.colorado.edu;
martin.cordiner@nasa.gov
FU NASA [NNX08AC14G]
FX This research was supported by NASA grant NNX08AC14G. We thank the other
members of the COS Science Team for developing data co-addition
techniques. We thank Kevin France for his helpful comments, George
Herbig for providing the raw Keck HIRES data, and Rachel Destree for her
constant editing help.; Based on observations made with the NASA/ESA
Hubble Space Telescope, obtained from the Data Archive at the Space
Telescope Science Institute, which is operated by the Association of
Universities for Research in Astronomy, Inc., under NASA contract NAS
5-26555.
NR 25
TC 2
Z9 2
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD SEP 10
PY 2010
VL 720
IS 2
BP L190
EP L194
DI 10.1088/2041-8205/720/2/L190
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647HX
UT WOS:000281610200013
ER
PT J
AU Davis, S
Hlavka, D
Jensen, E
Rosenlof, K
Yang, QO
Schmidt, S
Borrmann, S
Frey, W
Lawson, P
Voemel, H
Bui, TP
AF Davis, Sean
Hlavka, Dennis
Jensen, Eric
Rosenlof, Karen
Yang, Qiong
Schmidt, Sebastian
Borrmann, Stephan
Frey, Wiebke
Lawson, Paul
Voemel, Holger
Bui, T. P.
TI In situ and lidar observations of tropopause subvisible cirrus clouds
during TC4
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID STRATOSPHERIC WATER-VAPOR; TROPICAL TROPOPAUSE; MICROPHYSICAL
PROPERTIES; RADIATIVE PROPERTIES; ACCURATE PARAMETERIZATION; CLIMATE
MODELS; ICE CRYSTALS; NASA ER-2; PART I; AIRCRAFT
AB During the Tropical Composition, Clouds, and Climate Coupling (TC4) experiment in July-August 2007, the NASA WB-57F and ER-2 aircraft made coordinated flights through a tropopause subvisible cirrus (SVC) layer off the Pacific Coast of Central America. The ER-2 aircraft was equipped with a remote sensing payload that included the cloud physics lidar (CPL). The WB-57F payload included cloud microphysical and trace gas measurements, and the aircraft made four vertical profiles through the SVC layer shortly after the ER-2 flew over. The in situ and remotely sensed data are used to quantify the meteorological and microphysical properties of the SVC layer, and these data are compared to the limited set of SVC measurements that have previously been made. It is found that the layer encountered was particularly tenuous, with optical depths (tau) between about 10(-4) and 10(-3). From the in situ and other meteorological data, radiative heating rate perturbations of similar to 0.05-0.1 K day(-1) are calculated. These heating rates are smaller than previous estimates for tropopause SVC, consistent with the smaller tau in the present study. Coverage statistics based on CPL data from other TC4 flights indicate that this cloud was not an outlier among the sampled population. SVC with properties similar to the one presented here are below the detection limit of space-based lidars such as CALIPSO, and a comparison with the TC4 statistics suggests that a majority (> 50%) of tropopause SVC (with tau < 0.01) could be unaccounted for in studies using CALIPSO data.
C1 [Davis, Sean; Rosenlof, Karen] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO 80305 USA.
[Davis, Sean] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Hlavka, Dennis] NASA, Goddard Space Flight Ctr, Sci Syst & Applicat Inc, Greenbelt, MD 20771 USA.
[Jensen, Eric; Bui, T. P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Yang, Qiong] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA.
[Schmidt, Sebastian] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA.
[Borrmann, Stephan; Frey, Wiebke] Johannes Gutenberg Univ Mainz, Inst Phys Atmosphere, D-55099 Mainz, Germany.
[Borrmann, Stephan] Max Planck Inst Chem, Particle Chem Dept, D-55128 Mainz, Germany.
[Lawson, Paul] Stratton Pk Engn Co Inc, Boulder, CO 80301 USA.
[Voemel, Holger] Deutsch Wetterdienst, Meteorol Observ Lindenberg, Richard Assmann Observ, D-15848 Tauche, Lindenberg, Germany.
RP Davis, S (reprint author), NOAA, Div Chem Sci, Earth Syst Res Lab, 325 S Broadway, Boulder, CO 80305 USA.
EM sean.davis@colorado.edu
RI Borrmann, Stephan/E-3868-2010; Davis, Sean/C-9570-2011; Rosenlof,
Karen/B-5652-2008; Frey, Wiebke/G-2058-2014; SCHMIDT, KONRAD
SEBASTIAN/C-1258-2013; Manager, CSD Publications/B-2789-2015;
OI Davis, Sean/0000-0001-9276-6158; Rosenlof, Karen/0000-0002-0903-8270;
Frey, Wiebke/0000-0003-4282-1264; SCHMIDT, KONRAD
SEBASTIAN/0000-0003-3899-228X; Hlavka, Dennis/0000-0002-2976-7243
FU NASA [NNX07AL20G]; NOAA
FX The authors would like to acknowledge the efforts of the TC4 mission
planners and instrument investigators, as well as the pilots and staff
of the WB-57F and ER-2 aircraft. The authors would also like to
acknowledge the CPL instrument team, led by P. I. Matt McGill. S. M. D.
would like to thank Karl Froyd, Bob Portmann, and Anthony Bucholtz for
helpful discussions and reviews. S. M. D. acknowledges support from
Linnea Avallone under NASA Radiation Sciences Program grant NNX07AL20G,
and the NOAA atmospheric composition and climate program.
NR 53
TC 34
Z9 34
U1 2
U2 18
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 10
PY 2010
VL 115
AR D00J17
DI 10.1029/2009JD013093
PG 14
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 649GH
UT WOS:000281755600002
ER
PT J
AU Gautam, R
Hsu, NC
Lau, KM
AF Gautam, Ritesh
Hsu, N. Christina
Lau, K. -M.
TI Premonsoon aerosol characterization and radiative effects over the
Indo-Gangetic Plains: Implications for regional climate warming
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID BLACK CARBON AEROSOLS; ASIAN SUMMER MONSOON; ENERGY SYSTEM CERES;
OPTICAL-PROPERTIES; TIBETAN PLATEAU; INDIAN MONSOON; ATMOSPHERIC
AEROSOLS; TEMPERATURE TRENDS; HYDROLOGICAL CYCLE; DUST
AB The Himalayas have a profound effect on the South Asian climate and the regional hydrological cycle, as it forms a barrier for the strong monsoon winds and serves as an elevated heat source, thus controlling the onset and distribution of precipitation during the Indian summer monsoon. Recent studies have suggested that radiative heating by absorbing aerosols, such as dust and black carbon over the Indo-Gangetic Plains (IGP) and slopes of the Himalayas, may significantly accelerate the seasonal warming of the Hindu Kush-Himalayas-Tibetan Plateau (HKHT) and influence the subsequent evolution of the summer monsoon. This paper presents a detailed characterization of aerosols over the IGP and their radiative effects during the premonsoon season (April-May-June) when dust transport constitutes the bulk of the regional aerosol loading, using ground radiometric and spaceborne observations. During the dust-laden period, there is a strong response of surface shortwave flux to aerosol absorption indicated by the diurnally averaged forcing efficiency of -70 Wm(-2) per unit optical depth. The simulated aerosol single-scattering albedo, constrained by surface flux and aerosol measurements, is estimated to be 0.89 +/- 0.01 (at similar to 550 nm) with diurnal mean surface and top-of-atmosphere forcing values ranging from -11 to -79.8 Wm(-2) and + 1.4 to + 12 Wm(-2), respectively, for the premonsoon period. The model-simulated solar heating rate profile peaks in the lower troposphere with enhanced heating penetrating into the middle troposphere (5-6 km), caused by vertically extended aerosols over the IGP with peak altitude of similar to 5 km as indicated by spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization observations. On a long-term climate scale, our analysis, on the basis of microwave satellite measurements of tropospheric temperatures from 1979 to 2007, indicates accelerated annual mean warming rates found over the Himalayan-Hindu Kush region (0.21 degrees C/decade +/- 0.08 degrees C/decade) and underscores the potential role of enhanced aerosol solar absorption in the maximum warming localized over the western Himalayas (0.26 degrees C/decade +/- 0.09 degrees C/decade) that significantly exceed the entire HKHT and global warming rates. We believe the accelerated warming rates reported here are critical to both the South Asian summer monsoon and hydro-glaciological resource variability in the Himalayan-Hindu Kush snowpack and therefore to the densely populated downstream regions.
C1 [Gautam, Ritesh] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA.
[Gautam, Ritesh; Hsu, N. Christina; Lau, K. -M.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA.
RP Gautam, R (reprint author), Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA.
EM ritesh.gautam@nasa.gov
RI Gautam, Ritesh/E-9776-2010; Hsu, N. Christina/H-3420-2013; Lau, William
/E-1510-2012
OI Gautam, Ritesh/0000-0002-2177-9346; Lau, William /0000-0002-3587-3691
FU NASA
FX This work is supported by grant from the NASA EOS Program, managed by
Hal Maring. We thank the various agencies, portals, and science teams
for making the ground and satellite data used in this study available in
public domain, namely, AERONET, CALIPSO, CERES, MODIS, and MSU/RSS.
Efforts of the AERONET PIs (B. Holben and R. Singh) in establishing and
maintaining the Kanpur site are also acknowledged. We thank the
anonymous reviewers for the useful comments in improving an earlier
version of the manuscript.
NR 85
TC 81
Z9 81
U1 2
U2 15
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 10
PY 2010
VL 115
AR D17208
DI 10.1029/2010JD013819
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 649GH
UT WOS:000281755600007
ER
PT J
AU Petropavlovskikh, I
Ray, E
Davis, SM
Rosenlof, K
Manney, G
Shetter, R
Hall, SR
Ullmann, K
Pfister, L
Hair, J
Fenn, M
Avery, M
Thompson, AM
AF Petropavlovskikh, I.
Ray, E.
Davis, S. M.
Rosenlof, K.
Manney, G.
Shetter, R.
Hall, S. R.
Ullmann, K.
Pfister, L.
Hair, J.
Fenn, M.
Avery, M.
Thompson, A. M.
TI Low-ozone bubbles observed in the tropical tropopause layer during the
TC4 campaign in 2007
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID COUNTERFLOW VIRTUAL IMPACTOR; AIR-MASS CHARACTERISTICS; MONITORING
INSTRUMENT; TRAJECTORY CALCULATIONS; DEEP CONVECTION; PACIFIC-OCEAN;
POLAR VORTEX; SATELLITE; CLIMATOLOGY; OZONESONDES
AB In the summer of 2007, the NASA DC-8 aircraft took part in the Tropical Composition, Cloud and Climate Coupling campaign based in San Jose, Costa Rica. During this campaign, multiple in situ and remote-sensing instruments aboard the aircraft measured the atmospheric composition of the tropical tropopause layer (TTL) in the equatorial region around Central and South America. During the 17 July flight off the Ecuadorian coast, well-defined "bubbles" of anomalously low-ozone concentration (less than 75 ppbv) were detected above the aircraft in the TTL at the altitude near 365 K (between 14 and 16 km) and at similar to 3 degrees S and similar to 82 degrees W. Backward trajectories from meteorological analyses and the aircraft in situ measurements suggest that the ozone-depleted air mass originated from deep convection in the equatorial eastern Pacific and/or Panama Bight regions at least 5 days before observation by the DC-8; this was not a feature produced by local convection. Given uncertainties known in regard to trajectories calculated from global reanalysis, it is not possible to identify the exact convective system that produced this particular low-ozone anomaly, but only the general origin from a region of high convective activity. However, the fact that the feature apparently maintained its coherency for at least 5 days suggests a significant contribution to the chemical composition of the tropical upper troposphere portion of the TTL from convective systems followed by quasi-horizontal transport. It also suggests that mixing time scales for these relatively small spatial features are greater than 5 days.
C1 [Petropavlovskikh, I.; Ray, E.; Davis, S. M.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Petropavlovskikh, I.; Ray, E.; Davis, S. M.; Rosenlof, K.] NOAA, Earth Syst Res Lab, GMD, Boulder, CO 80303 USA.
[Manney, G.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Manney, G.] New Mexico Inst Min & Technol, Socorro, NM 87801 USA.
[Shetter, R.; Hall, S. R.; Ullmann, K.] Natl Ctr Atmospher Res, Div Atmospher Chem, ESSL, Boulder, CO 80303 USA.
[Pfister, L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Hair, J.; Avery, M.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Fenn, M.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA.
[Thompson, A. M.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA.
RP Petropavlovskikh, I (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
EM irina.petro@noaa.gov; anne@met.psu.edu
RI Davis, Sean/C-9570-2011; Manager, CSD Publications/B-2789-2015;
Rosenlof, Karen/B-5652-2008; Ray, Eric/D-5941-2013; Thompson, Anne
/C-3649-2014
OI Davis, Sean/0000-0001-9276-6158; Rosenlof, Karen/0000-0002-0903-8270;
Ray, Eric/0000-0001-8727-9849; Thompson, Anne /0000-0002-7829-0920
FU NASA; Radiation Science Program; Tropospheric Chemistry Program
FX This work was supported by the NASA Headquarters Atmospheric Composition
Focus Area including the Upper Atmospheric Research Program (Michael
Kurylo, program manager), the Radiation Science Program (Hal Maring,
program manager), and the Tropospheric Chemistry Program (Jim Crawford,
program manager). We gratefully acknowledge helpful discussions with R.
McPeters (NASA, Goddard), K. Chance (Harvard University), and E.
Hilsenrath (NASA Headquarters). We also emphasize the crucial
contributions of the pilots and crew of the NASA DC-8 aircrafts. We
extend our gratitude to mission scientists (Brian Toon and Dave Starr)
and DC-8 platform scientists (Mark Schoeberl and Paul Wennberg) for
planning and successfully executing the TC4 campaign. We greatly
appreciate support from the Aura HIRDLS, OMI, and MLS teams for
providing us with the coincident data. We extend our special thanks to
J. Gille and S. Karol (HIRDLS, NCAR) for help with data quality,
analysis, and discussion. We also thank Marc Kroon (OMI, KNMI) for help
with the OMI DOAS data analysis, updates, and conscientious figures. The
OMI-TOMS and OMI-DOAS total ozone data were obtained from the NASA
Goddard Earth Sciences (GES) Data and Information Services Center, home
of the GES Distributed Active Archive Center. Work at the Jet Propulsion
Laboratory, California Institute of Technology, was done under contract
with NASA. We extend special thanks to Kurt Severance (NASA, Langley)
and William Daffer (NASA, JPL) for help preparing the 3-D graphics in
record short time. Finally, we acknowledge the hard work by Gary A.
Morris (Valparaiso University) and Alex Bryan and David Lutz (Valparaiso
University undergraduates), who were responsible for all 25 ozonesonde
launches from Las Tablas. Without their effort, we would have no balloon
data from Panama.
NR 58
TC 6
Z9 6
U1 0
U2 11
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 10
PY 2010
VL 115
AR D00J16
DI 10.1029/2009JD012804
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 649GH
UT WOS:000281755600001
ER
PT J
AU Hofmann, DC
AF Hofmann, Douglas C.
TI Shape Memory Bulk Metallic Glass Composites
SO SCIENCE
LA English
DT Editorial Material
ID TENSILE DUCTILITY; MATRIX COMPOSITES; SCIENCE
C1 CALTECH, Jet Prop Lab, Engn & Sci Directorate, Pasadena, CA 91109 USA.
RP Hofmann, DC (reprint author), CALTECH, Jet Prop Lab, Engn & Sci Directorate, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM dch@jpl.nasa.gov
NR 14
TC 85
Z9 86
U1 16
U2 111
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD SEP 10
PY 2010
VL 329
IS 5997
BP 1294
EP 1295
DI 10.1126/science.1193522
PG 2
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 647YR
UT WOS:000281657300023
PM 20829474
ER
PT J
AU Niles, PB
Boynton, WV
Hoffman, JH
Ming, DW
Hamara, D
AF Niles, Paul B.
Boynton, William V.
Hoffman, John H.
Ming, Douglas W.
Hamara, Dave
TI Stable Isotope Measurements of Martian Atmospheric CO2 at the Phoenix
Landing Site
SO SCIENCE
LA English
DT Article
ID ALLAN HILLS 84001; SNC METEORITES; WEATHERING PRODUCTS; VOLATILE
EVOLUTION; CALCIUM-CARBONATE; MARS; OXYGEN; EETA-79001; ALH84001; RATIOS
AB Carbon dioxide is a primary component of the martian atmosphere and reacts readily with water and silicate rocks. Thus, the stable isotopic composition of CO2 can reveal much about the history of volatiles on the planet. The Mars Phoenix spacecraft measurements of carbon isotopes [referenced to the Vienna Pee Dee belemnite (VPDB)] [delta C-13(VPDB) = -2.5 +/- 4.3 per mil (parts per thousand)] and oxygen isotopes [referenced to the Vienna standard mean ocean water (VSMOW)] (delta O-18(VSMOW) = 31.0 +/- 5.7 parts per thousand), reported here, indicate that CO2 is heavily influenced by modern volcanic degassing and equilibration with liquid water. When combined with data from the martian meteorites, a general model can be constructed that constrains the history of water, volcanism, atmospheric evolution, and weathering on Mars. This suggests that low-temperature water-rock interaction has been dominant throughout martian history, carbonate formation is active and ongoing, and recent volcanic degassing has played a substantial role in the composition of the modern atmosphere.
C1 [Niles, Paul B.; Ming, Douglas W.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
[Boynton, William V.; Hamara, Dave] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA.
[Hoffman, John H.] Univ Texas Dallas, Dept Phys, Dallas, TX 75080 USA.
RP Niles, PB (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
EM paul.b.niles@nasa.gov
NR 30
TC 30
Z9 32
U1 1
U2 15
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD SEP 10
PY 2010
VL 329
IS 5997
BP 1334
EP 1337
DI 10.1126/science.1192863
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 647YR
UT WOS:000281657300036
PM 20829484
ER
PT J
AU Yu, FQ
Luo, G
Bates, TS
Anderson, B
Clarke, A
Kapustin, V
Yantosca, RM
Wang, YX
Wu, SL
AF Yu, Fangqun
Luo, Gan
Bates, Timothy S.
Anderson, Bruce
Clarke, Antony
Kapustin, Vladimir
Yantosca, Robert M.
Wang, Yuxuan
Wu, Shiliang
TI Spatial distributions of particle number concentrations in the global
troposphere: Simulations, observations, and implications for nucleation
mechanisms
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID ION-MEDIATED NUCLEATION; ACID-WATER NUCLEATION; SULFURIC-ACID; AEROSOL
CONCENTRATIONS; ULTRAFINE PARTICLES; SIZE DISTRIBUTION; BOUNDARY-LAYER;
MODEL; RATES; EMISSIONS
AB Particle number concentration in the troposphere is an important parameter controlling the climate and health impacts of atmospheric aerosols. We show that nucleation rates and total particle number concentrations in the troposphere, predicted by different nucleation schemes, differ significantly. Our extensive comparisons of simulated results with land-, ship-, and aircraft-based measurements indicate that, among six widely used nucleation schemes involving sulfuric acid, only the ion-mediated nucleation (IMN) scheme can reasonably account for both absolute values (within a factor of similar to 2) and spatial distributions of particle number concentrations in the whole troposphere. Binary homogeneous nucleation (BHN) schemes significantly underpredict particle number concentration in the lower troposphere (below similar to 500 mbar), especially in the boundary layer over major continents (by a factor of up to similar to 10). BHN is also insignificant in the upper troposphere based on a recent kinetically self-consistent nucleation model constrained by multiple independent laboratory data. Previous conclusions about the importance of BHN in the upper troposphere should be revisited. Empirical activation and kinetic nucleation formulas significantly overpredict the particle number concentrations over tropical and subtropical oceans (by a factor of up to similar to 10 in the boundary layer), and the overpredictions extend from ocean surface to around similar to 400 mbar. This study represents the first comprehensive comparison of global particle number simulations with relevant measurements that have a 3-D global spatial coverage. Our results suggest that ion-mediated H2SO4-H2O nucleation appears to dominate over neutral H2SO4-H2O nucleation, not only in the lower troposphere but also in the middle and upper troposphere.
C1 [Yu, Fangqun; Luo, Gan] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12203 USA.
[Anderson, Bruce] NASA, Langley Res Ctr, Sci Directorate, Chem & Dynam Branch, Hampton, VA 23681 USA.
[Bates, Timothy S.] Natl Ocean & Atmospher Adm, Pacific Marine Environm Lab, Seattle, WA 98115 USA.
[Clarke, Antony; Kapustin, Vladimir] Univ Hawaii Manoa, Dept Oceanog, Honolulu, HI 96822 USA.
[Wang, Yuxuan] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China.
[Wu, Shiliang] Michigan Technol Univ, Dept Geol & Min Engn & Sci, Houghton, MI 49931 USA.
[Wu, Shiliang] Michigan Technol Univ, Dept Civil & Environm Engn, Houghton, MI 49931 USA.
[Yantosca, Robert M.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA.
RP Yu, FQ (reprint author), SUNY Albany, Atmospher Sci Res Ctr, 251 Fuller Rd, Albany, NY 12203 USA.
EM yfq@asrc.cestm.albany.edu
RI Yu, Fangqun/F-3708-2011; Wang, Yuxuan/C-6902-2014; Yantosca,
Robert/F-7920-2014; Bates, Timothy/L-6080-2016
OI Yu, Fangqun/0000-0003-0874-4883; Wang, Yuxuan/0000-0002-1649-6974;
Yantosca, Robert/0000-0003-3781-1870;
FU NSF [AGS-0942106]; NASA [NNX08AK48G]; EPA [R83428601]
FX This study is supported by the NSF under grant AGS-0942106 and by NASA
under grant NNX08AK48G. S.W. acknowledges funding support from EPA grant
R83428601. The GEOS-Chem model is managed by the Atmospheric Chemistry
Modeling Group at Harvard University with support from the NASA
Atmospheric Chemistry Modeling and Analysis Program.
NR 60
TC 63
Z9 63
U1 6
U2 23
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 9
PY 2010
VL 115
AR D17205
DI 10.1029/2009JD013473
PG 14
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 649GG
UT WOS:000281755500006
ER
PT J
AU O'Byrne, G
Martin, RV
van Donkelaar, A
Joiner, J
Celarier, EA
AF O'Byrne, G.
Martin, R. V.
van Donkelaar, A.
Joiner, J.
Celarier, E. A.
TI Surface reflectivity from the Ozone Monitoring Instrument using the
Moderate Resolution Imaging Spectroradiometer to eliminate clouds:
Effects of snow on ultraviolet and visible trace gas retrievals
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID NORTHERN-HEMISPHERE; SPECTRAL ALBEDO; GOME MEASUREMENTS; TROPOSPHERIC
NO2; COVERED SURFACES; MODIS; PRODUCTS; SPACE; UV; ALGORITHM
AB Satellite retrievals of tropospheric composition from measurements of solar backscatter require accurate information about surface reflectivity. We use clear-sky data from the Ozone Monitoring Instrument (OMI) to determine global surface reflectivity under both snow-covered and snow-free conditions at 354 nm. Clear-sky scenes are determined using cloud and aerosol data from the Moderate Resolution Imaging Spectroradiometer/Aqua satellite instrument that flies 12 min ahead of OMI/Aura. The result is a database of OMI-observed Lambertian equivalent reflectivity (LER) that does not rely on statistical methods to eliminate cloud and aerosol contamination. We apply this database to evaluate previous climatologies of surface reflectivity. Except for regions of seasonal snow cover, agreement is best with a climatology from OMI, which selects the surface reflectivity from a histogram of observed LER (mean difference, 0.0002; standard deviation, 0.011). Three other climatologies of surface reflectivity from Total Ozone Mapping Spectrometer, Global Ozone Monitoring Experiment, and OMI, based on minimum observed LER, are less consistent with our cloud-and aerosol-filtered data set (mean difference, -0.008, 0.012, and -0.002; standard deviation, 0.022, 0.026, and 0.033). Snow increases the sensitivity of solar backscatter measurements at ultraviolet and visible wavelengths to trace gases in the lower troposphere. However, all four existing LER climatologies poorly represent seasonal snow. Surface reflectivity over snow-covered lands depends strongly on the vegetation type covering the surface. The monthly variation of snow-covered reflectivity varies by less than 0.1 in fall and winter. Applying our snow-covered surface reflectivity database to OMI NO2 retrievals could change the retrieved NO2 column by 20%-50% over large regions with seasonal snow cover.
C1 [O'Byrne, G.; Martin, R. V.; van Donkelaar, A.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada.
[Martin, R. V.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Joiner, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Celarier, E. A.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA.
RP O'Byrne, G (reprint author), Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada.
EM randall.martin@dal.ca
RI Joiner, Joanna/D-6264-2012; Martin, Randall/C-1205-2014
OI Martin, Randall/0000-0003-2632-8402
FU NASA; Canadian Foundation for Climate and Atmospheric Science
FX Terry O'Byrne and two anonymous reviewers provided helpful comments that
improved this manuscript. We thank the OMI and MODIS teams as well as
Environment Canada for making their data publicly available. This
research was supported by NASA and the Canadian Foundation for Climate
and Atmospheric Science.
NR 57
TC 10
Z9 10
U1 0
U2 5
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 8
PY 2010
VL 115
AR D17305
DI 10.1029/2009JD013079
PG 13
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 649GF
UT WOS:000281755400002
ER
PT J
AU Abadie, J
Abbott, BP
Abbott, R
Abernathy, M
Accadia, T
Acerneseac, F
Adams, C
Adhikari, R
Ajith, P
Allen, B
Allen, G
Ceron, EA
Amin, RS
Anderson, SB
Anderson, WG
Antonuccia, F
Aoudiaa, S
Arain, MA
Araya, M
Aronsson, M
Arun, KG
Aso, Y
Aston, S
Astonea, P
Atkinson, DE
Aufmuth, P
Aulbert, C
Babak, S
Baker, P
Ballardin, G
Ballmer, S
Barker, D
Barnum, S
Baroneac, F
Barr, B
Barriga, P
Barsotti, L
Barsuglia, M
Barton, MA
Bartos, I
Bassiri, R
Bastarrika, M
Bauchrowitz, J
Bauera, TS
Behnke, B
Beker, MG
Benacquista, M
Bertolini, A
Betzwieser, J
Beveridge, N
Beyersdorf, PT
Bigottaab, S
Bilenko, IA
Billingsley, G
Birch, J
Birindellia, S
Biswas, R
Bitossi, M
Bizouard, MA
Black, E
Blackburn, JK
Blackburn, L
Blair, D
Bland, B
Bloma, M
Blomberg, A
Boccara, C
Bock, O
Bodiya, TP
Bondarescu, R
Bondu, F
Bonelli, L
Bork, R
Born, M
Bose, S
Bosi, L
Boyle, M
Braccini, S
Bradaschia, C
Brady, PR
Braginsky, VB
Brau, JE
Breyer, J
Bridges, DO
Brillet, A
Brinkmann, M
Brisson, V
Britzger, M
Brooks, AF
Brown, DA
Budzynski, R
Bulik, T
Bulten, HJ
Buonanno, A
Burguet-Castell, J
Burmeister, O
Buskulic, D
Byer, RL
Cadonati, L
Cagnoli, G
Calloni, E
Camp, JB
Campagna, E
Campsie, P
Cannizzo, J
Cannon, KC
Canuel, B
Cao, J
Capano, C
Carbognani, F
Caride, S
Caudill, S
Cavagli, M
Cavalier, F
Cavalieri, R
Cella, G
Cepeda, C
Cesarini, E
Chalermsongsak, T
Chalkley, E
Charlton, P
Mottin, EC
Chelkowski, S
Chen, Y
Chincarini, A
Christensen, N
Chua, SSY
Chung, CTY
Clark, D
Clark, J
Clayton, JH
Cleva, F
Coccia, E
Colacino, CN
Colas, J
Colla, A
Colombini, M
Conte, R
Cook, D
Corbitt, TR
Corda, C
Cornish, N
Corsi, A
Costa, CA
Coulon, JP
Coward, D
Coyne, DC
Creighton, JDE
Creighton, TD
Cruise, AM
Culter, RM
Cumming, A
Cunningham, L
Cuoco, E
Dahl, K
Danilishin, SL
Dannenberg, R
D'Antonio, S
Danzmann, K
Dari, A
Das, K
Dattilo, V
Daudert, B
Davier, M
Davies, G
Davis, A
Daw, EJ
Day, R
Dayanga, T
De Rosa, R
Debra, D
Degallaix, J
Del Prete, M
Dergachev, V
DeRosa, R
DeSalvo, R
Devanka, P
Dhurandhar, S
Fiore, L
Di Lieto, A
Di Palma, I
Emilio, MD
Di Virgilio, A
Diaz, M
Dietz, A
Donovan, F
Dooley, KL
Doomes, EE
Dorsher, S
Douglas, ESD
Dragocd, M
Drever, RWP
Driggers, JC
Dueck, J
Dumas, JC
Eberle, T
Edgar, M
Edwards, M
Effler, A
Ehrens, P
Engel, R
Etzel, T
Evans, M
Evans, T
Fafone, V
Fairhurst, S
Fan, Y
Farr, BF
Fazi, D
Fehrmann, H
Feldbaum, D
Ferrante, I
Fidecaro, F
Finn, LS
Fiori, I
Flaminio, R
Flanigan, M
Flasch, K
Foley, S
Forrest, C
Forsi, E
Fotopoulos, N
Fournier, JD
Franc, J
Frasca, S
Frasconi, F
Frede, M
Frei, M
Frei, Z
Freise, A
Frey, R
Fricke, TT
Friedrich, D
Fritschel, P
Frolov, VV
Fulda, P
Fyffe, M
Gammaitoni, L
Garofoli, JA
Garufiab, F
Gemme, G
Genin, E
Gennai, A
Gholami, I
Ghosh, S
Giaime, JA
Giampanis, S
Giardina, KD
Giazotto, A
Gill, C
Goetz, E
Goggin, LM
Gonzalez, G
Gorodetsky, ML
Gossler, S
Gouaty, R
Graef, C
Granata, M
Grant, A
Gras, S
Gray, C
Greenhalgh, RJS
Gretarsson, AM
Greveriea, C
Grosso, R
Grote, H
Grunewald, S
Guidi, GM
Gustafson, EK
Gustafson, R
Hage, B
Hall, P
Hallam, JM
Hammer, D
Hammond, G
Hanks, J
Hanna, C
Hanson, J
Harms, J
Harry, GM
Harry, IW
Harstad, ED
Haughian, K
Hayama, K
Heefner, J
Heitmann, H
Hello, P
Heng, IS
Heptonstall, A
Hewitson, M
Hild, S
Hirose, E
Hoak, D
Hodge, KA
Holt, K
Hosken, DJ
Hough, J
Howell, E
Hoyland, D
Huet, D
Hughey, B
Husa, S
Huttner, SH
Huynh-Dinh, T
Ingram, DR
Inta, R
Isogai, T
Ivanov, A
Jaranowski, P
Johnson, WW
Jones, DI
Jones, G
Jones, R
Ju, L
Kalmus, P
Kalogera, V
Kandhasamy, S
Kanner, J
Katsavounidis, E
Kawabe, K
Kawamura, S
Kawazoe, F
Kells, W
Keppel, DG
Khalaidovski, A
Khalili, FY
Khazanov, EA
Kim, C
Kim, H
King, PJ
Kinzel, DL
Kissel, JS
Klimenko, S
Kondrashov, V
Kopparapu, R
Koranda, S
Kowalska, I
Kozak, D
Krause, T
Kringel, V
Krishnamurthy, S
Krishnan, B
Krolak, A
Kuehn, G
Kullman, J
Kumar, R
Kwee, P
Landry, M
Lang, M
Lantz, B
Lastzka, N
Lazzarini, A
Leaci, P
Leong, J
Leonor, I
Leroy, N
Letendre, N
Li, J
Li, TGF
Lin, H
Lindquist, PE
Lockerbie, NA
Lodhia, D
Lorenzinia, M
Lorietteb, V
Lormand, M
Losurdo, G
Lu, P
Luan, J
Lubinski, M
Lucianetti, A
Luck, H
Lundgren, A
Machenschalk, B
MacInnis, M
Mackowski, JM
Mageswaran, M
Mailand, K
Majoranaa, E
Mak, C
Man, N
Mandel, I
Mandic, V
Mantovani, M
Marchesoni, F
Marion, F
Marka, S
Marka, Z
Maros, E
Marque, J
Martelli, F
Martin, IW
Martin, RM
Marx, JN
Mason, K
Masserot, A
Matichard, F
Matone, L
Matzner, RA
Mavalvala, N
McCarthy, R
McClelland, DE
McGuire, SC
McIntyre, G
McIvor, G
McKechan, DJA
Meadors, G
Mehmet, M
Meier, T
Melatos, A
Melissinos, AC
Mendell, G
Menendez, DF
Mercer, RA
Merill, L
Meshkov, S
Messenger, C
Meyer, MS
Miao, H
Michel, C
Milano, L
Miller, J
Minenkov, Y
Mino, Y
Mitra, S
Mitrofanov, VP
Mitselmakher, G
Mittleman, R
Moe, B
Mohan, M
Mohanty, SD
Mohapatra, SRP
Moraru, D
Moreau, J
Moreno, G
Morgado, N
Morgia, A
Morioka, T
Mors, K
Mosca, S
Moscatelli, V
Mossavi, K
Mours, B
MowLowry, C
Mueller, G
Mukherjee, S
Mullavey, A
Muller-Ebhardt, H
Munch, J
Murray, PG
Nash, T
Nawrodt, R
Nelson, J
Neri, I
Newton, G
Nishizawa, A
Nocera, F
Nolting, D
Ochsner, E
O'Dell, J
Ogin, GH
Oldenburg, RG
O'Reilly, B
O'Shaughnessy, R
Osthelder, C
Ottaway, DJ
Ottens, RS
Overmier, H
Owen, BJ
Page, A
Pagliaroli, G
Palladino, L
Palomba, C
Pan, Y
Pankow, C
Paoletti, F
Papa, MA
Pardi, S
Pareja, M
Parisi, M
Pasqualetti, A
Passaquieti, R
Passuello, D
Patel, P
Pedraza, M
Pekowsky, L
Penn, S
Peralta, C
Perreca, A
Persichetti, G
Pichot, M
Pickenpack, M
Piergiovanni, F
Pietkae, M
Pinard, L
Pinto, IM
Pitkin, M
Pletsch, HJ
Plissi, MV
Poggiani, R
Postiglione, F
Prato, M
Predoi, V
Price, LR
Prijatelj, M
Principe, M
Privitera, S
Prix, R
Prodi, GA
Prokhorov, L
Puncken, O
Punturoa, M
Puppo, P
Quetschke, V
Raab, FJ
Rabaste, O
Rabeling, DS
Radke, T
Radkins, H
Raffai, P
Rakhmanov, M
Rankins, B
Rapagnani, P
Raymond, V
Re, V
Reed, CM
Reed, T
Regimbau, T
Reid, S
Reitze, DH
Ricci, F
Riesen, R
Riles, K
Roberts, P
Robertson, NA
Robinet, F
Robinson, C
Robinson, EL
Rocchi, A
Roddy, S
Rover, C
Rogstad, S
Rolland, L
Rollins, J
Romano, JD
Romano, R
Romie, JH
Rosinskag, D
Rowan, S
Udiger, AR
Ruggi, P
Ryan, K
Sakata, S
Sakosky, M
Salemi, F
Sammut, L
de la Jordana, LS
Sandberg, V
Sannibale, V
Santamaria, L
Santostasi, G
Saraf, S
Sassolas, B
Sathyaprakash, BS
Sato, S
Satterthwaite, M
Saulson, PR
Savage, R
Schilling, R
Schnabel, R
Schofield, R
Schulz, B
Schutz, BF
Schwinberg, P
Scott, J
Scott, SM
Searle, AC
Seifert, F
Sellers, D
Sengupta, AS
Sentenac, D
Sergeev, A
Shaddock, DA
Shapiro, B
Shawhan, P
Shoemaker, DH
Sibley, A
Siemens, X
Sigg, D
Singer, A
Sintes, AM
Skelton, G
Slagmolen, BJJ
Slutsky, J
Smith, JR
Smith, MR
Smith, ND
Somiya, K
Sorazu, B
Speirits, FC
Stein, AJ
Stein, LC
Steinlechner, S
Steplewski, S
Stochino, A
Stone, R
Strain, KA
Strigin, S
Stroeer, A
Sturani, R
Stuver, AL
Summerscales, TZ
Sung, M
Susmithan, S
Sutton, PJ
Swinkels, B
Talukder, D
Tanner, DB
Tarabrin, SP
Taylor, JR
Taylor, R
Thomas, P
Thorne, KA
Thorne, KS
Thrane, E
Thuering, A
Titsler, C
Tokmakov, KV
Toncelli, A
Tonelli, M
Torres, C
Torrie, CI
Tournefier, E
Travasso, F
Traylor, G
Trias, M
Trummer, J
Tseng, K
Ugolini, D
Urbanek, K
Vahlbruch, H
Vaishnav, B
Vajente, G
Vallisneri, M
van den Branda, JFJ
Van den Broeck, C
Van der Puttena, S
van der Sluys, MV
van Veggel, AA
Vass, S
Vaulin, R
Vavoulidis, M
Vecchio, A
Vedovato, G
Veitch, J
Veitch, PJ
Veltkamp, C
Verkindt, D
Vetrano, F
Vicere, A
Villar, A
Vineta, JY
Vocca, H
Vorvick, C
Vyachanin, SP
Waldman, SJ
Wallace, L
Wanner, A
Ward, RL
Wasa, M
Wei, P
Weinert, M
Weinstein, AJ
Weiss, R
Wen, L
Wen, S
Wessels, P
West, M
Westphal, T
Wette, K
Whelan, JT
EWhitcomb, S
White, DJ
Whiting, BF
Wilkinson, C
Willems, PA
Williams, L
Willke, B
Winkelmann, L
Winkler, W
Wipf, CC
Wiseman, AG
Woan, G
Wooley, R
Worden, J
Yakushin, I
Yamamoto, H
Yamamoto, K
Yeaton-Massey, D
Yoshida, S
Yu, PP
Yvert, M
Zanolin, M
Zhang, L
Zhang, Z
Zhao, C
Zotov, N
Zucker, ME
Zweizig, J
Belczynski, K
AF Abadie, J.
Abbott, B. P.
Abbott, R.
Abernathy, M.
Accadia, T.
Acerneseac, F.
Adams, C.
Adhikari, R.
Ajith, P.
Allen, B.
Allen, G.
Ceron, E. Amador
Amin, R. S.
Anderson, S. B.
Anderson, W. G.
Antonuccia, F.
Aoudiaa, S.
Arain, M. A.
Araya, M.
Aronsson, M.
Arun, K. G.
Aso, Y.
Aston, S.
Astonea, P.
Atkinson, D. E.
Aufmuth, P.
Aulbert, C.
Babak, S.
Baker, P.
Ballardin, G.
Ballmer, S.
Barker, D.
Barnum, S.
Baroneac, F.
Barr, B.
Barriga, P.
Barsotti, L.
Barsuglia, M.
Barton, M. A.
Bartos, I.
Bassiri, R.
Bastarrika, M.
Bauchrowitz, J.
Bauera, Th S.
Behnke, B.
Beker, M. G.
Benacquista, M.
Bertolini, A.
Betzwieser, J.
Beveridge, N.
Beyersdorf, P. T.
Bigottaab, S.
Bilenko, I. A.
Billingsley, G.
Birch, J.
Birindellia, S.
Biswas, R.
Bitossi, M.
Bizouard, M. A.
Black, E.
Blackburn, J. K.
Blackburn, L.
Blair, D.
Bland, B.
Bloma, M.
Blomberg, A.
Boccara, C.
Bock, O.
Bodiya, T. P.
Bondarescu, R.
Bondu, F.
Bonelli, L.
Bork, R.
Born, M.
Bose, S.
Bosi, L.
Boyle, M.
Braccini, S.
Bradaschia, C.
Brady, P. R.
Braginsky, V. B.
Brau, J. E.
Breyer, J.
Bridges, D. O.
Brillet, A.
Brinkmann, M.
Brisson, V.
Britzger, M.
Brooks, A. F.
Brown, D. A.
Budzynski, R.
Bulik, T.
Bulten, H. J.
Buonanno, A.
Burguet-Castell, J.
Burmeister, O.
Buskulic, D.
Byer, R. L.
Cadonati, L.
Cagnoli, G.
Calloni, E.
Camp, J. B.
Campagna, E.
Campsie, P.
Cannizzo, J.
Cannon, K. C.
Canuel, B.
Cao, J.
Capano, C.
Carbognani, F.
Caride, S.
Caudill, S.
Cavagli, M.
Cavalier, F.
Cavalieri, R.
Cella, G.
Cepeda, C.
Cesarini, E.
Chalermsongsak, T.
Chalkley, E.
Charlton, P.
Mottin, E. Chassande
Chelkowski, S.
Chen, Y.
Chincarini, A.
Christensen, N.
Chua, S. S. Y.
Chung, C. T. Y.
Clark, D.
Clark, J.
Clayton, J. H.
Cleva, F.
Coccia, E.
Colacino, C. N.
Colas, J.
Colla, A.
Colombini, M.
Conte, R.
Cook, D.
Corbitt, T. R.
Corda, C.
Cornish, N.
Corsi, A.
Costa, C. A.
Coulon, J. P.
Coward, D.
Coyne, D. C.
Creighton, J. D. E.
Creighton, T. D.
Cruise, A. M.
Culter, R. M.
Cumming, A.
Cunningham, L.
Cuoco, E.
Dahl, K.
Danilishin, S. L.
Dannenberg, R.
D'Antonio, S.
Danzmann, K.
Dari, A.
Das, K.
Dattilo, V.
Daudert, B.
Davier, M.
Davies, G.
Davis, A.
Daw, E. J.
Day, R.
Dayanga, T.
De Rosa, R.
Debra, D.
Degallaix, J.
Del Prete, M.
Dergachev, V.
DeRosa, R.
DeSalvo, R.
Devanka, P.
Dhurandhar, S.
Di Fiore, L.
Di Lieto, A.
Di Palma, I.
Emilio, M. Di Paolo
Di Virgilio, A.
Diaz, M.
Dietz, A.
Donovan, F.
Dooley, K. L.
Doomes, E. E.
Dorsher, S.
Douglas, E. S. D.
Dragocd, M.
Drever, R. W. P.
Driggers, J. C.
Dueck, J.
Dumas, J. C.
Eberle, T.
Edgar, M.
Edwards, M.
Effler, A.
Ehrens, P.
Engel, R.
Etzel, T.
Evans, M.
Evans, T.
Fafone, V.
Fairhurst, S.
Fan, Y.
Farr, B. F.
Fazi, D.
Fehrmann, H.
Feldbaum, D.
Ferrante, I.
Fidecaro, F.
Finn, L. S.
Fiori, I.
Flaminio, R.
Flanigan, M.
Flasch, K.
Foley, S.
Forrest, C.
Forsi, E.
Fotopoulos, N.
Fournier, J. D.
Franc, J.
Frasca, S.
Frasconi, F.
Frede, M.
Frei, M.
Frei, Z.
Freise, A.
Frey, R.
Fricke, T. T.
Friedrich, D.
Fritschel, P.
Frolov, V. V.
Fulda, P.
Fyffe, M.
Gammaitoni, L.
Garofoli, J. A.
Garufiab, F.
Gemme, G.
Genin, E.
Gennai, A.
Gholami, I.
Ghosh, S.
Giaime, J. A.
Giampanis, S.
Giardina, K. D.
Giazotto, A.
Gill, C.
Goetz, E.
Goggin, L. M.
Gonzalez, G.
Gorodetsky, M. L.
Gossler, S.
Gouaty, R.
Graef, C.
Granata, M.
Grant, A.
Gras, S.
Gray, C.
Greenhalgh, R. J. S.
Gretarsson, A. M.
Greveriea, C.
Grosso, R.
Grote, H.
Grunewald, S.
Guidi, G. M.
Gustafson, E. K.
Gustafson, R.
Hage, B.
Hall, P.
Hallam, J. M.
Hammer, D.
Hammond, G.
Hanks, J.
Hanna, C.
Hanson, J.
Harms, J.
Harry, G. M.
Harry, I. W.
Harstad, E. D.
Haughian, K.
Hayama, K.
Heefner, J.
Heitmann, H.
Hello, P.
Heng, I. S.
Heptonstall, A.
Hewitson, M.
Hild, S.
Hirose, E.
Hoak, D.
Hodge, K. A.
Holt, K.
Hosken, D. J.
Hough, J.
Howell, E.
Hoyland, D.
Huet, D.
Hughey, B.
Husa, S.
Huttner, S. H.
Huynh-Dinh, T.
Ingram, D. R.
Inta, R.
Isogai, T.
Ivanov, A.
Jaranowski, P.
Johnson, W. W.
Jones, D. I.
Jones, G.
Jones, R.
Ju, L.
Kalmus, P.
Kalogera, V.
Kandhasamy, S.
Kanner, J.
Katsavounidis, E.
Kawabe, K.
Kawamura, S.
Kawazoe, F.
Kells, W.
Keppel, D. G.
Khalaidovski, A.
Khalili, F. Y.
Khazanov, E. A.
Kim, C.
Kim, H.
King, P. J.
Kinzel, D. L.
Kissel, J. S.
Klimenko, S.
Kondrashov, V.
Kopparapu, R.
Koranda, S.
Kowalska, I.
Kozak, D.
Krause, T.
Kringel, V.
Krishnamurthy, S.
Krishnan, B.
Krolak, A.
Kuehn, G.
Kullman, J.
Kumar, R.
Kwee, P.
Landry, M.
Lang, M.
Lantz, B.
Lastzka, N.
Lazzarini, A.
Leaci, P.
Leong, J.
Leonor, I.
Leroy, N.
Letendre, N.
Li, J.
Li, T. G. F.
Lin, H.
Lindquist, P. E.
Lockerbie, N. A.
Lodhia, D.
Lorenzinia, M.
Lorietteb, V.
Lormand, M.
Losurdo, G.
Lu, P.
Luan, J.
Lubinski, M.
Lucianetti, A.
Lueck, H.
Lundgren, A.
Machenschalk, B.
MacInnis, M.
Mackowski, J. M.
Mageswaran, M.
Mailand, K.
Majoranaa, E.
Mak, C.
Man, N.
Mandel, I.
Mandic, V.
Mantovani, M.
Marchesoni, F.
Marion, F.
Marka, S.
Marka, Z.
Maros, E.
Marque, J.
Martelli, F.
Martin, I. W.
Martin, R. M.
Marx, J. N.
Mason, K.
Masserot, A.
Matichard, F.
Matone, L.
Matzner, R. A.
Mavalvala, N.
McCarthy, R.
McClelland, D. E.
McGuire, S. C.
McIntyre, G.
McIvor, G.
McKechan, D. J. A.
Meadors, G.
Mehmet, M.
Meier, T.
Melatos, A.
Melissinos, A. C.
Mendell, G.
Menendez, D. F.
Mercer, R. A.
Merill, L.
Meshkov, S.
Messenger, C.
Meyer, M. S.
Miao, H.
Michel, C.
Milano, L.
Miller, J.
Minenkov, Y.
Mino, Y.
Mitra, S.
Mitrofanov, V. P.
Mitselmakher, G.
Mittleman, R.
Moe, B.
Mohan, M.
Mohanty, S. D.
Mohapatra, S. R. P.
Moraru, D.
Moreau, J.
Moreno, G.
Morgado, N.
Morgia, A.
Morioka, T.
Mors, K.
Mosca, S.
Moscatelli, V.
Mossavi, K.
Mours, B.
MowLowry, C.
Mueller, G.
Mukherjee, S.
Mullavey, A.
Mueller-Ebhardt, H.
Munch, J.
Murray, P. G.
Nash, T.
Nawrodt, R.
Nelson, J.
Neri, I.
Newton, G.
Nishizawa, A.
Nocera, F.
Nolting, D.
Ochsner, E.
O'Dell, J.
Ogin, G. H.
Oldenburg, R. G.
O'Reilly, B.
O'Shaughnessy, R.
Osthelder, C.
Ottaway, D. J.
Ottens, R. S.
Overmier, H.
Owen, B. J.
Page, A.
Pagliaroli, G.
Palladino, L.
Palomba, C.
Pan, Y.
Pankow, C.
Paoletti, F.
Papa, M. A.
Pardi, S.
Pareja, M.
Parisi, M.
Pasqualetti, A.
Passaquieti, R.
Passuello, D.
Patel, P.
Pedraza, M.
Pekowsky, L.
Penn, S.
Peralta, C.
Perreca, A.
Persichetti, G.
Pichot, M.
Pickenpack, M.
Piergiovanni, F.
Pietkae, M.
Pinard, L.
Pinto, I. M.
Pitkin, M.
Pletsch, H. J.
Plissi, M. V.
Poggiani, R.
Postiglione, F.
Prato, M.
Predoi, V.
Price, L. R.
Prijatelj, M.
Principe, M.
Privitera, S.
Prix, R.
Prodi, G. A.
Prokhorov, L.
Puncken, O.
Punturoa, M.
Puppo, P.
Quetschke, V.
Raab, F. J.
Rabaste, O.
Rabeling, D. S.
Radke, T.
Radkins, H.
Raffai, P.
Rakhmanov, M.
Rankins, B.
Rapagnani, P.
Raymond, V.
Re, V.
Reed, C. M.
Reed, T.
Regimbau, T.
Reid, S.
Reitze, D. H.
Ricci, F.
Riesen, R.
Riles, K.
Roberts, P.
Robertson, N. A.
Robinet, F.
Robinson, C.
Robinson, E. L.
Rocchi, A.
Roddy, S.
Roever, C.
Rogstad, S.
Rolland, L.
Rollins, J.
Romano, J. D.
Romano, R.
Romie, J. H.
Rosinskag, D.
Rowan, S.
Udiger, A. R.
Ruggi, P.
Ryan, K.
Sakata, S.
Sakosky, M.
Salemi, F.
Sammut, L.
Sancho de la Jordana, L.
Sandberg, V.
Sannibale, V.
Santamaria, L.
Santostasi, G.
Saraf, S.
Sassolas, B.
Sathyaprakash, B. S.
Sato, S.
Satterthwaite, M.
Saulson, P. R.
Savage, R.
Schilling, R.
Schnabel, R.
Schofield, R.
Schulz, B.
Schutz, B. F.
Schwinberg, P.
Scott, J.
Scott, S. M.
Searle, A. C.
Seifert, F.
Sellers, D.
Sengupta, A. S.
Sentenac, D.
Sergeev, A.
Shaddock, D. A.
Shapiro, B.
Shawhan, P.
Shoemaker, D. H.
Sibley, A.
Siemens, X.
Sigg, D.
Singer, A.
Sintes, A. M.
Skelton, G.
Slagmolen, B. J. J.
Slutsky, J.
Smith, J. R.
Smith, M. R.
Smith, N. D.
Somiya, K.
Sorazu, B.
Speirits, F. C.
Stein, A. J.
Stein, L. C.
Steinlechner, S.
Steplewski, S.
Stochino, A.
Stone, R.
Strain, K. A.
Strigin, S.
Stroeer, A.
Sturani, R.
Stuver, A. L.
Summerscales, T. Z.
Sung, M.
Susmithan, S.
Sutton, P. J.
Swinkels, B.
Talukder, D.
Tanner, D. B.
Tarabrin, S. P.
Taylor, J. R.
Taylor, R.
Thomas, P.
Thorne, K. A.
Thorne, K. S.
Thrane, E.
Thuering, A.
Titsler, C.
Tokmakov, K. V.
Toncelli, A.
Tonelli, M.
Torres, C.
Torrie, C. I.
Tournefier, E.
Travasso, F.
Traylor, G.
Trias, M.
Trummer, J.
Tseng, K.
Ugolini, D.
Urbanek, K.
Vahlbruch, H.
Vaishnav, B.
Vajente, G.
Vallisneri, M.
van den Branda, J. F. J.
Van den Broeck, C.
Van der Puttena, S.
van der Sluys, M. V.
van Veggel, A. A.
Vass, S.
Vaulin, R.
Vavoulidis, M.
Vecchio, A.
Vedovato, G.
Veitch, J.
Veitch, P. J.
Veltkamp, C.
Verkindt, D.
Vetrano, F.
Vicere, A.
Villar, A.
Vineta, J-Y
Vocca, H.
Vorvick, C.
Vyachanin, S. P.
Waldman, S. J.
Wallace, L.
Wanner, A.
Ward, R. L.
Wasa, M.
Wei, P.
Weinert, M.
Weinstein, A. J.
Weiss, R.
Wen, L.
Wen, S.
Wessels, P.
West, M.
Westphal, T.
Wette, K.
Whelan, J. T.
EWhitcomb, S.
White, D. J.
Whiting, B. F.
Wilkinson, C.
Willems, P. A.
Williams, L.
Willke, B.
Winkelmann, L.
Winkler, W.
Wipf, C. C.
Wiseman, A. G.
Woan, G.
Wooley, R.
Worden, J.
Yakushin, I.
Yamamoto, H.
Yamamoto, K.
Yeaton-Massey, D.
Yoshida, S.
Yu, P. P.
Yvert, M.
Zanolin, M.
Zhang, L.
Zhang, Z.
Zhao, C.
Zotov, N.
Zucker, M. E.
Zweizig, J.
Belczynski, K.
CA LIGO Sci Collaboration & Virgo
TI Predictions for the rates of compact binary coalescences observable by
ground-based gravitational-wave detectors
SO CLASSICAL AND QUANTUM GRAVITY
LA English
DT Review
ID GAMMA-RAY BURSTS; MASS BLACK-HOLES; NEUTRON-STAR BINARIES; CONSTRAINING
POPULATION; GLOBULAR-CLUSTERS; SYNTHESIS MODELS; SUPERNOVA RATES;
MERGERS; COMPANIONS; RADIATION
AB We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo. Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters and are still uncertain. Themost confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our galaxy. These yield a likely coalescence rate of 100 Myr(-1) per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 Myr(-1) MWEG(-1) to 1000 Myr(-1) MWEG(-1) (Kalogera et al 2004 Astrophys. J. 601 L179; Kalogera et al 2004 Astrophys. J. 614 L137 ( erratum)). We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our advanced detectors. Using the detector sensitivities derived from these data, we find a likely detection rate of 0.02 per year for Initial LIGO-Virgo interferometers, with a plausible range between 2 x 10(-4) and 0.2 per year. The likely binary neutron-star detection rate for the Advanced LIGO-Virgo network increases to 40 events per year, with a range between 0.4 and 400 per year.
C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Araya, M.; Aronsson, M.; Aso, Y.; Ballmer, S.; Bertolini, A.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cannon, K. C.; Cepeda, C.; Chalermsongsak, T.; Coyne, D. C.; Dannenberg, R.; Daudert, B.; Dergachev, V.; DeSalvo, R.; Driggers, J. C.; Ehrens, P.; Engel, R.; Etzel, T.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Kozak, D.; Lazzarini, A.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Mak, C.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Mitra, S.; Ochsner, E.; Ogin, G. H.; Osthelder, C.; Patel, P.; Pedraza, M.; Privitera, S.; Robertson, N. A.; Sannibale, V.; Searle, A. C.; Seifert, F.; Sengupta, A. S.; Singer, A.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Vass, S.; Villar, A.; Wallace, L.; Ward, R. L.; Weinstein, A. J.; EWhitcomb, S.; Willems, P. A.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA.
[Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Beveridge, N.; Campsie, P.; Chalkley, E.; Cumming, A.; Cunningham, L.; Edgar, M.; Gill, C.; Grant, A.; Hammond, G.; Haughian, K.; Heng, I. S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Martin, I. W.; Miller, J.; Murray, P. G.; Nash, T.; Nelson, J.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Scott, J.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Tokmakov, K. V.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland.
[Accadia, T.; Buskulic, D.; Dietz, A.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Trummer, J.; Verkindt, D.; Yvert, M.] Univ Savoie, Lab Annecy Le Vieux Phys Particules LAPP, IN2P3, CNRS, F-74941 Annecy Le Vieux, France.
[Acerneseac, F.; Baroneac, F.; Calloni, E.; De Rosa, R.; Di Fiore, L.; Garufiab, F.; Milano, L.; Mosca, S.; Pardi, S.; Persichetti, G.; Romano, R.] Univ Naples Federico 2, Sez Napolia, I-80126 Naples, Italy.
[Acerneseac, F.; Baroneac, F.; Romano, R.] Complesso Univ Monte S Angelo, I-80126 Naples, Italy.
[Adams, C.; Birch, J.; Bridges, D. O.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Hild, S.; Holt, K.; Huynh-Dinh, T.; Kinzel, D. L.; Lormand, M.; Meyer, M. S.; Nishizawa, A.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] LIGO, Livingston Observ, Livingston, LA 70754 USA.
[Allen, B.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Burmeister, O.; Dahl, K.; Danzmann, K.; Di Palma, I.; Dueck, J.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Giampanis, S.; Gossler, S.; Graef, C.; Grote, H.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kullman, J.; Lastzka, N.; Leaci, P.; Leong, J.; Lueck, H.; Machenschalk, B.; Mehmet, M.; Messenger, C.; Mors, K.; Mossavi, K.; Mueller-Ebhardt, H.; Pareja, M.; Pickenpack, M.; Pletsch, H. J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Udiger, A. R.; Salemi, F.; Schilling, R.; Schnabel, R.; Schulz, B.; Steinlechner, S.; Taylor, J. R.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany.
[Allen, B.; Ceron, E. Amador; Biswas, R.; Brady, P. R.; Burguet-Castell, J.; Clayton, J. H.; Creighton, J. D. E.; Flasch, K.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Moe, B.; Oldenburg, R. G.; Papa, M. A.; Price, L. R.; Siemens, X.; Skelton, G.; Vaulin, R.; Wiseman, A. G.; Yu, P. P.] Univ Wisconsin, Milwaukee, WI 53201 USA.
[Allen, G.; Byer, R. L.; Clark, D.; Debra, D.; Lantz, B.; Lu, P.; Tseng, K.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA.
[Amin, R. S.; Caudill, S.; Costa, C. A.; DeRosa, R.; Effler, A.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Kissel, J. S.; Slutsky, J.; Sung, M.; Wen, S.] Louisiana State Univ, Baton Rouge, LA 70803 USA.
[Antonuccia, F.; Astonea, P.; Colla, A.; Corsi, A.; Frasca, S.; Majoranaa, E.; Moscatelli, V.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] INFN, Sez Roma, I-00185 Rome, Italy.
[Colla, A.; Colombini, M.; Frasca, S.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy.
[Aoudiaa, S.; Birindellia, S.; Bondu, F.; Brillet, A.; Cleva, F.; Coulon, J. P.; Fournier, J. D.; Greveriea, C.; Heitmann, H.; Man, N.; Pichot, M.; Regimbau, T.; Vineta, J-Y] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France.
[Bondu, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France.
[Arain, M. A.; Das, K.; Dooley, K. L.; Feldbaum, D.; Klimenko, S.; Lin, H.; Lucianetti, A.; Martin, R. M.; Mitselmakher, G.; Mueller, G.; Ottens, R. S.; Pankow, C.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA.
[Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Wasa, M.] Univ Paris 11, LAL, IN2P3, CNRS, F-91898 Orsay, France.
[Boccara, C.; Lorietteb, V.; Moreau, J.] CNRS, ESPCI, F-75005 Paris, France.
[Aston, S.; Chelkowski, S.; Cruise, A. M.; Culter, R. M.; Freise, A.; Fulda, P.; Hallam, J. M.; Hoyland, D.; Lodhia, D.; Page, A.; Perreca, A.; Vecchio, A.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England.
[Atkinson, D. E.; Barker, D.; Barton, M. A.; Bland, B.; Cook, D.; Douglas, E. S. D.; Flanigan, M.; Gray, C.; Hanks, J.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sakosky, M.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO, Hanford Observ, Richland, WA 99352 USA.
[Aufmuth, P.; Bizouard, M. A.; Danzmann, K.; Hage, B.; Kwee, P.; Lueck, H.; Meier, T.; Thuering, A.; Vahlbruch, H.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany.
[Anderson, W. G.; Babak, S.; Behnke, B.; Gholami, I.; Grunewald, S.; Krishnan, B.; Papa, M. A.; Peralta, C.; Radke, T.; Robinson, E. L.; Santamaria, L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany.
[Baker, P.; Cornish, N.; Ingram, D. R.] Montana State Univ, Bozeman, MT 59717 USA.
[Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Huet, D.; Marque, J.; Mohan, M.; Newton, G.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.] European Gravitat Observ, I-56021 Cascina, Pi, Italy.
[Barnum, S.; Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA.
[Barriga, P.; Blair, D.; Coward, D.; Dumas, J. C.; Fan, Y.; Gras, S.; Howell, E.; Ju, L.; Merill, L.; Miao, H.; Susmithan, S.; Wen, L.; Zhang, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia.
[Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Corbitt, T. R.; Donovan, F.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Stein, A. J.; Stein, L. C.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA.
[Barsuglia, M.; Mottin, E. Chassande; Granata, M.; Rabaste, O.] Univ Denis Diderot Paris 7, APC, CNRS, UMR7164 IN2P3,Observ Paris, Paris, France.
[Bartos, I.; Marka, S.; Marka, Z.; Matone, L.; Rollins, J.] Columbia Univ, New York, NY 10027 USA.
[Bauera, Th S.; Beker, M. G.; Bloma, M.; Bulten, H. J.; Li, T. G. F.; Rabeling, D. S.; van den Branda, J. F. J.; Van der Puttena, S.] NIKHEF H, Natl Inst Subat Phys, NL-1009 DB Amsterdam, Netherlands.
[Bulten, H. J.; Rabeling, D. S.; van den Branda, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands.
[Benacquista, M.; Creighton, T. D.; Diaz, M.; Grosso, R.; Li, J.; Mohanty, S. D.; Mukherjee, S.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Vaishnav, B.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA.
[Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA.
[Bigottaab, S.; Bonelli, L.; Corda, C.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy.
[Bigottaab, S.; Bitossi, M.; Bonelli, L.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; Corda, C.; Del Prete, M.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] INFN, Sez Pisa, I-56127 Pisa, Italy.
[Del Prete, M.; Mantovani, M.] Univ Siena, I-53100 Siena, Italy.
[Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Tarabrin, S. P.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia.
[Blomberg, A.; Cadonati, L.; Hoak, D.; Mohapatra, S. R. P.; Rogstad, S.] Univ Massachusetts, Amherst, MA 01003 USA.
[Bondarescu, R.; Finn, L. S.; Kopparapu, R.; Lang, M.; Menendez, D. F.; O'Shaughnessy, R.; Owen, B. J.; Titsler, C.] Penn State Univ, University Pk, PA 16802 USA.
[Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA.
[Bosi, L.; Dari, A.; Gammaitoni, L.; Marchesoni, F.; Nawrodt, R.; Punturoa, M.; Travasso, F.; Vocca, H.] INFN, Sez Perugia, I-6123 Perugia, Italy.
[Dari, A.; Gammaitoni, L.; Nawrodt, R.; Travasso, F.] Univ Perugia, I-6123 Perugia, Italy.
[Bertolini, A.; Boyle, M.; Chen, Y.; Luan, J.; Mino, Y.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Wen, L.] CALTECH, CaRT, Pasadena, CA 91125 USA.
[Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Schofield, R.] Univ Oregon, Eugene, OR 97403 USA.
[Brown, D. A.; Capano, C.; Garofoli, J. A.; Hirose, E.; Lundgren, A.; Pekowsky, L.; Saulson, P. R.; Wei, P.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA.
[Krolak, A.] IM PAN, PL-00956 Warsaw, Poland.
[Budzynski, R.] Univ Warsaw, PL-00681 Warsaw, Poland.
[Bulik, T.; Kowalska, I.] Univ Warsaw, Astron Observ, PL-00681 Warsaw, Poland.
[Bulik, T.] CAMK PAN, PL-00716 Warsaw, Poland.
[Jaranowski, P.; Pietkae, M.] Bialystok Univ, PL-15424 Bialystok, Poland.
[Krolak, A.] IPJ, PL-05400 Otwock, Poland.
[Rosinskag, D.] Inst Astron, PL-65265 Zielona Gora, Poland.
[Buonanno, A.; Kanner, J.; Nocera, F.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA.
[Cagnoli, G.; Campagna, E.; Guidi, G. M.; Lorenzinia, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] INFN, Sez Firenze, I-50019 Sesto Fiorentino, Italy.
[Campagna, E.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino, I-61029 Urbino, Italy.
[Camp, J. B.; Cannizzo, J.; Stroeer, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Cao, J.] Tsinghua Univ, Beijing 100084, Peoples R China.
[Caride, S.; Goetz, E.; Gustafson, R.; Meadors, G.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Cavagli, M.; Rankins, B.] Univ Mississippi, University, MS 38677 USA.
[Charlton, P.] Charles Sturt Univ, Wagga, NSW 2678, Australia.
[Chincarini, A.; Gemme, G.; Prato, M.] INFN, Sez Genova, I-16146 Genoa, Italy.
[Christensen, N.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA.
[Chua, S. S. Y.; Inta, R.; McClelland, D. E.; MowLowry, C.; Mullavey, A.; Satterthwaite, M.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wette, K.] Australian Natl Univ, Canberra, ACT 0200, Australia.
[Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Melbourne, Vic 3010, Australia.
[Clark, J.; Davies, G.; Devanka, P.; Edwards, M.; Fairhurst, S.; Hall, P.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Van den Broeck, C.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales.
[Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Minenkov, Y.; Morgia, A.; Pagliaroli, G.; Palladino, L.; Rocchi, A.] INFN, Sez Roma Tor Vergata, I-67100 Laquila, Italy.
[Coccia, E.; Fafone, V.; Morgia, A.] Univ Roma Tor Vergata, I-67100 Laquila, Italy.
[Emilio, M. Di Paolo; Pagliaroli, G.; Palladino, L.] Univ Aquila, I-67100 Laquila, Italy.
[Conte, R.; Postiglione, F.] Univ Salerno, I-84084 Salerno, Italy.
[Davis, A.; Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA.
[Daw, E. J.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England.
[Dhurandhar, S.] Inter Univ, Ctr Astron & Astrophys, Pune 411007, Maharashtra, India.
[Doomes, E. E.; McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA.
[Doomes, E. E.; McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA.
[Dorsher, S.; Harms, J.; Kandhasamy, S.; Mandic, V.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA.
[Prodi, G. A.; Re, V.] INFN, Grp Collegato Trento, I-38050 Padua, Italy.
[Prodi, G. A.; Re, V.] Univ Trent, I-38050 Padua, Italy.
[Dragocd, M.; Vedovato, G.] INFN, Sez Padova, I-35131 Padua, Italy.
[Dragocd, M.] Univ Padua, I-35131 Padua, Italy.
[Drever, R. W. P.] CALTECH, Pasadena, CA 91125 USA.
[Farr, B. F.; Fazi, D.; Kalogera, V.; Krishnamurthy, S.; Mandel, I.; Raymond, V.; van der Sluys, M. V.] Northwestern Univ, Evanston, IL 60208 USA.
[Flaminio, R.; Franc, J.; Mackowski, J. M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] Univ Lyon 1, CNRS, Lab Mat Avancs, IN2P3, F-69622 Villeurbanne, France.
[Forrest, C.; Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA.
[Frei, M.; Krause, T.; Matzner, R. A.; McIvor, G.] Univ Texas Austin, Austin, TX 78712 USA.
[Frei, Z.; Raffai, P.] Eotvos Lorand Univ, ELTE, H-1053 Budapest, Hungary.
[Greenhalgh, R. J. S.; Nolting, D.; O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England.
[Hayama, K.; Kawamura, S.; Morioka, T.; Neri, I.; Sakata, S.; Sato, S.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan.
[Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia.
[Husa, S.; Sancho de la Jordana, L.; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain.
[Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England.
[Khazanov, E. A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia.
[Kim, C.] Lund Observ, SE-22100 Lund, Sweden.
[Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland.
[Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA.
[Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy.
[Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA.
[Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA.
[Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA.
[Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA.
[Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA.
[Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA.
[Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA.
[Belczynski, K.] Los Alamos Natl Lab, CCS 2, ISR Grp 1, Los Alamos, NM USA.
[Belczynski, K.] Univ Warsaw, Astron Observ, PL-00478 Warsaw, Poland.
RP Abadie, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA.
EM ilyamandel@chgk.info
RI Mitrofanov, Valery/D-8501-2012; Puppo, Paola/J-4250-2012; Colla,
Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; Gemme,
Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Punturo,
Michele/I-3995-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013;
Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Ju,
Li/C-2623-2013; Parisi, Maria/D-2817-2013; Bondu, Francois/A-2071-2012;
Toncelli, Alessandra/A-5352-2012; Vocca, Helios/F-1444-2010; Prato,
Mirko/D-8531-2012; Hild, Stefan/A-3864-2010; prodi,
giovanni/B-4398-2010; Santamaria, Lucia/A-7269-2012; Costa,
Cesar/G-7588-2012; Prokhorov, Leonid/I-2953-2012; Gorodetsky,
Michael/C-5938-2008; Strigin, Sergey/I-8337-2012; Cuoco,
Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; Kawabe,
Keita/G-9840-2011; Neri, Igor/F-1482-2010; Hammond, Giles/B-7861-2009;
Shaddock, Daniel/A-7534-2011; Gammaitoni, Luca/B-5375-2009; McClelland,
David/E-6765-2010; Strain, Kenneth/D-5236-2011; Martin,
Iain/A-2445-2010; Lueck, Harald/F-7100-2011; Kawazoe,
Fumiko/F-7700-2011; Freise, Andreas/F-8892-2011; Abernathy,
Matthew/G-1113-2011; Marchesoni, Fabio/A-1920-2008; Ferrante,
Isidoro/F-1017-2012; Travasso, Flavio/J-9595-2016; Bartos,
Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini,
Elisabetta/C-4507-2017; Frey, Raymond/E-2830-2016; Di Virgilio, Angela
Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Ward,
Robert/I-8032-2014; Mow-Lowry, Conor/F-8843-2015; Finn, Lee
Samuel/A-3452-2009; Ottaway, David/J-5908-2015; Postiglione,
Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli,
Filippo/P-4041-2015; Gehring, Tobias/A-8596-2016; Howell,
Eric/H-5072-2014; mosca, simona/I-7116-2012; Frasconi,
Franco/K-1068-2016; Sigg, Daniel/I-4308-2015; Pinto,
Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Steinlechner,
Sebastian/D-5781-2013; Re, Virginia /F-6403-2013; Pitkin,
Matthew/I-3802-2013; Vyatchanin, Sergey/J-2238-2012; Miao,
Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi,
Francesco/F-6988-2014; Lucianetti, Antonio/G-7383-2014; Losurdo,
Giovanni/K-1241-2014; Danilishin, Stefan/K-7262-2012; Canuel,
Benjamin/C-7459-2014; Khalili, Farit/D-8113-2012; Vecchio,
Alberto/F-8310-2015
OI Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406;
Punturo, Michele/0000-0001-8722-4485; Allen, Bruce/0000-0003-4285-6256;
Zhao, Chunnong/0000-0001-5825-2401; Veitch, John/0000-0002-6508-0713;
Garufi, Fabio/0000-0003-1391-6168; Principe, Maria/0000-0002-6327-0628;
Papa, M.Alessandra/0000-0002-1007-5298; Kanner,
Jonah/0000-0001-8115-0577; Bondu, Francois/0000-0001-6487-5197;
Toncelli, Alessandra/0000-0003-4400-8808; Vocca,
Helios/0000-0002-1200-3917; Prato, Mirko/0000-0002-2188-8059; prodi,
giovanni/0000-0001-5256-915X; Gorodetsky, Michael/0000-0002-5159-2742;
Vicere, Andrea/0000-0003-0624-6231; Neri, Igor/0000-0002-9047-9822;
Shaddock, Daniel/0000-0002-6885-3494; Gammaitoni,
Luca/0000-0002-4972-7062; McClelland, David/0000-0001-6210-5842; Strain,
Kenneth/0000-0002-2066-5355; Lueck, Harald/0000-0001-9350-4846;
Marchesoni, Fabio/0000-0001-9240-6793; Granata,
Massimo/0000-0003-3275-1186; Aulbert, Carsten/0000-0002-1481-8319; Di
Paolo Emilio, Maurizio/0000-0002-9558-3610; PERSICHETTI,
GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901;
Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard
F/0000-0002-8501-8669; Sorazu, Borja/0000-0002-6178-3198; Zweizig,
John/0000-0002-1521-3397; O'Shaughnessy, Richard/0000-0001-5832-8517;
Pathak, Devanka/0000-0002-1768-8353; Husa, Sascha/0000-0002-0445-1971;
Pinto, Innocenzo M./0000-0002-2679-4457; Guidi,
Gianluca/0000-0002-3061-9870; Coccia, Eugenio/0000-0002-6669-5787;
Vetrano, Flavio/0000-0002-7523-4296; Nishizawa,
Atsushi/0000-0003-3562-0990; calloni, enrico/0000-0003-4819-3297;
Swinkels, Bas/0000-0002-3066-3601; Drago, Marco/0000-0002-3738-2431;
Hallam, Jonathan Mark/0000-0002-7087-0461; Ricci,
Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; Vedovato,
Gabriele/0000-0001-7226-1320; Fairhurst, Stephen/0000-0001-8480-1961;
Matichard, Fabrice/0000-0001-8982-8418; Ferrante,
Isidoro/0000-0002-0083-7228; Travasso, Flavio/0000-0002-4653-6156;
Cella, Giancarlo/0000-0002-0752-0338; Cesarini,
Elisabetta/0000-0001-9127-3167; Frey, Raymond/0000-0003-0341-2636; Di
Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski,
Piotr/0000-0001-8085-3414; Stein, Leo/0000-0001-7559-9597; Milano,
Leopoldo/0000-0001-9487-5876; Santamaria, Lucia/0000-0002-5986-0449;
Ward, Robert/0000-0001-5503-5241; Finn, Lee Samuel/0000-0002-3937-0688;
Postiglione, Fabio/0000-0003-0628-3796; Rocchi,
Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616;
Gehring, Tobias/0000-0002-4311-2593; Howell, Eric/0000-0001-7891-2817;
mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587;
Sigg, Daniel/0000-0003-4606-6526; Steinlechner,
Sebastian/0000-0003-4710-8548; Pitkin, Matthew/0000-0003-4548-526X;
Miao, Haixing/0000-0003-4101-9958; Losurdo,
Giovanni/0000-0003-0452-746X; Danilishin, Stefan/0000-0001-7758-7493;
Vecchio, Alberto/0000-0002-6254-1617
FU Australian Research Council; Council of Scientific and Industrial
Research of India; Istituto Nazionale di Fisica Nucleare of Italy;
Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia
Hisenda i Innovacio of the Govern de les Illes Balears; Netherlands
Organisation for Scientific Research; Polish Ministry of Science and
Higher Education; Foundation for Polish Science; Royal Society; Scottish
Funding Council; Scottish Universities Physics Alliance; National
Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust;
David and Lucile Packard Foundation; Research Corporation and the Alfred
P Sloan Foundation; European Commission
FX The authors gratefully acknowledge the support of the United States
National Science Foundation for the construction and operation of the
LIGO Laboratory, the Science and Technology Facilities Council of the
United Kingdom, the Max-Planck-Society, the State of
Niedersachsen/Germany for support of the construction and operation of
the GEO600 detector, and the Italian Istituto Nazionale di Fisica
Nucleare and the French Centre National de la Recherche Scientifique for
the construction and operation of the Virgo detector. The authors also
gratefully acknowledge the support of the research by these agencies and
by the Australian Research Council, the Council of Scientific and
Industrial Research of India, the Istituto Nazionale di Fisica Nucleare
of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria
d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the
Foundation for Fundamental Research on Matter supported by the
Netherlands Organisation for Scientific Research, the Polish Ministry of
Science and Higher Education, the FOCUS Programme of Foundation for
Polish Science, the Royal Society, the Scottish Funding Council, the
Scottish Universities Physics Alliance, The National Aeronautics and
Space Administration, the Carnegie Trust, the Leverhulme Trust, the
David and Lucile Packard Foundation, the Research Corporation and the
Alfred P Sloan Foundation. One of us (CK) would like to acknowledge the
European Commission.
NR 60
TC 619
Z9 619
U1 20
U2 137
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0264-9381
J9 CLASSICAL QUANT GRAV
JI Class. Quantum Gravity
PD SEP 7
PY 2010
VL 27
IS 17
AR 173001
DI 10.1088/0264-9381/27/17/173001
PG 25
WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles
& Fields
SC Astronomy & Astrophysics; Physics
GA 631AC
UT WOS:000280317700001
ER
PT J
AU Chembo, YK
Yu, N
AF Chembo, Yanne K.
Yu, Nan
TI Modal expansion approach to optical-frequency-comb generation with
monolithic whispering-gallery-mode resonators
SO PHYSICAL REVIEW A
LA English
DT Article
ID MICROWAVE-OSCILLATORS; CALCIUM-FLUORIDE; MIE SCATTERING; NOBEL LECTURE;
RAMAN LASER; WAVE-GUIDES; RESONANCES; MICRORESONATORS; MICROCAVITIES;
MICROSPHERES
AB We describe a general framework based on modal expansion for the study of optical-frequency combs generated with monolithic whispering-gallery-mode resonators. We obtain a set of time-domain rate equations describing the dynamics of each mode as a function of the main characteristics of the cavity, namely, Kerr nonlinearity, absorption, coupling losses, and cavity dispersion (geometrical and material). A stability analysis of the various side modes is performed, which finds analytically the threshold power needed for comb generation. We show that the various whispering gallery modes are excited in a nontrivial way, strongly dependent on the value of the overall cavity dispersion. We demonstrate that the combs are not simply generated through a direct transfer of energy from the pumped mode to all their neighbors but rather through complex intermediate interactions. Anomalous cavity dispersion is also demonstrated to be critical for these cascading processes, and comb generation is thereby unambiguously linked to modulational instability. This theory accurately describes the emergence of spectral modulation and free spectral-range tunability in the comb. It also enables a clear understanding of the various phenomena responsible for the spectral span limitation. Our theoretical predictions are in excellent agreement with the numerical simulations, and they successfully explain the internal mechanisms responsible for the generation of hundreds of Kerr modes in monolithic whispering-gallery-mode resonators.
C1 [Chembo, Yanne K.; Yu, Nan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Chembo, YK (reprint author), Univ Franche Comte, Phys Mol Lab, CNRS, Opt Dept,FEMTO ST Inst,UMR 6174, 16 Route Gray, F-25030 Besancon, France.
EM yanne.chembo@jpl.nasa.gov
FU NASA
FX This work was performed at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with NASA. Y.K.C. acknowledges
support from the NASA postdoctoral program, administered by Oak Ridge
Associated Universities (ORAU). The authors would also like to
acknowledge logistic support from the JPL Supercomputing and
Visualization Facility.
NR 49
TC 135
Z9 136
U1 6
U2 65
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD SEP 7
PY 2010
VL 82
IS 3
AR 033801
DI 10.1103/PhysRevA.82.033801
PG 18
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 647TK
UT WOS:000281642000004
ER
PT J
AU Leduc, HG
Bumble, B
Day, PK
Eom, BH
Gao, JS
Golwala, S
Mazin, BA
McHugh, S
Merrill, A
Moore, DC
Noroozian, O
Turner, AD
Zmuidzinas, J
AF Leduc, Henry G.
Bumble, Bruce
Day, Peter K.
Eom, Byeong Ho
Gao, Jiansong
Golwala, Sunil
Mazin, Benjamin A.
McHugh, Sean
Merrill, Andrew
Moore, David C.
Noroozian, Omid
Turner, Anthony D.
Zmuidzinas, Jonas
TI Titanium nitride films for ultrasensitive microresonator detectors
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID KINETIC INDUCTANCE DETECTORS; SUPERCONDUCTORS; LIFETIMES; TIN
AB Titanium nitride (TiN(x)) films are ideal for use in superconducting microresonator detectors for the following reasons: (a) the critical temperature varies with composition (0 < T(c) <5 K); (b) the normal-state resistivity is large, p(n) similar to 100 mu Omega cm, facilitating efficient photon absorption and providing a large kinetic inductance and detector responsivity; and (c) TiN films are very hard and mechanically robust. Resonators using reactively sputtered TiN films show remarkably low loss (Q(i)>10(7)) and have noise properties similar to resonators made using other materials, while the quasiparticle lifetimes are reasonably long, 10-200 mu s. TiN microresonators should therefore reach sensitivities well below 10(-19) W Hz(-1/2). (C) 2010 American Institute of Physics. [doi: 10.1063/1.3480420]
C1 [Eom, Byeong Ho; Golwala, Sunil; Moore, David C.; Noroozian, Omid; Zmuidzinas, Jonas] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA.
[Leduc, Henry G.; Bumble, Bruce; Day, Peter K.; Turner, Anthony D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Gao, Jiansong] Natl Inst Stand & Technol, Boulder, CO 80305 USA.
[Mazin, Benjamin A.; McHugh, Sean; Merrill, Andrew] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
RP Zmuidzinas, J (reprint author), CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA.
EM jonas@caltech.edu
RI Mazin, Ben/B-8704-2011; Noroozian, Omid/G-3519-2011
OI Mazin, Ben/0000-0003-0526-1114; Noroozian, Omid/0000-0002-9904-1704
FU National Aeronautics and Space Administration (NASA) [NNG06GC71G,
NNX10AC83G]; Jet Propulsion Laboratory (JPL); Gordon and Betty Moore
Foundation
FX This research was carried out in part at the Jet Propulsion Laboratory
(JPL), California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. The devices used in this
work were fabricated at the JPL Microdevices Laboratory. This work was
supported in part by NASA grants NNG06GC71G and NNX10AC83G, JPL, and the
Gordon and Betty Moore Foundation.
NR 27
TC 99
Z9 99
U1 3
U2 37
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD SEP 6
PY 2010
VL 97
IS 10
AR 102509
DI 10.1063/1.3480420
PG 3
WC Physics, Applied
SC Physics
GA 658GP
UT WOS:000282478800031
ER
PT J
AU Bedka, KM
Minnis, P
AF Bedka, Kristopher M.
Minnis, Patrick
TI GOES 12 observations of convective storm variability and evolution
during the Tropical Composition, Clouds and Climate Coupling Experiment
field program
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID STRATOSPHERIC WATER-VAPOR; SATELLITE-OBSERVATIONS; DEEP CONVECTION;
THUNDERSTORM; TROPOPAUSE; CIRRUS; TEMPERATURE; TRANSPORT; METEOSAT;
FLORIDA
AB This study characterizes convective clouds that occurred during the Tropical Composition, Clouds and Climate Coupling Experiment as observed within GOES imagery. Overshooting deep convective cloud tops (OT) that penetrate through the tropical tropopause layer and into the stratosphere are of particular interest in this study. The results show that there were clear differences in the areal coverage of anvil cloud, deep convection, and OT activity over land and water and also throughout the diurnal cycle. The offshore waters of Panama, northwest Colombia, and El Salvador were the most active regions for OT-producing convection. A cloud object tracking system is used to monitor the duration and areal coverage of convective cloud complexes as well as the time evolution of their cloud-top microphysical properties. The mean lifetime for these complexes is 5 hours, with some existing for longer than 16 hours. Deep convection is found within the anvil cloud during 60% of the storm lifetime and covered 24% of the anvil cloud. The cloud-top height and optical depth at the storm core followed a reasonable pattern, with maximum values occurring 20% into the storm lifetime. The values in the surrounding anvil cloud peaked at a relative age of 20%-50% before decreasing as the convective cloud complex decayed. Ice particle diameter decreased with distance from the core but generally increased with storm age. These results, which characterize the average convective system during the experiment, should be valuable for formulating and validating convective cloud process models.
C1 [Bedka, Kristopher M.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA.
[Minnis, Patrick] NASA, Langley Res Ctr, Hampton, VA 23681 USA.
RP Bedka, KM (reprint author), Sci Syst & Applicat Inc, Hampton, VA 23666 USA.
EM kristopher.m.bedka@nasa.gov
RI Minnis, Patrick/G-1902-2010
OI Minnis, Patrick/0000-0002-4733-6148
FU NASA; Department of Energy [DE-AI02-07ER64546]
FX This research was supported by the NASA Radiation Science Program TC4
project, the NASA Applied Sciences Program, and the Department of Energy
Atmospheric Radiation Measurement Program through interagency agreement
DE-AI02-07ER64546. The authors thank Kirk Ayers for processing the TC4
VIST microphysical retrievals and the University of Wisconsin Space
Science and Engineering Center for providing the GOES 12 data and McIDAS
software support.
NR 45
TC 6
Z9 6
U1 1
U2 3
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 3
PY 2010
VL 115
AR D00J13
DI 10.1029/2009JD013227
PG 15
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 646WE
UT WOS:000281574000001
ER
PT J
AU Parodi, A
Tanelli, S
AF Parodi, Antonio
Tanelli, Simone
TI Influence of turbulence parameterizations on high-resolution numerical
modeling of tropical convection observed during the TC4 field campaign
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID SCALE THERMODYNAMIC FORCINGS; DEEP MOIST CONVECTION; PART I; HORIZONTAL
RESOLUTION; VERTICAL DIFFUSION; SIMULATION; SYSTEMS; FORECASTS; CLOUDS;
MICROPHYSICS
AB In this work, deep moist convective processes, observed during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4) over the East Pacific Intertropical Convergence Zone, were modeled by means of high-resolution numerical simulations with the Weather Research and Forecasting model. Three different turbulence parameterizations and two microphysical parameterizations are used. Their impact on the spatio-temporal structure of predicted convective fields is compared to TC4 observations from a geostationary imager, airborne precipitation radar, and dropsondes. It is found that the large-eddy simulation turbulence closure "upscaled" to the terra incognita range of grid spacings (i.e., 0.1-1 km) is best suited to model the deep convective processes under examination.
C1 [Parodi, Antonio] CIMA Res Fdn, I-17100 Savona, Italy.
[Tanelli, Simone] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Parodi, A (reprint author), CIMA Res Fdn, Via A Magliotto 2, I-17100 Savona, Italy.
EM antonio.parodi@cimafoundation.org
FU NASA; Italian Civil Protection Department
FX This work was performed at Jet Propulsion Laboratory under contract with
NASA, in collaboration with the CIMA Research Foundation with the
support of the Italian Civil Protection Department. Support from the
NASA Cloud and Radiation Program, Precipitation Measurement Missions
Program, and Earth Sciences New Investigator Program is gratefully
acknowledged. We are grateful to W.-K. Tao, F. Siccardi, R. Rotunno, Z.
S. Haddad, K. A. Emanuel, S. L. Durden, and M. Antonelli for
enlightening discussions and useful comments.
NR 52
TC 8
Z9 8
U1 1
U2 2
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 3
PY 2010
VL 115
AR D00J14
DI 10.1029/2009JD013302
PG 18
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 646WE
UT WOS:000281574000003
ER
PT J
AU Zhang, ZB
Platnick, S
Yang, P
Heidinger, AK
Comstock, JM
AF Zhang, Zhibo
Platnick, Steven
Yang, Ping
Heidinger, Andrew K.
Comstock, Jennifer M.
TI Effects of ice particle size vertical inhomogeneity on the passive
remote sensing of ice clouds
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID DROPLET EFFECTIVE RADIUS; BULK SCATTERING PROPERTIES; MU-M WINDOW;
CIRRUS CLOUDS; RADIATIVE PROPERTIES; TROPICAL CIRRUS; RESOLUTION;
RETRIEVAL; MODIS; PARAMETERIZATION
AB The solar reflectance bi-spectral (SRBS) and infrared split-window (IRSpW) methods are two of the most popular techniques for passive ice cloud property retrievals from multispectral imagers. Ice clouds are usually assumed to be vertically homogeneous in global operational algorithms based on these methods, although significant vertical variations of ice particle size are typically observed in ice clouds. In this study we investigate uncertainties in retrieved optical thickness, effective particle size, and ice water path introduced by a homogeneous cloud assumption in both the SRBS and IRSpW methods, and focus on whether the assumption can lead to significant discrepancies between the two methods. The study simulates the upwelling spectral radiance associated with vertically structured clouds and passes the results through representative SRBS and IRSpW retrieval algorithms. Cloud optical thickness is limited to values for which IRSpW retrievals are possible (optical thickness less than about 7). When the ice cloud is optically thin and yet has a significant ice particle size vertical variation, it is found that both methods tend to underestimate the effective radius and ice water path. The reason for the underestimation is the nonlinear dependence of ice particle scattering properties (extinction and single scattering albedo) on the effective radius. Because the nonlinearity effect is stronger in the IRSpW than the SRBS method, the IRSpW-based IWP tends to be smaller than the SRBS counterpart. When the ice cloud is moderately optically thick, the IRSpW method is relatively insensitive to cloud vertical structure and effective radius retrieval is weighted toward smaller ice particle size, while the weighting function makes the SRBS method more sensitive to the ice particle size in the upper portion of the cloud. As a result, when ice particle size increases monotonically toward cloud base, the two methods are in qualitative agreement; in the event that ice particle size decreases toward cloud base, the effective radius and ice water path retrievals based on the SRBS method are substantially larger than those from the IRSpW. The main findings of this study suggest that the homogenous cloud assumption can affect the SRBS and IRSpW methods to different extents and, consequently, can lead to significantly different retrievals. Therefore caution should be taken when comparing and combining the ice cloud property retrievals from these two methods.
C1 [Zhang, Zhibo] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA.
[Comstock, Jennifer M.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Heidinger, Andrew K.] Natl Environm Satellite Data & Informat Serv, Ctr Satellite Applicat & Res, NOAA, Madison, WI 53706 USA.
[Platnick, Steven] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA.
[Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA.
RP Zhang, ZB (reprint author), Univ Maryland, Goddard Earth Sci & Technol Ctr, 5523 Res Pk Dr,Ste 320, Baltimore, MD 21228 USA.
EM zzbatmos@umbc.edu
RI Yang, Ping/B-4590-2011; Zhang, Zhibo/D-1710-2010; Platnick,
Steven/J-9982-2014; Heidinger, Andrew/F-5591-2010
OI Zhang, Zhibo/0000-0001-9491-1654; Platnick, Steven/0000-0003-3964-3567;
Heidinger, Andrew/0000-0001-7631-109X
FU NASA [NNX08AP57G]; DOE
FX This work was funded in part by NASA's Radiation Sciences Program. P.
Yang acknowledges NASA support (NNX08AP57G). The contribution from J. M.
Comstock was supported by the DOE Atmospheric Radiation Measurement
Program. The authors thank the two reviewers for their insightful
comments, questions, and suggestions, which have helped to improve this
manuscript.
NR 72
TC 27
Z9 27
U1 2
U2 9
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD SEP 3
PY 2010
VL 115
AR D17203
DI 10.1029/2010JD013835
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 646WE
UT WOS:000281574000006
ER
PT J
AU Selvans, MM
Plaut, JJ
Aharonson, O
Safaeinili, A
AF Selvans, M. M.
Plaut, J. J.
Aharonson, O.
Safaeinili, A.
TI Internal structure of Planum Boreum, from Mars advanced radar for
subsurface and ionospheric sounding data
SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS
LA English
DT Article
ID POLAR LAYERED DEPOSITS; REGION; STRATIGRAPHY; SURFACE; HISTORY; ORIGIN
AB An investigation of the internal structure of the ice-rich Planum Boreum (PB) deposit at the north pole of Mars is presented, using 178 orbits of Mars advanced radar for subsurface and ionospheric sounding data. For each radargram, bright, laterally extensive surface and subsurface reflectors are identified and the time delay between them is converted to unit thicknesses, using a real dielectric constant of 3. Results include maps of unit thickness, for PB and its two constituent units, the stratigraphically older basal unit (BU) and the stratigraphically younger north polar layered deposits (NPLD). Maps of the individual units' surface elevation are also provided. Estimates of water ice volume in each unit are (1.3 +/- 0.2) x 10(6) km(3) in PB, (7.8 +/- 1.2) x 10(5) km(3) in the NPLD, and (4.5 +/- 1.0) x 10(5) km(3) in the BU. No lithospheric deflection is apparent under PB, in agreement with previous findings for only the Gemina Lingula lobe, which suggests that a thick elastic lithosphere has existed at the north pole of Mars since before the emplacement of the BU. The extent of BU material in the Olympia Planum lobe of PB is directly detected, providing a more accurate map of BU extent than previously available from imagery and topography. A problematic area for mapping the BU extent and thickness is in the distal portion of the 290 degrees E-300 degrees E region, where MARSIS data show no subsurface reflectors, even though the BU is inferred to be present from other lines of evidence.
C1 [Selvans, M. M.; Aharonson, O.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.
[Plaut, J. J.; Safaeinili, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
RP Selvans, MM (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA.
EM selvans@gps.caltech.edu
FU NASA
FX We dedicate this paper to the late Ali Safaeinili, whose passion, skill,
and support were both inspiring and essential for the completion of this
study. Part of the research described in this publication was carried
out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with NASA. Support from the NASA-Mars
Express project is gratefully acknowledged.
NR 28
TC 13
Z9 13
U1 0
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9097
EI 2169-9100
J9 J GEOPHYS RES-PLANET
JI J. Geophys. Res.-Planets
PD SEP 3
PY 2010
VL 115
AR E09003
DI 10.1029/2009JE003537
PG 9
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 647QE
UT WOS:000281632900001
ER
PT J
AU Lohn, AJ
Onishi, T
Kobayashi, NP
AF Lohn, Andrew J.
Onishi, Takehiro
Kobayashi, Nobuhiko P.
TI Optical properties of indium phosphide nanowire ensembles at various
temperatures
SO NANOTECHNOLOGY
LA English
DT Article
ID INP NANOWIRES; DEPENDENT PHOTOLUMINESCENCE; TWINNING SUPERLATTICES;
BAND-GAP; NANONEEDLES; SURFACES
AB Ensembles that contain two types (zincblende and wurtzite) of indium phosphide nanowires grown on non-single crystalline surfaces were studied by micro-photoluminescence and micro-Raman spectroscopy at various low temperatures. The obtained spectra are discussed with the emphasis on the effects of differing lattice types, geometries, and crystallographic orientations present within an ensemble of nanowires grown on non-single crystalline surfaces. In the photoluminescence spectra, a typical Varshni dependence of band gap energy on temperature was observed for emissions from zincblende nanowires and in the high temperature regime energy transfer from excitonic transitions and band-edge transitions was identified. In contrast, the photoluminescence emissions associated with wurtzite nanowires were rather insensitive to temperature. Raman spectra were collected simultaneously from zincblende and wurtzite nanowires coexisting in an ensemble. Raman peaks of the wurtzite nanowires are interpreted as those related to the zincblende nanowires by a folding of the phonon dispersion.
C1 [Lohn, Andrew J.] Univ Calif Santa Cruz, Baskin Sch Engn, Santa Cruz, CA 95064 USA.
Univ Calif Santa Cruz, Adv Studies Labs, NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Lohn, AJ (reprint author), Univ Calif Santa Cruz, Baskin Sch Engn, Santa Cruz, CA 95064 USA.
RI Kobayashi, Nobuhiko/E-3834-2012
NR 22
TC 14
Z9 14
U1 1
U2 11
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0957-4484
J9 NANOTECHNOLOGY
JI Nanotechnology
PD SEP 3
PY 2010
VL 21
IS 35
AR 355702
DI 10.1088/0957-4484/21/35/355702
PG 6
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA 636MY
UT WOS:000280742000018
PM 20689159
ER
PT J
AU Hill, CJ
Soibel, A
Keo, SA
Mumolo, M
Ting, DZ
Gunapala, SD
AF Hill, C. J.
Soibel, A.
Keo, S. A.
Mumolo, M.
Ting, D. Z.
Gunapala, S. D.
TI Mid-infrared quantum dot barrier photodetectors with extended cutoff
wavelengths
SO ELECTRONICS LETTERS
LA English
DT Article
AB A method to extend the cutoff wavelength of mid-infrared barrier photodetectors by incorporating self-assembled InSb quantum dots into the active area of the detector is demonstrated. This approach enables the extension of the cutoff wavelength of barrier photodetectors from 4.2 to 6 mu m, demonstrating infrared response at temperatures up to 225 K.
C1 [Hill, C. J.; Soibel, A.; Keo, S. A.; Mumolo, M.; Ting, D. Z.; Gunapala, S. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Hill, CJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM Alexander.Soibel@jpl.nasa.gov
RI Soibel, Alexander/A-1313-2007
FU National Aeronautics and Space Administration
FX This work was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, and was sponsored by the National Aeronautics
and Space Administration.
NR 5
TC 28
Z9 28
U1 2
U2 9
PU INST ENGINEERING TECHNOLOGY-IET
PI HERTFORD
PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND
SN 0013-5194
J9 ELECTRON LETT
JI Electron. Lett.
PD SEP 2
PY 2010
VL 46
IS 18
BP 1286
EP U71
DI 10.1049/el.2010.1844
PG 2
WC Engineering, Electrical & Electronic
SC Engineering
GA 648KY
UT WOS:000281693800029
ER
PT J
AU Tsurutani, BT
Horne, RB
Pickett, JS
Santolik, O
Schriver, D
Verkhoglyadova, OP
AF Tsurutani, Bruce T.
Horne, Richard B.
Pickett, Jolene S.
Santolik, Ondrej
Schriver, David
Verkhoglyadova, Olga P.
TI Introduction to the special section on Chorus: Chorus and its role in
space weather
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Editorial Material
AB Chorus, a naturally occurring magnetospheric electromagnetic wave, is believed to be the result of a long chain of physical processes starting with supergranular circulation at the sun. The interaction of chorus with energetic electrons produces similar to MeV "killer" electrons that can disable Earth orbiting spacecraft.
C1 [Tsurutani, Bruce T.; Verkhoglyadova, Olga P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Tsurutani, Bruce T.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys Extraterr Phys, Braunschweig, Germany.
[Horne, Richard B.] British Antarctic Survey, NERC, Cambridge CB3 0ET, England.
[Pickett, Jolene S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
[Santolik, Ondrej] Inst Atmospher Phys, Dept Space Phys, Prague 14131 4, Czech Republic.
[Santolik, Ondrej] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic.
[Schriver, David] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA.
[Verkhoglyadova, Olga P.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA.
RP Tsurutani, BT (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM bruce.tsurutani@jpl.nasa.gov
RI Santolik, Ondrej/F-7766-2014;
OI Verkhoglyadova, Olga/0000-0002-9295-9539; Horne,
Richard/0000-0002-0412-6407
NR 2
TC 7
Z9 7
U1 0
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0148-0227
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD SEP 2
PY 2010
VL 115
AR A00F01
DI 10.1029/2010JA015870
PG 1
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647QL
UT WOS:000281633600007
ER
PT J
AU Jones, B
Matsyutenko, P
Su, NC
Chang, AHH
Kaiser, RI
AF Jones, Brant
Matsyutenko, Pavlo
Su, Nung C.
Chang, Agnes H. H.
Kaiser, Ralf I.
TI Crossed Molecular Beam Study on the Ground State Reaction of Atomic
Boron [B(P-2(j))] with Hydrogen Cyanide [HCN(X-1 Sigma(+))]
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID C-N NANOTUBES; DENSITY-FUNCTIONAL THERMOCHEMISTRY; LASER-ABLATION;
AB-INITIO; INTERSTELLAR BORON; ORION ASSOCIATION; BONDING STRUCTURE;
MASS-SPECTRUM; BCN; FILMS
AB The linear boronisocyanide species, [BNC(X-1 Sigma(+))], represents the simplest triatomic molecule with three distinct, neighboring main group atoms of the second row of the periodic table of the elements: boron, carbon, and nitrogen. This makes boronisocyanide a crucial benchmark system to understand the chemical bonding and the electronic structure of small molecules, in particular when compared to the isoelectronic tricarbon molecule, [CCC(X-1 Sigma(+))]. However, a clean, directed synthesis of boronisocyanide a crucial prerequisite to study the properties of this molecule has remained elusive so far. Here, we combine crossed molecular beam experiments of ground state boron atoms (P-2(j)) with hydrogen cyanide with electronic structure calculations and reveal that the boronisocyanide molecule, [BNC(X-1 Sigma(+))], is formed as the exclusive product under gas phase single collision conditions. We also show that higher energy isomers such as the hitherto unnoticed, ring-strained cyclic BNC(X(3)A') structure, which is isoelectronic to the triplet, cyclic tricarbon molecule, [C-3(X(3)A(2)')], do exist as local minima. Our studies present the first directed synthesis and observation of gas phase boronisocyanide providing a doorway for further fundamental studies on one of the simplest triatomic molecules composed solely of group III-V elements.
C1 [Jones, Brant; Matsyutenko, Pavlo; Kaiser, Ralf I.] Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA.
[Jones, Brant] Univ Hawaii Manoa, NASA Astrobiol Inst, Honolulu, HI 96822 USA.
[Chang, Agnes H. H.] Natl Dong Hwa Univ, Dept Chem, Shoufeng 974, Hualien, Taiwan.
RP Kaiser, RI (reprint author), Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA.
EM ralfk@hawaii.edu
FU Air Force Office of Scientific Research [A9550-09-1-0177]
FX This work was supported by the Air Force Office of Scientific Research
(A9550-09-1-0177) (PM, RIK). B. J. thanks the NASA Postdoctoral Program
at the NASA Astrobiology Institute, administered by Oak Ridge Associated
Universities.
NR 85
TC 0
Z9 0
U1 1
U2 6
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD SEP 2
PY 2010
VL 114
IS 34
BP 8999
EP 9006
DI 10.1021/jp104426f
PG 8
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 641LW
UT WOS:000281128900009
PM 20681533
ER
PT J
AU Peslier, AH
Woodland, AB
Bell, DR
Lazarov, M
AF Peslier, Anne H.
Woodland, Alan B.
Bell, David R.
Lazarov, Marina
TI Olivine water contents in the continental lithosphere and the longevity
of cratons
SO NATURE
LA English
DT Article
ID UPPER-MANTLE BENEATH; SOUTHERN AFRICA; PERIDOTITE XENOLITHS; THERMAL
EVOLUTION; SINGLE-CRYSTALS; KAAPVAAL CRATON; OXYGEN FUGACITY; EARTHS
MANTLE; VISCOSITY; MINERALS
AB Cratons, the ancient cores of continents, contain the oldest crust and mantle on the Earth (>2 Gyr old)(1). They extend laterally for hundreds of kilometres, and are underlain to depths of 180-250 km by mantle roots that are chemically and physically distinct from the surrounding mantle(2-4). Forming the thickest lithosphere on our planet, they act as rigid keels isolated from the flowing asthenosphere(5); however, it has remained an open question how these large portions of the mantle can stay isolated for so long from mantle convection. Key physical properties thought to contribute to this longevity include chemical buoyancy due to high degrees of melt-depletion and the stiffness imparted by the low temperatures of a conductive thermal gradient(2,6,7). Geodynamic calculations, however, suggest that these characteristics are not sufficient to prevent the lithospheric mantle from being entrained during mantle convection over billions of years(6,7). Differences in water content are a potential source of additional viscosity contrast between cratonic roots and ambient mantle owing to the well-established hydrolytic weakening effect in olivine(8-10), the most abundant mineral of the upper mantle. However, the water contents of cratonic mantle roots have to date been poorly constrained. Here we show that olivine in peridotite xenoliths from the lithosphere-asthenosphere boundary region of the Kaapvaal craton mantle root are water-poor and provide sufficient viscosity contrast with underlying asthenosphere to satisfy the stability criteria required by geodynamic calculations(9). Our results provide a solution to a puzzling mystery of plate tectonics, namely why the oldest continents, in contrast to short-lived oceanic plates, have resisted recycling into the interior of our tectonically dynamic planet.
C1 [Peslier, Anne H.] ESCG, Houston, TX 77058 USA.
[Peslier, Anne H.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
[Woodland, Alan B.; Lazarov, Marina] Goethe Univ Frankfurt, Inst Geosci, D-60438 Frankfurt, Germany.
[Bell, David R.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA.
RP Peslier, AH (reprint author), ESCG, Mail Code JE23,2224 Bay Area Blvd, Houston, TX 77058 USA.
EM anne.h.peslier@nasa.gov
RI Lazarov, Marina/A-9592-2010; Peslier, Anne/F-3956-2010
FU NSF [EAR0802652]
FX We thank M. Kurosawa for providing unpublished mineral data so that we
could recalculate pressure-temperature conditions for his samples. We
also thank C.-T. Lee, Z.-X. A. Li, F. Niu and A. D. Brandon for
discussions. Earlier versions of this manuscript were improved by the
comments of D. E. James. This work was supported by NSF grant
EAR0802652.
NR 49
TC 104
Z9 114
U1 4
U2 42
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD SEP 2
PY 2010
VL 467
IS 7311
BP 78
EP U108
DI 10.1038/nature09317
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 645MB
UT WOS:000281461200038
PM 20811455
ER
PT J
AU Olivas, JD
Wright, MC
Christoffersen, R
Cone, DM
McDanels, SJ
AF Olivas, J. D.
Wright, M. C.
Christoffersen, R.
Cone, D. M.
McDanels, S. J.
TI Crystallographic oxide phase identification of char deposits obtained
from space shuttle Columbia window debris
SO ACTA ASTRONAUTICA
LA English
DT Article
DE Transmission electron microscopy (TEM); Combustion; Titanium; Focused
ion beam (FIB); Space shuttle
ID PLASMA-SPRAYED COATINGS; MICROSTRUCTURE; ALLOY; SOLIDIFICATION;
MORPHOLOGY; ZIRCONIA
AB Char deposits on recovered fragments of space shuttle Columbia windowpanes were analyzed to further understand the events that occurred during orbiter reentry and breakup. The TEM analysis demonstrated that oxides of aluminum and titanium mixed with silicon oxides to preserve a history of thermal conditions to which portions of the vehicle were exposed. The presence of Ti during the beginning of the deposition process, along with the thermodynamic phase precipitation upon cool down, indicated that temperatures well above the Ti melt point were experienced. The stratified observations implied that additional exothermic reactions, expectedly metal combustion of a Ti-6Al-4V structure, had to occur for oxide formation. Results are significant for aerospace vehicles, where thermal protection system (TPS) breaches could cause material originally designed for substructural applications to be in direct path with reentry plasma. Published by Elsevier Ltd.
C1 [Wright, M. C.; McDanels, S. J.] NASA, Kennedy Space Ctr, FL 32899 USA.
[Olivas, J. D.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
[Christoffersen, R.] Sci Applicat Int Corp, Lyndon B Johnson Space Ctr, Houston, TX USA.
RP Wright, MC (reprint author), NASA, Kennedy Space Ctr, FL 32899 USA.
EM m.clara.wright@nasa.gov
FU National Aeronautics and Space Administration
FX This document was prepared under the sponsorship of the National
Aeronautics and Space Administration. Neither the United States
government nor any person acting on behalf of the United States
government assumes any liability resulting from the use of the
information contained in this document, or warrants that such use will
be free from privately owned rights.
NR 27
TC 0
Z9 0
U1 0
U2 4
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0094-5765
J9 ACTA ASTRONAUT
JI Acta Astronaut.
PD SEP-OCT
PY 2010
VL 67
IS 5-6
BP 553
EP 560
DI 10.1016/j.actaastro.2010.04.019
PG 8
WC Engineering, Aerospace
SC Engineering
GA 620AT
UT WOS:000279472100005
ER
PT J
AU Parker, JS
Davis, KE
Born, GH
AF Parker, Jeffrey S.
Davis, Kathryn E.
Born, George H.
TI Chaining periodic three-body orbits in the Earth-Moon system
SO ACTA ASTRONAUTICA
LA English
DT Article
DE Earth-Moon orbits; Three-body trajectories; Low-energy; Mission design;
Dynamical systems; Manifolds; Orbit transfers
ID HETEROCLINIC CONNECTIONS; EXPLORATION NUMERIQUE; PROBLEME RESTREINT;
HALO ORBITS; STABILITY
AB In this paper, we describe methods to construct complex chains of orbit transfers in the planar circular restricted Earth-Moon three-body system using the invariant manifolds of unstable three-body orbits. It is shown that the Poincare map is a useful tool to identify and construct transfer trajectories from one orbit to another, i.e., homoclinic and heteroclinic orbit connections, with applications to practical spacecraft mission design. A multiple-shooting differential corrector is used to construct complex orbit chains and complex periodic orbits. The resulting complex periodic orbits are shown to be members of continuous families of such orbits, where the characteristics of each orbit in the family vary continuously from one end of the family to the other. Finally, we characterize the cost of constructing an orbit transfer between any two points along two libration orbits using a single maneuver. It is shown that a spacecraft requires substantially less AV to perform such single-maneuver transfers if the transfers are near heteroclinic connections in the corresponding phase space. (C) 2010 Elsevier Ltd. All rights reserved.
C1 [Parker, Jeffrey S.; Davis, Kathryn E.; Born, George H.] Univ Colorado, Colorado Ctr Astrodynam Res, Boulder, CO 80309 USA.
RP Parker, JS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM parkerjs@gmail.com; katedavis22@gmail.com; george.born@colorado.edu
FU NASA; National Science Foundation; Zonta International Amelia Earhart;
Alliance for Graduate Education and the Professoriate
FX This work has been completed under partial funding by a NASA Graduate
Student Researchers Program (GSRP) Fellowship by the National
Aeronautics and Space Administration through the Jet Propulsion
Laboratory, California Institute of Technology, by a National Science
Foundation Graduate Research Fellowship, by a Zonta International Amelia
Earhart Fellowship, and by funds from the Alliance for Graduate
Education and the Professoriate.
NR 43
TC 8
Z9 8
U1 1
U2 2
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0094-5765
J9 ACTA ASTRONAUT
JI Acta Astronaut.
PD SEP-OCT
PY 2010
VL 67
IS 5-6
BP 623
EP 638
DI 10.1016/j.actaastro.2010.04.003
PG 16
WC Engineering, Aerospace
SC Engineering
GA 620AT
UT WOS:000279472100012
ER
PT J
AU Sen, S
Carranza, S
Pillay, S
AF Sen, S.
Carranza, S.
Pillay, S.
TI Multifunctional Martian habitat composite material synthesized from in
situ resources
SO ADVANCES IN SPACE RESEARCH
LA English
DT Article
DE In situ resources; Martian habitat structures; Multifunctional
composites; Radiation shielding; Mechanical properties; Micrometeoroid
impact resistance
ID HUMAN EXPLORATION; MARS
AB The two primary requirements for a Martian habitat structure include effective radiation shielding against the Galactic Cosmic Ray (GCR) environment and sufficient structural and thermal integrity. To significantly reduce the cost associated with transportation of such materials and structures from earth, it is imperative that such building materials should be synthesized primarily from Martian in situ resources. This paper illustrates the feasibility of such an approach. Experimental results are discussed to demonstrate the synthesis of polyethylene (PE) from a simulated Martian atmosphere and the fabrication of a composite material using simulated Martian regolith with PE as the binding material. The radiation shielding effectiveness of the proposed composites is analyzed using results from radiation transport codes and exposure of the samples to high-energy beams that serve as a terrestrial proxy for the GCR environment. Mechanical and ballistic impact resistance properties of the proposed composite as a function of composition, processing parameters, and thermal variations are also discussed to evaluate the multifunctionality of such in situ synthesized composite materials. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved.
C1 [Sen, S.] NASA, George C Marshall Space Flight Ctr, BAE Syst, EM 30, Huntsville, AL 35812 USA.
[Carranza, S.] Makel Engn Inc, Chico, CA 95973 USA.
[Pillay, S.] Univ Alabama, Dept Mat Sci & Engn, Birmingham, AL 35294 USA.
RP Sen, S (reprint author), NASA, George C Marshall Space Flight Ctr, BAE Syst, EM 30, Bldg 4464, Huntsville, AL 35812 USA.
EM Subhayu.Sen-1@nasa.gov
FU NASA
FX The authors wish to acknowledge the NASA SBIR program for funding this
effort. The authors are extremely grateful to Prof. S. Guetersloh of
Texas A&M University, College Station, TX and the personnel at Plasma
Processes Inc., Huntsville, Al and HIMAC, Chiba, Japan without whose
assistance exposure of the samples to heavy ion beam would not be
possible. The authors also wish to express their gratitude to Dr. M.
Bhattacharya of Siemens Medical Solutions USA Inc., Chicago, IL for many
insightful discussions on deep space radiation environment and
experimental nuclear physics. The technical assistance received from Mr.
William Seymour for composite sample fabrication is also acknowledged.
NR 27
TC 1
Z9 1
U1 1
U2 2
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0273-1177
J9 ADV SPACE RES
JI Adv. Space Res.
PD SEP 1
PY 2010
VL 46
IS 5
BP 582
EP 592
DI 10.1016/j.asr.2010.04.009
PG 11
WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences
GA 640DL
UT WOS:000281028000003
ER
PT J
AU Canan, J
Bigelow, RT
AF Canan, James
Bigelow, Robert T.
TI Robert T. Bigelow
SO AEROSPACE AMERICA
LA English
DT Editorial Material
C1 [Bigelow, Robert T.] NASA, Washington, DC USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER INST AERONAUT ASTRONAUT
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0740-722X
J9 AEROSPACE AM
JI Aerosp. Am.
PD SEP
PY 2010
VL 48
IS 8
BP 10
EP 13
PG 4
WC Engineering, Aerospace
SC Engineering
GA V24JW
UT WOS:000208407700009
ER
PT J
AU Park, MA
Darmofal, DL
AF Park, Michael A.
Darmofal, David L.
TI Validation of an Output-Adaptive, Tetrahedral Cut-Cell Method for Sonic
Boom Prediction
SO AIAA JOURNAL
LA English
DT Article; Proceedings Paper
CT AIAA 26th Applied Aerodynamics Conference
CY AUG 18-21, 2008
CL Honolulu, HI
SP Amer Inst Aeronaut & Astronaut
ID UNSTRUCTURED GRIDS; TURBULENT FLOWS; FLUID-DYNAMICS; ALGORITHM;
EQUATIONS; IMPLICIT; MESHES
AB A cut-cell approach to computational fluid dynamics that uses the median dual of a tetrahedral background grid is described. The discrete adjoint is also calculated for an adaptive method to control error in a specified Output. The adaptive method is applied to sonic boom prediction by specifying an integral of offbody pressure signature as the output. These predicted signatures are compared to wind-tunnel measurements to validate the method for sonic boom prediction. Accurate midfield sonic boom pressure signatures are calculated with the Euler equations without the use of hybrid grid or signature propagation methods. Highly refined, shock-aligned anisotropic grids are produced by this method from coarse isotropic grids created without prior knowledge of shock locations. A heuristic reconstruction limiter provides stable flow and adjoint solution schemes while producing similar signatures to Barth-Jespersen and Venkatakrishnan limiters. The use of cut cells with an output-based adaptive scheme automates the volume grid generation task after a triangular mesh is generated for the cut surface.
C1 [Park, Michael A.] NASA, Langley Res Ctr, Computat Aerosci Branch, Hampton, VA 23681 USA.
[Darmofal, David L.] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA.
RP Park, MA (reprint author), NASA, Langley Res Ctr, Computat Aerosci Branch, Mail Stop 128, Hampton, VA 23681 USA.
NR 67
TC 7
Z9 8
U1 0
U2 2
PU AMER INST AERONAUT ASTRONAUT
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0001-1452
J9 AIAA J
JI AIAA J.
PD SEP
PY 2010
VL 48
IS 9
BP 1928
EP 1945
DI 10.2514/1.J050111
PG 18
WC Engineering, Aerospace
SC Engineering
GA 646NK
UT WOS:000281548100007
ER
PT J
AU Lee, BJ
Liou, MS
Kim, C
AF Lee, Byung Joon
Liou, Mena-Sing
Kim, Chongam
TI Optimizing a Boundary-Layer-Ingestion Offset Inlet by Discrete Adjoint
Approach
SO AIAA JOURNAL
LA English
DT Article; Proceedings Paper
CT 19th AIAA Computational Fluid Dynamics Conference
CY JUN 22-25, 2009
CL San Antonio, TX
SP Amer Inst Aeronaut & Astronaut
ID AUTOMATED DESIGN; DIFFUSER; FLOW
AB A large amount of low-momentum boundary-layer flow ingesting into a flush-mounted inlet can cause significant total pressure loss and distortion to the extent beyond operability of a fan/compressor. To improve the quality of incoming flow into the engine, shape optimization of the surface geometry at the inlet entrance has been carried out using the discrete adjoint method; the inlet-floor shape is parameterized by the use of control points on B-spline surface patches. To resolve the complicated geometry flexibly and wall-bounded turbulent flow accurately, an overset mesh system is well-suited for integrating the flow analysis code, sensitivity analysis code, and grid modification tools. To enhance the convergence characteristics of the sensitivity analysis code, additional numerical dissipation for the discrete adjoint formulation is introduced. After using this optimization procedure, the new inlet yields a significant improvement in performance: a more than 50% reduction in flow distortion kind a 3% increase in total pressure recovery. High performance at off-design conditions is also realized with only slight degradation, confirming the capability of the adjoin( method for a practical design problem. Finally, the physical meaning and implication of the performance improvement are elaborated upon in relation to the flow characteristics resulting from the new design.
C1 [Lee, Byung Joon; Liou, Mena-Sing] NASA, John H Glenn Res Ctr Lewis Field, Aeroprop Div, Cleveland, OH 44135 USA.
[Kim, Chongam] Seoul Natl Univ, Sch Mech & Aerosp Engn, Seoul 151742, South Korea.
RP Lee, BJ (reprint author), NASA, John H Glenn Res Ctr Lewis Field, Aeroprop Div, Cleveland, OH 44135 USA.
NR 28
TC 8
Z9 8
U1 1
U2 7
PU AMER INST AERONAUT ASTRONAUT
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0001-1452
J9 AIAA J
JI AIAA J.
PD SEP
PY 2010
VL 48
IS 9
BP 2008
EP 2016
DI 10.2514/1.J050222
PG 9
WC Engineering, Aerospace
SC Engineering
GA 646NK
UT WOS:000281548100013
ER
PT J
AU Nishino, T
Shariff, K
AF Nishino, Takafumi
Shariff, Karim
TI Numerical Study of Wind-Tunnel Sidewall Effects on Circulation Control
Airfoil Flows
SO AIAA JOURNAL
LA English
DT Article
AB Two- and three-dimensional numerical simulations are performed of the flow around a circulation control airfoil (using a Coanda jet blowing over a rounded trailing edge) placed in a rectangular wind-tunnel test section. The airfoil model spans the entire tunnel and the span-to-chord ratio of the model is 3.26. The objective of this numerical study, in which we solve the compressible Reynolds-averaged Navier-Stokes equations in a time-resolved manner (but the solutions eventually converge to steady states), is to investigate the physical mechanisms of wind-tunnel sidewall effects on the flow, especially in the midspan region. The three-dimensional simulations predict that the Coanda jet flow is quasi-two-dimensional until the flow separates from the trailing edge of the airfoil; however, the spanwise ends of this Coanda jet sheet then three-dimensionally roll up on the side walls of the wind tunnel to form two large streamwise vortices downstream. Careful comparisons between the two- and three-dimensional simulations reveal that the wind-tunnel stream goes below the airfoil more in the three-dimensional cases than in the two-dimensional cases due to the presence of these two streamwise vortices downstream. This results in smaller lift and larger drag being produced at the midspan of the airfoil in the three-dimensional cases than in the two-dimensional cases.
C1 [Nishino, Takafumi; Shariff, Karim] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Nishino, T (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RI Nishino, Takafumi/A-2685-2012;
OI Nishino, Takafumi/0000-0001-6306-7702; Shariff,
Karim/0000-0002-7256-2497
FU NASA
FX The present work was supported by NASA's Fundamental Act mimics Program
(Subsonic Fixed Wing Project). and T Nishino has been supported by the
NASA Postdoctoral Program administrated by Oak Ridge Associated
Universities The authors would like to thank S Hahn of the Center for
Turbulence Research at Stanford University for providing the
computational code, G Jones and B Allan of NASA Langley Research Center
for providing the airfoil geometry. and M Rogers and N Madavan of NASA
Ames Research Center for many valuable discussions
NR 20
TC 6
Z9 7
U1 0
U2 7
PU AMER INST AERONAUT ASTRONAUT
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0001-1452
J9 AIAA J
JI AIAA J.
PD SEP
PY 2010
VL 48
IS 9
BP 2123
EP 2132
DI 10.2514/1.J050328
PG 10
WC Engineering, Aerospace
SC Engineering
GA 646NK
UT WOS:000281548100022
ER
PT J
AU Danks, R
AF Danks, Richard
TI O&M for Green Buildings
SO ASHRAE JOURNAL
LA English
DT Editorial Material
C1 NASA, Glenn Res Ctr, Facil Div, Cleveland, OH USA.
RP Danks, R (reprint author), NASA, Glenn Res Ctr, Facil Div, Cleveland, OH USA.
NR 0
TC 0
Z9 0
U1 0
U2 1
PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC,
PI ATLANTA
PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA
SN 0001-2491
J9 ASHRAE J
JI ASHRAE J.
PD SEP
PY 2010
VL 52
IS 9
BP 92
EP 92
PG 1
WC Thermodynamics; Construction & Building Technology; Engineering,
Mechanical
SC Thermodynamics; Construction & Building Technology; Engineering
GA 651LL
UT WOS:000281929100024
ER
PT J
AU Grant, JA
Westall, F
Beaty, DW
Vago, JL
AF Grant, John A.
Westall, Frances
Beaty, David W.
Vago, Jorge L.
TI Two Rovers to the Same Site on Mars, 2018: Possibilities for Cooperative
Science
SO ASTROBIOLOGY
LA English
DT Article
ID SAMPLE RETURN; MISSION; EXPLORATION; SURFACE; LIFE
C1 [Grant, John A.] Smithsonian Inst, Ctr Earth & Planetary Studies, Natl Air & Space Museum, MRC 315, Washington, DC 20013 USA.
[Westall, Frances] CNRS, Ctr Biophys Mol, F-45071 Orleans 2, France.
[Beaty, David W.] CALTECH, Mars Program Off, Jet Prop Lab, Pasadena, CA 91109 USA.
[Vago, Jorge L.] European Space Agcy, ESA ESTEC HME ME, NL-2201 AZ Noordwijk, Netherlands.
RP Grant, JA (reprint author), Smithsonian Inst, Ctr Earth & Planetary Studies, Natl Air & Space Museum, MRC 315, POB 37012, Washington, DC 20013 USA.
EM grantj@si.edu; frances.westall@cnrs-orleans.fr;
David.Beaty@jpl.nasa.gov; Jorge.Vago@esa.int
FU National Aeronautics and Space Administration
FX An early draft of the list of possible options for collaborative science
and their priorities (Table 2 of this report) was discussed with
multiple colleagues within the Mars exploration community, including the
leaders of MRR-SAG; ExoMars project leadership; the ExoMars Science
Working Group; ExoMars instrument science colleagues; the JPL Mars
Program Office science team; similar to 8-10 MER scientists; and
professional colleagues of several team members. This resulted in the
addition of several new ideas, valuable clarification of others, and
refinement of our perception of their relative priorities. Chad Edwards
(Chief Telecommunications Engineer, Mars Program Office, JPL) provided
extensive input to the telecommunications analysis. Gerhard Kminek
(Planetary Protection Officer, ESA) provided input to the section on
planetary protection. An early draft of this report was presented orally
on March 17, 2010, at the MEPAG meeting in Monrovia, and the ensuing
discussion was very helpful in refining the ideas contained in this
report. A portion of this work was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration.
NR 40
TC 4
Z9 4
U1 0
U2 7
PU MARY ANN LIEBERT, INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 1531-1074
EI 1557-8070
J9 ASTROBIOLOGY
JI Astrobiology
PD SEP
PY 2010
VL 10
IS 7
BP 663
EP 685
DI 10.1089/ast.2010.0526
PG 23
WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary
SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics;
Geology
GA 671EM
UT WOS:000283483100001
ER
PT J
AU Michalski, JR
Bibring, JP
Poulet, F
Loizeau, D
Mangold, N
Dobrea, EN
Bishop, JL
Wray, JJ
McKeown, NK
Parente, M
Hauber, E
Altieri, F
Carrozzo, FG
Niles, PB
AF Michalski, Joseph R.
Bibring, Jean-Pierre
Poulet, Francois
Loizeau, Damien
Mangold, Nicolas
Dobrea, Eldar Noe
Bishop, Janice L.
Wray, James J.
McKeown, Nancy K.
Parente, Mario
Hauber, Ernst
Altieri, Francesca
Carrozzo, F. Giacomo
Niles, Paul B.
TI The Mawrth Vallis Region of Mars: A Potential Landing Site for the Mars
Science Laboratory (MSL) Mission
SO ASTROBIOLOGY
LA English
DT Article
DE Clays; Planetary science; Habitability; Infrared spectroscopy; Mars
ID MORPHOLOGICAL BIOSIGNATURES; CONTINENTAL-CRUST; MERIDIANI PLANUM;
CLAY-MINERALS; LIFE; CRATER; EARTH; OPPORTUNITY; DIVERSITY; EVOLUTION
AB The primary objective of NASA's Mars Science Laboratory (MSL) mission, which will launch in 2011, is to characterize the habitability of a site on Mars through detailed analyses of the composition and geological context of surface materials. Within the framework of established mission goals, we have evaluated the value of a possible landing site in the Mawrth Vallis region of Mars that is targeted directly on some of the most geologically and astrobiologically enticing materials in the Solar System. The area around Mawrth Vallis contains a vast (>1x10(6)km(2)) deposit of phyllosilicate-rich, ancient, layered rocks. A thick (>150 m) stratigraphic section that exhibits spectral evidence for nontronite, montmorillonite, amorphous silica, kaolinite, saponite, other smectite clay minerals, ferrous mica, and sulfate minerals indicates a rich geological history that may have included multiple aqueous environments. Because phyllosilicates are strong indicators of ancient aqueous activity, and the preservation potential of biosignatures within sedimentary clay deposits is high, martian phyllosilicate deposits are desirable astrobiological targets. The proposed MSL landing site at Mawrth Vallis is located directly on the largest and most phyllosilicate-rich deposit on Mars and is therefore an excellent place to explore for evidence of life or habitability.
C1 [Michalski, Joseph R.; Bibring, Jean-Pierre; Poulet, Francois; Loizeau, Damien] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France.
[Michalski, Joseph R.; Dobrea, Eldar Noe] Planetary Sci Inst, Tucson, AZ USA.
[Mangold, Nicolas] Univ Nantes, CNRS, LPGN, Nantes, France.
[Bishop, Janice L.] SETI Inst, Mountain View, CA USA.
[Bishop, Janice L.] NASA, Ames Res Ctr, Mountain View, CA USA.
[Wray, James J.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA.
[McKeown, Nancy K.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA.
[Parente, Mario] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA.
[Hauber, Ernst] DLR, Inst Planetary Res, Berlin, Germany.
[Altieri, Francesca; Carrozzo, F. Giacomo] INAF, IFSI, Rome, Italy.
[Niles, Paul B.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA.
RP Michalski, JR (reprint author), Univ Paris 11, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France.
EM Michalski@psi.edu
RI Wray, James/B-8457-2008;
OI Wray, James/0000-0001-5559-2179; Carrozzo, Filippo
Giacomo/0000-0002-0391-6407
NR 71
TC 21
Z9 21
U1 2
U2 21
PU MARY ANN LIEBERT, INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 1531-1074
EI 1557-8070
J9 ASTROBIOLOGY
JI Astrobiology
PD SEP
PY 2010
VL 10
IS 7
BP 687
EP 703
DI 10.1089/ast.2010.0491
PG 17
WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary
SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics;
Geology
GA 671EM
UT WOS:000283483100002
PM 20950170
ER
PT J
AU Davila, AF
Skidmore, M
Fairen, AG
Cockell, C
Schulze-Makuch, D
AF Davila, Alfonso F.
Skidmore, Mark
Fairen, Alberto G.
Cockell, Charles
Schulze-Makuch, Dirk
TI New Priorities in the Robotic Exploration of Mars: The Case for In Situ
Search for Extant Life
SO ASTROBIOLOGY
LA English
DT Article
ID MICROBIAL LIFE; ATACAMA DESERT; GROUND ICE; LAYERED DEPOSITS;
POLAR-REGIONS; BASAL ICE; PERMAFROST; GLACIER; METHANE; SOILS
C1 [Davila, Alfonso F.; Fairen, Alberto G.] SETI Inst, Mountain View, CA 94043 USA.
[Davila, Alfonso F.; Fairen, Alberto G.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Skidmore, Mark] Montana State Univ, Dept Earth Sci, Bozeman, MT 59717 USA.
[Cockell, Charles] Open Univ, Geomicrobiol Res Grp, PSSRI, Milton Keynes MK7 6AA, Bucks, England.
[Schulze-Makuch, Dirk] Washington State Univ, Sch Earth & Environm Sci, Pullman, WA 99164 USA.
RP Davila, AF (reprint author), SETI Inst, 515 N Whisman Rd, Mountain View, CA 94043 USA.
EM adavila@seti.org
RI Davila, Alfonso/A-2198-2013;
OI Davila, Alfonso/0000-0002-0977-9909; Schulze-Makuch,
Dirk/0000-0002-1923-9746
NR 49
TC 9
Z9 9
U1 0
U2 17
PU MARY ANN LIEBERT INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 1531-1074
J9 ASTROBIOLOGY
JI Astrobiology
PD SEP
PY 2010
VL 10
IS 7
BP 705
EP 710
DI 10.1089/ast.2010.0538
PG 6
WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary
SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics;
Geology
GA 671EM
UT WOS:000283483100003
PM 20929400
ER
PT J
AU Roberts, LC
Gies, DR
Parks, JR
Grundstrom, ED
McSwain, MV
Berger, DH
Mason, BD
ten Brummelaar, TA
Turner, NH
AF Roberts, Lewis C., Jr.
Gies, Douglas R.
Parks, J. Robert
Grundstrom, Erika D.
McSwain, M. Virginia
Berger, David H.
Mason, Brian D.
ten Brummelaar, Theo A.
Turner, Nils H.
TI THE MEMBERSHIP AND DISTANCE OF THE OPEN CLUSTER COLLINDER 419
SO ASTRONOMICAL JOURNAL
LA English
DT Article
DE open clusters and associations: individual (Collinder 419); stars:
early-type; stars: individual (HD 193322, IRAS 20161+4035)
ID STAR-FORMATION; SPECTRAL CLASSIFICATION; INTERSTELLAR EXTINCTION;
HIPPARCOS PARALLAXES; MODEL ATMOSPHERES; OB STARS; CALIBRATION;
ISOCHRONES; CATALOG; GIANTS
AB The young open cluster Collinder 419 surrounds the massive O star, HD 193322, that is itself a remarkable multiple star system containing at least four components. Here we present a discussion of the cluster distance based upon new spectral classifications of the brighter members, UBV photometry, and an analysis of astrometric and photometric data from the third U. S. Naval Observatory CCD Astrograph Catalog and Two Micron All Sky Survey Catalog. We determine an average cluster reddening of E(B - V) = 0.37+/-0.05 mag and a cluster distance of 741+/-36 pc. The cluster probably contains some very young stars that may include a reddened M3 III star, IRAS 20161+4035.
C1 [Roberts, Lewis C., Jr.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Gies, Douglas R.; Parks, J. Robert] Georgia State Univ, Dept Phys & Astron, Ctr High Angular Resolut Astron, Atlanta, GA 30302 USA.
[Grundstrom, Erika D.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
[McSwain, M. Virginia] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA.
[Berger, David H.] Syst Planning Corp, Arlington, VA 22201 USA.
[Mason, Brian D.] USN Observ, Washington, DC 20392 USA.
[ten Brummelaar, Theo A.; Turner, Nils H.] Georgia State Univ, Ctr High Angular Resolut Astron, Mt Wilson, CA 91023 USA.
RP Roberts, LC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM lewis.c.roberts@jpl.nasa.gov; gies@chara.gsu.edu; parksj@chara.gsu.edu;
erika.grundstrom@vanderbilt.edu; mcswain@lehigh.edu;
dberger@sysplan.com; bdm@usno.navy.mil; theo@chara-array.org;
nils@chara-array.org
OI Grundstrom, Erika/0000-0002-5130-0260
FU National Aeronautics and Space Administration; National Science
Foundation; GSU College of Arts and Sciences
FX We thank Todd Henry, Adric Riedel, and Russel White for helpful comments
about M-star spectra, and we also thank Bill Binkert of the KPNO staff
for his assistance at the KPNO Coude Feed Telescope. We are grateful to
David Turner for discussions about field contamination by distant
massive stars. This publication made use of data products from the Two
Micron All Sky Survey, which is a joint project of the University of
Massachusetts and the Infrared Processing and Analysis Center/California
Institute of Technology, funded by the National Aeronautics and Space
Administration and the National Science Foundation. It also used images
from the Second Palomar Observatory Sky Survey (POSS-II), which was made
by the California Institute of Technology with funds from the National
Science Foundation, the National Geographic Society, the Sloan
Foundation, the Samuel Oschin Foundation, and the Eastman Kodak
Corporation. We also made use of the Washington Double Star Catalog,
maintained at the U. S. Naval Observatory, and the SIMBADdatabase,
operated by theCDS in Strasbourg, France. This material is based upon
work supported by the National Science Foundation under grant
AST-0606861. Institutional support has been provided from the GSU
College of Arts and Sciences and from the Research Program Enhancement
Fund of the Board of Regents of the University System of Georgia,
administered through the GSU Office of the Vice President for Research.
Aportion of the research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration.
NR 54
TC 4
Z9 4
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
J9 ASTRON J
JI Astron. J.
PD SEP
PY 2010
VL 140
IS 3
BP 744
EP 752
DI 10.1088/0004-6256/140/3/744
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 638GT
UT WOS:000280882300008
ER
PT J
AU Trilling, DE
Mueller, M
Hora, JL
Harris, AW
Bhattacharya, B
Bottke, WF
Chesley, S
Delbo, M
Emery, JP
Fazio, G
Mainzer, A
Penprase, B
Smith, HA
Spahr, TB
Stansberry, JA
Thomas, CA
AF Trilling, D. E.
Mueller, M.
Hora, J. L.
Harris, A. W.
Bhattacharya, B.
Bottke, W. F.
Chesley, S.
Delbo, M.
Emery, J. P.
Fazio, G.
Mainzer, A.
Penprase, B.
Smith, H. A.
Spahr, T. B.
Stansberry, J. A.
Thomas, C. A.
TI EXPLORENEOs. I. DESCRIPTION AND FIRST RESULTS FROM THE WARM SPITZER
NEAR-EARTH OBJECT SURVEY
SO ASTRONOMICAL JOURNAL
LA English
DT Article
DE minor planets, asteroids: general; infrared: planetary systems; surveys
ID THERMAL INFRARED SPECTROPHOTOMETRY; KUIPER-BELT OBJECTS;
SPACE-TELESCOPE; ASTEROID BELT; ARRAY CAMERA; RA-SHALOM; ORIGIN;
POPULATION; MAGNITUDES; YARKOVSKY
AB We have begun the ExploreNEOs project in which we observe some 700 Near-Earth Objects (NEOs) at 3.6 and 4.5 mu m with the Spitzer Space Telescope in its Warm Spitzer mode. From these measurements and catalog optical photometry we derive albedos and diameters of the observed targets. The overall goal of our ExploreNEOs program is to study the history of near-Earth space by deriving the physical properties of a large number of NEOs. In this paper, we describe both the scientific and technical construction of our ExploreNEOs program. We present our observational, photometric, and thermal modeling techniques. We present results from the first 101 targets observed in this program. We find that the distribution of albedos in this first sample is quite broad, probably indicating a wide range of compositions within the NEO population. Many objects smaller than 1 km have high albedos (greater than or similar to 0.35), but few objects larger than 1 km have high albedos. This result is consistent with the idea that these larger objects are collisionally older, and therefore possess surfaces that are more space weathered and therefore darker, or are not subject to other surface rejuvenating events as frequently as smaller NEOs.
C1 [Trilling, D. E.; Thomas, C. A.] No Arizona Univ, Dept Phys & Astron, Flagstaff, AZ 86001 USA.
[Mueller, M.; Delbo, M.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice 4, France.
[Hora, J. L.; Fazio, G.; Smith, H. A.; Spahr, T. B.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Harris, A. W.] DLR Inst Planetary Res, D-12489 Berlin, Germany.
[Bhattacharya, B.] CALTECH, NASA Herschel Sci Ctr, Pasadena, CA 91125 USA.
[Bottke, W. F.] SW Res Inst, Boulder, CO 80302 USA.
[Chesley, S.; Mainzer, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Emery, J. P.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA.
[Penprase, B.] Pomona Coll, Dept Phys & Astron, Claremont, CA 91711 USA.
[Stansberry, J. A.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA.
RP Trilling, DE (reprint author), No Arizona Univ, Dept Phys & Astron, Flagstaff, AZ 86001 USA.
EM david.trilling@nau.edu
OI Mueller, Michael/0000-0003-3217-5385; Hora, Joseph/0000-0002-5599-4650;
Thomas, Cristina/0000-0003-3091-5757
FU NASA
FX We acknowledge the thorough and prompt hard work of the staff at the
Spitzer Science Center, without whom the execution of this program would
not be possible. We thank Michael Mommert (DLR) for help in checking the
modeling results given in the data tables. We thank an anonymous referee
for making a number of useful suggestions. This work is based in part on
observations made with the Spitzer Space Telescope, which is operated by
JPL/Caltech under a contract with NASA. Support for this work was
provided by NASA through an award issued by JPL/Caltech.
NR 68
TC 29
Z9 29
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-6256
J9 ASTRON J
JI Astron. J.
PD SEP
PY 2010
VL 140
IS 3
BP 770
EP 784
DI 10.1088/0004-6256/140/3/770
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 638GT
UT WOS:000280882300010
ER
PT J
AU Ade, PAR
Savini, G
Sudiwala, R
Tucker, C
Catalano, A
Church, S
Colgan, R
Desert, FX
Gleeson, E
Jones, WC
Lamarre, JM
Lange, A
Longval, Y
Maffei, B
Murphy, JA
Noviello, F
Pajot, F
Puget, JL
Ristorcelli, I
Woodcraft, A
Yurchenko, V
AF Ade, P. A. R.
Savini, G.
Sudiwala, R.
Tucker, C.
Catalano, A.
Church, S.
Colgan, R.
Desert, F. X.
Gleeson, E.
Jones, W. C.
Lamarre, J. -M.
Lange, A.
Longval, Y.
Maffei, B.
Murphy, J. A.
Noviello, F.
Pajot, F.
Puget, J. -L.
Ristorcelli, I.
Woodcraft, A.
Yurchenko, V.
TI Planck pre-launch status: The optical architecture of the HFI
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE cosmic microwave background; space vehicles: instruments;
instrumentation: detectors; instrumentation: polarimeters;
submillimeter: general; techniques: photometric
AB The Planck High Frequency Instrument, HFI, has been designed to allow a clear unobscured view of the CMB sky through an off-axis Gregorian telescope. The prime science target is to measure the polarized anisotropy of the CMB with a sensitivity of 1 part in 10(6) with a maximum spatial resolution of 5 arcmin (C(l) similar to 3000) in four spectral bands with two further high-frequency channels measuring total power for foreground removal. These requirements place critical constraints on both the telescope configuration and the receiver coupling and require precise determination of the spectral and spatial characteristics at the pixel level, whilst maintaining control of the polarisation. To meet with the sensitivity requirements, the focal plane needs to be cooled with the optics at a few Kelvin and detectors at 100 mK. To limit inherent instrumental thermal emission and diffraction effects, there is no vacuum window, so the detector feedhorns view the telescope secondary directly. This requires that the instrument is launched warm with the cooler chain only being activated during its cruise to L2. Here we present the novel optical configuration designed to meet with all the above criteria.
C1 [Ade, P. A. R.; Savini, G.; Sudiwala, R.; Tucker, C.] Cardiff Univ, Astron & Instrumentat Grp, Cardiff, S Glam, Wales.
[Savini, G.] UCL, Opt Sci Lab, London WC1E 6BT, England.
[Catalano, A.] Observ Paris, CNRS, LERMA, F-75014 Paris, France.
[Church, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Colgan, R.; Gleeson, E.; Murphy, J. A.; Yurchenko, V.] NUI, Dept Expt Phys, Maynooth, Kildare, Ireland.
[Desert, F. X.] CNRS, Astrophys Lab, Observ Grenoble LOAG, F-38041 Grenoble 9, France.
[Jones, W. C.; Lange, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Lange, A.] CALTECH, Dept Phys, Pasadena, CA 91125 USA.
[Longval, Y.; Noviello, F.; Pajot, F.; Puget, J. -L.] Univ Paris 11, CNRS, IAS, Inst Astrophys Spatiale, F-91405 Orsay, France.
[Maffei, B.] Univ Manchester, JBCA, Sch Phys & Astron, Manchester M13 9PL, Lancs, England.
[Ristorcelli, I.] CNRS, CESR, F-31038 Toulouse 4, France.
[Woodcraft, A.] Univ Edinburgh, SUPA, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland.
[Yurchenko, V.] NAS Ukraine, Inst Radiophys & Elect, UA-61085 Kharkov, Ukraine.
RP Ade, PAR (reprint author), Cardiff Univ, Astron & Instrumentat Grp, Cardiff, S Glam, Wales.
EM gs@star.ucl.ac.uk
OI Savini, Giorgio/0000-0003-4449-9416
FU ESA; UK STFC; CNES; NASA; Enterprise Ireland; Science Foundation Ireland
FX Planck (http://www.esa.int/Planck) is an ESA project with instruments
provided by two scientific Consortia funded by ESA member states (in
particular the lead countries: France and Italy) with contributions from
NASA (USA), and telescope reflectors provided in a collaboration between
ESA and a scientific Consortium led and funded by Denmark.; The authors
would like to acknowledge the support from the UK STFC, CNES, NASA,
Enterprise Ireland and Science Foundation Ireland. The authors extend
their gratitude to numerous engineers and scientists who have somehow
contributed to the design, development, construction or evaluation of
HFI.
NR 12
TC 18
Z9 18
U1 0
U2 4
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP-OCT
PY 2010
VL 520
AR A11
DI 10.1051/0004-6361/200913039
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 665VQ
UT WOS:000283064200012
ER
PT J
AU Bersanelli, M
Mandolesi, N
Butler, RC
Mennella, A
Villa, F
Aja, B
Artal, E
Artina, E
Baccigalupi, C
Balasini, M
Baldan, G
Banday, A
Bastia, P
Battaglia, P
Bernardino, T
Blackhurst, E
Boschini, L
Burigana, C
Cafagna, G
Cappellini, B
Cavaliere, F
Colombo, F
Crone, G
Cuttaia, F
D'Arcangelo, O
Danese, L
Davies, RD
Davis, RJ
De Angelis, L
De Gasperis, GC
De La Fuente, L
De Rosa, A
De Zotti, G
Falvella, MC
Ferrari, F
Ferretti, R
Figini, L
Fogliani, S
Franceschet, C
Franceschi, E
Gaier, T
Garavaglia, S
Gomez, F
Gorski, K
Gregorio, A
Guzzi, P
Herreros, JM
Hildebrandt, SR
Hoyland, R
Hughes, N
Janssen, M
Jukkala, P
Kettle, D
Kilpia, VH
Laaninen, M
Lapolla, PM
Lawrence, CR
Lawson, D
Leahy, JP
Leonardi, R
Leutenegger, P
Levin, S
Lilje, PB
Lowe, SR
Lubin, PM
Maino, D
Malaspina, M
Maris, M
Marti-Canales, J
Martinez-Gonzalez, E
Mediavilla, A
Meinhold, P
Miccolis, M
Morgante, G
Natoli, P
Nesti, R
Pagan, L
Paine, C
Partridge, B
Pascual, JP
Pasian, F
Pearson, D
Pecora, M
Perrotta, F
Platania, P
Pospieszalski, M
Poutanen, T
Prina, M
Rebolo, R
Roddis, N
Rubino-Martin, JA
Salmon, MJ
Sandri, M
Seiffert, M
Silvestri, R
Simonetto, A
Sjoman, P
Smoot, GF
Sozzi, C
Stringhetti, L
Taddei, E
Tauber, J
Terenzi, L
Tomasi, M
Tuovinen, J
Valenziano, L
Varis, J
Vittorio, N
Wade, LA
Wilkinson, A
Winder, F
Zacchei, A
Zonca, A
AF Bersanelli, M.
Mandolesi, N.
Butler, R. C.
Mennella, A.
Villa, F.
Aja, B.
Artal, E.
Artina, E.
Baccigalupi, C.
Balasini, M.
Baldan, G.
Banday, A.
Bastia, P.
Battaglia, P.
Bernardino, T.
Blackhurst, E.
Boschini, L.
Burigana, C.
Cafagna, G.
Cappellini, B.
Cavaliere, F.
Colombo, F.
Crone, G.
Cuttaia, F.
D'Arcangelo, O.
Danese, L.
Davies, R. D.
Davis, R. J.
De Angelis, L.
De Gasperis, G. C.
De La Fuente, L.
De Rosa, A.
De Zotti, G.
Falvella, M. C.
Ferrari, F.
Ferretti, R.
Figini, L.
Fogliani, S.
Franceschet, C.
Franceschi, E.
Gaier, T.
Garavaglia, S.
Gomez, F.
Gorski, K.
Gregorio, A.
Guzzi, P.
Herreros, J. M.
Hildebrandt, S. R.
Hoyland, R.
Hughes, N.
Janssen, M.
Jukkala, P.
Kettle, D.
Kilpia, V. H.
Laaninen, M.
Lapolla, P. M.
Lawrence, C. R.
Lawson, D.
Leahy, J. P.
Leonardi, R.
Leutenegger, P.
Levin, S.
Lilje, P. B.
Lowe, S. R.
Lubin, P. M.
Maino, D.
Malaspina, M.
Maris, M.
Marti-Canales, J.
Martinez-Gonzalez, E.
Mediavilla, A.
Meinhold, P.
Miccolis, M.
Morgante, G.
Natoli, P.
Nesti, R.
Pagan, L.
Paine, C.
Partridge, B.
Pascual, J. P.
Pasian, F.
Pearson, D.
Pecora, M.
Perrotta, F.
Platania, P.
Pospieszalski, M.
Poutanen, T.
Prina, M.
Rebolo, R.
Roddis, N.
Rubino-Martin, J. A.
Salmon, M. J.
Sandri, M.
Seiffert, M.
Silvestri, R.
Simonetto, A.
Sjoman, P.
Smoot, G. F.
Sozzi, C.
Stringhetti, L.
Taddei, E.
Tauber, J.
Terenzi, L.
Tomasi, M.
Tuovinen, J.
Valenziano, L.
Varis, J.
Vittorio, N.
Wade, L. A.
Wilkinson, A.
Winder, F.
Zacchei, A.
Zonca, A.
TI Planck pre-launch status: Design and description of the Low Frequency
Instrument
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE cosmic microwave background; cosmology: observations; space vehicles:
instruments
ID MICROWAVE BACKGROUND ANISOTROPY; 1/F NOISE; LFI INSTRUMENT; RADIOMETERS;
FLUCTUATIONS; TEMPERATURE; PERFORMANCE; MISSION
AB In this paper we present the Low Frequency Instrument (LFI), designed and developed as part of the Planck space mission, the ESA programme dedicated to precision imaging of the cosmic microwave background (CMB). Planck-LFI will observe the full sky in intensity and polarisation in three frequency bands centred at 30, 44 and 70 GHz, while higher frequencies (100-850 GHz) will be covered by the HFI instrument. The LFI is an array of microwave radiometers based on state-of-the-art indium phosphide cryogenic HEMT amplifiers implemented in a differential system using blackbody loads as reference signals. The front end is cooled to 20 K for optimal sensitivity and the reference loads are cooled to 4 K to minimise low-frequency noise. We provide an overview of the LFI, discuss the leading scientific requirements, and describe the design solutions adopted for the various hardware subsystems. The main drivers of the radiometric, optical, and thermal design are discussed, including the stringent requirements on sensitivity, stability, and rejection of systematic effects. Further details on the key instrument units and the results of ground calibration are provided in a set of companion papers.
C1 [Bersanelli, M.; Mennella, A.; Cappellini, B.; Cavaliere, F.; Franceschet, C.; Maino, D.; Perrotta, F.; Tomasi, M.; Zonca, A.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy.
[Bersanelli, M.; Mennella, A.; Cappellini, B.; Zonca, A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy.
[Mandolesi, N.; Butler, R. C.; Villa, F.; Burigana, C.; Cuttaia, F.; De Rosa, A.; Franceschi, E.; Malaspina, M.; Morgante, G.; Sandri, M.; Stringhetti, L.; Terenzi, L.; Valenziano, L.] INAF Ist Astrofis Spaziale & Fis Cosm, I-40129 Bologna, Italy.
[Aja, B.; Artal, E.; De La Fuente, L.; Mediavilla, A.; Pascual, J. P.] Univ Cantabria, Dept Ingn Comunicac, E-39005 Santander, Spain.
[Artina, E.; Balasini, M.; Baldan, G.; Bastia, P.; Battaglia, P.; Boschini, L.; Cafagna, G.; Colombo, F.; Ferrari, F.; Ferretti, R.; Guzzi, P.; Lapolla, P. M.; Leutenegger, P.; Miccolis, M.; Pagan, L.; Pecora, M.; Perrotta, F.; Silvestri, R.; Taddei, E.] Thales Alenia Space Italia SpA, I-20090 Milan, Italy.
[Baccigalupi, C.; Danese, L.; Perrotta, F.] SISSA ISAS, Astrophys Sector, I-34014 Trieste, Italy.
[Banday, A.] Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France.
[Bernardino, T.; Martinez-Gonzalez, E.; Salmon, M. J.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain.
[Blackhurst, E.; Davies, R. D.; Davis, R. J.; Kettle, D.; Lawson, D.; Leahy, J. P.; Lowe, S. R.; Roddis, N.; Wilkinson, A.; Winder, F.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England.
[Crone, G.; Marti-Canales, J.] Sci Projects Dpt ESA, Herschel Planck Project, NL-2200 AG Noordwijk, Netherlands.
[D'Arcangelo, O.; Figini, L.; Garavaglia, S.; Platania, P.; Simonetto, A.; Sozzi, C.] CNR, Ist Fis Plasma, I-20125 Milan, Italy.
[De Angelis, L.; Falvella, M. C.] ASI, I-00198 Rome, Italy.
[De Gasperis, G. C.; Natoli, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy.
[De Zotti, G.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy.
[Baccigalupi, C.; Fogliani, S.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy.
[Gaier, T.; Gorski, K.; Janssen, M.; Lawrence, C. R.; Levin, S.; Paine, C.; Pearson, D.; Prina, M.; Seiffert, M.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Gomez, F.; Herreros, J. M.; Hildebrandt, S. R.; Hoyland, R.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife 38200, Spain.
[Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy.
[Hughes, N.; Jukkala, P.; Kilpia, V. H.; Sjoman, P.] DA Design Oy, Jokioinen 31600, Finland.
[Laaninen, M.] Ylinen Elect Oy, Kauniainen 02700, Finland.
[Leonardi, R.; Lubin, P. M.; Meinhold, P.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway.
[Nesti, R.] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy.
[Partridge, B.] Haverford Coll, Haverford, PA 19041 USA.
[Pospieszalski, M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA.
[Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland.
[Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland.
[Poutanen, T.] Helsinki Univ Technol, Metsahovi Radio Observ, Kylmala 02540, Finland.
[Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Tauber, J.] European Space Agcy, Div Astrophys, NL-2201AZ Noordwijk, Netherlands.
[Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo 02044, Finland.
[Banday, A.] MPA Max Planck Inst Astrophys, D-85741 Garching, Germany.
RP Bersanelli, M (reprint author), Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy.
EM marco.bersanelli@unimi.it
RI Lilje, Per/A-2699-2012; de Gasperis, Giancarlo/C-8534-2012; Sozzi,
Carlo/F-4158-2012; Pascual, Juan Pablo/K-5066-2014; Martinez-Gonzalez,
Enrique/E-9534-2015; de la Fuente, Luisa/J-5142-2012; Artal,
Eduardo/H-5546-2015; Tomasi, Maurizio/I-1234-2016; Aja,
Beatriz/H-5573-2015;
OI Zonca, Andrea/0000-0001-6841-1058; Morgante,
Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754;
Franceschi, Enrico/0000-0002-0585-6591; Valenziano,
Luca/0000-0002-1170-0104; Lowe, Stuart/0000-0002-2975-9032; Stringhetti,
Luca/0000-0002-3961-9068; Pasian, Fabio/0000-0002-4869-3227; Gregorio,
Anna/0000-0003-4028-8785; Sandri, Maura/0000-0003-4806-5375; Cuttaia,
Francesco/0000-0001-6608-5017; de Gasperis,
Giancarlo/0000-0003-2899-2171; Sozzi, Carlo/0000-0001-8951-0071;
Pascual, Juan Pablo/0000-0003-2123-0502; Martinez-Gonzalez,
Enrique/0000-0002-0179-8590; de la Fuente, Luisa/0000-0003-1403-1660;
Artal, Eduardo/0000-0002-2569-1894; Tomasi,
Maurizio/0000-0002-1448-6131; Aja, Beatriz/0000-0002-4229-2334;
Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Nesti,
Renzo/0000-0003-0303-839X; Burigana, Carlo/0000-0002-3005-5796; Villa,
Fabrizio/0000-0003-1798-861X; GARAVAGLIA, SAUL
FRANCESCO/0000-0002-8433-1901; TERENZI, LUCA/0000-0001-9915-6379;
Zacchei, Andrea/0000-0003-0396-1192; Lilje, Per/0000-0003-4324-7794
FU Italian Space Agency (ASI); Academy of Finland [205800, 214598, 121703,
121962]; Waldemar von Frenckells Stiftelse; Magnus Ehrnrooth Foundation;
Vaisala Foundation; NASA LTSA [NNG04CG90G]
FX The Planck-LFI project is developed by an International Consortium led
by Italy and involving Canada, Finland, Germany, Norway, Spain,
Switzerland, UK, USA. The Italian contribution to Planck is supported by
the Italian Space Agency (ASI). T.P.'s work was supported in part by the
Academy of Finland grants 205800, 214598, 121703, and 121962. T. P.
thanks the Waldemar von Frenckells Stiftelse, Magnus Ehrnrooth
Foundation, and Vaisala Foundation for financial support. We acknowledge
partial support from the NASA LTSA Grant NNG04CG90G.
NR 53
TC 97
Z9 97
U1 2
U2 14
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP-OCT
PY 2010
VL 520
AR A4
DI 10.1051/0004-6361/200912853
PG 21
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 665VQ
UT WOS:000283064200005
ER
PT J
AU Butters, OW
West, RG
Anderson, DR
Cameron, AC
Clarkson, WI
Enoch, B
Haswell, CA
Hellier, C
Horne, K
Joshi, Y
Kane, SR
Lister, TA
Maxted, PFL
Parley, N
Pollacco, D
Smalley, B
Street, RA
Todd, I
Wheatley, PJ
Wilson, DM
AF Butters, O. W.
West, R. G.
Anderson, D. R.
Cameron, A. Collier
Clarkson, W. I.
Enoch, B.
Haswell, C. A.
Hellier, C.
Horne, K.
Joshi, Y.
Kane, S. R.
Lister, T. A.
Maxted, P. F. L.
Parley, N.
Pollacco, D.
Smalley, B.
Street, R. A.
Todd, I.
Wheatley, P. J.
Wilson, D. M.
TI The first WASP public data release
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE catalogs; planets and satellites: general; stars: general
ID SUPERWASP
AB The WASP (wide angle search for planets) project is an exoplanet transit survey that has been automatically taking wide field images since 2004. Two instruments, one in La Palma and the other in South Africa, continually monitor the night sky, building up light curves of millions of unique objects. These light curves are used to search for the characteristics of exoplanetary transits. This first public data release (DR1) of the WASP archive makes available all the light curve data and images from 2004 up to 2008 in both the Northern and Southern hemispheres. A web interface (www.wasp.le.ac.uk/public/) to the data allows easy access over the Internet. The data set contains 3 631 972 raw images and 17 970 937 light curves. In total the light curves have 119 930 299 362 data points available between them.
C1 [Butters, O. W.; West, R. G.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England.
[Anderson, D. R.; Hellier, C.; Maxted, P. F. L.; Smalley, B.; Wilson, D. M.] Keele Univ, Sch Phys & Geog Sci, Astrophys Grp, Lennard Jones Labs, Keele ST5 5BG, Staffs, England.
[Cameron, A. Collier; Enoch, B.; Horne, K.; Parley, N.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland.
[Clarkson, W. I.] STScI, Baltimore, MD 21218 USA.
[Haswell, C. A.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England.
[Joshi, Y.; Pollacco, D.; Todd, I.] Queens Univ Belfast, Astrophys Res Ctr, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland.
[Kane, S. R.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA.
[Lister, T. A.; Street, R. A.] Las Cumbres Observ, Goleta, CA 93117 USA.
[Wheatley, P. J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
RP Butters, OW (reprint author), Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England.
EM oliver.butters@star.le.ac.uk
RI Kane, Stephen/B-4798-2013;
OI Butters, Olly/0000-0003-0354-8461; Cameron, Andrew/0000-0002-8863-7828;
Wheatley, Peter/0000-0003-1452-2240
FU Consortium Universities; UK's Science and Technology Facilities Council
FX The WASP Consortium consists of astronomers primarily from the Queen's
University Belfast, Keele, Leicester, The Open University, St Andrews,
the Isaac Newton Group (La Palma), the Instituto de Astrofisica de
Canarias (Tenerife) and the South African Astronomical Observatory. The
WASP-N and WASP-S Cameras were constructed and are operated with funds
made available from Consortium Universities and the UK's Science and
Technology Facilities Council.
NR 7
TC 58
Z9 58
U1 0
U2 6
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP-OCT
PY 2010
VL 520
AR L10
DI 10.1051/0004-6361/201015655
PG 4
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 665VQ
UT WOS:000283064200024
ER
PT J
AU Delsanti, A
Merlin, F
Guilbert-Lepoutre, A
Bauer, J
Yang, B
Meech, KJ
AF Delsanti, A.
Merlin, F.
Guilbert-Lepoutre, A.
Bauer, J.
Yang, B.
Meech, K. J.
TI Methane, ammonia, and their irradiation products at the surface of an
intermediate-size KBO? A portrait of Plutino (90482) Orcus
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE Kuiper belt objects: individual: (90482) Orcus; methods: observational;
methods: numerical; techniques: photometric; techniques: spectroscopic;
radiative transfer
ID KUIPER-BELT OBJECTS; NEAR-INFRARED SPECTROSCOPY; TRANS-NEPTUNIAN
OBJECTS; CRYSTALLINE WATER ICE; 50000 QUAOAR; 2003 EL61; ION
IRRADIATION; PHOTOMETRIC-OBSERVATIONS; COLLISIONAL FAMILY;
OPTICAL-CONSTANTS
AB Orcus is an intermediate-size 1000 km-scale Kuiper belt object (KBO) in 3:2 mean-motion resonance with Neptune, in an orbit very similar to that of Pluto. It has a water-ice dominated surface with solar-like visible colors. We present visible and near-infrared photometry and spectroscopy obtained with the Keck 10 m-telescope (optical) and the Gemini 8 m-telescope (near-infrared). We confirm the unambiguous detection of crystalline water ice as well as absorption in the 2.2 mu m region. These spectral properties are close to those observed for Pluto's larger satellite Charon, and for Plutino (208996) 2003 AZ(84). Both in the visible and near-infrared Orcus' spectral properties appear to be homogeneous over time (and probably rotation) at the resolution available. From Hapke radiative transfer models involving intimate mixtures of various ices we find for the first time that ammonium (NH4+) and traces of ethane (C2H6), which are most probably solar irradiation products of ammonia and methane, and a mixture of methane and ammonia (diluted or not) are the best candidates to improve the description of the data with respect to a simple water ice mixture (Haumea type surface). The possible more subtle structure of the 2.2 mu m band(s) should be investigated thoroughly in the future for Orcus and other intermediate size Plutinos to better understand the methane and ammonia chemistry at work, if any. We investigated the thermal history of Orcus with a new 3D thermal evolution model. Simulations over 4.5x10(9) yr with an input 10% porosity, bulk composition of 23% amorphous water ice and 77% dust (mass fraction), and cold accretion show that even with the action of long-lived radiogenic elements only, Orcus should have a melted core and most probably suffered a cryovolcanic event in its history which brought large amounts of crystalline ice to the surface. The presence of ammonia in the interior would strengthen the melting process. A surface layer of a few hundred meters to a few tens of kilometers of amorphous water ice survives, while most of the remaining volume underneath contains crystalline ice. The crystalline water ice possibly brought to the surface by a past cryovolcanic event should still be detectable after several billion years despite the irradiation effects, as demonstrated by recent laboratory experiments.
C1 [Delsanti, A.] Univ Aix Marseille 1, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France.
[Delsanti, A.] Observ Paris, F-92190 Meudon, France.
[Merlin, F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Guilbert-Lepoutre, A.] Univ Calif Los Angeles, Earth & Space Sci Dept, Los Angeles, CA 90095 USA.
[Bauer, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Yang, B.; Meech, K. J.] NASA, Astrobiol Inst Manoa, Inst Astron, Honolulu, HI 96822 USA.
RP Delsanti, A (reprint author), Univ Aix Marseille 1, CNRS, Lab Astrophys Marseille, 38 Rue Frederic Joliot Curie, F-13388 Marseille 13, France.
EM Audrey.Delsanti@oamp.fr; merlin@astro.umd.edu; aguilbert@ucla.edu;
bauer@scn.jpl.nasa.gov; yangbin@ifa.hawaii.edu; meech@ifa.hawaii.edu
FU National Aeronautics and Space Administration through the NASA
Astrobiology Institute [NNA04CC08A]; NASA
FX We thank D. Jewitt for fruitful suggestions and are grateful to J.C.
Cook for kindly sharing with us estimated optical constants of ammonium,
to S. Fornasier et al. for providing us with their Orcus visible
spectra, and to S. Spjuth for the computation of the visible geometric
albedo of Charon. This material is based upon work supported by the
National Aeronautics and Space Administration through the NASA
Astrobiology Institute under Cooperative Agreement No. NNA04CC08A issued
through the Office of Space Science. B. Yang acknowledges support from a
NASA Origins grant and A. Guilbert-Lepoutre from a NASA Herschel grant,
both to D. Jewitt. Part of the data presented here were obtained at the
W.M. Keck Observatory, which is operated as a scientific partnership
among the California Institute of Technology, the University of
California and NASA. Based on observations obtained at the Gemini
Observatory, which is operated by the Association of Universities for
Research in Astronomy, Inc., under a cooperative agreement with the NSF
on behalf of the Gemini partnership. The authors wish to recognize and
acknowledge the very significant cultural role and reverence that the
summit of Mauna Kea has always had within the indigenous Hawaiian
community.
NR 83
TC 21
Z9 21
U1 1
U2 4
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
EI 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP-OCT
PY 2010
VL 520
AR A40
DI 10.1051/0004-6361/201014296
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 665VQ
UT WOS:000283064200106
ER
PT J
AU Lamarre, JM
Puget, JL
Ade, PAR
Bouchet, F
Guyot, G
Lange, AE
Pajot, F
Arondel, A
Benabed, K
Beney, JL
Benoit, A
Bernard, JP
Bhatia, R
Blanc, Y
Bock, JJ
Breelle, E
Bradshaw, TW
Camus, P
Catalano, A
Charra, J
Charra, M
Church, SE
Couchot, F
Coulais, A
Crill, BP
Crook, MR
Dassas, K
de Bernardis, P
Delabrouille, J
de Marcillac, P
Delouis, JM
Desert, FX
Dumesnil, C
Dupac, X
Efstathiou, G
Eng, P
Evesque, C
Fourmond, JJ
Ganga, K
Giard, M
Gispert, R
Guglielmi, L
Haissinski, J
Henrot-Versille, S
Hivon, E
Holmes, WA
Jones, WC
Koch, TC
Lagardere, H
Lami, P
Lande, J
Leriche, B
Leroy, C
Longval, Y
Macias-Perez, JF
Maciaszek, T
Maffei, B
Mansoux, B
Marty, C
Masi, S
Mercier, C
Miville-Deschenes, MA
Moneti, A
Montier, L
Murphy, JA
Narbonne, J
Nexon, M
Paine, CG
Pahn, J
Perdereau, O
Piacentini, F
Piat, M
Plaszczynski, S
Pointecouteau, E
Pons, R
Ponthieu, N
Prunet, S
Rambaud, D
Recouvreur, G
Renault, C
Ristorcelli, I
Rosset, C
Santos, D
Savini, G
Serra, G
Stassi, P
Sudiwala, RV
Sygnet, JF
Tauber, JA
Torre, JP
Tristram, M
Vibert, L
Woodcraft, A
Yurchenko, V
Yvon, D
AF Lamarre, J. -M.
Puget, J. -L.
Ade, P. A. R.
Bouchet, F.
Guyot, G.
Lange, A. E.
Pajot, F.
Arondel, A.
Benabed, K.
Beney, J. -L.
Benoit, A.
Bernard, J. -Ph.
Bhatia, R.
Blanc, Y.
Bock, J. J.
Breelle, E.
Bradshaw, T. W.
Camus, P.
Catalano, A.
Charra, J.
Charra, M.
Church, S. E.
Couchot, F.
Coulais, A.
Crill, B. P.
Crook, M. R.
Dassas, K.
de Bernardis, P.
Delabrouille, J.
de Marcillac, P.
Delouis, J. -M.
Desert, F. -X.
Dumesnil, C.
Dupac, X.
Efstathiou, G.
Eng, P.
Evesque, C.
Fourmond, J. -J.
Ganga, K.
Giard, M.
Gispert, R.
Guglielmi, L.
Haissinski, J.
Henrot-Versille, S.
Hivon, E.
Holmes, W. A.
Jones, W. C.
Koch, T. C.
Lagardere, H.
Lami, P.
Lande, J.
Leriche, B.
Leroy, C.
Longval, Y.
Macias-Perez, J. F.
Maciaszek, T.
Maffei, B.
Mansoux, B.
Marty, C.
Masi, S.
Mercier, C.
Miville-Deschenes, M. -A.
Moneti, A.
Montier, L.
Murphy, J. A.
Narbonne, J.
Nexon, M.
Paine, C. G.
Pahn, J.
Perdereau, O.
Piacentini, F.
Piat, M.
Plaszczynski, S.
Pointecouteau, E.
Pons, R.
Ponthieu, N.
Prunet, S.
Rambaud, D.
Recouvreur, G.
Renault, C.
Ristorcelli, I.
Rosset, C.
Santos, D.
Savini, G.
Serra, G.
Stassi, P.
Sudiwala, R. V.
Sygnet, J. -F.
Tauber, J. A.
Torre, J. -P.
Tristram, M.
Vibert, L.
Woodcraft, A.
Yurchenko, V.
Yvon, D.
TI Planck pre-launch status: The HFI instrument, from specification to
actual performance
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE cosmic microwave background; space vehicles: instruments; submillimeter:
general; techniques: photometric; techniques: polarimetric
ID HIGH-FREQUENCY INSTRUMENT; MICROWAVE BACKGROUND ANISOTROPIES; THERMAL
ARCHITECTURE; DESIGN; BOLOMETERS; MILLIMETER; SYSTEM; BOOMERANG;
RECEIVER; NOISE
AB Context. The High Frequency Instrument (HFI) is one of the two focal instruments of the Planck mission. It will observe the whole sky in six bands in the 100 GHz-1 THz range.
Aims. The HFI instrument is designed to measure the cosmic microwave background (CMB) with a sensitivity limited only by fundamental sources: the photon noise of the CMB itself and the residuals left after the removal of foregrounds. The two high frequency bands will provide full maps of the submillimetre sky, featuring mainly extended and point source foregrounds. Systematic effects must be kept at negligible levels or accurately monitored so that the signal can be corrected. This paper describes the HFI design and its characteristics deduced from ground tests and calibration.
Methods. The HFI instrumental concept and architecture are feasible only by pushing new techniques to their extreme capabilities, mainly: (i) bolometers working at 100 mK and absorbing the radiation in grids; (ii) a dilution cooler providing 100 mK in microgravity conditions; (iii) a new type of AC biased readout electronics and (iv) optical channels using devices inspired from radio and infrared techniques.
Results. The Planck-HFI instrument performance exceeds requirements for sensitivity and control of systematic effects. During ground-based calibration and tests, it was measured at instrument and system levels to be close to or better than the goal specification.
C1 [Lamarre, J. -M.; Catalano, A.; Coulais, A.; Recouvreur, G.] UCP, UPMC, CNRS, Observ Paris,ENS,LERMA, F-75014 Paris, France.
[Puget, J. -L.; Guyot, G.; Pajot, F.; Arondel, A.; Charra, J.; Charra, M.; Dassas, K.; de Marcillac, P.; Dumesnil, C.; Eng, P.; Evesque, C.; Fourmond, J. -J.; Gispert, R.; Lagardere, H.; Lami, P.; Leriche, B.; Leroy, C.; Longval, Y.; Mercier, C.; Miville-Deschenes, M. -A.; Ponthieu, N.; Torre, J. -P.; Vibert, L.] CNRS, IAS, Inst Astrophys Spatiale, F-91405 Orsay, France.
[Puget, J. -L.; Guyot, G.; Pajot, F.; Arondel, A.; Charra, J.; Charra, M.; Dassas, K.; de Marcillac, P.; Dumesnil, C.; Eng, P.; Evesque, C.; Fourmond, J. -J.; Gispert, R.; Lagardere, H.; Lami, P.; Leriche, B.; Leroy, C.; Longval, Y.; Mercier, C.; Miville-Deschenes, M. -A.; Ponthieu, N.; Torre, J. -P.; Vibert, L.] Univ Paris 11, F-91405 Orsay, France.
[Ade, P. A. R.; Savini, G.; Sudiwala, R. V.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
[Bouchet, F.; Benabed, K.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France.
[Bouchet, F.; Benabed, K.; Delouis, J. -M.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.] Univ Paris 06, F-75014 Paris, France.
[Lange, A. E.; Bock, J. J.; Crill, B. P.] CALTECH, Dept Phys, Pasadena, CA 91125 USA.
[Lange, A. E.; Bock, J. J.; Crill, B. P.; Holmes, W. A.; Jones, W. C.; Koch, T. C.; Paine, C. G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Bhatia, R.; Tauber, J. A.] European Space Agcy ESTEC, Div Astrophys, NL-2201 AZ Noordwijk, Netherlands.
[Beney, J. -L.; Couchot, F.; Haissinski, J.; Henrot-Versille, S.; Mansoux, B.; Perdereau, O.; Plaszczynski, S.; Rosset, C.; Tristram, M.] CNRS, LAL, Lab Accelerateur Lineaire, F-91898 Orsay, France.
[Beney, J. -L.; Couchot, F.; Haissinski, J.; Henrot-Versille, S.; Mansoux, B.; Perdereau, O.; Plaszczynski, S.; Rosset, C.; Tristram, M.] Univ Paris 11, F-91898 Orsay, France.
[Benoit, A.; Camus, P.] Univ Grenoble 1, CNRS, Inst Neel, F-38042 Grenoble 9, France.
[Bernard, J. -Ph.; Giard, M.; Lande, J.; Marty, C.; Montier, L.; Narbonne, J.; Nexon, M.; Pointecouteau, E.; Pons, R.; Rambaud, D.; Ristorcelli, I.; Serra, G.] CNRS, CESR, Ctr Etud Spatiale Rayonnements, F-31038 Toulouse 4, France.
[Blanc, Y.; Maciaszek, T.; Pahn, J.] CNES, F-31401 Toulouse 9, France.
[Breelle, E.; Catalano, A.; Delabrouille, J.; Ganga, K.; Guglielmi, L.; Piat, M.; Rosset, C.] CNRS, Lab Astroparticule & Cosmol APC, F-75205 Paris 13, France.
[Breelle, E.; Catalano, A.; Delabrouille, J.; Ganga, K.; Guglielmi, L.; Piat, M.; Rosset, C.] Univ Paris 07, F-75205 Paris 13, France.
[Bradshaw, T. W.; Crook, M. R.] STFC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Church, S. E.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Church, S. E.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA.
[de Bernardis, P.; Masi, S.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Desert, F. -X.] CNRS, LAOG, F-38041 Grenoble 9, France.
[Dupac, X.] European Space Agcy ESAC, Madrid 28691, Spain.
[Efstathiou, G.] Univ Cambridge, Inst Astron, Cambridge CB3 OHA, England.
[Jones, W. C.] Princeton Univ, Dept Phys, Joseph Henry Lab, Princeton, NJ 08544 USA.
RP Lamarre, JM (reprint author), UCP, UPMC, CNRS, Observ Paris,ENS,LERMA, 61 Ave Observ, F-75014 Paris, France.
EM jean-michel.lamarre@obspm.fr
RI Bouchet, Francois/B-5202-2014; Yvon, Dominique/D-2280-2015; Piacentini,
Francesco/E-7234-2010;
OI Piacentini, Francesco/0000-0002-5444-9327; Masi,
Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446;
Bouchet, Francois/0000-0002-8051-2924; Hivon, Eric/0000-0003-1880-2733;
Savini, Giorgio/0000-0003-4449-9416
FU ESA; CNES; CNES, CNRS; NASA; STFC; ASI
FX Planck (http://www.esa.int/Planck) is a project of the European Space
Agency - ESA - with instruments provided by two scientific Consortia
funded by ESA member states (in particular the lead countries: France
and Italy) with contributions from NASA (USA), and telescope reflectors
provided in a collaboration between ESA and a scientific Consortium led
and funded by Denmark.; The Planck-HFI instrument
(http://hfi.planck.fr/) was designed and built by an international
consortium of laboratories, universities and institutes, with important
contributions from the industry, under the leadership of the PI
institute, IAS at Orsay, France. It was funded in particular by CNES,
CNRS, NASA, STFC and ASI. The authors extend their gratitude to the
numerous engineers and scientists, who have contributed to the design,
development, construction or evaluation of the HFI instrument. The
authors are pleased to thank the referee for his/her very useful
remarks.
NR 58
TC 142
Z9 143
U1 0
U2 2
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP-OCT
PY 2010
VL 520
AR A9
DI 10.1051/0004-6361/200912975
PG 20
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 665VQ
UT WOS:000283064200010
ER
PT J
AU Leahy, JP
Bersanelli, M
D'Arcangelo, O
Ganga, K
Leach, SM
Moss, A
Keihanen, E
Keskitalo, R
Kurki-Suonio, H
Poutanen, T
Sandri, M
Scott, D
Tauber, J
Valenziano, L
Villa, F
Wilkinson, A
Zonca, A
Baccigalupi, C
Borrill, J
Butler, RC
Cuttaia, F
Davis, RJ
Frailis, M
Francheschi, E
Galeotta, S
Gregorio, A
Leonardi, R
Mandolesi, N
Maris, M
Meinhold, P
Mendes, L
Mennella, A
Morgante, G
Prezeau, G
Rocha, G
Stringhetti, L
Terenzi, L
Tomasi, M
AF Leahy, J. P.
Bersanelli, M.
D'Arcangelo, O.
Ganga, K.
Leach, S. M.
Moss, A.
Keihanen, E.
Keskitalo, R.
Kurki-Suonio, H.
Poutanen, T.
Sandri, M.
Scott, D.
Tauber, J.
Valenziano, L.
Villa, F.
Wilkinson, A.
Zonca, A.
Baccigalupi, C.
Borrill, J.
Butler, R. C.
Cuttaia, F.
Davis, R. J.
Frailis, M.
Francheschi, E.
Galeotta, S.
Gregorio, A.
Leonardi, R.
Mandolesi, N.
Maris, M.
Meinhold, P.
Mendes, L.
Mennella, A.
Morgante, G.
Prezeau, G.
Rocha, G.
Stringhetti, L.
Terenzi, L.
Tomasi, M.
TI Planck pre-launch status: Expected LFI polarisation capability
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE polarization; instrumentation: polarimeters; space vehicles:
instruments; techniques: polarimetric; cosmic microwave background
ID UNDERSTANDING RADIO POLARIMETRY; PROBE WMAP OBSERVATIONS; MAP-MAKING
METHOD; 30 GHZ DATA; POWER SPECTRUM; CRAB-NEBULA; MICROWAVE; ANISOTROPY;
DEFINITIONS; CALIBRATION
AB We present a system-level description of the Low Frequency Instrument (LFI) considered as a differencing polarimeter, and evaluate its expected performance. The LFI is one of the two instruments on board the ESA Planck mission to study the cosmic microwave background. It consists of a set of 22 radiometers sensitive to linear polarisation, arranged in orthogonally-oriented pairs connected to 11 feed horns operating at 30, 44 and 70 GHz. In our analysis, the generic Jones and Mueller-matrix formulations for polarimetry are adapted to the special case of the LFI. Laboratory measurements of flight components are combined with optical simulations of the telescope to investigate the values and uncertainties in the system parameters affecting polarisation response. Methods of correcting residual systematic errors are also briefly discussed. The LFI has beam-integrated polarisation efficiency >99% for all detectors, with uncertainties below 0.1%. Indirect assessment of polarisation position angles suggests that uncertainties are generally less than 0 degrees.5, and this will be checked in flight using observations of the Crab nebula. Leakage of total intensity into the polarisation signal is generally well below the thermal noise level except for bright Galactic emission, where the dominant effect is likely to be spectral-dependent terms due to bandpass mismatch between the two detectors behind each feed, contributing typically 1-3% leakage of foreground total intensity. Comparable leakage from compact features occurs due to beam mismatch, but this averages to < 5 x 10(-4) for large-scale emission. An inevitable feature of the LFI design is that the two components of the linear polarisation are recovered from elliptical beams which differ substantially in orientation. This distorts the recovered polarisation and its angular power spectrum, and several methods are being developed to correct the effect, both in the power spectrum and in the sky maps. The LFI will return a high-quality measurement of the CMB polarisation, limited mainly by thermal noise. To meet our aspiration of measuring polarisation at the 1% level, further analysis of flight and ground data is required. We are still researching the most effective techniques for correcting subtle artefacts in polarisation; in particular the correction of bandpass mismatch effects is a formidable challenge, as it requires multi-band analysis to estimate the spectral indices that control the leakage.
C1 [Leahy, J. P.; Wilkinson, A.; Davis, R. J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England.
[Leahy, J. P.; Frailis, M.; Galeotta, S.; Maris, M.] Osservatorio Astron Trieste INAF, I-34143 Trieste, Italy.
[Bersanelli, M.; Zonca, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, I-20122 Milan, Italy.
[Bersanelli, M.; Zonca, A.; Mennella, A.] INAF, IASF Sez Milano, Milan, Italy.
[D'Arcangelo, O.] Ist Fis Plasma CNR, I-20125 Milan, Italy.
[Ganga, K.] CNRS, Lab APC, F-75205 Paris 13, France.
[Leach, S. M.; Baccigalupi, C.] SISSA, ISAS, Astrophys Sect, I-34014 Trieste, Italy.
[Leach, S. M.; Baccigalupi, C.] Ist Nazl Fis Nucl, Sez Trieste, I-34014 Trieste, Italy.
[Moss, A.; Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
[Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland.
[Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Helsinki Inst Phys, Helsinki 00014, Finland.
[Poutanen, T.] Helsinki Univ Technol, Metsahovi Radio Observ, TKK, Kylmala 02540, Finland.
[Sandri, M.; Valenziano, L.; Villa, F.; Butler, R. C.; Cuttaia, F.; Francheschi, E.; Mandolesi, N.; Morgante, G.; Stringhetti, L.; Terenzi, L.] INAF, Ist Astrofis Spaziale & Fis Cosm, Sez Bologna, Bologna, Italy.
[Tauber, J.] European Space Agcy, Div Astrophys, NL-2201 AZ Noordwijk, Netherlands.
[Baccigalupi, C.] INAF Trieste, I-34131 Trieste, Italy.
[Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA.
[Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Gregorio, A.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy.
[Leonardi, R.; Meinhold, P.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93110 USA.
[Mendes, L.] European Space Astron Ctr, European Space Agcy, Planck Sci Off, Madrid 28691, Spain.
[Prezeau, G.; Rocha, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Rocha, G.] CALTECH, Dept Phys, Pasadena, CA 91125 USA.
RP Leahy, JP (reprint author), Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England.
EM j.p.leahy@manchester.ac.uk
RI Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016;
OI Cuttaia, Francesco/0000-0001-6608-5017; Frailis,
Marco/0000-0002-7400-2135; Villa, Fabrizio/0000-0003-1798-861X;
Galeotta, Samuele/0000-0002-3748-5115; TERENZI,
LUCA/0000-0001-9915-6379; Kurki-Suonio, Hannu/0000-0002-4618-3063;
Tomasi, Maurizio/0000-0002-1448-6131; Maris,
Michele/0000-0001-9442-2754; Zonca, Andrea/0000-0001-6841-1058;
Morgante, Gianluca/0000-0001-9234-7412; Valenziano,
Luca/0000-0002-1170-0104; Stringhetti, Luca/0000-0002-3961-9068; Scott,
Douglas/0000-0002-6878-9840; Gregorio, Anna/0000-0003-4028-8785; Sandri,
Maura/0000-0003-4806-5375
FU Italian Space Agency (ASI); Science and Technology Facilities Council
(STFC); Finnish Funding Agency for Technology and Innovation (Tekes);
Academy of Finland; Canadian Space Agency; NASA LTSA [NNG04CG90G]; ESA
FX Planck (http://www.esa.int/Planck) is a project of the European Space
Agency - ESA - with instruments provided by two scientific Consortia
funded by ESA member states (in particular the lead countries: France
and Italy) with contributions from NASA (USA), and telescope reflectors
provided in a collaboration between ESA and a scientific Consortium led
and funded by Denmark.; J.P.L. thanks Johan Hamaker for a fruitful
collaboration (Hamaker & Leahy 2004) which has significantly influenced
the presentation in this paper. J.P.L. also thanks the Osservatorio
Astronomico di Trieste for hospitality while much of this paper was
written. We thank the referee for a perceptive review. The Planck-LFI
project is developed by an International Consortium led by Italy and
involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK, USA.
The Italian contribution to Planck is supported by the Italian Space
Agency (ASI). The UK contribution is supported by the Science and
Technology Facilities Council (STFC). The Finnish contribution is
supported by the Finnish Funding Agency for Technology and Innovation
(Tekes) and the Academy of Finland. The Canadian contribution is
supported by the Canadian Space Agency. We wish to thank people of the
Herschel/Planck Project of ESA, ASI, THALES Alenia Space Industries, and
the LFI Consortium that are involved in activities related to optical
simulations and the measurement and modelling of the radiometer
performance. We acknowledge the use of the Planck sky model, developed
by the Component Separation Working Group (WG2) of the Planck
Collaboration. We thank the members of the Planck CTP working group for
the preparation and validation of the Trieste simulations. Some of the
results in this paper have been derived using the HEALPix (Gorski et al.
1999). We acknowledge the use of the Legacy Archive for Microwave
Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the
NASA Office of Space Science. This research has made use of NASA's
Astrophysics Data System. We acknowledge partial support of the NASA
LTSA Grant NNG04CG90G.
NR 55
TC 60
Z9 60
U1 0
U2 7
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP-OCT
PY 2010
VL 520
AR A8
DI 10.1051/0004-6361/200912855
PG 26
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 665VQ
UT WOS:000283064200009
ER
PT J
AU Mandolesi, N
Bersanelli, M
Butler, RC
Artal, E
Baccigalupi, C
Balbi, A
Banday, AJ
Barreiro, RB
Bartelmann, M
Bennett, K
Bhandari, P
Bonaldi, A
Borrill, J
Bremer, M
Burigana, C
Bowman, RC
Cabella, P
Cantalupo, C
Cappellini, B
Courvoisier, T
Crone, G
Cuttaia, F
Danese, L
D'Arcangelo, O
Davies, RD
Davis, RJ
De Angelis, L
de Gasperis, G
De Rosa, A
De Troia, G
de Zotti, G
Dick, J
Dickinson, C
Diego, JM
Donzelli, S
Dorl, U
Dupac, X
Ensslin, TA
Eriksen, HK
Falvella, MC
Finelli, F
Frailis, M
Franceschi, E
Gaier, T
Galeotta, S
Gasparo, F
Giardino, G
Gomez, F
Gonzalez-Nuevo, J
Gorski, KM
Gregorio, A
Gruppuso, A
Hansen, F
Hell, R
Herranz, D
Herreros, JM
Hildebrandt, S
Hovest, W
Hoyland, R
Huffenberger, K
Janssen, M
Jaffe, T
Keihanen, E
Keskitalo, R
Kisner, T
Kurki-Suonio, H
Lahteenmaki, A
Lawrence, CR
Leach, SM
Leahy, JP
Leonardi, R
Levin, S
Lilje, PB
Lopez-Caniego, M
Lowe, SR
Lubin, PM
Maino, D
Malaspina, M
Maris, M
Marti-Canales, J
Martinez-Gonzalez, E
Massardi, M
Matarrese, S
Matthai, F
Meinhold, P
Melchiorri, A
Mendes, L
Mennella, A
Morgante, G
Morigi, G
Morisset, N
Moss, A
Nash, A
Natoli, P
Nesti, R
Paine, C
Partridge, B
Pasian, F
Passvogel, T
Pearson, D
Perez-Cuevas, L
Perrotta, F
Polenta, G
Popa, LA
Poutanen, T
Prezeau, G
Prina, M
Rachen, JP
Rebolo, R
Reinecke, M
Ricciardi, S
Riller, T
Rocha, G
Roddis, N
Rohlfs, R
Rubino-Martin, JA
Salerno, E
Sandri, M
Scott, D
Seiffert, M
Silk, J
Simonetto, A
Smoot, GF
Sozzi, C
Sternberg, J
Stivoli, F
Stringhetti, L
Tauber, J
Terenzi, L
Tomasi, M
Tuovinen, J
Turler, M
Valenziano, L
Varis, J
Vielva, P
Villa, F
Vittorio, N
Wade, L
White, M
White, S
Wilkinson, A
Zacchei, A
Zonca, A
AF Mandolesi, N.
Bersanelli, M.
Butler, R. C.
Artal, E.
Baccigalupi, C.
Balbi, A.
Banday, A. J.
Barreiro, R. B.
Bartelmann, M.
Bennett, K.
Bhandari, P.
Bonaldi, A.
Borrill, J.
Bremer, M.
Burigana, C.
Bowman, R. C.
Cabella, P.
Cantalupo, C.
Cappellini, B.
Courvoisier, T.
Crone, G.
Cuttaia, F.
Danese, L.
D'Arcangelo, O.
Davies, R. D.
Davis, R. J.
De Angelis, L.
de Gasperis, G.
De Rosa, A.
De Troia, G.
de Zotti, G.
Dick, J.
Dickinson, C.
Diego, J. M.
Donzelli, S.
Doerl, U.
Dupac, X.
Ensslin, T. A.
Eriksen, H. K.
Falvella, M. C.
Finelli, F.
Frailis, M.
Franceschi, E.
Gaier, T.
Galeotta, S.
Gasparo, F.
Giardino, G.
Gomez, F.
Gonzalez-Nuevo, J.
Gorski, K. M.
Gregorio, A.
Gruppuso, A.
Hansen, F.
Hell, R.
Herranz, D.
Herreros, J. M.
Hildebrandt, S.
Hovest, W.
Hoyland, R.
Huffenberger, K.
Janssen, M.
Jaffe, T.
Keihanen, E.
Keskitalo, R.
Kisner, T.
Kurki-Suonio, H.
Lahteenmaki, A.
Lawrence, C. R.
Leach, S. M.
Leahy, J. P.
Leonardi, R.
Levin, S.
Lilje, P. B.
Lopez-Caniego, M.
Lowe, S. R.
Lubin, P. M.
Maino, D.
Malaspina, M.
Maris, M.
Marti-Canales, J.
Martinez-Gonzalez, E.
Massardi, M.
Matarrese, S.
Matthai, F.
Meinhold, P.
Melchiorri, A.
Mendes, L.
Mennella, A.
Morgante, G.
Morigi, G.
Morisset, N.
Moss, A.
Nash, A.
Natoli, P.
Nesti, R.
Paine, C.
Partridge, B.
Pasian, F.
Passvogel, T.
Pearson, D.
Perez-Cuevas, L.
Perrotta, F.
Polenta, G.
Popa, L. A.
Poutanen, T.
Prezeau, G.
Prina, M.
Rachen, J. P.
Rebolo, R.
Reinecke, M.
Ricciardi, S.
Riller, T.
Rocha, G.
Roddis, N.
Rohlfs, R.
Rubino-Martin, J. A.
Salerno, E.
Sandri, M.
Scott, D.
Seiffert, M.
Silk, J.
Simonetto, A.
Smoot, G. F.
Sozzi, C.
Sternberg, J.
Stivoli, F.
Stringhetti, L.
Tauber, J.
Terenzi, L.
Tomasi, M.
Tuovinen, J.
Tuerler, M.
Valenziano, L.
Varis, J.
Vielva, P.
Villa, F.
Vittorio, N.
Wade, L.
White, M.
White, S.
Wilkinson, A.
Zacchei, A.
Zonca, A.
TI Planck pre-launch status: The Planck-LFI programme
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE cosmic microwave background; space vehicles: instruments;
instrumentation: detectors; instrumentation: polarimeters;
submillimeter: general; telescopes
ID MICROWAVE BACKGROUND MAPS; LOW-FREQUENCY INSTRUMENT; DATA-PROCESSING
CENTERS; ANGULAR POWER SPECTRA; LARGE-AREA TELESCOPE; DMR SKY MAPS;
NON-GAUSSIANITY; STRAYLIGHT CONTAMINATION; GALACTIC FOREGROUNDS;
COMPONENT SEPARATION
AB This paper provides an overview of the Low Frequency Instrument (LFI) programme within the ESA Planck mission. The LFI instrument has been developed to produce high precision maps of the microwave sky at frequencies in the range 27-77 GHz, below the peak of the cosmic microwave background (CMB) radiation spectrum. The scientific goals are described, ranging from fundamental cosmology to Galactic and extragalactic astrophysics. The instrument design and development are outlined, together with the model philosophy and testing strategy. The instrument is presented in the context of the Planck mission. The LFI approach to ground and inflight calibration is described. We also describe the LFI ground segment. We present the results of a number of tests demonstrating the capability of the LFI data processing centre (DPC) to properly reduce and analyse LFI flight data, from telemetry information to calibrated and cleaned time ordered data, sky maps at each frequency (in temperature and polarization), component emission maps (CMB and diffuse foregrounds), catalogs for various classes of sources (the Early Release Compact Source Catalogue and the Final Compact Source Catalogue). The organization of the LFI consortium is briefly presented as well as the role of the core team in data analysis and scientific exploitation. All tests carried out on the LFI flight model demonstrate the excellent performance of the instrument and its various subunits. The data analysis pipeline has been tested and its main steps verified. In the first three months after launch, the commissioning, calibration,
C1 [Mandolesi, N.; Butler, R. C.; Burigana, C.; Cuttaia, F.; De Rosa, A.; Finelli, F.; Gruppuso, A.; Malaspina, M.; Morgante, G.; Morigi, G.; Natoli, P.; Ricciardi, S.; Sandri, M.; Stringhetti, L.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Ist Nazl Astrofis, Ist Astrofis Spaziale & Fis Cosm Bologna, I-40129 Bologna, Italy.
[Bersanelli, M.; Cappellini, B.; Maino, D.; Mennella, A.; Tomasi, M.; Zonca, A.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy.
[Bonaldi, A.; de Zotti, G.; Massardi, M.] INAF OAPd, Ist Nazl Astrofis, Osservatorio Astron Padova, I-35122 Padua, Italy.
[Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy.
[Balbi, A.; Cabella, P.; de Gasperis, G.; De Troia, G.; Natoli, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy.
[Baccigalupi, C.; Frailis, M.; Galeotta, S.; Gasparo, F.; Maris, M.; Pasian, F.; Zacchei, A.] INAF OATs, Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34131 Trieste, Italy.
[Artal, E.] Univ Cantabria, Dep Ing Comunicac DICOM, E-39005 Santander, Spain.
[Baccigalupi, C.; Danese, L.; Dick, J.; Gonzalez-Nuevo, J.; Leach, S. M.; Perrotta, F.] SISSA, ISAS, Astrophys Sect, Sez Trieste, I-34014 Trieste, Italy.
[Banday, A. J.; Bartelmann, M.; Doerl, U.; Ensslin, T. A.; Hell, R.; Hovest, W.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.; White, S.] MPA Max Planck Inst Astrophys, D-85741 Garching, Germany.
[Bhandari, P.; Bowman, R. C.; Gaier, T.; Gorski, K. M.; Janssen, M.; Lahteenmaki, A.; Levin, S.; Nash, A.; Paine, C.; Pearson, D.; Prezeau, G.; Prina, M.; Rocha, G.; Seiffert, M.; Wade, L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Courvoisier, T.; Morisset, N.; Rohlfs, R.; Tuerler, M.] Univ Geneva, ISDC Data Ctr Astrophys, CH-1290 Versoix, Switzerland.
[Crone, G.; Marti-Canales, J.; Passvogel, T.; Perez-Cuevas, L.] ESA, Sci Projects Dpt, Herschel Planck Project, NL-2200 AG Noordwijk, Netherlands.
[D'Arcangelo, O.; Simonetto, A.; Sozzi, C.] IFP CNR, Ist Fis Plasma, Consiglio Nazl Ric, I-20125 Milan, Italy.
[Davies, R. D.; Davis, R. J.; Dickinson, C.; Jaffe, T.; Leahy, J. P.; Lowe, S. R.; Roddis, N.; Wilkinson, A.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England.
[De Angelis, L.; Falvella, M. C.] ASI, Agenzia Spaziale Italiana, I-00198 Rome, Italy.
[Gregorio, A.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy.
[Barreiro, R. B.; Diego, J. M.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain.
[Gomez, F.; Herreros, J. M.; Hildebrandt, S.; Hoyland, R.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife 38200, Spain.
[Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland.
[Poutanen, T.] Helsinki Univ Technol, Metsahovi Radio Observ, TKK, Kylmala 02540, Finland.
[Leonardi, R.; Lubin, P. M.; Meinhold, P.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Donzelli, S.; Eriksen, H. K.; Hansen, F.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway.
[Donzelli, S.; Eriksen, H. K.; Hansen, F.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway.
[Mendes, L.] ESA ESAC RSSD, European Space Agcy, European Space Astron Ctr, Res & Sci Support Dept, Madrid 28691, Spain.
[Nesti, R.] Osserv Astrofis Arcetri, I-50125 Florence, Italy.
[Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA.
[Bennett, K.; Bremer, M.; Giardino, G.; Sternberg, J.; Tauber, J.] Estec, ESA, Res & Sci Support Dept, NL-2201 AZ Noordwijk, Netherlands.
[Popa, L. A.] Inst Space Sci, RO-077125 Bucharest, Romania.
[Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Phys, Berkeley, CA 94720 USA.
[Smoot, G. F.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA.
[Moss, A.; Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
[Silk, J.] Univ Oxford, Oxford OX1 3RH, England.
[Smoot, G. F.] Univ Paris 07, APC, Case 7020, F-75205 Paris 13, France.
[Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo 02044, Finland.
[Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.] Helsinki Inst Phys, Helsinki 00014, Finland.
[Finelli, F.] INAF OABo, Ist Nazl Astrofis, Osservatorio Astron Bologna, I-40127 Bologna, Italy.
[Baccigalupi, C.; Leach, S. M.] Ist Nazl Fis Nucl, Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.
[Natoli, P.; Vittorio, N.] Ist Nazl Fis Nucl, Ist Nazl Fis Nucl, Sez Tor Vergata, I-00133 Rome, Italy.
[Borrill, J.; Ricciardi, S.; Stivoli, F.] Univ Calif Berkeley, Berkeley Space Sci Lab, Berkeley, CA 94720 USA.
[Borrill, J.; Cantalupo, C.; Kisner, T.; Ricciardi, S.; Stivoli, F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA.
[Banday, A. J.] CESR, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France.
[Dupac, X.] ESA, ESAC, European Space Agcy, European Space Astron Ctr, Madrid 28080, Spain.
[Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland.
[Lopez-Caniego, M.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England.
[Huffenberger, K.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA.
[Natoli, P.; Polenta, G.] ASI, Agenzia Spaziale Italiana, Sci Data Ctr, I-00044 Frascati, Italy.
[Cabella, P.; Melchiorri, A.; Polenta, G.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Polenta, G.] INAF OARo, Ist Nazl Astrofis, Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy.
[Salerno, E.] CNR, Consiglio Nazl Ric, Area Ric Pisa, Ist Scie & Technol Informaz Alessandro Faedo, I-56124 Pisa, Italy.
[White, M.] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA.
RP Mandolesi, N (reprint author), INAF IASF Bologna, Ist Nazl Astrofis, Ist Astrofis Spaziale & Fis Cosm Bologna, Via Gobetti 101, I-40129 Bologna, Italy.
EM mandolesi@iasfbo.inaf.it
RI Butler, Reginald/N-4647-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014;
White, Martin/I-3880-2015; Gruppuso, Alessandro/N-5592-2015;
Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; popa,
lucia/B-4718-2012; Martinez-Gonzalez, Enrique/E-9534-2015; Artal,
Eduardo/H-5546-2015; Lilje, Per/A-2699-2012; Salerno,
Emanuele/A-2137-2010; de Gasperis, Giancarlo/C-8534-2012; Sozzi,
Carlo/F-4158-2012; Gregorio, Anna/J-1632-2012; Lopez-Caniego,
Marcos/M-4695-2013; Bartelmann, Matthias/A-5336-2014; Lahteenmaki,
Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Herranz,
Diego/K-9143-2014; Barreiro, Rita Belen/N-5442-2014;
OI Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio,
Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Butler,
Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375;
Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger,
Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Frailis,
Marco/0000-0002-7400-2135; Maris, Michele/0000-0001-9442-2754;
Franceschi, Enrico/0000-0002-0585-6591; Valenziano,
Luca/0000-0002-1170-0104; Matarrese, Sabino/0000-0002-2573-1243; Lowe,
Stuart/0000-0002-2975-9032; Stringhetti, Luca/0000-0002-3961-9068;
Pasian, Fabio/0000-0002-4869-3227; Finelli, Fabio/0000-0002-6694-3269;
Scott, Douglas/0000-0002-6878-9840; Nesti, Renzo/0000-0003-0303-839X;
Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; White,
Martin/0000-0001-9912-5070; Gruppuso, Alessandro/0000-0001-9272-5292;
Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi,
Maurizio/0000-0002-1448-6131; Rubino-Martin, Jose
Alberto/0000-0001-5289-3021; Melchiorri, Alessandro/0000-0001-5326-6003;
Morgante, Gianluca/0000-0001-9234-7412; Martinez-Gonzalez,
Enrique/0000-0002-0179-8590; Artal, Eduardo/0000-0002-2569-1894;
Salerno, Emanuele/0000-0002-3433-3634; de Gasperis,
Giancarlo/0000-0003-2899-2171; Sozzi, Carlo/0000-0001-8951-0071; Vielva,
Patricio/0000-0003-0051-272X; Herranz, Diego/0000-0003-4540-1417;
Barreiro, Rita Belen/0000-0002-6139-4272; Ricciardi,
Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; silk,
joe/0000-0002-1566-8148; Galeotta, Samuele/0000-0002-3748-5115; TERENZI,
LUCA/0000-0001-9915-6379; Zacchei, Andrea/0000-0003-0396-1192; Lilje,
Per/0000-0003-4324-7794; Bowman, Robert/0000-0002-2114-1713
FU ESA; Bundesministerium fur Wirtschaft und Technologie through the
Raumfahrt-Agentur of the Deutsches Zentrum fur Luft- und Raumfahrt (DLR)
[FKZ: 50 OP 0901]; Max-Planck-Gesellschaft (MPG); Finnish Funding Agency
for Technology and Innovation (Tekes); Academy of Finland; Ministerio de
Ciencia e Innovacion [ESP2004-07067-C03, AYA2007-68058-C03]; Science and
Technology Facilities Council (STFC); NASA LTSA [NNG04CG90G]; NASA
Office of Space Science; Canadian Space Agency
FX Planck is a project of the European Space Agency with instruments funded
by ESA member states, and with special contributions from Denmark and
NASA (USA). The Planck-LFI project is developed by an International
Consortium led by Italy and involving Canada, Finland, Germany, Norway,
Spain, Switzerland, UK and USA. The Italian contribution to Planck is
supported by the Agenzia Spaziale Italiana (ASI) and INAF. We also wish
to thank the many people of the Herschel/Planck Project and RSSD of ESA,
ASI, THALES Alenia Space Industries and the LFI Consortium that have
contributed to the realization of LFI. We are grateful to our HFI
colleagues for such a fruitful collaboration during so many years of
common work. The German participation at the Max-Planck-Institut fur
Astrophysik is funded by the Bundesministerium fur Wirtschaft und
Technologie through the Raumfahrt-Agentur of the Deutsches Zentrum fur
Luft- und Raumfahrt (DLR) [FKZ: 50 OP 0901] and by the
Max-Planck-Gesellschaft (MPG). The Finnish contribution is supported by
the Finnish Funding Agency for Technology and Innovation (Tekes) and the
Academy of Finland. The Spanish participation is funded by Ministerio de
Ciencia e Innovacion through the project ESP2004-07067-C03 and
AYA2007-68058-C03. The UK contribution is supported by the Science and
Technology Facilities Council (STFC). C. Baccigalupi and F. Perrotta
acknowledge partial support of the NASA LTSA Grant NNG04CG90G. We
acknowledge the use of the BCX cluster at CINECA under the agreement
INAF/CINECA. We acknowledge the use of the Legacy Archive for Microwave
Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the
NASA Office of Space Science. We acknowledge use of the HEALPix (Gorski
et al. 2005) software and analysis package for deriving some of the
results in this paper. The Canadian participation is supported by the
Canadian Space Agency.
NR 135
TC 74
Z9 74
U1 1
U2 14
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP-OCT
PY 2010
VL 520
AR A3
DI 10.1051/0004-6361/200912837
PG 24
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 665VQ
UT WOS:000283064200004
ER
PT J
AU Martin, SR
Booth, AJ
AF Martin, S. R.
Booth, A. J.
TI Demonstration of exoplanet detection using an infrared telescope array
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE techniques: interferometric; planets and satellites: detection
ID TERRESTRIAL ATMOSPHERES; NULLING INTERFEROMETER; STARLIGHT SUPPRESSION;
EXTRASOLAR PLANETS; BROAD-BAND; SEARCH; SPACE; SINGLE; CONFIGURATIONS;
FIBERS
AB Context. Technology is being developed for the characterization and detection of small, Earth-size exoplanets by nulling interferometry in the mid-infrared waveband. While high-performance nulling experiments have shown the possibility of using the technique, to achieve these goals, nulling has to be done on multiple beams, with high stability over periods of hours. To address the issues of the perceived complexity and difficulty of the method, a testbed was developed for the Terrestrial Planet Finder Interferometer (TPF-I) project which would demonstrate four beam nulling and faint exoplanet signal extraction at levels traceable to flight requirements. Containing star and planet sources, the testbed would demonstrate the principal functional processes of the TPF-I beam-combiner by generating four input beams of star and planet light, and recovering the planet signature at the output.
Aims. Here we report on experiments designed with traceability to a flight system, showing faint exoplanet signal detection in the presence of strong starlight. The experiments were designed to show nulling at the flight level of approximate to 10 (5), starlight suppression of 10 (7) or better, and detection of an exoplanet at a contrast of 10(-6) compared to the star. This performance level meets the flight requirements for the parts of the detection process that can be demonstrated using a monochromatic source. To achieve these results, the testbed would have to operate stably for several hours, showing control of disturbances at levels equivalent to the flight requirements.
Methods. A test process was designed which would show that the necessary performance could be achieved. To show reproducibility, the tests were run on three separate occasions, separated by several days. The tests were divided into three main parts which would show first, starlight suppression, second, a realistic faint exoplanet signal production, and finally, exoplanet signal detection in the presence of the starlight.
Results. A number of data sets were acquired showing the achievement of the required performance. The data reported here show nulling at levels between about 5.5 and 8.5 x 10(-6), starlight suppression between 8.4 x 10(-9) and 1.4 x 10(-8), and detection of planet signals with contrast to the star between 3.8 x 10(-7) and 4.4 x 10(-7). The signal to noise ratios for the detections were between 14.0 and 26.9. These data met all the criteria of the demonstration, showing reproducible stable performance over several hours of operation.
Conclusions. These data show the successful execution, at flight-like performance levels, of almost the whole exoplanet detection process using a four beam, nulling beam-combiner.
C1 [Martin, S. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Booth, A. J.] Sigma Space Corp, Lanham, MD 20706 USA.
RP Martin, SR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
EM stefan.r.martin@jpl.nasa.gov
FU NASA
FX Kurt Liewer assisted with testbed development and operation. Frank Loya
developed the software control system and several electronics systems.
Oliver Lay assisted with development of the data analysis techniques and
the traceability to flight. Hong Tang developed the testbed metrology
system. Numerous others participated in testbed development over several
years including Nasrat Raouf (optics), Piotr Szwaykowski (optical
engineering), Randall Bartos (engineering), Boris Lurie (controls
systems), Santos "Felipe" Fregoso (software), Francisco Aguayo
(engineering), Martin Marcin (optical engineering), Ray Lam (software),
Andrew Lowman (optical engineering), Steve Monacos (electronics
engineering), Robert Peters (optical engineering) and Muthu Jeganathan
(optical engineering). The authors are also grateful to Mike Devirian
and to Peter Lawson for their unflagging support of the testbed. The
work reported here was conducted at the Jet Propulsion Laboratory,
California Institute of Technology, under contract with NASA. The
mention of any commercial product herein does not constitute an
endorsement. (C) 2010. All rights reserved.
NR 35
TC 4
Z9 4
U1 0
U2 0
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP-OCT
PY 2010
VL 520
AR A96
DI 10.1051/0004-6361/201014942
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 665VQ
UT WOS:000283064200120
ER
PT J
AU Mennella, A
Bersanelli, M
Butler, RC
Cuttaia, F
D'Arcangelo, O
Davis, RJ
Frailis, M
Galeotta, S
Gregorio, A
Lawrence, CR
Leonardi, R
Lowe, SR
Mandolesi, N
Maris, M
Meinhold, P
Mendes, L
Morgante, G
Sandri, M
Stringhetti, L
Terenzi, L
Tomasi, M
Valenziano, L
Villa, F
Zacchei, A
Zonca, A
Balasini, M
Franceschet, C
Battaglia, P
Lapolla, PM
Leutenegger, P
Miccolis, M
Pagan, L
Silvestri, R
Aja, B
Artal, E
Baldan, G
Bastia, P
Bernardino, T
Boschini, L
Cafagna, G
Cappellini, B
Cavaliere, F
Colombo, F
de La Fuente, L
Edgeley, J
Falvella, MC
Ferrari, F
Fogliani, S
Franceschi, E
Gaier, T
Gomez, F
Herreros, JM
Hildebrandt, S
Hoyland, R
Hughes, N
Jukkala, P
Kettle, D
Laaninen, M
Lawson, D
Leahy, P
Levin, S
Lilje, PB
Maino, D
Malaspina, M
Manzato, P
Marti-Canales, J
Martinez-Gonzalez, E
Mediavilla, A
Pasian, F
Pascual, JP
Pecora, M
Peres-Cuevas, L
Platania, P
Pospieszalsky, M
Poutanen, T
Rebolo, R
Roddis, N
Salmon, M
Seiffert, M
Simonetto, A
Sozzi, C
Tauber, J
Tuovinen, J
Varis, J
Wilkinson, A
Winder, F
AF Mennella, A.
Bersanelli, M.
Butler, R. C.
Cuttaia, F.
D'Arcangelo, O.
Davis, R. J.
Frailis, M.
Galeotta, S.
Gregorio, A.
Lawrence, C. R.
Leonardi, R.
Lowe, S. R.
Mandolesi, N.
Maris, M.
Meinhold, P.
Mendes, L.
Morgante, G.
Sandri, M.
Stringhetti, L.
Terenzi, L.
Tomasi, M.
Valenziano, L.
Villa, F.
Zacchei, A.
Zonca, A.
Balasini, M.
Franceschet, C.
Battaglia, P.
Lapolla, P. M.
Leutenegger, P.
Miccolis, M.
Pagan, L.
Silvestri, R.
Aja, B.
Artal, E.
Baldan, G.
Bastia, P.
Bernardino, T.
Boschini, L.
Cafagna, G.
Cappellini, B.
Cavaliere, F.
Colombo, F.
de La Fuente, L.
Edgeley, J.
Falvella, M. C.
Ferrari, F.
Fogliani, S.
Franceschi, E.
Gaier, T.
Gomez, F.
Herreros, J. M.
Hildebrandt, S.
Hoyland, R.
Hughes, N.
Jukkala, P.
Kettle, D.
Laaninen, M.
Lawson, D.
Leahy, P.
Levin, S.
Lilje, P. B.
Maino, D.
Malaspina, M.
Manzato, P.
Marti-Canales, J.
Martinez-Gonzalez, E.
Mediavilla, A.
Pasian, F.
Pascual, J. P.
Pecora, M.
Peres-Cuevas, L.
Platania, P.
Pospieszalsky, M.
Poutanen, T.
Rebolo, R.
Roddis, N.
Salmon, M.
Seiffert, M.
Simonetto, A.
Sozzi, C.
Tauber, J.
Tuovinen, J.
Varis, J.
Wilkinson, A.
Winder, F.
TI Planck pre-launch status: Low Frequency Instrument calibration and
expected scientific performance
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE cosmic microwave background; telescopes; space vehicles: instruments;
instrumentation: detectors; instrumentation: polarimeters;
submillimeter: general
ID RADIOMETERS; TELESCOPE
AB We present the calibration and scientific performance parameters of the Planck Low Frequency Instrument (LFI) measured during the ground cryogenic test campaign. These parameters characterise the instrument response and constitute our optimal pre-launch knowledge of the LFI scientific performance. The LFI shows excellent 1/f stability and rejection of instrumental systematic effects; its measured noise performance shows that LFI is the most sensitive instrument of its kind. The calibration parameters will be updated during flight operations until the end of the mission.
C1 [Mennella, A.; Bersanelli, M.; Tomasi, M.; Franceschet, C.; Cavaliere, F.; Maino, D.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy.
[Butler, R. C.; Cuttaia, F.; Mandolesi, N.; Morgante, G.; Sandri, M.; Stringhetti, L.; Terenzi, L.; Valenziano, L.; Villa, F.; Franceschi, E.; Malaspina, M.] INAF IASF, Sez Bologna, I-40129 Bologna, Italy.
[D'Arcangelo, O.; Platania, P.; Simonetto, A.; Sozzi, C.] CNR, Ist Fis Plasma, I-20125 Milan, Italy.
[Davis, R. J.; Lowe, S. R.; Edgeley, J.; Kettle, D.; Lawson, D.; Leahy, P.; Roddis, N.; Wilkinson, A.; Winder, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England.
[Frailis, M.; Galeotta, S.; Maris, M.; Zacchei, A.; Fogliani, S.; Manzato, P.; Pasian, F.] INAF, Osservatorio Astron Trieste, I-34143 Trieste, Italy.
[Gregorio, A.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy.
[Lawrence, C. R.; Gaier, T.; Seiffert, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Leonardi, R.; Meinhold, P.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Mendes, L.] ESAC, Planck Sci Off, European Space Agcy, Madrid 28691, Spain.
[Zonca, A.; Cappellini, B.] INAF IASF, Sez Milano, I-20133 Milan, Italy.
[Balasini, M.; Battaglia, P.; Lapolla, P. M.; Leutenegger, P.; Miccolis, M.; Pagan, L.; Silvestri, R.; Baldan, G.; Bastia, P.; Boschini, L.; Cafagna, G.; Colombo, F.; Ferrari, F.; Pecora, M.] Thales Alenia Space Italia, I-20090 Milan, Italy.
[Aja, B.; Artal, E.; de La Fuente, L.; Mediavilla, A.; Pascual, J. P.] Univ Cantabria, Dept Ingeniera Comunicac, E-39005 Santander, Spain.
[Bernardino, T.; Martinez-Gonzalez, E.; Salmon, M.] Univ Cantabria, Inst Fis Cantabria, Consejo Super Invest Cient, E-39005 Santander, Spain.
[Falvella, M. C.] Agenzia Spaziale Italiana, I-00198 Rome, Italy.
[Gomez, F.; Herreros, J. M.; Hildebrandt, S.; Hoyland, R.; Levin, S.] Inst Astrofis Canarias, San Cristobal la Laguna 38200, Tenerife, Spain.
[Hughes, N.; Jukkala, P.; Rebolo, R.] DA Design Oy, Jokioinen 31600, Finland.
[Laaninen, M.] Ylinen Elect Oy, Kauniainen 02700, Finland.
[Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway.
[Marti-Canales, J.] Joint ALMA Observ, Santiago, Chile.
[Peres-Cuevas, L.; Tauber, J.] ESTEC, European Space Agcy, Res & Sci Support Dpt, Noordwijk, Netherlands.
[Pospieszalsky, M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA.
[Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland.
[Poutanen, T.] Helsinki Inst Phys, Helsinki 00014, Finland.
[Poutanen, T.] Helsinki Univ Technol, Metsahovi Radio Observ, Kylmala 02540, Finland.
[Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland.
RP Mennella, A (reprint author), Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy.
EM aniello.mennella@fisica.unimi.it
RI Butler, Reginald/N-4647-2015; Lilje, Per/A-2699-2012; Sozzi,
Carlo/F-4158-2012; Martinez-Gonzalez, Enrique/E-9534-2015; de la Fuente,
Luisa/J-5142-2012; Artal, Eduardo/H-5546-2015; Tomasi,
Maurizio/I-1234-2016; Aja, Beatriz/H-5573-2015; Pascual, Juan
Pablo/K-5066-2014
OI Frailis, Marco/0000-0002-7400-2135; Villa, Fabrizio/0000-0003-1798-861X;
Galeotta, Samuele/0000-0002-3748-5115; TERENZI,
LUCA/0000-0001-9915-6379; Zacchei, Andrea/0000-0003-0396-1192; Lilje,
Per/0000-0003-4324-7794; Maris, Michele/0000-0001-9442-2754; Valenziano,
Luca/0000-0002-1170-0104; Lowe, Stuart/0000-0002-2975-9032; Stringhetti,
Luca/0000-0002-3961-9068; Pasian, Fabio/0000-0002-4869-3227; Gregorio,
Anna/0000-0003-4028-8785; Butler, Reginald/0000-0003-4366-5996; Sandri,
Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017;
Sozzi, Carlo/0000-0001-8951-0071; Martinez-Gonzalez,
Enrique/0000-0002-0179-8590; de la Fuente, Luisa/0000-0003-1403-1660;
Artal, Eduardo/0000-0002-2569-1894; Tomasi,
Maurizio/0000-0002-1448-6131; Aja, Beatriz/0000-0002-4229-2334;
Franceschi, Enrico/0000-0002-0585-6591; Zonca,
Andrea/0000-0001-6841-1058; Morgante, Gianluca/0000-0001-9234-7412;
Pascual, Juan Pablo/0000-0003-2123-0502
FU Italian Space Agency (ASI); NASA Science Mission Directorate; Finnish
Funding Agency for Technology and Innovation (Tekes); ESA
FX The Planck-LFI project is developed by an Interntional Consortium lead
by Italy and involving Canada, Finland, Germany, Norway, Spain,
Switzerland, UK, USA. The Italian contribution to Planck is supported by
the Italian Space Agency (ASI). The work in this paper has been
supported by in the framework of the ASI-E2 phase of the Planck
contract. The US Planck Project is supported by the NASA Science Mission
Directorate. In Finland, the Planck-LFI 70 GHz work was supported by the
Finnish Funding Agency for Technology and Innovation (Tekes).; Planck
http://www.esa.int/Planck is a project of the European Space Agency -
ESA - with instruments provided by two scientific Consortia funded by
ESA member states (in particular the lead countries: France and Italy)
with contributions from NASA (USA), and telescope reflectors provided in
a collaboration between ESA and a scientific Consortium led and funded
by Denmark.
NR 24
TC 20
Z9 20
U1 0
U2 4
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP-OCT
PY 2010
VL 520
AR A5
DI 10.1051/0004-6361/200912849
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 665VQ
UT WOS:000283064200006
ER
PT J
AU Pajot, F
Ade, PAR
Beney, JL
Breelle, E
Broszkiewicz, D
Camus, P
Carabetian, C
Catalano, A
Chardin, A
Charra, M
Charra, J
Cizeron, R
Couchot, F
Coulais, A
Crill, BP
Dassas, K
Daubin, J
de Bernardis, P
de Marcillac, P
Delouis, JM
Desert, FX
Duret, P
Eng, P
Evesque, C
Fourmond, JJ
Francois, S
Giard, M
Giraud-Heraud, Y
Guglielmi, L
Guyot, G
Haissinski, J
Henrot-Versille, S
Hervier, V
Holmes, W
Jones, WC
Lamarre, JM
Lami, P
Lange, AE
Lefebvre, M
Leriche, B
Leroy, C
Macias-Perez, J
Maciaszek, T
Maffei, B
Mahendran, A
Mansoux, B
Marty, C
Masi, S
Mercier, C
Miville-Deschenes, MA
Montier, L
Nicolas, C
Noviello, F
Perdereau, O
Piacentini, F
Piat, M
Plaszczynski, S
Pointecouteau, E
Pons, R
Ponthieu, N
Puget, JL
Rambaud, D
Renault, C
Renault, JC
Rioux, C
Ristorcelli, I
Rosset, C
Savini, G
Sudiwala, R
Torre, JP
Tristram, M
Vallee, D
Veneziani, M
Yvon, D
AF Pajot, F.
Ade, P. A. R.
Beney, J. -L.
Breelle, E.
Broszkiewicz, D.
Camus, P.
Carabetian, C.
Catalano, A.
Chardin, A.
Charra, M.
Charra, J.
Cizeron, R.
Couchot, F.
Coulais, A.
Crill, B. P.
Dassas, K.
Daubin, J.
de Bernardis, P.
de Marcillac, P.
Delouis, J. -M.
Desert, F. -X.
Duret, P.
Eng, P.
Evesque, C.
Fourmond, J. -J.
Francois, S.
Giard, M.
Giraud-Heraud, Y.
Guglielmi, L.
Guyot, G.
Haissinski, J.
Henrot-Versille, S.
Hervier, V.
Holmes, W.
Jones, W. C.
Lamarre, J. -M.
Lami, P.
Lange, A. E.
Lefebvre, M.
Leriche, B.
Leroy, C.
Macias-Perez, J.
Maciaszek, T.
Maffei, B.
Mahendran, A.
Mansoux, B.
Marty, C.
Masi, S.
Mercier, C.
Miville-Deschenes, M. -A.
Montier, L.
Nicolas, C.
Noviello, F.
Perdereau, O.
Piacentini, F.
Piat, M.
Plaszczynski, S.
Pointecouteau, E.
Pons, R.
Ponthieu, N.
Puget, J. -L.
Rambaud, D.
Renault, C.
Renault, J. -C.
Rioux, C.
Ristorcelli, I.
Rosset, C.
Savini, G.
Sudiwala, R.
Torre, J. -P.
Tristram, M.
Vallee, D.
Veneziani, M.
Yvon, D.
TI Planck pre-launch status: HFI ground calibration
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE cosmic microwave background; space vehicles: instruments; submillimeter:
general
ID HIGH-FREQUENCY INSTRUMENT; POLARIZATION; DESIGN; FIRAS
AB Context. The Planck satellite was successfully launched on May 14th 2009. We have completed the pre-launch calibration measurements of the High Frequency Instrument (HFI) on board Planck and their processing.
Aims. We present the results ot the pre-launch calibration of HFI in which we have multiple objectives. First, we determine instrumental parameters that cannot be measured in-flight and predict parameters that can. Second, we take the opportunity to operate and understand the instrument under a wide range of anticipated operating conditions. Finally, we estimate the performance of the instrument built.
Methods. We obtained our pre-launch calibration results by characterising the component and subsystems, then by calibrating the focal plane at IAS (Orsay) in the Saturne simulator, and later from the tests at the satellite level carried out in the CSL (Liege) cryogenic vacuum chamber. We developed models to estimate the instrument pre-launch parameters when no measurement could be performed.
Results. We reliably measure the Planck-HFI instrument characteristics and behaviour, and determine the flight nominal setting of all parameters. The expected in-flight performance exceeds the requirements and is close or superior to the goal specifications.
C1 [Pajot, F.; Carabetian, C.; Chardin, A.; Charra, M.; Charra, J.; Dassas, K.; de Marcillac, P.; Duret, P.; Eng, P.; Evesque, C.; Fourmond, J. -J.; Francois, S.; Guyot, G.; Hervier, V.; Lami, P.; Lefebvre, M.; Leriche, B.; Leroy, C.; Mahendran, A.; Mercier, C.; Miville-Deschenes, M. -A.; Nicolas, C.; Noviello, F.; Ponthieu, N.; Puget, J. -L.; Rioux, C.; Torre, J. -P.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France.
[Ade, P. A. R.; Sudiwala, R.] Cardiff Univ, Astron & Instrumentat Grp, Cardiff, S Glam, Wales.
[Beney, J. -L.; Cizeron, R.; Couchot, F.; Daubin, J.; Haissinski, J.; Henrot-Versille, S.; Mansoux, B.; Perdereau, O.; Plaszczynski, S.; Rosset, C.; Tristram, M.] Univ Paris 11, Lab Accelerateur Lineaire, F-91405 Orsay, France.
[Breelle, E.; Broszkiewicz, D.; Catalano, A.; Giraud-Heraud, Y.; Guglielmi, L.; Piat, M.; Vallee, D.; Veneziani, M.] CNRS, Lab Astroparticule & Cosmol APC, UMR 7164, F-75205 Paris 13, France.
[Breelle, E.; Broszkiewicz, D.; Catalano, A.; Giraud-Heraud, Y.; Guglielmi, L.; Piat, M.; Vallee, D.; Veneziani, M.] Univ Paris 07, F-75205 Paris 13, France.
[Camus, P.] CNRS UJF, Inst Neel, F-38042 Grenoble 9, France.
[Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France.
[Crill, B. P.; Lange, A. E.] CALTECH, Dept Phys, Pasadena, CA 91125 USA.
[Crill, B. P.; Holmes, W.; Jones, W. C.; Lange, A. E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[de Bernardis, P.; Masi, S.; Piacentini, F.] Univ Roma La Sapienza, Grp Cosmol Sperimentale, Dipart Fis, I-00185 Rome, Italy.
[Delouis, J. -M.; Renault, J. -C.] CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France.
[Delouis, J. -M.; Renault, J. -C.] Univ Paris 06, F-75014 Paris, France.
[Desert, F. -X.] Obs Grenoble, Lab Astrophys, F-38041 Grenoble 9, France.
[Giard, M.; Marty, C.; Montier, L.; Pointecouteau, E.; Pons, R.; Rambaud, D.; Ristorcelli, I.] CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse, France.
[Jones, W. C.] Princeton Univ, Dept Phys, Joseph Henry Lab, Princeton, NJ 08544 USA.
[Macias-Perez, J.; Renault, C.] Univ Grenoble 1, LPSC, CNRS IN2P3, Inst Natl Polytech Grenoble, F-38026 Grenoble, France.
[Maciaszek, T.] CNES, Ctr Spatial Toulouse, F-31401 Toulouse 9, France.
[Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England.
[Savini, G.] UCL, Opt Sci Lab, London WC1E 6BT, England.
[Yvon, D.] CEA CE Saclay, DAPNIA, Serv Phys Particules, F-91191 Gif Sur Yvette, France.
RP Pajot, F (reprint author), Univ Paris 11, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France.
EM francois.pajot@ias.u-psud.fr
RI Yvon, Dominique/D-2280-2015; Piacentini, Francesco/E-7234-2010;
OI Piacentini, Francesco/0000-0002-5444-9327; Masi,
Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446;
Savini, Giorgio/0000-0003-4449-9416
FU CSL team; ESA
FX Planck (http://www.esa.int/Planck) is an ESA project with instruments
provided by two scientific Consortia funded by ESA member states (in
particular the lead countries: France and Italy) with contributions from
NASA (USA), and telescope reflectors provided in collaboration between
ESA and a scientific Consortium led and funded by Denmark.; The authors
would like to express their gratitude to the CSL team for its
contributions and support to the Planck cryogenic test campaigns.
NR 25
TC 16
Z9 16
U1 0
U2 0
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP-OCT
PY 2010
VL 520
AR A10
DI 10.1051/0004-6361/200913203
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 665VQ
UT WOS:000283064200011
ER
PT J
AU Rosset, C
Tristram, M
Ponthieu, N
Ade, P
Aumont, J
Catalano, A
Conversi, L
Couchot, F
Crill, BP
Desert, FX
Ganga, K
Giard, M
Giraud-Heraud, Y
Haissinski, J
Henrot-Versille, S
Holmes, W
Jones, WC
Lamarre, JM
Lange, A
Leroy, C
Macias-Perez, J
Maffei, B
de Marcillac, P
Miville-Deschenes, MA
Montier, L
Noviello, F
Pajot, F
Perdereau, O
Piacentini, F
Piat, M
Plaszczynski, S
Pointecouteau, E
Puget, JL
Ristorcelli, I
Savini, G
Sudiwala, R
Veneziani, M
Yvon, D
AF Rosset, C.
Tristram, M.
Ponthieu, N.
Ade, P.
Aumont, J.
Catalano, A.
Conversi, L.
Couchot, F.
Crill, B. P.
Desert, F. -X.
Ganga, K.
Giard, M.
Giraud-Heraud, Y.
Haissinski, J.
Henrot-Versille, S.
Holmes, W.
Jones, W. C.
Lamarre, J. -M.
Lange, A.
Leroy, C.
Macias-Perez, J.
Maffei, B.
de Marcillac, P.
Miville-Deschenes, M. -A.
Montier, L.
Noviello, F.
Pajot, F.
Perdereau, O.
Piacentini, F.
Piat, M.
Plaszczynski, S.
Pointecouteau, E.
Puget, J. -L.
Ristorcelli, I.
Savini, G.
Sudiwala, R.
Veneziani, M.
Yvon, D.
TI Planck pre-launch status: High Frequency Instrument polarization
calibration
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE space vehicles: instruments; techniques: polarimetric; instrumentation:
polarimeters; instrumentation: detectors; cosmic microwave background;
submillimeter: general
ID PROBE WMAP OBSERVATIONS; POWER SPECTRA; MICROWAVE; TEMPERATURE;
PARAMETERS
AB The High Frequency Instrument of Planck will map the entire sky in the millimeter and sub-millimeter domain from 100 to 857 GHz with unprecedented sensitivity to polarization (Delta P/T-cmb similar to 4 x 10(-6) for P either Q or U and T-cmb similar or equal to 2.7 K) at 100, 143, 217 and 353 GHz. It will lead to major improvements in our understanding of the cosmic microwave background anisotropies and polarized foreground signals. Planck will make high resolution measurements of the E-mode spectrum (up to l similar to 1500) and will also play a prominent role in the search for the faint imprint of primordial gravitational waves on the CMB polarization. This paper addresses the effects of calibration of both temperature (gain) and polarization (polarization efficiency and detector orientation) on polarization measurements. The specific requirements on the polarization parameters of the instrument are set and we report on their pre-flight measurement on HFI bolometers. We present a semi-analytical method that exactly accounts for the scanning strategy of the instrument as well as the combination of different detectors. We use this method to propagate errors through to the CMB angular power spectra in the particular case of Planck-HFI, and to derive constraints on polarization parameters. We show that in order to limit the systematic error to 10% of the cosmic variance of the E-mode power spectrum, uncertainties in gain, polarization efficiency and detector orientation must be below 0.15%, 0.3% and 1 degrees respectively. Pre-launch ground measurements reported in this paper already fulfill these requirements.
C1 [Rosset, C.; Tristram, M.; Couchot, F.; Haissinski, J.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.] Univ Paris 11, CNRS, LAL, Lab Accelerateur Lineaire, F-91405 Orsay, France.
[Ponthieu, N.; Aumont, J.; Leroy, C.; de Marcillac, P.; Miville-Deschenes, M. -A.; Noviello, F.; Pajot, F.; Puget, J. -L.] Univ Paris 11, CNRS, IAS, Inst Astrophys Spatiale, F-91405 Orsay, France.
[Ade, P.; Savini, G.; Sudiwala, R.] Cardiff Univ, Astron & Instrumentat Grp, Cardiff, S Glam, Wales.
[Catalano, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France.
[Rosset, C.; Catalano, A.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Veneziani, M.] Univ Paris Diderot, APC Astroparticule & Cosmol, F-75205 Paris 13, France.
[Crill, B. P.; Jones, W. C.; Lange, A.] CALTECH, Observat Cosmol, Pasadena, CA 91125 USA.
[Desert, F. -X.; Macias-Perez, J.] CNRS, LAOG, Astrophys Lab, Observ Grenoble, Grenoble, France.
[Giard, M.; Leroy, C.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, CESR, F-31038 Toulouse 4, France.
[Crill, B. P.; Holmes, W.; Jones, W. C.; Lange, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Maffei, B.] Univ Manchester, JBCA, Sch Phys & Astron, Manchester M13 9PL, Lancs, England.
[Tristram, M.; Aumont, J.] CNRS, LPSC, Lab Phys Subatom & Cosmol, Grenoble, France.
[Piacentini, F.; Veneziani, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Yvon, D.] CEA, Serv Phys Particules, Saclay, France.
[Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Savini, G.] UCL, Opt Sci Lab, London WC1E 6BT, England.
[Conversi, L.] European Space Astron Ctr, Villanueava De La Canada 28691, Madrid, Spain.
RP Rosset, C (reprint author), Univ Paris 11, CNRS, LAL, Lab Accelerateur Lineaire, Batiment 200, F-91405 Orsay, France.
EM cyrille.rosset@apc.univ-paris-diderot.fr
RI Yvon, Dominique/D-2280-2015; Piacentini, Francesco/E-7234-2010;
OI Piacentini, Francesco/0000-0002-5444-9327; Savini,
Giorgio/0000-0003-4449-9416
FU ESA; CNES; CNRS; NASA; STFC; ASI
FX Planck (http://www.esa.int/Planck) is a project of the European Space
Agency (ESA) with instruments provided by two scientific Consortia
funded by ESA member states (in particular the lead countries: France
and Italy) with contributions from NASA (USA), and telescope reflectors
provided in a collaboration between ESA and a scientific Consortium led
and funded by Denmark.; The Planck-HFI instrument
(http://hfi.planck.fr/) was designed and built by an international
consortium of laboratories, universities and institutes, with important
contributions from the industry, under the leadership of the PI
institute, IAS at Orsay, France. It was funded in particular by CNES,
CNRS, NASA, STFC and ASI. The authors extend their gratitude to the
numerous engineers and scientists, who have contributed to the design,
development, construction or evaluation of the HFI instrument. The
authors are pleased to thank the referee for his/her very useful
remarks.
NR 35
TC 59
Z9 59
U1 0
U2 1
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP-OCT
PY 2010
VL 520
AR A13
DI 10.1051/0004-6361/200913054
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 665VQ
UT WOS:000283064200014
ER
PT J
AU Sandri, M
Villa, F
Bersanelli, M
Burigana, C
Butler, RC
D'Arcangelo, O
Figini, L
Gregorio, A
Lawrence, CR
Maino, D
Mandolesi, N
Maris, M
Nesti, R
Perrotta, F
Platania, P
Simonetto, A
Sozzi, C
Tauber, J
Valenziano, L
AF Sandri, M.
Villa, F.
Bersanelli, M.
Burigana, C.
Butler, R. C.
D'Arcangelo, O.
Figini, L.
Gregorio, A.
Lawrence, C. R.
Maino, D.
Mandolesi, N.
Maris, M.
Nesti, R.
Perrotta, F.
Platania, P.
Simonetto, A.
Sozzi, C.
Tauber, J.
Valenziano, L.
TI Planck pre-launch status: Low Frequency Instrument optics
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE cosmic microwave background; space vehicles: instruments;
instrumentation: detectors; submillimeter: general; telescopes
ID MICROWAVE BACKGROUND ANISOTROPY; DIPOLE STRAYLIGHT CONTAMINATION;
ANGULAR RESOLUTION; TRADE-OFF
AB We describe the optical design and optimisation of the Low Frequency Instrument (LFI), one of two instruments onboard the Planck satellite, which will survey the cosmic microwave background with unprecedented accuracy. The LFI covers the 30-70 GHz frequency range with an array of cryogenic radiometers. Stringent optical requirements on angular resolution, sidelobes, main beam symmetry, polarization purity, and feed orientation have been achieved. The optimisation process was carried out by assuming an ideal telescope according to the Planck design and by using both physical optics and multi-reflector geometrical theory of diffraction. This extensive study led to the flight design of the feed horns, their characteristics, arrangement, and orientation, while taking into account the opto-mechanical constraints imposed by complex interfaces in the Planck focal surface.
C1 [Sandri, M.; Villa, F.; Burigana, C.; Butler, R. C.; Mandolesi, N.; Valenziano, L.] INAF IASF Bologna, I-40129 Bologna, Italy.
[Bersanelli, M.; Maino, D.] Univ Milan, I-20133 Milan, Italy.
[D'Arcangelo, O.; Figini, L.; Platania, P.; Simonetto, A.; Sozzi, C.] IFP CNR, Milan, Italy.
[Gregorio, A.; Maris, M.] INAF OATs, I-34143 Trieste, Italy.
[Gregorio, A.] Univ Trieste, Dept Phys, I-34127 Trieste, Italy.
[Lawrence, C. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Nesti, R.] INAF, Osservatorio Astrofis Arcetri, I-50125 Florence, Italy.
[Perrotta, F.] SISSA, I-34014 Trieste, Italy.
[Tauber, J.] ESA ESTEC, NL-2200 AG Noordwijk, Netherlands.
RP Sandri, M (reprint author), INAF IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy.
EM sandri@iasfbo.inaf.it; villa@iasfbo.inaf.it;
marco.bersanelli@mi.infn.it; burigana@iasfbo.inaf.it;
butler@iasfbo.inaf.it; darcangelo@ifp.cnr.it; anna.gregorio@ts.infn.it;
Charles.R.Lawrence@jpl.nasa.gov; davide.maino@mi.infn.it;
mandolesi@iasfbo.inaf.it; maris@oats.inaf.it; nesti@arcetri.astro.it;
perrotta@sissa.it; platania@ifp.cnr.it; simonetto@ifp.cnr.it;
sozzi@ifp.cnr.it; jtauber@rssd.esa.int; valenziano@iasfbo.inaf.it
RI Sozzi, Carlo/F-4158-2012; Butler, Reginald/N-4647-2015;
OI Nesti, Renzo/0000-0003-0303-839X; Gregorio, Anna/0000-0003-4028-8785;
Sandri, Maura/0000-0003-4806-5375; Burigana, Carlo/0000-0002-3005-5796;
Villa, Fabrizio/0000-0003-1798-861X; Sozzi, Carlo/0000-0001-8951-0071;
Butler, Reginald/0000-0003-4366-5996; Maris,
Michele/0000-0001-9442-2754; Valenziano, Luca/0000-0002-1170-0104
FU ESA; Italian Space Agency (ASI)
FX Planck is a project of the European Space Agency with instruments funded
by ESA member states, and with special contributions from Denmark and
NASA (USA). The Planck-LFI project is developed by an International
Consortium lead by Italy and involving Canada, Finland, Germany, Norway,
Spain, Switzerland, UK, USA. The Italian contribution to Planck is
supported by the Italian Space Agency (ASI). We wish to thank people of
the Herschel/Planck Project of ESA, ASI, THALES Alenia Space Industries,
and the LFI Consortium that are involved in activities related to
optical simulations. Some of the results in this paper have been derived
using the HEALPix (Gorski, Hivon, and Wandelt 1999). Special thanks to
Denis Dubruel (THALES Alenia Space), for his professional collaboration
in all these years. We warmly thank David Pearson for constructive
comments and suggestions, and for the careful reading of the first
version of this work.
NR 27
TC 15
Z9 15
U1 0
U2 3
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP-OCT
PY 2010
VL 520
AR A7
DI 10.1051/0004-6361/200912891
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 665VQ
UT WOS:000283064200008
ER
PT J
AU Strassmeier, KG
Granzer, T
Kopf, M
Weber, M
Kuker, M
Reegen, P
Rice, JB
Matthews, JM
Kuschnig, R
Rowe, JF
Guenther, DB
Moffat, AFJ
Rucinski, SM
Sasselov, D
Weiss, WW
AF Strassmeier, K. G.
Granzer, T.
Kopf, M.
Weber, M.
Kueker, M.
Reegen, P.
Rice, J. B.
Matthews, J. M.
Kuschnig, R.
Rowe, J. F.
Guenther, D. B.
Moffat, A. F. J.
Rucinski, S. M.
Sasselov, D.
Weiss, W. W.
TI Rotation and magnetic activity of the Hertzsprung-gap giant 31 Comae
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE stars: activity; stars: atmospheres; stars: individual: 31 Comae;
starspots; stars: late-type; stars: rotation
ID PRE-MAIN-SEQUENCE; LATE-TYPE STARS; GENEVA-COPENHAGEN SURVEY;
TIME-SERIES ANALYSIS; X-RAY ACTIVITY; LATE A-TYPE; G-K GIANTS; STELLAR
EVOLUTION; COOL STARS; LUMINOSITY CLASSIFICATION
AB Context. The single rapidly-rotating G0 giant 31 Comae has been a puzzle because of the absence of photometric variability despite its strong chromospheric and coronal emissions. As a Hertzsprung-gap giant, it is expected to be at the stage of rearranging its moment of inertia, hence likely also its dynamo action, which could possibly be linked with its missing photospheric activity.
Aims. Our aim is to detect photospheric activity, obtain the rotation period, and use it for a first Doppler image of the star's surface. Its morphology could be related to the evolutionary status.
Methods. We carried out high-precision, white-light photometry with the MOST satellite, ground-based Stromgren photometry with automated telescopes, and high-resolution optical echelle spectroscopy with the new STELLA robotic facility.
Results. The MOST data reveal, for the first time, light variations with a full amplitude of 5 mmag and an average photometric period of 6.80 +/- 0.06 days. Radial-velocity variations with a full amplitude of 270 ms(-1) and a period of 6.76 +/- 0.02 days were detected from our STELLA spectra, which we also interpret as due to stellar rotation. The two-year constancy of the average radial velocity of +0.10 +/- 0.33 km s(-1) confirms the star's single status, as well as the membership in the cluster Melotte 111. A spectrum synthesis gives T-eff = 5660 +/- 42 K, log g = 3.51 +/- 0.09, and [Fe/H] = -0.15 +/- 0.03, which together with the revised Hipparcos distance, suggests a mass of 2.6 +/- 0.1 M-circle dot and an age of approximate to 540 Myr. The surface lithium abundance is measured to be nearly primordial. A detection of a strong He I absorption line indicates nonradiative heating processes in the atmosphere. Our Doppler images show a large, asymmetric polar spot, cooler than Teff by approximate to 1600 K, and several small low-to-mid latitude features that are warmer by approximate to 300-400 K and are possibly of chromospheric origin. We computed the convective turnover time for 31 Com as a function of depth and found on average tau(C) approximate to 5 days.
Conclusions. 31 Com appears to be just at the onset of rapid magnetic braking and Li dilution because its age almost exactly coincides with the predicted onset of envelope convection. That we recover a big polar starspot despite the Rossby number being larger than unity, and thus no efficient (envelope) dynamo is expected, leads us to conclude that 31 Com still harbors a fossil predominantly poloidal magnetic field. However, the increasing convective envelope may have just started an interface dynamo that now is the source of the warm surface features and the corresponding UV and X-ray emission.
C1 [Strassmeier, K. G.; Granzer, T.; Kopf, M.; Weber, M.; Kueker, M.] AIP, D-14482 Potsdam, Germany.
[Reegen, P.; Kuschnig, R.; Weiss, W. W.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria.
[Rice, J. B.] Brandon Univ, Dept Phys, Brandon, MB R7A 6A9, Canada.
[Matthews, J. M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
[Rowe, J. F.] NASA Ames Res Ctr, Moffett Field, CA 94035 USA.
[Guenther, D. B.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada.
[Moffat, A. F. J.] Univ Montreal CP 6128, Dept Phys, Montreal, PQ H3C 3J7, Canada.
[Rucinski, S. M.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON OM5S 3H4, Canada.
[Sasselov, D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Strassmeier, KG (reprint author), AIP, Sternwarte 16, D-14482 Potsdam, Germany.
EM kstrassmeier@aip.de; reegen@astro.univie.ac.at; rice@BrandonU.ca
FU Natural Sciences and Engineering Research Council (NSERC) Canada;
Canadian Space Agency; Austrian Science Promotion Agency (FFG-MOST);
Austrian Science Funds [FWF-P17580]; FWF; KGS
FX K.G.S. and the AIP coauthors are grateful to the State of Brandenburg
and the German federal ministry for education and research (BMBF) for
their continuous support of the STELLA and APT activities. It is our
pleasure to thank Sydney Barnes and Yong-Cheol Kim for computing the
moment-of-inertia models for us. We particularly thank our anonymous
referee whose comments resulted in a much improved paper. J.B.R.,
J.M.M., D.B.G., A.F.J.M., and S.M.R. are supported by funding from the
Natural Sciences and Engineering Research Council (NSERC) Canada. R.K.
is funded by the Canadian Space Agency. W.W.W. is supported by the
Austrian Science Promotion Agency (FFG-MOST) and the Austrian Science
Funds (FWF-P17580). The APT operation has been supported by grants from
the FWF to M. Breger and KGS. This work has made use of BaSTI web tools,
the MESA code and of the many CDS-Strasbourg services.
NR 120
TC 10
Z9 10
U1 0
U2 0
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 1432-0746
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP-OCT
PY 2010
VL 520
AR A52
DI 10.1051/0004-6361/201015023
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 665VQ
UT WOS:000283064200075
ER
PT J
AU Tauber, JA
Norgaard-Nielsen, HU
Ade, PAR
Parian, JA
Banos, T
Bersanelli, M
Burigana, C
Chamballu, A
de Chambure, D
Christensen, PR
Corre, O
Cozzani, A
Crill, B
Crone, G
D'Arcangelo, O
Daddato, R
Doyle, D
Dubruel, D
Forma, G
Hills, R
Huffenberger, K
Jaffe, AH
Jessen, N
Kletzkine, P
Lamarre, JM
Leahy, JP
Longval, Y
de Maagt, P
Maffei, B
Mandolesi, N
Marti-Canales, J
Martin-Polegre, A
Martin, P
Mendes, L
Murphy, JA
Nielsen, P
Noviello, F
Paquay, M
Peacocke, T
Ponthieu, N
Pontoppidan, K
Ristorcelli, I
Riti, JB
Rolo, L
Rosset, C
Sandri, M
Savini, G
Sudiwala, R
Tristram, M
Valenziano, L
van der Vorst, M
van't Klooster, K
Villa, F
Yurchenko, V
AF Tauber, J. A.
Norgaard-Nielsen, H. U.
Ade, P. A. R.
Parian, J. Amiri
Banos, T.
Bersanelli, M.
Burigana, C.
Chamballu, A.
de Chambure, D.
Christensen, P. R.
Corre, O.
Cozzani, A.
Crill, B.
Crone, G.
D'Arcangelo, O.
Daddato, R.
Doyle, D.
Dubruel, D.
Forma, G.
Hills, R.
Huffenberger, K.
Jaffe, A. H.
Jessen, N.
Kletzkine, P.
Lamarre, J. M.
Leahy, J. P.
Longval, Y.
de Maagt, P.
Maffei, B.
Mandolesi, N.
Marti-Canales, J.
Martin-Polegre, A.
Martin, P.
Mendes, L.
Murphy, J. A.
Nielsen, P.
Noviello, F.
Paquay, M.
Peacocke, T.
Ponthieu, N.
Pontoppidan, K.
Ristorcelli, I.
Riti, J. -B.
Rolo, L.
Rosset, C.
Sandri, M.
Savini, G.
Sudiwala, R.
Tristram, M.
Valenziano, L.
van der Vorst, M.
van't Klooster, K.
Villa, F.
Yurchenko, V.
TI Planck pre-launch status: The optical system
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE cosmic microwave background; space vehicles: instruments;
instrumentation: detectors; instrumentation: polarimeters;
submillimeter: general; telescopes
ID STRAYLIGHT CONTAMINATION; FREQUENCY INSTRUMENT; CRAB-NEBULA;
POLARIZATION; ANISOTROPY; TELESCOPE; RECONSTRUCTION; LFI
AB Planck is a scientific satellite that represents the next milestone in space-based research related to the cosmic microwave background, and in many other astrophysical fields. Planck was launched on 14 May of 2009 and is now operational. The uncertainty in the optical response of its detectors is a key factor allowing Planck to achieve its scientific objectives. More than a decade of analysis and measurements have gone into achieving the required performances. In this paper, we describe the main aspects of the Planck optics that are relevant to science, and the estimated in-flight performance, based on the knowledge available at the time of launch. We also briefly describe the impact of the major systematic effects of optical origin, and the concept of in-flight optical calibration. Detailed discussions of related areas are provided in accompanying papers.
C1 [Tauber, J. A.] European Space Agcy, Res & Sci Support Dpt, Div Astrophys, NL-2201 AZ Noordwijk, Netherlands.
[Norgaard-Nielsen, H. U.; Jessen, N.] Danish Natl Space Ctr, DK-2100 Copenhagen, Denmark.
[Parian, J. Amiri] PhotoCore GmbH, CH-8050 Zurich, Switzerland.
[Banos, T.; Corre, O.; Dubruel, D.; Forma, G.; Martin, P.; Riti, J. -B.] Thales Alenia Space, F-06156 Cannes La Bocca, France.
[Bersanelli, M.] Univ Milan, I-20133 Milan, Italy.
[Burigana, C.; Mandolesi, N.; Sandri, M.; Valenziano, L.; Villa, F.] INAF Ist Astrofis Spaziale & Fis Cosm, I-40129 Bologna, Italy.
[Chamballu, A.; Jaffe, A. H.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England.
[Christensen, P. R.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Cozzani, A.; Crone, G.; Daddato, R.; Doyle, D.; Kletzkine, P.; de Maagt, P.; Marti-Canales, J.; Martin-Polegre, A.; Paquay, M.; Rolo, L.; van der Vorst, M.; van't Klooster, K.] Estec, European Space Agcy, NL-2201 AZ Noordwijk, Netherlands.
[Crill, B.; Huffenberger, K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[D'Arcangelo, O.] IFP CNR, Milan, Italy.
[Hills, R.] Univ Cambridge, Cavendish Lab, Dpt Phys, Cambridge CB3 0HE, England.
[Lamarre, J. M.] LERMA, Observ Paris, F-75014 Paris, France.
[Leahy, J. P.; Maffei, B.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England.
[Mendes, L.] European Space Astron Ctr, European Space Agcy, Planck Sci Off, Madrid 28691, Spain.
[Murphy, J. A.; Peacocke, T.] NUI Maynooth, Maynooth Co, Dpt Expt Phys, Kildare, Ireland.
[Nielsen, P.; Pontoppidan, K.] Ticra, DK-21201 Copenhagen, Denmark.
[Longval, Y.; Noviello, F.; Ponthieu, N.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France.
[Ristorcelli, I.] Univ Toulouse 3, Ctr Etud Spatiale Rayonnements, CESR, F-31038 Toulouse 4, France.
[Ristorcelli, I.] CNRS, F-31038 Toulouse 4, France.
[Rosset, C.] Univ Paris Diderot Paris 7, Lab Astroparticule & Cosmol APC, F-75205 Paris 13, France.
[Rosset, C.] CNRS, F-75205 Paris 13, France.
[Savini, G.] UCL, Opt Sci Lab, Dpt Phys & Astron, London WC1E 6BT, England.
[Ade, P. A. R.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
Univ Paris 11, Lab Accelerateur Lineaire, F-91898 Orsay, France.
[de Chambure, D.] European Space Agcy, F-75015 Paris, France.
RP Tauber, JA (reprint author), European Space Agcy, Res & Sci Support Dpt, Div Astrophys, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands.
EM jtauber@rssd.esa.int
OI Valenziano, Luca/0000-0002-1170-0104; Sandri, Maura/0000-0003-4806-5375;
Huffenberger, Kevin/0000-0001-7109-0099; Burigana,
Carlo/0000-0002-3005-5796; Villa, Fabrizio/0000-0003-1798-861X; Savini,
Giorgio/0000-0003-4449-9416
FU ESA; Scientific Consortium Denmark
FX Planck (http://www.esa.int/Planck) is a project of the European Space
Agency - ESA - with instruments provided by two scientific Consortia
funded by ESA member states (in particular the lead countries: France
and Italy) with contributions from NASA (USA), and telescope reflectors
provided in a collaboration between ESA and a scientific Consortium led
and funded by Denmark.
NR 45
TC 41
Z9 41
U1 0
U2 6
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP-OCT
PY 2010
VL 520
AR A2
DI 10.1051/0004-6361/200912911
PG 22
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 665VQ
UT WOS:000283064200003
ER
PT J
AU Tauber, JA
Mandolesi, N
Puget, JL
Banos, T
Bersanelli, M
Bouchet, FR
Butler, RC
Charra, J
Crone, G
Dodsworth, J
Efstathiou, G
Gispert, R
Guyot, G
Gregorio, A
Juillet, JJ
Lamarre, JM
Laureijs, RJ
Lawrence, CR
Norgaard-Nielsen, HU
Passvogel, T
Reix, JM
Texier, D
Vibert, L
Zacchei, A
Ade, PAR
Aghanim, N
Aja, B
Alippi, E
Aloy, L
Armand, P
Arnaud, M
Arondel, A
Arreola-Villanueva, A
Artal, E
Artina, E
Arts, A
Ashdown, M
Aumont, J
Azzaro, M
Bacchetta, A
Baccigalupi, C
Baker, M
Balasini, M
Balbi, A
Banday, AJ
Barbier, G
Barreiro, RB
Bartelmann, M
Battaglia, P
Battaner, E
Benabed, K
Beney, JL
Beneyton, R
Bennett, K
Benoit, A
Bernard, JP
Bhandari, P
Bhatia, R
Biggi, M
Biggins, R
Billig, G
Blanc, Y
Blavot, H
Bock, JJ
Bonaldi, A
Bond, R
Bonis, J
Borders, J
Borrill, J
Boschini, L
Boulanger, F
Bouvier, J
Bouzit, M
Bowman, R
Breelle, E
Bradshaw, T
Braghin, M
Bremer, M
Brienza, D
Broszkiewicz, D
Burigana, C
Burkhalter, M
Cabella, P
Cafferty, T
Cairola, M
Caminade, S
Camus, P
Cantalupo, CM
Cappellini, B
Cardoso, JF
Carr, R
Catalano, A
Cayon, L
Cesa, M
Chaigneau, M
Challinor, A
Chamballu, A
Chambelland, JP
Charra, M
Chiang, LY
Chlewicki, G
Christensen, PR
Church, S
Ciancietta, E
Cibrario, M
Cizeron, R
Clements, D
Collaudin, B
Colley, JM
Colombi, S
Colombo, A
Colombo, F
Corre, O
Couchot, F
Cougrand, B
Coulais, A
Couzin, P
Crane, B
Crill, B
Crook, M
Crumb, D
Cuttaia, F
Dorl, U
da Silva, P
Daddato, R
Damasio, C
Danese, L
d'Aquino, G
D'Arcangelo, O
Dassas, K
Davies, RD
Davies, W
Davis, RJ
De Bernardis, P
de Chambure, D
de Gasperis, G
De la Fuente, ML
De Paco, P
De Rosa, A
De Troia, G
De Zotti, G
Dehamme, M
Delabrouille, J
Delouis, JM
Desert, FX
di Girolamo, G
Dickinson, C
Doelling, E
Dolag, K
Domken, I
Douspis, M
Doyle, D
Du, S
Dubruel, D
Dufour, C
Dumesnil, C
Dupac, X
Duret, P
Eder, C
Elfving, A
Ensslin, TA
Eng, P
English, K
Eriksen, HK
Estaria, P
Falvella, MC
Ferrari, F
Finelli, F
Fishman, A
Fogliani, S
Foley, S
Fonseca, A
Forma, G
Forni, O
Fosalba, P
Fourmond, JJ
Frailis, M
Franceschet, C
Franceschi, E
Francois, S
Frerking, M
Gomez-Renasco, MF
Gorski, KM
Gaier, TC
Galeotta, S
Ganga, K
Lazaro, JG
Gavila, E
Giard, M
Giardino, G
Gienger, G
Giraud-Heraud, Y
Glorian, JM
Griffin, M
Gruppuso, A
Guglielmi, L
Guichon, D
Guillaume, B
Guillouet, P
Haissinski, J
Hansen, FK
Hardy, J
Harrison, D
Hazell, A
Hechler, M
Heckenauer, V
Heinzer, D
Hell, R
Henrot-Versille, S
Hernandez-Monteagudo, C
Herranz, D
Herreros, JM
Hervier, V
Heske, A
Heurtel, A
Hildebrandt, SR
Hills, R
Hivon, E
Hobson, M
Hollert, D
Holmes, W
Hornstrup, A
Hovest, W
Hoyland, RJ
Huey, G
Huffenberger, KM
Hughes, N
Israelsson, U
Jackson, B
Jaffe, A
Jaffe, TR
Jagemann, T
Jessen, NC
Jewell, J
Jones, W
Juvela, M
Kaplan, J
Karlman, P
Keck, F
Keihanen, E
King, M
Kisner, TS
Kletzkine, P
Kneissl, R
Knoche, J
Knox, L
Koch, T
Krassenburg, M
Kurki-Suonio, H
Lahteenmaki, A
Lagache, G
Lagorio, E
Lami, P
Lande, J
Lange, A
Langlet, F
Lapini, R
Lapolla, M
Lasenby, A
Le Jeune, M
Leahy, JP
Lefebvre, M
Legrand, F
Le Meur, G
Leonardi, R
Leriche, B
Leroy, C
Leutenegger, P
Levin, SM
Lilje, PB
Lindensmith, C
Linden-Vornle, M
Loc, A
Longval, Y
Lubin, PM
Luchik, T
Luthold, I
Macias-Perez, JF
Maciaszek, T
MacTavish, C
Madden, S
Maffei, B
Magneville, C
Maino, D
Mambretti, A
Mansoux, B
Marchioro, D
Maris, M
Marliani, F
Marrucho, JC
Marti-Canales, J
Martinez-Gonzalez, E
Martin-Polegre, A
Martin, P
Marty, C
Marty, W
Masi, S
Massardi, M
Matarrese, S
Matthai, F
Mazzotta, P
McDonald, A
McGrath, P
Mediavilla, A
Meinhold, R
Melin, JB
Melot, F
Mendes, L
Mennella, A
Mervier, C
Meslier, L
Miccolis, M
Miville-Deschenes, MA
Moneti, A
Montet, D
Montier, L
Mora, J
Morgante, G
Morigi, G
Morinaud, G
Morisset, N
Mortlock, D
Mottet, S
Mulder, J
Munshi, D
Murphy, A
Murphy, P
Musi, P
Narbonne, J
Naselsky, P
Nash, A
Nati, F
Natoli, P
Netterfield, B
Newell, J
Nexon, M
Nicolas, C
Nielsen, PH
Ninane, N
Noviello, F
Novikov, D
Novikov, I
O'Dwyer, IJ
Oldeman, P
Olivier, P
Ouchet, L
Oxborrow, CA
Perez-Cuevas, L
Pagan, L
Paine, C
Pajot, F
Paladini, R
Pancher, F
Panh, J
Parks, G
Parnaudeau, P
Partridge, B
Parvin, B
Pascual, JP
Pasian, F
Pearson, DP
Pearson, T
Pecora, M
Perdereau, O
Perotto, L
Perrotta, F
Piacentini, F
Piat, M
Pierpaoli, E
Piersanti, O
Plaige, E
Plaszczynski, S
Platania, P
Pointecouteau, E
Polenta, G
Ponthieu, N
Popa, L
Poulleau, G
Poutanen, T
Prezeau, G
Pradell, L
Prina, M
Prunet, S
Rachen, JP
Rambaud, D
Rame, F
Rasmussen, I
Rautakoski, J
Reach, WT
Rebolo, R
Reinecke, M
Reiter, J
Renault, C
Ricciardi, S
Rideau, P
Riller, T
Ristorcelli, I
Riti, JB
Rocha, G
Roche, Y
Pons, R
Rohlfs, R
Romero, D
Roose, S
Rosset, C
Rouberol, S
Rowan-Robinson, M
Rubino-Martin, JA
Rusconi, P
Rusholme, B
Salama, M
Salerno, E
Sandri, M
Santos, D
Sanz, JL
Sauter, L
Sauvage, F
Savini, G
Schmelzel, M
Schnorhk, A
Schwarz, W
Scott, D
Seiffert, MD
Shellard, P
Shih, C
Sias, M
Silk, JI
Silvestri, R
Sippel, R
Smoot, GF
Starck, JL
Stassi, P
Sternberg, J
Stivoli, F
Stolyarov, V
Stompor, R
Stringhetti, L
Strommen, D
Stute, T
Sudiwala, R
Sugimura, R
Sunyaev, R
Sygnet, JF
Turler, M
Taddei, E
Tallon, J
Tamiatto, C
Taurigna, M
Taylor, D
Terenzi, L
Thuerey, S
Tillis, J
Tofani, G
Toffolatti, L
Tommasi, E
Tomasi, M
Tonazzini, E
Torre, JP
Tosti, S
Touze, F
Tristram, M
Tuovinen, J
Tuttlebee, M
Umana, G
Valenziano, L
Vallee, D
van der Vlis, M
Van Leeuwen, F
Vanel, JC
Van-Tent, B
Varis, J
Vassallo, E
Vescovi, C
Vezzu, F
Vibert, D
Vielva, P
Vierra, J
Villa, F
Vittorio, N
Vuerli, C
Wade, LA
Walker, AR
Wandelt, BD
Watson, C
Werner, D
White, M
White, SDM
Wilkinson, A
Wilson, P
Woodcraft, A
Yoffo, B
Yun, M
Yurchenko, V
Yvon, D
Zhang, B
Zimmermann, O
Zonca, A
Zorita, D
AF Tauber, J. A.
Mandolesi, N.
Puget, J. -L.
Banos, T.
Bersanelli, M.
Bouchet, F. R.
Butler, R. C.
Charra, J.
Crone, G.
Dodsworth, J.
Efstathiou, G.
Gispert, R.
Guyot, G.
Gregorio, A.
Juillet, J. J.
Lamarre, J. -M.
Laureijs, R. J.
Lawrence, C. R.
Norgaard-Nielsen, H. U.
Passvogel, T.
Reix, J. M.
Texier, D.
Vibert, L.
Zacchei, A.
Ade, P. A. R.
Aghanim, N.
Aja, B.
Alippi, E.
Aloy, L.
Armand, P.
Arnaud, M.
Arondel, A.
Arreola-Villanueva, A.
Artal, E.
Artina, E.
Arts, A.
Ashdown, M.
Aumont, J.
Azzaro, M.
Bacchetta, A.
Baccigalupi, C.
Baker, M.
Balasini, M.
Balbi, A.
Banday, A. J.
Barbier, G.
Barreiro, R. B.
Bartelmann, M.
Battaglia, P.
Battaner, E.
Benabed, K.
Beney, J. -L.
Beneyton, R.
Bennett, K.
Benoit, A.
Bernard, J. -P.
Bhandari, P.
Bhatia, R.
Biggi, M.
Biggins, R.
Billig, G.
Blanc, Y.
Blavot, H.
Bock, J. J.
Bonaldi, A.
Bond, R.
Bonis, J.
Borders, J.
Borrill, J.
Boschini, L.
Boulanger, F.
Bouvier, J.
Bouzit, M.
Bowman, R.
Breelle, E.
Bradshaw, T.
Braghin, M.
Bremer, M.
Brienza, D.
Broszkiewicz, D.
Burigana, C.
Burkhalter, M.
Cabella, P.
Cafferty, T.
Cairola, M.
Caminade, S.
Camus, P.
Cantalupo, C. M.
Cappellini, B.
Cardoso, J. -F.
Carr, R.
Catalano, A.
Cayon, L.
Cesa, M.
Chaigneau, M.
Challinor, A.
Chamballu, A.
Chambelland, J. P.
Charra, M.
Chiang, L. -Y.
Chlewicki, G.
Christensen, P. R.
Church, S.
Ciancietta, E.
Cibrario, M.
Cizeron, R.
Clements, D.
Collaudin, B.
Colley, J. -M.
Colombi, S.
Colombo, A.
Colombo, F.
Corre, O.
Couchot, F.
Cougrand, B.
Coulais, A.
Couzin, P.
Crane, B.
Crill, B.
Crook, M.
Crumb, D.
Cuttaia, F.
Doerl, U.
da Silva, P.
Daddato, R.
Damasio, C.
Danese, L.
d'Aquino, G.
D'Arcangelo, O.
Dassas, K.
Davies, R. D.
Davies, W.
Davis, R. J.
De Bernardis, P.
de Chambure, D.
de Gasperis, G.
De la Fuente, M. L.
De Paco, P.
De Rosa, A.
De Troia, G.
De Zotti, G.
Dehamme, M.
Delabrouille, J.
Delouis, J. -M.
Desert, F. -X.
di Girolamo, G.
Dickinson, C.
Doelling, E.
Dolag, K.
Domken, I.
Douspis, M.
Doyle, D.
Du, S.
Dubruel, D.
Dufour, C.
Dumesnil, C.
Dupac, X.
Duret, P.
Eder, C.
Elfving, A.
Ensslin, T. A.
Eng, P.
English, K.
Eriksen, H. K.
Estaria, P.
Falvella, M. C.
Ferrari, F.
Finelli, F.
Fishman, A.
Fogliani, S.
Foley, S.
Fonseca, A.
Forma, G.
Forni, O.
Fosalba, P.
Fourmond, J. -J.
Frailis, M.
Franceschet, C.
Franceschi, E.
Francois, S.
Frerking, M.
Gomez-Renasco, M. F.
Gorski, K. M.
Gaier, T. C.
Galeotta, S.
Ganga, K.
Lazaro, J. Garcia
Gavila, E.
Giard, M.
Giardino, G.
Gienger, G.
Giraud-Heraud, Y.
Glorian, J. -M.
Griffin, M.
Gruppuso, A.
Guglielmi, L.
Guichon, D.
Guillaume, B.
Guillouet, P.
Haissinski, J.
Hansen, F. K.
Hardy, J.
Harrison, D.
Hazell, A.
Hechler, M.
Heckenauer, V.
Heinzer, D.
Hell, R.
Henrot-Versille, S.
Hernandez-Monteagudo, C.
Herranz, D.
Herreros, J. M.
Hervier, V.
Heske, A.
Heurtel, A.
Hildebrandt, S. R.
Hills, R.
Hivon, E.
Hobson, M.
Hollert, D.
Holmes, W.
Hornstrup, A.
Hovest, W.
Hoyland, R. J.
Huey, G.
Huffenberger, K. M.
Hughes, N.
Israelsson, U.
Jackson, B.
Jaffe, A.
Jaffe, T. R.
Jagemann, T.
Jessen, N. C.
Jewell, J.
Jones, W.
Juvela, M.
Kaplan, J.
Karlman, P.
Keck, F.
Keihanen, E.
King, M.
Kisner, T. S.
Kletzkine, P.
Kneissl, R.
Knoche, J.
Knox, L.
Koch, T.
Krassenburg, M.
Kurki-Suonio, H.
Lahteenmaki, A.
Lagache, G.
Lagorio, E.
Lami, P.
Lande, J.
Lange, A.
Langlet, F.
Lapini, R.
Lapolla, M.
Lasenby, A.
Le Jeune, M.
Leahy, J. P.
Lefebvre, M.
Legrand, F.
Le Meur, G.
Leonardi, R.
Leriche, B.
Leroy, C.
Leutenegger, P.
Levin, S. M.
Lilje, P. B.
Lindensmith, C.
Linden-Vornle, M.
Loc, A.
Longval, Y.
Lubin, P. M.
Luchik, T.
Luthold, I.
Macias-Perez, J. F.
Maciaszek, T.
MacTavish, C.
Madden, S.
Maffei, B.
Magneville, C.
Maino, D.
Mambretti, A.
Mansoux, B.
Marchioro, D.
Maris, M.
Marliani, F.
Marrucho, J. -C.
Marti-Canales, J.
Martinez-Gonzalez, E.
Martin-Polegre, A.
Martin, P.
Marty, C.
Marty, W.
Masi, S.
Massardi, M.
Matarrese, S.
Matthai, F.
Mazzotta, P.
McDonald, A.
McGrath, P.
Mediavilla, A.
Meinhold, R.
Melin, J. -B.
Melot, F.
Mendes, L.
Mennella, A.
Mervier, C.
Meslier, L.
Miccolis, M.
Miville-Deschenes, M. -A.
Moneti, A.
Montet, D.
Montier, L.
Mora, J.
Morgante, G.
Morigi, G.
Morinaud, G.
Morisset, N.
Mortlock, D.
Mottet, S.
Mulder, J.
Munshi, D.
Murphy, A.
Murphy, P.
Musi, P.
Narbonne, J.
Naselsky, P.
Nash, A.
Nati, F.
Natoli, P.
Netterfield, B.
Newell, J.
Nexon, M.
Nicolas, C.
Nielsen, P. H.
Ninane, N.
Noviello, F.
Novikov, D.
Novikov, I.
O'Dwyer, I. J.
Oldeman, P.
Olivier, P.
Ouchet, L.
Oxborrow, C. A.
Perez-Cuevas, L.
Pagan, L.
Paine, C.
Pajot, F.
Paladini, R.
Pancher, F.
Panh, J.
Parks, G.
Parnaudeau, P.
Partridge, B.
Parvin, B.
Pascual, J. P.
Pasian, F.
Pearson, D. P.
Pearson, T.
Pecora, M.
Perdereau, O.
Perotto, L.
Perrotta, F.
Piacentini, F.
Piat, M.
Pierpaoli, E.
Piersanti, O.
Plaige, E.
Plaszczynski, S.
Platania, P.
Pointecouteau, E.
Polenta, G.
Ponthieu, N.
Popa, L.
Poulleau, G.
Poutanen, T.
Prezeau, G.
Pradell, L.
Prina, M.
Prunet, S.
Rachen, J. P.
Rambaud, D.
Rame, F.
Rasmussen, I.
Rautakoski, J.
Reach, W. T.
Rebolo, R.
Reinecke, M.
Reiter, J.
Renault, C.
Ricciardi, S.
Rideau, P.
Riller, T.
Ristorcelli, I.
Riti, J. B.
Rocha, G.
Roche, Y.
Pons, R.
Rohlfs, R.
Romero, D.
Roose, S.
Rosset, C.
Rouberol, S.
Rowan-Robinson, M.
Rubino-Martin, J. A.
Rusconi, P.
Rusholme, B.
Salama, M.
Salerno, E.
Sandri, M.
Santos, D.
Sanz, J. L.
Sauter, L.
Sauvage, F.
Savini, G.
Schmelzel, M.
Schnorhk, A.
Schwarz, W.
Scott, D.
Seiffert, M. D.
Shellard, P.
Shih, C.
Sias, M.
Silk, J. I.
Silvestri, R.
Sippel, R.
Smoot, G. F.
Starck, J. -L.
Stassi, P.
Sternberg, J.
Stivoli, F.
Stolyarov, V.
Stompor, R.
Stringhetti, L.
Strommen, D.
Stute, T.
Sudiwala, R.
Sugimura, R.
Sunyaev, R.
Sygnet, J. -F.
Tuerler, M.
Taddei, E.
Tallon, J.
Tamiatto, C.
Taurigna, M.
Taylor, D.
Terenzi, L.
Thuerey, S.
Tillis, J.
Tofani, G.
Toffolatti, L.
Tommasi, E.
Tomasi, M.
Tonazzini, E.
Torre, J. -P.
Tosti, S.
Touze, F.
Tristram, M.
Tuovinen, J.
Tuttlebee, M.
Umana, G.
Valenziano, L.
Vallee, D.
van der Vlis, M.
Van Leeuwen, F.
Vanel, J. -C.
Van-Tent, B.
Varis, J.
Vassallo, E.
Vescovi, C.
Vezzu, F.
Vibert, D.
Vielva, P.
Vierra, J.
Villa, F.
Vittorio, N.
Vuerli, C.
Wade, L. A.
Walker, A. R.
Wandelt, B. D.
Watson, C.
Werner, D.
White, M.
White, S. D. M.
Wilkinson, A.
Wilson, P.
Woodcraft, A.
Yoffo, B.
Yun, M.
Yurchenko, V.
Yvon, D.
Zhang, B.
Zimmermann, O.
Zonca, A.
Zorita, D.
TI Planck pre-launch status: The Planck mission
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE cosmic microwave background; space vehicles: instruments;
instrumentation: detectors; instrumentation: polarimeters;
submillimeter: general; radio continuum: general
ID HIGH-FREQUENCY INSTRUMENT; MICROWAVE BACKGROUND ANISOTROPY; CMB
EXPERIMENTS; CALIBRATION; POLARIZATION; SPACE; HFI; PERFORMANCE; DESIGN;
SYSTEM
AB The European Space Agency's Planck satellite, launched on 14 May 2009, is the third-generation space experiment in the field of cosmic microwave background (CMB) research. It will image the anisotropies of the CMB over the whole sky, with unprecedented sensitivity (Delta T/T similar to 2 x 10(-6)) and angular resolution (similar to 5 arcmin). Planck will provide a major source of information relevant to many fundamental cosmological problems and will test current theories of the early evolution of the Universe and the origin of structure. It will also address a wide range of areas of astrophysical research related to the Milky Way as well as external galaxies and clusters of galaxies. The ability of Planck to measure polarization across a wide frequency range (30-350 GHz), with high precision and accuracy, and over the whole sky, will provide unique insight, not only into specific cosmological questions, but also into the properties of the interstellar medium. This paper is part of a series which describes the technical capabilities of the Planck scientific payload. It is based on the knowledge gathered during the on-ground calibration campaigns of the major subsystems, principally its telescope and its two scientific instruments, and of tests at fully integrated satellite level. It represents the best estimate before launch of the technical performance that the satellite and its payload will achieve in flight. In this paper, we summarise the main elements of the payload performance, which is described in detail in the accompanying papers. In addition, we describe the satellite performance elements which are most relevant for science, and provide an overview of the plans for scientific operations and data analysis.
C1 [Tauber, J. A.; Laureijs, R. J.; Bennett, K.; Bremer, M.; Giardino, G.; Sternberg, J.] ESTEC, European Space Agcy, Div Astrophys, NL-2201 AZ Noordwijk, Netherlands.
[Polenta, G.] ESRIN, Agenzia Spaziale Italiana, Sci Data Ctr, Frascati, Italy.
[Falvella, M. C.; Tommasi, E.] Agenzia Spaziale Italiana, Rome, Italy.
[Sippel, R.; Stute, T.] Astrium GmbH, Friedrichshafen, Germany.
[Broszkiewicz, D.; Cardoso, J. -F.; Catalano, A.; Colley, J. -M.; Delabrouille, J.; Dufour, C.; Ganga, K.; Giraud-Heraud, Y.; Guglielmi, L.; Guillouet, P.; Kaplan, J.; Le Jeune, M.; Piat, M.; Stompor, R.; Vallee, D.; Vanel, J. -C.; Yoffo, B.] Univ Denis Diderot Paris 7, CNRS, UMR7164, Paris, France.
[Baccigalupi, C.; Danese, L.; Perrotta, F.] SISSA ISAS, Astrophys Sect, Trieste, Italy.
[Ade, P. A. R.; Griffin, M.; Sudiwala, R.; Woodcraft, A.] Cardiff Univ, Dept Phys & Astron, Cardiff, Wales.
[Arnaud, M.] IrfU SAp, CEA Saclay, Gif Sur Yvette, France.
[Magneville, C.; Melin, J. -B.; Starck, J. -L.; Yvon, D.] IrfU SPP, CEA Saclay, Gif Sur Yvette, France.
[Aumont, J.] Ctr Etud Spatiale Rayonnements, UMR 5187, Toulouse, France.
[Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway.
[Domken, I.; Ninane, N.; Roose, S.] Ctr Spatial Liege, Angleur, Belgium.
[Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Glorian, J. -M.; Lande, J.; Marty, C.; Marty, W.; Montier, L.; Narbonne, J.; Nexon, M.; Pointecouteau, E.; Rambaud, D.; Ristorcelli, I.; Pons, R.] CNRS Univ Toulouse, CESR, Toulouse, France.
[Bond, R.; Netterfield, B.] Univ Toronto, CITA, Toronto, ON, Canada.
[Blanc, Y.; Maciaszek, T.; Panh, J.; Pradell, L.] Ctr Spatial Toulouse, CNES, Toulouse, France.
[Salerno, E.; Tonazzini, E.] CNR ISTI, Area Ric, Pisa, Italy.
Univ Politecn Cataluna, Dept Teoria Senyal & Comunicac, Barcelona, Spain.
[Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain.
[Aja, B.; Artal, E.; De la Fuente, M. L.; Mediavilla, A.; Pascual, J. P.] Univ Cantabria, Dept Ingn Comunicac, E-39005 Santander, Spain.
[Scott, D.; Walker, A. R.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada.
[Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA USA.
[Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland.
[Jones, W.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Cayon, L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA.
[Church, S.] Standford Univ, Dept Phys, Stanford, CA USA.
[Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[Leonardi, R.; Lubin, P. M.; Meinhold, R.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Silk, J. I.] Univ Oxford, Dept Phys, Oxford, England.
[White, M.] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA.
[Matarrese, S.] Univ Padua, Dipartimento Fis G Galilei, Padua, Italy.
[Bersanelli, M.; Cappellini, B.; Franceschet, C.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Milan, Italy.
[Balbi, A.; Cabella, P.; de Gasperis, G.; De Troia, G.; Mazzotta, P.; Natoli, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy.
[Brienza, D.; De Bernardis, P.; Masi, S.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Norgaard-Nielsen, H. U.; Hornstrup, A.; Jessen, N. C.; Oxborrow, C. A.] DTU Space, Natl Space Inst, Copenhagen, Denmark.
[Crone, G.; Passvogel, T.; Aloy, L.; Arts, A.; Baker, M.; Braghin, M.; Colombo, A.; Daddato, R.; Damasio, C.; d'Aquino, G.; de Chambure, D.; Doyle, D.; Elfving, A.; Estaria, P.; Guillaume, B.; Heske, A.; Jackson, B.; Kletzkine, P.; Krassenburg, M.; Luthold, I.; Madden, S.; Marliani, F.; Marti-Canales, J.; Martin-Polegre, A.; Oldeman, P.; Olivier, P.; Perez-Cuevas, L.; Piersanti, O.; Rasmussen, I.; Rautakoski, J.; Schnorhk, A.; Thuerey, S.; van der Vlis, M.] Estec, European Space Agcy, Herschel Planck Project, NL-2201 AZ Noordwijk, Netherlands.
[Dodsworth, J.; Biggins, R.; Billig, G.; di Girolamo, G.; Doelling, E.; Foley, S.; Gienger, G.; Hechler, M.; Heinzer, D.; Keck, F.; Tuttlebee, M.; Vassallo, E.; Watson, C.; Werner, D.] ESOC, European Space Agcy, Herschel Planck Project, Darmstadt, Germany.
[Texier, D.; Carr, R.; Dupac, X.; Lazaro, J. Garcia; Jagemann, T.; Mendes, L.; Taylor, D.] Planck Sci Off ESAC, European Space Agcy, Madrid, Spain.
[Azzaro, M.] Univ Granada, Granada, Spain.
[Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA.
[Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland.
[Chamballu, A.; Clements, D.; Jaffe, A.; MacTavish, C.; Novikov, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London, England.
[Tofani, G.] INAF Arcetri Astrophys Observ, Florence, Italy.
[Mandolesi, N.; Butler, R. C.; Burigana, C.; Cuttaia, F.; De Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Morgante, G.; Morigi, G.; Sandri, M.; Stringhetti, L.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF Ist Astrofis Spaziale & Fis Cosm, Bologna, Italy.
[Zacchei, A.; Fogliani, S.; Frailis, M.; Maris, M.; Pasian, F.; Vuerli, C.] INAF Osservatorio Astronom Trieste, Trieste, Italy.
[Umana, G.] INAF, Osservatorio Astrofis Catania, Catania, Italy.
[Galeotta, S.; Zonca, A.] INAF IASF Milano, Milan, Italy.
[Bonaldi, A.; De Zotti, G.; Massardi, M.] INAF Osservatorio Astronom Padova, Padua, Italy.
[Reach, W. T.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA.
[Bouchet, F. R.; Benabed, K.; Beneyton, R.; Colley, J. -M.; Colombi, S.; da Silva, P.; Delouis, J. -M.; Hivon, E.; Legrand, F.; Moneti, A.; Mottet, S.; Parnaudeau, P.; Prunet, S.; Rouberol, S.; Sauter, L.; Sygnet, J. -F.; Van-Tent, B.; Vibert, D.] Univ Paris 06, CNRS, Inst Astrophys Paris, Paris, France.
[Bouchet, F. R.; Benabed, K.; Beneyton, R.; Colley, J. -M.; Colombi, S.; da Silva, P.; Delouis, J. -M.; Hivon, E.; Legrand, F.; Moneti, A.; Mottet, S.; Parnaudeau, P.; Prunet, S.; Rouberol, S.; Sauter, L.; Sygnet, J. -F.; Van-Tent, B.; Vibert, D.] Univ Paris 06, UPMC, Paris, France.
[Puget, J. -L.; Charra, J.; Gispert, R.; Guyot, G.; Vibert, L.; Aghanim, N.; Arondel, A.; Blavot, H.; Boulanger, F.; Bouzit, M.; Caminade, S.; Chaigneau, M.; Charra, M.; Cougrand, B.; Crane, B.; Dassas, K.; Douspis, M.; Dumesnil, C.; Duret, P.; Eng, P.; Fourmond, J. -J.; Francois, S.; Heckenauer, V.; Hervier, V.; Lagache, G.; Lami, P.; Langlet, F.; Lefebvre, M.; Leriche, B.; Leroy, C.; Longval, Y.; Mervier, C.; Meslier, L.; Miville-Deschenes, M. -A.; Morinaud, G.; Nicolas, C.; Noviello, F.; Pajot, F.; Ponthieu, N.; Poulleau, G.; Tamiatto, C.; Torre, J. -P.; Tosti, S.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France.
[Camus, P.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France.
[Popa, L.] Inst Space Sci, Bucharest, Romania.
[Chiang, L. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan.
[Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway.
[Gomez-Renasco, M. F.; Herreros, J. M.; Hildebrandt, S. R.; Hoyland, R. J.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain.
[Barreiro, R. B.; Herranz, D.; Martinez-Gonzalez, E.; Sanz, J. L.; Vielva, P.] CSIC Univ Cantabria, Inst Fis Cantabria, Santander, Spain.
[Morisset, N.; Rohlfs, R.; Tuerler, M.] Univ Geneva, ISDC Data Ctr Astrophys, Versoix, Switzerland.
[D'Arcangelo, O.; Platania, P.] CNR, Ist Fis Plasma, I-20133 Milan, Italy.
[Lawrence, C. R.; Arreola-Villanueva, A.; Bhandari, P.; Bhatia, R.; Bock, J. J.; Borders, J.; Bowman, R.; Cafferty, T.; Crill, B.; Crumb, D.; English, K.; Fishman, A.; Fonseca, A.; Frerking, M.; Gorski, K. M.; Gaier, T. C.; Hardy, J.; Hollert, D.; Holmes, W.; Huey, G.; Israelsson, U.; Jewell, J.; Karlman, P.; King, M.; Koch, T.; Lange, A.; Levin, S. M.; Lindensmith, C.; Loc, A.; Luchik, T.; McGrath, P.; Mora, J.; Mulder, J.; Murphy, P.; Nash, A.; Newell, J.; O'Dwyer, I. J.; Paine, C.; Parks, G.; Parvin, B.; Pearson, D. P.; Pearson, T.; Prezeau, G.; Prina, M.; Reiter, J.; Rocha, G.; Romero, D.; Salama, M.; Schmelzel, M.; Schwarz, W.; Seiffert, M. D.; Shih, C.; Strommen, D.; Sugimura, R.; Tallon, J.; Tillis, J.; Vierra, J.; Wade, L. A.; Wilson, P.; Yun, M.; Zhang, B.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Davies, R. D.; Davis, R. J.; Dickinson, C.; Jaffe, T. R.; Leahy, J. P.; Maffei, B.; Wilkinson, A.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester, Lancs, England.
[Beney, J. -L.; Cizeron, R.; Couchot, F.; Dehamme, M.; Du, S.; Eder, C.; Haissinski, J.; Henrot-Versille, S.; Heurtel, A.; Le Meur, G.; Mansoux, B.; Marrucho, J. -C.; Perdereau, O.; Plaige, E.; Plaszczynski, S.; Rosset, C.; Taurigna, M.; Touze, F.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, Accelerateur Lineaire Lab, F-91405 Orsay, France.
[Barbier, G.; Benoit, A.; Bouvier, J.; Desert, F. -X.; Lagorio, E.; Pancher, F.; Vescovi, C.; Vezzu, F.; Zimmermann, O.] CNRS, UMR 5571, Lab Astrophys Grenoble, Grenoble, France.
[Cantalupo, C. M.; Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Lamarre, J. -M.; Coulais, A.] CNRS, LERMA, Observ Paris, Paris, France.
[Banday, A. J.; Bartelmann, M.; Doerl, U.; Dolag, K.; Ensslin, T. A.; Hell, R.; Hernandez-Monteagudo, C.; Hovest, W.; Kneissl, R.; Knoche, J.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany.
[Lahteenmaki, A.; McDonald, A.; Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala, Finland.
[Tuovinen, J.; Varis, J.] VTT Informat Technol, MilliLab, Espoo, Finland.
[Murphy, A.; Yurchenko, V.] Natl Univ Ireland, Dept Expt Phys, Dublin, Ireland.
[Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Juvela, M.] Univ Helsinki, Observ Tahtitorninmaki, Helsinki, Finland.
[Burkhalter, M.; Davies, W.] Oerlikon Space, Zurich, Switzerland.
[Biggi, M.; Lapini, R.] Officine Pasquali, Florence, Italy.
[Savini, G.] UCL, Opt Sci Lab, London, England.
[Hazell, A.] Estec, Res & Sci Support Dept, ESA, NL-2201 AZ Noordwijk, Netherlands.
[Bradshaw, T.; Crook, M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Zorita, D.] Sener Ingn Sistemas SA, C Severo Ochoa, Tres Cantos, Spain.
[Ricciardi, S.; Stivoli, F.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Paladini, R.] Spitzer Sci Ctr, Pasadena, CA USA.
[De Paco, P.] Univ Autonoma Barcelona, Telecommun & Syst Engn Dept, E-08193 Barcelona, Spain.
[Banos, T.; Juillet, J. J.; Reix, J. M.; Armand, P.; Chambelland, J. P.; Collaudin, B.; Corre, O.; Couzin, P.; Dubruel, D.; Forma, G.; Gavila, E.; Guichon, D.; Martin, P.; Montet, D.; Ouchet, L.; Rideau, P.; Riti, J. B.; Roche, Y.; Sauvage, F.] Thales Alenia Space France, Cannes La Bocca, France.
[Bacchetta, A.; Cairola, M.; Cesa, M.; Chlewicki, G.; Ciancietta, E.; Cibrario, M.; Musi, P.; Rame, F.; Sias, M.] Thales Alenia Space Italia, Turin, Italy.
[Alippi, E.; Artina, E.; Balasini, M.; Battaglia, P.; Boschini, L.; Colombo, F.; Ferrari, F.; Lapolla, M.; Leutenegger, P.; Mambretti, A.; Marchioro, D.; Miccolis, M.; Pagan, L.; Pecora, M.; Rusconi, P.; Silvestri, R.; Taddei, E.] Thales Alenia Space Italia, Milan, Italy.
[Nielsen, P. H.] TICRA, Copenhagen, Denmark.
[Linden-Vornle, M.] Tycho Brahe Planetarium, Copenhagen, Denmark.
[Fosalba, P.] Univ Barcelona, ICE CSIC, Cerdanyola Del Valles, Barcelona, Spain.
[Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Dept, Berkeley, CA 94720 USA.
[Ashdown, M.; Hills, R.; Hobson, M.; Lasenby, A.; Shellard, P.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England.
[Efstathiou, G.; Challinor, A.; Harrison, D.; Mortlock, D.; Munshi, D.; Stolyarov, V.; Van Leeuwen, F.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England.
[Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor Cosmos, Granada, Spain.
[Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA.
[Gregorio, A.; Bonis, J.] Univ Trieste, Dept Phys, Trieste, Italy.
[Hughes, N.] Ylinen Elect Ltd, Kauniainen, Finland.
[Bartelmann, M.] Univ Heidelberg, Inst Theoret Astrophys, Zentrum Astronom, D-6900 Heidelberg, Germany.
[Macias-Perez, J. F.; Melot, F.; Perotto, L.; Renault, C.; Santos, D.; Stassi, P.] Univ Grenoble 1, IN2P3, CNRS, Inst Natl Polytech Grenoble,LPSC, F-38026 Grenoble, France.
RP Tauber, JA (reprint author), ESTEC, European Space Agcy, Div Astrophys, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands.
EM jtauber@rssd.esa.int
RI Bouchet, Francois/B-5202-2014; van Leeuwen, Floor/D-4586-2011;
Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Pascual,
Juan Pablo/K-5066-2014; Toffolatti, Luigi/K-5070-2014; Starck,
Jean-Luc/D-9467-2011; Juvela, Mika/H-6131-2011; Lilje, Per/A-2699-2012;
Salerno, Emanuele/A-2137-2010; de Gasperis, Giancarlo/C-8534-2012;
Gregorio, Anna/J-1632-2012; Pradell, Lluis/F-8150-2013; Bartelmann,
Matthias/A-5336-2014; Fosalba Vela, Pablo/I-5515-2016; Aja,
Beatriz/H-5573-2015; Nati, Federico/I-4469-2016; popa,
lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Novikov,
Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta,
Pasquale/B-1225-2016; Collaudin, Bernard/H-7149-2015; Butler,
Reginald/N-4647-2015; Herranz, Diego/K-9143-2014; Battaner,
Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon,
Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; de la
Fuente, Luisa/J-5142-2012; Artal, Eduardo/H-5546-2015; White,
Martin/I-3880-2015; Pearson, Timothy/N-2376-2015; Gruppuso,
Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi,
Maurizio/I-1234-2016
OI Vielva, Patricio/0000-0003-0051-272X; Pascual, Juan
Pablo/0000-0003-2123-0502; Toffolatti, Luigi/0000-0003-2645-7386;
Starck, Jean-Luc/0000-0003-2177-7794; Juvela, Mika/0000-0002-5809-4834;
Salerno, Emanuele/0000-0002-3433-3634; de Gasperis,
Giancarlo/0000-0003-2899-2171; Pradell, Lluis/0000-0003-4026-226X;
Fonseca, Ana/0000-0001-9900-7015; Scott, Douglas/0000-0002-6878-9840;
Masi, Silvia/0000-0001-5105-1439; de Bernardis,
Paolo/0000-0001-6547-6446; Vuerli, Claudio/0000-0002-9640-8785; Forni,
Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412;
Maris, Michele/0000-0001-9442-2754; Franceschi,
Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Aja,
Beatriz/0000-0002-4229-2334; Nati, Federico/0000-0002-8307-5088;
Piacentini, Francesco/0000-0002-5444-9327; Stolyarov,
Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748;
Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Polenta,
Gianluca/0000-0003-4067-9196; Pierpaoli, Elena/0000-0002-7957-8993;
Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733;
Lilje, Per/0000-0003-4324-7794; Bowman, Robert/0000-0002-2114-1713;
Savini, Giorgio/0000-0003-4449-9416; Galeotta,
Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Reach,
William/0000-0001-8362-4094; Burigana, Carlo/0000-0002-3005-5796;
Frailis, Marco/0000-0002-7400-2135; de Paco, Pedro/0000-0002-7628-7189;
Bouchet, Francois/0000-0002-8051-2924; Collaudin,
Bernard/0000-0003-0114-3014; Ricciardi, Sara/0000-0002-3807-4043; Villa,
Fabrizio/0000-0003-1798-861X; silk, joe/0000-0002-1566-8148;
Stringhetti, Luca/0000-0002-3961-9068; Pasian,
Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269;
Finelli, Fabio/0000-0002-6694-3269; Gregorio, Anna/0000-0003-4028-8785;
Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375;
Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger,
Kevin/0000-0001-7109-0099; Herranz, Diego/0000-0003-4540-1417; Barreiro,
Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez,
Enrique/0000-0002-0179-8590; de la Fuente, Luisa/0000-0003-1403-1660;
Artal, Eduardo/0000-0002-2569-1894; White, Martin/0000-0001-9912-5070;
Pearson, Timothy/0000-0001-5213-6231; Gruppuso,
Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063;
Tomasi, Maurizio/0000-0002-1448-6131
FU NASA; Danish National Research Council; European Space Agency - ESA
FX Planck is too large a project to allow full acknowledgement of all
contributions by individuals, institutions, industries, and funding
agencies. The main entities involved in the mission are as follows. The
European Space Agency (ESA) manages the project and funds the
development of the satellite, its launch, and operations. ESA's prime
industrial contractor for Planck is Thales Alenia Space (Cannes,
France). Industry from all over Europe has contributed to the
development of Planck. Specially notable contributions to the
development are due to Thales Alenia Spazio (Italy) for the Service
Module, Astrium (Friedrichshafen, Germany) for the Planck reflectors,
and Oerlikon Space (Zurich, Switzerland) for the payload structures.
Much of the most challenging cryogenic and optical testing has been
carried out at the Centre Spatial de Liege in Belgium and on the
premises of Thales Alenia Space in Cannes. Two Consortia, comprising
around 50 scientific institutes within Europe and the US, and funded by
agencies from the participating countries, have developed the scientific
instruments LFI and HFI, and delivered them to ESA (see also Appendix
A). The Consortia are also responsible for scientific operation of their
respective instruments and processing the acquired data. The Consortia
are led by the Principal Investigators: J.-L. Puget in France of HFI
(funded principally via CNES) and N. Mandolesi in Italy of LFI (funded
principally via ASI). NASA has funded the US Planck Project, based at
JPL and involving scientists at many US institutions, which has
contributed very significantly to the efforts of these two Consortia. A
Consortium of Danish institutes (DK-Planck), funded by the Danish
National Research Council, has participated with ESA in a joint
development of the two reflectors for the Planck telescope. The author
list for this paper has been selected by the Planck Science Team, and is
composed of individuals from all of the above entities who have made
multi-year contributions to the development of the mission. It does not
pretend to be inclusive of all contributions.; Planck
(http://www.esa.int/Planck) is a project of the European Space Agency -
ESA - with instruments provided by two scientific Consortia funded by
ESA member states (in particular the lead countries: France and Italy)
with contributions from NASA (USA), and telescope reflectors provided in
a collaboration between ESA and a scientific Consortium led and funded
by Denmark.
NR 44
TC 196
Z9 197
U1 0
U2 40
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP-OCT
PY 2010
VL 520
AR A1
DI 10.1051/0004-6361/200912983
PG 22
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 665VQ
UT WOS:000283064200002
ER
PT J
AU Villa, F
Terenzi, L
Sandri, M
Meinhold, P
Poutanen, T
Battaglia, P
Franceschet, C
Hughes, N
Laaninen, M
Lapolla, P
Bersanelli, M
Butler, RC
Cuttaia, F
D'Arcangelo, O
Frailis, M
Franceschi, E
Galeotta, S
Gregorio, A
Leonardi, R
Lowe, SR
Mandolesi, N
Maris, M
Mendes, L
Mennella, A
Morgante, G
Stringhetti, L
Tomasi, M
Valenziano, L
Zacchei, A
Zonca, A
Aja, B
Artal, E
Balasini, M
Bernardino, T
Blackhurst, E
Boschini, L
Cappellini, B
Cavaliere, F
Colin, A
Colombo, F
Davis, RJ
De La Fuente, L
Edgeley, J
Gaier, T
Galtress, A
Hoyland, R
Jukkala, P
Kettle, D
Kilpia, VH
Lawrence, CR
Lawson, D
Leahy, JP
Leutenegger, P
Levin, S
Maino, D
Malaspina, M
Mediavilla, A
Miccolis, M
Pagan, L
Pascual, JP
Pasian, F
Pecora, M
Pospieszalski, M
Roddis, N
Salmon, MJ
Seiffert, M
Silvestri, R
Simonetto, A
Sjoman, P
Sozzi, C
Tuovinen, J
Varis, J
Wilkinson, A
Winder, F
AF Villa, F.
Terenzi, L.
Sandri, M.
Meinhold, P.
Poutanen, T.
Battaglia, P.
Franceschet, C.
Hughes, N.
Laaninen, M.
Lapolla, P.
Bersanelli, M.
Butler, R. C.
Cuttaia, F.
D'Arcangelo, O.
Frailis, M.
Franceschi, E.
Galeotta, S.
Gregorio, A.
Leonardi, R.
Lowe, S. R.
Mandolesi, N.
Maris, M.
Mendes, L.
Mennella, A.
Morgante, G.
Stringhetti, L.
Tomasi, M.
Valenziano, L.
Zacchei, A.
Zonca, A.
Aja, B.
Artal, E.
Balasini, M.
Bernardino, T.
Blackhurst, E.
Boschini, L.
Cappellini, B.
Cavaliere, F.
Colin, A.
Colombo, F.
Davis, R. J.
De La Fuente, L.
Edgeley, J.
Gaier, T.
Galtress, A.
Hoyland, R.
Jukkala, P.
Kettle, D.
Kilpia, V. -H.
Lawrence, C. R.
Lawson, D.
Leahy, J. P.
Leutenegger, P.
Levin, S.
Maino, D.
Malaspina, M.
Mediavilla, A.
Miccolis, M.
Pagan, L.
Pascual, J. P.
Pasian, F.
Pecora, M.
Pospieszalski, M.
Roddis, N.
Salmon, M. J.
Seiffert, M.
Silvestri, R.
Simonetto, A.
Sjoman, P.
Sozzi, C.
Tuovinen, J.
Varis, J.
Wilkinson, A.
Winder, F.
TI Planck pre-launch status: Calibration of the Low Frequency Instrument
flight model radiometers
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE cosmic microwave background; space vehicles: instruments;
instrumentation: detectors; techniques: miscellaneous
AB The Low Frequency Instrument (LFI) on-board the ESA Planck satellite carries eleven radiometer subsystems, called radiometer chain assemblies (RCAs), each composed of a pair of pseudo-correlation receivers. We describe the on-ground calibration campaign performed to qualify the flight model RCAs and to measure their pre-launch performances. Each RCA was calibrated in a dedicated flight-like cryogenic environment with the radiometer front-end cooled to 20 K and the back-end at 300 K, and with an external input load cooled to 4 K. A matched load simulating a blackbody at different temperatures was placed in front of the sky horn to derive basic radiometer properties such as noise temperature, gain, and noise performance, e. g. 1/f noise. The spectral response of each detector was measured as was their susceptibility to thermal variation. All eleven LFI RCAs were calibrated. Instrumental parameters measured in these tests, such as noise temperature, bandwidth, radiometer isolation, and linearity, provide essential inputs to the Planck-LFI data analysis.
C1 [Villa, F.; Terenzi, L.; Sandri, M.; Butler, R. C.; Cuttaia, F.; Franceschi, E.; Mandolesi, N.; Morgante, G.; Stringhetti, L.; Valenziano, L.; Malaspina, M.] INAF Ist Astrofis Spaziale & Fis Cosm, I-40129 Bologna, Italy.
[Meinhold, P.; Leonardi, R.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland.
[Poutanen, T.] Helsinki Inst Phys, Helsinki 00014, Finland.
[Poutanen, T.] Helsinki Univ Technol, Metsahovi Radio Observ, Kylmala 02540, Finland.
[Battaglia, P.; Lapolla, P.; Balasini, M.; Boschini, L.; Colombo, F.; Leutenegger, P.; Miccolis, M.; Pagan, L.; Pecora, M.; Silvestri, R.] Thales Alenia Space Italia SpA, I-20090 Milan, Italy.
[Franceschet, C.; Bersanelli, M.; Mennella, A.; Tomasi, M.; Cavaliere, F.; Maino, D.] Univ Milan, I-20133 Milan, Italy.
[Hughes, N.; Laaninen, M.; Jukkala, P.; Kilpia, V. -H.; Sjoman, P.] DA Design Oy Aka Ylinen Elect, Jokioinen 31600, Finland.
[D'Arcangelo, O.; Simonetto, A.; Sozzi, C.] IFP CNR, I-20125 Milan, Italy.
[Frailis, M.; Galeotta, S.; Maris, M.; Zacchei, A.; Pasian, F.] INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy.
[Gregorio, A.] Univ Trieste, Dept Phys, I-34127 Trieste, Italy.
[Lowe, S. R.; Blackhurst, E.; Davis, R. J.; Edgeley, J.; Galtress, A.; Kettle, D.; Lawson, D.; Leahy, J. P.; Roddis, N.; Wilkinson, A.; Winder, F.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England.
[Mendes, L.] ESAC, European Space Agcy, Planck Sci Off, Madrid 28691, Spain.
[Zonca, A.; Cappellini, B.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy.
[Aja, B.; Artal, E.; De La Fuente, L.; Mediavilla, A.; Pascual, J. P.] Univ Cantabria, Dep Ingn Comunicac, E-39005 Santander, Spain.
[Bernardino, T.; Colin, A.; Lawrence, C. R.; Levin, S.; Salmon, M. J.] Inst Fis Cantabria CSIC UC, Santander 39005, Spain.
[Gaier, T.; Seiffert, M.] Jet Prop Lab, Pasadena, CA 91109 USA.
[Hoyland, R.] Inst Astrofis Canarias, San Cristobal la Laguna 38205, Tenerife, Spain.
[Pospieszalski, M.] Univ Virginia, Natl Radio Astron Observ, Charlottesville, VA USA.
[Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland.
RP Villa, F (reprint author), INAF Ist Astrofis Spaziale & Fis Cosm, Via P Gobetti 101, I-40129 Bologna, Italy.
EM villa@iasfbo.inaf.it
RI Sozzi, Carlo/F-4158-2012; Pascual, Juan Pablo/K-5066-2014; de la Fuente,
Luisa/J-5142-2012; Artal, Eduardo/H-5546-2015; Tomasi,
Maurizio/I-1234-2016; Aja, Beatriz/H-5573-2015; Butler,
Reginald/N-4647-2015;
OI Valenziano, Luca/0000-0002-1170-0104; Sozzi, Carlo/0000-0001-8951-0071;
Pascual, Juan Pablo/0000-0003-2123-0502; de la Fuente,
Luisa/0000-0003-1403-1660; Artal, Eduardo/0000-0002-2569-1894; Tomasi,
Maurizio/0000-0002-1448-6131; Aja, Beatriz/0000-0002-4229-2334; Zonca,
Andrea/0000-0001-6841-1058; Morgante, Gianluca/0000-0001-9234-7412;
Maris, Michele/0000-0001-9442-2754; Franceschi,
Enrico/0000-0002-0585-6591; Lowe, Stuart/0000-0002-2975-9032;
Stringhetti, Luca/0000-0002-3961-9068; Pasian,
Fabio/0000-0002-4869-3227; Gregorio, Anna/0000-0003-4028-8785; Butler,
Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375;
Cuttaia, Francesco/0000-0001-6608-5017; Frailis,
Marco/0000-0002-7400-2135; Villa, Fabrizio/0000-0003-1798-861X; TERENZI,
LUCA/0000-0001-9915-6379; Zacchei, Andrea/0000-0003-0396-1192; Galeotta,
Samuele/0000-0002-3748-5115
FU ESA; Italian Space Agency (ASI); Finnish Funding Agency for Technology
and Innovation (Tekes); Academy of Finland [205800, 214598, 121703,
121962]; Waldemar von Frenckells stiftelse; Magnus Ehrnrooth Foundation;
Vaisala Foundation; Ministerio de Ciencia e Innovacion
[ESP2004-07067-C03-01, AYA2007-68058-C03-02]
FX Planck (http://www.esa.int/Planck) is a project of the European Space
Agency - ESA - with instruments provided by two scientific Consortia
funded by ESA member states (in particular the lead countries: France
and Italy) with contributions from NASA (USA), and telescope reflectors
provided in a collaboration between ESA and a scientific Consortium led
and funded by Denmark.; Planck is a project of the European Space Agency
with instruments funded by ESA member states, and with special
contributions from Denmark and NASA (USA). The Planck-LFI project is
developed by an International Consortium lead by Italy and involving
Canada, Finland, Germany, Norway, Spain, Switzerland, UK, USA. The
Italian contribution to Planck is supported by the Italian Space Agency
(ASI). In Finland, the Planck LFI 70 GHz work was supported by the
Finnish Funding Agency for Technology and Innovation (Tekes) T.P.'s work
was supported in part by the Academy of Finland grants 205800, 214598,
121703, and 121962. T. P. thank Waldemar von Frenckells stiftelse,
Magnus Ehrnrooth Foundation, and Vaisala Foundation for financial
support. The Spanish participation is funded by Ministerio de Ciencia e
Innovacion through the projects ESP2004-07067-C03-01 and
AYA2007-68058-C03-02.
NR 22
TC 9
Z9 9
U1 0
U2 6
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP-OCT
PY 2010
VL 520
AR A6
DI 10.1051/0004-6361/200912860
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 665VQ
UT WOS:000283064200007
ER
PT J
AU Evans, PA
Willingale, R
Osborne, JP
O'Brien, PT
Page, KL
Markwardt, CB
Barthelmy, SD
Beardmore, AP
Burrows, DN
Pagani, C
Starling, RLC
Gehrels, N
Romano, P
AF Evans, P. A.
Willingale, R.
Osborne, J. P.
O'Brien, P. T.
Page, K. L.
Markwardt, C. B.
Barthelmy, S. D.
Beardmore, A. P.
Burrows, D. N.
Pagani, C.
Starling, R. L. C.
Gehrels, N.
Romano, P.
TI The Swift Burst Analyser I. BAT and XRT spectral and flux evolution of
gamma ray bursts
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE gamma-ray burst: general; methods: data analysis; catalogs
ID AFTERGLOWS; TELESCOPE; EMISSION; MISSION; GRBS
AB Context. Gamma ray burst models predict the broadband spectral evolution and the temporal evolution of the energy flux. In contrast, standard data analysis tools and data repositories provide count-rate data, or use single flux conversion factors for all of the data, neglecting spectral evolution.
Aims. We produce Swift BAT and XRT light curves in flux units, where the spectral evolution is accounted for.
Methods. We have developed software to use the hardness ratio information to track spectral evolution of GRBs, and thus to convert the count-rate light curves from the BAT and XRT instruments on Swift into accurate, evolution-aware flux light curves.
Results. The Swift Burst Analyser website(star) contains BAT, XRT and combined BAT-XRT flux light curves in three energy regimes for all GRBs observed by the Swift satellite. These light curves are automatically built and updated when data become available, are presented in graphical and plain-text format, and are available for download and use in research.
C1 [Evans, P. A.; Willingale, R.; Osborne, J. P.; O'Brien, P. T.; Page, K. L.; Beardmore, A. P.; Pagani, C.; Starling, R. L. C.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England.
[Markwardt, C. B.; Barthelmy, S. D.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
[Markwardt, C. B.] CRESST, Columbia, MD 21044 USA.
[Markwardt, C. B.] Univ Maryland Coll Pk, Dept Astron, College Pk, MD 20742 USA.
[Burrows, D. N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Romano, P.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-90146 Palermo, Italy.
RP Evans, PA (reprint author), Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England.
EM pae9@star.le.ac.uk
RI Barthelmy, Scott/D-2943-2012; Gehrels, Neil/D-2971-2012
FU NASA [NAS5-00136]; STFC
FX This work made use of data supplied by the UK Swift Science Data Centre
at the University of Leicester. P. A. E., J.P.O., K. L. P., A. P. B., C.
P. and R. L. C. S. acknowledge STFC support, D.N.B., acknowledges
support from NASA contract NAS5-00136.
NR 15
TC 51
Z9 51
U1 0
U2 0
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP
PY 2010
VL 519
AR A102
DI 10.1051/0004-6361/201014819
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 668UQ
UT WOS:000283297300102
ER
PT J
AU Furst, F
Kreykenbohm, I
Pottschmidt, K
Wilms, J
Hanke, M
Rothschild, RE
Kretschmar, P
Schulz, NS
Huenemoerder, DP
Klochkov, D
Staubert, R
AF Fuerst, F.
Kreykenbohm, I.
Pottschmidt, K.
Wilms, J.
Hanke, M.
Rothschild, R. E.
Kretschmar, P.
Schulz, N. S.
Huenemoerder, D. P.
Klochkov, D.
Staubert, R.
TI X-ray variation statistics and wind clumping in Vela X-1
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE accretion, accretion disks; X-rays: binaries; X-rays: individuals: Vela
X-1; methods: statistical
ID HOT-STAR WINDS; STELLAR WIND; NEUTRON-STAR; MASS; VARIABILITY;
ACCRETION; EMISSION; BINARIES; FLUX; SPECTROSCOPY
AB We investigate the structure of the wind in the neutron star X-ray binary system Vela X-1 by analyzing its flaring behavior. Vela X-1 shows constant flaring, with some flares reaching fluxes of more than 3.0 Crab between 20-60 keV for several 100 s, while the average flux is around 250 mCrab. We analyzed all archival INTEGRAL data, calculating the brightness distribution in the 20-60 keV band, which, as we show, closely follows a log-normal distribution. Orbital resolved analysis shows that the structure is strongly variable, explainable by shocks and a fluctuating accretion wake. Analysis of RXTE ASM data suggests a strong orbital change of N(H). Accreted clump masses derived from the INTEGRAL data are on the order of 5x10(19) - 10(21) g. We show that the lightcurve can be described with a model of multiplicative random numbers. In the course of the simulation we calculate the power spectral density of the system in the 20-100 keV energy band and show that it follows a red-noise power law. We suggest that a mixture of a clumpy wind, shocks, and turbulence can explain the measured mass distribution. As the recently discovered class of supergiant fast X-ray transients (SFXT) seems to show the same parameters for the wind, the link between persistent HMXB like Vela X-1 and SFXT is further strengthened.
C1 [Fuerst, F.; Kreykenbohm, I.; Wilms, J.; Hanke, M.] Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte & ECAP, D-96049 Bamberg, Germany.
[Pottschmidt, K.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
[Pottschmidt, K.] CRESST, Greenbelt, MD 20771 USA.
[Pottschmidt, K.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA.
[Rothschild, R. E.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA.
[Kretschmar, P.] European Space Astron Ctr, European Space Agcy, Madrid 28691, Spain.
[Schulz, N. S.; Huenemoerder, D. P.] MIT, Ctr Space Res, Cambridge, MA 02139 USA.
[Klochkov, D.; Staubert, R.] Univ Tubingen, Inst Astron & Astrophys, Kepler Ctr Astro & Particle Phys, D-72076 Tubingen, Germany.
RP Furst, F (reprint author), Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte & ECAP, Sternwartstr 7, D-96049 Bamberg, Germany.
EM felix.fuerst@sternwarte.uni-erlangen.de
RI Wilms, Joern/C-8116-2013; Kreykenbohm, Ingo/H-9659-2013;
OI Wilms, Joern/0000-0003-2065-5410; Kreykenbohm, Ingo/0000-0001-7335-1803;
Kretschmar, Peter/0000-0001-9840-2048
FU Bundesministerium fur Wirtschaft und Technologie [50 OR0808]; DAAD;
European Commission [ITN215212]; ESA
FX This work was supported by the Bundesministerium fur Wirtschaft und
Technologie through DLR grant 50 OR0808 and via a DAAD fellowship. This
work has been partially funded by the European Commission under the 7th
Framework Program under contract ITN215212. F. F. thanks the colleagues
at UCSD and GSFC for their hospitality. We thank M. A. Nowak and A.
Pollock for the useful discussions. For this work we used the ISIS
software package provided by MIT. We especially like to thank J.C. Houck
and J. E. Davis for their restless work to improve ISIS and S-Lang. This
research has made use of NASA's Astrophysics Data System. This work is
based on observations with INTEGRAL, an ESA project with instruments and
science data centre funded by ESA member states (especially the PI
countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech
Republic and Poland, and with the participation of Russia and the USA.
We used the archival data from the ASM Light Curve web page, developed
by the ASM team at the Kavli Institute for Astrophysics and Space
Research at the Massachusetts Institute of Technology. We thank the
anonymous referee for her/ his useful comments.
NR 57
TC 30
Z9 30
U1 0
U2 1
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP
PY 2010
VL 519
AR A37
DI 10.1051/0004-6361/200913981
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 668UQ
UT WOS:000283297300037
ER
PT J
AU Gunther, HM
Matt, SP
Schmitt, JHMM
Gudel, M
Li, ZY
Burton, DM
AF Guenther, H. M.
Matt, S. P.
Schmitt, J. H. M. M.
Guedel, M.
Li, Z. -Y.
Burton, D. M.
TI The disk-bearing young star IM Lupi X-ray properties and limits on
accretion
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE stars: formation; stars: individual: IM Lup; X-rays: stars
ID T-TAURI-STARS; MAIN-SEQUENCE STARS; NEWTON EXTENDED SURVEY; LOW-MASS
STARS; EMISSION-LINES; BROWN DWARFS; MAGNETOSPHERIC ACCRETION; MOLECULAR
CLOUD; ATOMIC DATABASE; HERBIG STAR
AB Context. Classical T Tauri stars (CTTS) differ in their X-ray signatures from older pre-main sequence stars, e.g., weak-lined TTS (WTTS). CTTS exhibit a soft excess and deviations from the low-density coronal limit in the He-like triplets.
Aims. We test whether these features correlate with either accretion or the presence of a disk by observing IM Lup, a disk-bearing object apparently in transition between CTTS and WTTS without obvious accretion.
Methods. We analyse a Chandra grating spectrum and additional XMM-Newton data of IM Lup and accompanying optical spectra, some of which where taken simultaneously with the X-ray observations. We fit the X-ray emission lines and decompose the H alpha emission line into different components.
Results. In X-rays, IM Lup has a bright and hot active corona, where elements with low first-ionisation potential are depleted. The He-like Ne IX triplet is in the low-density state, but because of the small number of counts in the data a high-density scenario cannot be excluded at the 90% confidence level. In terms of all its X-ray properties, IM Lup resembles a main-sequence star, but is also compatible with CTTS signatures at the 90% confidence level, thus we cannot decide whether the soft excess and deviations from the low-density coronal limit for the He-like triplets in CTTS are produced by accretion or only the presence of a disk. The star IM Lup is chromospherically active, which accounts for most of its emission in H alpha. Despite its low equivalent width, the complexity of the H alpha line profile is reminiscent of CTTS. We estimate the mass accretion rate to be 10(-11) M(circle dot) yr(-1).
C1 [Guenther, H. M.; Schmitt, J. H. M. M.] Univ Hamburg, Hamburger Sternwarte, D-21029 Hamburg, Germany.
[Guenther, H. M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Matt, S. P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Guedel, M.] ETH, Inst Astron, CH-8093 Zurich, Switzerland.
[Guedel, M.] Univ Vienna, Dept Astron, A-1180 Vienna, Austria.
[Li, Z. -Y.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA.
[Burton, D. M.] Univ So Queensland, Toowoomba, Qld 4350, Australia.
RP Gunther, HM (reprint author), Univ Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany.
EM moritz.guenther@hs.uni-hamburg.de
RI Guedel, Manuel/C-8486-2015;
OI Guedel, Manuel/0000-0001-9818-0588; Gunther, Hans
Moritz/0000-0003-4243-2840; Matt, Sean/0000-0001-9590-2274
FU ESA Member States; NASA; NRL (USA); RAL (UK); MSSL (UK); Universities of
Florence (Italy); Cambridge (UK); George Mason University (USA); La
Silla Observatory [081.C-0779(A)]; DLR [50OR0105]; Oak Ridge Associated
Universities; Chandra [GO9-0007X]
FX Based on observations obtained with XMM-Newton, an ESA science mission,
and Chandra, a NASA science mission, both with instruments and
contributions directly funded by ESA Member States and NASA.; CHIANTI is
a collaborative project involving the NRL (USA), RAL (UK), MSSL (UK),
the Universities of Florence (Italy) and Cambridge (UK), and George
Mason University (USA). We made use of observations made with ESO
Telescopes at the La Silla Observatory under programme ID 081.C-0779(A).
The authors would like to thank Ian Waite, USQ, for the initial
extraction of the IM Lup data from ANU. H.M.G. acknowledges support from
DLR under 50OR0105. S.P.M. was supported by an appointment to the NASA
Postdoctoral Program at Ames Research Center, administered by Oak Ridge
Associated Universities through a contract with NASA. Z.-Y.L.
acknowledges support from Chandra grant GO9-0007X.
NR 66
TC 5
Z9 5
U1 0
U2 0
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP
PY 2010
VL 519
AR A97
DI 10.1051/0004-6361/201014386
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 668UQ
UT WOS:000283297300097
ER
PT J
AU Kumar, MSN
Velusamy, T
Davis, CJ
Varricatt, WP
Dewangan, LK
AF Kumar, M. S. N.
Velusamy, T.
Davis, C. J.
Varricatt, W. P.
Dewangan, L. K.
TI Ring-like features around young B stars
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE stars: formation; stars: emission-line, Be; stars: rotation; HII region
ID SPECTRAL ENERGY-DISTRIBUTIONS; MASSIVE MOLECULAR OUTFLOWS; SPITZER-IRAC
GLIMPSE; STELLAR OBJECTS; PROTOSTELLAR OBJECTS; MAIN-SEQUENCE; EMISSION;
REGION; DISKS; CANDIDATES
AB Aims. We investigate the nature of two young intermediate mass stars namely IRAS20293+3952 (I20293) and IRAS05358+3843 (I05358), which display clearly defined H(2) emission rings.
Methods. High resolution deconvolution of finely sampled 3.6-8.0 mu m Spitzer-IRAC images are carried out. Continuum-subtracted 2.122 mu m H(2) 1-0 S(1) narrow-band images of both targets and HK band spectrum of two main stars in I20293 are presented. The spectral energy distibutions (SED) of the stars enclosed in the H(2) rings are constructed using photometry from the literature and combining with newly obtained Spitzer-MIPS 70 mu m photometry. The SEDs are modelled using a grid of radiative transfer models to obtain estimates of the star, disk and envelope physical parameters.
Results. The images reveal ring-like structures surrounding isolated young B-type stars. The modelling attributes a mass and age of similar to 7 M(circle dot) and similar to 0.1 Myr, respectively, to both young stars, in agreement with other observational indicators. The HK band spectra of I20293 display the Brackett series of HI recombination lines, which appears to correspond exclusively to the young star inside this IRAS source. The ring around I20293 appears to be a single well-defined ellipse with inner parts shining brightly in the Spitzer broad band images and outer parts displaying strong H(2) emission. In the source I05358, at least two ring's are found, one circumscribing the other. The emission in the Spitzer bands and the H(2) emission are mostly coincident for the inner ring. The outer ring is visible partly in the Spitzer bands and partly in H(2) emission. The rings in both the sources, I20293 and I05358, have diameters of similar to 25000-30000 AU. The envelope sizes estimated by the SED modelling are consistent with the size of the rings estimated using the imaging data. The spectrum of the H(2) ring in I20293 is suggestive of fluorescent excitation. In the source I05358, the inner ring displays a combination of PAH and H(2) line emission with excess PAH emission closer to the star.
C1 [Kumar, M. S. N.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal.
[Velusamy, T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Davis, C. J.; Varricatt, W. P.] Joint Astron Ctr, Hilo, HI 96720 USA.
[Dewangan, L. K.] Phys Res Lab, Ahmadabad 380009, Gujarat, India.
RP Kumar, MSN (reprint author), Univ Porto, Ctr Astrofis, Rua Estrelas, P-4150762 Oporto, Portugal.
EM nanda@astro.up.pt
RI Kumar, Nanda/I-4183-2013;
OI Dewangan, Lokesh/0000-0001-6725-0483
FU FCT/MCTES (Portugal); POPH/FSE (EC); FCT (The Portuguese national
science foundation) [PTDC/CTE-AST/65971/2006]; NASA
FX Our sincere thanks to Henrik Beuther for providing the millimetre and
VLA data of these sources that is used for analysis. Kumar is supported
by a Ciencia 2007 contract, funded by FCT/MCTES (Portugal) and POPH/FSE
(EC) and a research grant PTDC/CTE-AST/65971/2006 approved by the FCT
(The Portuguese national science foundation). This work is based [in
part] on observations made with the Spitzer Space Telescope, which is
operated by the Jet Propulsion Laboratory, California Institute of
Technology under a contract with NASA.
NR 36
TC 0
Z9 0
U1 0
U2 3
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP
PY 2010
VL 519
AR A99
DI 10.1051/0004-6361/200912880
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 668UQ
UT WOS:000283297300099
ER
PT J
AU Ojha, R
Kadler, M
Bock, M
Booth, R
Dutka, MS
Edwards, PG
Fey, AL
Fuhrmann, L
Gaume, RA
Hase, H
Horiuchi, S
Jauncey, DL
Johnston, KJ
Katz, U
Lister, M
Lovell, JEJ
Muller, C
Plotz, C
Quick, JFH
Ros, E
Taylor, GB
Thompson, DJ
Tingay, SJ
Tosti, G
Tzioumis, AK
Wilms, J
Zensus, JA
AF Ojha, R.
Kadler, M.
Boeck, M.
Booth, R.
Dutka, M. S.
Edwards, P. G.
Fey, A. L.
Fuhrmann, L.
Gaume, R. A.
Hase, H.
Horiuchi, S.
Jauncey, D. L.
Johnston, K. J.
Katz, U.
Lister, M.
Lovell, J. E. J.
Mueller, C.
Ploetz, C.
Quick, J. F. H.
Ros, E.
Taylor, G. B.
Thompson, D. J.
Tingay, S. J.
Tosti, G.
Tzioumis, A. K.
Wilms, J.
Zensus, J. A.
TI TANAMI: tracking active galactic nuclei with austral milliarcsecond
interferometry I. First-epoch 8.4GHz images
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE galaxies: active; galaxies: jets; galaxies: nuclei; gamma rays:
observations; quasars: general
ID SOUTHERN RADIO-SOURCES; GAMMA-RAY EMISSION; GIGAHERTZ-PEAKED SPECTRUM;
LACERTAE OBJECT PKS-2005-489; HEMISPHERE ICRF SOURCES; PARSEC-SCALE
STRUCTURE; LARGE-AREA TELESCOPE; BLAZAR PKS 0537-441; VLBI OBSERVATIONS;
EGRET OBSERVATIONS
AB Context. A number of theoretical models vie to explain the gamma-ray emission from active galactic nuclei (AGN). This was a key discovery of EGRET. With its broader energy coverage, higher resolution, wider field of view and greater sensitivity, the Large Area Telescope (LAT) of the Fermi Gamma-ray Space Telescope is dramatically increasing our knowledge of AGN gamma-ray emission. However, discriminating between competing theoretical models requires quasi-simultaneous observations across the electromagnetic spectrum. By resolving the powerful parsec-scale relativistic outflows in extragalactic jets and thereby allowing us to measure critical physical properties, Very Long Baseline Interferometry observations are crucial to understanding the physics of extragalactic gamma-ray objects.
Aims. We introduce the TANAMI program (Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry) which is monitoring an initial sample of 43 extragalactic jets located south of -30 degrees declination at 8.4GHz and 22GHz since 2007. All aspects of the program are discussed. First epoch results at 8.4GHz are presented along with physical parameters derived therefrom.
Methods. These observations were made during 2007/2008 using the telescopes of the Australian Long Baseline Array in conjunction with Hartebeesthoek in South Africa. These data were correlated at the Swinburne University correlator.
Results. We present first epoch images for 43 sources, some observed for the first time at milliarcsecond resolution. Parameters of these images as well as physical parameters derived from them are also presented and discussed. These and subsequent images from the TANAMI survey are available at http://pulsar.sternwarte.uni-erlangen.de/tanami/.
Conclusions. We obtain reliable, high dynamic range images of the southern hemisphere AGN. All the quasars and BL Lac objects in the sample have a single-sided radio morphology. Galaxies are either double-sided, single-sided or irregular. About 28% of the TANAMI sample has been detected by LAT during its first three months of operations. Initial analysis suggests that when galaxies are excluded, sources detected by LAT have larger opening angles than those not detected by LAT. Brightness temperatures of LAT detections and non-detections seem to have similar distributions. The redshift distributions of the TANAMI sample and sub-samples are similar to those seen for the bright gamma-ray AGN seen by LAT and EGRET but none of the sources with a redshift above 1.8 have been detected by LAT.
C1 [Ojha, R.; Fey, A. L.; Gaume, R. A.; Johnston, K. J.] USN Observ, Washington, DC 20392 USA.
[Ojha, R.] NVI Inc, Greenbelt, MD 20770 USA.
[Kadler, M.; Boeck, M.; Mueller, C.; Wilms, J.] Univ Erlangen Nurnberg, Astron Inst, D-96049 Bamberg, Germany.
[Kadler, M.; Boeck, M.; Katz, U.; Mueller, C.; Wilms, J.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany.
[Kadler, M.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA.
[Kadler, M.] Univ Space Res Assoc, Columbia, MD 21044 USA.
[Booth, R.; Quick, J. F. H.] Hartebeesthoek Radio Astron Observ, ZA-1740 Krugersdorp, South Africa.
[Dutka, M. S.] Catholic Univ Amer, Washington, DC 20064 USA.
[Edwards, P. G.; Jauncey, D. L.; Tzioumis, A. K.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia.
[Fuhrmann, L.; Ros, E.; Zensus, J. A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany.
[Hase, H.] Univ Concepcion, Germany Entrusted Transportable Integrated Geodet, Bundesamt Kartograph & Geodesie, Concepcion, Chile.
[Lister, M.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA.
[Lovell, J. E. J.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia.
[Ploetz, C.] Geodet Observ Wettzell, Fed Agcy Cartog & Geodesy BKG, D-93444 Bad Kotzting, Germany.
[Ros, E.] Univ Valencia, Dept Astron & Astrofis, E-46100 Valencia, Spain.
[Taylor, G. B.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
[Thompson, D. J.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
[Tingay, S. J.] Curtin Univ Technol, Curtin Inst Radio Astron, Bentley, WA 6102, Australia.
[Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy.
[Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy.
RP Ojha, R (reprint author), USN Observ, 3450 Massachusetts Ave NW, Washington, DC 20392 USA.
EM rojha@usno.navy.mil; matthias.kadler@sternwarte.uni-erlangen.de
RI Thompson, David/D-2939-2012; Tingay, Steven/B-5271-2013; Wilms,
Joern/C-8116-2013; Katz, Uli/E-1925-2013; Tosti, Gino/E-9976-2013;
OI Thompson, David/0000-0001-5217-9135; Wilms, Joern/0000-0003-2065-5410;
Katz, Uli/0000-0002-7063-4418; Ros, Eduardo/0000-0001-9503-4892; Kadler,
Matthias/0000-0001-5606-6154
FU Commonwealth of Australia; Goddard Space Flight Center; NASA
FX We are grateful to Dirk Behrend, Neil Gehrels, Julie McEnery, David
Murphy, and John Reynolds, who contributed in numerous ways to the
success of the TANAMI program so far. Furthermore, we thank the
Fermi/LAT AGN group for the good collaboration. The Long Baseline Array
is part of the Australia Telescope which is funded by the Commonwealth
of Australia for operation as a National Facility managed by CSIRO. This
work made use of the Swinburne University of Technology software
correlator, developed as part of the Australian Major National Research
Facilities Programme and operated under licence. M. K. has been
supported in part by an appointment to the NASA Postdoctoral Program at
the Goddard Space Flight Center, administered by Oak Ridge Associated
Universities through a contract with NASA. We would like to thank the
staff of the Swinburne correlator for their unflagging support. This
research has made use of data from the NASA/IPAC Extragalactic Database
(NED, operated by the Jet Propulsion Laboratory, California Institute of
Technology, under contract with the National Aeronautics and Space
Administration); and the SIMBAD database (operated at CDS, Strasbourg,
France). This research has made use of NASA's Astrophysics Data System.
This research has made use of the United States Naval Observatory (USNO)
Radio Reference Frame Image Database (RRFID).
NR 147
TC 41
Z9 41
U1 0
U2 0
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD SEP
PY 2010
VL 519
AR A45
DI 10.1051/0004-6361/200912724
PG 25
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 668UQ
UT WOS:000283297300045
ER
PT J
AU Ardo, AA
Ajello, M
Antolini, E
Baldini, L
Ballet, J
Barbiellini, G
Baring, MG
Bastieri, D
Bechtol, K
Bellazzini, R
Berenji, B
Bonamente, E
Borgland, AW
Bouvier, A
Bregeon, J
Brez, A
Brigida, M
Bruel, P
Buehler, R
Burnett, TH
Buson, S
Caliandro, GA
Camilo, F
Caraveo, PA
Celik, O
Chekhtman, A
Cheung, CC
Chiang, J
Ciprini, S
Claus, R
Cognard, I
Cohen-Tanugi, J
Dermer, CD
De Palma, F
Digel, SW
Silva, EDE
Drell, PS
Dubois, R
Dumora, D
Favuzzi, C
Ferrara, EC
Fortin, P
Frailis, M
Freire, PCC
Fukazawa, Y
Funk, S
Fusco, P
Gargano, F
Gehrels, N
Germani, S
Giglietto, N
Giordano, F
Giroletti, M
Glanzman, T
Godfrey, G
Grenier, IA
Grondin, MH
Grove, JE
Guillemot, L
Guiriec, S
Hadasch, D
Hanabata, Y
Harding, AK
Hays, E
Johannesson, G
Johnson, RP
Johnson, TJ
Johnson, WN
Johnston, S
Kamae, T
Katagiri, H
Kataoka, J
Keith, M
Kerr, M
Knodlseder, J
Kramer, M
Kuss, M
Lande, J
Latronico, L
Lee, SH
Lemoine-Goumard, M
Longo, F
Loparco, F
Lott, B
Lubrano, P
Makeev, A
Manchester, RN
Marelli, M
Mazziotta, MN
Mitthumsiri, W
Mizuno, T
Moiseev, AA
Monte, C
Mnzani, ME
Morselli, A
Moskalenko, IV
Murgia, S
Nakamori, T
Nolan, PL
Norris, JP
Noutos, A
Nuss, E
Ohsugi, T
Okumura, A
Orlando, E
Ormes, JF
Ozaki, M
Panetta, JH
Parent, D
Pelassa, V
Pepe, M
Pesce-Rollins, M
Piron, F
Raino, S
Razzano, M
Reimer, A
Reimer, O
Reposeur, T
Rirken, J
Romani, RW
Sadrozinski, HFW
Sander, A
Parkinson, PMS
Sgro, C
Siskind, EJ
Smith, DA
Smith, PD
Spandre, G
Spinelli, P
Strickman, MS
Suson, DJ
Takahashi, H
Tanaka, T
Thayer, JB
Thayer, JG
Theureau, G
Thompson, DJ
Thorsett, SE
Tibaldo, L
Tibolla, O
Torres, DF
Tosti, G
Tramacere, A
Usher, TL
Vandenbroucke, J
Vasileiou, V
Vitale, V
Waite, AP
Wang, P
Weltevrede, P
Winer, BL
Yang, Z
Ylinen, T
Ziegler, M
AF Ardo, A. A.
Ajello, M.
Antolini, E.
Baldini, L.
Ballet, J.
Barbiellini, G.
Baring, M. G.
Bastieri, D.
Bechtol, K.
Bellazzini, R.
Berenji, B.
Bonamente, E.
Borgland, A. W.
Bouvier, A.
Bregeon, J.
Brez, A.
Brigida, M.
Bruel, P.
Buehler, R.
Burnett, T. H.
Buson, S.
Caliandro, G. A.
Camilo, F.
Caraveo, P. A.
Celik, Oe
Chekhtman, A. .
Cheung, C. C.
Chiang, J.
Ciprini, S.
Claus, R.
Cognard, I.
Cohen-Tanugi, J.
Dermer, C. D.
De Palma, F.
Digel, S. W.
do Couto e Silva, E.
Drell, P. S.
Dubois, R.
Dumora, D.
Favuzzi, C.
Ferrara, E. C.
Fortin, P.
Frailis, M.
Freire, P. C. C.
Fukazawa, Y.
Funk, S.
Fusco, P.
Gargano, F.
Gehrels, N.
Germani, S.
Giglietto, N.
Giordano, F.
Giroletti, M.
Glanzman, T.
Godfrey, G.
Grenier, I. A.
Grondin, M. -H.
Grove, J. E.
Guillemot, L.
Guiriec, S.
Hadasch, D.
Hanabata, Y.
Harding, A. K.
Hays, E.
Johannesson, G.
Johnson, R. P.
Johnson, T. J.
Johnson, W. N.
Johnston, S.
Kamae, T.
Katagiri, H.
Kataoka, J.
Keith, M.
Kerr, M.
Knoedlseder, J.
Kramer, M.
Kuss, M.
Lande, J.
Latronico, L.
Lee, S. -H.
Lemoine-Goumard, M.
Longo, F.
Loparco, F.
Lott, B.
Lubrano, P.
Makeev, A.
Manchester, R. N.
Marelli, M.
Mazziotta, M. N.
Mitthumsiri, W.
Mizuno, T.
Moiseev, A. A.
Monte, C.
Mnzani, M. E.
Morselli, A.
Moskalenko, I. V.
Murgia, S.
Nakamori, T.
Nolan, P. L.
Norris, J. P.
Noutos, A.
Nuss, E.
Ohsugi, T.
Okumura, A.
Orlando, E.
Ormes, J. F.
Ozaki, M.
Panetta, J. H.
Parent, D.
Pelassa, V.
Pepe, M.
Pesce-Rollins, M.
Piron, F.
Raino, S.
Razzano, M.
Reimer, A.
Reimer, O.
Reposeur, T.
Rirken, J.
Romani, R. W.
Sadrozinski, H. F. -W.
Sander, A.
Parkinson, P. M. Saz
Sgro, C.
Siskind, E. J.
Smith, D. A.
Smith, P. D.
Spandre, G.
Spinelli, P.
Strickman, M. S.
Suson, D. J.
Takahashi, H.
Tanaka, T.
Thayer, J. B.
Thayer, J. G.
Theureau, G.
Thompson, D. J.
Thorsett, S. E.
Tibaldo, L.
Tibolla, O.
Torres, D. F.
Tosti, G.
Tramacere, A.
Usher, T. L.
Vandenbroucke, J.
Vasileiou, V.
Vitale, V.
Waite, A. P.
Wang, P.
Weltevrede, P.
Winer, B. L.
Yang, Z.
Ylinen, T.
Ziegler, M.
TI FERMI LARGE AREA TELESCOPE OBSERVATIONS OF GAMMA-RAY PULSARS PSR
J1057-5226, J1709-4429, AND J1952+3252
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE gamma rays: stars; pulsars: individual (PSR J1057-5226, PSR J1709-4429,
and PSR J1952+3252)
ID HIGH-ENERGY; X-RAY; LIGHT CURVES; SPACE-TELESCOPE; RADIO PULSARS;
SOUTHERN PULSARS; WIND NEBULAE; VELA PULSAR; EMISSION; RADIATION
AB The Fermi Large Area Telescope (LAT) data have confirmed the pulsed emission from all six high-confidence gamma-ray pulsars previously known from the EGRET observations. We report results obtained from the analysis of 13 months of LAT data for three of these pulsars (PSR J1057-5226, PSR J1709-4429, and PSR 11952+3252) each of which had some unique feature among the EGRET pulsars. The excellent sensitivity of LAT allows more detailed analysis of the evolution of the pulse profile with energy and also of the variation of the spectral shape with phase. We measure the cutoff energy of the pulsed emission from these pulsars for the first time and provide a more complete picture of the emission mechanism. The results confirm some, but not all, of the features seen in the EGRET data.
C1 [Ardo, A. A.; Chekhtman, A. .; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Makeev, A.; Strickman, M. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA.
[Ardo, A. A.; Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA.
[Ajello, M.; Bechtol, K.; Berenji, B.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Kamae, T.; Lande, J.; Lee, S. -H.; Mitthumsiri, W.; Mnzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Panetta, J. H.; Reimer, A.; Reimer, O.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA.
[Ajello, M.; Bechtol, K.; Berenji, B.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Kamae, T.; Lande, J.; Lee, S. -H.; Mitthumsiri, W.; Mnzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Panetta, J. H.; Reimer, A.; Reimer, O.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.
[Antolini, E.; Bonamente, E.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy.
[Antolini, E.; Bonamente, E.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy.
[Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Ballet, J.; Grenier, I. A.] Uiv Paris Diderot, CNRS,CEA IRFU, Lab AIM,Serv Astrophys, CEA Saclay, F-91191 Gif Sur Yvette, France.
[Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.
[Barbiellini, G.; Longo, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy.
[Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA.
[Bastieri, D.; Buson, S.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Bastieri, D.; Buson, S.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy.
[Brigida, M.; De Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.
[Brigida, M.; De Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Bruel, P.; Fortin, P.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Burnett, T. H.; Kerr, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Caliandro, G. A.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain.
[Camilo, F.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA.
[Caraveo, P. A.; Marelli, M.] INAF Ist Astrofis Spaziale Fis Cosm, I-20133 Milan, Italy.
[Celik, Oe; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. J.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Celik, Oe; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA.
[Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA.
[Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA.
[Chekhtman, A. .; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA.
[Cognard, I.; Theureau, G.] CNRS, LPCE, UMR 6115, F-45071 Orleans 02, France.
[Cognard, I.; Theureau, G.] CNRS, INSU, Observ Paris, Stn Radioastron Nancay, F-18330 Nancay, France.
[Cohen-Tanugi, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France.
[Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France.
[Caliandro, G. A.; Lott, B.; Torres, D. F.] Univ Bordeaux, CEN Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France.
[Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy.
[Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Gruppo Collegato Udine, I-33100 Udine, Italy.
[Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy.
[Freire, P. C. C.; Guillemot, L.; Kramer, M.; Noutos, A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany.
[Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Higashihiroshima 7398526, Japan.
[Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy.
[Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA.
[Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain.
[Johnson, R. P.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA.
[Johnson, R. P.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
[Johnson, T. J.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[Johnson, T. J.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Johnston, S.; Keith, M.; Manchester, R. N.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia.
[Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan.
[Knoedlseder, J.] CNRS, UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France.
[Kramer, M.; Weltevrede, P.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England.
[Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy.
[Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA.
[Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan.
[Okumura, A.; Ozaki, M.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan.
[Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria.
[Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria.
[Rirken, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden.
[Rirken, J.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden.
[Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA.
[Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA.
[Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany.
[Tramacere, A.] CIFS, I-10133 Turin, Italy.
[Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland.
[Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy.
[Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden.
[Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden.
RP Ardo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA.
EM ocelik@milkyway.gsfc.nasa.gov; fabio.gargano@ba.infn.it;
David.J.Thompson@nasa.gov; reposeur@cenbg.in2p3.fr
RI Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels,
Neil/D-2971-2012; Baldini, Luca/E-5396-2012; lubrano,
pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss,
Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer,
Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013;
Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Funk,
Stefan/B-7629-2015; Loparco, Francesco/O-8847-2015; Gargano,
Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko,
Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro,
Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016;
OI Thompson, David/0000-0001-5217-9135; lubrano,
pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553;
giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385;
Funk, Stefan/0000-0002-2012-0080; Loparco,
Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395;
Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko,
Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres,
Diego/0000-0002-1522-9065; Thorsett, Stephen/0000-0002-2025-9613;
Frailis, Marco/0000-0002-7400-2135; Caraveo,
Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214;
Bastieri, Denis/0000-0002-6954-8862; Pesce-Rollins,
Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852;
Berenji, Bijan/0000-0002-4551-772X; Tramacere,
Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Marelli,
Martino/0000-0002-8017-0338
FU International Doctorate on Astroparticle Physics (IDAPP); Istituto
Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in
France; Commonwealth of Australia
FX Partially supported by the International Doctorate on Astroparticle
Physics (IDAPP) program.; Additional support for science analysis during
the operations phase is gratefully acknowledged from the Istituto
Nazionale di Astrofisica in Italy and the Centre National d'Etudes
Spatiales in France.; This work made extensive use of the ATNF pulsar
catalog (Manchester et al. 2005).63; The Parkes radio
telescope is part of the Australia Telescope which is funded by the
Commonwealth of Australia for operation as a National Facility managed
by the CSIRO.
NR 72
TC 0
Z9 0
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 1
PY 2010
VL 720
IS 1
BP 26
EP 40
DI 10.1088/0004-637X/720/1/26
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647DJ
UT WOS:000281596000004
ER
PT J
AU Bhattacharya, B
Noriega-Crespo, A
Penprase, BE
Meadows, VS
Salvato, M
Aussel, H
Frayer, D
Ilbert, O
Le Floc'h, E
Looper, D
Surace, J
Capak, P
Glorgini, JD
Granvik, M
Grillmair, C
Hagen, A
Helou, G
Reach, WT
Rebull, LM
Sanders, DB
Scoville, N
Sheth, K
Yan, L
AF Bhattacharya, B.
Noriega-Crespo, A.
Penprase, B. E.
Meadows, V. S.
Salvato, M.
Aussel, H.
Frayer, D.
Ilbert, O.
Le Floc'h, E.
Looper, D.
Surace, J.
Capak, P.
Glorgini, J. D.
Granvik, M.
Grillmair, C.
Hagen, A.
Helou, G.
Reach, W. T.
Rebull, L. M.
Sanders, D. B.
Scoville, N.
Sheth, K.
Yan, L.
TI MID-INFRARED PHOTOMETRIC ANALYSIS OF MAIN BELT ASTEROIDS: A TECHNIQUE
FOR COLOR-COLOR DIFFERENTIATION FROM BACKGROUND ASTROPHYSICAL SOURCES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE minor planets, asteroids: general; techniques: photometric
ID SPITZER-SPACE-TELESCOPE; MULTIBAND IMAGING PHOTOMETER; NEAR-EARTH
ASTEROIDS; 160 MU-M; 1ST-LOOK SURVEY; THERMAL-MODEL; COSMOS FIELD;
MAGNITUDES; DIAMETERS; ALBEDOS
AB The Spitzer Space Telescope routinely detects asteroids in astrophysical observations near the ecliptic plane. For the galactic or extragalactic astronomer, these solar system bodies can introduce appreciable uncertainty into the source identification process. We discuss an infrared color discrimination tool that may be used to distinguish between solar system objects and extrasolar sources. We employ four Spitzer Legacy data sets, the First Look Survey-Ecliptic Plane Component (FLS-EPC), SCOSMOS, SWIRE, and GOODS. We use the Standard Thermal Model to derive FLS-EPC main belt asteroid (MBA) diameters of 1-4 km for the numbered asteroids in our sample and note that several of our solar system sources may have fainter absolute magnitude values than previously thought. A number of the MBAs are detected at flux densities as low as a few tens of mu Jy at 3.6 mu m. As the FLS-EPC provides the only 3.6-24.0 mu m observations of individual asteroids to date, we are able to use this data set to carry out a detailed study of asteroid color in comparison to astrophysical sources observed by SCOSMOS, SWIRE, and GOODS. Both SCOSMOS and SWIRE have identified a significant number of asteroids in their data, and we investigate the effectiveness of using relative color to distinguish between asteroids and background objects. We find a notable difference in color in the IRAC 3.6-8.0 mm and MIPS 24 mu m bands between the majority of MBAs, stars, galaxies, and active galactic nuclei, though this variation is less significant when comparing fluxes in individual bands. We find median colors for the FLS-EPC asteroids to be [F(5.8/3.6), F(8.0/4.5), F(24/8)] = (4.9 +/- 1.8, 8.9 +/- 7.4, 6.4 +/- 2.3). Finally, we consider the utility of this technique for other mid-infrared observations that are sensitive to near-Earth objects, MBAs, and trans-Neptunian objects. We consider the potential of using color to differentiate between solar system and background sources for several space-based observatories, including Warm Spitzer, Herschel, and WISE.
C1 [Bhattacharya, B.; Helou, G.] CALTECH, NASA Herschel Sci Ctr, Pasadena, CA 91125 USA.
[Noriega-Crespo, A.; Surace, J.; Capak, P.; Grillmair, C.; Helou, G.; Rebull, L. M.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA.
[Penprase, B. E.] Pomona Coll, Dept Phys & Astron, Claremont, CA 91711 USA.
[Meadows, V. S.] Univ Washington, Dept Astron, Seattle, WA 98195 USA.
[Salvato, M.; Helou, G.; Scoville, N.] CALTECH, Dept Astron, Pasadena, CA 91125 USA.
[Salvato, M.] Max Planck Inst Plasma Phys & Cluster Excellence, Garching, Germany.
[Aussel, H.] CEA Saclay, Serv Astrophys, F-91191 Gif Sur Yvette, France.
[Frayer, D.] NRAO, Green Bank, WV 24944 USA.
[Ilbert, O.; Le Floc'h, E.; Looper, D.; Granvik, M.; Sanders, D. B.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
[Glorgini, J. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Hagen, A.] Harvey Mudd Coll, Dept Phys, Claremont, CA 91711 USA.
[Reach, W. T.] NASA, Ames Res Ctr, Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA.
[Sheth, K.] NRAO NAASC, Charlottesville, VA 22903 USA.
[Yan, L.] CALTECH, WISE Data Ctr, Pasadena, CA 91125 USA.
RP Bhattacharya, B (reprint author), CALTECH, NASA Herschel Sci Ctr, MC 100-22, Pasadena, CA 91125 USA.
OI Hagen, Alex/0000-0003-2031-7737; Rebull, Luisa/0000-0001-6381-515X;
Reach, William/0000-0001-8362-4094
FU NASA [1407]; NASA Herschel Science Center
FX The authors acknowledge the late S. Tyler, whose enthusiastic presence
is missed by the FLS-EPC team. During his years at the Spitzer Science
Center, Mr. Tyler assisted in data analysis for this project. The
authors also thank the anonymous referee for helpful comments. B.B.
thanks Dr. Tom Jarrett for providing valuable feedback, and the FLS-EPC
team acknowledges Professor Jim Elliot for developing the original
concept of the solar system First Look Survey. This work is based upon
observations made with the Spitzer Space Telescope, operated by JPL,
Caltech, and funded under NASA contract 1407. Additional work is funded
by the NASA Herschel Science Center, operated by JPL, Caltech.
NR 38
TC 2
Z9 2
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 1
PY 2010
VL 720
IS 1
BP 114
EP 129
DI 10.1088/0004-637X/720/1/114
PG 16
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647DJ
UT WOS:000281596000010
ER
PT J
AU Cacketti, EM
Miller, JM
Ballantyne, DR
Barret, D
Bhattacharyya, S
Boutelier, M
Millers, MC
Strohmayer, TE
Wijnands, R
AF Cacketti, Edward M.
Miller, Jon M.
Ballantyne, David R.
Barret, Didier
Bhattacharyya, Sudip
Boutelier, Martin
Millers, M. Coleman
Strohmayer, Tod E.
Wijnands, Rudy
TI RELATIVISTIC LINES AND REFLECTION FROM THE INNER ACCRETION DISKS AROUND
NEUTRON STARS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE accretion, accretion disks; stars: neutron; X-rays: binaries
ID X-RAY BINARIES; QUASI-PERIODIC OSCILLATIONS; BLACK-HOLE SPIN; BROADENED
IRON LINE; EQUATION-OF-STATE; CYGNUS X-2; XMM-NEWTON; BOUNDARY-LAYER;
EMISSION-LINE; 4U 1705-44
AB A number of neutron star low-mass X-ray binaries (LMXBs) have recently been discovered to show broad, asymmetric Fe K emission lines in their X-ray spectra. These lines are generally thought to be the most prominent part of a reflection spectrum, originating in the inner part of the accretion disk where strong relativistic effects can broaden emission lines. We present a comprehensive, systematic analysis of Suzaku and XMM-Newton spectra of 10 neutron star LMXBs, all of which display broad Fe K emission lines. Of the 10 sources, 4 are Z sources, 4 are atolls, and 2 are accreting millisecond X-ray pulsars (also atolls). The Fe K lines are fit well by a relativistic line model for a Schwarzschild metric, and imply a narrow range of inner disk radii (6-15 GM/c(2)) in most cases. This implies that the accretion disk extends close to the neutron star surface over a range of luminosities. Continuum modeling shows that for the majority of observations, a blackbody component (plausibly associated with the boundary layer) dominates the X-ray emission from 8 to 20 keV. Thus it appears likely that this spectral component produces the majority of the ionizing flux that illuminates the accretion disk. Therefore, we also fit the spectra with a blurred reflection model, wherein a blackbody component illuminates the disk. This model fits well in most cases, supporting the idea that the boundary layer illuminates a geometrically thin disk.
C1 [Cacketti, Edward M.; Miller, Jon M.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Ballantyne, David R.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
[Barret, Didier; Boutelier, Martin] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 04, France.
[Bhattacharyya, Sudip] Tata Inst Fundamental Res, Dept Astron & Astrophys, Bombay 400005, Maharashtra, India.
[Millers, M. Coleman] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Strohmayer, Tod E.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
[Wijnands, Rudy] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 XH Amsterdam, Netherlands.
RP Cacketti, EM (reprint author), Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
EM ecackett@umich.edu
RI XRAY, SUZAKU/A-1808-2009
FU NASA [PF8-90052]; ESA Member States
FX We appreciate the extremely helpful comments from the referee that have
improved the paper. E.M.C. gratefully acknowledges support provided by
NASA through the Chandra Fellowship Program, grant number PF8-90052.
This research has made use of data obtained from the Suzaku satellite, a
collaborative mission between the space agencies of Japan (JAXA) and the
USA (NASA). It also made use of observations obtained with XMM-Newton,
an ESA science mission with instruments and contributions directly
funded by ESA Member States and NASA.
NR 115
TC 56
Z9 56
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 1
PY 2010
VL 720
IS 1
BP 205
EP 225
DI 10.1088/0004-637X/720/1/205
PG 21
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647DJ
UT WOS:000281596000018
ER
PT J
AU Leggett, SK
Saumon, D
Burningham, B
Cushing, MC
Marley, MS
Pinfield, DJ
AF Leggett, S. K.
Saumon, D.
Burningham, Ben
Cushing, Michael C.
Marley, M. S.
Pinfield, D. J.
TI PROPERTIES OF THE T8.5 DWARF WOLF 940 B
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE brown dwarfs; infrared: stars; stars: fundamental parameters; stars:
individual (Wolf 940B)
ID SPITZER-SPACE-TELESCOPE; STAR SPECTROSCOPIC SURVEY; EXOPLANET HOST STAR;
DIGITAL SKY SURVEY; COOL BROWN DWARF; MID-T DWARFS;
CHEMICAL-EQUILIBRIUM; PHYSICAL-PROPERTIES; BINARY-SYSTEM; GLIESE 570D
AB We present 7.5-14.2 mu m low-resolution spectroscopy, obtained with the Spitzer Infrared Spectrograph, of the T8.5 dwarf Wolf 940 B, which is a companion to an M4 dwarf with a projected separation of 400 AU. We combine these data with previously published near-infrared spectroscopy and mid-infrared photometry to produce the spectral energy distribution for the very low temperature T dwarf. We use atmospheric models to derive the bolometric correction and obtain a luminosity of log L/L(circle dot) = -6.01 +/- 0.05 (the observed spectra make up 47% of the total flux). Evolutionary models are used with the luminosity to constrain the values of effective temperature (T(eff)) and surface gravity and hence mass and age for the T dwarf. We ensure that the spectral models used to determine the bolometric correction have T(eff) and gravity values consistent with the luminosity-implied values. We further restrict the allowed range of T(eff) and gravity using age constraints implied by the M dwarf primary and refine the physical properties of the T dwarf by comparison of the observed and modeled spectroscopy and photometry. This comparison indicates that Wolf 940 B has a metallicity within similar to 0.2 dex of solar, as more extreme values give poor fits to the data-lower metallicity produces a poor fit at lambda > 2 mu m, while higher metallicity produces a poor fit at lambda < 2 mu m. This is consistent with the independently derived value of [m/H] = +0.24 +/- 0.09 for the primary star, using the Johnson & Apps M(K): V - K relationship. We find that the T dwarf atmosphere is undergoing vigorous mixing, with an eddy diffusion coefficient K(zz) of 10(4) to 10(6) cm(2) s(-1). We derive an effective temperature of 585 K to 625 K, and surface gravity log g = 4.83 to 5.22 (cm s(-2)), for an age range of 3 Gyr to 10 Gyr, as implied by the kinematic and Ha properties of the M dwarf primary. Gravity and temperature are correlated such that the lower gravity corresponds to the lower temperature and younger age for the system and the higher values to the higher temperature and older age. The mass of the T dwarf is 24 M(Jupiter) to 45 M(Jupiter) for the younger to older age limit.
C1 [Leggett, S. K.] No Operat Ctr, Gemini Observ, Hilo, HI 96720 USA.
[Saumon, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Burningham, Ben; Pinfield, D. J.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England.
[Cushing, Michael C.] CALTECH, Jet Prop Lab, Dept Astrophys, Pasadena, CA 91109 USA.
[Marley, M. S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
RP Leggett, SK (reprint author), No Operat Ctr, Gemini Observ, 670 N Aohoku Pl, Hilo, HI 96720 USA.
EM sleggett@gemini.edu
RI Marley, Mark/I-4704-2013;
OI Marley, Mark/0000-0002-5251-2943; Burningham, Ben/0000-0003-4600-5627;
Leggett, Sandy/0000-0002-3681-2989
FU NASA; Gemini Observatory
FX This work is based on observations made with the Spitzer Space
Telescope, which is operated by the Jet Propulsion Laboratory,
California Institute of Technology under a contract with NASA. Support
for this work was provided by NASA through an award issued by
JPL/Caltech. Support for this work was also provided by the Spitzer
Space Telescope Theoretical Research Program, through NASA. S.K.L.'s
research is supported by the Gemini Observatory, which is operated by
the Association of Universities for Research in Astronomy, Inc., on
behalf of the international Gemini partnership of Argentina, Australia,
Brazil, Canada, Chile, the United Kingdom, and the United States of
America.
NR 55
TC 20
Z9 20
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 1
PY 2010
VL 720
IS 1
BP 252
EP 258
DI 10.1088/0004-637X/720/1/252
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647DJ
UT WOS:000281596000022
ER
PT J
AU Whittet, DCB
Goldsmith, PF
Pineda, JL
AF Whittet, D. C. B.
Goldsmith, P. F.
Pineda, J. L.
TI THE UPTAKE OF INTERSTELLAR GASEOUS CO INTO ICY GRAIN MANTLES IN A
QUIESCENT DARK CLOUD
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE dust, extinction; ISM: abundances; ISM: individual objects (Taurus Dark
Cloud); ISM: molecules
ID TAURUS MOLECULAR CLOUD; MASS STAR-FORMATION; CARBON-MONOXIDE; BACKGROUND
STARS; CORES; DUST; GAS; DEPLETION; ICES; ABUNDANCE
AB Data from the Five College Radio Astronomy Observatory CO Mapping Survey of the Taurus molecular cloud are combined with extinction data for a sample of 292 background field stars to investigate the uptake of CO from the gas to icy grain mantles on dust within the cloud. On the assumption that the reservoir of CO in the ices is represented well by the combined abundances of solid CO and solid CO(2) (which forms by oxidation of CO on the dust), we find that the total column density (gas + solid) correlates tightly with visual extinction (A(V)) over the range 5 mag < A(V) < 30 mag, i.e., up to the highest extinctions covered by our sample. The mean depletion of gas-phase CO, expressed as delta(CO) = N(CO)(ice)/N(CO)(total), increases monotonically from negligible levels for A(V) less than or similar to 5 to similar to 0.3 at A(V) = 10 and similar to 0.6 at A(V) = 30. As these results refer to line-of-sight averages, they must be considered lower limits to the actual depletion at loci deep within the cloud, which may approach unity. We show that it is plausible for such high levels of depletion to be reached in dense cores on timescales similar to 0.6 Myr, comparable with their expected lifetimes. Dispersal of cores during star formation may be effective in maintaining observable levels of gaseous CO on the longer timescales estimated for the age of the cloud.
C1 [Whittet, D. C. B.] Rensselaer Polytech Inst, New York Ctr Astrobiol, Troy, NY 12180 USA.
[Whittet, D. C. B.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA.
[Goldsmith, P. F.; Pineda, J. L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Whittet, DCB (reprint author), Rensselaer Polytech Inst, New York Ctr Astrobiol, 110 8th St, Troy, NY 12180 USA.
RI Goldsmith, Paul/H-3159-2016
OI Whittet, Douglas/0000-0001-8539-3891;
FU National Aeronautics and Space Administration (NASA) [NNX07AK38G];
National Science Foundation; NASA Astrobiology Institute [NNA09DA80A]
FX This research has made use of data from the Two Micron All Sky Survey,
which is a joint project of the University of Massachusetts and the
Infrared Processing and Analysis Center, funded by the National
Aeronautics and Space Administration (NASA) and the National Science
Foundation. D.C.B.W. acknowledges financial support from the NASA
Exobiology and Evolutionary Biology program (grant NNX07AK38G) and the
NASA Astrobiology Institute (grant NNA09DA80A). This work was supported
in part by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with NASA. We are grateful to an anonymous
referee for helpful comments.
NR 58
TC 14
Z9 14
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 1
PY 2010
VL 720
IS 1
BP 259
EP 265
DI 10.1088/0004-637X/720/1/259
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647DJ
UT WOS:000281596000023
ER
PT J
AU Abdo, AA
Ackermann, M
Ajello, M
Baldini, L
Ballet, J
Barbiellini, G
Bastier, D
Baughman, BM
Bechtol, K
Bellazzini, R
Berenji, B
Bignami, GF
Blandford, RD
Bloom, ED
Bonamente, E
Borgland, AW
Bregeon, J
Brez, A
Brigida, M
Brueli, P
Burnett, TH
Caliandro, GA
Cameron, RA
Caraveo, PA
Casandjian, JM
Cecchi, C
Celik, O
Charles, E
Chekhtman, A
Cheung, CC
Chiang, J
Ciprini, S
Claus, R
Cohen-Tanugi, J
Conrad, J
Dermer, CD
de Palma, F
Dormody, M
Silva, EDE
Drell, PS
Dubois, R
Dumora, D
Edmonds, Y
Farnier, C
Favuzzi, C
Fegan, SJ
Focke, WB
Fortin, P
Frailis, M
Furazawa, Y
Funk, S
Fusco, P
Gargano, F
Gasparrini, D
Gehrels, N
Germani, S
Giavitto, G
Giglietto, N
Giordano, F
Glanzman, T
Godfrey, G
Grenier, IA
Grondin, MH
Grove, JE
Guillemot, L
Guiriec, S
Hadasch, D
Hardino, AK
Hays, E
Hughes, RE
Johannesson, G
Johnson, AS
Johnson, TJ
Johnson, WN
Kamae, T
Katagiri, H
Kataoka, J
Kawai, N
Kerr, M
Knodlseder, J
Kuss, M
Lande, J
Latronico, L
Lemoine-Goumard, M
Longo, F
Loparco, F
Lott, B
Lovellette, MN
Lubrano, P
Makeev, A
Marelli, M
Mazziotta, MN
McEnery, JE
Meurer, C
Michelson, PF
Mitthumsiri, W
Mizuno, T
Moiseev, AA
Monte, C
Monzani, ME
Morselli, A
Moskalenk, IV
Murgia, S
Nolan, PL
Norris, JP
Nuss, E
Ohsugi, T
Omodei, N
Orlando, E
Ormes, JF
Ozaki, M
Paneque, D
Panetta, JH
Parent, D
Pelassa, V
Pepe, M
Pesce-Rollins, M
Piron, F
Porter, TA
Raino, S
Rando, R
Rayi, PS
Razzano, M
Reimer, A
Reimer, O
Reposeur, T
Rochester, LS
Rodriguez, AY
Romani, RW
Roth, M
Ryde, F
Sadrozinski, HFW
Sander, A
Parkinson, PMS
Scargle, JD
Sgro, C
Siskind, EJ
Smith, DA
Smith, PD
Spandre, G
Spinelli, P
Strickman, MS
Suson, DJ
Takahashi, H
Takahashi, T
Tanaka, T
Thayer, JB
Thayer, JG
Thompson, DJ
Tibaldo, L
Torres, DF
Tosti, G
Tramacere, A
Usher, TL
Van Etten, A
Vasileiou, V
Venter, C
Vilchez, N
Vitale, V
Waite, AP
Wang, P
Watters, K
Winer, BL
Wood, KS
Ylinen, T
Ziegler, M
AF Abdo, A. A.
Ackermann, M.
Ajello, M.
Baldini, L.
Ballet, J.
Barbiellini, G.
Bastier, D.
Baughman, B. M.
Bechtol, K.
Bellazzini, R.
Berenji, B.
Bignami, G. F.
Blandford, R. D.
Bloom, E. D.
Bonamente, E.
Borgland, A. W.
Bregeon, J.
Brez, A.
Brigida, M.
Brueli, P.
Burnett, T. H.
Caliandro, G. A.
Cameron, R. A.
Caraveo, P. A.
Casandjian, J. M.
Cecchi, C.
Celik, Oe.
Charles, E.
Chekhtman, A.
Cheung, C. C.
Chiang, J.
Ciprini, S.
Claus, R.
Cohen-Tanugi, J.
Conrad, J.
Dermer, C. D.
de Palma, F.
Dormody, M.
do Couto e Silva, E.
Drell, P. S.
Dubois, R.
Dumora, D.
Edmonds, Y.
Farnier, C.
Favuzzi, C.
Fegan, S. J.
Focke, W. B.
Fortin, P.
Frailis, M.
Furazawa, Y.
Funk, S.
Fusco, P.
Gargano, F.
Gasparrini, D.
Gehrels, N.
Germani, S.
Giavitto, G.
Giglietto, N.
Giordano, F.
Glanzman, T.
Godfrey, G.
Grenier, I. A.
Grondin, M. -H.
Grove, J. E.
Guillemot, L.
Guiriec, S.
Hadasch, D.
Hardino, A. K.
Hays, E.
Hughes, R. E.
Johannesson, G.
Johnson, A. S.
Johnson, T. J.
Johnson, W. N.
Kamae, T.
Katagiri, H.
Kataoka, J.
Kawai, N.
Kerr, M.
Knoedlseder, J.
Kuss, M.
Lande, J.
Latronico, L.
Lemoine-Goumard, M.
Longo, F.
Loparco, F.
Lott, B.
Lovellette, M. N.
Lubrano, P.
Makeev, A.
Marelli, M.
Mazziotta, M. N.
McEnery, J. E.
Meurer, C.
Michelson, P. F.
Mitthumsiri, W.
Mizuno, T.
Moiseev, A. A.
Monte, C.
Monzani, M. E.
Morselli, A.
Moskalenk, I. V.
Murgia, S.
Nolan, P. L.
Norris, J. P.
Nuss, E.
Ohsugi, T.
Omodei, N.
Orlando, E.
Ormes, J. F.
Ozaki, M.
Paneque, D.
Panetta, J. H.
Parent, D.
Pelassa, V.
Pepe, M.
Pesce-Rollins, M.
Piron, F.
Porter, T. A.
Raino, S.
Rando, R.
Rayi, P. S.
Razzano, M.
Reimer, A.
Reimer, O.
Reposeur, T.
Rochester, L. S.
Rodriguez, A. Y.
Romani, R. W.
Roth, M.
Ryde, F.
Sadrozinski, H. F. -W.
Sander, A.
Parkinson, P. M. Saz
Scargle, J. D.
Sgro, C.
Siskind, E. J.
Smith, D. A.
Smith, P. D.
Spandre, G.
Spinelli, P.
Strickman, M. S.
Suson, D. J.
Takahashi, H.
Takahashi, T.
Tanaka, T.
Thayer, J. B.
Thayer, J. G.
Thompson, D. J.
Tibaldo, L.
Torres, D. F.
Tosti, G.
Tramacere, A.
Usher, T. L.
Van Etten, A.
Vasileiou, V.
Venter, C.
Vilchez, N.
Vitale, V.
Waite, A. P.
Wang, P.
Watters, K.
Winer, B. L.
Wood, K. S.
Ylinen, T.
Ziegler, M.
TI FERMI-LAT OBSERVATIONS OF THE GEMINGA PULSAR
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE gamma rays: stars; pulsars: general; pulsars: individual (PSR
J0633+1746, Geminga)
ID LARGE-AREA TELESCOPE; GAMMA-RAY PULSARS; PHASE-RESOLVED SPECTRA;
SPACE-TELESCOPE; VELA PULSAR; OUTER MAGNETOSPHERE; OPTICAL COUNTERPART;
WIND TORI; RADIATION; EMISSION
AB We report on the Fermi-LAT observations of the Geminga pulsar, the second brightest non-variable GeV source in the gamma-ray sky and the first example of a radio-quiet gamma-ray pulsar. The observations cover one year, from the launch of the Fermi satellite through 2009 June 15. A data sample of over 60,000 photons enabled us to build a timing solution based solely on gamma-rays. Timing analysis shows two prominent peaks, separated by Delta phi = 0.497 +/- 0.004 in phase, which narrow with increasing energy. Pulsed gamma-rays are observed beyond 18 GeV, precluding emission below 2.7 stellar radii because of magnetic absorption. The phase-averaged spectrum was fitted with a power law with exponential cutoff of spectral index Gamma = (1.30 +/- 0.01 +/- 0.04), cutoff energy E-0 = (2.46 +/- 0.04 +/- 0.17) GeV, and an integral photon flux above 0.1 GeV of (4.14 +/- 0.02 +/- 0.32) x 10(-6) cm(-2) s(-1). The first uncertainties are statistical and the second ones are systematic. The phase-resolved spectroscopy shows a clear evolution of the spectral parameters, with the spectral index reaching a minimum value just before the leading peak and the cutoff energy having maxima around the peaks. The phase-resolved spectroscopy reveals that pulsar emission is present at all rotational phases. The spectral shape, broad pulse profile, and maximum photon energy favor the outer magnetospheric emission scenarios.
C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Rayi, P. S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA.
[Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Washington, DC 20001 USA.
[Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Brez, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Edmonds, Y.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenk, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.; Watters, K.] Stanford Univ, WW Hansen Labs Phys, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.
[Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Brez, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Edmonds, Y.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenk, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.; Watters, K.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.
[Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-156127 Pisa, Italy.
[Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Tibaldo, L.] Univ Paris Diderot, CNRS IRFU, Lab AIM,Serv Astrophys, CEA Saclay, F-91191 Gif Sur Yvette, France.
[Barbiellini, G.; Giavitto, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.
[Barbiellini, G.; Giavitto, G.; Longo, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy.
[Bastier, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Bastier, D.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy.
[Baughman, B. M.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Bignami, G. F.] IUSS, I-27100 Pavia, Italy.
[Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy.
[Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy.
[Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] M Merlin Univ Politecn Bari, Dipartimento Fis, I-70126 Bari, Italy.
[Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Brueli, P.; Fegan, S. J.; Fortin, P.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain.
[Caraveo, P. A.; Marelli, M.] INAF Ist Astrofis Spaziale Fis Cosm, Milan, Italy.
[Celik, Oe.; Gehrels, N.; Hardino, A. K.; Hays, E.; Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Celik, Oe.; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA.
[Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA.
[Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA.
[Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA.
[Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, Montpellier, France.
[Conrad, J.; Meurer, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden.
[Conrad, J.; Meurer, C.; Ryde, F.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden.
[Dormody, M.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA.
[Dormody, M.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
[Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, IN2P3, F-33175 Gradignan, France.
[Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, CEN Bordeaux Gradignan, F-33175 Gradignan, France.
[Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy.
[Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy.
[Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy.
[Furazawa, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan.
[Gasparrini, D.] ASI Sci Date Ctr, I-00044 Frascati, Italy.
[Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany.
[Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeronom Res, Huntsville, AL 35899 USA.
[Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain.
[Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
[Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan.
[Kawai, N.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan.
[Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan.
[Knoedlseder, J.; Vilchez, N.] CNRS, UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France.
[Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy.
[Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA.
[Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan.
[Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan.
[Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria.
[Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria.
[Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden.
[Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA.
[Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA.
[Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA.
[Tramacere, A.] CIFS, I-10133 Turin, Italy.
[Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland.
[Venter, C.] NW Univ, ZA-2520 Potchefstroom, South Africa.
[Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy.
[Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden.
RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA.
EM dumora@cenbg.in2p3.fr; Fabio.Gargano@ba.infn.it;
massimiliano.razzano@pi.infn.it
RI Thompson, David/D-2939-2012; Gehrels, Neil/D-2971-2012; McEnery,
Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano,
pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss,
Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer,
Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013;
Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson,
Neil/G-3309-2014; Venter, Christo/E-6884-2011; Funk, Stefan/B-7629-2015;
Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Johannesson,
Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario
/O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016;
Orlando, E/R-5594-2016;
OI Thompson, David/0000-0001-5217-9135; lubrano,
pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553;
giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385;
Tramacere, Andrea/0000-0002-8186-3793; Baldini,
Luca/0000-0002-9785-7726; Ray, Paul/0000-0002-5297-5278; Marelli,
Martino/0000-0002-8017-0338; Frailis, Marco/0000-0002-7400-2135;
Caraveo, Patrizia/0000-0003-2478-8018; Bastieri,
Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577;
Pesce-Rollins, Melissa/0000-0003-1790-8018; Berenji,
Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495;
Venter, Christo/0000-0002-2666-4812; Funk, Stefan/0000-0002-2012-0080;
Gargano, Fabio/0000-0002-5055-6395; Loparco,
Francesco/0000-0002-1173-5673; Johannesson,
Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X;
Mazziotta, Mario /0000-0001-9325-4672; Torres,
Diego/0000-0002-1522-9065; Bignami, Giovanni/0000-0001-9582-2450; Sgro',
Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394;
Rando, Riccardo/0000-0001-6992-818X
FU K. A. Wallenberg Foundation; International Doctorate on Astroparticle
Physics (IDAPP); Istituto Nazionale di Astrofisica in Italy; Centre
National d'Etudes Spatiales in France
FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant
from the K. A. Wallenberg Foundation.; Partially supported by the
International Doctorate on Astroparticle Physics (IDAPP) program.; The
Fermi-LAT Collaboration acknowledges generous ongoing support from a
number of agencies and institutes that have supported both the
development and the operation of the LAT as well as scientific data
analysis. These include the National Aeronautics and Space
Administration and the Department of Energy in the United States; the
Commissariat a l'Energie Atomique and the Centre National de la
Recherche Scientifique/Institut National de Physique Nucleaire et de
Physique des Particules in France; the Agenzia Spaziale Italiana and the
Istituto Nazionale di Fisica Nucleare in Italy; the Ministry of
Education, Culture, Sports, Science and Technology (MEXT), High Energy
Accelerator Research Organization (KEK), and Japan Aerospace Exploration
Agency (JAXA) in Japan; and the K. A. Wallenberg Foundation, the Swedish
Research Council, and the Swedish National Space Board in Sweden.
Additional support for science analysis during the operations phase is
gratefully acknowledged from the Istituto Nazionale di Astrofisica in
Italy and the Centre National d'Etudes Spatiales in France.
NR 64
TC 45
Z9 46
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 1
PY 2010
VL 720
IS 1
BP 272
EP 283
DI 10.1088/0004-637X/720/1/272
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647DJ
UT WOS:000281596000025
ER
PT J
AU Mancone, CL
Gonzalez, AH
Brodwin, M
Stanford, SA
Eisenhardt, PRM
Stern, D
Jones, C
AF Mancone, Conor L.
Gonzalez, Anthony H.
Brodwin, Mark
Stanford, Spencer A.
Eisenhardt, Peter R. M.
Stern, Daniel
Jones, Christine
TI THE FORMATION OF MASSIVE CLUSTER GALAXIES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: clusters: general; galaxies: evolution galaxies: formation;
galaxies: luminosity function, mass function
ID IRAC SHALLOW SURVEY; STELLAR POPULATION SYNTHESIS; NEAR-INFRARED
PROPERTIES; LUMINOSITY FUNCTION; RED SEQUENCE; STAR-FORMATION;
EVOLUTION; SPITZER; 1ST; UNCERTAINTIES
AB We present composite 3.6 and 4.5 mu m luminosity functions (LFs) for cluster galaxies measured from the Spitzer Deep, Wide-Field Survey for 0.3 < z < 2. We compare the evolution of m* for these LFs to models for passively evolving stellar populations to constrain the primary epoch of star formation in massive cluster galaxies. At low redshifts (z less than or similar to 1.3), our results agree well with models with no mass assembly and passively evolving stellar populations with a luminosity-weighted mean formation redshift z(f) = 2.4 assuming a Kroupa initial mass function (IMF). We conduct a thorough investigation of systematic biases that might influence our results, and estimate systematic uncertainties of Delta z(f) = (+0.16)(-0.18) (model normalization), Delta z(f) = (+0.40)(-0.05) (a), and Delta z(f) = (+0.30)(-0.45) (choice of stellar population model). For a Salpeter-type IMF, the typical formation epoch is thus strongly constrained to be z similar to 2-3. Higher formation redshifts can only be made consistent with the data if one permits an evolving IMF that is bottom-light at high redshift, as suggested by van Dokkum. At high redshifts (z greater than or similar to 1.3), we also witness a statistically significant (>5 sigma) disagreement between the measured LF and the continuation of the passive evolution model from lower redshifts. After considering potential systematic biases that might influence our highest redshift data points, we interpret the observed deviation as potential evidence for ongoing mass assembly at this epoch.
C1 [Mancone, Conor L.; Gonzalez, Anthony H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA.
[Brodwin, Mark; Jones, Christine] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Stanford, Spencer A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[Stanford, Spencer A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA.
[Eisenhardt, Peter R. M.; Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Mancone, CL (reprint author), Univ Florida, Dept Astron, Gainesville, FL 32611 USA.
EM cmaneone@astro.ufl.edu; anthony@astro.ufl.edu
FU National Science Foundation [AST-0708490]; U.S. Department of Energy by
Lawrence Livermore National Laboratory [W-7405-Eng-48,
DE-AC52-07NA27344]; NASA
FX This paper is based upon work supported by the National Science
Foundation under grant AST-0708490. Part of this work was performed
under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory in part under Contract W-7405-Eng-48 and
in part under Contract DE-AC52-07NA27344. The work of P.R.M.E. and D.S.
was carried out at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with NASA. This work is based on
observations made with the Spitzer Space Telescope, which is operated by
the Jet Propulsion Laboratory, California Institute of Technology under
a contract with NASA. Support for this work was provided by NASA through
an award issued by JPL/Caltech.
NR 40
TC 46
Z9 46
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 1
PY 2010
VL 720
IS 1
BP 284
EP 298
DI 10.1088/0004-637X/720/1/284
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647DJ
UT WOS:000281596000026
ER
PT J
AU Lewis, NK
Showman, AP
Fortney, JJ
Marley, MS
Freedman, RS
Lodders, R
AF Lewis, Nikole K.
Showman, Adam P.
Fortney, Jonathan J.
Marley, Mark S.
Freedman, Richard S.
Lodders, Ratharina
TI ATMOSPHERIC CIRCULATION OF ECCENTRIC HOT NEPTUNE GJ436b
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE atmospheric effects; methods: numerical; planets and satellites:
general; planets and satellites: individual (GJ436b)
ID HUBBLE-SPACE-TELESCOPE; HD 209458B; GIANT PLANETS; GJ 436B; JUPITERS;
SIMULATIONS; DYNAMICS; 189733B; TRANSIT; SPITZER
AB GJ436b is a unique member of the transiting extrasolar planet population being one of the smallest and least irradiated and possessing an eccentric orbit. Because of its size, mass, and density, GJ436b could plausibly have an atmospheric metallicity similar to Neptune (20-60 times solar abundances), which makes it an ideal target to study the effects of atmospheric metallicity on dynamics and radiative transfer in an extrasolar planetary atmosphere. We present three-dimensional atmospheric circulation models that include realistic non-gray radiative transfer for 1, 3, 10, 30, and 50 times solar atmospheric metallicity cases of GJ436b. Low metallicity models (1 and 3 times solar) show little day/night temperature variation and strong high-latitude jets. In contrast, higher metallicity models (30 and 50 times solar) exhibit day/night temperature variations and a strong equatorial jet. Spectra and light curves produced from these simulations show strong orbital phase dependencies in the 50 times solar case and negligible variations with orbital phase in the 1 times solar case. Comparisons between the predicted planet/star flux ratio from these models and current secondary eclipse measurements support a high metallicity atmosphere (30-50 times solar abundances) with disequilibrium carbon chemistry at play for GJ436b. Regardless of the actual atmospheric composition of GJ436b, our models serve to illuminate how metallicity influences the atmospheric circulation for a broad range of warm extrasolar planets.
C1 [Lewis, Nikole K.; Showman, Adam P.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA.
[Lewis, Nikole K.; Showman, Adam P.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA.
[Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
[Marley, Mark S.; Freedman, Richard S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
[Lodders, Ratharina] Washington Univ, St Louis, MO 63130 USA.
[Freedman, Richard S.] SETI Inst, Mountain View, CA 94043 USA.
RP Lewis, NK (reprint author), Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA.
EM nlewis@lpl.arizona.edu
RI Marley, Mark/I-4704-2013;
OI Marley, Mark/0000-0002-5251-2943; Fortney, Jonathan/0000-0002-9843-4354
FU NASA Headquarters [NNX08AX02H, NNX08AF27G]; NSF [AST 0707377]; National
Science Foundation; NASA Advanced Supercomputing (NAS) Division at Ames
Research Center
FX This work was supported by NASA Headquarters under the NASA Earth and
Space Science Fellowship Program (Grant NNX08AX02H) and Origins Program
(Grant NNX08AF27G). Work by K.L. was supported by NSF grant AST 0707377
and by the National Science Foundation, while working at the Foundation.
Resources supporting this work were provided by the NASA High-End
Computing (HEC) Program through the NASA Advanced Supercomputing (NAS)
Division at Ames Research Center. The authors thank Yuan Lian for his
helpful insights into working with the MITgcm and the anonymous referee
for their helpful comments and suggestions.
NR 46
TC 76
Z9 77
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD SEP 1
PY 2010
VL 720
IS 1
BP 344
EP 356
DI 10.1088/0004-637X/720/1/344
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 647DJ
UT WOS:000281596000031
ER
PT J
AU Shao, M
Catanzarite, J
Pan, XP
AF Shao, Michael
Catanzarite, Joseph
Pan, Xiaopei
TI THE SYNERGY OF DIRECT IMAGING AND ASTROMETRY FOR ORBIT DETERMINATION OF
EXO-EARTHS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE astrometry; planets and satellites: detection; techniques: high angular
resolution
ID SUPER-EARTHS; PLANETS; SEARCH; MASS
AB The holy grail of exoplanet searches is an exo-Earth, an Earth mass planet in the habitable zone (HZ) around a nearby star. Mass is one of the most important characteristics of a planet and can only be measured by observing the motion of the star around the planet star center of gravity. The planet's orbit can be measured either by imaging the planet at multiple epochs or by measuring the position of the star at multiple epochs by space-based astrometry. The measurement of an exoplanet