FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Peslier, AH AF Peslier, Anne H. TI A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH LA English DT Article DE water; hydrogen; mantle; peridotite; melt; Mars; Moon ID QUANTITATIVE ABSORBENCY SPECTROSCOPY; LIGHT LITHOPHILE ELEMENTS; BENEATH SOUTHERN AFRICA; MID-ATLANTIC RIDGE; ORTHO-PYROXENE; HIGH-PRESSURE; HYDROGEN INCORPORATION; LITHOSPHERIC MANTLE; SUBDUCTION ZONES; BASALTIC GLASSES AB Olivine, pyroxene and garnet are nominally anhydrous but can accommodate tens to hundreds of parts per million (ppm) H2O or "water" in the form of protons incorporated in defects in their mineral structure. This review concerns the amount of water in nominally anhydrous minerals from mantle and mantle-derived rocks: peridotites, eclogites, megacrysts, basalts and kimberlites. Trends between internal and external parameters and water content in olivine, pyroxene, and garnet of mantle rocks allow us to identify what controls their H intake. The water content of pyroxenes and garnets in peridotites appears to depend primarily on mineral chemistry, while that of olivines may more readily reflect water activity and water fugacity conditions in the mantle. In eclogites, both mineral chemistry and metamorphic pressure control the water intake of pyroxene and garnet. The water content of minerals in crystallized melts (basalt and kimberlite phenocrysts, xenocrysts, and megacrysts) is determined by the degree of differentiation, the amount of water in the parent melt, and degassing. Basalt and cumulate minerals from Martian meteorites may be as water-rich as their Earth equivalents. No water has been detected at present in Moon minerals but low amounts in degassed basaltic glasses signify that deep Moon reservoirs may still retain water. The presence of water in mantle minerals, typically amounts of tens to hundreds of ppm, enhances their deformation properties. Water contents of peridotite minerals in the oceanic upper mantle, in and around cratons, and in subduction zones may have tremendous influence on Earth's geodynamics. (C) 2009 Elsevier B.V. All rights reserved. C1 [Peslier, Anne H.] Jacobs Technol, ESCG, Houston, TX 77058 USA. [Peslier, Anne H.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Peslier, AH (reprint author), Jacobs Technol, ESCG, Mail Code JE23,2224 Bay Area Blvd, Houston, TX 77058 USA. EM anne.h.peslier@nasa.gov RI Peslier, Anne/F-3956-2010 NR 233 TC 61 Z9 65 U1 4 U2 50 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0273 EI 1872-6097 J9 J VOLCANOL GEOTH RES JI J. Volcanol. Geotherm. Res. PD NOV 30 PY 2010 VL 197 IS 1-4 SI SI BP 239 EP 258 DI 10.1016/j.jvolgeores.2009.10.006 PG 20 WC Geosciences, Multidisciplinary SC Geology GA 702MP UT WOS:000285899100015 ER PT J AU Bera, PP Francisco, JS Lee, TJ AF Bera, Partha P. Francisco, Joseph S. Lee, Timothy J. TI Reply to Wallington et al.: Differences in electronic structure of global warming molecules lead to different molecular properties SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Letter ID RADIATIVE EFFICIENCY C1 [Bera, Partha P.; Lee, Timothy J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. [Francisco, Joseph S.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. [Francisco, Joseph S.] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. RP Lee, TJ (reprint author), NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. EM Timothy.J.Lee@nasa.gov RI Lee, Timothy/K-2838-2012; Bera, Partha /K-8677-2012 NR 6 TC 1 Z9 1 U1 0 U2 8 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 30 PY 2010 VL 107 IS 48 BP E180 EP E180 DI 10.1073/pnas.1008576107 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 687ET UT WOS:000284762400002 ER PT J AU Wallington, TJ Andersen, MPS Nielsen, OJ AF Wallington, T. J. Andersen, M. P. Sulbaek Nielsen, O. J. TI Relative integrated IR absorption in the atmospheric window is not the same as relative radiative efficiency SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Letter C1 [Nielsen, O. J.] Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark. [Wallington, T. J.] Ford Motor Co, Syst Analyt & Environm Sci Dept, Dearborn, MI 48121 USA. [Andersen, M. P. Sulbaek] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Nielsen, OJ (reprint author), Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark. EM ojn@kiku.dk RI Sulbaek Andersen, Mads/C-4708-2008; Nielsen, Ole/B-9988-2011 OI Sulbaek Andersen, Mads/0000-0002-7976-5852; Nielsen, Ole/0000-0002-0088-3937 NR 5 TC 3 Z9 3 U1 0 U2 4 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 30 PY 2010 VL 107 IS 48 BP E178 EP E179 DI 10.1073/pnas.1008011107 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 687ET UT WOS:000284762400001 PM 21084630 ER PT J AU Dehghani, M Zoej, MJV Entezam, I Saatchi, S Shemshaki, A AF Dehghani, Maryam Zoej, Mohammad Javad Valadan Entezam, Iman Saatchi, Sassan Shemshaki, Amir TI Interferometric measurements of ground surface subsidence induced by overexploitation of groundwater SO JOURNAL OF APPLIED REMOTE SENSING LA English DT Article DE Subsidence; radar interferometry; time series analysis ID SYNTHETIC-APERTURE RADAR; LAND SUBSIDENCE; LAS-VEGAS; DEFORMATION; VALLEY; CALIFORNIA AB Precise leveling surveys across southwest of Tehran have revealed a significant subsidence due to the overexploitation of groundwater. In order to monitor the temporal evolution of the deformation, Interferometric SAR time series analysis was applied using ENVISAT ASAR images recorded between 2003 and 2005. Only Interferograms with small temporal baselines are processed to decrease the temporal decorrelation effect caused by the agricultural fields. However, the spatial baselines of the processed interferograms are not as small as in the conventional Small Baseline Subset (SBAS) method. Coherence analysis reveals that the spatial decorrelation is insignificant. However, since the constructed interferograms are affected by topographic artifacts caused by the large spatial baselines, a multi-step procedure was used in order to refine the interferometric phase. Smoothed time series analysis was then carried out to retrieve the atmospheric-error free deformation corresponding to every acquisition time. The mean displacement velocity map extracted from the time series results indicates a maximum subsidence rate of 24 cm/yr. Chronological sequence of the computed deformations for several points located in the subsidence area shows the permanent aquifer system compaction at a long-term constant rate on which the seasonal effects are superimposed. Sustained hydraulic head declines reveal a relatively low correlation with InSAR derived information. Comparison of the subsidence rate to soil type profiles in different parts of the subsidence area was then used to interpret the deformation signal. C1 [Dehghani, Maryam; Zoej, Mohammad Javad Valadan] KN Toosi Univ Technol, Fac Geodesy & Geomatics, Tehran, Iran. [Entezam, Iman; Shemshaki, Amir] Geol Survey Iran, Engn Geol Grp, Tehran, Iran. [Saatchi, Sassan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Dehghani, M (reprint author), KN Toosi Univ Technol, Fac Geodesy & Geomatics, 1346 Vali Asr St, Tehran, Iran. EM dehghani_rsgsi@yahoo.com RI chen, zhu/K-5923-2013; Valadan Zoej, M. J./A-4313-2009 OI Valadan Zoej, M. J./0000-0003-4325-8741 NR 26 TC 3 Z9 3 U1 0 U2 15 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1931-3195 J9 J APPL REMOTE SENS JI J. Appl. Remote Sens. PD NOV 29 PY 2010 VL 4 AR 041864 DI 10.1117/1.3527999 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 704RE UT WOS:000286069300001 ER PT J AU Stott, AC Brauer, JI Garg, A Pepper, SV Abel, PB DellaCorte, C Noebe, RD Glennon, G Bylaska, E Dixon, DA AF Stott, Amanda C. Brauer, Jonathan I. Garg, Anita Pepper, Stephen V. Abel, Philip B. DellaCorte, Christopher Noebe, Ronald D. Glennon, Glenn Bylaska, Eric Dixon, David A. TI Bonding and Microstructural Stability in Ni55Ti45 Studied by Experimental and Theoretical Methods SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SHAPE-MEMORY ALLOYS; GENERALIZED GRADIENT APPROXIMATION; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; MECHANICAL-PROPERTIES; PHASE-STABILITY; IN-SITU; TRANSFORMATION BEHAVIOR; ELECTRONIC-PROPERTIES AB Spiral orbit tribometry friction tests performed on Ni-rich Ni55Ti45 titanium ball bearings indicate that this alloy is a promising candidate for future aerospace bearing applications. Microstructural characterization of the bearing specimens was performed using transmission electron microscopy and energy dispersive spectroscopy, with NiTi, Ni4Ti3, Ni3Ti, and Ni2Ti4Ox phases identified within the microstructure of the alloy. Density functional theory was applied to predict the electronic structure of the NixTiy phases, including the band structure and site projected density of states. Ultraviolet photoemission spectroscopy was used to verify the density of states results from the density functional theory calculations, with good agreement observed between experiment and theory. C1 [Stott, Amanda C.; Brauer, Jonathan I.; Dixon, David A.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. [Stott, Amanda C.; Pepper, Stephen V.; Abel, Philip B.; DellaCorte, Christopher] NASA, Glenn Res Ctr, Tribol & Mech Components Branch, Cleveland, OH 44135 USA. [Garg, Anita; Noebe, Ronald D.] NASA, Glenn Res Ctr, Adv Metall Branch, Cleveland, OH 44135 USA. [Glennon, Glenn] Abbott Ball Co, Hartford, CT 06133 USA. [Bylaska, Eric] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Dixon, DA (reprint author), Univ Alabama, Dept Chem, Shelby Hall,Box 870336, Tuscaloosa, AL 35487 USA. EM dadixon@bama.ua.edu FU NASA [NNX08AY65H]; U.S. Department of Energy, Office of Basic Energy Sciences; National Science Foundation; University of Alabama FX A. Stott thanks NASA Training Grant NNX08AY65H for funding this work. D. A. Dixon thanks the U.S. Department of Energy, Office of Basic Energy Sciences, the National Science Foundation, and the Robert Ramsay Fund of The University of Alabama for partial support of this work. NR 76 TC 6 Z9 6 U1 2 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 25 PY 2010 VL 114 IS 46 BP 19704 EP 19713 DI 10.1021/jp103552s PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 681CU UT WOS:000284287900022 ER PT J AU Anchukaitis, KJ Buckley, BM Cook, ER Cook, BI D'Arrigo, RD Ammann, CM AF Anchukaitis, K. J. Buckley, B. M. Cook, E. R. Cook, B. I. D'Arrigo, R. D. Ammann, C. M. TI Influence of volcanic eruptions on the climate of the Asian monsoon region SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID EL-NINO-LIKE; PAST MILLENNIUM; MODEL AB Several state-of-the-art general circulation models (GCMs) predict that large volcanic eruptions should result in anomalous dry conditions throughout much of monsoon Asia. Here, we use long and well-validated proxy reconstructions of Asian droughts and pluvials to detect the influence of volcanic radiative forcing on the hydroclimate of the region since the late Medieval period. Superposed epoch analysis reveals significantly wetter conditions over mainland southeast Asia in the year of an eruption, with drier conditions in central Asia. Our proxy and model comparison suggests that GCMs may not yet capture all of the important ocean-atmosphere dynamics responsible for the influence of explosive volcanism on the climate of Asia. Citation: Anchukaitis, K. J., B. M. Buckley, E. R. Cook, B. I. Cook, R. D. D'Arrigo, and C. M. Ammann (2010), Influence of volcanic eruptions on the climate of the Asian monsoon region, Geophys. Res. Lett., 37, L22703, doi:10.1029/2010GL044843. C1 [Anchukaitis, K. J.; Buckley, B. M.; Cook, E. R.; Cook, B. I.; D'Arrigo, R. D.] Columbia Univ, Lamont Doherty Earth Observ, Earth Inst, Palisades, NY 10946 USA. [Ammann, C. M.] Natl Ctr Atmospher Res, Climate & Global Dynam Div, Boulder, CO 80307 USA. [Cook, B. I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Anchukaitis, KJ (reprint author), Columbia Univ, Lamont Doherty Earth Observ, Earth Inst, 61 Route 9W, Palisades, NY 10946 USA. EM kja@ldeo.columbia.edu RI Cook, Benjamin/H-2265-2012; OI Anchukaitis, Kevin/0000-0002-8509-8080 FU NSF [ATM 0402474, AGS 0908971] FX This work was supported by NSF grants ATM 0402474 and AGS 0908971. This is LDEO Contribution 7403. NR 24 TC 35 Z9 37 U1 4 U2 29 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 25 PY 2010 VL 37 AR L22703 DI 10.1029/2010GL044843 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 686NO UT WOS:000284703200002 ER PT J AU Moore, JM Howard, AD AF Moore, Jeffrey M. Howard, Alan D. TI Are the basins of Titan's Hotei Regio and Tui Regio sites of former low latitude seas? SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SURFACE; ATMOSPHERE; LAKES; MARS AB Features observed in the low-latitude basins of Hotei Regio and Tui Regio on Titan have attracted the attention of the Cassini-era investigators. At both locations, Visual Infrared Mapping Spectrometer (VIMS) observed isolated 5-mu m bright similar to 500 km wide features described as lobate in shape. Several studies have proposed that these materials are cryo-volcanic flows. We propose an alternative explanation. Recently published topographic profiles across Hotei Regio and Tui Regio indicate these features appear to occur in large regional basins, at least along the direction of the profiles. Cassini Synthetic Aperture Radar (SAR) images show that the terrains surrounding both topographically low-lying 5-mu m bright features exhibit fluvial networks that appear to converge into the probable basins. The 5-mu m bright features themselves correspond to fields of discrete radar-bright depressions whose bounding edges are commonly rounded and cumulate in planform in SAR images. These fields of discrete radar-bright depressions strongly resemble fields of features seen at Titan's high latitudes identified as dry lakes. Thus the combination of (1) the resemblance to high-latitude dry lakes, (2) location in the centers of regional depressions, and (3) convergence of fluvial networks are inferred by us to best explain the features of Hotei Regio and Tui Regio as sites of paleolake clusters (and perhaps former, now dry seas). These low-latitude paleolake clusters or former seas, if real, may be evidence of substantially larger inventories of liquid alkanes in Titan's past. Citation: Moore, J. M., and A. D. Howard (2010), Are the basins of Titan's Hotei Regio and Tui Regio sites of former low latitude seas?, Geophys. Res. Lett., 37, L22205, doi:10.1029/2010GL045234. C1 [Howard, Alan D.] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA. [Moore, Jeffrey M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Moore, JM (reprint author), NASA, Ames Res Ctr, M-S 245-3, Moffett Field, CA 94035 USA. EM jeff.moore@nasa.gov; ah6p@cms.mail.virginia.edu OI Howard, Alan/0000-0002-5423-1600 FU NASA FX We are grateful for the two excellent anonymous reviews, and useful reviews and conversations with Charlie Barnhart, Chris McKay, Bill McKinnon, Bob Pappalardo and Kevin Zahnle. This work was supported by NASA's Outer Planets Research Program. NR 27 TC 22 Z9 22 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 25 PY 2010 VL 37 AR L22205 DI 10.1029/2010GL045234 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 686NO UT WOS:000284703200003 ER PT J AU Schneider, P Hook, SJ AF Schneider, Philipp Hook, Simon J. TI Space observations of inland water bodies show rapid surface warming since 1985 SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CLIMATE-CHANGE; LAKE TAHOE; TEMPERATURE; SEA; VALIDATION; DATABASE; TREND AB Surface temperatures were extracted from nighttime thermal infrared imagery of 167 large inland water bodies distributed worldwide beginning in 1985 for the months July through September and January through March. Results indicate that the mean nighttime surface water temperature has been rapidly warming for the period 1985-2009 with an average rate of 0.045 +/- 0.011 degrees C yr(-1) and rates as high as 0.10 +/- 0.01 degrees C yr(-1). Worldwide the data show far greater warming in the mid- and high latitudes of the northern hemisphere than in low latitudes and the southern hemisphere. The analysis provides a new independent data source for assessing the impact of climate change throughout the world and indicates that water bodies in some regions warm faster than regional air temperature. The data have not been homogenized into a single unified inland water surface temperature dataset, instead the data from each satellite instrument have been treated separately and cross compared. Future work will focus on developing a single unified dataset which may improve uncertainties from any inter-satellite biases. Citation: Schneider, P., and S. J. Hook (2010), Space observations of inland water bodies show rapid surface warming since 1985, Geophys. Res. Lett., 37, L22405, doi: 10.1029/2010GL045059. C1 [Schneider, Philipp; Hook, Simon J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Schneider, P (reprint author), CALTECH, Jet Prop Lab, MS 183-501,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM simon.j.hook@jpl.nasa.gov FU National Aeronautics and Space Administration; NASA Earth Observing System; ESA FX The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The authors wish to acknowledge funding by the NASA Earth Observing System, support from ESA, and contributions by Robert Radocinski, Gary Corlett, Glynn Hulley, and Geoff Schladow. NR 21 TC 89 Z9 91 U1 4 U2 43 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 24 PY 2010 VL 37 AR L22405 DI 10.1029/2010GL045059 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 686NK UT WOS:000284702800003 ER PT J AU Fear, RC Milan, SE Raeder, J Sibeck, DG AF Fear, R. C. Milan, S. E. Raeder, J. Sibeck, D. G. TI Asymmetry in the bipolar signatures of flux transfer events SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SINGLE-X-LINE; WIND DYNAMIC PRESSURE; DAYSIDE MAGNETOPAUSE; RECONNECTION; MOTION; ONSET; MODEL; MAGNETOSPHERE; THICKNESS; IMF AB Several conceptual models have been proposed for the formation of flux transfer events (FTEs), including models based on reconnection at a single reconnection line (X line) and at multiple X lines. Two-dimensional magnetohydrodynamic models have previously been used to simulate both scenarios and have found a tendency for FTEs generated by single X line reconnection to exhibit an asymmetry in the bipolar B-N signature that is the major in situ signature of FTE structures, with the leading peak being substantially smaller than the trailing peak. On the other hand, simulated FTEs generated by multiple X line reconnection led to more symmetric signatures. We present a comparison of these simulation results with observations made at the Earth's magnetopause by the Cluster spacecraft, using a data set of 213 FTEs which were observed by all four spacecraft in 2002/2003 at the high-latitude magnetopause near local noon and at low latitudes on the flanks, and 36 FTEs which were observed by one or more Cluster spacecraft near the subsolar point in 2007 and 2008. A tendency is found for the B-N signatures to be asymmetric but with the leading peak larger in amplitude than the trailing peak, opposite to the prediction made by the 2-D single X line simulations. This tendency is weaker in the subsolar FTEs. Therefore, the observations are not consistent with 2-D MHD simulations of single X line reconnection. The signatures observed near the subsolar point are more consistent with those predicted by 2-D simulations of multiple X line reconnection, although the multiple X line simulation studies did not report any net asymmetry. We propose that the observed asymmetry can be explained by a compression of magnetic flux ahead of the propagating FTE structure and a rarefaction behind it. The weaker tendency nearer the subsolar point is consistent with a weaker compression and rarefaction due to lower FTE velocities. C1 [Fear, R. C.; Milan, S. E.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Raeder, J.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Sibeck, D. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Fear, RC (reprint author), Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. EM r.fear@ion.le.ac.uk RI Sibeck, David/D-4424-2012; OI Fear, Robert/0000-0003-0589-7147 FU ISSI; STFC [PP/E000983/1] FX This study was carried out as part of the International Space Science Institute (ISSI) international team on "Advances in understanding of the structure and dynamics of magnetic flux transfer at the Earth's magnetopause"; we gratefully acknowledge ISSI's support and discussions with other team members (A. Marchaudon, K. A. McWilliams, C. J. Owen, Y. Wang, and J. A. Wild). We thank E. A. Lucek and the Cluster Active Archive (http://caa.estec.esa.int/) for data from the Cluster FGM instrument. Work at the University of Leicester was supported by STFC grant PP/E000983/1. We also thank the referees for their constructive suggestions. NR 33 TC 6 Z9 6 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 23 PY 2010 VL 115 AR A11217 DI 10.1029/2010JA015363 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 686PN UT WOS:000284708300001 ER PT J AU Tam, CKW Ju, H Jones, MG Watson, WR Parrott, TL AF Tam, Christopher K. W. Ju, H. Jones, M. G. Watson, W. R. Parrott, T. L. TI A computational and experimental study of resonators in three dimensions SO JOURNAL OF SOUND AND VIBRATION LA English DT Article ID ACOUSTIC-IMPEDANCE AB In a previous work by the present authors, a computational and experimental investigation of the acoustic properties of two-dimensional slit resonators was carried out. The present paper reports the results of a study extending the previous work to three dimensions. This investigation has two basic objectives. The first is to validate the computed results from direct numerical simulations of the flow and acoustic fields of slit resonators in three dimensions by comparing with experimental measurements in a normal incidence impedance tube. The second objective is to study the flow physics of resonant liners responsible for sound wave dissipation. Extensive comparisons are provided between computed and measured acoustic liner properties with both discrete frequency and broadband sound sources. Good agreements are found over a wide range of frequencies and sound pressure levels. Direct numerical simulation confirms the previous finding in two dimensions that vortex shedding is the dominant dissipation mechanism at high sound pressure intensity. However, it is observed that the behavior of the shed vortices in three dimensions is quite different from those of two dimensions. In three dimensions, the shed vortices tend to evolve into ring (circular in plan form) vortices, even though the slit resonator opening from which the vortices are shed has an aspect ratio of 2.5. Under the excitation of discrete frequency sound, the shed vortices align themselves into two regularly spaced vortex trains moving away from the resonator opening in opposite directions. This is different from the chaotic shedding of vortices found in two-dimensional simulations. The effect of slit aspect ratio at a fixed porosity is briefly studied. For the range of liners considered in this investigation, it is found that the absorption coefficient of a liner increases when the open area of the single slit is subdivided into multiple, smaller slits. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Tam, Christopher K. W.; Ju, H.] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA. [Jones, M. G.; Watson, W. R.; Parrott, T. L.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Tam, CKW (reprint author), Florida State Univ, Dept Math, Tallahassee, FL 32306 USA. EM tam@math.fsu.edu FU NASA [NNL04AA01A] FX The work of CKWT and HJ was supported initially by a NASA Cooperative Agreement NNL04AA01A. NR 19 TC 13 Z9 14 U1 0 U2 8 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-460X J9 J SOUND VIB JI J. Sound Vibr. PD NOV 22 PY 2010 VL 329 IS 24 BP 5164 EP 5193 DI 10.1016/j.jsv.2010.06.005 PG 30 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA 643KS UT WOS:000281295900010 ER PT J AU Mauerhan, JC Wachter, S Morris, PW Van Dyk, SD Hoard, DW AF Mauerhan, Jon C. Wachter, Stefanie Morris, Patrick W. Van Dyk, Schuyler D. Hoard, D. W. TI DISCOVERY OF TWIN WOLF-RAYET STARS POWERING DOUBLE RING NEBULAE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE circumstellar matter; stars: Wolf-Rayet ID MASSIVE STARS; MU-M; RED SUPERGIANTS; SPECTRAL ATLAS; GALACTIC PLANE; O-STARS; SUPERNOVA REMNANT; INFRARED-SPECTRA; CLUSTER; SPECTROSCOPY AB We have spectroscopically discovered a pair of twin, nitrogen-type, hydrogen-rich, Wolf-Rayet stars (WN8-9h) that are both surrounded by circular, mid-infrared-bright nebulae detected with the Spitzer Space Telescope and MIPS instrument. The emission is probably dominated by a thermal continuum from cool dust, but alsomay contain contributions from atomic line emission. There is no counterpart at shorter Spitzer/IRAC wavelengths, indicating a lack of emission from warm dust. The two nebulae are probably wind-swept stellar ejecta released by the central stars during a prior evolutionary phase. The nebulae partially overlap on the sky and we speculate on the possibility that they are in the early stage of a collision. Two other evolved massive stars have also been identified within the area subtended by the nebulae, including a carbon-type Wolf-Rayet star (WC8) and an O7-8 III-I star, the latter of which appears to be embedded in one of the larger WN8-9h nebulae. The derived distances to these stars imply that they are coeval members of an association lying 4.9 +/- 1.2 kpc from Earth, near the intersection of the Galaxy's Long Bar and the Scutum-Centaurus spiral arm. This new association represents an unprecedented display of complex interactions between multiple stellar winds, outflows, and the radiation fields of evolved massive stars. C1 [Mauerhan, Jon C.; Wachter, Stefanie; Van Dyk, Schuyler D.; Hoard, D. W.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Morris, Patrick W.] CALTECH, NASA, Herschel Sci Ctr, Pasadena, CA 91125 USA. RP Mauerhan, JC (reprint author), CALTECH, Spitzer Sci Ctr, Mail Code 220-6,1200 E Calif Blvd, Pasadena, CA 91125 USA. EM mauerhan@ipac.caltech.edu OI Hoard, Donald W./0000-0002-6800-6519; Van Dyk, Schuyler/0000-0001-9038-9950 NR 37 TC 14 Z9 14 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 20 PY 2010 VL 724 IS 1 BP L78 EP L83 DI 10.1088/2041-8205/724/1/L78 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679HM UT WOS:000284152500017 ER PT J AU Yusef-Zadeh, F Wardle, M Bushouse, H Dowell, CD Roberts, DA AF Yusef-Zadeh, F. Wardle, M. Bushouse, H. Dowell, C. D. Roberts, D. A. TI OCCULTATION OF THE QUIESCENT EMISSION FROM Sgr A* BY IR FLARES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE accretion, accretion disks; black hole physics; Galaxy: center ID X-RAY; FLARING ACTIVITY; STELLAR ORBITS; BLACK-HOLE; SAGITTARIUS; MULTIWAVELENGTH; MODEL AB We have investigated the nature of flare emission from Sgr A* during multi-wavelength observations of this source that took place in 2004, 2005, and 2006. We present evidence for dimming of submillimeter and radio flux during the peak of near-IR flares. This suggests that the variability of Sgr A* across its wavelength spectrum is phenomenologically related. The model explaining this new behavior of flare activity could be consistent with adiabatically cooling plasma blobs that are expanding but also partially eclipsing the background quiescent emission from Sgr A*. When a flare is launched, the plasma blob is most compact and is brightest in the optically thin regime whereas the emission in radio/submillimeter wavelengths has a higher opacity. Absorption in the observed light curve of Sgr A* at radio/submillimeter flux is due to the combined effects of lower brightness temperature of plasma blobs with respect to the quiescent brightness temperature and high opacity of plasma blobs. This implies that plasma blobs are mainly placed in the magnetosphere of a disk-like flow or further out in the flow. The depth of the absorption being larger in submillimeter than in radio wavelengths implies that the intrinsic size of the quiescent emission increases with increasing wavelength which is consistent with previous size measurements of Sgr A*. Lastly, we believe that occultation of the quiescent emission of Sgr A* at radio/submillimeter by IR flares can be used as a powerful tool to identify flare activity at its earliest phase of its evolution. C1 [Yusef-Zadeh, F.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Wardle, M.] Macquarie Univ, Dept Phys & Astron, Sydney, NSW 2109, Australia. [Bushouse, H.] STScI, Baltimore, MD 21218 USA. [Dowell, C. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Roberts, D. A.] Adler Planetarium & Astron Museum, Chicago, IL 60605 USA. RP Yusef-Zadeh, F (reprint author), Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. OI Wardle, Mark/0000-0002-1737-0871 FU NSF [AST-0807400] FX This work is partially supported by the grant AST-0807400 from the NSF. We are grateful to D. Marrone, S. Hornstein, and F. Baganoff for providing us with their data. NR 22 TC 8 Z9 8 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 20 PY 2010 VL 724 IS 1 BP L9 EP L15 DI 10.1088/2041-8205/724/1/L9 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679HM UT WOS:000284152500003 ER PT J AU Schnittman, JD AF Schnittman, Jeremy D. TI THE LAGRANGE EQUILIBRIUM POINTS L-4 AND L-5 IN BLACK HOLE BINARY SYSTEM SO ASTROPHYSICAL JOURNAL LA English DT Article DE black hole physics; galaxies: nuclei; gravitational waves; relativistic processes ID RESTRICTED 3-BODY PROBLEM; TIDAL DISRUPTION; TROJAN ASTEROIDS; ACCRETION; STARS; STABILITY; JUPITER; FLARES; DISKS; RESONANCES AB We calculate the location and stability of the L-4 and L-5 Lagrange equilibrium points in the circular restricted three-body problem as the binary system evolves via gravitational radiation losses. Relative to the purely Newtonian case, we find that the L-4 equilibrium point moves toward the secondary mass and becomes slightly less stable, while the L-5 point moves away from the secondary and gains in stability. We discuss a number of astrophysical applications of these results, in particular as amechanism for producing electromagnetic counterparts to gravitational-wave signals. C1 [Schnittman, Jeremy D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Schnittman, Jeremy D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Schnittman, JD (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RI Schnittman, Jeremy/D-3168-2012 FU Chandra Postdoctoral Fellowship FX The author thanks Doug Hamilton, Matthew Holman, Scott Hughes, Julian Krolik, David Merritt, and Cole Miller for helpful discussions and comments. The anonymous referee provided invaluable comments and suggestions. This work was supported by the Chandra Postdoctoral Fellowship Program. NR 55 TC 22 Z9 22 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2010 VL 724 IS 1 BP 39 EP 48 DI 10.1088/0004-637X/724/1/39 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678RC UT WOS:000284096900004 ER PT J AU Cahoy, KL Marley, MS Fortney, JJ AF Cahoy, Kerri L. Marley, Mark S. Fortney, Jonathan J. TI EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: numerical; planets and satellites: general; radiative transfer; scattering ID EXTRASOLAR GIANT PLANETS; LIGHT CURVES; T-DWARFS; MONOCHROMATIC RADIATION; TERRESTRIAL PLANETS; THERMAL STRUCTURE; ROTATING EARTH; JOVIAN PLANETS; BROWN DWARFS; SOLAR-SYSTEM AB First generation space-based optical coronagraphic telescopes will obtain images of cool gas-and ice-giant exoplanets around nearby stars. Exoplanets lying at planet-star separations larger than about 1 AU-where an exoplanet can be resolved from its parent star-have spectra that are dominated by reflected light to beyond 1 mu m and punctuated by molecular absorption features. Here, we consider how exoplanet albedo spectra and colors vary as a function of planet-star separation, metallicity, mass, and observed phase for Jupiter and Neptune analogs from 0.35 to 1 mu m. We model Jupiter analogs with 1x and 3x the solar abundance of heavy elements, and Neptune analogs with 10x and 30x the solar abundance of heavy elements. Our model planets orbit a solar analog parent star at separations of 0.8 AU, 2 AU, 5 AU, and 10 AU. We use a radiative-convective model to compute temperature-pressure profiles. The giant exoplanets are found to be cloud-free at 0.8 AU, possess H(2)O clouds at 2 AU, and have both NH(3) and H(2)O clouds at 5 AU and 10 AU. For each model planet we compute moderate resolution (R = lambda/Delta lambda similar to 800) albedo spectra as a function of phase. We also consider low-resolution spectra and colors that are more consistent with the capabilities of early direct imaging capabilities. As expected, the presence and vertical structure of clouds strongly influence the albedo spectra since cloud particles not only affect optical depth but also have highly directional scattering properties. Observations at different phases also probe different volumes of atmosphere as the source-observer geometry changes. Because the images of the planets themselves will be unresolved, their phase will not necessarily be immediately obvious, and multiple observations will be needed to discriminate between the effects of planet-star separation, metallicity, and phase on the observed albedo spectra. We consider the range of these combined effects on spectra and colors. For example, we find that the spectral influence of clouds depends more on planet-star separation and hence atmospheric temperature than metallicity, and it is easier to discriminate between cloudy 1x and 3x Jupiters than between 10x and 30x Neptunes. In addition to alkalis and methane, our Jupiter models show H(2)O absorption features near 0.94 mu m. While solar system giant planets are well separated by their broadband colors, we find that arbitrary giant exoplanets can have a large range of possible colors and that color alone cannot be relied upon to characterize planet types. We also predict that giant exoplanets receiving greater insolation than Jupiter will exhibit higher equator-to-pole temperature gradients than are found on Jupiter and thus may exhibit differing atmospheric dynamics. These results are useful for future interpretation of direct imaging exoplanet observations as well as for deriving requirements and designing filters for optical direct imaging instrumentation. C1 [Cahoy, Kerri L.; Marley, Mark S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. RP Cahoy, KL (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM kerri.l.cahoy@nasa.gov RI Marley, Mark/I-4704-2013; OI Marley, Mark/0000-0002-5251-2943; Fortney, Jonathan/0000-0002-9843-4354 FU NASA FX The authors thank Richard Freedman for providing the opacity tables used in this work, and Katharina Lodders for the elemental abundances and the condensation curves. We thank Olivier Guyon for making the initial version of the PIAA coronagraph simulation available for our use. We thank Chris McKay for several useful discussions regarding the development of the radiative transfer model. K. C. is supported by an appointment to the NASA Postdoctoral Program at NASA Ames, administered by Oak Ridge Associated Universities through a contract with NASA. M. M. and J.F. acknowledge support from the NASA Planetary Atmospheres program. NR 98 TC 53 Z9 53 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2010 VL 724 IS 1 BP 189 EP 214 DI 10.1088/0004-637X/724/1/189 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678RC UT WOS:000284096900019 ER PT J AU Perez, LM Lamb, JW Woody, DP Carpenter, JM Zauderer, BA Isella, A Bock, DC Bolatto, AD Carlstrom, J Culverhouse, TL Joy, M Kwon, W Leitch, EM Marrone, DP Muchovej, SJ Plambeck, RL Scott, SL Teuben, PJ Wright, MCH AF Perez, Laura M. Lamb, James W. Woody, David P. Carpenter, John M. Zauderer, B. Ashley Isella, Andrea Bock, Douglas C. Bolatto, Alberto D. Carlstrom, John Culverhouse, Thomas L. Joy, Marshall Kwon, Woojin Leitch, Erik M. Marrone, Daniel P. Muchovej, Stephen J. Plambeck, Richard L. Scott, Stephen L. Teuben, Peter J. Wright, Melvyn C. H. TI ATMOSPHERIC PHASE CORRECTION USING CARMA-PACS: HIGH ANGULAR RESOLUTION OBSERVATIONS OF THE FU ORIONIS STAR PP 13S* SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; stars: individual (PP 13S*); stars: pre-main sequence; techniques: interferometric ID CIRCUMSTELLAR DUST DISKS; PAIRED ANTENNAS METHOD; WATER-VAPOR; COMPENSATION EXPERIMENTS; SUBMILLIMETER; ACCRETION; DISCS; VIEW AB We present 0 ''.15 resolution observations of the 227 GHz continuum emission from the circumstellar disk around the FU Orionis star PP 13S*. The data were obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) Paired Antenna Calibration System (C-PACS), which measures and corrects the atmospheric delay fluctuations on the longest baselines of the array in order to improve the sensitivity and angular resolution of the observations. A description of the C-PACS technique and the data reduction procedures are presented. C-PACS was applied to CARMA observations of PP 13S*, which led to a factor of 1.6 increase in the observed peak flux of the source, a 36% reduction in the noise of the image, and a 52% decrease in the measured size of the source major axis. The calibrated complex visibilities were fitted with a theoretical disk model to constrain the disk surface density. The total disk mass from the best-fit model corresponds to 0.06 M(circle dot), which is larger than the median mass of a disk around a classical T Tauri star. The disk is optically thick at a wavelength of 1.3 mm for orbital radii less than 48 AU. At larger radii, the inferred surface density of the PP 13S* disk is an order of magnitude lower than that needed to develop a gravitational instability. C1 [Perez, Laura M.; Carpenter, John M.; Isella, Andrea] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Lamb, James W.; Woody, David P.; Leitch, Erik M.; Muchovej, Stephen J.; Scott, Stephen L.] CALTECH, Owens Valley Radio Observ, Big Pine, CA 93513 USA. [Zauderer, B. Ashley; Bolatto, Alberto D.; Teuben, Peter J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bock, Douglas C.] Combined Array Res Millimeter Wave Astron, Big Pine, CA 93513 USA. [Carlstrom, John; Culverhouse, Thomas L.; Leitch, Erik M.; Marrone, Daniel P.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Joy, Marshall] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Kwon, Woojin] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Plambeck, Richard L.; Wright, Melvyn C. H.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. RP Perez, LM (reprint author), CALTECH, Dept Astron, 1200 E Calif Blvd, Pasadena, CA 91125 USA. OI Marrone, Daniel/0000-0002-2367-1080 FU Gordon and Betty Moore Foundation; Kenneth T. and Eileen L. Norris Foundation; James S. McDonnell Foundation; Associates of the California Institute of Technology; University of Chicago; State of California; State of Maryland; National Science Foundation [AST 08-38260]; CARMA; NSF; Fulbright-CONICYT; State of Illinois FX Support for CARMA construction was derived from the Gordon and Betty Moore Foundation, the Kenneth T. and Eileen L. Norris Foundation, the James S. McDonnell Foundation, the Associates of the California Institute of Technology, the University of Chicago, the states of California, Illinois, and Maryland, and the National Science Foundation. Ongoing CARMA development and operations are supported by the National Science Foundation under a cooperative agreement (grant AST 08-38260), and by the CARMA partner universities. L.M.P. acknowledges support for graduate studies through a Fulbright-CONICYT scholarship. S.M. acknowledges support from an NSF Astronomy and Astrophysics Fellowship. NR 39 TC 15 Z9 15 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2010 VL 724 IS 1 BP 493 EP 501 DI 10.1088/0004-637X/724/1/493 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678RC UT WOS:000284096900043 ER PT J AU Auger, MW Treu, T Bolton, AS Gavazzi, R Koopmans, LVE Marshall, PJ Moustakas, LA Burles, S AF Auger, M. W. Treu, T. Bolton, A. S. Gavazzi, R. Koopmans, L. V. E. Marshall, P. J. Moustakas, L. A. Burles, S. TI THE SLOAN LENS ACS SURVEY. X. STELLAR, DYNAMICAL, AND TOTAL MASS CORRELATIONS OF MASSIVE EARLY-TYPE GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; galaxies: elliptical and lenticular, cD; galaxies: fundamental parameters; galaxies: structure; gravitational lensing: strong ID DIGITAL SKY SURVEY; DARK-MATTER HALOS; TO-LIGHT RATIOS; FUNDAMENTAL PLANE; ELLIPTIC GALAXIES; SCALING RELATIONS; INTERNAL STRUCTURE; HUBBLE CONSTANT; VELOCITY DISPERSIONS; GRAVITATIONAL LENSES AB We use stellar masses, surface photometry, strong-lensing masses, and stellar velocity dispersions (sigma(e/2)) to investigate empirical correlations for the definitive sample of 73 early-type galaxies (ETGs) that are strong gravitational lenses from the SLACS survey. The traditional correlations (fundamental plane (FP) and its projections) are consistent with those found for non-lens galaxies, supporting the thesis that SLACS lens galaxies are representative of massive ETGs (dimensional mass M(dim) = 10(11)-10(12) M(circle dot)). The addition of high-precision strong-lensing estimates of the total mass allows us to gain further insights into their internal structure: (1) the average slope of the total mass-density profile (rho(tot) alpha r(-gamma)') is = 2.078 +/- 0.027 with an intrinsic scatter of 0.16 +/- 0.02; (2) gamma' correlates with effective radius (r(e)) and central mass density, in the sense that denser galaxies have steeper profiles; (3) the dark matter (DM) fraction within r(e)/2 is a monotonically increasing function of galaxy mass and size (due to a mass-dependent central cold DM distribution or due to baryonic DM-stellar remnants or low-mass stars-if the initial mass function is non-universal and its normalization increases with mass); (4) the dimensional mass M(dim) equivalent to 5r(e)sigma(2)(e/2)/G is proportional to the total (lensing) mass M(re/2), and both increase more rapidly than stellar mass M(*) (M(*) alpha M(re/2)(0.8)); (5) the mass plane (MP), obtained by replacing surface brightness with surface mass density in the FP, is found to be tighter and closer to the virial relation than the FP and the M(*)P, indicating that the scatter of those relations is dominated by stellar population effects; (6) we construct the fundamental hyper-plane by adding stellar masses to the MP and find the M(*) coefficient to be consistent with zero and no residual intrinsic scatter. Our results demonstrate that the dynamical structure of ETGs is not scale invariant and that it is fully specified by M(re/2), r(e), and sigma(e/2). Although the basic trends can be explained qualitatively in terms of varying star formation efficiency as a function of halo mass and as the result of dry and wet mergers, reproducing quantitatively the observed correlations and their tightness may be a significant challenge for galaxy formation models. C1 [Auger, M. W.; Treu, T.; Marshall, P. J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Bolton, A. S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Gavazzi, R.] CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France. [Gavazzi, R.] Univ Paris 06, F-75014 Paris, France. [Koopmans, L. V. E.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Marshall, P. J.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Moustakas, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Burles, S.] DE Shaw & Co LP, Cupertino, CA 95014 USA. RP Auger, MW (reprint author), Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. EM mauger@physics.ucsb.edu OI Moustakas, Leonidas/0000-0003-3030-2360 FU NSF [NSF-0642621]; Sloan Foundation; Packard Foundation; NWO-VIDI [639.042.505]; Centre National des Etudes Spatiales; NASA [NAS5-26555]; NASA through Space Telescope Science Institute [10494, 10798, 11202]; Space Telescope Science Institute [10494, 10798, 11202]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX T.T. acknowledges support from NSF thorough CAREER award NSF-0642621, by the Sloan Foundation through a Sloan Research Fellowship and by the Packard Foundation through a Packard Fellowship. L.K. is supported through an NWO-VIDI program subsidy (project number 639.042.505). R.G. acknowledges support from the Centre National des Etudes Spatiales. The work of L.A.M. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for programs 10494, 10798, and 11202 was provided by NASA through grants from the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for programs 10494, 10798, and 11202 was provided by NASA through grants from the Space Telescope Science Institute. This work has made use of the SDSS database. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. NR 94 TC 158 Z9 158 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2010 VL 724 IS 1 BP 511 EP 525 DI 10.1088/0004-637X/724/1/511 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678RC UT WOS:000284096900045 ER PT J AU Lehmer, BD Alexander, DM Bauer, FE Brandt, WN Goulding, AD Jenkins, LP Ptak, A Roberts, TP AF Lehmer, B. D. Alexander, D. M. Bauer, F. E. Brandt, W. N. Goulding, A. D. Jenkins, L. P. Ptak, A. Roberts, T. P. TI A CHANDRA PERSPECTIVE ON GALAXY-WIDE X-RAY BINARY EMISSION AND ITS CORRELATION WITH STAR FORMATION RATE AND STELLAR MASS: NEW RESULTS FROM LUMINOUS INFRARED GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: starburst; infrared: galaxies; X-rays: binaries; X-rays: galaxies ID ACTIVE GALACTIC NUCLEUS; FORMATION RATE INDICATOR; SKY LIRG SURVEY; NGC 1365; NEARBY GALAXIES; OPTICAL CLASSIFICATION; STARBURST GALAXIES; SOURCE POPULATION; FORMING GALAXIES; SPIRAL GALAXIES AB We present new Chandra observations that complete a sample of seventeen (17) luminous infrared galaxies (LIRGs) with D < 60 Mpc and low Galactic column densities of N(H) less than or similar to 5 x 10(20) cm(-2). The LIRGs in our sample have total infrared (8-1000 mu m) luminosities in the range of L(IR) approximate to (1-8) x 10(11) L(circle dot). The high-resolution imaging and X-ray spectral information from our Chandra observations allow us to measure separately X-ray contributions from active galactic nuclei and normal galaxy processes (e. g., X-ray binaries and hot gas). We utilized total infrared plus UV luminosities to estimate star formation rates (SFRs) and K-band luminosities and optical colors to estimate stellar masses (M(star)) for the sample. Under the assumption that the galaxy-wide 2-10 keV luminosity (L(HX)(gal)) traces the combined emission from high-mass X-ray binaries (HMXBs) and low-mass X-ray binaries, and that the power output from these components is linearly correlated with SFR and M(star), respectively, we constrain the relation L(HX)(gal) = alpha M(star) + beta SFR. To achieve this, we construct a Chandra-based data set composed of our new LIRG sample combined with additional samples of less actively star-forming normal galaxies and more powerful LIRGs and ultraluminous infrared galaxies (ULIRGs) from the literature. Using these data, we measure best-fit values of alpha = (9.05 +/- 0.37) x 10(28) erg s(-1) M(circle dot)(-1) and beta = (1.62 +/- 0.22) x 10(39) erg s(-1) (M(circle dot) yr(-1))(-1). This scaling provides a more physically meaningful estimate of L(HX)(gal), with approximate to 0.1-0.2 dex less scatter, than a direct linear scaling with SFR. Our results suggest that HMXBs dominate the galaxy-wide X-ray emission for galaxies with SFR/M(star) greater than or similar to 5.9 x 10(-11) yr(-1), a factor of approximate to 2.9 times lower than previous estimates. We find that several of the most powerful LIRGs and ULIRGs, with SFR/M(star) greater than or similar to 10(-9) yr(-1), appear to be X-ray underluminous with respect to our best-fit relation. We argue that these galaxies are likely to contain X-ray binaries residing in compact star-forming regions that are buried under thick galactic columns large enough to attenuate emission in the 2-10 keV band (N(H) greater than or similar to 10(23) cm(-2)). C1 [Lehmer, B. D.; Jenkins, L. P.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Lehmer, B. D.; Jenkins, L. P.; Ptak, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Alexander, D. M.; Goulding, A. D.; Roberts, T. P.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Bauer, F. E.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. [Bauer, F. E.] Space Sci Inst, Boulder, CO 80301 USA. [Brandt, W. N.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. RP Lehmer, BD (reprint author), Johns Hopkins Univ, Homewood Campus, Baltimore, MD 21218 USA. RI Ptak, Andrew/D-3574-2012; Brandt, William/N-2844-2015; OI Alexander, David/0000-0002-5896-6313; Brandt, William/0000-0002-0167-2453; Jenkins, Leigh/0000-0001-9464-0719 FU Einstein Fellowship Program; Royal Society; Leverhulme Trust; Chandra X-ray Center [G09-0134A, G09-0134B]; NASA [NNX10AC99G] FX We thank the referee for helpful comments that have improved the manuscript. We thank Kazushi Iwasawa for generously sharing data and Lee Armus and Joseph Mazzarella for helpful discussions. We gratefully acknowledge financial support from the Einstein Fellowship Program (B.D.L.), the Royal Society (D.M.A.), the Leverhulme Trust (D.M.A.), Chandra X-ray Center grants G09-0134A (W.N.B.) and G09-0134B (F.E.B.), and NASA ADP grant NNX10AC99G (W.N.B.). This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 84 TC 117 Z9 117 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2010 VL 724 IS 1 BP 559 EP 571 DI 10.1088/0004-637X/724/1/559 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678RC UT WOS:000284096900049 ER PT J AU D'Angelo, G Lubow, SH AF D'Angelo, Gennaro Lubow, Stephen H. TI THREE-DIMENSIONAL DISK-PLANET TORQUES IN A LOCALLY ISOTHERMAL DISK SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; hydrodynamics; methods: numerical; planet-disk interactions; planets and satellites: formation; protoplanetary disks ID PROTOPLANET MIGRATION; HORSESHOE DRAG; GASEOUS DISK; ORBITAL MIGRATION; COROTATION TORQUE; LAMINAR DISKS; ACCRETION; MASS; SIMULATIONS; EVOLUTION AB We determine an expression for the Type I planet migration torque involving a locally isothermal disk, with moderate turbulent viscosity (5 x 10(-4) less than or similar to alpha less than or similar to 0.05), based on three-dimensional nonlinear hydrodynamical simulations. The radial gradients (in a dimensionless logarithmic form) of density and temperature are assumed to be constant near the planet. We find that the torque is roughly equally sensitive to the surface density and temperature radial gradients. Both gradients contribute to inward migration when they are negative. Our results indicate that two-dimensional calculations with a smoothed planet potential, used to account for the effects of the third dimension, do not accurately determine the effects of density and temperature gradients on the three-dimensional torque. The results suggest that substantially slowing or stopping planet migration by means of changes in disk opacity or shadowing is difficult and appears unlikely for a disk that is locally isothermal. The scalings of the torque and torque density with planet mass and gas sound speed follow the expectations of linear theory. We also determine an improved formula for the torque density distribution that can be used in one-dimensional long-term evolution studies of planets embedded in locally isothermal disks. This formula can be also applied in the presence of mildly varying radial gradients and of planets that open gaps. We illustrate its use in the case of migrating super-Earths and determine some conditions sufficient for survival. C1 [D'Angelo, Gennaro] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [D'Angelo, Gennaro] Univ Calif Santa Cruz, UCO Lick Observ, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Lubow, Stephen H.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Lubow, Stephen H.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. RP D'Angelo, G (reprint author), NASA, Ames Res Ctr, MS 245-3, Moffett Field, CA 94035 USA. EM gennaro.dangelo@nasa.gov; lubow@stsci.edu RI D'Angelo, Gennaro/L-7676-2014 OI D'Angelo, Gennaro/0000-0002-2064-0801 FU NASA [NNX08AH82G, NNX07AI72G]; National Science Foundation [NSF PHY05-51164] FX We benefitted from discussions with Frederic Masset and Kristen Menou at the KITP program entitled "The Theory and Observation of Exoplanets." We are grateful to Gordon Ogilvie and Jim Pringle for helpful discussions and useful feedback on this work. We thank Hui Li and Shengtai Li for running some two-dimensional models and for informative discussions. We acknowledge support from NASA Origins of Solar Systems Program grants NNX08AH82G (G.D.) and NNX07AI72G (S.L. and G.D.). G.D. was also supported in part by the National Science Foundation under grant No. NSF PHY05-51164. S.L. acknowledges visitor support from the IoA and Newton Institute at Cambridge University and many beneficial discussions at the Newton Institute program "Dynamics of Discs and Planets." Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. NR 43 TC 29 Z9 29 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2010 VL 724 IS 1 BP 730 EP 747 DI 10.1088/0004-637X/724/1/730 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678RC UT WOS:000284096900062 ER PT J AU Kane, SR Gelino, DM AF Kane, Stephen R. Gelino, Dawn M. TI PHOTOMETRIC PHASE VARIATIONS OF LONG-PERIOD ECCENTRIC PLANETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; techniques: photometric; techniques: radial velocities ID EXTRASOLAR GIANT PLANETS; HUBBLE-SPACE-TELESCOPE; HOBBY-EBERLY TELESCOPE; TAU-BOOTIS-B; REFLECTED STARLIGHT; UPSILON ANDROMEDAE; TRANSITING PLANET; LIGHT CURVES; HOT JUPITER; UPPER LIMIT AB The field of exoplanetary science has diversified rapidly over recent years as the field has progressed from exoplanet detection to exoplanet characterization. For those planets known to transit, the primary transit and secondary eclipse observations have a high yield of information regarding planetary structure and atmospheres. The current restriction of these information sources to short-period planets may be abated in part through refinement of orbital parameters. This allows precision targeting of transit windows and phase variations which constrain the dynamics of the orbit and the geometric albedo of the atmosphere. Here, we describe the expected phase function variations at optical wavelengths for long-period planets, particularly those in the high-eccentricity regime and multiple systems in resonant and non-coplanar orbits. We apply this to the known exoplanets and discuss detection prospects and how observations of these signatures may be optimized by refining the orbital parameters. C1 [Kane, Stephen R.; Gelino, Dawn M.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. RP Kane, SR (reprint author), CALTECH, NASA, Exoplanet Sci Inst, MS 100-22,770 S Wilson Ave, Pasadena, CA 91125 USA. EM skane@ipac.caltech.edu RI Kane, Stephen/B-4798-2013 NR 40 TC 24 Z9 24 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2010 VL 724 IS 1 BP 818 EP 826 DI 10.1088/0004-637X/724/1/818 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678RC UT WOS:000284096900068 ER PT J AU Cull, SC Arvidson, RE Catalano, JG Ming, DW Morris, RV Mellon, MT Lemmon, M AF Cull, Selby C. Arvidson, Raymond E. Catalano, Jeffrey G. Ming, Douglas W. Morris, Richard V. Mellon, Michael T. Lemmon, Mark TI Concentrated perchlorate at the Mars Phoenix landing site: Evidence for thin film liquid water on Mars SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID THEORETICAL PREDICTION; THERMODYNAMIC BEHAVIOR; AQUEOUS ELECTROLYTES; HIGH PRESSURES; TEMPERATURES; ZEOLITES; CHEMISTRY; SYSTEMS; SOIL AB NASA's Phoenix mission, which landed on the northern plains of Mars in 2008, returned evidence of the perchlorate anion distributed evenly throughout the soil column at the landing site. Here, we use spectral data from Phoenix's Surface Stereo Imager to map the distribution of perchlorate salts at the Phoenix landing site, and find that perchlorate salt has been locally concentrated into subsurface patches, similar to salt patches that result from aqueous dissolution and redistribution on Earth. We propose that thin films of liquid water are responsible for translocating perchlorate from the surface to the subsurface, and for concentrating it in patches. The thin films are interpreted to result from melting of minor ice covers related to seasonal and long-term obliquity cycles. Citation: Cull, S.C., R.E. Arvidson, J.G. Catalano, D.W. Ming, R.V. Morris, M.T. Mellon, and M. Lemmon (2010), Concentrated perchlorate at the Mars Phoenix landing site: Evidence for thin film liquid water on Mars, Geophys. Res. Lett., 37, L22203, doi:10.1029/2010GL045269. C1 [Cull, Selby C.; Arvidson, Raymond E.; Catalano, Jeffrey G.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63112 USA. [Ming, Douglas W.; Morris, Richard V.] NASA, Lyndon B Johnson Space Ctr, ARES, Houston, TX 77058 USA. [Mellon, Michael T.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Lemmon, Mark] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. RP Cull, SC (reprint author), Washington Univ, Dept Earth & Planetary Sci, 1 Brookings Dr, St Louis, MO 63112 USA. EM selby@levee.wustl.edu RI Lemmon, Mark/E-9983-2010; Catalano, Jeffrey/A-8322-2013; Mellon, Michael/C-3456-2016 OI Lemmon, Mark/0000-0002-4504-5136; Catalano, Jeffrey/0000-0001-9311-977X; FU Missouri Space Grant FX We thank C. Achilles for XRD analysis of perchlorate lab samples; Michael Hecht and Peter Smith for insightful reviews; the Missouri Space Grant Consortium for funding; and the Phoenix Science and Operations Teams for their dedicated imaging program. NR 27 TC 39 Z9 39 U1 1 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 20 PY 2010 VL 37 AR L22203 DI 10.1029/2010GL045269 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 683ML UT WOS:000284479800005 ER PT J AU Shugart, HH Saatchi, S Hall, FG AF Shugart, H. H. Saatchi, S. Hall, F. G. TI Importance of structure and its measurement in quantifying function of forest ecosystems SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID TROPICAL RAIN-FOREST; POLARIMETRIC SAR INTERFEROMETRY; ALLOMETRIC SCALING LAWS; LARGE-FOOTPRINT LIDAR; SIR-C/X-SAR; BOREAL FOREST; ABOVEGROUND BIOMASS; TREE HEIGHT; BIOPHYSICAL CHARACTERISTICS; CANOPY STRATIFICATION AB The structure of forests, the three-dimensional arrangement of individual trees, has a profound effect on how ecosystems function and cycle carbon, water, and nutrients. The increased need to understand local to global dynamics of ecosystems, a prerequisite to understand the coupling of the biosphere to other components of Earth systems, has created a demand for extensive ecosystem structure data. Repeated satellite observations of vegetation patterns in two dimensions have made significant contributions to our understanding of the state and dynamics of the global biosphere. Recent advances in remote sensing technology allow us to view the biosphere in three dimensions and provide us with refined measurements of horizontal, as well as vertical, structure of forests. This paper provides an introductory review of the importance of the three-dimensional characterization of terrestrial ecosystem structure of forests and woodlands and its potential measurement from space. We discuss the relevance of these measurements for reducing the uncertainties of terrestrial carbon cycle and the response of ecosystems to future climate. By relating the 3-D structure to forest biomass, carbon content, disturbance characteristics, and habitat diversity, we examine the requirements for future satellite sensors in terms of precision and spatial and temporal resolutions. In particular, we focus this review on measurements from lidar and radar sensors that provide vertical and horizontal characterization of vegetation and are currently recommended for next generation of NASA's Earth observing and European Earth Explorer systems. C1 [Shugart, H. H.] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22903 USA. [Saatchi, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hall, F. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Shugart, HH (reprint author), Univ Virginia, Dept Environm Sci, Charlottesville, VA 22903 USA. EM hhs@virginia.edu RI Shugart, Herman/C-5156-2009 FU NASA [NNX-07AF10G, NAG5-11084, NNX-07AO63G, NNX-08AL59G, NMO-710722, NNG-05-GN69G] FX This work was performed partially at the Jet Propulsion Laboratory, California Institute of Technology, under contract from National Aeronautic and Space Administration and the support of NASA's Terrestrial Ecology Program. We would also like to acknowledge the support to H. H. Shugart from NASA under grants NNX-07AF10G, NAG5-11084, NNX-07AO63G, NNX-08AL59G, NMO-710722, and NNG-05-GN69G. NR 125 TC 40 Z9 40 U1 3 U2 51 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD NOV 20 PY 2010 VL 115 AR G00E13 DI 10.1029/2009JG000993 PG 16 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 683NL UT WOS:000284482400001 ER PT J AU Irwin, RP Watters, TR AF Irwin, Rossman P., III Watters, Thomas R. TI Geology of the Martian crustal dichotomy boundary: Age, modifications, and implications for modeling efforts SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID MARS GLOBAL SURVEYOR; ORBITER LASER ALTIMETER; LOBATE DEBRIS APRONS; IMPACT CRATERS; HEMISPHERIC DICHOTOMY; EARLY DIFFERENTIATION; VALLEY NETWORKS; FRETTED TERRAIN; NORTHERN LOWLANDS; EVOLUTION AB The contrast in crustal thickness, surface age, elevation, and morphology between the southern cratered highlands and northern lowland plains of Mars is termed the crustal dichotomy. The oldest exposed sections of the crustal dichotomy boundary are ancient cratered slopes, which influenced post-Noachian fresh crater morphometry, Late Noachian valley network planform, and the degradation patterns of Middle to Late Noachian (similar to 3.92-3.7 Ga) impact craters. Noachian visible and topographically defined impact craters at the top of the cratered slope show no evidence of flexure-induced normal faulting. These observations and published geophysical data collectively require an Early to Pre-Noachian age for the crustal dichotomy, prior to the largest recognized impact basins. Late Noachian plateau deposits and more prolonged Tharsis volcanism appear to have buried parts of the old cratered slope, and fretted terrain developed in this transition zone during the Early Hesperian Epoch (similar to 3.7-3.6 Ga). Fretted/knobby terrains, lowland plains, and most visible structures (wrinkle ridges, fractures, and normal faults) postdate Noachian crater modification and are several hundred million years younger than the cratered slope of the crustal dichotomy, so they provide no valid basis or constraint for models of its formation. Long-wavelength topography in cratered terrain dates to Early to Pre-Noachian time and provides a useful model constraint. Geological and geophysical observations are thus reconciled around an early age and relatively rapid development of the Martian crustal dichotomy. C1 [Irwin, Rossman P., III] Planetary Sci Inst, Tucson, AZ USA. [Irwin, Rossman P., III] NASA, Planetary Geodynam Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Watters, Thomas R.] Smithsonian Inst, Natl Air & Space Museum, Ctr Earth & Planetary Studies, Washington, DC 20013 USA. RP Irwin, RP (reprint author), Planetary Sci Inst, Tucson, AZ USA. EM Irwin@psi.edu FU Mars Data Analysis Program FX This study was supported by a Mars Data Analysis Program grant to T. R. Watters. We thank Debra Buczkowski for helpful comments. NR 149 TC 6 Z9 6 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV 20 PY 2010 VL 115 AR E11006 DI 10.1029/2010JE003658 PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 683OZ UT WOS:000284486400003 ER PT J AU Schroder, C Herkenhoff, KE Farrand, WH Chappelow, JE Wang, W Nittler, LR Ashley, JW Fleischer, I Gellert, R Golombek, MP Johnson, JR Klingelhofer, G Li, R Morris, RV Squyres, SW AF Schroeder, Christian Herkenhoff, Kenneth E. Farrand, William H. Chappelow, John E. Wang, Wei Nittler, Larry R. Ashley, James W. Fleischer, Iris Gellert, Ralf Golombek, Matthew P. Johnson, Jeffrey R. Klingelhoefer, Goestar Li, Ron Morris, Richard V. Squyres, Steven W. TI Properties and distribution of paired candidate stony meteorites at Meridiani Planum, Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID ROVER OPPORTUNITY; LANDING SITE; MESOSIDERITE; EXPLORATION; CRATER; ORIGIN AB The Mars Exploration Rover Opportunity investigated four rocks, informally dubbed Barberton, Santa Catarina, Santorini, and Kasos, that are possible stony meteorites. Their chemical and mineralogical composition is similar to the howardite, eucrite, and diogenite group but with additional metal, similar to mesosiderite silicate clasts. Because of their virtually identical composition and because they appear to represent a relatively rare group of meteorites, they are probably paired. The four rocks were investigated serendipitously several kilometers apart, suggesting that Opportunity is driving across a larger population of similar rock fragments, maybe a meteorite strewn field. Small amounts of ferric Fe are a result of weathering. We did not observe evidence for fusion crusts. Four iron meteorites were found across the same area. Although mesosiderites are stony irons, a genetic link to these irons is unlikely. The stony meteorites probably fell later than the irons. The current atmosphere is sufficiently dense to land such meteorites at shallow entry angles, and it would disperse fragments over several kilometers upon atmospheric breakup. Alternatively, dispersion by spallation from an impacting meteoroid may have occurred. Santa Catarina and a large accumulation of similar rocks were found at the rim of Victoria crater. It is possible that they are associated with the impactor that created Victoria crater, but our limited knowledge about their distribution cannot exclude mere coincidence. C1 [Schroeder, Christian] Univ Tubingen, Ctr Appl Geosci, D-72076 Tubingen, Germany. [Schroeder, Christian] Univ Bayreuth, Dept Hydrol, Bayreuth, Germany. [Herkenhoff, Kenneth E.; Johnson, Jeffrey R.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Farrand, William H.] Space Sci Inst, Boulder, CO 80301 USA. [Chappelow, John E.] SAGA Inc, Fairbanks, AK 99709 USA. [Wang, Wei; Li, Ron] Ohio State Univ, Mapping & GIS Lab, Dept Civil & Environm Engn & Geodet Sci, Columbus, OH 43210 USA. [Nittler, Larry R.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Ashley, James W.] Arizona State Univ, Sch Earth & Space Explorat, Mars Space Flight Facil, Tempe, AZ 85287 USA. [Fleischer, Iris; Klingelhoefer, Goestar] Johannes Gutenberg Univ Mainz, Inst Anorgan Chem & Analyt Chem, D-55128 Mainz, Germany. [Gellert, Ralf] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Golombek, Matthew P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Morris, Richard V.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Squyres, Steven W.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Schroder, C (reprint author), Univ Tubingen, Ctr Appl Geosci, Sigwartstr 10, D-72076 Tubingen, Germany. EM christian.schroeder@ifg.uni-tuebingen.de RI Schroder, Christian/B-3870-2009; Johnson, Jeffrey/F-3972-2015 OI Schroder, Christian/0000-0002-7935-6039; NR 58 TC 13 Z9 13 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV 20 PY 2010 VL 115 AR E00F09 DI 10.1029/2010JE003616 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 683OZ UT WOS:000284486400002 ER PT J AU Weitz, CM Farrand, WH Johnson, JR Fleischer, I Schroder, C Yingst, A Jolliff, B Gellert, R Bell, J Herkenhoff, KE Klingelhofer, G Cohen, B Calvin, W Rutherford, M Ashley, J AF Weitz, Catherine M. Farrand, William H. Johnson, Jeffrey R. Fleischer, Iris Schroeder, Christian Yingst, Aileen Jolliff, Brad Gellert, Ralf Bell, Jim Herkenhoff, Kenneth E. Klingelhoefer, Goester Cohen, Barbara Calvin, Wendy Rutherford, Malcolm Ashley, James TI Visible and near-infrared multispectral analysis of geochemically measured rock fragments at the Opportunity landing site in Meridiani Planum SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID MOSSBAUER SPECTROMETER; MARS; MINERALOGY; CHEMISTRY; ROVER AB We have used visible and near-infrared Panoramic Camera (Pancam) spectral data acquired by the Opportunity rover to analyze 15 rock fragments at the Meridiani Planum landing site. These spectral results were then compared to geochemistry measurements made by the in situ instruments Mossbauer (MB) and Alpha Particle X-ray Spectrometer (APXS) to determine the feasibility of mineralogic characterization from Pancam data. Our results suggest that dust and alteration rinds coat many rock fragments, which limits our ability to adequately measure the mineralogy of some rocks from Pancam spectra relative to the different field of view and penetration depths of MB and APXS. Viewing and lighting geometry, along with sampling size, also complicate the spectral characterization of the rocks. Rock fragments with the same geochemistry of sulfate-rich outcrops have similar spectra, although the sulfate-rich composition cannot be ascertained based upon Pancam spectra alone. FeNi meteorites have spectral characteristics, particularly ferric oxide coatings, that generally differentiate them from other rocks at the landing site. Stony meteorites and impact fragments with unknown compositions have a diverse range of spectral properties and are not well constrained nor diagnostic in Pancam data. Bounce Rock, with its unique basalt composition, is easily differentiated in the Pancam data from all other rock types at Meridiani Planum. Our Pancam analyses of small pebbles adjacent to these 15 rock fragments suggests that other rock types may exist at the landing site but have not yet been geochemically measured. C1 [Weitz, Catherine M.; Yingst, Aileen] Planetary Sci Inst, Tucson, AZ 85719 USA. [Farrand, William H.] Space Sci Inst, Boulder, CO 80301 USA. [Johnson, Jeffrey R.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Fleischer, Iris; Klingelhoefer, Goester] Johannes Gutenberg Univ Mainz, Inst Anorgan Chem & Analyt Chem, D-55128 Mainz, Germany. [Schroeder, Christian] Univ Bayreuth, Dept Hydrol, Bayreuth, Germany. [Schroeder, Christian] Univ Tubingen, Ctr Appl Geosci, D-72076 Tubingen, Germany. [Jolliff, Brad] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Gellert, Ralf] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Bell, Jim] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Cohen, Barbara] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Calvin, Wendy] Univ Nevada, Dept Geol Sci & Engn, Reno, NV 89557 USA. [Ashley, James] Arizona State Univ, Mars Space Flight Facil, Tempe, AZ 85287 USA. [Rutherford, Malcolm] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. RP Weitz, CM (reprint author), Planetary Sci Inst, 1700 E Ft Lowell,Ste 106, Tucson, AZ 85719 USA. EM weitz@psi.edu RI Schroder, Christian/B-3870-2009; Johnson, Jeffrey/F-3972-2015 OI Schroder, Christian/0000-0002-7935-6039; FU NASA [NNG05GB16G] FX We thank Onur Karahayit and Ron Li for producing the Opportunity traverse map and Ella Mae for providing several of the MI-Pancam color merges. Steve Ruff, Larry Soderblom, and an anonymous reviewer provided comments that improved the quality of this paper. We acknowledge the outstanding efforts of everyone on the JPL engineering and MER Athena science teams. This work was supported through NASA MDAP grant NNG05GB16G. NR 36 TC 5 Z9 5 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV 20 PY 2010 VL 115 AR E00F10 DI 10.1029/2010JE003660 PG 29 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 683OZ UT WOS:000284486400004 ER PT J AU Hollingsworth, JL Kahre, MA AF Hollingsworth, J. L. Kahre, M. A. TI Extratropical cyclones, frontal waves, and Mars dust: Modeling and considerations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GENERAL-CIRCULATION MODEL; MARTIAN ATMOSPHERE; STORM ZONES; DISTURBANCES; SIMULATIONS; HEMISPHERE; DIAGNOSIS; EDDIES AB A Mars GCM is utilized to investigate dust lifting and organization associated with extratropical cyclogenesis and frontal waves. The model is applied at high resolution in simulations related to Mars' dust cycle. A single extratropical synoptic weather event is examined to ascertain lifting, transport and convergence/divergence of dust by large-scale cyclonic/anticyclonic weather systems, and the sub-synoptic frontal waves that ensue. Low-and high-pressure cores develop, travel eastward and remain mostly confined within the seasonal CO(2) polar cap. The bulk of dust lifting occurs in the northern-hemisphere western highlands associated with nocturnal down-slope drainage flows, and lifting infrequently occurs near the frontal convergence zone. Dust becomes organized and transported within circulations associated with the synoptic/sub-synoptic circulations accompanying the frontal waves. Dynamical considerations are invoked regarding frontogenesis revealing correlations with regards to dust lifting, organization and transport. Implications of large-scale extratropical weather systems on the martian dust cycle are discussed. Citation: Hollingsworth, J. L., and M. A. Kahre (2010), Extratropical cyclones, frontal waves, and Mars dust: Modeling and considerations, Geophys. Res. Lett., 37, L22202, doi:10.1029/2010GL044262. C1 [Hollingsworth, J. L.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. [Kahre, M. A.] BAER Inst, Sonoma, CA USA. RP Hollingsworth, JL (reprint author), NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-3, Moffett Field, CA 94035 USA. EM jeffery.l.hollingsworth@nasa.gov; melinda.a.kahre@nasa.gov FU NASA/HQ Planetary Science Division; Planetary Atmospheres Program (PATM) FX This research has been supported by the NASA/HQ Planetary Science Division and the Planetary Atmospheres Program (PATM). NR 26 TC 5 Z9 5 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 19 PY 2010 VL 37 AR L22202 DI 10.1029/2010GL044262 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 683MI UT WOS:000284479500001 ER PT J AU Allen, D Pickering, K Duncan, B Damon, M AF Allen, Dale Pickering, Kenneth Duncan, Bryan Damon, Megan TI Impact of lightning NO emissions on North American photochemistry as determined using the Global Modeling Initiative (GMI) model SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID OPTICAL TRANSIENT DETECTOR; CONTINENTAL UNITED-STATES; TROPOSPHERIC OZONE; NITROGEN-OXIDES; ACCURATE SIMULATION; TRANSPORT MODELS; CHEMICAL-MODELS; CHEMISTRY; VARIABILITY; PARAMETERIZATION AB The impact of nitric oxide (NO) emissions by lightning on summertime North American nitrogen oxides (NOx) and ozone is studied using the Global Modeling Initiative (GMI) CTM and an improved lightning NO algorithm. The spatial distributions of modeled and National Lightning Detection Network-based flash rates during the summers of 2004-2006 agree well (R-2 = 0.49, 18% low bias). Despite this reasonable agreement, 9-12 km model NOx during the Intercontinental Chemical Transport Experiment (INTEX-A) campaign is a factor of 2.2-3.6 too low for a simulation that includes a 480 mol per flash midlatitude lightning NO source, the source that provides the best agreement with measurements. Possible causes of this low bias include biases in model convection and/or too rapid NOx chemistry in the upper troposphere. Model tropospheric NO2 columns over the southeastern United States during these summers show a 7% high bias with respect to the OMI DOMINO/GEOS-Chem tropospheric column NO2 product. Observed changes between 2004 and 2006 in upper tropospheric ozone at southeastern U. S. INTEX Ozonesonde Network Study sites are captured by the model and appear to be caused by a stronger upper tropospheric anticyclone in 2006 that led to an increase from 21 to 30 ppbv between 2004 and 2006 in the amount of ozone with a lightning NO source; lightning NO emissions were 15%-20% larger in 2004. The contribution of lightning NO to monthly average summertime 300 hPa NOx over the eastern United States during 2004-2006 varies from 61%-73% (0.09-0.16 ppbv), while the contribution to ozone varies from 19%-31% (15-24 ppbv). C1 [Allen, Dale] Univ Maryland, Dept Meteorol, College Pk, MD 20742 USA. [Damon, Megan] NASA, Goddard Space Flight Ctr, Software Integrat & Visualizat Off, Greenbelt, MD 20771 USA. [Damon, Megan] Northrop Grumman Informat Technol, Greenbelt, MD 20771 USA. RP Allen, D (reprint author), Univ Maryland, Dept Meteorol, College Pk, MD 20742 USA. EM allen@atmos.umd.edu RI Duncan, Bryan/A-5962-2011; Pickering, Kenneth/E-6274-2012; Allen, Dale/F-7168-2010; Chem, GEOS/C-5595-2014 OI Allen, Dale/0000-0003-3305-9669; FU NASA [NNG06GE01G] FX This work was funded by the NASA Modeling, Analysis, and Prediction Program under NASA grant NNG06GE01G, "Effects of clouds, convection, and lightning on tropospheric chemistry in the GMI model." We thank Anne Thompson for access to the IONS ozonesonde data, Dylan Jones for guidance in applying TES averaging kernels, K. F. Boersma for guidance in the use of DOMINO NO2 fields, and L. Lamsal for access to the DP-GC NO2 data. OTD/LIS data are from NASA/MSFC. NLDN data are collected by Vaisala Inc. and are archived at NASA-MSFC. NR 92 TC 31 Z9 31 U1 3 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 19 PY 2010 VL 115 AR D22301 DI 10.1029/2010JD014062 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 683NC UT WOS:000284481500002 ER PT J AU Metz, J Grotzinger, J Okubo, C Milliken, R AF Metz, Joannah Grotzinger, John Okubo, Chris Milliken, Ralph TI Thin-skinned deformation of sedimentary rocks in Valles Marineris, Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID LAYERED DEPOSITS; MELAS-CHASMA; LACUSTRINE SEDIMENTS; MARTIAN LANDSLIDES; NORTHERN APENNINES; OUTFLOW CHANNELS; SEISMITES; IMPACT; BASIN; MORPHOLOGY AB Deformation of sedimentary rocks is widespread within Valles Marineris, characterized by both plastic and brittle deformation identified in Candor, Melas, and Ius Chasmata. We identified four deformation styles using HiRISE and CTX images: kilometer-scale convolute folds, detached slabs, folded strata, and pull-apart structures. Convolute folds are detached rounded slabs of material with alternating dark-and light-toned strata and a fold wavelength of about 1 km. The detached slabs are isolated rounded blocks of material, but they exhibit only highly localized evidence of stratification. Folded strata are composed of continuously folded layers that are not detached. Pull-apart structures are composed of stratified rock that has broken off into small irregularly shaped pieces showing evidence of brittle deformation. Some areas exhibit multiple styles of deformation and grade from one type of deformation into another. The deformed rocks are observed over thousands of kilometers, are limited to discrete stratigraphic intervals, and occur over a wide range in elevations. All deformation styles appear to be of likely thin-skinned origin. CRISM reflectance spectra show that some of the deformed sediments contain a component of monohydrated and polyhydrated sulfates. Several mechanisms could be responsible for the deformation of sedimentary rocks in Valles Marineris, such as subaerial or subaqueous gravitational slumping or sliding and soft sediment deformation, where the latter could include impact-induced or seismically induced liquefaction. These mechanisms are evaluated based on their expected pattern, scale, and areal extent of deformation. Deformation produced from slow subaerial or subaqueous landsliding and liquefaction is consistent with the deformation observed in Valles Marineris. C1 [Metz, Joannah; Grotzinger, John] CALTECH, Dept Geol & Planetary Sci, Pasadena, CA 91125 USA. [Milliken, Ralph] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Okubo, Chris] US Geol Survey, Flagstaff, AZ 86001 USA. RP Metz, J (reprint author), CALTECH, Dept Geol & Planetary Sci, Pasadena, CA 91125 USA. EM joannah@caltech.edu NR 90 TC 11 Z9 11 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV 19 PY 2010 VL 115 AR E11004 DI 10.1029/2010JE003593 PG 28 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 683OW UT WOS:000284486100001 ER PT J AU Haaser, RA Earle, GD Heelis, RA Coley, WR Klenzing, JH AF Haaser, R. A. Earle, G. D. Heelis, R. A. Coley, W. R. Klenzing, J. H. TI Low-latitude measurements of neutral thermospheric helium dominance near 400 km during extreme solar minimum SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ENERGY ACCOMMODATION; ATMOSPHERE; COEFFICIENTS; DRAG; MISSION; MODEL AB Since the middle of 2008 solar activity has been unusually low, resulting in unusual atmospheric conditions, including significant changes in the pressure and neutral constituents at altitudes near 400 km at low latitudes. These attributes have been measured by the Coupled Ion-Neutral Dynamics Investigation instruments aboard the Communication/Navigation Outage Forecast System (C/NOFS) satellite. The cross-track sensor aboard C/NOFS is designed to measure the neutral pressure in an atmosphere with pressures larger than 10 (8) Torr, from which the atmospheric scale height can be estimated. In the contracted thermosphere during the current solar minimum (analyzed from June 2008 to August 2009), the instrument data indicate a dominance of neutral helium near the satellite perigee (400 km). This conclusion is found to be consistent with the measured mean drag on the satellite, thus validating the basic functionality of the cross-track sensor. C1 [Haaser, R. A.; Earle, G. D.; Heelis, R. A.; Coley, W. R.] Univ Texas Dallas, WB Hanson Ctr Space Sci, Richardson, TX 75080 USA. [Klenzing, J. H.] NASA, Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20770 USA. RP Haaser, RA (reprint author), Univ Texas Dallas, WB Hanson Ctr Space Sci, Richardson, TX 75080 USA. RI Klenzing, Jeff/E-2406-2011; OI Klenzing, Jeff/0000-0001-8321-6074; Coley, William Robin/0000-0003-2047-0002 FU NASA [NAS5-01068 (CINDI)] FX We thank Frank Marcos and Chin Lin of the Air Force Research Laboratory for giving us early critiques of methodology and results. We thank Paul Holladay for assisting with details of the physical structure of C/NOFS. We thank Marcin Pilinski for his help in determining reasonable determining approximations of drag from species known to be present at C/NOFS operating altitudes. We thank Russell Stoneback for all of his assistance preparing C/NOFS data. We also thank Tom Woods for his ideas on solar activity matching with EUV instead of F10.7 and subsequent adjustments to expected F10.7 using the MSIS model. This work has been supported by NASA grant NAS5-01068 (CINDI). NR 21 TC 10 Z9 10 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 19 PY 2010 VL 115 AR A11318 DI 10.1029/2010JA015325 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 683PP UT WOS:000284488000002 ER PT J AU Strode, S Jaegle, L Emerson, S AF Strode, Sarah Jaegle, Lyatt Emerson, Steven TI Vertical transport of anthropogenic mercury in the ocean SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID ATLANTIC-OCEAN; NORTH-ATLANTIC; PACIFIC-OCEAN; BOX-DIFFUSION; CARBON UPTAKE; MODEL; CO2; SPECIATION; EXCHANGE; SHELF AB We investigate the vertical transport of mercury (Hg) within the ocean using a simple box diffusion model to represent vertical water transport coupled with a particulate Hg flux. The particulate flux assumes that the Hg content of marine particles is proportional to the Hg concentration of surface waters via a sorption equilibrium constant, K-d. The model is forced with the observed factor of 3 increase in atmospheric Hg deposition over the industrial era. The modeled vertical profile of oceanic Hg shows a subsurface maximum at similar to 500 m depth due to remineralization of Hg bound to sinking organic particles, consistent with observations. Model results indicate that surface (top 100 m) concentrations of Hg have increased by 150% since preindustrial times. Over the past 150 years, 280 Mmol of anthropogenic Hg have accumulated in the ocean, representing a 18% increase in the total oceanic Hg content. We find that 36% of the anthropogenic Hg occurs in the top 400 m and only 7% occurs below 1500 m. Over the industrial era, we find that 14% of cumulative anthropogenic emissions have accumulated in the ocean. Our model results show that half of the accumulation of anthropogenic Hg in the ocean is due to sinking on particulates. A sensitivity analysis indicates that the model results are most dependent on the value of K-d. C1 [Strode, Sarah; Jaegle, Lyatt] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Emerson, Steven] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. RP Strode, S (reprint author), NASA, Goddard Space Flight Ctr, SAIC, Code 610-1, Greenbelt, MD 20771 USA. EM jaegle@atmos.washington.edu RI Strode, Sarah/H-2248-2012 OI Strode, Sarah/0000-0002-8103-1663 FU National Science Foundation [ATM 0238530] FX This work was supported by funding from the National Science Foundation under grant ATM 0238530. NR 38 TC 12 Z9 12 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 EI 1944-9224 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD NOV 18 PY 2010 VL 24 AR GB4014 DI 10.1029/2009GB003728 PG 10 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA 683MP UT WOS:000284480200001 ER PT J AU Golombek, M Robinson, K McEwen, A Bridges, N Ivanov, B Tornabene, L Sullivan, R AF Golombek, M. Robinson, K. McEwen, A. Bridges, N. Ivanov, B. Tornabene, L. Sullivan, R. TI Constraints on ripple migration at Meridiani Planum from Opportunity and HiRISE observations of fresh craters SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID THERMAL EMISSION SPECTROMETER; MARS ORBITER CAMERA; LANDING SITE; TERRA-MERIDIANI; SURFACE-PROPERTIES; LAYERED DEPOSITS; BURNS FORMATION; IMPACT CRATERS; ROVER; EVOLUTION AB Observations of fresh impact craters by the Opportunity rover and in high-resolution orbital images constrain the latest phase of granule ripple migration at Meridiani Planum to have occurred between similar to 50 ka and similar to 200 ka. Opportunity explored the fresh Resolution crater cluster and Concepcion crater that are superposed on and thus younger than the ripples. These fresh craters have small dark pebbles scattered across their surfaces, which are most likely fragments of the impactor, suggesting that the dark pebbles and cobbles observed by Opportunity at Meridiani Planum are a lag of impactor-derived material (either meteoritic or secondary impactors from elsewhere on Mars). Two larger, fresh-rayed craters in Meridiani Planum bracket ripple migration; secondaries from Ada crater are clearly superposed on and secondaries from an unnamed 0.84 km diameter crater have been modified and overprinted by the ripples. Three methods were used to estimate the age of these craters and thus when the latest phase of ripple migration occurred. The inactivity of the ripples over the past similar to 50 ka at Meridiani is also consistent with other evidence for the stability of the ripples, the lack of observed eolian bed forms in craters that formed in the past 20 years, and little evidence for much dune motion in the past 30 yr on Mars. Observations of crater morphology and their interaction with the ripples allow the development of a general time scale for craters in Meridiani Planum over the past million years. C1 [Golombek, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bridges, N.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Ivanov, B.] RAS, Inst Dynam Geospheres, Moscow 119334, Russia. [McEwen, A.; Tornabene, L.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Robinson, K.] SUNY Binghamton, Binghamton, NY 13902 USA. [Sullivan, R.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Golombek, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Ivanov, Boris/E-1413-2016 OI Ivanov, Boris/0000-0002-9938-9428 FU NASA FX Research described in this paper was done by the MER and HiRISE projects, Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. We thank E. Schaefer, E. Snead, E. Noe Dobrea, and J. Bell for help with the figures and J. Ashley, A. Vaughan, T. Parker, J. Grotzinger, J. Wray, M. Pendleton-Hoffer, R. Kienenberger, and an anonymous reviewer for comments. NR 78 TC 29 Z9 29 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV 18 PY 2010 VL 115 AR E00F08 DI 10.1029/2010JE003628 PG 34 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 683OU UT WOS:000284485900001 ER PT J AU Moore, L Mueller-Wodarg, I Galand, M Kliore, A Mendillo, M AF Moore, Luke Mueller-Wodarg, Ingo Galand, Marina Kliore, Arvydas Mendillo, Michael TI Latitudinal variations in Saturn's ionosphere: Cassini measurements and model comparisons SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID RADIO OCCULTATION; MAGNETIC-FIELDS; ATMOSPHERE; MAGNETOSPHERE; ULTRAVIOLET; PLANETS; SCIENCE; SOLAR; PHOTOCHEMISTRY; COROTATION AB We present a study of latitudinal variations in Saturn's ionosphere using Cassini Radio Science Subsystem (RSS) measurements and Saturn-Thermosphere-Ionosphere-Model (STIM) simulations. On the basis of Cassini RSS observations, the peak electron density (N-MAX) and the total electron content (TEC) both exhibit a clear increase with latitude, with a minimum at Saturn's equator. When compared with these RSS trends, current model simulations overestimate N-MAX and TEC at low latitudes and underestimate those parameters at middle and high latitudes. STIM is able to reproduce the RSS values for N-MAX and TEC at low latitude when an additional low-latitude loss process, such as a water influx, is introduced near Saturn's equator. The lack of auroral precipitation processes in the model likely explains some model/data discrepancies at high latitude; however, most of the high-latitude RSS data are from latitudes outside of Saturn's typical main auroral oval. Using Cassini RSS electron density altitude profiles combined with ion density fractions and neutral background parameters calculated in STIM, we also present estimates of the latitudinal variations of Saturn's Pedersen conductance, Sigma(P). We find Sigma(P) to be driven by ion densities in Saturn's lower ionosphere and to exhibit a latitudinal trend with a peak at mid-latitude. Model calculations are able to reproduce low-latitude conductances when an additional loss process is introduced, as before, but consistently underestimate most of the mid-and high-latitude conductances derived from Cassini observations, perhaps indicating a missing ionization source within the model. C1 [Moore, Luke; Mendillo, Michael] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Mueller-Wodarg, Ingo; Galand, Marina] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. [Kliore, Arvydas] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Moore, L (reprint author), Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. EM moore@bu.edu RI Galand, Marina/C-6804-2009; Mendillo, Michael /H-4397-2014; Mueller-Wodarg, Ingo/M-9945-2014; OI Mueller-Wodarg, Ingo/0000-0001-6308-7826; Moore, Luke/0000-0003-4481-9862 FU International Space Sciences Institute (ISSI) in Bern, Switzerland [166]; NASA; Planetary Atmospheres Program; Center for Space Physics; UK Science and Technology Facilities Council (STFC); UK Royal Society University FX We are very grateful to the TIMED/SEE PI, Tom Woods, and his team for providing us with the solar flux data set and associated routines for extrapolation to planets. We acknowledge the contribution of the International Space Sciences Institute (ISSI) in Bern, Switzerland, for hosting and funding the ISSI International Team on Saturn Aeronomy (166) and the constructive discussions by colleagues attending the Saturn Aeronomy meeting. Funding for this work at Boston University comes, in part, from the NASA CDAP Program (L.M.), the Planetary Atmospheres Program (M.M., M.G.), and the Center for Space Physics. In addition, M.G. was partially supported by the UK Science and Technology Facilities Council (STFC) rolling grant awarded to Imperial College London. I.M.-W. is funded by a UK Royal Society University Research Fellowship. NR 58 TC 28 Z9 28 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 18 PY 2010 VL 115 AR A11317 DI 10.1029/2010JA015692 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 683PN UT WOS:000284487800004 ER PT J AU Zhang, X Sander, SP Chaimowitz, A Ellison, GB Stanton, JF AF Zhang, Xu Sander, Stanley P. Chaimowitz, Adam Ellison, G. Barney Stanton, John F. TI Detection of Vibrational Bending Mode nu(8) and Overtone Bands of the Propargyl Radical, HCCCH2 (X)over-tilde B-2(1) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID MATRIX-ISOLATION; SPECTROSCOPY; SPECTRUM; ALLENE; H2CCCH; METHYLACETYLENE; RECOMBINATION; PHOTOLYSIS; BENZENE; C3H3 AB Infrared (IR) absorption spectra of matrix-isolated HCCCH2 have been measured. Propargyl radicals were generated in a supersonic pyrolysis nozzle, using a method similar to that described in a previous study (Jochnowitz, E. B.; Zhang, X.; Nimlos, M. R.; Varner, M. E.; Stanton, J. F.; Ellison, G. B. J. Phys. Chem. A 2005, 109, 3812-3821). Besides the nine vibrational modes observed in the previous study, this investigation detected the HCCCH2 (X) over tilde B-2(1) out-of-plane bending mode (nu(8)) at 378.0 (+/-1.9) cm(-1) in a cryogenic argon matrix. This is the first experimental observation of nu(8) for the propargyl radical. In addition, seven overtone and combination bands have also been detected and assigned. Ab initio coupled-cluster anharmonic force field calculations were used to guide the analysis. Furthermore, nu(12), the HCCCH2 in-plane bending mode, has been assigned to 333 (+/-10) cm(-1) based on the detection of its overtone (2 nu(12), 667.7 +/- 1.0 cm(-1)) and a possible combination band (nu(10) + nu(12), 1339.0 +/- 0.8 cm(-1)). This is the first experimental estimation of nu(12) for the propargyl radical. C1 [Zhang, Xu; Sander, Stanley P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Chaimowitz, Adam] Pomona Coll, Dept Chem, Claremont, CA 91711 USA. [Ellison, G. Barney] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Stanton, John F.] Univ Texas Austin, Inst Theoret Chem, Dept Chem, Austin, TX 78712 USA. RP Zhang, X (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM xu.zhang@jpl.nasa.gov FU National Aeronautics and Space Administration (NASA); United States Department of Energy [DE-FG02-93ER14364]; National Science Foundation [CHE-0848606]; Prof. Fred Grieman and Pomona College FX This research was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). This work was supported by the grant from NASA planetary atmosphere program and NASA postdoctoral fellowship program. Additional support for this work comes from the US Department of Energy and the Robert A. Welch Foundations (to J. F. S.). G. B. E. acknowledges support from the Chemical Physics Program, United States Department of Energy (DE-FG02-93ER14364) and the National Science Foundation (CHE-0848606)? We would like to thank Prof. Fred Grieman and Pomona College for their support. The authors would also like to thank Dave Nazic for his laboratory support. NR 33 TC 5 Z9 5 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 18 PY 2010 VL 114 IS 45 BP 12021 EP 12027 DI 10.1021/jp105605f PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 677UU UT WOS:000284018200004 PM 20973539 ER PT J AU Ackermann, M Ajello, M Atwood, WB Baldini, L Ballet, J Barbiellini, G Bastieri, D Baughman, BM Bechtol, K Bellardi, F Bellazzini, R Belli, F Berenji, B Blandford, RD Bloom, ED Bogart, JR Bonamente, E Borgland, AW Brandt, TJ Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Burnett, TH Busetto, G Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carlson, P Carrigan, S Casandjian, JM Ceccanti, M Cecchi, C Celik, O Charles, E Chekhtman, A Cheung, CC Chiang, J Cillis, AN Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Corbet, R DeKlotz, M Dermer, CD de Angelis, A de Palma, F Digel, SW Di Bernardo, G Silva, EDE Drell, PS Drlica-Wagner, A Dubois, R Fabiani, D Favuzzi, C Fegan, SJ Fortin, P Fukazawa, Y Funk, S Fusco, P Gaggero, D Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grasso, D Grenier, IA Grondin, MH Grove, JE Guiriec, S Gustafsson, M Hadasch, D Harding, AK Hayashida, M Hays, E Horan, D Hughes, RE Johannesson, G Johnson, AS Johnson, RP Johnson, WN Kamae, T Katagiri, H Kataoka, J Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN McEnery, JE Mehault, J Michelson, PF Minuti, M Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nakamori, T Naumann-Godo, M Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Petrosian, V Pinchera, M Piron, F Porter, TA Profumo, S Raino, S Rando, R Rapposelli, E Razzano, M Reimer, A Reimer, O Reposeur, T Ripken, J Ritz, S Rochester, LS Romani, RW Roth, M Sadrozinski, HFW Saggini, N Sanchez, D Sander, A Sgro, C Siskind, EJ Smith, PD Spandre, G Spinelli, P Stawarz, L Stephens, TE Strickman, MS Strong, AW Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Tibolla, O Torres, DF Tosti, G Tramacere, A Turri, M Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vilchez, N Vitale, V Waite, AP Wallace, E Wang, P Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M AF Ackermann, M. Ajello, M. Atwood, W. B. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellardi, F. Bellazzini, R. Belli, F. Berenji, B. Blandford, R. D. Bloom, E. D. Bogart, J. R. Bonamente, E. Borgland, A. W. Brandt, T. J. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Busetto, G. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carlson, P. Carrigan, S. Casandjian, J. M. Ceccanti, M. Cecchi, C. Celik, Oe Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Cillis, A. N. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Corbet, R. DeKlotz, M. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. Di Bernardo, G. do Couto e Silva, E. Drell, P. S. Drlica-Wagner, A. Dubois, R. Fabiani, D. Favuzzi, C. Fegan, S. J. Fortin, P. Fukazawa, Y. Funk, S. Fusco, P. Gaggero, D. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grasso, D. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guiriec, S. Gustafsson, M. Hadasch, D. Harding, A. K. Hayashida, M. Hays, E. Horan, D. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. McEnery, J. E. Mehault, J. Michelson, P. F. Minuti, M. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Naumann-Godo, M. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Petrosian, V. Pinchera, M. Piron, F. Porter, T. A. Profumo, S. Raino, S. Rando, R. Rapposelli, E. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Ripken, J. Ritz, S. Rochester, L. S. Romani, R. W. Roth, M. Sadrozinski, H. F. -W. Saggini, N. Sanchez, D. Sander, A. Sgro, C. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Stawarz, L. Stephens, T. E. Strickman, M. S. Strong, A. W. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Tibolla, O. Torres, D. F. Tosti, G. Tramacere, A. Turri, M. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wallace, E. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. TI Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV SO PHYSICAL REVIEW D LA English DT Article ID LARGE-AREA TELESCOPE; SPACE-TELESCOPE; ENERGY-SPECTRA; SOLAR MINIMUM; POSITRONS; PROPAGATION; MODULATION; SPECTROMETER; GALAXY AB We present the results of our analysis of cosmic-ray electrons using about 8 x 10(6) electron candidates detected in the first 12 months on-orbit by the Fermi Large Area Telescope. This work extends our previously published cosmic-ray electron spectrum down to 7 GeV, giving a spectral range of approximately 2.5 decades up to 1 TeV. We describe in detail the analysis and its validation using beam-test and on-orbit data. In addition, we describe the spectrum measured via a subset of events selected for the best energy resolution as a cross-check on the measurement using the full event sample. Our electron spectrum can be described with a power law proportional to E-3.08+/-0.05 with no prominent spectral features within systematic uncertainties. Within the limits of our uncertainties, we can accommodate a slight spectral hardening at around 100 GeV and a slight softening above 500 GeV. C1 [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Borgland, A. W.; Brez, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Turri, M.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Turri, M.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Johnson, R. P.; Profumo, S.; Ritz, S.; Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Johnson, R. P.; Profumo, S.; Ritz, S.; Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellardi, F.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ceccanti, M.; Di Bernardo, G.; Fabiani, D.; Gaggero, D.; Grasso, D.; Kuss, M.; Latronico, L.; Minuti, M.; Pesce-Rollins, M.; Pinchera, M.; Rapposelli, E.; Razzano, M.; Saggini, N.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA IRFU CNRS, Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.; Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.; Moretti, E.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Busetto, G.; Buson, S.; Gustafsson, M.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Busetto, G.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Brandt, T. J.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Belli, F.; Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Belli, F.; Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brandt, T. J.; Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] M Merlin Univ, Dipartimento Fis, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.; Wallace, E.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Carlson, P.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Carlson, P.; Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.; Ylinen, T.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Celik, Oe; Cillis, A. N.; Corbet, R.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Moiseev, A. A.; Stephens, T. E.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] NASA, Ctr Res & Explorat Space Sci & Technol, CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Corbet, R.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Corbet, R.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Strickman, M. S.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC USA. [Cillis, A. N.] Parbellon IAFE, Inst Astron & Fis Espacio, Buenos Aires, DF, Argentina. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [DeKlotz, M.] Stellar Solut Inc, Palo Alto, CA 94306 USA. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana ASI, Sci Data Ctr, I-00044 Rome, Italy. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Reposeur, T.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Reposeur, T.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res CSPAR, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.; Ozaki, M.; Stawarz, L.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Orlando, E.; Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Stephens, T. E.] Wyle Labs, El Segundo, CA 90245 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Ackermann, M (reprint author), Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. EM alexander.a.moiseev@nasa.gov; carmelo.sgro@pi.infn.it RI Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Funk, Stefan/B-7629-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; Grasso, Dario/I-2440-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; OI De Angelis, Alessandro/0000-0002-3288-2517; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Moretti, Elena/0000-0001-5477-9097; Funk, Stefan/0000-0002-2012-0080; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Stephens, Thomas/0000-0003-3065-6871; giommi, paolo/0000-0002-2265-5003; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; Grasso, Dario/0000-0001-7761-7242; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726 FU K. A. Wallenberg Foundation; International Doctorate on Astroparticle Physics (IDAPP) program FX The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States; the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy; the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), High Energy Accelerator Research Organization (KEK), and Japan Aerospace Exploration Agency (JAXA) in Japan; and the K. A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. We would like to thank the INFN GRID Data Centers of Pisa, Trieste, and CNAF-Bologna; the DOE SLAC National Accelerator Laboratory Computing Division and the CNRS/IN2P3 Computing Center (CC-IN2P3-Lyon/Villeurbanne) in partnership with CEA/DSM/Irfu for their strong support in performing the massive simulations necessary for this work. J. Conrad is Fellow of the Royal Swedish Academy of Sciences, funded by a grant from the K. A. Wallenberg Foundation. L. Tibaldo is partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program. NR 47 TC 245 Z9 247 U1 2 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD NOV 18 PY 2010 VL 82 IS 9 AR 092004 DI 10.1103/PhysRevD.82.092004 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 682KI UT WOS:000284402000002 ER PT J AU Ackermann, M Ajello, M Atwood, WB Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cecchi, C Celik, O Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Cuoco, A Dermer, CD de Angelis, A de Palma, F Digel, SW Di Bernardo, G Silva, EDE Drell, PS Dubois, R Favuzzi, C Fegan, SJ Focke, WB Frailis, M Fukazawa, Y Funk, S Fusco, P Gaggero, D Gargano, F Germani, S Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grasso, D Grenier, IA Grove, JE Guiriec, S Gustafsson, M Hadasch, D Harding, AK Hayashi, K Hays, E Hughes, RE Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kataoka, J Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Lemoine-Goumard, M Garde, ML Longo, F Loparco, F Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN McEnery, JE Mehault, J Michelson, PF Mizuno, T Moiseev, AA Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nakamori, T Naumann-Godo, M Nolan, PL Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Profumo, S Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reposeur, T Ripken, J Ritz, S Roth, M Sadrozinski, HFW Sander, A Schalk, TL Sgro, C Siegal-Gaskins, J Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Strong, AW Suson, DJ Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Yang, Z Ylinen, T Zaharijas, G Ziegler, M AF Ackermann, M. Ajello, M. Atwood, W. B. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cecchi, C. Celik, Oe Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Cuoco, A. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. Di Bernardo, G. do Couto e Silva, E. Drell, P. S. Dubois, R. Favuzzi, C. Fegan, S. J. Focke, W. B. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gaggero, D. Gargano, F. Germani, S. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grasso, D. Grenier, I. A. Grove, J. E. Guiriec, S. Gustafsson, M. Hadasch, D. Harding, A. K. Hayashi, K. Hays, E. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Lemoine-Goumard, M. Garde, M. Llena Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. McEnery, J. E. Mehault, J. Michelson, P. F. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Naumann-Godo, M. Nolan, P. L. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Profumo, S. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Ripken, J. Ritz, S. Roth, M. Sadrozinski, H. F. -W. Sander, A. Schalk, T. L. Sgro, C. Siegal-Gaskins, J. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Strong, A. W. Suson, D. J. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Zaharijas, G. Ziegler, M. TI Searches for cosmic-ray electron anisotropies with the Fermi Large Area Telescope SO PHYSICAL REVIEW D LA English DT Article ID ARRIVAL DIRECTIONS; SPECTRUM; MILAGRO; CLUMPS AB The Large Area Telescope on board the Fermi satellite (Fermi LAT) detected more than 1.6 x 10(6) cosmic-ray electrons/positrons with energies above 60 GeV during its first year of operation. The arrival directions of these events were searched for anisotropies of angular scale extending from similar to 10 degrees up to 90 degrees, and of minimum energy extending from 60 GeV up to 480 GeV. Two independent techniques were used to search for anisotropies, both resulting in null results. Upper limits on the degree of the anisotropy were set that depended on the analyzed energy range and on the anisotropy's angular scale. The upper limits for a dipole anisotropy ranged from similar to 0.5% to similar to 10%. C1 [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Profumo, S.; Ritz, S.; Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Profumo, S.; Ritz, S.; Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Di Bernardo, G.; Gaggero, D.; Grasso, D.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA IRFU CNRS, Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Gustafsson, M.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Hadasch, D.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Celik, Oe; Harding, A. K.; Hays, E.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] NASA, Ctr Res & Explorat Space Sci & Technol CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Strickman, M. S.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.; Zaharijas, G.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Conrad, J.; Cuoco, A.; Garde, M. Llena; Moretti, E.; Ripken, J.; Yang, Z.; Ylinen, T.; Zaharijas, G.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Univ Udine, Grp Collegato Udine, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fukazawa, Y.; Hayashi, K.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giommi, P.] Agenzia Spaziale Italiana ASI, Sci Data Ctr, I-00044 Rome, Italy. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res CSPAR, Huntsville, AL 35899 USA. [Hughes, R. E.; Sander, A.; Siegal-Gaskins, J.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Lemoine-Goumard, M.; Reposeur, T.; Smith, D. A.] Univ Bordeaux 1, Ctr Etud Nucl Bordeaux Gradignan, CNRS IN2p3, F-33175 Gradignan, France. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Moretti, E.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Orlando, E.; Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. [Zaharijas, G.] CEA Saclay, Inst Theoret Phys, F-91191 Gif Sur Yvette, France. RP Ackermann, M (reprint author), Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. EM mazziotta@ba.infn.it; vvasilei@milkyway.gsfc.nasa.gov RI Funk, Stefan/B-7629-2015; Loparco, Francesco/O-8847-2015; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; Grasso, Dario/I-2440-2012; Johnson, Neil/G-3309-2014 OI Berenji, Bijan/0000-0002-4551-772X; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Moretti, Elena/0000-0001-5477-9097; Funk, Stefan/0000-0002-2012-0080; Loparco, Francesco/0000-0002-1173-5673; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; Zaharijas, Gabrijela/0000-0001-8484-7791; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; giommi, paolo/0000-0002-2265-5003; Thompson, David/0000-0001-5217-9135; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; Grasso, Dario/0000-0001-7761-7242; NR 36 TC 46 Z9 46 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD NOV 18 PY 2010 VL 82 IS 9 AR 092003 DI 10.1103/PhysRevD.82.092003 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 682KI UT WOS:000284402000001 ER PT J AU Genc, KO Gopalakrishnan, R Kuklis, MM Maender, CC Rice, AJ Bowersox, KD Cavanagh, PR AF Genc, K. O. Gopalakrishnan, R. Kuklis, M. M. Maender, C. C. Rice, A. J. Bowersox, K. D. Cavanagh, P. R. TI Foot forces during exercise on the International Space Station SO JOURNAL OF BIOMECHANICS LA English DT Article DE Bone loss; Microgravity; Locomotion; Resistance exercise; Ergometer; Countermeasures; Spaceflight; Mechanical loading ID LONG-DURATION SPACEFLIGHT; RESISTIVE EXERCISE; BONE; GRAVITY; COUNTERMEASURES; STRENGTH; IMPACT; FLIGHT; MUSCLE AB Long-duration exposure to microgravity has been shown to have detrimental effects on the human musculoskeletal system. To date, exercise countermeasures have been the primary approach to maintain bone and muscle mass and they have not been successful. Up until 2008, the three exercise countermeasure devices available on the International Space Station (ISS) were the treadmill with vibration isolation and stabilization (TVIS), the cycle ergometer with vibration isolation and stabilization (CEVIS), and the interim resistance exercise device (iRED). This article examines the available envelope of mechanical loads to the lower extremity that these exercise devices can generate based on direct in-shoe force measurements performed on the ISS. Four male crewmembers who flew on long-duration ISS missions participated in this study. In-shoe forces were recorded during activities designed to elicit maximum loads from the various exercise devices. Data from typical exercise sessions on Earth and on-orbit were also available for comparison. Maximum on-orbit single-leg loads from TVIS were 1.77 body weight (BW) while running at 8 mph. The largest single-leg forces during resistance exercise were 0.72 BW during single-leg heel raises and 0.68 BW during double-leg squats. Forces during CEVIS exercise were small, approaching only 0.19 BW at 210W and 95 RPM. We conclude that the three exercise devices studied were not able to elicit loads comparable to exercise on Earth, with the exception of CEVIS at its maximal setting. The decrements were, on average, 77% for walking, 75% for running, and 65% for squats when each device was at its maximum setting. Future developments must include an improved harness to apply higher gravity replacement loads during locomotor exercise and the provision of greater resistance exercise capability. The present data set provides a benchmark that will enable future researchers to judge whether or not the new generation of exercise countermeasures recently added to the ISS will address the need for greater loading. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Genc, K. O.; Cavanagh, P. R.] Univ Washington, Dept Orthopaed & Sports Med, Seattle, WA 98195 USA. [Genc, K. O.] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA. [Gopalakrishnan, R.; Kuklis, M. M.; Rice, A. J.] Cleveland Clin, Dept Biomed Engn, Cleveland, OH 44106 USA. [Maender, C. C.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Bowersox, K. D.] Increment 6 Astronaut, Houston, TX USA. RP Cavanagh, PR (reprint author), Univ Washington, Dept Orthopaed & Sports Med, BB 1065D,1959 NE Pacific St,Box 356500, Seattle, WA 98195 USA. EM cavanagh@uw.edu RI Gopalakrishnan, Raghavan/F-1213-2015 OI Gopalakrishnan, Raghavan/0000-0002-9038-9392 FU NASA [NCC 9-153] FX This work was supported by NASA Cooperative Agreement NCC 9-153. The cooperation of the crewmembers and of Mark Guilliams in the astronaut strength, conditioning, and rehabilitation (ASCR) group is gratefully acknowledged. NR 24 TC 20 Z9 23 U1 0 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-9290 J9 J BIOMECH JI J. Biomech. PD NOV 16 PY 2010 VL 43 IS 15 BP 3020 EP 3027 DI 10.1016/j.jbiomech.2010.06.028 PG 8 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA 692AC UT WOS:000285122900023 PM 20728086 ER PT J AU De Witt, JK AF De Witt, John K. TI Determination of toe-off event time during treadmill locomotion using kinematic data SO JOURNAL OF BIOMECHANICS LA English DT Article DE Locomotion; Gait; Treadmill; Temporal kinematics AB Researchers collecting gait kinematic data during treadmill locomotion are often interested in determining the times of toe off and heel strike for each stride. In the absence of additional hardware, only position data collected with motion-capture equipment may be available. Others have published methods for using kinematic data for detecting overground gait events. However, during treadmill locomotion, especially running, overground methods may not possess sufficient accuracy. The purpose of this paper is to describe a method for using kinematic data to determine the time of toe off during treadmill locomotion. Ten subjects walked and ran on a treadmill while a motion-capture system collected positional data from heel and toe markers. The treadmill was equipped with force platforms that allowed an accurate determination of foot-ground contact. The time of toe off was determined using the vertical component of the toe marker, and this method was found to have greater accuracy for event detection than other published methods. Researchers can use the described method to determine times of heel strike and toe off during treadmill locomotion using only kinematic data. (C) 2010 Elsevier Ltd. All rights reserved. C1 NASA, Lyndon B Johnson Space Ctr, Wyle Integrated Sci & Engn Grp, Houston, TX 77058 USA. RP De Witt, JK (reprint author), NASA, Lyndon B Johnson Space Ctr, Wyle Integrated Sci & Engn Grp, Ste 120, Houston, TX 77058 USA. EM john.k.dewitt@nasa.gov FU NASA FX The author would like to acknowledge Melissa Scott-Pandorf for her help reviewing during the preparation of the paper and the NASA Countermeasures Evaluation Validation Project, which funded this work. NR 7 TC 18 Z9 18 U1 1 U2 13 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-9290 J9 J BIOMECH JI J. Biomech. PD NOV 16 PY 2010 VL 43 IS 15 BP 3067 EP 3069 DI 10.1016/j.jbiomech.2010.07.009 PG 3 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA 692AC UT WOS:000285122900030 PM 20801452 ER PT J AU Lillis, RJ Brain, DA England, SL Withers, P Fillingim, MO Safaeinili, A AF Lillis, Robert J. Brain, David A. England, Scott L. Withers, Paul Fillingim, Matthew O. Safaeinili, Ali TI Total electron content in the Mars ionosphere: Temporal studies and dependence on solar EUV flux SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID MARTIAN IONOSPHERE; RADAR SOUNDINGS; MONOCHROMATIC RADIATION; GLOBAL SURVEYOR; MAGNETIC-FIELD; ROTATING EARTH; ATMOSPHERE; ABSORPTION; DENSITIES; EJECTION AB Total electron content (TEC) derived from radar signal distortions is a useful tool in probing the ionosphere of Mars. We consider 26 months of data from the subsurface mode of the Mars Express MARSIS instrument and confirm that the TEC dependence on solar zenith angle (SZA) approximately matches Chapman theory. After detrending this dependence, we find no clear trend with Martian season or dust activity but find that disturbed solar and space weather conditions can produce prolonged higher TEC values and that isolated solar energetic particle events are coincident with short-lived increases in TEC of similar to 10(15) m(-2) at all SZAs. We present the first comparison between TEC and directly measured solar EUV flux in the 30.4 nm He-II line. We find that the relationship between TEC and both He-II line irradiance and F(10.7) solar radio flux (a long-used EUV proxy) can be expressed as power laws with exponents of 0.54 and 0.44, respectively, in approximate agreement with Chapman theory. C1 [Lillis, Robert J.; Brain, David A.; England, Scott L.; Fillingim, Matthew O.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Withers, Paul] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Safaeinili, Ali] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Lillis, RJ (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. EM rlillis@ssl.berkeley.edu RI Withers, Paul/H-2241-2014; Lillis, Robert/A-3281-2008 OI Lillis, Robert/0000-0003-0578-517X FU NASA [NNX09AD43G, NNX08AK94G] FX This paper is dedicated to the memory of Ali Safaeinili (1961-2009), a dear colleague and excellent scientist. We would like to thank Ali's wife Lisa Safaeinili for her kind permission to put Ali's name on this paper, as he was very much involved in the planning stages of this collaboration. We would like to thank the MARSIS team in Grenoble, France (J. Mouginot and W. Kofman) for producing this very useful data set, as well as the ASPERA-3 team, without whom the SEP flux proxy would not be possible past November 2006 (when MGS was lost). We would also like to thank Amir Caspi for help in plotting the GOES X-ray data, Michael Smith for providing the THEMIS dust opacity data, Philip Chamberlin for help in accessing the TIMED-SEE data, and lastly the European Space Agency's Planetary Science Archive for kindly archiving the TEC data set. This work was supported by NASA Mars Fundamental Research Program grant NNX09AD43G and NASA Mars Data Analysis Program grant NNX08AK94G. R. J. Lillis thanks Stas Barabash and Eduard Dubinin for their assistance in evaluating and improving this paper. NR 37 TC 22 Z9 23 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 16 PY 2010 VL 115 AR A11314 DI 10.1029/2010JA015698 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 683PL UT WOS:000284487600003 ER PT J AU DeFries, R Rosenzweig, C AF DeFries, R. Rosenzweig, C. TI Toward a whole-landscape approach for sustainable land use in the tropics SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID GREENHOUSE-GAS MITIGATION; AGRICULTURAL INTENSIFICATION; CLIMATE-CHANGE; FOOD SECURITY; FOREST; CARBON; GROWTH; HUNGER; COVER; FATE AB Increasing food production and mitigating climate change are two primary but seemingly contradictory objectives for tropical landscapes. This special feature examines synergies and trade-offs among these objectives. Four themes emerge from the papers: the important roles of both forest and agriculture sectors for climate mitigation in tropical countries; the minor contribution from deforestation-related agricultural expansion to overall food production at global and continental scales; the opportunities for synergies between improved food production and reductions in greenhouse gas emissions through diversion of agricultural expansion to already-cleared lands, improved soil, crop, and livestock management, and agroforestry; and the need for targeted policy and management interventions to make these synergistic opportunities a reality. We conclude that agricultural intensification is a key factor to meet dual objectives of food production and climate mitigation, but there is no single panacea for balancing these objectives in all tropical landscapes. Place-specific strategies for sustainable land use emerge from assessments of current land use, demographics, and other biophysical and socioeconomic characteristics, using a whole-landscape, multisector perspective. C1 [DeFries, R.] Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY 10027 USA. [Rosenzweig, C.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP DeFries, R (reprint author), Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY 10027 USA. EM rd2402@columbia.edu NR 47 TC 95 Z9 99 U1 9 U2 79 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 16 PY 2010 VL 107 IS 46 BP 19627 EP 19632 DI 10.1073/pnas.1011163107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 680UT UT WOS:000284261800009 PM 21081701 ER PT J AU Centrella, J Baker, JG Kelly, BJ van Meter, JR AF Centrella, Joan Baker, John G. Kelly, Bernard J. van Meter, James R. TI Black-hole binaries, gravitational waves, and numerical relativity SO REVIEWS OF MODERN PHYSICS LA English DT Article ID 3-DIMENSIONAL CARTESIAN GRIDS; MERGING COMPACT BINARIES; APPARENT-HORIZON FINDER; ACTIVE GALACTIC NUCLEI; PULSAR TIMING ARRAYS; X-RAY-PROPERTIES; RADIATION RECOIL; CIRCULAR ORBITS; STANDARD SIRENS; GENERAL-RELATIVITY AB Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events, releasing tremendous amounts of energy in the form of gravitational radiation, and are key sources for both ground-and space-based gravitational-wave detectors. The black-hole merger dynamics and the resulting gravitational wave forms can only be calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit could be simulated. Recently, however, a series of dramatic advances in numerical relativity has allowed stable, robust black-hole merger simulations. This remarkable progress in the rapidly maturing field of numerical relativity and the new understanding of black-hole binary dynamics that is emerging is chronicled. Important applications of these fundamental physics results to astrophysics, to gravitational-wave astronomy, and in other areas are also discussed. C1 [Centrella, Joan; Baker, John G.; Kelly, Bernard J.; van Meter, James R.] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. [Kelly, Bernard J.; van Meter, James R.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Kelly, Bernard J.; van Meter, James R.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. RP Centrella, J (reprint author), NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM joan.centrella@nasa.gov; john.g.baker@nasa.gov; bernard.j.kelly@nasa.gov; james.r.vanmeter@nasa.gov RI van meter, james/E-7893-2011; Kelly, Bernard/G-7371-2011; OI Kelly, Bernard/0000-0002-3326-4454 FU NASA [06-BEFS06-19] FX This review draws on the work of a broad research community and would not have been possible without the many contributions and support of our colleagues. We especially want to thank a few individuals who have made particularly valuable contributions. William D. Boggs, Bernd Brugmann, Alessandra Buonanno, Mark Hannam, Richard Matzner, Cole Miller, and Harald Pfeiffer gave insightful and helpful comments on our paper. Manuela Campanelli and Harald Pfeiffer supplied us with figures from their simulations that were not in the published literature. We also benefited from many useful discussions with Sean McWilliams. We acknowledge support from NASA Grant No. 06-BEFS06-19. B.J.K. was supported in part by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 342 TC 101 Z9 101 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD NOV 16 PY 2010 VL 82 IS 4 BP 3069 EP 3119 DI 10.1103/RevModPhys.82.3069 PG 51 WC Physics, Multidisciplinary SC Physics GA 680UH UT WOS:000284260200001 ER PT J AU Wang, HL Schubert, S Suarez, M Koster, R AF Wang, Hailan Schubert, Siegfried Suarez, Max Koster, Randal TI The physical mechanism by which the leading patterns of SST variability impact U.S. precipitation (vol 23, pg 1815, 2010) SO JOURNAL OF CLIMATE LA English DT Correction C1 [Wang, Hailan; Schubert, Siegfried; Suarez, Max; Koster, Randal] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Sci & Explorat Directorate, Greenbelt, MD USA. [Wang, Hailan] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. RP Wang, HL (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Sci & Explorat Directorate, Greenbelt, MD USA. RI Koster, Randal/F-5881-2012 OI Koster, Randal/0000-0001-6418-6383 NR 1 TC 0 Z9 0 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD NOV 15 PY 2010 VL 23 IS 22 BP 6129 EP 6129 DI 10.1175/2010JCLI4026.1 PG 1 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 693MG UT WOS:000285227600020 ER PT J AU Manning, HLK ten Kate, IL Battel, SJ Mahaffy, PR AF Manning, H. L. K. ten Kate, I. L. Battel, S. J. Mahaffy, P. R. TI Electric discharge in the Martian atmosphere, Paschen curves and implications for future missions SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Electrical discharge; Mars; Atmosphere; Paschen curve; Space flight instrumentation ID SECONDARY IONIZATION COEFFICIENTS; STEEL COAXIAL CYLINDERS; LOW-PRESSURE; DUST DEVIL; BREAKDOWN POTENTIALS; MARS; GASES; FIELD; MODEL AB Electric discharge between two electrically charged surfaces occurs at a well-defined, gas-dependent combination of atmospheric pressure and the distance between those two surfaces, as described by Paschen's law. The understanding of when the discharge will occur in the conditions present on Mars is essential for designing space-flight hardware that will operate on the Martian surface as well as understanding electrical discharge processes occurring in the Martian atmosphere. Here, we present experimentally measured Paschen curves for a gas mixture representative of the Martian atmosphere and compare our results to breakdown voltages of carbon dioxide, nitrogen, and helium as measured with our system and from the literature. We will discuss possible implications for instrument development as well as implications for processes in the Martian atmosphere. The DC voltage at which electric discharge occurred between two stainless steel spheres was measured at pressures from 10(-2) to 100 torr in all gases. We measured a minimum voltage for discharge in the Mars ambient atmosphere of 410 +/- 10 V at 0.3 torr cm. As an application, the breakdown properties of space-qualified, electrical wires to be used in the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) were studied. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Manning, H. L. K.] Concordia Coll, Moorhead, MN 56562 USA. [ten Kate, I. L.; Mahaffy, P. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [ten Kate, I. L.] UMBC, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Battel, S. J.] Battel Engn Inc, Scottsdale, AZ 85253 USA. RP Manning, HLK (reprint author), Concordia Coll, 901 8th St S, Moorhead, MN 56562 USA. EM manning@cord.edu RI Mahaffy, Paul/E-4609-2012 FU Goddard Center for Astrobiology FX The authors would like to thank E. Patrick for his help with setting up the simulation facility, M. Barciniak for his help with assembling the electrical system, and Dr. M. Benna for providing Fig. 3. Heidi Manning was funded in the framework of the Sample Analysis at Mars development; Inge ten Kate was funded by the Goddard Center for Astrobiology. NR 28 TC 6 Z9 7 U1 2 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD NOV 15 PY 2010 VL 46 IS 10 BP 1334 EP 1340 DI 10.1016/j.asr.2010.07.006 PG 7 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 670DC UT WOS:000283400400013 ER PT J AU Catalanotti, G Camanho, PP Xavier, J Davila, CG Marques, AT AF Catalanotti, G. Camanho, P. P. Xavier, J. Davila, C. G. Marques, A. T. TI Measurement of resistance curves in the longitudinal failure of composites using digital image correlation SO COMPOSITES SCIENCE AND TECHNOLOGY LA English DT Article DE Polymer-matrix composites (PMCs); Fracture toughness ID CONTINUUM DAMAGE MODEL; DELAMINATION; PREDICTION; FRACTURE; TENSILE; LAWS AB This paper presents a new methodology to measure the crack resistance curves associated with fiber-dominated failure modes in polymer-matrix composites The crack resistance curves not only characterize the fracture toughness of the material, but are also the basis for the identification of the parameters of the softening laws used in the numerical simulation of fracture in composite materials The proposed method is based on the identification of the crack tip location using Digital Image Correlation and the calculation of the J-integral directly from the test data using a simple expression derived for cross-ply composite laminates It is shown that the results obtained using the proposed methodology yield crack resistance curves similar to those obtained using Finite Element based methods for compact tension carbon-epoxy specimens However, it is also shown that, while the Digital Image Correlation based technique mitigates the problems resulting from Finite Element based data reduction schemes applied to compact compression tests, the delamination that accompanies the propagation of a kink-band renders compact compression test specimens unsuitable to measure resistance curves associated with fiber kinking. (C) 2010 Elsevier Ltd All rights reserved C1 [Catalanotti, G.; Camanho, P. P.; Marques, A. T.] Univ Porto, DEMec, Fac Engn, P-4200465 Oporto, Portugal. [Xavier, J.] CITAB UTAD, Vila Real, Portugal. [Davila, C. G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Camanho, PP (reprint author), Univ Porto, DEMec, Fac Engn, Rua Dr Roberto Frias, P-4200465 Oporto, Portugal. RI Davila, Carlos/D-8559-2011; Camanho, Pedro /E-1666-2011; Xavier, Jose/A-4348-2013; Catalanotti, Giuseppe/I-7833-2015; OI Xavier, Jose/0000-0002-7836-4598; Catalanotti, Giuseppe/0000-0001-9326-9575; Marques, Antonio/0000-0001-9388-2724; Camanho, Pedro/0000-0003-0363-5207 FU European Commission [MRTN-CT-2005-019198]; Portuguese Foundation for Science and Technology (FCT) [PDCTE-EME-65099-2003] FX The first author acknowledges the financial support of the European Commission under Contract No. MRTN-CT-2005-019198. The financial support of the Portuguese Foundation for Science and Technology (FCT) under the Project PDCTE-EME-65099-2003 is acknowledged by the second author. NR 22 TC 45 Z9 45 U1 1 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0266-3538 J9 COMPOS SCI TECHNOL JI Compos. Sci. Technol. PD NOV 15 PY 2010 VL 70 IS 13 SI SI BP 1986 EP 1993 DI 10.1016/j.compscitech.2010.07.022 PG 8 WC Materials Science, Composites SC Materials Science GA 672TY UT WOS:000283611000029 ER PT J AU Voulgarakis, A Shindell, DT AF Voulgarakis, Apostolos Shindell, Drew T. TI Constraining the Sensitivity of Regional Climate with the Use of Historical Observations SO JOURNAL OF CLIMATE LA English DT Article ID TEMPERATURE; MODEL; 20TH-CENTURY; FEEDBACKS AB A novel method is presented for calculating how sensitive regional climate is to radiative forcings. based on global surface temperature observations. Forcings that originate in both the region of interest and outside of it are taken into account. It is found that the transient temperature sensitivity parameter (beta, defined as the observed temperature response per unit forcing) can be better constrained for 50 degrees S-25 degrees N than for the rest of the globe. The average beta in this region is 0.35 degrees C (W m(-2))(-1). The models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) 1% yr(-1) CO(2) increase experiment exhibit a p in this region that, on average, is higher by 35%. The results show that for 50 degrees S-25 degrees N beta may provide a more valuable constraint for model evaluation than global mean climate sensitivity. C1 [Voulgarakis, Apostolos] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. Columbia Univ, Ctr Climate Syst Res, New York, NY USA. RP Voulgarakis, A (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM avoulgarakis@giss.nasa.gov RI Shindell, Drew/D-4636-2012 FU NASA ACMAP FX The authors wish to thank Greg Faluvegi for his help in analyzing the data, Reto Ruedy for providing the radiative forcing data for the period examined, and NASA ACMAP for its support. NR 26 TC 4 Z9 4 U1 0 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD NOV 15 PY 2010 VL 23 IS 22 BP 6068 EP 6073 DI 10.1175/2010JCLI3623.1 PG 6 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 693MG UT WOS:000285227600011 ER PT J AU Stickle, WB Lindeberg, M Rice, SD AF Stickle, William B. Lindeberg, Mandy Rice, Stanley D. TI Seasonal freezing adaptations of the mid-intertidal gastropod Nucella lima from southeast Alaska SO JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY LA English DT Article DE Activity patterns; Colligative osmolytes; Freeze events; Freeze tolerance; Nucella lima; Supercooling point ID MELAMPUS-BIDENTATUS SAY; LITTORINA-LITTOREA L; PULMONATE GASTROPOD; THERMAL-STRESS; CLIMATE-CHANGE; ICE NUCLEATOR; TOLERANCE; SNAILS; INVERTEBRATES; SALINITY AB Nucella lima from the mid-intertidal zone of Bridget and Sunshine Cove, Alaska is exposed to multiple freezing emersion events during the winter. The average duration of low tide when the air temperature fell below 0 degrees C increased from 2.91 to 6.78 h between the lower limit and upper limit of the intertidal range of N. lima. Air temperatures below freezing were observed between October 20, 2007 and April 20, 2008. Snails cease feeding and move into crevices, under boulders or into the sediment at the base of rocks in the winter which potentially minimizes their exposure to freezing events. Egg capsules were also observed in the snail habitat between September 27, 2007 and March 12, 2008. Snails supercool below the freezing point of seawater which delays freezing during tidal cycle related emersion. The supercooling point of snail tissues does not vary seasonally. Air temperatures below the maximum supercooling temperature of snails (-4.94 degrees C) occurred multiple times in December 2007 and January and February 2008. The freeze tolerance of N. lima varies seasonally and is always below the supercooling point indicating that N. lima physiologically tolerates freezing. It is likely that the seasonal synthesis of cellular compatible osmolytes is responsible for the seasonal variation in freeze tolerance: Quantitatively important compatible osmolytes which are found in higher concentration in the winter versus the summer in foot tissue of snails are total free amino acids, taurine (119 mol.Kg wet(-1)), and glycine (43 mol.Kg wet(-1)). (C) 2010 Elsevier B.V. All rights reserved. C1 [Stickle, William B.] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA. [Lindeberg, Mandy; Rice, Stanley D.] Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Natl Oceanog & Atmospher Adm, Auke Bay Lab, Juneau, AK 99801 USA. RP Stickle, WB (reprint author), Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA. EM zostic@lsu.edu FU Louisiana Sea Grant FX WBS gratefully acknowledges Louisiana State University for granting him a sabbatical leave for the spring semester of the 200607 academic year which allowed him to initiate this project. We are also thankful to Louisiana Sea Grant for awarding an undergraduate research opportunities (UROP) grant to Kevin Vu who assisted with the freeze tolerance, supercooling, and snail activity experiments in June 2009 and in performing temperature probe analysis from the Pro V 2 Hobo temperature probe transects placed in the rocky intertidal zone at Bridget Cove, AK. Ms. Jinny Johnson of the Texas A&M Texas A&M University Protein Chemistry Laboratory was a pleasure to work with. [SS] NR 21 TC 5 Z9 6 U1 5 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0981 J9 J EXP MAR BIOL ECOL JI J. Exp. Mar. Biol. Ecol. PD NOV 15 PY 2010 VL 395 IS 1-2 BP 106 EP 111 DI 10.1016/j.jembe.2010.08.022 PG 6 WC Ecology; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA 683YF UT WOS:000284513500014 ER PT J AU Pan, XJ Mannino, A Russ, ME Hooker, SB Harding, LW AF Pan, Xiaoju Mannino, Antonio Russ, Mary E. Hooker, Stanford B. Harding, Lawrence W., Jr. TI Remote sensing of phytoplankton pigment distribution in the United States northeast coast SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Phytoplankton pigments; Remote sensing; US northeast coast; SeaWiFS; MODIS-Aqua ID OCEAN COLOR; CHESAPEAKE BAY; CHLOROPHYLL-A; PRIMARY PRODUCTIVITY; ABSORPTION-SPECTRUM; LIGHT-ABSORPTION; ATLANTIC BIGHT; SEAWIFS; ALGORITHMS; BLOOMS AB Phytoplankton pigments constitute many more compounds than chlorophyll a that can be applied to study phytoplankton diversity, populations, and primary production. In this study, field measurements were applied to develop ocean color satellite algorithms of phytoplankton pigments from in-water radiometry measurements. The match-up comparisons showed that the satellite-derived pigments from our algorithms agree reasonably well (e.g. 30-55% of uncertainty for SeaWiFS and 37-50% for MODIS-Aqua) to field data, with better agreement (e.g. 30-38% of uncertainty for SeaWiFS and 39-44% for MODIS-Aqua) for pigments abundant in diatoms. The seasonal and spatial variations of satellite-derived phytoplankton biomarker pigments, such as fucoxanthin, which is abundant in diatoms, peridinin, which is found only in peridinin-containing dinoflagellates, and zeaxanthin, which is primarily from cyanobacteria in coastal waters, revealed that higher densities of diatoms are more likely to occur on the inner shelf and during winter-spring and obscure other abundant phytoplankton groups. However, relatively higher densities of other phytoplankton, such as dinoflagellates and cyanobacteria, are likely to occur on the mid- to outer-continental shelf and during summer. Seasonal variation of riverine discharge may play an important role in stimulating algal blooms, in particular diatoms, while higher abundances of cyanobacteria coincide with warmer water temperatures and lower nutrient concentrations. (C) 2010 Elsevier Inc. All rights reserved. C1 [Pan, Xiaoju; Mannino, Antonio; Russ, Mary E.; Hooker, Stanford B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Harding, Lawrence W., Jr.] Univ Maryland, Horn Point Lab, Ctr Environm Sci, Cambridge, MD 21613 USA. RP Pan, XJ (reprint author), Acad Sinica, Res Ctr Environm Changes, 128 Acad Rd,Sect 2, Taipei 115, Taiwan. EM xpanx001@gmail.com RI Hooker, Stanford/E-2162-2012; Mannino, Antonio/I-3633-2014 FU NASA FX This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center (GSFC), administered by Oak Ridge Associated Universities through a contract with NASA. The work was supported by the NASA Ocean Biology and Biogeochemistry Program, Interdisciplinary Science, Biodiversity, New Investigator Program, Carbon Cycle Science and Earth Observing System programs. We thank Ru Morrison for the invitation to participate cruises in the Gulf of Maine and Mike Twardowski for planning the New York Bight cruises. We are also grateful to Dr. Tim Moore and colleagues at the University of New Hampshire Coastal Ocean Observing Center for providing their HPLC data for the Gulf of Maine. We thank the captains and crews of RN Cape Henlopen, Hugh R. Sharp, Gulf Challenger, Connecticut, and Fay Slover. We are grateful to J. Morrow, J. Brown, D. D'Alimonte, and J.-N. Druon for deploying the profiling radiometer, and to L Van Heukelem and C. Thomas for analyzing HPLC pigments, and the Ocean Biology Processing Group (OBPG) at GSFC for satellite data processing and distribution. We thank Peter Minnett (Associate Editor), and three anonymous reviewers for their thorough, thoughtful jobs and constructive comments. NR 52 TC 24 Z9 24 U1 2 U2 25 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV 15 PY 2010 VL 114 IS 11 BP 2403 EP 2416 DI 10.1016/j.rse.2010.05.015 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 655IE UT WOS:000282242000002 ER PT J AU Joseph, AT van der Velde, R O'Neill, PE Lang, R Gish, T AF Joseph, A. T. van der Velde, R. O'Neill, P. E. Lang, R. Gish, T. TI Effects of corn on C- and L-band radar backscatter: A correction method for soil moisture retrieval SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Active microwave; Vegetation effects; Soil moisture; Corn; Field campaign ID LEAF-AREA INDEX; VEGETATION WATER-CONTENT; ELECTROMAGNETIC SCATTERING; HYDROLOGY EXPERIMENT; MICROWAVE EMISSION; SURFACE-ROUGHNESS; SAR OBSERVATIONS; GROWTH-CYCLE; X-BANDS; MODEL AB This paper discusses the effects of vegetation on C- (4.75 GHz) and L- (1.6 GHz) band backscattering (sigma degrees) measured throughout a growth cycle at incidence angles of 15, 35 and 55 degrees. The utilized sigma degrees data set was collected by a truck mounted scatterometer over a corn field and is supported by a comprehensive set of ground measurements, including soil moisture and vegetation biomass. Comparison of sigma degrees measurement against simulations by the Integral Equation Method (IEM) surface scattering model (Fung et al., 1992) shows that the sigma degrees measurements are dominated either by an attenuated soil return or by scattering from vegetation depending on the antenna configuration and growth stage. Further, the measured sigma degrees is found to be sensitive to soil moisture even at peak biomass and large incidence angles, which is attributed to scattering along the soil-vegetation pathway. For the simulation of C-band sigma degrees and the retrieval of soil moisture two methods have been applied, which are the semi-empirical water cloud model (Attema & Ulaby, 1978) and a novel method. This alternative method uses the empirical relationships between the vegetation water content (W) and the ratio of the bare soil and the measured sigma degrees to correct for vegetation. It is found that this alternative method is superior in reproducing the measured sigma degrees as well as retrieving soil moisture. The highest retrieval accuracies are obtained at a 35 degrees incidence angle leading to RMSD's of 0.044 and 0.037 m(3) m(-3) for the HH and VV-polarization, respectively. In addition, the sensitivity of these soil moisture retrievals to W and surface roughness parameter uncertainties is investigated. Published by Elsevier Inc. C1 [Joseph, A. T.; O'Neill, P. E.] NASA, Hydrol Sci Branch 614 3, Hydrospher & Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [van der Velde, R.] Univ Twente, Fac Geoinjormat Sci & Earth Observat ITC, NL-7500 AA Enschede, Netherlands. [Lang, R.] George Washington Univ, Dept Elect & Comp Engn, Washington, DC 20052 USA. [Gish, T.] ARS, Hydrol & Remote Sensing Lab, USDA, Beltsville, MD 20705 USA. RP Joseph, AT (reprint author), NASA, Hydrol Sci Branch 614 3, Hydrospher & Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Alicia.T.Joseph@nasa.gov; velde@itc.nl; Peggy.E.ONeill@nasa.gov; lang@gwu.edu; Timothy.Gish@ars.usda.gov RI O'Neill, Peggy/D-2904-2013; van der Velde, Rogier /K-8623-2013 OI van der Velde, Rogier /0000-0003-2157-4110 NR 63 TC 27 Z9 31 U1 1 U2 30 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV 15 PY 2010 VL 114 IS 11 BP 2417 EP 2430 DI 10.1016/j.rse.2010.05.017 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 655IE UT WOS:000282242000003 ER PT J AU Alsdorf, D Han, SC Bates, P Melack, J AF Alsdorf, Douglas Han, Shin-Chan Bates, Paul Melack, John TI Seasonal water storage on the Amazon floodplain measured from satellites SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Amazon; Floodplain; GRACE; SAR; GPCP ID RIVER FLOODPLAIN; INUNDATION AREA; BASIN; BRAZIL; EVAPOTRANSPIRATION; VARIABILITY; HYDROLOGY; DYNAMICS; PLAIN; LAKE AB The amount of water stored and moving through the Amazon floodplain is not known, yet is necessary for understanding the role of the wetland in the regional carbon balance and the sediment and nutrient exchanged with the main river channel. Here, we separate the Amazon floodplain into six 330 km x 330 km areas and use gravimetric and imaging satellite methods (i.e., GRACE, SRTM, GPCP and JERS-1) to estimate the amounts of water filling and draining from the mainstem Amazon floodplain. We show that the amount of water stored on and subsequently drained from the mainstem Amazon floodplain each year represents about 5% of the total volume of water discharged from the Amazon River into the Atlantic Ocean. Despite a five-fold increase in mainstem discharge from upstream to downstream, the floodplain water volume exchanged with the river only doubles (based on all six 330 km reach lengths). Rates of exchange along the 330 km reach lengths vary from 5500 m(3)/s during floodplain infilling to -7500 m(3)/s during drainage. The contribution to the floodplain from local upland runoff represents less than 20% of the floodplain water volume for any given time. (C) 2010 Elsevier Inc. All rights reserved. C1 [Alsdorf, Douglas] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. [Alsdorf, Douglas] Ohio State Univ, Climate Water & Carbon Program, Columbus, OH 43210 USA. [Han, Shin-Chan] NASA, Planetary Geodynam Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Han, Shin-Chan] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Bates, Paul] Univ Bristol, Sch Geog Sci, Bristol, Avon, England. [Melack, John] Univ Calif Santa Barbara, Bren Sch Environm Sci & Management, Santa Barbara, CA 93106 USA. RP Alsdorf, D (reprint author), Ohio State Univ, Sch Earth Sci, 125 S Oval Mall, Columbus, OH 43210 USA. EM alsdorf.1@osu.edu; Shin-Chan.Han@nasa.gov; paul.bates@bristol.ac.uk; melack@bren.ucsb.edu RI Han, Shin-Chan/A-2022-2009; Bates, Paul/C-8026-2012 OI Bates, Paul/0000-0001-9192-9963 FU NASA; OSU FX Funding was provided by NASA's programs in Terrestrial Hydrology, Large-scale Biosphere-Atmosphere, Physical Oceanography, Earth Surface and Interior, and Terrestrial Ecology. OSU's Climate, Water, & Carbon Program also supplied funding. We thank Scott Luthcke for providing GRACE KBR residual data and Ki-Weon Seo for processing GPCP pentad products. NR 35 TC 38 Z9 38 U1 2 U2 31 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV 15 PY 2010 VL 114 IS 11 BP 2448 EP 2456 DI 10.1016/j.rse.2010.05.020 PG 9 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 655IE UT WOS:000282242000006 ER PT J AU Wang, J Xu, XG Spurr, R Wang, YX Drury, E AF Wang, Jun Xu, Xiaoguang Spurr, Robert Wang, Yuxuang Drury, Easan TI Improved algorithm for MODIS satellite retrievals of aerosol optical thickness over land in dusty atmosphere: Implications for air quality monitoring in China SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Remote sensing of aerosols; Particulate matter air quality; Atmospheric correction in dusty condition; Air quality in China ID DEPTH; RADIANCES; TRANSPORT; MODEL AB A new algorithm, using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite reflectance and aerosol single scattering properties simulated from a chemistry transport model (GEOS-Chem), is developed to retrieve aerosol optical thickness (AOT) over land in China during the spring dust season. The algorithm first uses a "dynamic lower envelope" approach to sample the MODIS dark-pixel reflectance data in low AOT conditions, to derive the local surface visible (0.65 mu m)/near infrared (NIR, 2.1 mu m) reflectance ratio. Joint retrievals of AOT at 0.65 mu m and surface reflectance at 2.1 mu m are then performed, based on the time, location, and spectral-dependent single scattering properties of the dusty atmosphere as simulated by the GEOS-Chem. A linearized vector radiative transfer model (VLIDORT) that simultaneously computes the top-of-atmosphere reflectance and its Jacobian with respect to AOT, is used in the forward component of the inversion of MODIS reflectance to AOT. Comparison of retrieved AOT results in April and May of 2008 with AERONET observations shows a strong correlation (R = 0.83), with small bias (0.01), and small RMSE (0.17); the figures are a substantial improvement over corresponding values obtained with the MODIS Collection 5 AOT algorithm for the same study region and time period. The small bias is partially due to the consideration of dust effect at 2.1 mu m channel, without which the bias is -0.05. The surface PM10 (particulate matter with diameter less than 10 mu m) concentrations derived using this improved AOT retrieval show better agreement with ground observations than those derived from GEOS-Chem simulations alone, or those inferred from the MODIS Collection 5 AOT. This study underscores the value of using satellite reflectance to improve the air quality modeling and monitoring. (C) 2010 Elsevier Inc. All rights reserved. C1 [Wang, Jun; Xu, Xiaoguang] Univ Nebraska Lincoln, Dept Earth & Atmospher Sci, Lincoln, NE 68588 USA. [Wang, Jun] NASA Goddard Space Flight, Climate & Radiat Branch, Greenbelt, MD USA. [Spurr, Robert] RT Solut Inc, Cambridge, MA USA. [Wang, Yuxuang] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. [Drury, Easan] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO USA. RP Wang, J (reprint author), Univ Nebraska Lincoln, Dept Earth & Atmospher Sci, 303 Bessey Hall, Lincoln, NE 68588 USA. EM jwang7@unl.edu RI Chem, GEOS/C-5595-2014; Wang, Yuxuan/C-6902-2014; Xu, Xiaoguang/B-8203-2016; Wang, Jun/A-2977-2008 OI Wang, Yuxuan/0000-0002-1649-6974; Xu, Xiaoguang/0000-0001-9583-980X; Wang, Jun/0000-0002-7334-0490 FU NASA FX This research is supported by the NASA Earth Sciences New Investigator Program and Radiation Science Program. We thank the data services provided by the Goddard Earth Science Data Center and the AERONET team in NASA GSFC., and the computational support provided by the Holland Computing Center of the University of Nebraska. J. Wang is grateful to Ralph Kahn for his constructive comments on the early version of this manuscript. NR 34 TC 34 Z9 36 U1 5 U2 30 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV 15 PY 2010 VL 114 IS 11 BP 2575 EP 2583 DI 10.1016/j.rse.2010.05.034 PG 9 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 655IE UT WOS:000282242000016 ER PT J AU Montes-Hugo, MA Churnside, JH Gould, RW Arnone, RA Foy, R AF Montes-Hugo, M. A. Churnside, J. H. Gould, R. W. Arnone, R. A. Foy, R. TI Spatial coherence between remotely sensed ocean color data and vertical distribution of lidar backscattering in coastal stratified waters SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Vertical structure; Inherent optical properties; Statistical modes; Ocean color; Passive optical data; Backscattering; Lidar; Alaska; Coastal waters ID DIFFUSE REFLECTANCE; NATURAL-WATERS; PHYTOPLANKTON; CHLOROPHYLL; ATLANTIC; LIGHT; MODEL; BIGHT; SHIP AB Detection of sub-surface optical layers in marine waters has important applications in fisheries management, climate modeling, and decision-based systems related to military operations. Concurrent changes in the magnitude and spatial variability of remote sensing reflectance (R(rs)) ratios and submerged scattering layers were investigated in coastal waters of the northern Gulf of Alaska during summer of 2002 based on high resolution and simultaneous passive (MicroSAS) and active (Fish Lidar Oceanic Experimental, FLOE) optical measurements. Principal Component Analysis revealed that the spatial variability of total lidar backscattering signal (5) between 2.1 and 20 m depth was weakly associated with changes in the inherent optical properties (IOPs) of surface waters. Also based on a 250-m footprint, the vertical attenuation of S was inversely related to the IOPs (Spearman Rank Correlation up to -0.43). Low (arithmetic average and standard deviation) and high (skewness and kurtosis) moments of R(rs)(443)/R(rs)(490) and R(rs)(508)/R(rs)(555) ratios were correlated with vertical changes in total lidar backscattering signal (5) at different locations. This suggests the use of sub-pixel ocean color statistics to infer the spatial distribution of sub-surface scattering layers in coastal waters characterized by stratified conditions, well defined S layers (i.e., magnitude of S maximum comparable to near surface values), and relatively high vertically integrated phytoplankton pigments in the euphotic zone (chlorophyll a concentration >150 mg m(-2)). (C) 2010 Elsevier Inc. All rights reserved. C1 [Montes-Hugo, M. A.] Mississippi State Univ, Mississippi State, MS 39529 USA. [Churnside, J. H.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Montes-Hugo, M. A.; Gould, R. W.; Arnone, R. A.] NASA, Naval Res Lab, Stennis Space Ctr, MS 39529 USA. [Foy, R.] NOAA Fisheries, Alaska Fisheries Sci Ctr, Kodiak, AK 99615 USA. RP Montes-Hugo, MA (reprint author), Mississippi State Univ, Mississippi State, MS 39529 USA. EM mmontes@ngi.msstate.edu RI Churnside, James/H-4873-2013; Manager, CSD Publications/B-2789-2015 FU NRL [PE0601153N] FX This work was supported by the NRL internal project "3D Remote Sensing with a Multiple-Band Active and Passive System: Theoretical Basis", PE0601153N. We thank the captain and crew of the FV Laura of Kodiak, the pilot of the aircraft, and Tim Veenstra at Airborne Technologies Inc. (Wasilla, Alaska). NR 34 TC 3 Z9 3 U1 0 U2 13 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV 15 PY 2010 VL 114 IS 11 BP 2584 EP 2593 DI 10.1016/j.rse.2010.05.023 PG 10 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 655IE UT WOS:000282242000017 ER PT J AU Zhu, XL Chen, J Gao, F Chen, XH Masek, JG AF Zhu, Xiaolin Chen, Jin Gao, Feng Chen, Xuehong Masek, Jeffrey G. TI An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Data fusion; Multi-source satellite data; Reflectance; Landsat; MODIS; Time-series ID LANDSAT DATA; RESOLUTION DATA; IMAGE FUSION; TIME-SERIES AB Due to technical and budget limitations, remote sensing instruments trade spatial resolution and swath width. As a result not one sensor provides both high spatial resolution and high temporal resolution. However, the ability to monitor seasonal landscape changes at fine resolution is urgently needed for global change science. One approach is to "blend" the radiometry from daily, global data (e.g. MODIS, MERIS, SPOT-Vegetation) with data from high-resolution sensors with less frequent coverage (e.g. Landsat, CBERS, ResourceSat). Unfortunately, existing algorithms for blending multi-source data have some shortcomings, particularly in accurately predicting the surface reflectance of heterogeneous landscapes. This study has developed an enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) based on the existing STARFM algorithm, and has tested it with both simulated and actual satellite data. Results show that ESTARFM improves the accuracy of predicted fine-resolution reflectance, especially for heterogeneous landscapes, and preserves spatial details. Taking the NIR band as an example, for homogeneous regions the prediction of the ESTARFM is slightly better than the STARFM (average absolute difference [AAD] 0.0106 vs. 0.0129 reflectance units). But for a complex, heterogeneous landscape, the prediction accuracy of ESTARFM is improved even more compared with STARFM (AAD 0.0135 vs. 0.0194). This improved fusion algorithm will support new investigations into how global landscapes are changing across both seasonal and interannual timescales. (C) 2010 Elsevier Inc. All rights reserved. C1 [Zhu, Xiaolin; Chen, Jin; Chen, Xuehong] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China. [Gao, Feng; Masek, Jeffrey G.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. RP Chen, J (reprint author), Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China. EM chenjin@ires.cn RI Chen, Jin/A-6417-2011; li, dongsheng/B-2285-2012; Masek, Jeffrey/D-7673-2012; Chen, Xuehong/A-7768-2012; Zhu, Xiaolin/K-8175-2012; Chen, Jin/I-7666-2016; Chen, Lijun/Q-5012-2016; OI Chen, Jin/0000-0002-6497-4141; Zhu, Xiaolin/0000-0001-6967-786X; Chen, Xuehong/0000-0001-7223-8649 FU National Science and Technology Supporting Program [2006BAD10A06]; Ministry of Science and Technology; Ministry of Education, China; NASA FX This study was supported by the National Science and Technology Supporting Program (Grant No. 2006BAD10A06), Ministry of Science and Technology, and Program for New Century Excellent Talents in University, Ministry of Education, China, and the NASA Terrestrial Ecology Program. We thank the USGS EROS data center for providing free Landsat data and the LP-DAAC and MODIS science team for providing free MODIS products. NR 27 TC 163 Z9 195 U1 13 U2 104 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV 15 PY 2010 VL 114 IS 11 BP 2610 EP 2623 DI 10.1016/j.rse.2010.05.032 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 655IE UT WOS:000282242000019 ER PT J AU Wang, YJ Lyapustin, AI Privette, JL Cook, RB SanthanaVannan, SK Vermote, EF Schaaf, CL AF Wang, Yujie Lyapustin, Alexei I. Privette, Jeffrey L. Cook, Robert B. SanthanaVannan, Suresh K. Vermote, Eric F. Schaaf, Crystal L. TI Assessment of biases in MODIS surface reflectance due to Lambertian approximation SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Surface reflectance; Surface albedo; MODIS; Atmospheric correction; AERONET; Aeronet based surface reflectance validation network (ASRVN); Aerosol; Ross-thick-li-sparse BRDF model ID ALBEDO; LAND; BRDF; RADIOMETER; RETRIEVAL; PRODUCTS; AERONET; SPACE AB Using MODIS data and the AERONET-based Surface Reflectance Validation Network (ASRVN), this work studies errors of MODIS atmospheric correction caused by the Lambertian approximation. On one hand, this approximation greatly simplifies the radiative transfer model, reduces the size of the look-up tables, and makes operational algorithm faster. On the other hand, uncompensated atmospheric scattering caused by Lambertian model systematically biases the results. For example, for a typical bowl-shaped bidirectional reflectance distribution function (BRDF), the derived reflectance is underestimated at high solar or view zenith angles, where BRDF is high, and is overestimated at low zenith angles where BRDF is low. The magnitude of biases grows with the amount of scattering in the atmosphere, i.e., at shorter wavelengths and at higher aerosol concentration. The slope of regression of lambertian surface reflectance vs. ASRVN bidirectional reflectance factor (BRF) is about 0.85 in the red and 0.6 in the green bands. This error propagates into the MODIS BRDF/albedo algorithm, slightly reducing the magnitude of overall reflectance and anisotropy of BRDF. This results in a small negative bias of spectral surface albedo. An assessment for the GSFC (Greenbelt, USA) validation site shows the albedo reduction by 0.004 in the near infrared, 0.005 in the red, and 0.008 in the green MODIS bands. (C) 2010 Elsevier Inc. All rights reserved. C1 [Wang, Yujie] Univ Maryland, Goddard Earth Sci & Technol Ctr, Goddard Space Flight Ctr, NASA, Greenbelt, MD 20771 USA. [Wang, Yujie; Lyapustin, Alexei I.] Univ Maryland Baltimore Cty, GEST Ctr, Catonsville, MD 21228 USA. [Privette, Jeffrey L.] NOAA, Satellite & Informat Serv, NCDC, Asheville, NC 28801 USA. [Cook, Robert B.; SanthanaVannan, Suresh K.] Oak Ridge Natl Lab DAAC, Oak Ridge, TN 37830 USA. [Vermote, Eric F.] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Schaaf, Crystal L.] Boston Univ, Dept Geog, Boston, MA 02215 USA. RP Wang, YJ (reprint author), Univ Maryland, Goddard Earth Sci & Technol Ctr, Goddard Space Flight Ctr, NASA, Code 614-4, Greenbelt, MD 20771 USA. EM yujie.wang@nasa.gov RI Privette, Jeffrey/G-7807-2011; Vermote, Eric/K-3733-2012; Lyapustin, Alexei/H-9924-2014; OI Privette, Jeffrey/0000-0001-8267-9894; Lyapustin, Alexei/0000-0003-1105-5739; Cook, Robert/0000-0001-7393-7302 FU NASA [NNX08AE94A] FX The research of A. Lyapustin and Y. Wang was funded by the NASA Terrestrial Ecology Program (Dr. Wickland). C. Schaaf was funded by the NASA grant NNX08AE94A. NR 31 TC 32 Z9 34 U1 2 U2 23 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV 15 PY 2010 VL 114 IS 11 BP 2791 EP 2801 DI 10.1016/j.rse.2010.06.013 PG 11 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 655IE UT WOS:000282242000033 ER PT J AU Valek, P Brandt, PC Buzulukova, N Fok, MC Goldstein, J McComas, DJ Perez, JD Roelof, E Skoug, R AF Valek, P. Brandt, P. C. Buzulukova, N. Fok, M-C. Goldstein, J. McComas, D. J. Perez, J. D. Roelof, E. Skoug, R. TI Evolution of low-altitude and ring current ENA emissions from a moderate magnetospheric storm: Continuous and simultaneous TWINS observations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ADVANCED COMPOSITION EXPLORER; CARBON FOILS; NEUTRAL ATOMS; IMAGE MISSION; IONS; SUBSTORM; TIME AB The moderate storm of 22 July 2009 is the largest measured during the extended solar minimum between December 2006 and March 2010. We present observations of this storm made by the two wide-angle imaging neutral-atom spectrometers (TWINS) mission. The TWINS mission measures energetic neutral atoms (ENAs) using sensors mounted on two separate spacecrafts. Because the two spacecrafts' orbital planes are significantly offset, the pair provides a nearly optimal combination of continuous magnetospheric observations from at least one of the TWINS platforms with several hours of simultaneous, dual-platform viewing over each orbit. The ENA imaging study presented in this paper is the first reported magnetospheric storm for which both continuous coverage and stereoscopic imaging were available. Two populations of ENAs are observed during this storm. The first are emissions from the ring current and come from a parent population of trapped ions in the inner magnetosphere. The second, low-altitude emissions (LAEs), are the result of precipitating ions which undergo multiple charge exchange and stripping collisions with the oxygen exosphere. The temporal evolution of this storm shows that the LAEs begin earlier and are the brightest emissions seen during the main phase, while later, during the recovery, the LAE is only as bright as the bulk ring current emissions. C1 [Valek, P.; Goldstein, J.; McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA. [Brandt, P. C.; Roelof, E.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Buzulukova, N.; Fok, M-C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Perez, J. D.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Skoug, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Valek, P.; Goldstein, J.; McComas, D. J.] Univ Texas San Antonio, Dept Phys, San Antonio, TX USA. RP Valek, P (reprint author), SW Res Inst, San Antonio, TX 78228 USA. RI Fok, Mei-Ching/D-1626-2012; Brandt, Pontus/N-1218-2016; OI Brandt, Pontus/0000-0002-4644-0306; Valek, Philip/0000-0002-2318-8750 FU TWINS mission; NASA Goddard Space Flight Center FX This work was supported by the TWINS mission, which is a part of NASA's Explorer program. For N. Buzulukova, this research was supported by an appointment at the NASA Goddard Space Flight Center, administered by CRESST/UMD through a contract with NASA. Real Time Dst and AE indices are from supplied by World Data Center for Geomagnetism, Kyoto. We thank the geomagnetic observatories (Kakioka [JMA], Honolulu and San Juan [USGS], Hermanus [RSA], Alibag [IIG]), NiCT, INTERMAGNET, and many others for their cooperation to make the real-time (quicklook) Dst index available. NR 39 TC 25 Z9 25 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 13 PY 2010 VL 115 AR A11209 DI 10.1029/2010JA015429 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 680II UT WOS:000284225200002 ER PT J AU Klemm, O Ziemba, LD Griffin, RJ Sive, BC Whitlow, S Carpenter, K Klemm, KI Talbot, R AF Klemm, Otto Ziemba, Luke D. Griffin, Robert J. Sive, Barkley C. Whitlow, Sallie Carpenter, Kevan Klemm, Kerstin I. Talbot, Robert TI A detailed aerosol particle plume analysis SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SECONDARY ORGANIC AEROSOL; MASS-SPECTROMETER; SULFURIC-ACID; RURAL SITE; LONG-TERM; NUCLEATION; COASTAL; SIZE; PRECURSORS; EVENTS AB Aerosol particle dynamics were observed in the summertime marine boundary layer 10 km offshore of the northeast American coast. Particle dynamics were observed using a scanning mobility particle sizer for observation of the number-based size distribution, and a quadrupole aerosol mass spectrometer (Q-AMS) for quantification of the mass-based size distributions and bulk particle mass loadings of nonrefractory components. Analysis was supported by meteorological data, extensive trace gas data, and aerosol Berner impactor data. No new particle formation with clearly identifiable growth of ultrafine particles was identified. One event exhibited a clear banana-shaped evolution of the number-based size distribution. However, the conditions were nonstationary in various aspects. In some phases of the event, particle growth mechanisms could not be confirmed despite an increase of the geometric mean of the number-based size distribution. Air mass changes and dilution of boundary layer air are possible causes for the observed dynamics. The observation of particle number-based size distributions did not provide sufficient proof for the occurrence of a growth event. Continental organics were the predominant species driving particle dynamics. The contribution of industrial sulfate also was important. The mass size distributions of the Q-AMS and the impactor agreed reasonably well for the species analyzed. Overall, we conclude that a detailed analysis of aerosol plume dynamics and temporal evolution, including both meteorology and chemistry, reveals much more detail about the aerosol evolution that could be deduced from the number size distribution alone. C1 [Klemm, Otto] Univ Munster, Climatol Working Grp, D-48149 Munster, Germany. [Ziemba, Luke D.; Griffin, Robert J.; Sive, Barkley C.; Whitlow, Sallie; Carpenter, Kevan; Klemm, Kerstin I.; Talbot, Robert] Univ New Hampshire, Climate Change Res Ctr, Durham, NH 03824 USA. [Ziemba, Luke D.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Griffin, Robert J.] Rice Univ, Dept Civil & Environm Engn, Houston, TX USA. [Klemm, Kerstin I.] Univ Munster, Inst Planetol, D-48149 Munster, Germany. RP Klemm, O (reprint author), Univ Munster, Climatol Working Grp, Robert Koch Str 26, D-48149 Munster, Germany. EM otto.klemm@uni-muenster.de FU Office of Oceanic and Atmospheric Research of the National Oceanic and Atmospheric Administration (NOAA) [NA06OAR4600189]; National Science Foundation [ATM-0327643]; Heinrich Hertz Stiftung FX The Office of Oceanic and Atmospheric Research of the National Oceanic and Atmospheric Administration (NOAA) supported this research under AIRMAP grant NA06OAR4600189 to the University of New Hampshire. Free access to the NOAA Air Resources Laboratory Internet platform for sharing their HY-SPLIT-4 trajectory model is gratefully acknowledged. We thank P. A. Baron for providing freeware software for inlet loss calculations. R. G. acknowledges the support of the National Science Foundation through project ATM-0327643. O.K. thanks the Heinrich Hertz Stiftung for providing a research fellowship. The input of four anonymous reviewers of an earlier version of this manuscript helped to increase its quality, and their comments are greatly appreciated. NR 50 TC 0 Z9 0 U1 2 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 12 PY 2010 VL 115 AR D21211 DI 10.1029/2010JD014153 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 680GM UT WOS:000284220400007 ER PT J AU Littenberg, TB Cornish, NJ AF Littenberg, Tyson B. Cornish, Neil J. TI Separating gravitational wave signals from instrument artifacts SO PHYSICAL REVIEW D LA English DT Article ID BLACK-HOLE BINARIES; LISA DATA AB Central to the gravitational wave detection problem is the challenge of separating features in the data produced by astrophysical sources from features produced by the detector. Matched filtering provides an optimal solution for Gaussian noise, but in practice, transient noise excursions or "glitches" complicate the analysis. Detector diagnostics and coincidence tests can be used to veto many glitches which may otherwise be misinterpreted as gravitational wave signals. The glitches that remain can lead to long tails in the matched filter search statistics and drive up the detection threshold. Here we describe a Bayesian approach that incorporates a more realistic model for the instrument noise allowing for fluctuating noise levels that vary independently across frequency bands, and deterministic glitch fitting using wavelets as glitch templates, the number of which is determined by a transdimensional Markov chain Monte Carlo algorithm. We demonstrate the method's effectiveness on simulated data containing low amplitude gravitational wave signals from inspiraling binary black-hole systems, and simulated nonstationary and non-Gaussian noise comprised of a Gaussian component with the standard LIGO/Virgo spectrum, and injected glitches of various amplitude, prevalence, and variety. Glitch fitting allows us to detect significantly weaker signals than standard techniques. C1 [Littenberg, Tyson B.] Univ Maryland, Dept Phys, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. [Littenberg, Tyson B.] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. [Cornish, Neil J.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. RP Littenberg, TB (reprint author), Univ Maryland, Dept Phys, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. NR 54 TC 22 Z9 22 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV 12 PY 2010 VL 82 IS 10 AR 103007 DI 10.1103/PhysRevD.82.103007 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 679EY UT WOS:000284145300002 ER PT J AU Palm, SP Strey, ST Spinhirne, J Markus, T AF Palm, Stephen P. Strey, Sara T. Spinhirne, James Markus, Thorsten TI Influence of Arctic sea ice extent on polar cloud fraction and vertical structure and implications for regional climate SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ATMOSPHERIC RESPONSE; RADIATION PROPERTIES; RECENT TRENDS; ANNUAL CYCLE; SURFACE; TEMPERATURE; ANOMALIES AB Recent satellite lidar measurements of cloud properties spanning a period of 5 years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anticorrelation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice-free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7% and 10%, respectively, as year average sea ice extent has decreased by 5%-7%. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Because longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice. C1 [Palm, Stephen P.] NASA, Goddard Space Flight Ctr, Sci Syst & Applicat Inc, Greenbelt, MD 20771 USA. [Spinhirne, James] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA. [Strey, Sara T.] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61820 USA. RP Palm, SP (reprint author), NASA, Goddard Space Flight Ctr, Sci Syst & Applicat Inc, Greenbelt, MD 20771 USA. RI Markus, Thorsten/D-5365-2012 NR 36 TC 38 Z9 38 U1 4 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 12 PY 2010 VL 115 AR D21209 DI 10.1029/2010JD013900 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 680GM UT WOS:000284220400003 ER PT J AU Rea, N Esposito, P Turolla, R Israel, GL Zane, S Stella, L Mereghetti, S Tiengo, A Gotz, D Gogus, E Kouveliotou, C AF Rea, N. Esposito, P. Turolla, R. Israel, G. L. Zane, S. Stella, L. Mereghetti, S. Tiengo, A. Goetz, D. Gogus, E. Kouveliotou, C. TI A Low-Magnetic-Field Soft Gamma Repeater SO SCIENCE LA English DT Article ID X-RAY PULSARS; NEUTRON-STARS; RADIATIVE MECHANISM; RADIO-EMISSION; VARIABILITY; KES-75; PERIOD AB Soft gamma repeaters (SGRs) and anomalous x-ray pulsars form a rapidly increasing group of x-ray sources exhibiting sporadic emission of short bursts. They are believed to be magnetars, that is, neutron stars powered by extreme magnetic fields, B similar to 10(14) to 10(15) gauss. We report on a soft gamma repeater with low magnetic field, SGR 0418+5729, recently detected after it emitted bursts similar to those of magnetars. X-ray observations show that its dipolar magnetic field cannot be greater than 7.5 x 10(12) gauss, well in the range of ordinary radio pulsars, implying that a high surface dipolar magnetic field is not necessarily required for magnetar-like activity. The magnetar population may thus include objects with a wider range of B-field strengths, ages, and evolutionary stages than observed so far. C1 [Rea, N.] Fac Ciencies, CSIC, Inst Estudis Espacias Catalunya, Inst Ciencies Espai, Bellaterra 08193, Barcelona, Spain. [Esposito, P.] Osserv Astron Capodimonte, Ist Nazl Astrofis INAF, I-09012 Capoterra, Italy. [Turolla, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Turolla, R.; Zane, S.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Israel, G. L.; Stella, L.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Mereghetti, S.; Tiengo, A.] Ist Astrofis Spaziale & Fis Cosm Milano, INAF, I-20133 Milan, Italy. [Goetz, D.] Univ Paris Diderot, Inst Rech Lois Fondament Univers, Serv Astrophys,CNRS,Direct Sci Matiere, Commissariat Energie Atom & Energies Alternat, F-91191 Gif Sur Yvette, France. [Gogus, E.] Sabanci Univ, TR-34956 Istanbul, Turkey. [Kouveliotou, C.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Rea, N (reprint author), Fac Ciencies, CSIC, Inst Estudis Espacias Catalunya, Inst Ciencies Espai, Campus UAB,Torre C5 Parell,2A Planta, Bellaterra 08193, Barcelona, Spain. EM rea@ieec.uab.es RI Rea, Nanda/I-2853-2015; OI Rea, Nanda/0000-0003-2177-6388; Tiengo, Andrea/0000-0002-6038-1090; MEREGHETTI, SANDRO/0000-0003-3259-7801; Israel, GianLuca/0000-0001-5480-6438; Esposito, Paolo/0000-0003-4849-5092 FU Consejo Superior de Investigaciones Cientficas [AYA2009-07391, SGR2009-811]; Autonomous Region of Sardinia; Centre National d'Etudes Spatiales; INAF Agenzia Spaziale Italiana [AAE I/088/06/0] FX N.R. is supported by a Ramon y Cajal fellowship through Consejo Superior de Investigaciones Cientficas and by grants AYA2009-07391 and SGR2009-811. N.R. thanks D. F. Torres for useful discussions. P. E. acknowledges financial support from the Autonomous Region of Sardinia through a research grant under the program PO Sardegna FSE 2007-2013, L.R. 7/2007 "Promoting scientific research and innovation technology in Sardinia." D.G. acknowledges the Centre National d'Etudes Spatiales for financial support. The work of R.T., G.L.I., L.S., S.M., and A.T. is partially supported by INAF Agenzia Spaziale Italiana through grant AAE I/088/06/0. We are grateful to H. Tananbaum, N. Gehrels, and N. Schartel for granting us Chandra, Swift, and XMM-Newton time, respectively, for this research. NR 25 TC 167 Z9 168 U1 1 U2 10 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 12 PY 2010 VL 330 IS 6006 BP 944 EP 946 DI 10.1126/science.1196088 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 678XY UT WOS:000284118000036 PM 20947727 ER PT J AU Dunlop, JS Ade, PAR Bock, JJ Chapin, EL Cirasuolo, M Coppin, KEK Devlin, MJ Griffin, M Greve, TR Gundersen, JO Halpern, M Hargrave, PC Hughes, DH Ivison, RJ Klein, J Kovacs, A Marsden, G Mauskopf, P Netterfield, CB Olmi, L Pascale, E Patanchon, G Rex, M Scott, D Semisch, C Smail, I Targett, TA Thomas, N Truch, MDP Tucker, C Tucker, GS Viero, MP Walter, F Wardlow, JL Weiss, A Wiebe, DV AF Dunlop, J. S. Ade, P. A. R. Bock, J. J. Chapin, E. L. Cirasuolo, M. Coppin, K. E. K. Devlin, M. J. Griffin, M. Greve, T. R. Gundersen, J. O. Halpern, M. Hargrave, P. C. Hughes, D. H. Ivison, R. J. Klein, J. Kovacs, A. Marsden, G. Mauskopf, P. Netterfield, C. B. Olmi, L. Pascale, E. Patanchon, G. Rex, M. Scott, D. Semisch, C. Smail, I. Targett, T. A. Thomas, N. Truch, M. D. P. Tucker, C. Tucker, G. S. Viero, M. P. Walter, F. Wardlow, J. L. Weiss, A. Wiebe, D. V. TI The BLAST 250 mu m-selected galaxy population in GOODS-South SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; galaxies: fundamental parameters; galaxies: photometry; galaxies: starburst; infrared: galaxies ID DEEP FIELD-SOUTH; APERTURE SUBMILLIMETER TELESCOPE; DEGREE EXTRAGALACTIC SURVEY; SPITZER-SPACE-TELESCOPE; PARKES SELECTED REGIONS; STAR-FORMING GALAXIES; S-SELECTED GALAXIES; NUMBER COUNTS; VLT/FORS2 SPECTROSCOPY; PHOTOMETRIC REDSHIFTS AB We identify and investigate the nature of the 20 brightest 250 mu m sources detected by the Balloon-borne Large Aperture Submillimetre Telescope (BLAST) within the central 150 arcmin(2) of the Great Observatories Origins Deep Survey (GOODS)-South field. Aided by the available deep VLA 1.4 GHz radio imaging, reaching S-1.4 similar or equal to 40 mu Jy (4 sigma), we have identified radio counterparts for 17/20 of the 250 mu m sources. The resulting enhanced positional accuracy of similar or equal to 1 arcsec has then allowed us to exploit the deep optical (Hubble Space Telescope), near-infrared (VLT) and mid-infrared (Spitzer) imaging of GOODS-South to establish secure galaxy counterparts for the 17 radio-identified sources, and plausible galaxy candidates for the three radio-unidentified sources. Confusion is a serious issue for this deep BLAST 250 mu m survey, due to the large size of the beam. Nevertheless, we argue that our chosen counterparts are significant, and often dominant contributors to the measured BLAST flux densities. For all of these 20 galaxies we have been able to determine spectroscopic (eight) or photometric (12) redshifts. The result is the first near-complete redshift distribution for a deep 250 mu m-selected galaxy sample. This reveals that 250 mu m surveys reaching detection limits of similar or equal to 40 mJy have a median redshift z similar or equal to 1, and contain not only low-redshift spirals/LIRGs, but also the extreme z similar or equal to 2 dust-enshrouded starburst galaxies previously discovered at sub-millimetre wavelengths. Inspection of the LABOCA 870 mu m imaging of GOODS-South yields detections of similar or equal to 1/3 of the proposed BLAST sources (all at z > 1.5), and reveals 250/870 mu m flux-density ratios consistent with a standard 40 K modified blackbody fit with a dust emissivity index beta = 1.5. Based on their Infrared Array Camera (IRAC) colours, we find that virtually all of the BLAST galaxy identifications appear better described as analogues of the M82 starburst galaxy, or Sc star-forming discs rather than highly obscured ULIRGs. This is perhaps as expected at low redshift, where the 250 mu m BLAST selection function is biased towards spectral energy distributions which peak longward of lambda(rest) = 100 mu m. However, it also appears largely true at z similar or equal to 2. C1 [Dunlop, J. S.; Cirasuolo, M.] Univ Edinburgh, Royal Observ, SUPA, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Dunlop, J. S.; Chapin, E. L.; Halpern, M.; Marsden, G.; Scott, D.; Targett, T. A.; Wiebe, D. V.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Ade, P. A. R.; Griffin, M.; Hargrave, P. C.; Mauskopf, P.; Pascale, E.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bock, J. J.; Tucker, C.] Jet Prop Lab, Pasadena, CA 91109 USA. [Coppin, K. E. K.; Smail, I.; Wardlow, J. L.] Univ Durham, Inst Computat Cosmol, Durham DH1 3LE, England. [Devlin, M. J.; Klein, J.; Rex, M.; Semisch, C.; Truch, M. D. P.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Greve, T. R.; Walter, F.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Gundersen, J. O.] Univ Miami, Dept Phys, Coral Gables, FL 33146 USA. [Hughes, D. H.] INAOE, Mexico City, DF, Mexico. [Ivison, R. J.] Royal Observ, UK ATC, Edinburgh EH9 3HJ, Midlothian, Scotland. [Kovacs, A.; Weiss, A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Netterfield, C. B.; Thomas, N.; Viero, M. P.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Netterfield, C. B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Olmi, L.] Univ Puerto Rico, Dept Phys, UPR Stn, San Juan, PR USA. [Olmi, L.] IRA INAF, I-50125 Florence, Italy. [Patanchon, G.] Lab APC, F-75205 Paris, France. [Tucker, G. S.] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Dunlop, JS (reprint author), Univ Edinburgh, Royal Observ, SUPA, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. EM jsd@roe.ac.uk RI Klein, Jeffrey/E-3295-2013; Smail, Ian/M-5161-2013; Wardlow, Julie/C-9903-2015; Kovacs, Attila/C-1171-2010; Ivison, R./G-4450-2011; OI Smail, Ian/0000-0003-3037-257X; Wardlow, Julie/0000-0003-2376-8971; Kovacs, Attila/0000-0001-8991-9088; Ivison, R./0000-0001-5118-1313; Olmi, Luca/0000-0002-1162-7947; Scott, Douglas/0000-0002-6878-9840 FU Royal Society; European Research Council; NASA [NAG5-12785, NAG5-13301, NNGO-6GI11G, NAS 5-26555]; NSF Office of Polar Programs; Canadian Space Agency; Natural Sciences and Engineering Research Council (NSERC) of Canada; UK Science and Technology Facilities Council (STFC); STFC FX JSD acknowledges the support of the Royal Society through a Wolfson Research Merit Award, and the support of the European Research Council through the award of an Advanced Grant. We acknowledge the support of NASA through grant numbers NAG5-12785, NAG5-13301 and NNGO-6GI11G, the NSF Office of Polar Programs, the Canadian Space Agency, the Natural Sciences and Engineering Research Council (NSERC) of Canada, and the UK Science and Technology Facilities Council (STFC). This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. APEX is operated by the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory and the Onsala Space Observatory. This work is based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. MC acknowledges the award of a STFC Advanced Fellowship. IRS acknowledges support from STFC. JLW acknowledges the support of an STFC Studentship. NR 77 TC 21 Z9 21 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 11 PY 2010 VL 408 IS 4 BP 2022 EP 2050 DI 10.1111/j.1365-2966.2010.17278.x PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 674DA UT WOS:000283712700005 ER PT J AU Byckling, K Mukai, K Thorstensen, JR Osborne, JP AF Byckling, K. Mukai, K. Thorstensen, J. R. Osborne, J. P. TI Deriving an X-ray luminosity function of dwarf novae based on parallax measurements SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: distances; stars: dwarf novae; stars: luminosity function, mass function; novae, cataclysmic variables; X-rays: binaries; X-rays: stars ID CATACLYSMIC VARIABLE-STARS; GALACTIC RIDGE; SUZAKU OBSERVATIONS; HT CASSIOPEIAE; ORBITAL PERIOD; V893 SCORPII; SS CYGNI; EMISSION; POPULATION; QUIESCENCE AB We have derived an X-ray luminosity function using parallax-based distance measurements of a set of 12 dwarf novae, consisting of Suzaku, XMM-Newton and ASCA observations. The shape of the X-ray luminosity function obtained is the most accurate to date, and the luminosities of our sample are concentrated between similar to 10(30) and 10(31) erg s(-1), lower than previous measurements of X-ray luminosity functions of dwarf novae. Based on the integrated X-ray luminosity function, the sample becomes more incomplete below similar to 3 x 10(30) erg s(-1) than it is above this luminosity limit, and the sample is dominated by X-ray bright dwarf novae. The total integrated luminosity within a radius of 200 pc is 1.48 x 10(32) erg s(-1) over the luminosity range of 1 x 10(28) erg s(-1) and the maximum luminosity of the sample (1.50 x 10(32) erg s(-1)). The total absolute lower limit for the normalized luminosity per solar mass is 1.81 x 10(26) erg s(-1) M-circle dot(-1) which accounts for similar to 16 per cent of the total X-ray emissivity of cataclysmic variables as estimated by Sazonov et al. C1 [Byckling, K.; Osborne, J. P.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Mukai, K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Thorstensen, J. R.] Dartmouth Coll, Dept Phys & Astron, Wilder Lab 6127, Hanover, NH 03755 USA. RP Byckling, K (reprint author), Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, England. EM kjkb2@star.le.ac.uk RI XRAY, SUZAKU/A-1808-2009 FU STFC; ESA Member States; USA (NASA) FX This research has made use of data obtained from the Suzaku satellite, a collaborative mission between the space agencies of Japan (JAXA) and the USA (NASA). JPO acknowledges support from STFC. Part of this work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research. We thank the reviewer M. Revnivtsev for his helpful comments on this paper. NR 59 TC 28 Z9 28 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 11 PY 2010 VL 408 IS 4 BP 2298 EP 2311 DI 10.1111/j.1365-2966.2010.17276.x PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 674DA UT WOS:000283712700023 ER PT J AU Zeitlin, C Boynton, W Mitrofanov, I Hassler, D Atwell, W Cleghorn, TF Cucinotta, FA Dayeh, M Desai, M Guetersloh, SB Kozarev, K Lee, KT Pinsky, L Saganti, P Schwadron, NA Turner, R AF Zeitlin, C. Boynton, W. Mitrofanov, I. Hassler, D. Atwell, W. Cleghorn, T. F. Cucinotta, F. A. Dayeh, M. Desai, M. Guetersloh, S. B. Kozarev, K. Lee, K. T. Pinsky, L. Saganti, P. Schwadron, N. A. Turner, R. TI Mars Odyssey measurements of galactic cosmic rays and solar particles in Mars orbit, 2002-2008 SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID RADIATION ENVIRONMENT EXPERIMENT; SPECTRA; SPECTROMETER; MISSIONS; DEPOSITS; PROTON; IONS AB The instrument payload aboard the 2001 Mars Odyssey orbiter includes several instruments that are sensitive to energetic charged particles from the galactic cosmic rays (GCR) and solar particle events (SPE). The Martian Radiation Environment Experiment (MARIE) was a dedicated energetic charged particle spectrometer, but it ceased functioning during the large solar storm of October/November 2003. Data from two other Odyssey instruments are used here: the Gamma Ray Spectrometer and the scintillator component of the High Energy Neutron Detector. Though not primarily designed to measure energetic charged particles, both systems are sensitive to them, and several years of data are available from both. Using the MARIE data for calibration of the other systems, count rates can be normalized (with significant uncertainties) to absolute fluxes of both GCR and solar energetic particles (SEP). The data, which cover the time span from early 2002 through the end of 2007, clearly show the solar cycle-dependent modulation of the GCR starting in 2004. Many SPEs were recorded as well and are cataloged here. Threshold energies were relatively high, ranging from 16 MeV in the most sensitive channel to 42 MeV. These thresholds are not optimal for detailed studies of SEPs, but this is the range of interest for calculations of dose and dose equivalent, pertinent to human flight, and covering that range was the original motivation for MARIE. The data are available on request and are potentially of use for the Earth-Moon-Mars Radiation Environment Module collaboration and other heliospheric modeling projects. C1 [Zeitlin, C.; Hassler, D.] SW Res Inst, Boulder, CO USA. [Zeitlin, C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Boynton, W.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Mitrofanov, I.] Space Res Inst, Moscow, Russia. [Atwell, W.] Boeing Co, Houston, TX USA. [Cleghorn, T. F.; Cucinotta, F. A.; Lee, K. T.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Dayeh, M.; Desai, M.] SW Res Inst, San Antonio, TX USA. [Guetersloh, S. B.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Kozarev, K.; Schwadron, N. A.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Pinsky, L.] Univ Houston, Dept Phys, Houston, TX USA. [Saganti, P.] Prairie View A&M Univ, Dept Phys, Prairie View, TX USA. [Turner, R.] Analyt Serv Inc, Arlington, VA USA. RP Zeitlin, C (reprint author), SW Res Inst, Boulder, CO USA. FU NASA [NNH05AA471, NNX07AC12G] FX We express our profound thanks to the many people who supported this effort over many years, both on the individual instrument teams for MARIE, GRS, and HEND, and on the 2001 Mars Odyssey project. Odyssey has had a remarkably long and successful mission thanks in large part to the management team, which over the years has included Robert Gibbs, Robert Mase, Gaylon McSmith, Phillip Varghese, Steve Saunders, Jeffrey Plaut, and David Senske. And of course this work would not have been possible without the tireless efforts of the original MARIE Principal Investigator, the late Gautam Badhwar. He is greatly missed. This work was supported at LBNL by NASA grant NNH05AA471 and at Southwest Research Institute by NASA grant NNX07AC12G. NR 28 TC 6 Z9 6 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD NOV 11 PY 2010 VL 8 AR S00E06 DI 10.1029/2009SW000563 PG 26 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 680IY UT WOS:000284226800001 ER PT J AU Southworth, J Hinse, TC Dominik, M Glitrup, M Jorgensen, UG Liebig, C Mathiasen, M Anderson, DR Bozza, V Browne, P Burgdorf, M Novati, SC Dreizler, S Finet, F Harpsoe, K Hessman, F Hundertmark, M Maier, G Mancini, L Maxted, PFL Rahvar, S Ricci, D Scarpetta, G Skottfelt, J Snodgrass, C Surdej, J Zimmer, F AF Southworth, John Hinse, T. C. Dominik, M. Glitrup, M. Jorgensen, U. G. Liebig, C. Mathiasen, M. Anderson, D. R. Bozza, V. Browne, P. Burgdorf, M. Novati, S. Calchi Dreizler, S. Finet, F. Harpsoe, K. Hessman, F. Hundertmark, M. Maier, G. Mancini, L. Maxted, P. F. L. Rahvar, S. Ricci, D. Scarpetta, G. Skottfelt, J. Snodgrass, C. Surdej, J. Zimmer, F. TI PHYSICAL PROPERTIES OF THE 0.94 DAY PERIOD TRANSITING PLANETARY SYSTEM WASP-18 (vol 707, pg 167, 2009) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Southworth, John; Anderson, D. R.; Maxted, P. F. L.] Keele Univ, Astrophys Grp, Newcastle Under Lyme ST5 5BG, England. [Hinse, T. C.] Armagh Observ, Armagh BT61 9DG, North Ireland. [Hinse, T. C.; Jorgensen, U. G.; Harpsoe, K.; Skottfelt, J.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Hinse, T. C.; Jorgensen, U. G.; Harpsoe, K.; Skottfelt, J.] Univ Copenhagen, Ctr Star & Planet Format, DK-2100 Copenhagen O, Denmark. [Dominik, M.; Mathiasen, M.; Browne, P.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Glitrup, M.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Liebig, C.; Zimmer, F.] Univ Heidelberg, Zentrum Astron, Astron Rechen Inst, D-69120 Heidelberg, Germany. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84081 Baronissi, Italy. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] Inst Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Burgdorf, M.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Burgdorf, M.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Dreizler, S.; Hessman, F.; Hundertmark, M.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Finet, F.; Ricci, D.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran, Iran. [Snodgrass, C.] European So Observ, Santiago 19, Chile. RP Southworth, J (reprint author), Keele Univ, Astrophys Grp, Newcastle Under Lyme ST5 5BG, England. RI Hundertmark, Markus/C-6190-2015; Rahvar, Sohrab/A-9350-2008 OI Hundertmark, Markus/0000-0003-0961-5231; Rahvar, Sohrab/0000-0002-7084-5725 NR 2 TC 1 Z9 1 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1829 EP 1829 DI 10.1088/0004-637X/723/2/1829 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700071 ER PT J AU Fukumura, K Kazanas, D Contopoulos, I Behar, E AF Fukumura, Keigo Kazanas, Demosthenes Contopoulos, Ioannis Behar, Ehud TI MODELING HIGH-VELOCITY QSO ABSORBERS WITH PHOTOIONIZED MAGNETOHYDRODYNAMIC DISK WINDS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE accretion, accretion disks; galaxies: active; methods: numerical; quasars: absorption lines; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; BROAD ABSORPTION-LINE; QUASI-STELLAR OBJECTS; X-RAY-SPECTRA; EMISSION-LINE; ACCRETION DISKS; APM 08279+5255; BLACK-HOLE; OUTFLOW; DRIVEN AB We extend our modeling of the ionization structure of magnetohydrodynamic (MHD) accretion-disk winds, previously applied to Seyfert galaxies, to a population of quasi-stellar objects (QSOs) of much lower X-ray-to-UV flux ratios, i.e., smaller alpha(ox) index, motivated by UV/X-ray ionized absorbers with extremely high outflow velocities in UV-luminous QSOs. We demonstrate that magnetically driven winds ionized by a spectrum with alpha(ox) similar or equal to -2 can produce the charge states responsible for C IV and Fe XXV/Fe XXVI absorption in wind regions with corresponding maximum velocities of nu(C IV) less than or similar to 0.1c and nu(Fe xxv) less than or similar to 0.6c (where c is the speed of light) and column densities N(H) similar to 10(23)-10(24) cm(-2), in general agreement with observations. In contrast to the conventional radiation-driven wind models, high-velocity flows are always present in our MHD-driven winds but manifest in the absorption spectra only for alpha(ox) less than or similar to -2, as larger alpha(ox) values ionize the wind completely out to radii too large to demonstrate the presence of these high velocities. We thus predict increasing velocities of these ionized absorbers with decreasing (steeper) aox, a quantity that emerges as the defining parameter in the kinematics of the active galactic nucleus UV/X-ray absorbers. C1 [Fukumura, Keigo] Univ Maryland Baltimore Cty UMBC CRESST, Baltimore, MD 21250 USA. [Fukumura, Keigo; Kazanas, Demosthenes] NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Contopoulos, Ioannis] Acad Athens, Res Ctr Astron, Athens 11527, Greece. [Behar, Ehud] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. RP Fukumura, K (reprint author), Univ Maryland Baltimore Cty UMBC CRESST, Baltimore, MD 21250 USA. EM Keigo.Fukumura@nasa.gov NR 41 TC 15 Z9 15 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 10 PY 2010 VL 723 IS 2 BP L228 EP L232 DI 10.1088/2041-8205/723/2/L228 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678TX UT WOS:000284104900020 ER PT J AU Kokuyama, W Numata, K Camp, J AF Kokuyama, Wataru Numata, Kenji Camp, Jordan TI Simple iodine reference at 1064 nm for absolute laser frequency determination in space applications SO APPLIED OPTICS LA English DT Article ID INTERFEROMETRY AB Using an iodine cell with fixed gas pressure, we built a simple frequency reference at 1064 nm with 10 MHz absolute accuracy and used it to demonstrate deterministic phase locking between two single-frequency lasers. The reference was designed to be as simple as possible, and it does not use a cooler or frequency modulator. This system should be useful, especially for space interferometric missions such as the Laser Interferometer Space Antenna. (C) 2010 Optical Society of America C1 [Kokuyama, Wataru] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Numata, Kenji] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Numata, Kenji; Camp, Jordan] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Kokuyama, W (reprint author), Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. EM kokuyama@granite.phys.s.u-tokyo.ac.jp NR 8 TC 4 Z9 4 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD NOV 10 PY 2010 VL 49 IS 32 BP 6264 EP 6267 DI 10.1364/AO.49.006264 PG 4 WC Optics SC Optics GA 678FC UT WOS:000284058400011 PM 21068857 ER PT J AU Meister, G McClain, CR AF Meister, Gerhard McClain, Charles R. TI Point-spread function of the ocean color bands of the Moderate Resolution Imaging Spectroradiometer on Aqua SO APPLIED OPTICS LA English DT Article ID MODIS; CALIBRATION; ALGORITHM; EOS-AM1; WATER AB The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua platform has nine spectral bands with center wavelengths from 412 to 870 nm that are used to produce the standard ocean color data products. Ocean scenes usually contain high contrast due to the presence of bright clouds over dark water. About half of the MODIS Aqua ocean pixels are flagged as spatial stray light contaminated. The MODIS has been characterized for stray light effects prelaunch. In this paper, we derive point-spread functions for the MODIS Aqua ocean bands based on prelaunch line-spread function measurements. The stray light contamination of ocean scenes is evaluated based on artificial test scenes and on-orbit data. (C) 2010 Optical Society of America C1 [Meister, Gerhard; McClain, Charles R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Meister, G (reprint author), NASA, Goddard Space Flight Ctr, Code 614-2, Greenbelt, MD 20771 USA. EM Gerhard.Meister@nasa.gov RI Meister, Gerhard/F-7159-2012 NR 26 TC 13 Z9 13 U1 0 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD NOV 10 PY 2010 VL 49 IS 32 BP 6276 EP 6285 DI 10.1364/AO.49.006276 PG 10 WC Optics SC Optics GA 678FC UT WOS:000284058400013 PM 21068859 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Atwood, WB Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Bhat, PN Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Brandt, TJ Bregeon, J Brez, A Briggs, MS Brigida, M Bruel, P Buehler, R Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Charles, E Chekhtman, A Chen, AW Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Connaughton, V Conrad, J Costamante, L Dermer, CD de Angelis, A de Palma, F Digel, SW Dingus, BL Silva, EDE Drell, PS Dubois, R Favuzzi, C Fegan, SJ Finke, J Fortin, P Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Gilmore, RC Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Granot, J Greiner, J Grenier, IA Grove, JE Guiriec, S Gustafsson, M Hadasch, D Hayashida, M Hays, E Horan, D Hughes, RE Johannesson, G Johnson, AS Johnson, RP Johnson, WN Kamae, T Katagiri, H Kataoka, J Knodlseder, J Kocevski, D Kuss, M Lande, J Latronico, L Lee, SH Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Mazziotta, N McConville, W McEnery, JE McGlynn, S Mehault, J Meszaros, P Michelson, PF Mizuno, T Moiseev, AA Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nakamori, T Naumann-Godo, M Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Primack, JR Raino, S Rando, R Razzano, M Razzaque, S Reimer, A Reimer, O Reyes, LC Ripken, J Ritz, S Romani, RW Roth, M Sadrozinski, HFW Sanchez, D Sander, A Scargle, JD Schalk, TL Sgro, C Shaw, MS Siskind, EJ Smith, PD Spandre, G Spinelli, P Stecker, FW Strickman, MS Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vilchez, N Vitale, V von Kienlin, A Waite, AP Wang, P Wilson-Hodge, C Winer, BL Wood, KS Yamazaki, R Yang, Z Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Atwood, W. B. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Bhat, P. N. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Brandt, T. J. Bregeon, J. Brez, A. Briggs, M. S. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, O. Charles, E. Chekhtman, A. Chen, A. W. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Connaughton, V. Conrad, J. Costamante, L. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. Dingus, B. L. do Couto e Silva, E. Drell, P. S. Dubois, R. Favuzzi, C. Fegan, S. J. Finke, J. Fortin, P. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Gilmore, R. C. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Granot, J. Greiner, J. Grenier, I. A. Grove, J. E. Guiriec, S. Gustafsson, M. Hadasch, D. Hayashida, M. Hays, E. Horan, D. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Knoedlseder, J. Kocevski, D. Kuss, M. Lande, J. Latronico, L. Lee, S-H Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, N. McConville, W. McEnery, J. E. McGlynn, S. Mehault, J. Meszaros, P. Michelson, P. F. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Naumann-Godo, M. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Primack, J. R. Raino, S. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Reyes, L. C. Ripken, J. Ritz, S. Romani, R. W. Roth, M. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Scargle, J. D. Schalk, T. L. Sgro, C. Shaw, M. S. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Stecker, F. W. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vilchez, N. Vitale, V. von Kienlin, A. Waite, A. P. Wang, P. Wilson-Hodge, C. Winer, B. L. Wood, K. S. Yamazaki, R. Yang, Z. Ylinen, T. Ziegler, M. TI FERMI LARGE AREA TELESCOPE CONSTRAINTS ON THE GAMMA-RAY OPACITY OF THE UNIVERSE SO ASTROPHYSICAL JOURNAL LA English DT Article DE diffuse radiation; dust, extinction; gamma rays: general ID EXTRAGALACTIC BACKGROUND LIGHT; INTERGALACTIC MAGNETIC-FIELDS; ALL-SKY SURVEY; TEV BLAZARS; DETECTED BLAZARS; LIKELIHOOD RATIO; SPACE-TELESCOPE; GALAXY COUNTS; GEV EMISSION; UPPER LIMITS AB The extragalactic background light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above similar to 10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and gamma-ray bursts (GRBs). The Large Area Telescope on board Fermi detects a sample of gamma-ray blazars with redshift up to z similar to 3, and GRBs with redshift up to z similar to 4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the universe at various energies and redshifts and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. can be ruled out with high confidence. C1 [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Costamante, L.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Lee, S-H; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Costamante, L.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Lee, S-H; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Finke, J.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Razzaque, S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.; Finke, J.; Razzaque, S.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Atwood, W. B.; Gilmore, R. C.; Johnson, R. P.; Primack, J. R.; Ritz, S.; Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Gilmore, R. C.; Johnson, R. P.; Primack, J. R.; Ritz, S.; Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.; Tibaldo, L.] Univ Paris Diderot, CEA Saclay, Lab AIM, CEA,IRFU,CNRS,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.; Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.; Moretti, E.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Buson, S.; Gustafsson, M.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Brandt, T. J.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astro Particle Phys, Columbus, OH 43210 USA. [Bhat, P. N.; Briggs, M. S.; Connaughton, V.; Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brandt, T. J.; Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.; Chen, A. W.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Gasparrini, D.; Giommi, P.] Sci Data Ctr, ASI, I-00044 Rome, Italy. [Celik, O.; Gehrels, N.; Hays, E.; McConville, W.; McEnery, J. E.; Moiseev, A. A.; Stecker, F. W.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, O.; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, O.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, O.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Conrad, J.; Garde, M. Llena; McGlynn, S.; Ripken, J.; Yang, Z.; Ylinen, T.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Grp Coll Udine, Sez Trieste, I-33100 Udine, Italy. [Dingus, B. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Granot, J.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Greiner, J.; Orlando, E.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Lott, B.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Lott, B.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [McGlynn, S.; Ylinen, T.] AlbaNova, Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Meszaros, P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Okumura, A.; Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Wilson-Hodge, C.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Yamazaki, R.] Aoyama Gakuin Univ, Dept Math & Phys, Kanagawa 2525258, Japan. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Bouvier, A (reprint author), Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. EM bouvier@stanford.edu; chen@iasf-milano.inaf.it; silvia.raino@ba.infn.it; md.razzaque.ctr.bg@nrl.navy.mil; anita.reimer@uibk.ac.at; lreyes@kicp.uchicago.edu RI Johnson, Neil/G-3309-2014; Funk, Stefan/B-7629-2015; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Thompson, David/D-2939-2012; Stecker, Floyd/D-3169-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Hays, Elizabeth/D-3257-2012; Rando, Riccardo/M-7179-2013; OI Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Moretti, Elena/0000-0001-5477-9097; Berenji, Bijan/0000-0002-4551-772X; Funk, Stefan/0000-0002-2012-0080; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Dingus, Brenda/0000-0001-8451-7450; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Caraveo, Patrizia/0000-0003-2478-8018; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726 FU Kavli Institute for Cosmological Physics at the University of Chicago [NSF PHY-0114422, NSF PHY-0551142]; Marie Curie IRG [248037] FX The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. The Fermi GBM collaboration acknowledges support for GBM development, operations and data analysis from NASA in the US and BMWi/DLR in Germany. L.R.C. acknowledges support by the Kavli Institute for Cosmological Physics at the University of Chicago through grants NSF PHY-0114422 and NSF PHY-0551142 and an endowment from the Kavli Foundation and its founder Fred Kavli. A. R. acknowledges support by Marie Curie IRG grant 248037 within the FP7 Program. Furthermore, helpful comments from the referee are acknowledged. NR 83 TC 76 Z9 77 U1 3 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1082 EP 1096 DI 10.1088/0004-637X/723/2/1082 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700011 ER PT J AU Airapetian, V Carpenter, KG Ofman, L AF Airapetian, V. Carpenter, K. G. Ofman, L. TI WINDS FROM LUMINOUS LATE-TYPE STARS. II. BROADBAND FREQUENCY DISTRIBUTION OF ALFVEN WAVES SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: atmospheres; stars: late-type; stars: magnetic field ID LOW-GRAVITY STARS; LATE-TYPE GIANTS; ALPHA-ORIONIS; K5 III; STELLAR ATMOSPHERES; GHRS OBSERVATIONS; COOL STARS; MASS-LOSS; ACCELERATION; TAURI AB We present the numerical simulations of winds from evolved giant stars using a fully nonlinear, time-dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully nonlinear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of the Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband nonlinear Alfven waves can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities, and the observed mass-loss rates. Comparison of the calculated mass-loss rates with the empirically determined mass-loss rate for a Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants. C1 [Airapetian, V.; Ofman, L.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Airapetian, V.; Carpenter, K. G.; Ofman, L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Airapetian, V (reprint author), Catholic Univ Amer, Dept Phys, 620 Michigan Ave NE,200 Hannan Hall, Washington, DC 20064 USA. RI Carpenter, Kenneth/D-4740-2012 FU NASA [NNX10AK22G, NNX08AF85G, NNX10AC56G, NNX08AV88G] FX V.A. was supported by NASA grant NNX10AK22G. L.O. was supported by NASA grants NNX08AF85G, NNX10AC56G, and NNX08AV88G. NR 47 TC 16 Z9 16 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1210 EP 1218 DI 10.1088/0004-637X/723/2/1210 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700021 ER PT J AU Polko, P Meier, DL Markoff, S AF Polko, Peter Meier, David L. Markoff, Sera TI DETERMINING THE OPTIMAL LOCATIONS FOR SHOCK ACCELERATION IN MAGNETOHYDRODYNAMICAL JETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; ISM: jets and outflows; magnetohydrodynamics (MHD); methods: analytical ID INFRARED SYNCHROTRON EMISSION; RELATIVISTIC JETS; XTE J1118+480; BLACK-HOLES; RADIO; OUTFLOWS; 3C-273; MODEL; IR AB Observations of relativistic jets from black hole systems suggest that particle acceleration often occurs at fixed locations within the flow. These sites could be associated with critical points that allow the formation of standing shock regions, such as the magnetosonic modified fast point (MFP). Using the self-similar formulation of special relativistic magnetohydrodynamics by Vlahakis & Konigl, we derive a new class of flow solutions that are both relativistic and cross the MFP at a finite height. Our solutions span a range of Lorentz factors up to at least 10, appropriate for most jets in X-ray binaries and active galactic nuclei, and a range in injected particle internal energy. A broad range of solutions exists, which will allow the eventual matching of these scale-free models to physical boundary conditions in the analysis of observed sources. C1 [Polko, Peter; Markoff, Sera] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Meier, David L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Polko, P (reprint author), Univ Amsterdam, Astron Inst Anton Pannekoek, POB 94249, NL-1090 GE Amsterdam, Netherlands. EM P.Polko@uva.nl FU Netherlands Organization for Scientific Research (NWO); European Community [FP7/2007-2013, ITN 215212]; National Aeronautics and Space Administration FX P. P. and S. M. gratefully acknowledge support from a Netherlands Organization for Scientific Research (NWO) Vidi Fellowship. In addition, S. M. is grateful for support from the European Community's Seventh Framework Program (FP7/2007-2013) under grant agreement number ITN 215212 "Black Hole Universe." Part of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We thank the anonymous referee for helpful comments that improved this manuscript. NR 26 TC 18 Z9 18 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1343 EP 1350 DI 10.1088/0004-637X/723/2/1343 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700033 ER PT J AU Crossfield, IJM Hansen, BMS Harrington, J Cho, JYK Deming, D Menou, K Seager, S AF Crossfield, Ian J. M. Hansen, Brad M. S. Harrington, Joseph Cho, James Y. -K. Deming, Drake Menou, Kristen Seager, Sara TI A NEW24 mu m PHASE CURVE FOR upsilon ANDROMEDAE b SO ASTROPHYSICAL JOURNAL LA English DT Article DE infrared: planetary systems; planetary systems; planets and satellites: individual (upsilon And b); stars: individual (upsilon And b); techniques: photometric ID PLANET HD 209458B; EXTRASOLAR GIANT PLANETS; HOT JUPITERS; ATMOSPHERIC CIRCULATION; ABSOLUTE CALIBRATION; EMISSION-SPECTRUM; SPACE-TELESCOPE; NEARBY STARS; HOST STARS; COOL STARS AB We report the detection of 24 mu m variations from the planet-hosting upsilon Andromedae system consistent with the orbital periodicity of the system's innermost planet, upsilon And b. We find a peak-to-valley phase curve amplitude of 0.00130 times the mean system flux. Using a simple model with two hemispheres of constant surface brightness and assuming a planetary radius of 1.3 R-J give a planetary temperature contrast of greater than or similar to 900 K and an orbital inclination of greater than or similar to 28 degrees. We further report the largest phase offset yet observed for an extrasolar planet: the flux maximum occurs similar to 80 degrees before phase 0.5. Such a large phase offset is difficult to reconcile with most current atmospheric circulation models. We improve on earlier observations of this system in several important ways: (1) observations of a flux calibrator star demonstrate the MIPS detector is stable to 10(-4) on long timescales, (2) we note that the background light varies systematically due to spacecraft operations, precluding use of this background as a flux calibrator (stellar flux measured above the background is not similarly affected), and (3) we calibrate for flux variability correlated with motion of the star on the MIPS detector. A reanalysis of our earlier observations of this system is consistent with our new result. C1 [Crossfield, Ian J. M.; Hansen, Brad M. S.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Hansen, Brad M. S.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Harrington, Joseph] Univ Cent Florida, Dept Phys, Planetary Sci Grp, Orlando, FL 32816 USA. [Cho, James Y. -K.] Univ London, Sch Math Sci, London E1 4NS, England. [Deming, Drake] NASA, Planetary Syst Branch Code 693, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Menou, Kristen] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Seager, Sara] MIT, Dept Phys, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. RP Crossfield, IJM (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM ianc@astro.ucla.edu; hansen@astro.ucla.edu; jh@physics.ucf.edu; J.Cho@qmul.ac.uk; Leo.D.Deming@nasa.gov; kristen@astro.columbia.edu; seager@mit.edu RI Harrington, Joseph/E-6250-2011 FU NASA through JPL/Caltech; NSF [PHY05-51164] FX We thank J. Colbert, C. Engelbracht, and G. Rieke for help in interpreting MIPS systematics, T. Loredo for helpful discussions of statistics, and our anonymous referee for a timely report. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. We received free software and services from SciPy, Matplotlib, and the Python Programming Language. This research made use of Tiny Tim/Spitzer, developed by John Krist for the Spitzer Science Center; the Center is managed by the California Institute of Technology under a contract with NASA. Part of this work was performed while in residence at the Kavli Institute for Theoretical Physics, funded by the NSF through grant number PHY05-51164. NR 59 TC 68 Z9 70 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1436 EP 1446 DI 10.1088/0004-637X/723/2/1436 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700039 ER PT J AU Menanteau, F Gonzalez, J Juin, JB Marriage, TA Reese, ED Acquaviva, V Aguirre, P Appel, JW Baker, AJ Barrientos, LF Battistelli, ES Bond, JR Das, S Deshpande, AJ Devlin, MJ Dicker, S Dunkley, J Dunner, R Essinger-Hileman, T Fowler, JW Hajian, A Halpern, M Hasselfield, M Hernandez-Monteagudo, C Hilton, M Hincks, AD Hlozek, R Huffenberger, KM Hughes, JP Infante, L Irwin, KD Klein, J Kosowsky, A Lin, YT Marsden, D Moodley, K Niemack, MD Nolta, MR Page, LA Parker, L Partridge, B Sehgal, N Sievers, J Spergel, DN Staggs, ST Swetz, D Switzer, E Thornton, R Trac, H Warne, R Wollack, E AF Menanteau, Felipe Gonzalez, Jorge Juin, Jean-Baptiste Marriage, Tobias A. Reese, Erik D. Acquaviva, Viviana Aguirre, Paula Appel, John William Baker, Andrew J. Felipe Barrientos, L. Battistelli, Elia S. Bond, J. Richard Das, Sudeep Deshpande, Amruta J. Devlin, Mark J. Dicker, Simon Dunkley, Joanna Duenner, Rolando Essinger-Hileman, Thomas Fowler, Joseph W. Hajian, Amir Halpern, Mark Hasselfield, Matthew Hernandez-Monteagudo, Carlos Hilton, Matt Hincks, Adam D. Hlozek, Renee Huffenberger, Kevin M. Hughes, John P. Infante, Leopoldo Irwin, Kent D. Klein, Jeff Kosowsky, Arthur Lin, Yen-Ting Marsden, Danica Moodley, Kavilan Niemack, Michael D. Nolta, Michael R. Page, Lyman A. Parker, Lucas Partridge, Bruce Sehgal, Neelima Sievers, Jon Spergel, David N. Staggs, Suzanne T. Swetz, Daniel Switzer, Eric Thornton, Robert Trac, Hy Warne, Ryan Wollack, Ed TI THE ATACAMA COSMOLOGY TELESCOPE: PHYSICAL PROPERTIES AND PURITY OF A GALAXY CLUSTER SAMPLE SELECTED VIA THE SUNYAEV-ZEL'DOVICH EFFECT SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; galaxies: clusters: general; galaxies: distances and redshifts; large-scale structure of universe ID ALL-SKY SURVEY; XMM-NEWTON OBSERVATIONS; SOUTH-POLE TELESCOPE; X-RAY-PROPERTIES; LUMINOSITY FUNCTION; DARK ENERGY; 1E 0657-56; CATALOG; CHANDRA; EXTRACTION AB We present optical and X-ray properties for the first confirmed galaxy cluster sample selected by the Sunyaev-Zel'dovich effect (SZE) from 148 GHz maps over 455 deg(2) of sky made with the Atacama Cosmology Telescope (ACT). These maps, coupled with multi-band imaging on 4 m class optical telescopes, have yielded a sample of 23 galaxy clusters with redshifts between 0.118 and 1.066. Of these 23 clusters, 10 are newly discovered. The selection of this sample is approximately mass limited and essentially independent of redshift. We provide optical positions, images, redshifts, and X-ray fluxes and luminosities for the full sample, and X-ray temperatures of an important subset. The mass limit of the full sample is around 8.0 x 10(14) M-circle dot, with a number distribution that peaks around a redshift of 0.4. For the 10 highest significance SZE-selected cluster candidates, all of which are optically confirmed, the mass threshold is 1 x 10(15) M-circle dot and the redshift range is 0.167-1.066. Archival observations from Chandra, XMM-Newton, and ROSAT provide X-ray luminosities and temperatures that are broadly consistent with this mass threshold. Our optical follow-up procedure also allowed us to assess the purity of the ACT cluster sample. Eighty (one hundred) percent of the 148 GHz candidates with signal-to-noise ratios greater than 5.1 (5.7) are confirmed as massive clusters. The reported sample represents one of the largest SZE-selected sample of massive clusters over all redshifts within a cosmologically significant survey volume, which will enable cosmological studies as well as future studies on the evolution, morphology, and stellar populations in the most massive clusters in the universe. C1 [Menanteau, Felipe; Acquaviva, Viviana; Baker, Andrew J.; Deshpande, Amruta J.; Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Gonzalez, Jorge; Juin, Jean-Baptiste; Aguirre, Paula; Felipe Barrientos, L.; Duenner, Rolando; Infante, Leopoldo] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Marriage, Tobias A.; Acquaviva, Viviana; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Reese, Erik D.; Devlin, Mark J.; Dicker, Simon; Klein, Jeff; Marsden, Danica; Swetz, Daniel] Univ Penn, Philadelphia, PA 19104 USA. [Appel, John William; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hincks, Adam D.; Page, Lyman A.; Parker, Lucas; Staggs, Suzanne T.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Battistelli, Elia S.] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Bond, J. Richard; Hajian, Amir; Nolta, Michael R.; Sievers, Jon] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Das, Sudeep] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Dunkley, Joanna; Hlozek, Renee] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Halpern, Mark; Hasselfield, Matthew] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Hernandez-Monteagudo, Carlos] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Hilton, Matt; Moodley, Kavilan; Warne, Ryan] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Sci, ZA-4041 Durban, South Africa. [Huffenberger, Kevin M.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Irwin, Kent D.; Niemack, Michael D.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Lin, Yen-Ting] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778568, Japan. [Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Sehgal, Neelima] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Switzer, Eric] Lab Astrophys & Space Res, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Thornton, Robert] W Chester Univ, Dept Phys, W Chester, PA 19383 USA. [Trac, Hy] Harvard Univ, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Wollack, Ed] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Menanteau, F (reprint author), Rutgers State Univ, Dept Phys & Astron, POB 849, Piscataway, NJ 08854 USA. RI Klein, Jeffrey/E-3295-2013; Spergel, David/A-4410-2011; Hilton, Matthew James/N-5860-2013; Trac, Hy/N-8838-2014; Wollack, Edward/D-4467-2012; OI Sievers, Jonathan/0000-0001-6903-5074; Trac, Hy/0000-0001-6778-3861; Wollack, Edward/0000-0002-7567-4451; Huffenberger, Kevin/0000-0001-7109-0099; Menanteau, Felipe/0000-0002-1372-2534 FU U.S. National Science Foundation [AST-0408698, PHY-0355328, AST-0707731, PIRE-0507768, OISE-0530095]; Princeton University; University of Pennsylvania; NASA/XMM [NNX08AX55G, NNX08AX72G]; Canada Foundation for Innovation under Compute Canada; Canada Foundation for Innovation under Government of Ontario; Canada Foundation for Innovation under University of Toronto; Centro de Astrofisica FONDAP [15010003]; Centro BASAL-CATA; FONDECYT [1085286] FX The observations on which this paper were based represent the marriage of two different communities (CMB and optical) in multiple countries working for a common goal. In particular, the optical observations were coordinated and led by Felipe Barrientos and Leopoldo Infante (Pontificia Universidad Catolica de Chile) and John P. Hughes and Felipe Menanteau (Rutgers University). This work was supported by the U.S. National Science Foundation through awards AST-0408698 for the ACT project, and PHY-0355328, AST-0707731 and PIRE-0507768 (award number OISE-0530095). The PIRE program made possible exchanges between Chile, South Africa, Spain, and the US that enabled this research program. Funding was also provided by Princeton University and the University of Pennsylvania. We also acknowledge support from NASA/XMM grants NNX08AX55G and NNX08AX72G to Rutgers University. Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund Research Excellence; and the University of Toronto. This research is partially funded by "Centro de Astrofisica FONDAP" 15010003, Centro BASAL-CATA, and by FONDECYT under proyecto 1085286. The observers (F. M., J.P.H., J.G., L. I.) thank the La Silla, CTIO, and SOAR staff for their support during the runs. The SOAR Telescope is a joint project of Conselho Nacional de Pesquisas Cientificas e Tecnologicas CNPq-Brazil, The University of North Carolina at Chapel Hill, Michigan State University, and the National Optical Astronomy Observatory. NR 82 TC 63 Z9 63 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1523 EP 1541 DI 10.1088/0004-637X/723/2/1523 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700045 ER PT J AU Metcalfe, TS Monteiro, MJPFG Thompson, MJ Molenda-Zakowicz, J Appourchaux, T Chaplin, WJ Dogan, G Eggenberger, P Bedding, TR Bruntt, H Creevey, OL Quirion, PO Stello, D Bonanno, A Aguirre, VS Basu, S Esch, L Gai, N di Mauro, MP Kosovichev, AG Kitiashvili, IN Suarez, JC Moya, A Piau, L Garcia, RA Marques, JP Frasca, A Biazzo, K Sousa, SG Dreizler, S Bazot, M Karoff, C Frandsen, S Wilson, PA Brown, TM Christensen-Dalsgaard, J Gilliland, RL Kjeldsen, H Campante, TL Fletcher, ST Handberg, R Regulo, C Salabert, D Schou, J Verner, GA Ballot, J Broomhall, AM Elsworth, Y Hekker, S Huber, D Mathur, S New, R Roxburgh, IW Sato, KH White, TR Borucki, WJ Koch, DG Jenkins, JM AF Metcalfe, T. S. Monteiro, M. J. P. F. G. Thompson, M. J. Molenda-Zakowicz, J. Appourchaux, T. Chaplin, W. J. Dogan, G. Eggenberger, P. Bedding, T. R. Bruntt, H. Creevey, O. L. Quirion, P. -O. Stello, D. Bonanno, A. Aguirre, V. Silva Basu, S. Esch, L. Gai, N. di Mauro, M. P. Kosovichev, A. G. Kitiashvili, I. N. Suarez, J. C. Moya, A. Piau, L. Garcia, R. A. Marques, J. P. Frasca, A. Biazzo, K. Sousa, S. G. Dreizler, S. Bazot, M. Karoff, C. Frandsen, S. Wilson, P. A. Brown, T. M. Christensen-Dalsgaard, J. Gilliland, R. L. Kjeldsen, H. Campante, T. L. Fletcher, S. T. Handberg, R. Regulo, C. Salabert, D. Schou, J. Verner, G. A. Ballot, J. Broomhall, A. -M. Elsworth, Y. Hekker, S. Huber, D. Mathur, S. New, R. Roxburgh, I. W. Sato, K. H. White, T. R. Borucki, W. J. Koch, D. G. Jenkins, J. M. TI A PRECISE ASTEROSEISMIC AGE AND RADIUS FOR THE EVOLVED SUN-LIKE STAR KIC 11026764 SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: evolution; stars: individual (KIC 11026764); stars: interiors; stars: oscillations ID SOLAR-LIKE OSCILLATIONS; STELLAR EVOLUTION CODE; EQUATION-OF-STATE; HEAVY-ELEMENT DIFFUSION; ELODIE ECHELLE SPECTRA; PARAMETERS T-EFF; KEPLER MISSION; ETA-BOOTIS; SPECTROSCOPIC PARAMETERS; MERIDIONAL CIRCULATION AB The primary science goal of the Kepler Mission is to provide a census of exoplanets in the solar neighborhood, including the identification and characterization of habitable Earth-like planets. The asteroseismic capabilities of the mission are being used to determine precise radii and ages for the target stars from their solar-like oscillations. Chaplin et al. published observations of three bright G-type stars, which were monitored during the first 33.5 days of science operations. One of these stars, the subgiant KIC 11026764, exhibits a characteristic pattern of oscillation frequencies suggesting that it has evolved significantly. We have derived asteroseismic estimates of the properties of KIC 11026764 from Kepler photometry combined with ground-based spectroscopic data. We present the results of detailed modeling for this star, employing a variety of independent codes and analyses that attempt to match the asteroseismic and spectroscopic constraints simultaneously. We determine both the radius and the age of KIC 11026764 with a precision near 1%, and an accuracy near 2% for the radius and 15% for the age. Continued observations of this star promise to reveal additional oscillation frequencies that will further improve the determination of its fundamental properties. C1 [Metcalfe, T. S.; Thompson, M. J.; Mathur, S.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Monteiro, M. J. P. F. G.; Sousa, S. G.; Bazot, M.; Campante, T. L.] Univ Porto, Fac Ciencias, Ctr Astrofis & DFA, Oporto, Portugal. [Thompson, M. J.] Univ Sheffield, Sch Math & Stat, Sheffield S3 7RH, S Yorkshire, England. [Molenda-Zakowicz, J.] Univ Wroclaw, Astron Inst, PL-51622 Wroclaw, Poland. [Appourchaux, T.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Chaplin, W. J.; Karoff, C.; Broomhall, A. -M.; Elsworth, Y.; Hekker, S.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Dogan, G.; Frandsen, S.; Christensen-Dalsgaard, J.; Kjeldsen, H.; Campante, T. L.; Handberg, R.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Eggenberger, P.] Univ Geneva, Observ Geneva, CH-1290 Sauverny, Switzerland. [Bedding, T. R.; Stello, D.; Huber, D.; White, T. R.] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Bruntt, H.; Roxburgh, I. W.] Observ Paris, F-92190 Meudon, France. [Creevey, O. L.; Regulo, C.; Salabert, D.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Creevey, O. L.; Regulo, C.; Salabert, D.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Quirion, P. -O.] Canadian Space Agcy, St Hubert, PQ J3Y 8Y9, Canada. [Bonanno, A.; Frasca, A.] INAF Osservatorio Astrofis Catania, I-95123 Catania, Italy. [Aguirre, V. Silva] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Basu, S.; Esch, L.; Gai, N.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Gai, N.] Beijing Normal Univ, Beijing 100875, Peoples R China. [di Mauro, M. P.] Ist Astrofis Spaziale & Fis Cosm, INAF IASF Roma, I-00133 Rome, Italy. [Kosovichev, A. G.; Schou, J.] Stanford Univ, HEPL, Stanford, CA 94305 USA. [Kitiashvili, I. N.] Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA. [Suarez, J. C.] CSIC, Inst Astrofis Andalucia, Granada, Spain. [Moya, A.] CAB CSIC INTA, Lab Astrofis, Madrid 28691, Spain. [Piau, L.; Garcia, R. A.; Ballot, J.] Univ Paris 7 Diderot, IRFU SAp, Ctr Saclay, CEA DSM CNRS,Lab AIM, F-91191 Gif Sur Yvette, France. [Marques, J. P.] Univ Paris 07, Univ Paris 06, Observ Paris, CNRS UMR 8109,LESIA, F-92195 Meudon, France. [Biazzo, K.] Arcetri Astrophys Observ, I-50125 Florence, Italy. [Dreizler, S.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Wilson, P. A.] Nord Opt Telescope, E-38700 Santa Cruz De La Palma, Santa Cruz Ten, Spain. [Wilson, P. A.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Brown, T. M.] Las Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Gilliland, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Fletcher, S. T.; New, R.] Sheffield Hallam Univ, Mat Engn Res Inst, Sheffield S1 1WB, S Yorkshire, England. [Verner, G. A.; Roxburgh, I. W.] Univ London, Astron Unit, London E1 4NS, England. [Ballot, J.] Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, F-31400 Toulouse, France. [Jenkins, J. M.] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Metcalfe, TS (reprint author), Natl Ctr Atmospher Res, High Altitude Observ, Pob 3000, Boulder, CO 80307 USA. RI Ballot, Jerome/G-1019-2010; Sousa, Sergio/I-7466-2013; Monteiro, Mario J.P.F.G./B-4715-2008; Basu, Sarbani/B-8015-2014; Suarez, Juan Carlos/C-1015-2009; OI Bazot, Michael/0000-0003-0166-1540; Bonanno, Alfio/0000-0003-3175-9776; Frasca, Antonio/0000-0002-0474-0896; Bedding, Timothy/0000-0001-5943-1460; Sousa, Sergio/0000-0001-9047-2965; Monteiro, Mario J.P.F.G./0000-0003-0513-8116; Basu, Sarbani/0000-0002-6163-3472; Suarez, Juan Carlos/0000-0003-3649-8384; Biazzo, Katia/0000-0002-1892-2180; Metcalfe, Travis/0000-0003-4034-0416; Karoff, Christoffer/0000-0003-2009-7965; Bedding, Tim/0000-0001-5222-4661; Garcia, Rafael/0000-0002-8854-3776; Di Mauro, Maria Pia/0000-0001-7801-7484; Handberg, Rasmus/0000-0001-8725-4502 FU NASA's Science Mission Directorate; NASA [NNX09AE59G]; U.S. National Science Foundation; INSU/CNRS; Danish Natural Science Research Council; MNiSW [N203 014 31/2650]; FCT [TDC/CTE-AST/098754/2008]; FEDER, Portugal; Australian Research Council; UK Science and Facilities Technology Council; European Commission; FCT (Portugal) [SFRH/BPD/47611/2008, PTDC/CTE-AST/66181/2006] FX Funding for the Kepler Mission is provided by NASA's Science Mission Directorate. This work was supported in part by NASA grant NNX09AE59G. Computer time was provided by TeraGrid allocation TG-AST090107. The National Center for Atmospheric Research is sponsored by the U.S. National Science Foundation. Observations were made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. T. A. gratefully acknowledges support from the Programme National de Physique Stellaire of INSU/CNRS. G. D., P.-O.Q., C. K., J.C.-D., and H. K. are grateful for financial support from the Danish Natural Science Research Council. J.M.-.Z. acknowledges MNiSW grant N203 014 31/2650. M.J.P.F.G.M. acknowledges financial support from project TDC/CTE-AST/098754/2008 from FCT and FEDER, Portugal. T. R. B. and D. S. acknowledge financial support from the Australian Research Council. W.J.C., Y.E., A.-M. B., S. T. F., S. H., and R.N. acknowledge the support of the UK Science and Facilities Technology Council. O.L.C. and P.-O.Q. acknowledge support from HELAS, a major international collaboration funded by the European Commission's Sixth framework program. S. G. S. acknowledges support from the FCT (Portugal) through grants SFRH/BPD/47611/2008 and PTDC/CTE-AST/66181/2006. The authors wish to thank the Kepler Science Team and everyone who helped make the Kepler Mission possible. NR 110 TC 95 Z9 95 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1583 EP 1598 DI 10.1088/0004-637X/723/2/1583 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700050 ER PT J AU Huber, D Bedding, TR Stello, D Mosser, B Mathur, S Kallinger, T Hekker, S Elsworth, YP Buzasi, DL De Ridder, J Gilliland, RL Kjeldsen, H Chaplin, WJ Garcia, RA Hale, SJ Preston, HL White, TR Borucki, WJ Christensen-Dalsgaard, J Clarke, BD Jenkins, JM Koch, D AF Huber, D. Bedding, T. R. Stello, D. Mosser, B. Mathur, S. Kallinger, T. Hekker, S. Elsworth, Y. P. Buzasi, D. L. De Ridder, J. Gilliland, R. L. Kjeldsen, H. Chaplin, W. J. Garcia, R. A. Hale, S. J. Preston, H. L. White, T. R. Borucki, W. J. Christensen-Dalsgaard, J. Clarke, B. D. Jenkins, J. M. Koch, D. TI ASTEROSEISMOLOGY OF RED GIANTS FROM THE FIRST FOUR MONTHS OF KEPLER DATA: GLOBAL OSCILLATION PARAMETERS FOR 800 STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: late-type; stars: oscillations ID SOLAR-LIKE OSCILLATIONS; FREQUENCY-SEPARATION RATIOS; MAIN-SEQUENCE STARS; EPSILON-OPHIUCHI; ACOUSTIC-OSCILLATIONS; MULTISITE CAMPAIGN; K-GIANTS; COROT; PHOTOMETRY; ARCTURUS AB We have studied solar-like oscillations in similar to 800 red giant stars using Kepler long-cadence photometry. The sample includes stars ranging in evolution from the lower part of the red giant branch to the helium main sequence. We investigate the relation between the large frequency separation (Delta nu) and the frequency of maximum power (nu(max)) and show that it is different for red giants than for main-sequence stars, which is consistent with evolutionary models and scaling relations. The distributions of nu(max) and Delta nu are in qualitative agreement with a simple stellar population model of the Kepler field, including the first evidence for a secondary clump population characterized by M greater than or similar to 2M(circle dot) and nu(max) similar or equal to 40-110 mu Hz. We measured the small frequency separations delta nu(02) and delta nu(01) in over 400 stars and delta nu(03) in over 40. We present C-D diagrams for l = 1, 2, and 3 and show that the frequency separation ratios delta nu(02)/Delta nu and delta nu(01)/Delta nu have opposite trends as a function of Delta nu The data show a narrowing of the l = 1 ridge toward lower nu(max), in agreement with models predicting more efficient mode trapping in stars with higher luminosity. We investigate the offset is an element of in the asymptotic relation and find a clear correlation with.., demonstrating that it is related to fundamental stellar parameters. Finally, we present the first amplitude-nu(max) relation for Kepler red giants. We observe a lack of low-amplitude stars for nu(max) greater than or similar to 110 mu Hz and find that, for a given nu(max) between 40 and 110 mu Hz, stars with lower Delta nu (and consequently higher mass) tend to show lower amplitudes than stars with higher Delta nu. C1 [Huber, D.; Bedding, T. R.; Stello, D.; White, T. R.] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Mosser, B.] Univ Denis, Univ Paris 06, CNRS, Observ Paris,LESIA, F-92195 Meudon, France. [Mathur, S.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Kallinger, T.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Kallinger, T.] Univ Vienna, Inst Astron IFA, A-1180 Vienna, Austria. [Hekker, S.; Elsworth, Y. P.; Chaplin, W. J.; Hale, S. J.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Buzasi, D. L.; Preston, H. L.] Eureka Sci, Oakland, CA 94602 USA. [De Ridder, J.] Katholieke Univ Leuven, Inst Sterrenkunde, Louvain, Belgium. [Gilliland, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Kjeldsen, H.; Christensen-Dalsgaard, J.] Aarhus Univ, Dept Phys & Astron, Danish AsteroSeismol Ctr DASC, DK-8000 Aarhus C, Denmark. [Garcia, R. A.] Univ Paris 7 Diderot, CEA DSM CNRS, Lab AIM, IRFU SAp,Ctr Saclay, F-91191 Gif Sur Yvette, France. [Preston, H. L.] Univ S Africa, Dept Math Sci, ZA-0001 Pretoria, South Africa. [Clarke, B. D.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. RP Huber, D (reprint author), Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. EM dhuber@physics.usyd.edu.au RI Hale, Steven/E-3472-2015; OI Hale, Steven/0000-0002-6402-8382; Kallinger, Thomas/0000-0003-3627-2561; Bedding, Timothy/0000-0001-5943-1460; Bedding, Tim/0000-0001-5222-4661; Garcia, Rafael/0000-0002-8854-3776 FU NASA's Science Mission Directorate; Astronomical Society of Australia (ASA); Australian Research Council; U.S. National Science Foundation; UK Science and Technology Facilities Council FX The authors gratefully acknowledge the Kepler Science Team and all those who have contributed to the Kepler Mission for their tireless efforts which have made these results possible. We are also thankful to A. Miglio for his kind help with the stellar population synthesis and to our anonymous referee for his/her helpful comments. Funding for the Kepler Mission is provided by NASA's Science Mission Directorate. D.H. acknowledges support by the Astronomical Society of Australia (ASA). D.S. and T.R.B. acknowledge support by the Australian Research Council. The National Center for Atmospheric Research is a federally funded research and development center sponsored by the U.S. National Science Foundation. S.H., Y.P.E., and W.J.C. acknowledge support by the UK Science and Technology Facilities Council. NR 72 TC 107 Z9 107 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1607 EP 1617 DI 10.1088/0004-637X/723/2/1607 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700052 ER PT J AU Coe, D Benitez, N Broadhurst, T Moustakas, LA AF Coe, Dan Benitez, Narciso Broadhurst, Tom Moustakas, Leonidas A. TI A HIGH-RESOLUTION MASS MAP OF GALAXY CLUSTER SUBSTRUCTURE: LensPerfect ANALYSIS OF A1689 SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; galaxies: clusters: general; galaxies: clusters: individual (A1689); gravitational lensing: strong; gravitational lensing: weak; methods: data analysis ID DARK-MATTER HALOS; STRONG-LENSING CLUSTERS; INTERACTION CROSS-SECTION; HIGH-DENSITY ENVIRONMENTS; DEEP ADVANCED CAMERA; GRAVITATIONAL LENSES; ABELL 1689; X-RAY; LAMBDA-CDM; COSMOLOGICAL CONSTRAINTS AB We present a strong lensing (SL) mass model of A1689 which resolves substructures an estimated 25 kpc across within the central similar to 400 kpc diameter. We achieve this resolution by perfectly reproducing the observed (strongly lensed) input positions of 168 multiple images of 55 knots residing within 135 images of 42 galaxies. Our model makes no assumptions about light tracing mass, yet we reproduce the brightest visible structures with some slight deviations. A1689 remains one of the strongest known lenses on the sky, with an Einstein radius of RE = 47.'' 0 +/- 1.'' 2 (143(-4)(+3) kpc) for a lensed source at z(s) = 2. We find that a single Navarro-Frenk-White (NFW) or Sersic profile yields a good fit simultaneously (with only slight tension) to both our SL mass model and published weak lensing (WL) measurements at larger radius (out to the virial radius). According to this NFW fit, A1689 has a mass of M-vir = 2.0(0.3)(+0.5) x 10(15) M(circle dot)h(70)(-1) (M-200 = 1.8(0.3)(+0.4) x 10(15) M-circle dot h(70)(-1)) within the virial radius r(vir) = 3.0 +/- 0.2 Mpch(70)(-1) (()r(200) = 2.4(-0.2+)(0.1) Mpch(70)(-1)), and a central concentration c(vir) = 11.5-(1.5)(1.4+) (c(200) = 9.2 +/- 1.2). Our SL model prefers slightly higher concentrations than previous SL models, bringing our SL + WL constraints in line with other recent derivations. Our results support those of previous studies which find A1689 has either an anomalously large concentration or significant extra mass along the line of sight (perhaps in part due to triaxiality). If clusters are generally found to have higher concentrations than realized in simulations, this could indicate that they formed earlier, perhaps as a result of early dark energy. C1 [Coe, Dan; Moustakas, Leonidas A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Benitez, Narciso] CSIC, Inst Astrofis Andalucia, E-18008 Granada, Spain. [Broadhurst, Tom] Univ Basque Country UPV EHU, Dept Theoret Phys, Leioa, Spain. [Broadhurst, Tom] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain. RP Coe, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 169-327, Pasadena, CA 91109 USA. EM coe@caltech.edu OI Moustakas, Leonidas/0000-0003-3030-2360; Benitez, Narciso/0000-0002-0403-7455 FU NASA FX We thank Marceau Limousin and Elinor Medezinski for sending us their weak lensing profiles and for useful conversations. We also thank Angelo Neto for useful conversations about the Millennium simulation and their study of halo profiles. We thank our referee for useful comments that helped us improve the manuscript. This work was carried out in part at Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. L.A.M. acknowledges support from the NASA ATFP program. NR 159 TC 58 Z9 58 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1678 EP 1702 DI 10.1088/0004-637X/723/2/1678 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700057 ER PT J AU Debes, JH Jackson, B AF Debes, John H. Jackson, Brian TI TOO LITTLE, TOO LATE: HOW THE TIDAL EVOLUTION OF HOT JUPITERS AFFECTS TRANSIT SURVEYS OF CLUSTERS SO ASTROPHYSICAL JOURNAL LA English DT Article DE globular clusters: individual (47 Tuc); methods: numerical; planetary systems ID EXTRASOLAR PLANETS; STELLAR CLUSTERS; GIANT PLANETS; SPIN-ORBIT; GLOBULAR-CLUSTERS; RETROGRADE ORBIT; 47 TUC; STARS; MASS; SYSTEMS AB The tidal evolution of hot Jupiters may change the efficiency of transit surveys of stellar clusters. The orbital decay that hot Jupiters suffer may result in their destruction, leaving fewer transiting planets in older clusters. We calculate the impact tidal evolution has for different assumed stellar populations, including that of 47 Tuc, a globular cluster that was the focus of an intense Hubble Space Telescope search for transits. We find that in older clusters, one expects to detect fewer transiting planets by a factor of 2 for surveys sensitive to Jupiter-like planets in orbits out to 0.5AU, and up to a factor of 25 for surveys sensitive to Jupiter-like planets in orbits out to 0.08AU. Additionally, tidal evolution affects the distribution of transiting planets as a function of the semimajor axis, producing larger orbital period gaps for transiting planets as the age of the cluster increases. Tidal evolution can explain the lack of detected exoplanets in 47 Tuc without invoking other mechanisms. Four open clusters residing within the Kepler fields of view have ages that span 0.4-8Gyr-if Kepler can observe a significant number of planets in these clusters, it will provide key tests for our tidal evolution hypothesis. Finally, our results suggest that observers wishing to discover transiting planets in clusters must have sufficient accuracy to detect lower mass planets, search larger numbers of cluster members, or have longer observation windows to be confident that a significant number of transits will occur for a population of stars. C1 [Debes, John H.; Jackson, Brian] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Debes, JH (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. FU NASA FX We thank Ron Gilliland, Steinn Sigurdsson, Rory Barnes, and the anonymous referee for helpful comments and suggestions on the manuscript. We also thank S. Gaudi for helpful suggestions on cluster surveys. This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. This work made use of the Extrasolar Planets Encyclopedia at exoplanets.eu. NR 55 TC 8 Z9 8 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1703 EP 1710 DI 10.1088/0004-637X/723/2/1703 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700058 ER PT J AU Troja, E Rosswog, S Gehrels, N AF Troja, E. Rosswog, S. Gehrels, N. TI PRECURSORS OF SHORT GAMMA-RAY BURSTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general; gamma-ray burst: individual (GRB090510); stars: neutron ID COALESCING NEUTRON-STARS; HIGH-RESOLUTION CALCULATIONS; FERMI OBSERVATIONS; EXTENDED EMISSION; PHYSICAL MODELS; MASSIVE STARS; GRB 090510; JETS; AFTERGLOW; MERGERS AB We carried out a systematic search of precursors on the sample of short gamma-ray bursts (GRBs) observed by Swift. We found that similar to 8%-10% of short GRBs display such early episodes of emission. One burst (GRB 090510) shows two precursor events, the former similar to 13 s and the latter similar to 0.5 s before the GRB. We did not find any substantial difference between the precursor and the main GRB emission, and between short GRBs with and without precursors. We discuss possible mechanisms to reproduce the observed precursor emission within the scenario of compact object mergers. The implications of our results on quantum gravity constraints are also discussed. C1 [Troja, E.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rosswog, S.] Jacobs Univ Bremen, Sch Sci & Engn, D-28759 Bremen, Germany. RP Troja, E (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Gehrels, Neil/D-2971-2012 FU NASA FX We thank G. Skinner and C. Markwardt for discussions and useful suggestions on the Swift/BAT data analysis. This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 68 TC 48 Z9 48 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1711 EP 1717 DI 10.1088/0004-637X/723/2/1711 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700059 ER PT J AU High, FW Stalder, B Song, J Ade, PAR Aird, KA Allam, SS Armstrong, R Barkhouse, WA Benson, BA Bertin, E Bhattacharya, S Bleem, LE Brodwin, M Buckley-Geer, EJ Carlstrom, JE Challis, P Chang, CL Crawford, TM Crites, AT de Haan, T Desai, S Dobbs, MA Dudley, JP Foley, RJ George, EM Gladders, M Halverson, NW Hamuy, M Hansen, SM Holder, GP Holzapfel, WL Hrubes, JD Joy, M Keisler, R Lee, AT Leitch, EM Lin, H Lin, YT Loehr, A Lueker, M Marrone, D McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Morell, N Ngeow, CC Padin, S Plagge, T Pryke, C Reichardt, CL Rest, A Ruel, J Ruhl, JE Schaffer, KK Shaw, L Shirokoff, E Smith, RC Spieler, HG Staniszewski, Z Stark, AA Stubbs, CW Tucker, DL Vanderlinde, K Vieira, JD Williamson, R Wood-Vasey, WM Yang, Y Zahn, O Zenteno, A AF High, F. W. Stalder, B. Song, J. Ade, P. A. R. Aird, K. A. Allam, S. S. Armstrong, R. Barkhouse, W. A. Benson, B. A. Bertin, E. Bhattacharya, S. Bleem, L. E. Brodwin, M. Buckley-Geer, E. J. Carlstrom, J. E. Challis, P. Chang, C. L. Crawford, T. M. Crites, A. T. de Haan, T. Desai, S. Dobbs, M. A. Dudley, J. P. Foley, R. J. George, E. M. Gladders, M. Halverson, N. W. Hamuy, M. Hansen, S. M. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Joy, M. Keisler, R. Lee, A. T. Leitch, E. M. Lin, H. Lin, Y. -T. Loehr, A. Lueker, M. Marrone, D. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Morell, N. Ngeow, C. -C. Padin, S. Plagge, T. Pryke, C. Reichardt, C. L. Rest, A. Ruel, J. Ruhl, J. E. Schaffer, K. K. Shaw, L. Shirokoff, E. Smith, R. C. Spieler, H. G. Staniszewski, Z. Stark, A. A. Stubbs, C. W. Tucker, D. L. Vanderlinde, K. Vieira, J. D. Williamson, R. Wood-Vasey, W. M. Yang, Y. Zahn, O. Zenteno, A. TI OPTICAL REDSHIFT AND RICHNESS ESTIMATES FOR GALAXY CLUSTERS SELECTED WITH THE SUNYAEV-ZEL'DOVICH EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: clusters: general ID SEQUENCE LUMINOSITY FUNCTION; COLOR-MAGNITUDE RELATION; RED-SEQUENCE; CONSTRAINTS; COSMOLOGY; CATALOG; VELOCITIES; EVOLUTION; STELLAR; MODELS AB We present redshifts and optical richness properties of 21 galaxy clusters uniformly selected by their Sunyaev-Zel'dovich (SZ) signature. These clusters, plus an additional, unconfirmed candidate, were detected in a 178 deg(2) area surveyed by the South Pole Telescope (SPT) in 2008. Using griz imaging from the Blanco Cosmology Survey and from pointed Magellan telescope observations, as well as spectroscopy using Magellan facilities, we confirm the existence of clustered red-sequence galaxies, report red-sequence photometric redshifts, present spectroscopic redshifts for a subsample, and derive R(200) radii and M(200) masses from optical richness. The clusters span redshifts from 0.15 to greater than 1, with a median redshift of 0.74; three clusters are estimated to be at z > 1. Redshifts inferred from mean red-sequence colors exhibit 2% rms scatter in sigma(z)/(1 + z) with respect to the spectroscopic subsample for z < 1. We show that the M(200) cluster masses derived from optical richness correlate with masses derived from SPT data and agree with previously derived scaling relations to within the uncertainties. Optical and infrared imaging is an efficient means of cluster identification and redshift estimation in large SZ surveys, and exploiting the same data for richness measurements, as we have done, will be useful for constraining cluster masses and radii for large samples in cosmological analysis. C1 [High, F. W.; Stalder, B.; Rest, A.; Ruel, J.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Song, J.; Ngeow, C. -C.; Yang, Y.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Ade, P. A. R.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, Wales. [Aird, K. A.; Hrubes, J. D.; Marrone, D.] Univ Chicago, Chicago, IL 60637 USA. [Allam, S. S.; Buckley-Geer, E. J.; Lin, H.; Tucker, D. L.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Armstrong, R.; Desai, S.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Barkhouse, W. A.] Univ N Dakota, Dept Phys & Astrophys, Grand Forks, ND 58202 USA. [Benson, B. A.; George, E. M.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Plagge, T.; Reichardt, C. L.; Shirokoff, E.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M.; Keisler, R.; Leitch, E. M.; Marrone, D.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Padin, S.; Pryke, C.; Schaffer, K. K.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; McMahon, J. J.; Meyer, S. S.; Pryke, C.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Bertin, E.] Inst Astrophys Paris, F-75014 Paris, France. [Bhattacharya, S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Brodwin, M.; Challis, P.; Foley, R. J.; Loehr, A.; Stark, A. A.; Stubbs, C. W.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Padin, S.; Plagge, T.; Pryke, C.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [de Haan, T.; Dobbs, M. A.; Dudley, J. P.; Holder, G. P.; Shaw, L.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Hamuy, M.; Morell, N.] Univ Chile, Dept Astron, Santiago, Chile. [Hansen, S. M.] Univ Calif Santa Cruz, Univ Calif Observ, Santa Cruz, CA 95064 USA. [Hansen, S. M.] Univ Calif Santa Cruz, Dept Astron, Santa Cruz, CA 95064 USA. [Joy, M.] NASA, George C Marshall Space Flight Ctr, VP62, Dept Space Sci, Huntsville, AL 35812 USA. [Lee, A. T.; Spieler, H. G.] Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Lin, Y. -T.] Univ Tokyo, Inst Phys & Math Univ, Kashiwa, Chiba 2778568, Japan. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Mohr, J. J.; Zenteno, A.] Excellence Cluster Univ, D-85748 Garching, Germany. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Smith, R. C.] Cerro Tololo Interamer Observ, La Serena, Chile. [Wood-Vasey, W. M.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. RP High, FW (reprint author), Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA. EM high@physics.harvard.edu RI Stubbs, Christopher/C-2829-2012; Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; Hamuy, Mario/G-7541-2016; OI Stubbs, Christopher/0000-0003-0347-1724; Williamson, Ross/0000-0002-6945-2975; Marrone, Daniel/0000-0002-2367-1080; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Tucker, Douglas/0000-0001-7211-5729; Stark, Antony/0000-0002-2718-9996 FU National Aeronautics and Space Administration; National Science Foundation [AST-0506752, AST-0607485, ANT-0638937, ANT-0130612, MRI-0723073]; DOE [DE-FG02-08ER41569, DE-AC02-05CH11231]; NIST [70NANB8H8007]; Harvard University; Brinson Foundation; Clay fellowship FX This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This publication has made use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.; This work is supported by the NSF (AST-0506752, AST-0607485, AST-0506752, ANT-0638937, ANT-0130612, MRI-0723073), the DOE (DE-FG02-08ER41569 and DE-AC02-05CH11231), NIST (70NANB8H8007), and Harvard University. B.S. and A.L. gratefully acknowledge support by the Brinson Foundation. R.J.F. acknowledges the generous support of a Clay fellowship. NR 64 TC 48 Z9 48 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1736 EP 1747 DI 10.1088/0004-637X/723/2/1736 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700061 ER PT J AU Shaposhnikov, N Markwardt, C Swank, J Krimm, H AF Shaposhnikov, Nikolai Markwardt, Craig Swank, Jean Krimm, Hans TI DISCOVERY AND MONITORING OF A NEW BLACK HOLE CANDIDATE XTE J1752-223 WITH RXTE: RMS SPECTRUM EVOLUTION, BLACK HOLE MASS, AND THE SOURCE DISTANCE SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; stars: individual (XTE J1752-223) ID GRO J1655-40; 2005 OUTBURST; CYGNUS X-1; STATE; BINARIES; TRANSITIONS; ACCRETION; EJECTION; DISC; JET AB We report on the discovery and monitoring observations of a new galactic black hole (BH) candidate XTE J1752-223 by Rossi X-ray Timing Explorer (RXTE). The new source appeared on the X-ray sky on 2009 October 21 and was active for almost 8 months. Phenomenologically, the source exhibited the low-hard/high-soft spectral state bi-modality and the variability evolution during the state transition that matches standard behavior expected from a stellar mass BH binary. We model the energy spectrum throughout the outburst using a generic Comptonization model assuming that part of the input soft radiation in the form of a blackbody spectrum gets reprocessed in the Comptonizing medium. We follow the evolution of fractional root-mean-square (rms) variability in the RXTE/PCA energy band with the source spectral state and conclude that broadband variability is strongly correlated with the source hardness (or Comptonized fraction). We follow changes in the energy distribution of rms variability during the low-hard state and the state transition, and find further evidence that variable emission is strongly concentrated in the power-law spectral component. We discuss the implication of our results to the Comptonization regimes during different spectral states. Correlations of spectral and variability properties provide measurements of the BH mass and distance to the source. The spectral-timing correlation scaling technique applied to the RXTE observations during the hard-to-soft state transition indicates a mass of the BH in XTE J1752-223 between 8 and 11 solar masses and a distance to the source of about 3.5 kpc. C1 [Shaposhnikov, Nikolai] Univ Maryland, CRESST, Dept Astron, College Pk, MD 20742 USA. [Shaposhnikov, Nikolai; Markwardt, Craig; Swank, Jean; Krimm, Hans] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Krimm, Hans] Univ Space Res Assoc, CRESST, Columbia, MD 21044 USA. RP Shaposhnikov, N (reprint author), Univ Maryland, CRESST, Dept Astron, College Pk, MD 20742 USA. EM nikolai.v.shaposhnikov@nasa.gov RI Swank, Jean/F-2693-2012 FU NASA [NNX09AF02G] FX We made use of the data provided through HEASARC and RXTE SOF. N.S. acknowledges the support of this work by NASA grant NNX09AF02G. NR 29 TC 25 Z9 25 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1817 EP 1824 DI 10.1088/0004-637X/723/2/1817 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700067 ER PT J AU Sabaka, TJ Rowlands, DD Luthcke, SB Boy, JP AF Sabaka, T. J. Rowlands, D. D. Luthcke, S. B. Boy, J-P. TI Improving global mass flux solutions from Gravity Recovery and Climate Experiment (GRACE) through forward modeling and continuous time correlation SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID INVERSE; SYSTEM; FIELD AB We describe Earth's mass flux from April 2003 through November 2008 by deriving a time series of mascons on a global 2 degrees x 2 degrees equal-area grid at 10 day intervals. We estimate the mass flux directly from K band range rate (KBRR) data provided by the Gravity Recovery and Climate Experiment (GRACE) mission. Using regularized least squares, we take into account the underlying process dynamics through continuous space and time-correlated constraints. In addition, we place the mascon approach in the context of other filtering techniques, showing its equivalence to anisotropic, nonsymmetric filtering, least squares collocation, and Kalman smoothing. We produce mascon time series from KBRR data that have and have not been corrected (forward modeled) for hydrological processes and find that the former produce superior results in oceanic areas by minimizing signal leakage from strong sources on land. By exploiting the structure of the spatiotemporal constraints, we are able to use a much more efficient (in storage and computation) inversion algorithm based upon the conjugate gradient method. This allows us to apply continuous rather than piecewise continuous time-correlated constraints, which we show via global maps and comparisons with ocean-bottom pressure gauges, to produce time series with reduced random variance and full systematic signal. Finally, we present a preferred global model, a hybrid whose oceanic portions are derived using forward modeling of hydrology but whose land portions are not, and thus represent a pure GRACE-derived signal. C1 [Sabaka, T. J.; Rowlands, D. D.; Luthcke, S. B.; Boy, J-P.] NASA, Planetary Geodynam Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Boy, J-P.] CNRS UdS, EOST IPGS, UMR 7516, Strasbourg, France. RP Sabaka, TJ (reprint author), NASA, Planetary Geodynam Lab, Goddard Space Flight Ctr, Code 698, Greenbelt, MD 20771 USA. EM Terence.J.Sabaka@nasa.gov RI Rowlands, David/D-2751-2012; Sabaka, Terence/D-5618-2012; Luthcke, Scott/D-6283-2012; Boy, Jean-Paul/E-6677-2017 OI Boy, Jean-Paul/0000-0003-0259-209X FU NASA through the GRACE Science team; Marie Curie International Outgoing Fellowship [PIOF-GA-2008-221753] FX Support for this work was provided by NASA through the GRACE Science team. We gratefully acknowledge the quality of GRACE Level 1B products produced by our colleagues at the Jet Propulsion Laboratory. We also thank the NCCS at GSFC for computational resources. Jean-Paul Boy is currently visiting NASA Goddard Space Flight Center, with a Marie Curie International Outgoing Fellowship (PIOF-GA-2008-221753). We would like to thank three anonymous reviewers and the Associate Editor for their useful insights and suggestions. NR 36 TC 23 Z9 23 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD NOV 10 PY 2010 VL 115 AR B11403 DI 10.1029/2010JB007533 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 680HO UT WOS:000284223200001 ER PT J AU Chevallier, F Ciais, P Conway, TJ Aalto, T Anderson, BE Bousquet, P Brunke, EG Ciattaglia, L Esaki, Y Frohlich, M Gomez, A Gomez-Pelaez, AJ Haszpra, L Krummel, PB Langenfelds, RL Leuenberger, M Machida, T Maignan, F Matsueda, H Morgui, JA Mukai, H Nakazawa, T Peylin, P Ramonet, M Rivier, L Sawa, Y Schmidt, M Steele, LP Vay, SA Vermeulen, AT Wofsy, S Worthy, D AF Chevallier, F. Ciais, P. Conway, T. J. Aalto, T. Anderson, B. E. Bousquet, P. Brunke, E. G. Ciattaglia, L. Esaki, Y. Froehlich, M. Gomez, A. Gomez-Pelaez, A. J. Haszpra, L. Krummel, P. B. Langenfelds, R. L. Leuenberger, M. Machida, T. Maignan, F. Matsueda, H. Morgui, J. A. Mukai, H. Nakazawa, T. Peylin, P. Ramonet, M. Rivier, L. Sawa, Y. Schmidt, M. Steele, L. P. Vay, S. A. Vermeulen, A. T. Wofsy, S. Worthy, D. TI CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TRANSPORT; MODEL; INVERSION; LAND AB This paper documents a global Bayesian variational inversion of CO2 surface fluxes during the period 1988-2008. Weekly fluxes are estimated on a 3.75 degrees x 2.5 degrees (longitude-latitude) grid throughout the 21 years. The assimilated observations include 128 station records from three large data sets of surface CO2 mixing ratio measurements. A Monte Carlo approach rigorously quantifies the theoretical uncertainty of the inverted fluxes at various space and time scales, which is particularly important for proper interpretation of the inverted fluxes. Fluxes are evaluated indirectly against two independent CO2 vertical profile data sets constructed from aircraft measurements in the boundary layer and in the free troposphere. The skill of the inversion is evaluated by the improvement brought over a simple benchmark flux estimation based on the observed atmospheric growth rate. Our error analysis indicates that the carbon budget from the inversion should be more accurate than the a priori carbon budget by 20% to 60% for terrestrial fluxes aggregated at the scale of subcontinental regions in the Northern Hemisphere and over a year, but the inversion cannot clearly distinguish between the regional carbon budgets within a continent. On the basis of the independent observations, the inversion is seen to improve the fluxes compared to the benchmark: the atmospheric simulation of CO2 with the Bayesian inversion method is better by about 1 ppm than the benchmark in the free troposphere, despite possible systematic transport errors. The inversion achieves this improvement by changing the regional fluxes over land at the seasonal and at the interannual time scales. C1 [Chevallier, F.; Ciais, P.; Bousquet, P.; Maignan, F.; Peylin, P.; Ramonet, M.; Rivier, L.; Schmidt, M.] CEA CNRS UVSQ, Lab Sci Climat & Environm, IPSL, F-91191 Gif Sur Yvette, France. [Conway, T. J.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Aalto, T.] Finnish Meteorol Inst, FI-00101 Helsinki, Finland. [Anderson, B. E.; Vay, S. A.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Brunke, E. G.] S African Weather Serv, ZA-7599 Stellenbosch, South Africa. [Ciattaglia, L.] ICES CNR IDAC, I-00133 Rome, Italy. [Esaki, Y.] Japan Meteorol Agcy, Chiyoda Ku, Tokyo 1008122, Japan. [Froehlich, M.] Umweltbundesamt GmbH, A-1090 Vienna, Austria. [Gomez, A.] Natl Inst Water & Atmospher Res, Wellington 6021, New Zealand. [Gomez-Pelaez, A. J.] Meteorol State Agcy Spain, E-38071 Santa Cruz De Tenerife, Spain. [Haszpra, L.] Hungarian Meteorol Serv, H-1675 Budapest, Hungary. [Krummel, P. B.; Langenfelds, R. L.; Steele, L. P.] CSIRO Marine & Atmospher Res, Ctr Australian Weather & Climate Res, Aspendale, Vic 3195, Australia. [Leuenberger, M.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Leuenberger, M.] Univ Bern, Oeschger Ctr Climate Change Res, CH-3012 Bern, Switzerland. [Machida, T.; Mukai, H.] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Matsueda, H.; Sawa, Y.] Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan. [Morgui, J. A.] Lab Recerca Clima, E-08028 Barcelona, Spain. [Nakazawa, T.] Tohoku Univ, Sendai, Miyagi 9818555, Japan. [Vermeulen, A. T.] Energy Res Ctr Netherlands, NL-1755 ZG Petten, Netherlands. [Wofsy, S.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Worthy, D.] Environm Canada, Downsview, ON M3H 5T4, Canada. RP Chevallier, F (reprint author), CEA CNRS UVSQ, Lab Sci Climat & Environm, IPSL, Bat 701, F-91191 Gif Sur Yvette, France. EM frederic.chevallier@lsce.ipsl.fr RI Gomez-Pelaez, Angel/L-9268-2015; Vuichard, Nicolas/A-6629-2011; Steele, Paul/B-3185-2009; Chevallier, Frederic/E-9608-2016; Leuenberger, Markus/K-9655-2016; Langenfelds, Raymond/B-5381-2012; Krummel, Paul/A-4293-2013; Maignan, Fabienne/F-5419-2013; Aalto, Tuula/P-6183-2014; Vermeulen, Alex/A-2867-2015 OI Gomez-Pelaez, Angel/0000-0003-4881-2975; Steele, Paul/0000-0002-8234-3730; Chevallier, Frederic/0000-0002-4327-3813; Leuenberger, Markus/0000-0003-4299-6793; Krummel, Paul/0000-0002-4884-3678; Aalto, Tuula/0000-0002-3264-7947; Vermeulen, Alex/0000-0002-8158-8787 FU GENCI- (CCRT/CINES/IDRIS) [2009- t2009012201]; European Commission [212196, 218793] FX This work was performed using HPC resources from GENCI- (CCRT/CINES/IDRIS; grant 2009- t2009012201). It was cofunded by the European Commission under the EU Seventh Research Framework Programme (grant agreements 212196, COCOS, and 218793, MACC). The authors are very grateful to the many people involved in the surface and aircraft measurement and in the archiving of these data. All PIs have been contacted and were offered coauthorship. The authors also acknowledge the fruitful discussions with Peter Rayner and Fran ois-Marie Breon (LSCE) about many aspects related to this study and the constructive comments made by three anonymous reviewers. NR 35 TC 85 Z9 85 U1 3 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 9 PY 2010 VL 115 AR D21307 DI 10.1029/2010JD013887 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 680FZ UT WOS:000284219100003 ER PT J AU Li, LM Conrath, BJ Gierasch, PJ Achterberg, RK Nixon, CA Simon-Miller, AA Flasar, FM Banfield, D Baines, KH West, RA Ingersoll, AP Vasavada, AR Del Genio, AD Porco, CC Mamoutkine, AA Segura, ME Bjoraker, GL Orton, GS Fletcher, LN Irwin, PGJ Read, PL AF Li, Liming Conrath, Barney J. Gierasch, Peter J. Achterberg, Richard K. Nixon, Conor A. Simon-Miller, Amy A. Flasar, F. Michael Banfield, Don Baines, Kevin H. West, Robert A. Ingersoll, Andrew P. Vasavada, Ashwin R. Del Genio, Anthony D. Porco, Carolyn C. Mamoutkine, Andrei A. Segura, Marcia E. Bjoraker, Gordon L. Orton, Glenn S. Fletcher, Leigh N. Irwin, Patrick G. J. Read, Peter L. TI Saturn's emitted power SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID FAR-INFRARED SPECTROPHOTOMETRY; ATMOSPHERIC DYNAMICS; MOIST CONVECTION; MAJOR PLANETS; ZONAL FLOW; JUPITER; MODEL; TEMPERATURES; VOYAGER; RINGS AB Long-term (2004-2009) on-orbit observations by Cassini Composite Infrared Spectrometer are analyzed to precisely measure Saturn's emitted power and its meridional distribution. Our evaluations suggest that the average global emitted power is 4.952 +/- 0.035 W m(-2) during the period of 2004-2009. The corresponding effective temperature is 96.67 +/- 0.17 K. The emitted power is 16.6% higher in the Southern Hemisphere than in the Northern Hemisphere. From 2005 to 2009, the global mean emitted power and effective temperature decreased by similar to 2% and similar to 0.5%, respectively. Our study further reveals the interannual variability of emitted power and effective temperature between the epoch of Voyager (similar to 1 Saturn year ago) and the current epoch of Cassini, suggesting changes in the cloud opacity from year to year on Saturn. The seasonal and interannual variability of emitted power implies that the energy balance and internal heat are also varying. C1 [Li, Liming] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77204 USA. [Achterberg, Richard K.; Nixon, Conor A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Baines, Kevin H.; West, Robert A.; Vasavada, Ashwin R.; Orton, Glenn S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Li, Liming; Conrath, Barney J.; Gierasch, Peter J.; Banfield, Don] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Simon-Miller, Amy A.; Flasar, F. Michael; Bjoraker, Gordon L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Del Genio, Anthony D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Fletcher, Leigh N.; Irwin, Patrick G. J.; Read, Peter L.] Univ Oxford, Oxford OX1 3PU, England. [Ingersoll, Andrew P.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Mamoutkine, Andrei A.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Porco, Carolyn C.] CICLOPS Space Sci Inst, Boulder, CO 80302 USA. [Segura, Marcia E.] QSS Grp Inc, Lanham, MD 20706 USA. RP Li, LM (reprint author), Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77204 USA. EM lli7@mail.uh.edu RI Fletcher, Leigh/D-6093-2011; Nixon, Conor/A-8531-2009; Flasar, F Michael/C-8509-2012; Del Genio, Anthony/D-4663-2012; Bjoraker, Gordon/D-5032-2012; Simon, Amy/C-8020-2012 OI Fletcher, Leigh/0000-0001-5834-9588; Banfield, Don/0000-0003-2664-0164; Irwin, Patrick/0000-0002-6772-384X; Nixon, Conor/0000-0001-9540-9121; Del Genio, Anthony/0000-0001-7450-1359; Simon, Amy/0000-0003-4641-6186 FU NASA FX NASA Outer Planets Research Program funded this work. We acknowledge Santigo Perez-Hoyos for providing the data of solar flux at the top of Saturn's atmosphere. We are also grateful for valuable comments and suggestions on this work from two anonymous reviewers. NR 50 TC 19 Z9 19 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV 9 PY 2010 VL 115 AR E11002 DI 10.1029/2010JE003631 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 680HF UT WOS:000284222300001 ER PT J AU Pechony, O Shindell, DT AF Pechony, O. Shindell, D. T. TI Driving forces of global wildfires over the past millennium and the forthcoming century SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE biomass burning; fire modeling; human-environment interactions; paleoclimate ID CLIMATE-CHANGE; FIRE REGIMES; FOREST-FIRES; GISS MODELE; SIMULATIONS; ECOSYSTEMS; MANAGEMENT; HISTORY; SYSTEM; BUDGET AB Recent bursts in the incidence of large wildfires worldwide have raised concerns about the influence climate change and humans might have on future fire activity. Comparatively little is known, however, about the relative importance of these factors in shaping global fire history. Here we use fire and climate modeling, combined with land cover and population estimates, to gain a better understanding of the forces driving global fire trends. Our model successfully reproduces global fire activity record over the last millennium and reveals distinct regimes in global fire behavior. We find that during the preindustrial period, the global fire regime was strongly driven by precipitation (rather than temperature), shifting to an anthropogenic-driven regime with the Industrial Revolution. Our future projections indicate an impending shift to a temperature-driven global fire regime in the 21st century, creating an unprecedentedly fire-prone environment. These results suggest a possibility that in the future climate will play a considerably stronger role in driving global fire trends, outweighing direct human influence on fire (both ignition and suppression), a reversal from the situation during the last two centuries. C1 [Pechony, O.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. Columbia Univ, New York, NY 10025 USA. RP Pechony, O (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM opechony@giss.nasa.gov RI Shindell, Drew/D-4636-2012 FU NASA FX We sincerely thank Dr. Jennifer Marlon (University of Oregon, Eugene, OR) for sharing with us the charcoal-based reconstruction data. We thank the satellite data teams that created global fire analyses enabling quantitative evaluation of global fire models, and NASA's Modeling and Analysis Program and Applied Sciences Program for supporting this work. NR 31 TC 180 Z9 187 U1 9 U2 92 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 9 PY 2010 VL 107 IS 45 BP 19167 EP 19170 DI 10.1073/pnas.1003669107 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 677MZ UT WOS:000283997800010 PM 20974914 ER PT J AU Li, KF Tian, BJ Waliser, DE Yung, YL AF Li, King-Fai Tian, Baijun Waliser, Duane E. Yung, Yuk L. TI Tropical mid-tropospheric CO2 variability driven by the Madden-Julian oscillation SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE convection; intraseasonal variability; remote sensing ID ATMOSPHERIC CO2; MJO; DIAGNOSTICS; CONVECTION; PACIFIC; CYCLE AB Carbon dioxide (CO2) is the most important anthropogenic greenhouse gas in the present-day climate. Most of the community focuses on its long-term (decadal to centennial) behaviors that are relevant to climate change, but there are relatively few discussions of its higher-frequency forms of variability, and none regarding its subseasonal distribution. In this work, we report a large-scale intraseasonal variation in the Atmospheric Infrared Sounder CO2 data in the global tropical region associated with the Madden-Julian oscillation (MJO). The peak-to-peak amplitude of the composite MJO modulation is similar to 1 ppmv, with a standard error of the composite mean <0.1 ppmv. The correlation structure between CO2 and rainfall and vertical velocity indicate positive (negative) anomalies in CO2 arise due to upward (downward) large-scale vertical motions in the lower troposphere associated with the MJO. These findings can help elucidate how faster processes can organize, transport, and mix CO2 and provide a robustness test for coupled carbon-climate models. C1 [Li, King-Fai; Yung, Yuk L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Tian, Baijun; Waliser, Duane E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Li, KF (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM kfl@gps.caltech.edu RI Tian, Baijun/A-1141-2007 OI Tian, Baijun/0000-0001-9369-2373 FU National Science Foundation (NSF) [ATM-0840787, ATM-0934303, ATM-0840755]; Jet Propulsion Laboratory [P765982]; National Aeronautics and Space Administration FX We thank Dr. Moustafa T. Chahine, Dr. Edward T. Olsen, and Mr. Luke Chen of the AIRS Science Team for providing information on the quality of AIRS data and comments on this work. We also thank Miss Le Kuai, Mr. Michael R. Line, Mr. Da Yang, Dr. Hartmut H. Aumann, Dr. David Crisp, Prof. Andrew P. Ingersoll, Prof. Xun Jiang, Dr. Brian H. Kahn, Dr. Susan S. Kulawik, Dr. Jack S. Margolis, Dr. Run-Lie Shia, Prof. Ka-Kit Tung, Dr. John R. Worden, and two anonymous reviewers for reviewing the manuscript and providing useful comments. This research was supported in part by National Science Foundation (NSF) Grant ATM-0840787 and Grant ATM-0934303 to the California Institute of Technology and NSF Grant ATM-0840755 to University of California, Los Angeles. Y.L.Y. was supported by Jet Propulsion Laboratory Grant P765982 to the California Institute of Technology. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. AIRS Level 3 daily CO2 products were obtained from AIRS Data Server (http://disc.sci.gsfc.nasa.gov/AIRS/data-holdings/by-data-product/AIRX3C 2D). AIRS Level 3 daily H2O products were obtained from AIRS Data Server (http://disc.sci.gsfc.nasa.gov/AIRS/data-holdings/by-data-product/airsL3 _STD_AIRS_AMSU.shtml). NCEP/NCAR reanalysis data used in this study were provided by the NOAA/Office of Oceanic and Atmospheric Research (OAR)/ESRL Physical Sciences Division (PSD) Data Server (http://www.esrl.noaa.gov/psd/data/reanalysis/). ERA-interim reanalysis data used in this study were obtained from the ECMWF Data Server (http://data.ecmwf.int/data/). The NOAA ESRL CO2 data from the Carbon Cycle Cooperative Global Air Sampling Network, 1968-2008, Version 2009-07-15, were obtained from the NOAA FTP server (ftp://ftp.cmdl.noaa.gov/ccg/co2/flask/event/). CONTRAIL data were obtained from the World Meteorological Organization World Data Centre for Greenhouse Gases (http://gaw.kishou.go.jp/cgi-bin/wdcgg/accessdata.cgi). RMM indices were obtained from http://www.cawcr.gov.au/bmrc/clfor/cfstaff/matw/maproom/RMM/. NR 28 TC 29 Z9 29 U1 0 U2 6 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 9 PY 2010 VL 107 IS 45 BP 19171 EP 19175 DI 10.1073/pnas.1008222107 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 677MZ UT WOS:000283997800011 PM 20978207 ER PT J AU Mlynczak, MG Hunt, LA Kozyra, JU Russell, JM AF Mlynczak, Martin G. Hunt, Linda A. Kozyra, Janet U. Russell, James M., III TI Short-term periodic features observed in the infrared cooling of the thermosphere and in solar and geomagnetic indexes from 2002 to 2009 SO PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE thermosphere; energy balance; solar-terrestrial coupling; infrared cooling ID SABER EXPERIMENT AB We report derivations of short-term periodic features observed in time series of the radiative cooling of the Earth's thermosphere. In particular, we diagnose observations of the infrared emission from nitric oxide (NO) at 5.3 mu m to reveal periodicities equal to the solar rotation period (27 days) and its next three harmonics. From 2002 to 2009 we observe 27 day, 13.5 day, 9 day and (occasionally) 6.75 day periods in the thermospheric NO cooling, the solar wind speed and the K-p geomagnetic index. Periodic features shorter than 27 days are absent in the time series of the 10.7 cm radio flux (F10.7) over this same time period. The periodic features in the NO cooling are found to occur throughout the depth of the thermosphere and are strongest at high latitudes. These results confirm the persistent coupling between the solar corona, the solar wind and the energy budget of the thermosphere. C1 [Mlynczak, Martin G.] NASA, Sci Directorate, Climate Sci Branch, Langley Res Ctr, Hampton, VA 23681 USA. [Hunt, Linda A.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Kozyra, Janet U.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Russell, James M., III] Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23668 USA. RP Mlynczak, MG (reprint author), NASA, Sci Directorate, Climate Sci Branch, Langley Res Ctr, Hampton, VA 23681 USA. EM m.g.mlynczak@nasa.gov RI Mlynczak, Martin/K-3396-2012 NR 12 TC 15 Z9 15 U1 0 U2 4 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-5021 EI 1471-2946 J9 P ROY SOC A-MATH PHY JI Proc. R. Soc. A-Math. Phys. Eng. Sci. PD NOV 8 PY 2010 VL 466 IS 2123 BP 3409 EP 3419 DI 10.1098/rspa.2010.0077 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 654BK UT WOS:000282142900016 ER PT J AU Yu, SS Pearson, JC Drouin, BJ Sung, K Pirali, O Vervloet, M Martin-Drumel, MA Endres, CP Shiraishi, T Kobayashi, K Matsushima, F AF Yu, Shanshan Pearson, John C. Drouin, Brian J. Sung, Keeyoon Pirali, Olivier Vervloet, Michel Martin-Drumel, Marie-Aline Endres, Christian P. Shiraishi, Tetsuro Kobayashi, Kaori Matsushima, Fusakazu TI Submillimeter-wave and far-infrared spectroscopy of high-J transitions of the ground and nu(2)=1 states of ammonia SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MICROWAVE 2-PHOTON SPECTROSCOPY; LASER HETERODYNE MEASUREMENTS; INVERSION-ROTATION SPECTRA; HYPERFINE-STRUCTURE; MU-M; STARK SPECTROSCOPY; ABSORPTION-SPECTRA; VIBRATIONAL SYSTEM; LINE PARAMETERS; SUB-DOPPLER AB Complete and reliable knowledge of the ammonia spectrum is needed to enable the analysis and interpretation of astrophysical and planetary observations. Ammonia has been observed in the interstellar medium up to J = 18 and more highly excited transitions are expected to appear in hot exoplanets and brown dwarfs. As a result, there is considerable interest in observing and assigning the high J (rovibrational) spectrum. In this work, numerous spectroscopic techniques were employed to study its high J transitions in the ground and nu(2) = 1 states. Measurements were carried out using a frequency multiplied submillimeter spectrometer at Jet Propulsion Laboratory (JPL), a tunable far-infrared spectrometer at University of Toyama, and a high-resolution Bruker IFS 125 Fourier transform spectrometer (FTS) at Synchrotron SOLEIL. Highly excited ammonia was created with a radiofrequency discharge and a dc discharge, which allowed assignments of transitions with J up to 35. One hundred and seventy seven ground state and nu(2) = 1 inversion transitions were observed with microwave accuracy in the 0.3-4.7 THz region. Of these, 125 were observed for the first time, including 26 Delta K = 3 transitions. Over 2000 far-infrared transitions were assigned to the ground state and nu(2) = 1 inversion bands as well as the nu(2) fundamental band. Of these, 1912 were assigned using the FTS data for the first time, including 222 Delta K = 3 transitions. The accuracy of these measurements has been estimated to be 0.0003-0.0006 cm(-1). A reduced root mean square error of 0.9 was obtained for a global fit of the ground and nu(2) = 1 states, which includes the lines assigned in this work and all previously available microwave, terahertz, far-infrared, and mid-infrared data. The new measurements and predictions reported here will support the analyses of astronomical observations by high-resolution spectroscopy telescopes such as Herschel, SOFIA, and ALMA. The comprehensive experimental rovibrational energy levels reported here will permit further refinement of the potential energy surface to improve ammonia ab initio calculations and facilitate assignment of new high-resolution spectra of hot ammonia. (C) 2010 American Institute of Physics. [doi:10.1063/1.3499911] C1 [Yu, Shanshan; Pearson, John C.; Drouin, Brian J.; Sung, Keeyoon] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Pirali, Olivier; Vervloet, Michel; Martin-Drumel, Marie-Aline] Orme Merisiers St Aubin, Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France. [Endres, Christian P.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Shiraishi, Tetsuro; Kobayashi, Kaori; Matsushima, Fusakazu] Toyama Univ, Dept Phys, Toyama 9308555, Japan. [Pirali, Olivier; Martin-Drumel, Marie-Aline] Univ Paris 11, CNRS, Inst Sci Mol Orsay, F-91405 Orsay, France. RP Yu, SS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM shanshan.yu@jpl.nasa.gov RI Yu, Shanshan/D-8733-2016; Sung, Keeyoon/I-6533-2015 FU National Aeronautics and Space Administration FX A portion of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. S.Y. would like to thank Dr. H. Pickett and Dr. L. Brown for helpful suggestions and Dr. I. Kleiner for providing an electronic copy of the 2 nu2 and nu4 line list. O.P. is particularly grateful to D. Balcon for technical assistance and thanks the AILES beamline staff for helpful discussions. NR 66 TC 27 Z9 27 U1 0 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 7 PY 2010 VL 133 IS 17 AR 174317 DI 10.1063/1.3499911 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 676RV UT WOS:000283936200044 PM 21054042 ER PT J AU Ray, EA Moore, FL Rosenlof, KH Davis, SM Boenisch, H Morgenstern, O Smale, D Rozanov, E Hegglin, M Pitari, G Mancini, E Braesicke, P Butchart, N Hardiman, S Li, F Shibata, K Plummer, DA AF Ray, Eric A. Moore, Fred L. Rosenlof, Karen H. Davis, Sean M. Boenisch, Harald Morgenstern, Olaf Smale, Dan Rozanov, Eugene Hegglin, Michaela Pitari, Gianni Mancini, Eva Braesicke, Peter Butchart, Neal Hardiman, Steven Li, Feng Shibata, Kiyotaka Plummer, David A. TI Evidence for changes in stratospheric transport and mixing over the past three decades based on multiple data sets and tropical leaky pipe analysis SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID BREWER-DOBSON CIRCULATION; TOTAL OZONE; NORTHERN MIDLATITUDES; 2-DIMENSIONAL MODEL; PINATUBO AEROSOL; GREENHOUSE GASES; AIR; AGE; TEMPERATURE; REANALYSIS AB Variability in the strength of the stratospheric Lagrangian mean meridional or Brewer-Dobson circulation and horizontal mixing into the tropics over the past three decades are examined using observations of stratospheric mean age of air and ozone. We use a simple representation of the stratosphere, the tropical leaky pipe (TLP) model, guided by mean meridional circulation and horizontal mixing changes in several reanalyses data sets and chemistry climate model (CCM) simulations, to help elucidate reasons for the observed changes in stratospheric mean age and ozone. We find that the TLP model is able to accurately simulate multiyear variability in ozone following recent major volcanic eruptions and the early 2000s sea surface temperature changes, as well as the lasting impact on mean age of relatively short-term circulation perturbations. We also find that the best quantitative agreement with the observed mean age and ozone trends over the past three decades is found assuming a small strengthening of the mean circulation in the lower stratosphere, a moderate weakening of the mean circulation in the middle and upper stratosphere, and a moderate increase in the horizontal mixing into the tropics. The mean age trends are strongly sensitive to trends in the horizontal mixing into the tropics, and the uncertainty in the mixing trends causes uncertainty in the mean circulation trends. Comparisons of the mean circulation and mixing changes suggested by the measurements with those from a recent suite of CCM runs reveal significant differences that may have important implications on the accurate simulation of future stratospheric climate. C1 [Ray, Eric A.; Moore, Fred L.; Rosenlof, Karen H.; Davis, Sean M.] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO 80305 USA. [Boenisch, Harald] Goethe Univ Frankfurt, Inst Atmospher & Environm Sci, D-60438 Frankfurt, Germany. [Braesicke, Peter] Univ Cambridge, Natl Ctr Atmospher Sci Climate Chem, Ctr Atmospher Sci, Cambridge CB2 1EW, England. [Butchart, Neal; Hardiman, Steven] Hadley Ctr, Met Off, Exeter EX1 3PB, Devon, England. [Hegglin, Michaela] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Li, Feng] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Pitari, Gianni; Mancini, Eva] Univ Aquila, I-67100 Laquila, Italy. [Plummer, David A.] Environm Canada, Canadian Ctr Climate Modelling & Anal, Gatineau, PQ K1A OH3, Canada. [Rozanov, Eugene] World Radiat Ctr, Phys Meteorol Observ, CH-7260 Davos, Dorf, Switzerland. [Shibata, Kiyotaka] Meteorol Res Inst, Tsukuba, Ibaraki 5020052, Japan. [Morgenstern, Olaf; Smale, Dan] Natl Inst Water & Atmospher Res Ltd, Omakau, New Zealand. [Ray, Eric A.; Moore, Fred L.; Davis, Sean M.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Rozanov, Eugene] Swiss Fed Inst Technol, Zurich, Switzerland. RP Ray, EA (reprint author), NOAA, Div Chem Sci, Earth Syst Res Lab, 325 Broadway, Boulder, CO 80305 USA. EM eric.ray@noaa.gov RI Manager, CSD Publications/B-2789-2015; Rozanov, Eugene/A-9857-2012; Davis, Sean/C-9570-2011; Li, Feng/H-2241-2012; Ray, Eric/D-5941-2013; Rosenlof, Karen/B-5652-2008; Braesicke, Peter/D-8330-2016; Pitari, Giovanni/O-7458-2016; Hegglin, Michaela/D-7528-2017 OI Mancini, Eva/0000-0001-7071-0292; Morgenstern, Olaf/0000-0002-9967-9740; Rozanov, Eugene/0000-0003-0479-4488; Davis, Sean/0000-0001-9276-6158; Ray, Eric/0000-0001-8727-9849; Rosenlof, Karen/0000-0002-0903-8270; Braesicke, Peter/0000-0003-1423-0619; Pitari, Giovanni/0000-0001-7051-9578; Hegglin, Michaela/0000-0003-2820-9044 FU NOAA ACCP; National Science Foundation (NSF); DECC/Defra [GA01101] FX This work was supported by the NOAA ACCP program. We appreciate the public availability of the JRA-25 output (obtained from http://dss.ucar.edu/datasets/ds625.0/) and the NCEP/NCAR Reanalysis (obtained from the NOAA ESRL Physical Sciences Division, http://www.cdc.noaa.gov). The ERA-40 data for this study are from the Research Data Archive (RDA), which is maintained by the Computational and Information Systems Laboratory (CISL) at the National Center for Atmospheric Research (NCAR). NCAR is sponsored by the National Science Foundation (NSF). The original ERA-40 data are available from the RDA (http://dss.ucar.edu) in data set ds117.3. The contributions of Neal Butchart and Steven Hardiman were support by the Joint DECC and Defra Integrated Climate Programme, DECC/Defra (GA01101). We also thank Emily Shuckburgh for providing the code to calculate effective diffusivity. NR 64 TC 38 Z9 38 U1 1 U2 25 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 6 PY 2010 VL 115 AR D21304 DI 10.1029/2010JD014206 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 676VD UT WOS:000283945900003 ER PT J AU Thompson, AM MacFarlane, AM Morris, GA Yorks, JE Miller, SK Taubman, BF Verver, G Vomel, H Avery, MA Hair, JW Diskin, GS Browell, EV Canossa, JV Kucsera, TL Klich, CA Hlavka, DL AF Thompson, Anne M. MacFarlane, Alaina M. Morris, Gary A. Yorks, John E. Miller, Sonya K. Taubman, Brett F. Verver, Ge Voemel, Holger Avery, Melody A. Hair, Johnathan W. Diskin, Glenn S. Browell, Edward V. Valverde Canossa, Jessica Kucsera, Tom L. Klich, Christopher A. Hlavka, Dennis L. TI Convective and wave signatures in ozone profiles over the equatorial Americas: Views from TC4 2007 and SHADOZ SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TROPOSPHERIC OZONE; TROPICAL ATLANTIC; SEASONAL EVOLUTION; INDUCED LAMINAE; WATER-VAPOR; PACIFIC; OZONESONDES; VARIABILITY; HEMISPHERE; CLIMATOLOGY AB During the TC4 (Tropical Composition, Clouds, and Climate Coupling) campaign in July-August 2007, daily ozonesondes were launched over coastal Las Tablas, Panama (7.8 degrees N, 80 degrees W) and several times per week at Alajuela, Costa Rica (10 degrees N, 84 degrees W). Wave activity, detected most prominently in 100-300 m thick ozone laminae in the tropical tropopause layer, occurred in 50% (Las Tablas) and 40% (Alajuela) of the soundings. These layers, associated with vertical displacements and classified as gravity waves (GW, possibly Kelvin waves) by laminar identification, occur with similar structure and frequency over the Paramaribo (5.8 degrees N, 55 degrees W) and San Cristobal (0.92 degrees S, 90 degrees W) Southern Hemisphere Additional Ozonesondes (SHADOZ) sites. GW-labeled laminae in individual soundings correspond to cloud outflow as indicated by DC-8 tracers and other aircraft data, confirming convective initiation of equatorial waves. Layers representing quasi-horizontal displacements, referred to as Rossby waves by the laminar technique, are robust features in soundings from 23 July to 5 August. The features associated with Rossby waves correspond to extratropical influence, possibly stratospheric, and sometimes to pollution transport. Comparison of Las Tablas and Alajuela ozone budgets with 1999-2007 Paramaribo and San Cristobal soundings shows that TC4 is typical of climatology for the equatorial Americas. Overall during TC4, convection and associated waves appear to dominate ozone transport in the tropical tropopause layer; intrusions from the extratropics occur throughout the free troposphere. C1 [Thompson, Anne M.; MacFarlane, Alaina M.; Yorks, John E.; Miller, Sonya K.; Klich, Christopher A.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Morris, Gary A.] Valparaiso Univ, Dept Phys & Astron, Valparaiso, IN 46383 USA. [Taubman, Brett F.] Appalachian State Univ, Dept Chem, Boone, NC 28608 USA. [Verver, Ge] Royal Dutch Meteorol Inst, NL-3730 AE De Bilt, Netherlands. [Voemel, Holger] GRUAN Lead Ctr, Meteorol Observ Lindenberg Richard Assman, Deutsch Wetterdienst, D-15848 Lindenberg, Germany. [Yorks, John E.; Hlavka, Dennis L.] SSAI, Lanham, MD USA. [Avery, Melody A.; Hair, Johnathan W.; Diskin, Glenn S.; Browell, Edward V.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Yorks, John E.; Kucsera, Tom L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Valverde Canossa, Jessica] Univ Nacl, Lab Anal Ambiental, Escuela Ciencias Ambientales, Heredia, Costa Rica. [Kucsera, Tom L.] Univ Maryland, GEST, Baltimore, MD 21201 USA. RP Thompson, AM (reprint author), Penn State Univ, Dept Meteorol, 503 Walker Bldg, University Pk, PA 16802 USA. EM amt16@met.psu.edu RI Thompson, Anne /C-3649-2014 OI Thompson, Anne /0000-0002-7829-0920 FU NASA; Aura Validation; NOAA; SHADOZ at Costa Rica; San Cristobal; KNMI; Suriname Meteorological Department FX We are grateful to NASA's Upper Air Research Program and Aura Validation (M.J. Kurylo and K. W. Jucks) that sponsored the Las Tablas and Alajuela TC4 soundings and ground-based measurements at Las Tablas. These programs, with NOAA support, also sponsor SHADOZ at Costa Rica and San Cristobal. The Paramaribo station is sponsored by KNMI and the Suriname Meteorological Department. Additional analysis support came from NASA's Tropospheric Chemistry Program (J. H. Crawford and J. A. Al-Saadi). Las Tablas measurements with the NATIVE trailer were assisted by A. Pino and L. Jordan (University of Panama), A. M. Bryan and D. Lutz (Valparaiso Univ), and Z. Chen and J. L. Tharp (PSU). Costa Rican launches were made by UNA students K. Cerna, V. H. Beita, and D. Gonzalez. We thank Mission Scientists M. R. Schoeberl and P. A. Newman for flight notes and K. E. Pickering for discussing lightning data. We also thank EAB, BvdW, AOG (PSU) for analysis. NR 55 TC 15 Z9 15 U1 1 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 6 PY 2010 VL 115 AR D00J23 DI 10.1029/2009JD012909 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 676VD UT WOS:000283945900001 ER PT J AU Cermak, J Wild, M Knutti, R Mishchenko, MI Heidinger, AK AF Cermak, Jan Wild, Martin Knutti, Reto Mishchenko, Michael I. Heidinger, Andrew K. TI Consistency of global satellite-derived aerosol and cloud data sets with recent brightening observations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID RETRIEVALS; RADIATION; TRENDS AB Solar radiation at the Earth surface has increased over land and ocean since about 1990 ('global brightening'). An analysis of various global (ocean only) aerosol and (global) cloud data sets from geostationary and polar orbiting satellites is performed to determine whether changes in these quantities have occurred in accordance with 'global brightening', and to analyse the global distribution of these changes. Change-point detection and trend analysis are employed in the analysis. In a period from the mid-1980s to the mid-2000s, aerosol optical depth is found to have started declining in the early 1990s, while cloud data sets do not agree on trends. Angstrom exponent data seem to suggest changes in pollution. Citation: Cermak, J., M. Wild, R. Knutti, M. I. Mishchenko, and A. K. Heidinger (2010), Consistency of global satellite-derived aerosol and cloud data sets with recent brightening observations, Geophys. Res. Lett., 37, L21704, doi: 10.1029/2010GL044632. C1 [Cermak, Jan; Wild, Martin; Knutti, Reto] ETH, Inst Atmospher & Climate Sci, CH-8092 Zurich, Switzerland. [Mishchenko, Michael I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Heidinger, Andrew K.] NOAA, NESDIS Ctr Satellite Applicat & Res, Madison, WI 53706 USA. RP Cermak, J (reprint author), ETH, Inst Atmospher & Climate Sci, Univ Str 16, CH-8092 Zurich, Switzerland. EM jan.cermak@env.ethz.ch RI Wild, Martin/J-8977-2012; Knutti, Reto/B-8763-2008; Cermak, Jan/B-7844-2009; Heidinger, Andrew/F-5591-2010; Mishchenko, Michael/D-4426-2012 OI Knutti, Reto/0000-0001-8303-6700; Cermak, Jan/0000-0002-4240-595X; Heidinger, Andrew/0000-0001-7631-109X; NR 18 TC 31 Z9 31 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 5 PY 2010 VL 37 AR L21704 DI 10.1029/2010GL044632 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 676TT UT WOS:000283942200001 ER PT J AU Austin, J Struthers, H Scinocca, J Plummer, DA Akiyoshi, H Baumgaertner, AJG Bekki, S Bodeker, GE Braesicke, P Bruhl, C Butchart, N Chipperfield, MP Cugnet, D Dameris, M Dhomse, S Frith, S Garny, H Gettelman, A Hardiman, SC Jockel, P Kinnison, D Kubin, A Lamarque, JF Langematz, U Mancini, E Marchand, M Michou, M Morgenstern, O Nakamura, T Nielsen, JE Pitari, G Pyle, J Rozanov, E Shepherd, TG Shibata, K Smale, D Teyssedre, H Yamashita, Y AF Austin, John Struthers, H. Scinocca, J. Plummer, D. A. Akiyoshi, H. Baumgaertner, A. J. G. Bekki, S. Bodeker, G. E. Braesicke, P. Bruehl, C. Butchart, N. Chipperfield, M. P. Cugnet, D. Dameris, M. Dhomse, S. Frith, S. Garny, H. Gettelman, A. Hardiman, S. C. Joeckel, P. Kinnison, D. Kubin, A. Lamarque, J. F. Langematz, U. Mancini, E. Marchand, M. Michou, M. Morgenstern, O. Nakamura, T. Nielsen, J. E. Pitari, G. Pyle, J. Rozanov, E. Shepherd, T. G. Shibata, K. Smale, D. Teyssedre, H. Yamashita, Y. TI Chemistry-climate model simulations of spring Antarctic ozone SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MIDDLE ATMOSPHERE; STRATOSPHERIC CHEMISTRY; POLAR STRATOSPHERE; TECHNICAL NOTE; DEPLETION; TRANSPORT; TRENDS; IMPACT; SENSITIVITY; SURFACE AB Coupled chemistry-climate model simulations covering the recent past and continuing throughout the 21st century have been completed with a range of different models. Common forcings are used for the halogen amounts and greenhouse gas concentrations, as expected under the Montreal Protocol (with amendments) and Intergovernmental Panel on Climate Change A1b Scenario. The simulations of the Antarctic ozone hole are compared using commonly used diagnostics: the minimum ozone, the maximum area of ozone below 220 DU, and the ozone mass deficit below 220 DU. Despite the fact that the processes responsible for ozone depletion are reasonably well understood, a wide range of results is obtained. Comparisons with observations indicate that one of the reasons for the model underprediction in ozone hole area is the tendency for models to underpredict, by up to 35%, the area of low temperatures responsible for polar stratospheric cloud formation. Models also typically have species gradients that are too weak at the edge of the polar vortex, suggesting that there is too much mixing of air across the vortex edge. Other models show a high bias in total column ozone which restricts the size of the ozone hole (defined by a 220 DU threshold). The results of those models which agree best with observations are examined in more detail. For several models the ozone hole does not disappear this century but a small ozone hole of up to three million square kilometers continues to occur in most springs even after 2070. C1 [Austin, John] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA. [Austin, John] Univ Corp Atmospher Res, Boulder, CO USA. [Struthers, H.] Univ Stockholm, Dept Appl Environm Sci, SE-10691 Stockholm, Sweden. [Scinocca, J.] Univ Victoria, CCCMA, Victoria, BC V8W 3V6, Canada. [Plummer, D. A.] Environm Canada, Sci & Technol Branch, Toronto, ON M3H 5T4, Canada. [Akiyoshi, H.; Nakamura, T.; Yamashita, Y.] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Baumgaertner, A. J. G.; Bruehl, C.; Joeckel, P.] Max Planck Inst Chem, D-55020 Mainz, Germany. [Bekki, S.; Cugnet, D.; Marchand, M.] INSU, CNRS, UPMC, LATMOS,IPSL,UVSQ, F-75231 Paris, France. [Bodeker, G. E.] Bodeker Sci, Alexandra, New Zealand. [Braesicke, P.; Pyle, J.] Univ Cambridge, Dept Chem, Ctr Atmospher Sci, NCAS Climate Chem, Cambridge CB2 1EW, England. [Butchart, N.; Hardiman, S. C.] Hadley Ctr, Met Off, Exeter EX1 3PB, Devon, England. [Chipperfield, M. P.; Dhomse, S.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. [Dameris, M.; Garny, H.] Inst Phys Atmosphare, Deutsch Zentrum Luft & Raumfahrt, D-82234 Wessling, Germany. [Frith, S.; Nielsen, J. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Frith, S.; Nielsen, J. E.] Sci Syst & Applicat Inc, Beltsville, MD USA. [Gettelman, A.; Kinnison, D.; Lamarque, J. F.] NCAR, Boulder, CO 80305 USA. [Kubin, A.; Langematz, U.] Freie Univ, Inst Meteorol, D-12165 Berlin, Germany. [Mancini, E.; Pitari, G.] Univ Aquila, Dipartimento Fis, I-67100 Laquila, Italy. [Michou, M.; Teyssedre, H.] Meteo France, CNRM, GAME, F-31057 Toulouse, France. [Morgenstern, O.; Smale, D.] Natl Inst Water & Atmospher Res, Lauder 9352, Omakau, New Zealand. [Rozanov, E.] World Radiat Ctr, Phys Meteorol Observ, CH-7260 Davos, Switzerland. [Rozanov, E.] ETH, Zurich, Switzerland. [Shepherd, T. G.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Shibata, K.] Japan Meteorol Agcy, Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan. RP Austin, J (reprint author), NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA. EM john.austin@noaa.gov RI Jockel, Patrick/C-3687-2009; Dhomse, Sandip/C-8198-2011; Rozanov, Eugene/A-9857-2012; Baumgaertner, Andreas/C-4830-2011; Chipperfield, Martyn/H-6359-2013; Lamarque, Jean-Francois/L-2313-2014; bekki, slimane/J-7221-2015; Nakamura, Tetsu/M-7914-2015; Braesicke, Peter/D-8330-2016; Pitari, Giovanni/O-7458-2016; OI Morgenstern, Olaf/0000-0002-9967-9740; Jockel, Patrick/0000-0002-8964-1394; Dhomse, Sandip/0000-0003-3854-5383; Rozanov, Eugene/0000-0003-0479-4488; Baumgaertner, Andreas/0000-0002-4740-0701; Chipperfield, Martyn/0000-0002-6803-4149; Lamarque, Jean-Francois/0000-0002-4225-5074; bekki, slimane/0000-0002-5538-0800; Nakamura, Tetsu/0000-0002-2056-7392; Braesicke, Peter/0000-0003-1423-0619; Pitari, Giovanni/0000-0001-7051-9578; Mancini, Eva/0000-0001-7071-0292 FU Ministry of the Environment of Japan [A-071]; CFCAS through the C-SPARC; New Zealand Foundation for Research, Science and Technology [C01X070]; NERC; DECC/Defra [GA01101]; European Commission FX CCSRNIES research was supported by the Global Environmental Research Fund of the Ministry of the Environment of Japan (A-071). The MRI and CCSRNIES simulations were completed with the supercomputer at the National Institute for Environmental Studies, Japan. CMAM simulations were supported by CFCAS through the C-SPARC project. The computer time for the EMAC-FUB simulation at ECMWF was provided by the German Weather Service. The Niwa-SOCOL and UMETRAC simulations were supported by the New Zealand Foundation for Research, Science and Technology under contract C01X070. The UMSLIMCAT work was supported by NERC. The contribution of the Met Office Hadley Centre was supported by the Joint DECC and Defra Integrated Climate Programme, DECC/Defra (GA01101). The scientific work of the European CCM groups was supported by the European Commission through the project SCOUT-O3 under the 6th Framework Programme. J.A.'s research was administered by the University Corporation for Atmospheric Research at the NOAA Geophysical Fluid Dynamics Laboratory. John Wilson and Rolando Garcia provided useful comments on the paper. We acknowledge the Chemistry-Climate Model Validation (CCMVal) Activity for WCRP's (World Climate Research Programme) SPARC (Stratospheric Processes and their Role in Climate) project for organizing and coordinating the model data analysis activity and the British Atmospheric Data Center (BADC) for collecting and archiving the CCMVal model output. NR 55 TC 27 Z9 28 U1 0 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 5 PY 2010 VL 115 AR D00M11 DI 10.1029/2009JD013577 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 676VA UT WOS:000283945500005 ER PT J AU Veselovskii, I Dubovik, O Kolgotin, A Lapyonok, T Di Girolamo, P Summa, D Whiteman, DN Mishchenko, M Tanre, D AF Veselovskii, I. Dubovik, O. Kolgotin, A. Lapyonok, T. Di Girolamo, P. Summa, D. Whiteman, D. N. Mishchenko, M. Tanre, D. TI Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID AEROSOL OPTICAL-PROPERTIES; SPECTRAL-RESOLUTION LIDAR; SKY RADIANCE MEASUREMENTS; TO-BACKSCATTER RATIO; SAHARAN DUST; RAMAN LIDAR; LIGHT-SCATTERING; RADIATIVE PROPERTIES; SOUTHERN MOROCCO; RELATIVE-HUMIDITY AB Multiwavelength (MW) Raman lidars have demonstrated their potential to profile particle parameters; however, until now, the physical models used in retrieval algorithms for processing MW lidar data have been predominantly based on the Mie theory. This approach is applicable to the modeling of light scattering by spherically symmetric particles only and does not adequately reproduce the scattering by generally nonspherical desert dust particles. Here we present an algorithm based on a model of randomly oriented spheroids for the inversion of multiwavelength lidar data. The aerosols are modeled as a mixture of two aerosol components: one composed only of spherical and the second composed of nonspherical particles. The nonspherical component is an ensemble of randomly oriented spheroids with size-independent shape distribution. This approach has been integrated into an algorithm retrieving aerosol properties from the observations with a Raman lidar based on a tripled Nd:YAG laser. Such a lidar provides three backscattering coefficients, two extinction coefficients, and the particle depolarization ratio at a single or multiple wavelengths. Simulations were performed for a bimodal particle size distribution typical of desert dust particles. The uncertainty of the retrieved particle surface, volume concentration, and effective radius for 10% measurement errors is estimated to be below 30%. We show that if the effect of particle nonsphericity is not accounted for, the errors in the retrieved aerosol parameters increase notably. The algorithm was tested with experimental data from a Saharan dust outbreak episode, measured with the BASIL multiwavelength Raman lidar in August 2007. The vertical profiles of particle parameters as well as the particle size distributions at different heights were retrieved. It was shown that the algorithm developed provided substantially reasonable results consistent with the available independent information about the observed aerosol event. C1 [Veselovskii, I.; Kolgotin, A.] Phys Instrumentat Ctr, Troitsk 142190, Moscow Region, Russia. [Dubovik, O.; Lapyonok, T.; Tanre, D.] Univ Lille 1, CNRS, Opt Atmospher Lab, F-59655 Villeneuve Dascq, France. [Di Girolamo, P.; Summa, D.] Univ Basilicata, DIFA, I-85100 Potenza, Italy. [Whiteman, D. N.] NASA, Goddard Space Flight Ctr, Mesoscale Atmospher Proc Branch, Greenbelt, MD 20771 USA. [Mishchenko, M.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Veselovskii, I (reprint author), Phys Instrumentat Ctr, Troitsk 142190, Moscow Region, Russia. EM igorv@pic.troitsk.ru; dubovik@loa.univ-lille1.fr; digirolamo@unibas.it; david.n.whiteman@nasa.gov RI Dubovik, Oleg/A-8235-2009; Mishchenko, Michael/D-4426-2012 OI Dubovik, Oleg/0000-0003-3482-6460; NR 65 TC 42 Z9 44 U1 0 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 5 PY 2010 VL 115 AR D21203 DI 10.1029/2010JD014139 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 676VA UT WOS:000283945500007 ER PT J AU Wang, X Horanyi, M Robertson, S AF Wang, X. Horanyi, M. Robertson, S. TI Investigation of dust transport on the lunar surface in a laboratory plasma with an electron beam SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article AB [1] There is much evidence indicating dust levitation and transport on or near the lunar surface. Dust mobilization is likely to be caused by electrostatic forces on charged lunar dust particles. We describe a series of experiments in which a small dust patch is placed on an electrically floating graphite surface in plasma. The effects of an electron beam on electric fields above/across the dust surface are studied for understanding the mechanism leading to dust transport. When the electron beam current is comparable to the Bohm ion current and the beam energy is sufficiently large, there is a large potential difference between the dust surface and the graphite surface, which creates a horizontal electric field that leads to dust mobilization. The vertical electric field in the sheath above the dust surface also increases at about an order of magnitude, significantly increasing the dust release rate. Differing secondary electron yields of the graphite surface and the dust patch play an important role in the enhancement of the electric fields. Imaging of JSC-Mars-1 dust placed on the graphite surface shows spreading of the dust and deposition on the top of an adjacent insulating block, indicating both horizontal and vertical dust transport. C1 [Wang, X.; Horanyi, M.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Horanyi, M.; Robertson, S.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Wang, X.; Horanyi, M.; Robertson, S.] NASA, Lunar Sci Inst, Colorado Ctr Lunar Dust & Atmospher Studies, Boulder, CO USA. RP Wang, X (reprint author), Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. EM xu.wang@colorado.edu OI Horanyi, Mihaly/0000-0002-5920-9226 FU NASA [NNX08AY77G]; NASA Lunar Science Institute's Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) FX This work was supported by NASA's LASER program (NNX08AY77G) and NASA Lunar Science Institute's Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS). NR 17 TC 17 Z9 18 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 5 PY 2010 VL 115 AR A11102 DI 10.1029/2010JA015465 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 676WV UT WOS:000283950300004 ER PT J AU Abadie, J Abbott, BP Abbott, R Abernathy, M Accadia, T Acernese, F Adams, C Adhikari, R Ajith, P Allen, B Allen, G Ceron, EA Amin, RS Anderson, SB Anderson, WG Antonucci, F Arain, MA Araya, M Aronsson, M Arun, KG Aso, Y Aston, S Astone, P Atkinson, DE Aufmuth, P Aulbert, C Babak, S Baker, P Ballardin, G Ballinger, T Ballmer, S Barker, D Barnum, S Barone, F Barr, B Barriga, P Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Bauchrowitz, J Bauer, TS Behnke, B Beker, MG Belletoile, A Benacquista, M Bertolini, A Betzwieser, J Beveridge, N Beyersdorf, PT Bigotta, S Bilenko, IA Billingsley, G Birch, J Birindelli, S Biswas, R Bitossi, M Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Blom, M Boccara, C Bock, O Bodiya, TP Bondarescu, R Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Bose, S Bosi, L Bouhou, B Boyle, M Braccini, S Bradaschia, C Brady, PR Braginsky, VB Brau, JE Breyer, J Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Budzynski, R Bulik, T Bulten, HJ Buonanno, A Burguet-Castell, J Burmeister, O Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cain, J Calloni, E Camp, JB Campagna, E Campsie, P Cannizzo, J Cannon, KC Canuel, B Cao, J Capano, C Carbognani, F Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chalermsongsak, T Chalkley, E Charlton, P Chassande-Mottin, E Chelkowski, S Chen, Y Chincarini, A Christensen, N Chua, SSY Chung, CTY Clark, D Clark, J Clayton, JH Cleva, F Coccia, E Colacino, CN Colas, J Colla, A Colombini, M Conte, R Cook, D Corbitt, TR Cornish, N Corsi, A Costa, CA Coulon, JP Coward, D Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Culter, RM Cumming, A Cunningham, L Cuoco, E Dahl, K Danilishin, SL Dannenberg, R D'Antonio, S Danzmann, K Das, K Dattilo, V Daudert, B Davier, M Davies, G Davis, A Daw, EJ Day, R Dayanga, T De Rosa, R DeBra, D Degallaix, J del Prete, M Dergachev, V DeRosa, R DeSalvo, R Devanka, P Dhurandhar, S Di Fiore, L Di Lieto, A Di Palma, I Emilio, MD Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Doomes, EE Dorsher, S Douglas, ESD Drago, M Drever, RWP Driggers, JC Dueck, J Dumas, JC Eberle, T Edgar, M Edwards, M Effler, A Ehrens, P Ely, G Engel, R Etzel, T Evans, M Evans, T Fafone, V Fairhurst, S Fan, Y Farr, BF Fazi, D Fehrmann, H Feldbaum, D Ferrante, I Fidecaro, F Finn, LS Fiori, I Flaminio, R Flanigan, M Flasch, K Foley, S Forrest, C Forsi, E Fotopoulos, N Fournier, JD Franc, J Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fulda, P Fyffe, M Galimberti, M Gammaitoni, L Garofoli, JA Garufi, F Gemme, G Genin, E Gennai, A Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Gill, C Goetz, E Goggin, LM Gonzalez, G Goler, S Gouaty, R Graef, C Granata, M Grant, A Gras, S Gray, C Greenhalgh, RJS Gretarsson, AM Greverie, C Grosso, R Grote, H Grunewald, S Guidi, GM Gustafson, EK Gustafson, R Hage, B Hall, P Hallam, JM Hammer, D Hammond, G Hanks, J Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Haughian, K Hayama, K Hayau, JF Hayler, T Heefner, J Heitmann, H Hello, P Heng, IS Heptonstall, A Hewitson, M Hild, S Hirose, E Hoak, D Hodge, KA Holt, K Hosken, DJ Hough, J Howell, E Hoyland, D Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Ingram, DR Inta, R Isogai, T Ivanov, A Jaranowski, P Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kanner, J Katsavounidis, E Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Khalaidovski, A Khalili, FY Khazanov, EA Kim, H King, PJ Kinzel, DL Kissel, JS Klimenko, S Kondrashov, V Kopparapu, R Koranda, S Kowalska, I Kozak, D Krause, T Kringel, V Krishnamurthy, S Krishnan, B Krolak, A Kuehn, G Kullman, J Kumar, R Kwee, P Landry, M Lang, M Lantz, B Lastzka, N Lazzarini, A Leaci, P Leong, J Leonor, I Leroy, N Letendre, N Li, J Li, TGF Lin, H Lindquist, PE Lockerbie, NA Lodhia, D Lorenzini, M Loriette, V Lormand, M Losurdo, G Lu, P Luan, J Lubinski, M Lucianetti, A Luck, H Lundgren, A Machenschalk, B MacInnis, M Mageswaran, M Mailand, K Majorana, E Mak, C Maksimovic, I Man, N Mandel, I Mandic, V Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McIntyre, G McIvor, G McKechan, DJA Meadors, G Mehmet, M Meier, T Melatos, A Melissinos, AC Mendell, G Menendez, DF Mercer, RA Merill, L Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mino, Y Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moe, B Mohan, M Mohanty, SD Mohapatra, SRP Moraru, D Moreau, J Moreno, G Morgado, N Morgia, A Mors, K Mosca, S Moscatelli, V Mossavi, K Mours, B MowLowry, C Mueller, G Mukherjee, S Mullavey, A Ller-Ebhardt, HM Munch, J Murray, PG Nash, T Nawrodt, R Nelson, J Neri, I Newton, G Nishida, E Nishizawa, A Nocera, F Nolting, D Ochsner, E O'Dell, J Ogin, GH Oldenburg, RG O'Reilly, B O'Shaughnessy, R Osthelder, C Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pagliaroli, G Palladino, L Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Pardi, S Pareja, M Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pathak, D Pedraza, M Pekowsky, L Penn, S Peralta, C Perreca, A Persichetti, G Pichot, M Pickenpack, M Piergiovanni, F Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Postiglione, F Prato, M Predoi, V Price, LR Prijatelj, M Principe, M Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Quetschke, V Raab, FJ Rabeling, DS Radke, T Radkins, H Raffai, P Rakhmanov, M Rankins, B Rapagnani, P Raymond, V Re, V Reed, CM Reed, T Regimbau, T Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Roberts, P Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rover, C Rolland, L Rollins, J Romano, JD Romano, R Romie, JH Rosinska, D Rowan, S Rudiger, A Ruggi, P Ryan, K Sakata, S Sakosky, M Salemi, F Sammut, L de la Jordana, LS Sandberg, V Sannibale, V Santamaria, L Santostasi, G Saraf, S Sassolas, B Sathyaprakash, BS Sato, S Satterthwaite, M Saulson, PR Savage, R Schilling, R Schnabel, R Schofield, R Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Seifert, F Sellers, D Sengupta, AS Sentenac, D Sergeev, A Shaddock, D Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Singer, A Sintes, AM Skelton, G Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Somiya, K Sorazu, B Speirits, FC Sperandio, L Stein, AJ Stein, LC Steinlechner, S Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, A Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thomas, P Thorne, KA Thorne, KS Thrane, E Ring, A Titsler, C Tokmakov, KV Toncelli, A Tonelli, M Torre, O Torres, C Torrie, CI Tournefier, E Travasso, F Traylor, G Trias, M Trummer, J Tseng, K Turner, L Ugolini, D Urbanek, K Vahlbruch, H Vaishnav, B Vajente, G Vallisneri, M van den Brand, JFJ Van Den Broeck, C van der Putten, S van der Sluys, MV van Veggel, AA Vass, S Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G Veitch, J Veitch, PJ Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, A Vinet, JY Vocca, H Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Wanner, A Ward, RL Was, M Wei, P Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wessels, P West, M Westphal, T Wette, K Whelan, JT Whitcomb, SE White, DJ Whiting, BF Wilkinson, C Willems, PA Williams, L Willke, B Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Yakushin, I Yamamoto, H Yamamoto, K Yeaton-Massey, D Yoshida, S Yu, PP Yvert, M Zanolin, M Zhang, L Zhang, Z Zhao, C Zotov, N Zucker, ME Zweizig, J AF Abadie, J. Abbott, B. P. Abbott, R. Abernathy, M. Accadia, T. Acernese, F. Adams, C. Adhikari, R. Ajith, P. Allen, B. Allen, G. Ceron, E. Amador Amin, R. S. Anderson, S. B. Anderson, W. G. Antonucci, F. Arain, M. A. Araya, M. Aronsson, M. Arun, K. G. Aso, Y. Aston, S. Astone, P. Atkinson, D. E. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. Ballardin, G. Ballinger, T. Ballmer, S. Barker, D. Barnum, S. Barone, F. Barr, B. Barriga, P. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Bauchrowitz, J. Bauer, Th. S. Behnke, B. Beker, M. G. Belletoile, A. Benacquista, M. Bertolini, A. Betzwieser, J. Beveridge, N. Beyersdorf, P. T. Bigotta, S. Bilenko, I. A. Billingsley, G. Birch, J. Birindelli, S. Biswas, R. Bitossi, M. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Blom, M. Boccara, C. Bock, O. Bodiya, T. P. Bondarescu, R. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Bose, S. Bosi, L. Bouhou, B. Boyle, M. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Brau, J. E. Breyer, J. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Budzynski, R. Bulik, T. Bulten, H. J. Buonanno, A. Burguet-Castell, J. Burmeister, O. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cain, J. Calloni, E. Camp, J. B. Campagna, E. Campsie, P. Cannizzo, J. Cannon, K. C. Canuel, B. Cao, J. Capano, C. Carbognani, F. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chalermsongsak, T. Chalkley, E. Charlton, P. Chassande-Mottin, E. Chelkowski, S. Chen, Y. Chincarini, A. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Clark, D. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, R. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Costa, C. A. Coulon, J. -P. Coward, D. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Culter, R. M. Cumming, A. Cunningham, L. Cuoco, E. Dahl, K. Danilishin, S. L. Dannenberg, R. D'Antonio, S. Danzmann, K. Das, K. Dattilo, V. Daudert, B. Davier, M. Davies, G. Davis, A. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. DeBra, D. Degallaix, J. del Prete, M. Dergachev, V. DeRosa, R. DeSalvo, R. Devanka, P. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Di Palma, I. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Doomes, E. E. Dorsher, S. Douglas, E. S. D. Drago, M. Drever, R. W. P. Driggers, J. C. Dueck, J. Dumas, J. -C. Eberle, T. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Ely, G. Engel, R. Etzel, T. Evans, M. Evans, T. Fafone, V. Fairhurst, S. Fan, Y. Farr, B. F. Fazi, D. Fehrmann, H. Feldbaum, D. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Flaminio, R. Flanigan, M. Flasch, K. Foley, S. Forrest, C. Forsi, E. Fotopoulos, N. Fournier, J. -D. Franc, J. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Galimberti, M. Gammaitoni, L. Garofoli, J. A. Garufi, F. Gemme, G. Genin, E. Gennai, A. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Gill, C. Goetz, E. Goggin, L. M. Gonzalez, G. Goler, S. Gouaty, R. Graef, C. Granata, M. Grant, A. Gras, S. Gray, C. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grosso, R. Grote, H. Grunewald, S. Guidi, G. M. Gustafson, E. K. Gustafson, R. Hage, B. Hall, P. Hallam, J. M. Hammer, D. Hammond, G. Hanks, J. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Haughian, K. Hayama, K. Hayau, J. -F. Hayler, T. Heefner, J. Heitmann, H. Hello, P. Heng, I. S. Heptonstall, A. Hewitson, M. Hild, S. Hirose, E. Hoak, D. Hodge, K. A. Holt, K. Hosken, D. J. Hough, J. Howell, E. Hoyland, D. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Ingram, D. R. Inta, R. Isogai, T. Ivanov, A. Jaranowski, P. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kanner, J. Katsavounidis, E. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, H. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kondrashov, V. Kopparapu, R. Koranda, S. Kowalska, I. Kozak, D. Krause, T. Kringel, V. Krishnamurthy, S. Krishnan, B. Krolak, A. Kuehn, G. Kullman, J. Kumar, R. Kwee, P. Landry, M. Lang, M. Lantz, B. Lastzka, N. Lazzarini, A. Leaci, P. Leong, J. Leonor, I. Leroy, N. Letendre, N. Li, J. Li, T. G. F. Lin, H. Lindquist, P. E. Lockerbie, N. A. Lodhia, D. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lu, P. Luan, J. Lubinski, M. Lucianetti, A. Lueck, H. Lundgren, A. Machenschalk, B. MacInnis, M. Mageswaran, M. Mailand, K. Majorana, E. Mak, C. Maksimovic, I. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McIvor, G. McKechan, D. J. A. Meadors, G. Mehmet, M. Meier, T. Melatos, A. Melissinos, A. C. Mendell, G. Menendez, D. F. Mercer, R. A. Merill, L. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mino, Y. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moe, B. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moraru, D. Moreau, J. Moreno, G. Morgado, N. Morgia, A. Mors, K. Mosca, S. Moscatelli, V. Mossavi, K. Mours, B. MowLowry, C. Mueller, G. Mukherjee, S. Mullavey, A. Ller-Ebhardt, H. Mu Munch, J. Murray, P. G. Nash, T. Nawrodt, R. Nelson, J. Neri, I. Newton, G. Nishida, E. Nishizawa, A. Nocera, F. Nolting, D. Ochsner, E. O'Dell, J. Ogin, G. H. Oldenburg, R. G. O'Reilly, B. O'Shaughnessy, R. Osthelder, C. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pagliaroli, G. Palladino, L. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Pardi, S. Pareja, M. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pathak, D. Pedraza, M. Pekowsky, L. Penn, S. Peralta, C. Perreca, A. Persichetti, G. Pichot, M. Pickenpack, M. Piergiovanni, F. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Postiglione, F. Prato, M. Predoi, V. Price, L. R. Prijatelj, M. Principe, M. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Raab, F. J. Rabeling, D. S. Radke, T. Radkins, H. Raffai, P. Rakhmanov, M. Rankins, B. Rapagnani, P. Raymond, V. Re, V. Reed, C. M. Reed, T. Regimbau, T. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Roberts, P. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Roever, C. Rolland, L. Rollins, J. Romano, J. D. Romano, R. Romie, J. H. Rosinska, D. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sakata, S. Sakosky, M. Salemi, F. Sammut, L. de la Jordana, L. Sancho Sandberg, V. Sannibale, V. Santamaria, L. Santostasi, G. Saraf, S. Sassolas, B. Sathyaprakash, B. S. Sato, S. Satterthwaite, M. Saulson, P. R. Savage, R. Schilling, R. Schnabel, R. Schofield, R. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Seifert, F. Sellers, D. Sengupta, A. S. Sentenac, D. Sergeev, A. Shaddock, D. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Singer, A. Sintes, A. M. Skelton, G. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Somiya, K. Sorazu, B. Speirits, F. C. Sperandio, L. Stein, A. J. Stein, L. C. Steinlechner, S. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Ring, A. Titsler, C. Tokmakov, K. V. Toncelli, A. Tonelli, M. Torre, O. Torres, C. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Trias, M. Trummer, J. Tseng, K. Turner, L. Ugolini, D. Urbanek, K. Vahlbruch, H. Vaishnav, B. Vajente, G. Vallisneri, M. van den Brand, J. F. J. Van Den Broeck, C. van der Putten, S. van der Sluys, M. V. van Veggel, A. A. Vass, S. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. Vinet, J. -Y. Vocca, H. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Wanner, A. Ward, R. L. Was, M. Wei, P. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. J. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, L. Willke, B. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yeaton-Massey, D. Yoshida, S. Yu, P. P. Yvert, M. Zanolin, M. Zhang, L. Zhang, Z. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 SO PHYSICAL REVIEW D LA English DT Article ID CATALOG; FORMS AB We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatory's S5 and Virgo's VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M(circle dot). No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8: 7 X 10(-3) yr(-1) L-10(-1), 2.2 X 10(-3) yr(-1) L-10(-1), and 4.4 X 10(-4) yr(-1) L-10(-1), respectively, where L-10 is 10(10) times the blue solar luminosity. These upper limits are compared with astrophysical expectations. C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Araya, M.; Aronsson, M.; Aso, Y.; Ballmer, S.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cannon, K. C.; Cepeda, C.; Chalermsongsak, T.; Coyne, D. C.; Dannenberg, R.; Daudert, B.; DeSalvo, R.; Dueck, J.; Ehrens, P.; Engel, R.; Etzel, T.; Gustafson, E. K.; Hage, B.; Hanna, C.; Heefner, J.; Heptonstall, A.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Kozak, D.; Lazzarini, A.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Mak, C.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Minenkov, Y.; Mohapatra, S. R. P.; Nocera, F.; Osthelder, C.; Patel, P.; Pedraza, M.; Robertson, N. A.; Ryan, K.; Sannibale, V.; Searle, A. C.; Seifert, F.; Sengupta, A. S.; Singer, A.; Smith, M. R.; Stochino, A.; Taylor, R.; Tournefier, E.; Turner, L.; Vass, S.; Villar, A.; Wallace, L.; Ward, R. L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Babak, S.; Behnke, B.; Grunewald, S.; Krishnan, B.; Papa, M. A.; Peralta, C.; Radke, T.; Robinson, E. L.; Sakata, S.; Santamaria, L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Burmeister, O.; Dahl, K.; Danzmann, K.; Degallaix, J.; Dergachev, V.; Di Palma, I.; Dumas, J. -C.; Edgar, M.; Fehrmann, H.; Frede, M.; Friedrich, D.; Giampanis, S.; Goler, S.; Graef, C.; Grote, H.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kullman, J.; Lastzka, N.; Leaci, P.; Leong, J.; Lueck, H.; Machenschalk, B.; Mehmet, M.; Messenger, C.; Mino, Y.; Mukherjee, S.; Munch, J.; Newton, G.; Pareja, M.; Pickenpack, M.; Pletsch, H. J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Rolland, L.; Rosinska, D.; Schilling, R.; Schnabel, R.; Schulz, B.; Steinlechner, S.; Taylor, J. R.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Barsuglia, M.; Bouhou, B.; Buy, C.; Chassande-Mottin, E.; Granata, M.] Univ Denis Diderot Paris 7, Observ Paris, CEA, CNRS,UMR7164,IN2P3,DSM,IRFU, Paris, France. [Chua, S. S. Y.; Inta, R.; McClelland, D. E.; Nash, T.; Neri, I.; Satterthwaite, M.; Scott, S. M.; Shaddock, D.; Slagmolen, B. J. J.; Wette, K.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Boyle, M.; Chen, Y.; Luan, J.; Mohanty, S. D.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Wen, L.] Caltech CaRT, Pasadena, CA 91125 USA. [Clark, J.; Davies, G.; Devanka, P.; Fairhurst, S.; Hall, P.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Pathak, D.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Van Den Broeck, C.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Ballinger, T.; Christensen, N.; Ely, G.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Bartos, I.; Marka, S.; Marka, Z.; Matone, L.] Columbia Univ, New York, NY 10027 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Huet, D.; Marque, J.; Morgia, A.; O'Shaughnessy, R.; Paoletti, F.; Pasqualetti, A.; Rollins, J.; Sentenac, D.; Swinkels, B.] European Gravitat Observ, I-56021 Cascina, PI, Italy. [Davis, A.; Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Frei, Z.; Raffai, P.] Eotvos Lorand Univ, H-1053 Budapest, Hungary. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Cagnoli, G.; Campagna, E.; Cesarini, E.; Guidi, G. M.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Campagna, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Mittleman, R.; Mullavey, A.; Pardi, S.; Parisi, M.; Persichetti, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Acernese, F.; Barone, F.; Calloni, E.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Mittleman, R.; Mullavey, A.; Pardi, S.; Parisi, M.; Persichetti, G.] Univ Naples Federico II, I-80126 Naples, Italy. [Acernese, F.; Barone, F.] Univ Salerno, I-84084 Salerno, Italy. [Gammaitoni, L.; O'Dell, J.; Traylor, G.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [O'Dell, J.] Univ Perugia, I-06123 Perugia, Italy. [Bigotta, S.; Bitossi, M.; Bonelli, L.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; del Prete, M.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Tonelli, M.; Torre, O.; Torres, C.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Bigotta, S.; Bitossi, M.; Bonelli, L.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; del Prete, M.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Tonelli, M.; Torre, O.; Torres, C.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Mantovani, M.] Univ Siena, I-53100 Siena, Italy. [Antonucci, F.; Astone, P.; Colla, A.; Colombini, M.; Corsi, A.; Frasca, S.; Majorana, E.; Ller-Ebhardt, H. Mu; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Antonucci, F.; Astone, P.; Colla, A.; Colombini, M.; Corsi, A.; Frasca, S.; Majorana, E.; Ller-Ebhardt, H. Mu; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Coccia, E.; D'Antonio, S.; DeRosa, R.; Emilio, M. Di Paolo; Fafone, V.; Mohan, M.; Mueller, G.; Pagliaroli, G.; Palladino, L.; Rocchi, A.; Sperandio, L.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Coccia, E.; D'Antonio, S.; DeRosa, R.; Emilio, M. Di Paolo; Fafone, V.; Mohan, M.; Mueller, G.; Pagliaroli, G.; Palladino, L.; Rocchi, A.; Sperandio, L.] Ist Nazl Fis Nucl, Sez Roma, I-00133 Rome, Italy. [DeRosa, R.; Emilio, M. Di Paolo] Univ Aquila, I-67100 Laquila, Italy. [Khazanov, E. A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Dhurandhar, S.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Arun, K. G.; Bizouard, M. A.; Boccara, C.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Loriette, V.; Maksimovic, I.; Mossavi, K.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, LAL, IN2P3, CNRS, F-91898 Orsay, France. [Arun, K. G.; Maksimovic, I.; Mossavi, K.] CNRS, ESPCI, F-75005 Paris, France. [Accadia, T.; Belletoile, A.; Buskulic, D.; Donovan, F.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Murray, P. G.; Travasso, F.; Tseng, K.; Verkindt, D.; Yvert, M.] Univ Savoie, Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Aufmuth, P.; Danzmann, K.; Hage, B.; Kwee, P.; Lueck, H.; Meier, T.; Titsler, C.; Vahlbruch, H.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Atkinson, D. E.; Barker, D.; Barton, M. A.; Bland, B.; Cook, D.; Drago, M.; Flanigan, M.; Gray, C.; Hanks, J.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moscatelli, V.; Mours, B.; Raab, F. J.; Radkins, H.; Reed, C. M.; Romano, J. D.; Romie, J. H.; Ruggi, P.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Adams, C.; Birch, J.; Bridges, D. O.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Holt, K.; Huynh-Dinh, T.; Kinzel, D. L.; Lormand, M.; Meyer, M. S.; Mitra, S.; Overmier, H.; Riesen, R.; Roddy, S.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torrie, C. I.; Trias, M.; Wooley, R.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Corbitt, T. R.; Dooley, K. L.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Moreno, G.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Stein, A. J.; Stein, L. C.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Bonnand, R.; Flaminio, R.; Franc, J.; Galimberti, M.; Michel, C.; Mitselmakher, G.; MowLowry, C.; Pinard, L.; Sassolas, B.] CNRS, IN2P3, LMA, F-69622 Villeurbanne, France. [Amin, R. S.; Caudill, S.; Costa, C. A.; Effler, A.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Kissel, J. S.; Slutsky, J.; Sung, M.; Wen, S.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Sakosky, M.; Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Baker, P.; Cornish, N.] Montana State Univ, Bozeman, MT 59717 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Khalili, F. Y.; Moraru, D.; Prokhorov, L.; Strigin, S.; Tarabrin, S. P.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Camp, J. B.; Cannizzo, J.; Stroeer, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hayama, K.; Kawamura, S.; Oldenburg, R. G.; O'Reilly, B.; Romano, R.; Sato, S.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Bauer, Th. S.; Beker, M. G.; Blom, M.; Bulten, H. J.; Li, T. G. F.; Rabeling, D. S.; van den Brand, J. F. J.; van der Putten, S.] NIKHEF, Natl Inst Subatom Phys, NL-1009 DB Amsterdam, Netherlands. [Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Farr, B. F.; Fazi, D.; Kalogera, V.; Krishnamurthy, S.; Mandel, I.; Raymond, V.; van der Sluys, M. V.] Northwestern Univ, Evanston, IL 60208 USA. [Birindelli, S.; Bondu, F.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Hayau, J. -F.; Heitmann, H.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J. -Y.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France. [Birindelli, S.; Bondu, F.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Hayau, J. -F.; Heitmann, H.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J. -Y.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Drever, R. W. P.; Prodi, G. A.; Re, V.; Vedovato, G.] Ist Nazl Fis Nucl, Grp Collegato Trento, Trento, Italy. [Prodi, G. A.; Re, V.] Univ Trent, I-38050 Trento, Italy. [Drever, R. W. P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Vedovato, G.] Univ Padua, I-35131 Padua, Italy. [Budzynski, R.; Bulik, T.; Jaranowski, P.; Kowalska, I.; Krolak, A.; Pietka, M.] IM PAN, PL-00956 Warsaw, Poland. [Budzynski, R.; Bulik, T.; Jaranowski, P.; Kowalska, I.; Krolak, A.; Pietka, M.] Warsaw Univ, PL-00681 Warsaw, Poland. [Bulik, T.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Krolak, A.] Bialystok Univ, PL-15424 Bialystok, Poland. [Kowalska, I.] CAMK PAN, PL-00716 Warsaw, Poland. [Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Greenhalgh, R. J. S.; Hayler, T.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Barnum, S.; Salemi, F.; Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [Dorsher, S.; McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [Dorsher, S.; McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Allen, G.; Byer, R. L.; Clark, D.; DeBra, D.; Lantz, B.; Lu, P.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Brown, D. A.; Capano, C.; Garofoli, J. A.; Hirose, E.; Lundgren, A.; Pekowsky, L.; Saulson, P. R.; Wei, P.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Bondarescu, R.; Finn, L. S.; Kopparapu, R.; Lang, M.; Menendez, D. F.; Owen, B. J.; Tokmakov, K. V.] Penn State Univ, University Pk, PA 16802 USA. [Chung, C. T. Y.; Melatos, A.; Rowan, S.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Cain, J.; Cavaglia, M.; Rankins, B.] Univ Mississippi, University, MS 38677 USA. [Daw, E. J.; White, D. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Frei, M.; Krause, T.; Matzner, R. A.; McIvor, G.] Univ Texas Austin, Austin, TX 78712 USA. [Benacquista, M.; Creighton, T. D.; Diaz, M.; Dietz, A.; Grosso, R.; Li, J.; Mors, K.; Nelson, J.; Quetschke, V.; Rakhmanov, M.; Stone, R.; Vaishnav, B.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Ugolini, D.] Trinity Coll, San Antonio, TX 78212 USA. [Cao, J.] Tsinghua Univ, Beijing 100084, Peoples R China. [Husa, S.; Ruediger, A.; de la Jordana, L. Sancho; Sintes, A. M.; Trummer, J.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain. [Hosken, D. J.; Nishida, E.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Aston, S.; Chelkowski, S.; Cruise, A. M.; Freise, A.; Fulda, P.; Hallam, J. M.; Hoyland, D.; Lodhia, D.; Page, A.; Perreca, A.; Vecchio, A.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Arain, M. A.; Das, K.; Doomes, E. E.; Feldbaum, D.; Klimenko, S.; Lin, H.; Lucianetti, A.; Martin, R. M.; Moreau, J.; Nawrodt, R.; Ottens, R. S.; Pankow, C.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Beveridge, N.; Campsie, P.; Chalkley, E.; Culter, R. M.; Cumming, A.; Cunningham, L.; Edwards, M.; Gill, C.; Grant, A.; Hammond, G.; Haughian, K.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Martin, I. W.; Moe, B.; Nishizawa, A.; Nolting, D.; Ochsner, E.; Ogin, G. H.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Scott, J.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Toncelli, A.; Tournefier, E.; van Veggel, A. A.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Buonanno, A.; Kanner, J.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Hoak, D.; Mosca, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Goetz, E.; Gustafson, R.; Meadors, G.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Douglas, E. S. D.; Harms, J.; Kandhasamy, S.; Mandic, V.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Schofield, R.] Univ Oregon, Eugene, OR 97403 USA. [Forrest, C.; Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Conte, R.; Postiglione, F.] Univ Salerno, I-84084 Salerno, Italy. [Conte, R.; Pinto, I. M.; Postiglione, F.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, Milan, Italy. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Lockerbie, N. A.; Toncelli, A.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [Barriga, P.; Blair, D.; Coward, D.; Eberle, T.; Fan, Y.; Gras, S.; Howell, E.; Ju, L.; Merill, L.; Miao, H.; Miller, J.; Mitrofanov, V. P.; Susmithan, S.; Wen, L.; Zhang, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Allen, B.; Ceron, E. Amador; Anderson, W. G.; Belletoile, A.; Biswas, R.; Brady, P. R.; Burguet-Castell, J.; Clayton, J. H.; Creighton, J. D. E.; Flasch, K.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Milano, L.; Morgado, N.; Papa, M. A.; Price, L. R.; Siemens, X.; Skelton, G.; Vaulin, R.; Wiseman, A. G.; Yu, P. P.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. RP Abadie, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Vicere, Andrea/J-1742-2012; Mitrofanov, Valery/D-8501-2012; Puppo, Paola/J-4250-2012; Colla, Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Parisi, Maria/D-2817-2013; Bondu, Francois/A-2071-2012; Toncelli, Alessandra/A-5352-2012; Vocca, Helios/F-1444-2010; Acernese, Fausto/E-4989-2010; Prato, Mirko/D-8531-2012; Hild, Stefan/A-3864-2010; prodi, giovanni/B-4398-2010; Santamaria, Lucia/A-7269-2012; Costa, Cesar/G-7588-2012; Prokhorov, Leonid/I-2953-2012; Punturo, Michele/I-3995-2012; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Hammond, Giles/B-7861-2009; Neri, Igor/F-1482-2010; McClelland, David/E-6765-2010; Strain, Kenneth/D-5236-2011; Gammaitoni, Luca/B-5375-2009; Raab, Frederick/E-2222-2011; Abernathy, Matthew/G-1113-2011; Marchesoni, Fabio/A-1920-2008; Kawabe, Keita/G-9840-2011; Martin, Iain/A-2445-2010; Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; Bigotta, Stefano/F-8652-2011; Freise, Andreas/F-8892-2011; Biswas, Rahul/H-7474-2016; Ward, Robert/I-8032-2014; Howell, Eric/H-5072-2014; Sigg, Daniel/I-4308-2015; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Ferrante, Isidoro/F-1017-2012; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Finn, Lee Samuel/A-3452-2009; Graef, Christian/J-3167-2015; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Shaddock, Daniel/A-7534-2011; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Gehring, Tobias/A-8596-2016; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Steinlechner, Sebastian/D-5781-2013; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Pitkin, Matthew/I-3802-2013; Vyatchanin, Sergey/J-2238-2012; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Lucianetti, Antonio/G-7383-2014; Losurdo, Giovanni/K-1241-2014; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Khalili, Farit/D-8113-2012 OI Vicere, Andrea/0000-0003-0624-6231; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Zhao, Chunnong/0000-0001-5825-2401; Bondu, Francois/0000-0001-6487-5197; Toncelli, Alessandra/0000-0003-4400-8808; Vocca, Helios/0000-0002-1200-3917; Acernese, Fausto/0000-0003-3103-3473; Prato, Mirko/0000-0002-2188-8059; prodi, giovanni/0000-0001-5256-915X; Punturo, Michele/0000-0001-8722-4485; Neri, Igor/0000-0002-9047-9822; McClelland, David/0000-0001-6210-5842; Strain, Kenneth/0000-0002-2066-5355; Gammaitoni, Luca/0000-0002-4972-7062; Marchesoni, Fabio/0000-0001-9240-6793; Lueck, Harald/0000-0001-9350-4846; Pathak, Devanka/0000-0002-1768-8353; Granata, Massimo/0000-0003-3275-1186; Aulbert, Carsten/0000-0002-1481-8319; Di Paolo Emilio, Maurizio/0000-0002-9558-3610; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; calloni, enrico/0000-0003-4819-3297; Biswas, Rahul/0000-0002-0774-8906; Sorazu, Borja/0000-0002-6178-3198; Stuver, Amber/0000-0003-0324-5735; Zweizig, John/0000-0002-1521-3397; O'Shaughnessy, Richard/0000-0001-5832-8517; Husa, Sascha/0000-0002-0445-1971; Pinto, Innocenzo M./0000-0002-2679-4457; Farr, Ben/0000-0002-2916-9200; Santamaria, Lucia/0000-0002-5986-0449; Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461; Vetrano, Flavio/0000-0002-7523-4296; Nishizawa, Atsushi/0000-0003-3562-0990; Guidi, Gianluca/0000-0002-3061-9870; Ward, Robert/0000-0001-5503-5241; Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; Howell, Eric/0000-0001-7891-2817; Fairhurst, Stephen/0000-0001-8480-1961; Matichard, Fabrice/0000-0001-8982-8418; Sigg, Daniel/0000-0003-4606-6526; Ferrante, Isidoro/0000-0002-0083-7228; Travasso, Flavio/0000-0002-4653-6156; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Stein, Leo/0000-0001-7559-9597; Swinkels, Bas/0000-0002-3066-3601; Kanner, Jonah/0000-0001-8115-0577; Freise, Andreas/0000-0001-6586-9901; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Douglas, Ewan/0000-0002-0813-4308; Vecchio, Alberto/0000-0002-6254-1617; Finn, Lee Samuel/0000-0002-3937-0688; Graef, Christian/0000-0002-4535-2603; Garufi, Fabio/0000-0003-1391-6168; Shaddock, Daniel/0000-0002-6885-3494; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Gehring, Tobias/0000-0002-4311-2593; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Steinlechner, Sebastian/0000-0003-4710-8548; Pitkin, Matthew/0000-0003-4548-526X; Miao, Haixing/0000-0003-4101-9958; Losurdo, Giovanni/0000-0003-0452-746X; Danilishin, Stefan/0000-0001-7758-7493; FU Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; The National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. This document has been assigned LIGO Laboratory document number P0900305-v6. NR 32 TC 118 Z9 118 U1 3 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV 5 PY 2010 VL 82 IS 10 AR 102001 DI 10.1103/PhysRevD.82.102001 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 675QH UT WOS:000283845000001 ER PT J AU Russell, MJ AF Russell, Michael John TI The Hazy Details of Early Earth's Atmosphere SO SCIENCE LA English DT Letter C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Russell, MJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM mrussell@jpl.nasa.gov NR 9 TC 2 Z9 2 U1 1 U2 9 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 5 PY 2010 VL 330 IS 6005 BP 754 EP 754 DI 10.1126/science.330.6005.754-a PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 675SY UT WOS:000283855700012 PM 21051614 ER PT J AU Negrello, M Hopwood, R De Zotti, G Cooray, A Verma, A Bock, J Frayer, DT Gurwell, MA Omont, A Neri, R Dannerbauer, H Leeuw, LL Barton, E Cooke, J Kim, S da Cunha, E Rodighiero, G Cox, P Bonfield, DG Jarvis, MJ Serjeant, S Ivison, RJ Dye, S Aretxaga, I Hughes, DH Ibar, E Bertoldi, F Valtchanov, I Eales, S Dunne, L Driver, SP Auld, R Buttiglione, S Cava, A Grady, CA Clements, DL Dariush, A Fritz, J Hill, D Hornbeck, JB Kelvin, L Lagache, G Lopez-Caniego, M Gonzalez-Nuevo, J Maddox, S Pascale, E Pohlen, M Rigby, EE Robotham, A Simpson, C Smith, DJB Temi, P Thompson, MA Woodgate, BE York, DG Aguirre, JE Beelen, A Blain, A Baker, AJ Birkinshaw, M Blundell, R Bradford, CM Burgarella, D Danese, L Dunlop, JS Fleuren, S Glenn, J Harris, AI Kamenetzky, J Lupu, RE Maddalena, RJ Madore, BF Maloney, PR Matsuhara, H Michaowski, MJ Murphy, EJ Naylor, BJ Nguyen, H Popescu, C Rawlings, S Rigopoulou, D Scott, D Scott, KS Seibert, M Smail, I Tuffs, RJ Vieira, JD van der Werf, PP Zmuidzinas, J AF Negrello, Mattia Hopwood, R. De Zotti, G. Cooray, A. Verma, A. Bock, J. Frayer, D. T. Gurwell, M. A. Omont, A. Neri, R. Dannerbauer, H. Leeuw, L. L. Barton, E. Cooke, J. Kim, S. da Cunha, E. Rodighiero, G. Cox, P. Bonfield, D. G. Jarvis, M. J. Serjeant, S. Ivison, R. J. Dye, S. Aretxaga, I. Hughes, D. H. Ibar, E. Bertoldi, F. Valtchanov, I. Eales, S. Dunne, L. Driver, S. P. Auld, R. Buttiglione, S. Cava, A. Grady, C. A. Clements, D. L. Dariush, A. Fritz, J. Hill, D. Hornbeck, J. B. Kelvin, L. Lagache, G. Lopez-Caniego, M. Gonzalez-Nuevo, J. Maddox, S. Pascale, E. Pohlen, M. Rigby, E. E. Robotham, A. Simpson, C. Smith, D. J. B. Temi, P. Thompson, M. A. Woodgate, B. E. York, D. G. Aguirre, J. E. Beelen, A. Blain, A. Baker, A. J. Birkinshaw, M. Blundell, R. Bradford, C. M. Burgarella, D. Danese, L. Dunlop, J. S. Fleuren, S. Glenn, J. Harris, A. I. Kamenetzky, J. Lupu, R. E. Maddalena, R. J. Madore, B. F. Maloney, P. R. Matsuhara, H. Michaowski, M. J. Murphy, E. J. Naylor, B. J. Nguyen, H. Popescu, C. Rawlings, S. Rigopoulou, D. Scott, D. Scott, K. S. Seibert, M. Smail, I. Tuffs, R. J. Vieira, J. D. van der Werf, P. P. Zmuidzinas, J. TI The Detection of a Population of Submillimeter-Bright, Strongly Lensed Galaxies SO SCIENCE LA English DT Article ID EXTRAGALACTIC SOURCES; REDSHIFT DEADLOCK; STAR-FORMATION; PREDICTIONS; TELESCOPE; EMISSION; CATALOG; COUNTS; QUASAR; FIELD AB Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency. C1 [Negrello, Mattia; Hopwood, R.; Serjeant, S.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [De Zotti, G.; Buttiglione, S.] Osserv Astron Padova, Ist Nazl Astrofis, I-35122 Padua, Italy. [De Zotti, G.; Gonzalez-Nuevo, J.; Danese, L.] Scuola Int Super Studi Avanzati, I-34136 Trieste, Italy. [Cooray, A.; Barton, E.; Cooke, J.; Kim, S.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Verma, A.; Rawlings, S.; Rigopoulou, D.] Univ Oxford, Oxford OX1 3RH, England. [Bock, J.; Bradford, C. M.; Naylor, B. J.; Nguyen, H.; Zmuidzinas, J.] Jet Prop Lab, Pasadena, CA 91009 USA. [Bock, J.; Cooke, J.; Blain, A.; Bradford, C. M.; Vieira, J. D.; Zmuidzinas, J.] CALTECH, Pasadena, CA 91125 USA. [Frayer, D. T.; Maddalena, R. J.] Natl Radio Astron Observ, Green Bank, WV 24944 USA. [Gurwell, M. A.; Blundell, R.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Omont, A.] Univ Paris 06, Inst Astrophys Paris, F-75014 Paris, France. [Omont, A.] CNRS, F-75014 Paris, France. [Neri, R.; Cox, P.] Inst Radio Astron Millimetr, F-38406 St Martin Dheres, France. [Dannerbauer, H.] Univ Paris Diderot, Lab Astrophys Instrumentat & Modelisat Paris Sard, Direct Sci Matiere,CEA,CNRS,Serv Astrophys, Inst Rech Lois Fondamentales Universe,CEA Saclay, F-91191 Gif Sur Yvette, France. [Leeuw, L. L.] Univ Johannesburg, Dept Phys, ZA-2006 Auckland Pk, South Africa. [Leeuw, L. L.] SETI Inst, Mountain View, CA 94043 USA. [da Cunha, E.] Univ Crete, Dept Phys, Iraklion 71003, Greece. [Rodighiero, G.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Bonfield, D. G.; Jarvis, M. J.; Thompson, M. A.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Ivison, R. J.; Ibar, E.; Dunlop, J. S.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ivison, R. J.; Michaowski, M. J.; van der Werf, P. P.] Univ Edinburgh, Royal Observ, Inst Astron, Scottish Univ Phys Alliance, Edinburgh EH9 3HJ, Midlothian, Scotland. [Dye, S.; Eales, S.; Auld, R.; Dariush, A.; Pascale, E.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Aretxaga, I.; Hughes, D. H.] Inst Nacl Astrofis Opt & Electr, Puebla 72000, Mexico. [Bertoldi, F.] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Valtchanov, I.] European Space Agcy, European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Dunne, L.; Maddox, S.; Rigby, E. E.; Smith, D. J. B.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Driver, S. P.; Hill, D.; Kelvin, L.; Robotham, A.] Univ St Andrews, Sch Phys & Astron, Scottish Univ Phys Alliance, St Andrews KY16 9SS, Fife, Scotland. [Cava, A.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Cava, A.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Grady, C. A.] Eureka Sci, Oakland, CA 94602 USA. [Grady, C. A.; Woodgate, B. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Clements, D. L.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Dept Phys, Astrophys Grp, London SW7 2AZ, England. [Fritz, J.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Hornbeck, J. B.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Lagache, G.] Inst Astrophys Spatiale, F-91405 Orsay, France. [Lagache, G.; Beelen, A.] Univ Paris 11, F-91400 Orsay, France. [Lagache, G.; Beelen, A.] CNRS, UMR 8617, F-91400 Orsay, France. [Lopez-Caniego, M.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Simpson, C.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Temi, P.] NASA, Astrophys Branch, Ames Res Ctr, Moffett Field, CA 94035 USA. [York, D. G.] Univ Chicago, Dept Astrophys, Chicago, IL 60637 USA. [York, D. G.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Aguirre, J. E.; Lupu, R. E.; Scott, K. S.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Baker, A. J.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Birkinshaw, M.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Burgarella, D.] CNRS, UMR6110, Lab Astrophys Marseille, F-13388 Marseille, France. [Burgarella, D.] Aix Marseille Univ, F-13388 Marseille, France. [Fleuren, S.] Univ London, Sch Math Sci, London E1 4NS, England. [Glenn, J.; Kamenetzky, J.; Maloney, P. R.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80303 USA. [Harris, A. I.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Madore, B. F.; Seibert, M.] Observ Camegie Inst, Pasadena, CA 91101 USA. [Matsuhara, H.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Murphy, E. J.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Popescu, C.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Rigopoulou, D.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Scott, D.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Smail, I.] Univ Durham, Inst Computat Cosmol, Durham DH1 3LE, England. [Tuffs, R. J.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [van der Werf, P. P.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. RP Negrello, M (reprint author), Open Univ, Dept Phys & Astron, Walton Hall, Milton Keynes MK7 6AA, Bucks, England. EM m.negrello@open.ac.uk RI Woodgate, Bruce/D-2970-2012; Lopez-Caniego, Marcos/M-4695-2013; Smail, Ian/M-5161-2013; Robotham, Aaron/H-5733-2014; Lupu, Roxana/P-9060-2014; Gonzalez-Nuevo, Joaquin/I-3562-2014; Driver, Simon/H-9115-2014; Ivison, R./G-4450-2011; Cava, Antonio/C-5274-2017; OI Lopez-Caniego, Marcos/0000-0003-1016-9283; Dye, Simon/0000-0002-1318-8343; Smith, Daniel/0000-0001-9708-253X; Rodighiero, Giulia/0000-0002-9415-2296; da Cunha, Elisabete/0000-0001-9759-4797; Smail, Ian/0000-0003-3037-257X; Robotham, Aaron/0000-0003-0429-3579; Lupu, Roxana/0000-0003-3444-5908; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Driver, Simon/0000-0001-9491-7327; Ivison, R./0000-0001-5118-1313; Cava, Antonio/0000-0002-4821-1275; Maddox, Stephen/0000-0001-5549-195X; Scott, Douglas/0000-0002-6878-9840 FU NASA through a contract from JPL; Science and Technology Facilities Council [PP/D002400/1, ST/G002533/1, SF/F005288/1]; Agenzia Spaziale Italiana (ASI) [I/016/07/0 COFIS]; ASI/Istituto Nazionale di Astrofisica [I/072/09/0]; Consejo Nacional de Ciencia y Tecnolog a (CONACyT) [39953-F, 39548-F]; W.M. Keck Foundation; Smithsonian Institution; Academia Sinica; Institut National des Sciences de l'Univers (INSU)/CNRS (France); Max Planck Society (MPG) (Germany); Instituto Geogrifico Nacional (IGN) (Spain); NSF [AST-0807990, AST-0239270, AST-0503946, AST-0708653]; CSO NSF [AST-0838261]; NASA SARA [NAGS-11911, NAGS-12788]; Research Corporation Award [RI0928]; JPL; California Institute of Technology FX Herschel is an ESA space observatory with science instruments provided by European-led principal investigator consortia and with important participation from NASA. U. S. participants in H-ATLAS acknowledge support from NASA through a contract from JPL. This work was supported by the Science and Technology Facilities Council (grants PP/D002400/1 and ST/G002533/1) and studentship SF/F005288/1. We thank Agenzia Spaziale Italiana (ASI) for funding through contract No. I/016/07/0 COFIS and ASI/Istituto Nazionale di Astrofisica agreement I/072/09/0 for the Planck Low-Frequency Instrument (LFI) Activity of Phase E2. Research supported in part by Consejo Nacional de Ciencia y Tecnolog a (CONACyT) grants 39953-F and 39548-F. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. IRAM is supported by Institut National des Sciences de l'Univers (INSU)/CNRS (France), Max Planck Society (MPG) (Germany), and Instituto Geogrifico Nacional (IGN) (Spain). Z-spec was supported by NSF grant AST-0807990 to J. A. and by the CSO NSF Cooperative Agreement AST-0838261. Support was provided to J. K. by an NSF Graduate Research Fellowship. Z-spec was constructed under NASA SARA grants NAGS-11911 and NAGS-12788 and an NSF Career grant (AST-0239270) and a Research Corporation Award (RI0928) to J. G., in collaboration with JPL, California Institute of Technology, under a contract with NASA. Construction of and observations with the Zpectrometer have been supported by NSF grants AST-0503946 and AST-0708653. NRAO is a facility of the NSF operated under cooperative agreement by Associated Universities. The optical spectroscopic redshift of ID130 was derived from observations obtained with the Apache Point Observatory 3.5-m telescope, which is owned and operated by the Astrophysical Research Consortium. The optical spectroscopic redshifts of ID9 and ID11 were obtained with the William Herschel Telescope, which is operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. For the use of Keck, SMA, and CSO, the authors wish to recognize and acknowledge the very important cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 49 TC 182 Z9 182 U1 3 U2 16 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 5 PY 2010 VL 330 IS 6005 BP 800 EP 804 DI 10.1126/science.1193420 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 675SY UT WOS:000283855700037 PM 21051633 ER PT J AU Austin, J Scinocca, J Plummer, D Oman, L Waugh, D Akiyoshi, H Bekki, S Braesicke, P Butchart, N Chipperfield, M Cugnet, D Dameris, M Dhomse, S Eyring, V Frith, S Garcia, RR Garny, H Gettelman, A Hardiman, SC Kinnison, D Lamarque, JF Mancini, E Marchand, M Michou, M Morgenstern, O Nakamura, T Pawson, S Pitari, G Pyle, J Rozanov, E Shepherd, TG Shibata, K Teyssedre, H Wilson, RJ Yamashita, Y AF Austin, John Scinocca, J. Plummer, D. Oman, L. Waugh, D. Akiyoshi, H. Bekki, S. Braesicke, P. Butchart, N. Chipperfield, M. Cugnet, D. Dameris, M. Dhomse, S. Eyring, V. Frith, S. Garcia, R. R. Garny, H. Gettelman, A. Hardiman, S. C. Kinnison, D. Lamarque, J. F. Mancini, E. Marchand, M. Michou, M. Morgenstern, O. Nakamura, T. Pawson, S. Pitari, G. Pyle, J. Rozanov, E. Shepherd, T. G. Shibata, K. Teyssedre, H. Wilson, R. J. Yamashita, Y. TI Decline and recovery of total column ozone using a multimodel time series analysis SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CHEMISTRY-CLIMATE MODEL; QUASI-BIENNIAL OSCILLATION; STRATOSPHERIC OZONE; MIDDLE ATMOSPHERE; TECHNICAL NOTE; SIMULATION; TRANSPORT; TRENDS; CIRCULATION; SENSITIVITY AB [1] Simulations of 15 coupled chemistry climate models, for the period 1960-2100, are presented. The models include a detailed stratosphere, as well as including a realistic representation of the tropospheric climate. The simulations assume a consistent set of changing greenhouse gas concentrations, as well as temporally varying chlorofluorocarbon concentrations in accordance with observations for the past and expectations for the future. The ozone results are analyzed using a nonparametric additive statistical model. Comparisons are made with observations for the recent past, and the recovery of ozone, indicated by a return to 1960 and 1980 values, is investigated as a function of latitude. Although chlorine amounts are simulated to return to 1980 values by about 2050, with only weak latitudinal variations, column ozone amounts recover at different rates due to the influence of greenhouse gas changes. In the tropics, simulated peak ozone amounts occur by about 2050 and thereafter total ozone column declines. Consequently, simulated ozone does not recover to values which existed prior to the early 1980s. The results also show a distinct hemispheric asymmetry, with recovery to 1980 values in the Northern Hemisphere extratropics ahead of the chlorine return by about 20 years. In the Southern Hemisphere midlatitudes, ozone is simulated to return to 1980 levels only 10 years ahead of chlorine. In the Antarctic, annually averaged ozone recovers at about the same rate as chlorine in high latitudes and hence does not return to 1960s values until the last decade of the simulations. C1 [Austin, John; Wilson, R. J.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA. [Akiyoshi, H.; Nakamura, T.; Yamashita, Y.] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Bekki, S.; Cugnet, D.; Marchand, M.] UPMC, CNRS, INSU, UVSQ,IPSL,LATMOS, F-75231 Paris, France. [Braesicke, P.; Pyle, J.] Univ Cambridge, Dept Chem, Ctr Atmospher Sci, NCAS Climate Chem, Cambridge CB2 1EW, England. [Butchart, N.; Hardiman, S. C.] Hadley Ctr, Met Off, Exeter EX1 3PB, Devon, England. [Chipperfield, M.; Dhomse, S.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. [Dameris, M.; Eyring, V.; Garny, H.] Inst Phys Atmosphare, Deutsch Zentrum Luft & Raumfahrt, D-82234 Wessling, Germany. [Frith, S.; Pawson, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Garcia, R. R.; Gettelman, A.; Kinnison, D.; Lamarque, J. F.] NCAR, Boulder, CO 80305 USA. [Mancini, E.; Pitari, G.] Univ Aquila, Dipartimento Fis, I-161700 Laquila, Italy. [Michou, M.; Teyssedre, H.] CNRM, GAME, F-31057 Toulouse, France. [Morgenstern, O.] Natl Inst Water & Atmospher Res, Omakau 9352, Lauder, New Zealand. [Oman, L.; Waugh, D.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Plummer, D.] Environm Canada, Sci & Technol Branch, Toronto, ON M3H 5T4, Canada. [Rozanov, E.] World Radiat Ctr, Phys Meteorol Observ, CH-7260 Davos, Switzerland. [Scinocca, J.] Univ Victoria, CCMA, Victoria, BC V8W 3V6, Canada. [Shepherd, T. G.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Shibata, K.] Japan Meteorol Agcy, Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan. [Frith, S.] Sci Syst & Applicat Inc, Beltsville, MD USA. [Rozanov, E.] ETH, Zurich, Switzerland. RP Austin, J (reprint author), NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA. EM john.austin@noaa.gov RI Dhomse, Sandip/C-8198-2011; Rozanov, Eugene/A-9857-2012; Oman, Luke/C-2778-2009; Chipperfield, Martyn/H-6359-2013; Lamarque, Jean-Francois/L-2313-2014; bekki, slimane/J-7221-2015; Nakamura, Tetsu/M-7914-2015; Braesicke, Peter/D-8330-2016; Pawson, Steven/I-1865-2014; Pitari, Giovanni/O-7458-2016; Eyring, Veronika/O-9999-2016; OI Dhomse, Sandip/0000-0003-3854-5383; Rozanov, Eugene/0000-0003-0479-4488; Oman, Luke/0000-0002-5487-2598; Chipperfield, Martyn/0000-0002-6803-4149; Lamarque, Jean-Francois/0000-0002-4225-5074; bekki, slimane/0000-0002-5538-0800; Nakamura, Tetsu/0000-0002-2056-7392; Braesicke, Peter/0000-0003-1423-0619; Pawson, Steven/0000-0003-0200-717X; Pitari, Giovanni/0000-0001-7051-9578; Eyring, Veronika/0000-0002-6887-4885; Mancini, Eva/0000-0001-7071-0292; Morgenstern, Olaf/0000-0002-9967-9740 FU Ministry of the Environment of Japan [A-071]; New Zealand Foundation for Research, Science and Technology [C01X070]; NERC; DECC/Defra [GA01101]; European Commission [SCOUT-O3] FX CCSRNIES research was supported by the Global Environmental Research Fund of the Ministry of the Environment of Japan (A-071). The MRI and CCSRNIES simulations were completed with the supercomputer at the National Institute for Environmental Studies, Japan. CMAM simulations were supported by CFCAS through the C-SPARC project. The Niwa-SOCOL and UMETRAC simulations were supported by the New Zealand Foundation for Research, Science and Technology under contract C01X070. The UMSLIMCAT work was supported by NERC. The contribution of the Met Office Hadley Centre was supported by the Joint DECC and Defra Integrated Climate Programme, DECC/Defra (GA01101). The scientific work of the European CCM groups was supported by the European Commission through the project SCOUT-O3 under the 6th Framework Programme. J.A.'s research was administered by the University Corporation for Atmospheric Research at the NOAA Geophysical Fluid Dynamics Laboratory. Larry Horowitz and Dan Schwarzkopf provided useful comments on the paper. We acknowledge the Chemistry-Climate Model Validation (CCMVal) Activity for WCRP's (World Climate Research Programme) SPARC (Stratospheric Processes and their Role in Climate) project for organizing and coordinating the model data analysis activity, and the British Atmospheric Data Center (BADC) for collecting and archiving the CCMVal model output. NR 44 TC 41 Z9 41 U1 1 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 4 PY 2010 VL 115 AR D00M10 DI 10.1029/2010JD013857 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 676UT UT WOS:000283944800004 ER PT J AU Chen, SH Wang, SH Waylonis, M AF Chen, Shu-Hua Wang, Sheng-Hsiang Waylonis, Mark TI Modification of Saharan air layer and environmental shear over the eastern Atlantic Ocean by dust-radiation effects SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TROPICAL CYCLOGENESIS; NUMERICAL SIMULATIONS; OPTICAL-PROPERTIES; MINERAL DUST; AEROSOL; MODEL; INTENSITY; DISTURBANCES; VALIDATION; HURRICANES AB [1] This study investigates the influence of dust-radiation effects on the modification of the Saharan air layer (SAL) and environmental shear. A tracer model based on the Weather Research and Forecast model was developed to examine the influence using a dust outbreak event. Two numerical experiments were conducted with (ON) and without (OFF) the dust-radiation effects. Both simulations reasonably reproduced SAL's features. However, the 700 hPa maximum temperature within SAL was slightly underestimated and shifted northwestward from OFF. These were improved from ON, but the maximum temperature became slightly overestimated, which might be due to inaccurate optical properties. The dust-radiation interactions mainly warmed the dusty air between 750 and 550 hPa because dust shortwave absorption dominated dust longwave cooling. Another major warming area was found near the surface over the ocean due to longwave radiative heating by dust aloft. The modification of temperature resulted in an adjustment of the vertical wind shear. To the south of SAL, where easterly wave disturbances and tropical storms usually occur, the vertical zonal wind shear increased by about 1 similar to 2.5 m s(-1) km(-1) from 750 to 550 hPa, resulting in a maximum wind change of 3 similar to 5 m s(-1), a 30 similar to 40% increase, around the top of this layer. The enhancement of the vertical shear in this layer could potentially have an impact on TC genesis and development. The dust-radiation effects also modified the moisture and dust distribution, which can have a feedback (i.e., a secondary effect) on the heating profile and the vertical shear. C1 [Chen, Shu-Hua; Waylonis, Mark] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. [Wang, Sheng-Hsiang] Natl Cent Univ, Dept Atmospher Sci, Chungli 32054, Taiwan. [Wang, Sheng-Hsiang] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Chen, SH (reprint author), Univ Calif Davis, Dept Land Air & Water Resources, 1 Shields Ave, Davis, CA 95616 USA. EM shachen@ucdavis.edu RI Wang, Sheng-Hsiang/F-4532-2010 OI Wang, Sheng-Hsiang/0000-0001-9675-3135 FU Taiwan's National Science Council [NSC92-2111-M-008-018-AGC]; Taiwan EPA [EPA94-U1L1- 02-101]; NASA Radiation Science Program; NASA Hurricane Science Research Program [NNX09AC38G] FX The authors would like to acknowledge the WRF teams for their efforts on model development. We would also like to thank Scott Braun, Jiun-Dar Chern, Lorraine Remer, Richard Kleidman, and Mian Chin at NASA/GSFC, Ming-Da Chou at National Taiwan University, and Kuo-Nan Liou at University of California, Los Angeles, for their scientific discussions. Thanks are further extended to the editor Steven Ghan and three anonymous reviewers for their valuable scientific comments on the manuscript. The MODIS and AIRS data and images were requested from the MODIS-atmosphere web site from NASA/GSFC and the NASA Goddard Earth Sciences Data and Information Services Center. One of the coauthors, S.-H. Wang, acknowledges support from Taiwan's National Science Council (NSC92-2111-M-008-018-AGC), Taiwan EPA (EPA94-U1L1- 02-101), and the NASA Radiation Science Program (managed by Hal Maring). This work is primarily supported by the NASA Hurricane Science Research Program (grant NNX09AC38G) that is directed by Ramesh Kakar at NASA Headquarters. NR 56 TC 18 Z9 18 U1 4 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 4 PY 2010 VL 115 AR D21202 DI 10.1029/2010JD014158 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 676UT UT WOS:000283944800008 ER PT J AU Chappelow, JE Golombek, MP AF Chappelow, John E. Golombek, Matthew P. TI Event and conditions that produced the iron meteorite Block Island on Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID ATMOSPHERIC VARIATIONS; POROSITY; RECORD AB The Mars Exploration Rover Opportunity has discovered four large iron-nickel meteorites that range in size from 50 to 240 kg dispersed over 10 km of Meridiani Planum, Mars. Because these meteorites are covered with hollows that resemble regmaglypts, their surfaces record their ablation through the atmosphere, and they must have landed at speeds below hypervelocity (<2 km s(-1)) to survive. Slowing massive iron meteorites requires a minimum atmospheric density, which was quantified using a numerical model that integrates the equations of motion for incoming meteoroids through an atmosphere of a given surface density and scale height and records their outcomes as direct (generally hypervelocity impacts that form craters), longer over the horizon and fallback flight paths, and skip outs. The present atmosphere of Mars is sufficient to slow iron meteoroids as large as Block Island (the most massive meteorite) via drag and significant ablation on long flight paths, although for standard distributions of entering meteoroid masses, velocities, and entry angles, such events are rare (0.007% of incoming iron meteoroids). Such events require entry angles of 10 degrees-13 degrees, entry velocities of 6-18 km s(-1), and entry masses of 225-710 kg. The absence of large stony meteorites is probably at least partially because they are much weaker and thus broken up into smaller fragments on impact. Although differential drag deceleration on long flight paths could disperse fragments of an entering meteoroid by tens of kilometers, dynamic pressures are too low to break up an iron meteorite, leaving the possibility that they are paired an open question. C1 [Chappelow, John E.] SAGA Inc, Fairbanks, AK 99709 USA. [Golombek, Matthew P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Chappelow, JE (reprint author), SAGA Inc, Fairbanks, AK 99709 USA. EM john.chappelow@saga-inc.com FU National Aeronautics and Space Administration FX Research described in this paper was partially done by the MER project, Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We appreciate comments provided by the MER science team and an anonymous reviewer. NR 34 TC 6 Z9 6 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV 4 PY 2010 VL 115 AR E00F07 DI 10.1029/2010JE003666 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676VU UT WOS:000283947600001 ER PT J AU Lee, J Feng, XH Faiia, A Posmentier, E Osterhuber, R Kirchner, J AF Lee, Jeonghoon Feng, Xiahong Faiia, Anthony Posmentier, Eric Osterhuber, Randall Kirchner, James TI Isotopic evolution of snowmelt: A new model incorporating mobile and immobile water SO WATER RESOURCES RESEARCH LA English DT Article ID ONE-DIMENSIONAL MODEL; GLACIER-RIVER WATER; SOLUTE TRANSPORT; SIERRA-NEVADA; SEASONAL SNOWPACK; MELTING SNOW; FRACTIONATION; HYDROGEN; FLOW; TRACERS AB Isotopic variations of snowmelt provide important information for understanding snowmelt processes and the timing and contribution of snowmelt to catchments in spring. We report a new model for simulating the isotopic evolution of snowmelt. The model includes a hydraulic exchange between mobile and immobile water, and an isotopic exchange between liquid water (mobile and immobile water) and ice within a snowpack. Since this model is based on the mobile-immobile water conceptualization, which is widely used for describing chemical tracer transport in snow, it allows simultaneous simulations of chemical as well as isotopic variations in snowpack discharge. We also report temporal variations of isotopic composition of a snowpack and snowmelt during artificial rain-on-snow experiments and diel snowmelt cycles observed in spring 2003 at the Central Sierra Snow Laboratory, California. These observations are used to test the newly developed model and to understand physical processes in a seasonal snowpack. Our model simulates the isotopic variations reasonably well, and suggests that exchanges of ice with both mobile and immobile water are important for determining the isotopic composition of the discharge. C1 [Lee, Jeonghoon; Feng, Xiahong; Faiia, Anthony; Posmentier, Eric] Dartmouth Coll, Dept Earth Sci, Hanover, NH 03755 USA. [Kirchner, James] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Osterhuber, Randall] Cent Sierra Snow Lab, Soda Springs, CA 95728 USA. [Kirchner, James] WSL, Swiss Fed Inst Forest Snow & Landscape Res, Birmensdorf, Switzerland. [Kirchner, James] Swiss Fed Inst Technol, Dept Environm Sci, Zurich, Switzerland. RP Lee, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 183-601, Pasadena, CA 91109 USA. EM jeonghoon.lee@jpl.nasa.gov RI Lee, Jeonghoon/E-8116-2010; Kirchner, James/B-6126-2009 OI Lee, Jeonghoon/0000-0002-1256-4431; Kirchner, James/0000-0001-6577-3619 FU National Science Foundation [EAR-9903281, EAR-0111403, EAR 0418809]; Dartmouth College FX This research was partially supported by the National Science Foundation (EAR-9903281, EAR-0111403, and EAR 0418809) and by Dartmouth College. NR 29 TC 10 Z9 10 U1 1 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD NOV 4 PY 2010 VL 46 AR W11512 DI 10.1029/2009WR008306 PG 12 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 676XJ UT WOS:000283951700001 ER PT J AU Kistler, LM Galvin, AB Popecki, MA Simunac, KDC Farrugia, C Moebius, E Lee, MA Blush, LM Bochsler, P Wurz, P Klecker, B Wimmer-Schweingruber, RF Opitz, A Sauvaud, JA Thompson, B Russell, CT AF Kistler, L. M. Galvin, A. B. Popecki, M. A. Simunac, K. D. C. Farrugia, C. Moebius, E. Lee, M. A. Blush, L. M. Bochsler, P. Wurz, P. Klecker, B. Wimmer-Schweingruber, R. F. Opitz, A. Sauvaud, J. -A. Thompson, B. Russell, C. T. TI Escape of O+ through the distant tail plasma sheet SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GEOTAIL OBSERVATIONS; IONS; MAGNETOTAIL; EVOLUTION AB In February 2007, the STEREO-B spacecraft encountered the magnetosheath, plasma sheet and plasma sheet boundary layer from about 200 R-E to 300 R-E downtail. This time period was during solar minimum, and there was no storm activity during this month. Using data from the PLASTIC instrument, we find that even during quiet times, O+ is a constant feature of the deep magnetotail, with an O+ density of about 15% of the O+ density in the near-earth plasma sheet for similar conditions. The tailward flux of the O+ is similar to the flux of O+ beams that have been observed in the lobe/mantle region of the deep tail. The total outflow rate of the O+ down the plasma sheet is 1.1 x 10(24) ions/s, which is 10% of the total outflow rate of 1 x 10(25) ions/s, and of the same order as the estimated loss from dayside transport. Citation: Kistler, L. M., et al. (2010), Escape of O+ through the distant tail plasma sheet, Geophys. Res. Lett., 37, L21101, doi:10.1029/2010GL045075. C1 [Kistler, L. M.; Galvin, A. B.; Popecki, M. A.; Simunac, K. D. C.; Farrugia, C.; Moebius, E.; Lee, M. A.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Blush, L. M.; Bochsler, P.; Wurz, P.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Klecker, B.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Wimmer-Schweingruber, R. F.] Univ Kiel, Inst Expt & Appl Phys, D-24098 Kiel, Germany. [Opitz, A.; Sauvaud, J. -A.] CESR, F-31028 Toulouse, France. [Thompson, B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. RP Kistler, LM (reprint author), Univ New Hampshire, Ctr Space Sci, Morse Hall, Durham, NH 03824 USA. EM lynn.kistler@unh.edu RI Thompson, Barbara/C-9429-2012; Russell, Christopher/E-7745-2012 OI Russell, Christopher/0000-0003-1639-8298 FU NASA [NAS5-00132] FX Work at UNH was supported by NASA under contract NAS5-00132. NR 15 TC 7 Z9 7 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 3 PY 2010 VL 37 AR L21101 DI 10.1029/2010GL045075 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 676TO UT WOS:000283941700012 ER PT J AU Salawitch, RJ Canty, T Kurosu, T Chance, K Liang, Q da Silva, A Pawson, S Nielsen, JE Rodriguez, JM Bhartia, PK Liu, X Huey, LG Liao, J Stickel, RE Tanner, DJ Dibb, JE Simpson, WR Donohoue, D Weinheimer, A Flocke, F Knapp, D Montzka, D Neuman, JA Nowak, JB Ryerson, TB Oltmans, S Blake, DR Atlas, EL Kinnison, DE Tilmes, S Pan, LL Hendrick, F Van Roozendael, M Kreher, K Johnston, PV Gao, RS Johnson, B Bui, TP Chen, G Pierce, RB Crawford, JH Jacob, DJ AF Salawitch, R. J. Canty, T. Kurosu, T. Chance, K. Liang, Q. da Silva, A. Pawson, S. Nielsen, J. E. Rodriguez, J. M. Bhartia, P. K. Liu, X. Huey, L. G. Liao, J. Stickel, R. E. Tanner, D. J. Dibb, J. E. Simpson, W. R. Donohoue, D. Weinheimer, A. Flocke, F. Knapp, D. Montzka, D. Neuman, J. A. Nowak, J. B. Ryerson, T. B. Oltmans, S. Blake, D. R. Atlas, E. L. Kinnison, D. E. Tilmes, S. Pan, L. L. Hendrick, F. Van Roozendael, M. Kreher, K. Johnston, P. V. Gao, R. S. Johnson, B. Bui, T. P. Chen, G. Pierce, R. B. Crawford, J. H. Jacob, D. J. TI A new interpretation of total column BrO during Arctic spring SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID LOWER STRATOSPHERE; BROMINE MONOXIDE; TROPOSPHERIC BRO; OZONE DEPLETION; POLAR SUNRISE; LAYER; GOME; CLIMATOLOGY; CHEMISTRY; CANADA AB Emission of bromine from sea-salt aerosol, frost flowers, ice leads, and snow results in the nearly complete removal of surface ozone during Arctic spring. Regions of enhanced total column BrO observed by satellites have traditionally been associated with these emissions. However, airborne measurements of BrO and O-3 within the convective boundary layer (CBL) during the ARCTAS and ARCPAC field campaigns at times bear little relation to enhanced column BrO. We show that the locations of numerous satellite BrO "hotspots" during Arctic spring are consistent with observations of total column ozone and tropopause height, suggesting a stratospheric origin to these regions of elevated BrO. Tropospheric enhancements of BrO large enough to affect the column abundance are also observed, with important contributions originating from above the CBL. Closure of the budget for total column BrO, albeit with significant uncertainty, is achieved by summing observed tropospheric partial columns with calculated stratospheric partial columns provided that natural, short-lived biogenic bromocarbons supply between 5 and 10 ppt of bromine to the Arctic lowermost stratosphere. Proper understanding of bromine and its effects on atmospheric composition requires accurate treatment of geographic variations in column BrO originating from both the stratosphere and troposphere. Citation: Salawitch, R. J., et al. (2010), A new interpretation of total column BrO during Arctic spring, Geophys. Res. Lett., 37, L21805, doi:10.1029/2010GL043798. C1 [Salawitch, R. J.; Canty, T.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Salawitch, R. J.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Salawitch, R. J.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Kurosu, T.; Chance, K.; Liu, X.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Liang, Q.; Liu, X.] Univ Maryland Baltimore Cty, GEST, Greenbelt, MD 20771 USA. [da Silva, A.; Pawson, S.; Rodriguez, J. M.; Bhartia, P. K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Nielsen, J. E.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Huey, L. G.; Liao, J.; Stickel, R. E.; Tanner, D. J.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Dibb, J. E.] Univ New Hampshire, Complex Syst Res Ctr, Durham, NH 03824 USA. [Simpson, W. R.; Donohoue, D.] Univ Alaska Fairbanks, Dept Chem & Biochem, Fairbanks, AK 99775 USA. [Weinheimer, A.; Flocke, F.; Knapp, D.; Montzka, D.; Kinnison, D. E.; Tilmes, S.; Pan, L. L.] Natl Ctr Atmospher Res, Boulder, CO 80305 USA. [Neuman, J. A.; Nowak, J. B.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Neuman, J. A.; Nowak, J. B.; Ryerson, T. B.; Oltmans, S.; Gao, R. S.; Johnson, B.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Blake, D. R.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Atlas, E. L.] Univ Miami, RSMAS, Miami, FL 33149 USA. [Hendrick, F.; Van Roozendael, M.] Belgian Inst Space Aeron, B-1180 Brussels, Belgium. [Kreher, K.; Johnston, P. V.] NIWA Lauder, Omakau, New Zealand. [Bui, T. P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Chen, G.; Crawford, J. H.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Pierce, R. B.] NOAA, NESDIS, Madison, WI 53706 USA. [Jacob, D. J.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. RP Salawitch, RJ (reprint author), Univ Maryland, Dept Atmospher & Ocean Sci, 2403 Comp & Space Sci Bldg, College Pk, MD 20742 USA. EM rjs@atmos.umd.edu RI Liu, Xiong/P-7186-2014; Atlas, Elliot/J-8171-2015; Simpson, William/I-2859-2014; Bhartia, Pawan/A-4209-2016; Pawson, Steven/I-1865-2014; Manager, CSD Publications/B-2789-2015; Rodriguez, Jose/G-3751-2013; Liao, Jin/H-4865-2013; Gao, Ru-Shan/H-7455-2013; Ryerson, Tom/C-9611-2009; Crawford, James/L-6632-2013; Pan, Laura/A-9296-2008; Neuman, Andy/A-1393-2009; Nowak, John/B-1085-2008; Liang, Qing/B-1276-2011; Canty, Timothy/F-2631-2010; Salawitch, Ross/B-4605-2009; Pierce, Robert Bradley/F-5609-2010; da Silva, Arlindo/D-6301-2012 OI Liu, Xiong/0000-0003-2939-574X; Simpson, William/0000-0002-8596-7290; Bhartia, Pawan/0000-0001-8307-9137; Pawson, Steven/0000-0003-0200-717X; Chance, Kelly/0000-0002-7339-7577; Rodriguez, Jose/0000-0002-1902-4649; Crawford, James/0000-0002-6982-0934; Pan, Laura/0000-0001-7377-2114; Neuman, Andy/0000-0002-3986-1727; Nowak, John/0000-0002-5697-9807; Canty, Timothy/0000-0003-0618-056X; Salawitch, Ross/0000-0001-8597-5832; Pierce, Robert Bradley/0000-0002-2767-1643; da Silva, Arlindo/0000-0002-3381-4030 FU ARCTAS; ACMAP; Aura; MAP; National Aeronautics and Space Administration; ARCPAC National Oceanic and Atmospheric Administration; National Science Foundation; PRODEX; EC [FP6-2005-Global-4-036677, 226224-FP7-ENV-2008-1] FX Research of many of the investigators has been supported by the ARCTAS, ACMAP, Aura, MAP, and Tropospheric Chemistry programs of the National Aeronautics and Space Administration, the ARCPAC program of the National Oceanic and Atmospheric Administration, and the START08 program of the National Science Foundation. The ground-based BrO activities at the Belgian Institute for Space Aeronomy (BIRA-IASB) are funded by the PRODEX contract SECPEA and the EC projects GEOmon (FP6-2005-Global-4-036677) and SHIVA (226224-FP7-ENV-2008-1); BIRA-IASB thanks M. P. Chipperfield for providing SLIMCAT output used in the retrieval. We thank the pilots, flight crews, and OMI scientific leadership and data processing teams for their wonderful efforts. We appreciate the three extensive and careful reviews that led to a much improved manuscript. NR 29 TC 54 Z9 54 U1 4 U2 38 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 3 PY 2010 VL 37 AR L21805 DI 10.1029/2010GL043798 PG 9 WC Geosciences, Multidisciplinary SC Geology GA 676TO UT WOS:000283941700001 ER PT J AU Xu, JY Smith, AK Jiang, GY Gao, H Wei, YA Mlynczak, MG Russell, JM AF Xu, Jiyao Smith, A. K. Jiang, Guoying Gao, Hong Wei, Yuan Mlynczak, M. G. Russell, J. M., III TI Strong longitudinal variations in the OH nightglow SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID NONMIGRATING DIURNAL TIDES; LOW LATITUDES; AIRGLOW; WINDII; EMISSION; O(S-1); EQUATORIAL; UARS AB Airglow from the hydroxyl Meinel bands, originating from about 87 km, gives a signature of the atmosphere that can be observed remotely. Analysis of long term global observations of the 2.0 mu m OH Meinel brightness observed by the TIMED/SABER satellite instrument presents some striking patterns that appear in the Meinel airglow. The analysis shows that migrating and nonmigrating tides have large effects on the nighttime OH airglow emission in the upper mesosphere. The OH airglow emission rate is positively correlated with temperature below 94 km and negatively correlated above. Variations with longitudinal wavenumbers 1 and 4 are shown to result from the impacts of the stationary (D0), westward wavenumber 2 (DW2), and eastward wavenumber 3 (DE3) nonmigrating diurnal tides. Citation: Xu, J., A. K. Smith, G. Jiang, H. Gao, Y. Wei, M. G. Mlynczak, and J. M. Russell III (2010), Strong longitudinal variations in the OH nightglow, Geophys. Res. Lett., 37, L21801, doi:10.1029/2010GL043972. C1 [Xu, Jiyao; Jiang, Guoying; Gao, Hong; Wei, Yuan] Chinese Acad Sci, State Key Lab Space Weather, Ctr Space Sci & Appl Res, Beijing 100080, Peoples R China. [Mlynczak, M. G.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Russell, J. M., III] Hampton Univ, Hampton, VA 23668 USA. [Smith, A. K.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. RP Xu, JY (reprint author), Chinese Acad Sci, State Key Lab Space Weather, Ctr Space Sci & Appl Res, Beijing 100080, Peoples R China. EM xujy@essar.ac.cn RI Mlynczak, Martin/K-3396-2012 FU National Science Foundation of China [40874080, 40890165, 40921063]; National Important Basic Research Project [2006CB806306]; Specialized Research Fund for State Key Laboratories; National Science Foundation FX This research was supported by the National Science Foundation of China (40874080, 40890165, 40921063) and the National Important Basic Research Project (2006CB806306). The project is also supported by the Specialized Research Fund for State Key Laboratories. The National Center for Atmospheric Research is sponsored by the National Science Foundation. NR 27 TC 24 Z9 26 U1 3 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 2 PY 2010 VL 37 AR L21801 DI 10.1029/2010GL043972 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 676TD UT WOS:000283940600001 ER PT J AU Huang, XL Loeb, NG Yang, WZ AF Huang, Xianglei Loeb, Norman G. Yang, Wenze TI Spectrally resolved fluxes derived from collocated AIRS and CERES measurements and their application in model evaluation: 2. Cloudy sky and band-by-band cloud radiative forcing over the tropical oceans SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ENERGY SYSTEM INSTRUMENT; ANGULAR-DISTRIBUTION MODELS; 1998 EL-NINO; STATISTICAL-ANALYSES; OBJECT DATA; PART II; CIRCULATION SYSTEMS; TERRA SATELLITE; VALIDATION; FEEDBACKS AB We first present an algorithm for deriving cloudy sky outgoing spectral flux through the entire longwave spectrum from the collocated Atmospheric Infrared Sounder (AIRS) and Cloud and the Earth's Radiant Energy System (CERES) measurements over the tropical oceans. The algorithm is similar to the one described in part 1 of this series of studies: spectral angular dependent models are developed to estimate the spectral flux of each AIRS channel, and then a multivariate linear prediction scheme is used to estimate spectral fluxes at frequencies not covered by the AIRS instrument. The entire algorithm is validated against synthetic spectra as well as the CERES outgoing longwave radiation (OLR) measurements. Mean difference between the OLR estimated in this way and the collocated CERES OLR is 2.15 W m(-2) with a standard deviation of 5.51 W m(-2). The algorithm behaves consistently well for different combinations of cloud fractions and cloud-surface temperature difference, indicating the robustness of the algorithm for various cloudy scenes. Then, using the Geophysical Fluid Dynamics Laboratory AM2 model as a case study, we illustrate the merit of band-by-band cloud radiative forcings (CRFs) derived from this algorithm in model evaluation. The AM2 tropical annual mean band-by-band CRFs generally agree with the observed counterparts, but some systematic biases in the window bands and over the marine-stratus regions can be clearly identified. An idealized model is used to interpret the results and to explain why the fractional contribution of each band to the broadband CRF is worthy for studying: it is sensitive to cloud height but largely insensitive to the cloud fraction. C1 [Huang, Xianglei] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Loeb, Norman G.] NASA Langley Res Ctr, Radiat & Climate Branch, Hampton, VA 23681 USA. [Yang, Wenze] CUNY Hunter Coll, New York, NY 10021 USA. RP Huang, XL (reprint author), Univ Michigan, Dept Atmospher Ocean & Space Sci, 2455 Hayward St, Ann Arbor, MI 48109 USA. EM xianglei@umich.edu RI Huang, Xianglei/G-6127-2011; Yang, Wenze/B-8356-2012 OI Huang, Xianglei/0000-0002-7129-614X; Yang, Wenze/0000-0001-8514-2742 FU NSF [NSF ATM 0755310]; NASA [NNX09AJ46G] FX We are greatly indebted to V. Ramaswamy and NOAA GFDL for the generosity of providing computing resources for the AM2 simulation and relevant data analysis. The AIRS data were obtained from NASA GSFC DAAC and the CERES data from NASA Langley DAAC. The ECMWF ERA-40 reanalysis data were obtained from http://data.ecmwf.int/data/d/era40_daily/. One of the authors, X. Huang, thanks L. Strow, G. Aumann, T. Pagano, B. Kahn, S. Souze-Machado, S.Y. Lee, and Z. Luo for valuable discussions and helps on understanding the AIRS data. We also thank two reviewers for their comments. This research is supported partly by NSF AGS CLD program under grant NSF ATM 0755310 and NASA MAP project under grant NNX09AJ46G awarded to the University of Michigan. NR 46 TC 12 Z9 12 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 2 PY 2010 VL 115 AR D21101 DI 10.1029/2010JD013932 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 676UQ UT WOS:000283944500003 ER PT J AU Corp, LA Middleton, EM Campbell, PE Huemmrich, KF Daughtry, CST Russ, A Cheng, YB AF Corp, Lawrence A. Middleton, Elizabeth M. Campbell, Petya E. Huemmrich, K. Fred Daughtry, Craig S. T. Russ, Andrew Cheng, Yen-Ben TI Spectral indices to monitor nitrogen-driven carbon uptake in field corn SO JOURNAL OF APPLIED REMOTE SENSING LA English DT Article DE remote sensing; vegetation; reflectance; carbon; nitrogen ID RED EDGE; CHLOROPHYLL CONCENTRATION; CANOPY REFLECTANCE; VEGETATION INDEXES; USE EFFICIENCY; MAPLE LEAVES; LEAF; RESPONSES AB Climate change is heavily impacted by changing vegetation cover and productivity with large scale monitoring of vegetation only possible with remote sensing techniques. The goal of this effort was to evaluate existing reflectance (R) spectroscopic methods for determining vegetation parameters related to photosynthetic function and carbon (C) dynamics in plants. Since nitrogen (N) is a key constituent of photosynthetic pigments and C fixing enzymes, biological C sequestration is regulated in part by N availability. Spectral R information was obtained from field corn grown at four N application rates of 0, 70, 140, 280 kg N/ha. A hierarchy of spectral observations were obtained: leaf and canopy with a spectral radiometer; aircraft with the AISA sensor; and satellite with EO-1 Hyperion. A number of spectral R indices were calculated from these hyperspectral observations and compared to geo-located biophysical measures of plant growth and physiological condition. Top performing indices included the R derivative index D(730)/D(705) and the normalized difference of R(750) vs. R(705) (ND(705)), both of which differentiated three of the four N fertilization rates at multiple observation levels and yielded high correlations with these carbon parameters: light use efficiency (LUE); C:N ratio; and crop grain yield. These results advocate the use of hyperspectral sensors for remotely monitoring carbon cycle dynamics in managed terrestrial ecosystems. C1 [Corp, Lawrence A.] Sigma Space Corp, Lanham, MD 20706 USA. [Middleton, Elizabeth M.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Campbell, Petya E.; Huemmrich, K. Fred] UMBC, Joint Ctr Earth Syst Technol, Baltimore, MD 21250 USA. [Daughtry, Craig S. T.; Russ, Andrew] ARS, Hydrol & Remote Sensing Lab, USDA, Beltsville, MD 20705 USA. [Cheng, Yen-Ben] Earth Resources Technol Inc, Annapolis Jct, MD 20701 USA. RP Corp, LA (reprint author), Sigma Space Corp, Lanham, MD 20706 USA. RI Cheng, Yen-Ben/G-1311-2012; Campbell, Petya/G-4931-2013; Campbell, Petya/L-7486-2013 OI Campbell, Petya/0000-0002-0505-4951; Campbell, Petya/0000-0002-0505-4951 NR 24 TC 4 Z9 4 U1 2 U2 17 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1931-3195 J9 J APPL REMOTE SENS JI J. Appl. Remote Sens. PD NOV 1 PY 2010 VL 4 AR 043555 DI 10.1117/1.3518455 PG 10 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 704QC UT WOS:000286066500005 ER PT J AU Harms, F Wolf, J Raiche, G Jenniskens, P AF Harms, Franziska Wolf, Juergen Raiche, George Jenniskens, Peter TI Imaging and Slitless Spectroscopy of the Stardust Capsule Reentry Radiation SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT AIAA 46th Aerospace Sciences Meeting and Exhibit CY JAN 07-10, 2008 CL Reno, NV SP Amer Inst Aeronaut & Astronaut AB Observations were made during the reentry of the Stardust sample return capsule on 15 January 2006 in order to calibrate the level of radiation from the capsule surface, from the bow shock, and from its wake. A sensitive cooled charge-coupled device camera was used, equipped with a grating to simultaneously record the first-order spectrum of the capsule and that of the background stars. The radiation of the capsule was dominated by the graybody radiation from the hot surface. This graybody radiation was calibrated against the known radiation of background stars. The purpose of this calibration was to provide a cross check for other instruments participating in the airborne Stardust Entry Observing Campaign. In addition, eight short-exposed images were obtained that show the development of billowing and the distortion induced by winds. C1 [Harms, Franziska] Kayser Threde GmbH, D-81379 Munich, Germany. [Wolf, Juergen] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Raiche, George] NASA, Ames Res Ctr, Thermophys Facil Branch, Moffett Field, CA 94035 USA. [Jenniskens, Peter] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. RP Harms, F (reprint author), Kayser Threde GmbH, Wolfratshauserstr 48, D-81379 Munich, Germany. NR 7 TC 1 Z9 1 U1 0 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD NOV-DEC PY 2010 VL 47 IS 6 BP 868 EP 872 DI 10.2514/1.38054 PG 5 WC Engineering, Aerospace SC Engineering GA 699KN UT WOS:000285662400002 ER PT J AU Lachaud, J Cozmuta, I Mansour, NN AF Lachaud, Jean Cozmuta, Ioana Mansour, Nagi N. TI Multiscale Approach to Ablation Modeling of Phenolic Impregnated Carbon Ablators SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article ID C/C COMPOSITE; DIFFUSION AB A multiscale approach is used to model and analyze the ablation of porous materials. Models are developed for the oxidation of a carbon preform and of the char layer of two phenolic impregnated carbon ablators with the same chemical composition but with different structures. Oxygen diffusion through the pores of the materials and in depth oxidation and mass loss are first modeled at the microscopic scale. The microscopic model is then averaged to yield a set of partial differential equations describing the macroscopic behavior of the material. Microscopic and macroscopic approaches are applied with progressive degrees of complexity to gain a comprehensive understanding of the ablation process. Porous medium ablation is found to occur in a zone of the char layer that we call the ablation zone. The thickness of the ablation zone is a decreasing function of the Thiele number. The studied materials are shown to display different ablation behaviors, a fact not captured by current models that are based on chemical composition only. Applied to Stardust's phenolic impregnated carbon ablator, the models explain and reproduce the unexpected drop in density measured in the char layer during Stardust postflight analyses [Stackpoole, M., Sepka, S., Cozmuta, I., and Kontinos, D., "Post-Flight Evaluation of Stardust Sample Return Capsule Forebody Heat-Shield Material," AIAA Paper 2008-1202, Jan. 2008]. C1 [Lachaud, Jean] NASA, Ames Res Ctr, Reacting Flow Environm Branch, NASA Postdoctoral Program, Moffett Field, CA 94035 USA. [Cozmuta, Ioana] NASA, Ames Res Ctr, ELORET Corp, Reacting Flow Environm Branch, Moffett Field, CA 94035 USA. [Mansour, Nagi N.] NASA, Ames Res Ctr, Space Technol Div, Moffett Field, CA 94035 USA. RP Lachaud, J (reprint author), NASA, Ames Res Ctr, Reacting Flow Environm Branch, NASA Postdoctoral Program, Mail Stop 230-3, Moffett Field, CA 94035 USA. OI Lachaud, Jean/0000-0001-7397-1025 FU NASA at the NASA Ames Research Center FX This research was partly supported by an appointment to the NASA Postdoctoral Program at the NASA Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. Support from NASA Aeronautics Research Mission Directorate, Fundamental Aeronautics Hypersonics Project is gratefully acknowledged. Fruitful discussions with Kerry Trumble and the comments of Dean Kontinos and John Lawson on the present manuscript are gratefully acknowledged. NR 27 TC 28 Z9 28 U1 3 U2 13 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD NOV-DEC PY 2010 VL 47 IS 6 BP 910 EP 921 DI 10.2514/1.42681 PG 12 WC Engineering, Aerospace SC Engineering GA 699KN UT WOS:000285662400009 ER PT J AU Berry, S Daryabeigi, K Wurster, K Bittner, R AF Berry, Scott Daryabeigi, Kamran Wurster, Kathryn Bittner, Robert TI Boundary-Layer Transition on X-43A SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT AIAA 38th Fluid Dynamics Conference CY JUN 23-26, 2008-3008 CL Seattle, WA SP AIAA ID VEHICLE; DESIGN AB The successful Mach 7 and 10 flights of the first fully integrated scramjet propulsion systems by the Hyper-X (X-43A) program have provided the means with which to verify the original design methodologies and assumptions. As part of Hyper-X's propulsion-airframe integration, the forebody was designed to include a spanwise array of vortex generators to promote boundary-layer transition ahead of the engine. Turbulence at the inlet is thought to provide the most reliable engine design and allows direct scaling of flight results to ground-based data. Preflight estimations of boundary-layer transition, for both Mach 7 and 10 flight conditions, suggested that forebody boundary-layer trips were required to ensure fully turbulent conditions upstream of the inlet. This paper presents the results of an analysis of the thermocouple measurements used to infer the dynamics of the transition process during the trajectories for both flights, on both the lower surface (to assess trip performance) and the upper surface (to assess natural transition). The approach used in the analysis of the thermocouple data is outlined, along with a discussion of the calculated local flow properties that correspond to the transition events as identified in the flight data. The present analysis has confirmed that the boundary-layer trips performed as expected for both flights, providing turbulent flow ahead of the inlet during critical portions of the trajectory, while the upper surface was laminar as predicted by the preflight analysis. C1 [Berry, Scott] NASA, Langley Res Ctr, Aerothermodynam Branch, Hampton, VA 23681 USA. [Daryabeigi, Kamran] NASA, Langley Res Ctr, Struct Mech & Concepts Branch, Hampton, VA 23681 USA. [Wurster, Kathryn] NASA, Langley Res Ctr, Vehicle Anal Branch, Hampton, VA 23681 USA. [Bittner, Robert] ATK Space Div, Hyperson Air Breathing Prop Branch, Hampton, VA 23681 USA. RP Berry, S (reprint author), NASA, Langley Res Ctr, Aerothermodynam Branch, M-S 408A, Hampton, VA 23681 USA. NR 34 TC 4 Z9 7 U1 3 U2 15 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD NOV-DEC PY 2010 VL 47 IS 6 BP 922 EP 934 DI 10.2514/1.45889 PG 13 WC Engineering, Aerospace SC Engineering GA 699KN UT WOS:000285662400010 ER PT J AU Bakhtian, NM Aftosmis, MJ AF Bakhtian, Noel M. Aftosmis, Michael J. TI Parametric Study of Peripheral Nozzle Configurations for Supersonic Retropropulsion SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT AIAA 2010 ASM Conference CY JAN 04-07, 2010 CL Orlando, FL ID FLOW; JET; REDUCTION; DESCENT; ENTRY; DRAG AB With sample-return and manned missions on the horizon for Mars exploration, the ability to decelerate high-mass systems to the planet's surface has become a research priority. This paper explores the use of supersonic retropropulsion, the application of jets facing into the freestream, as a means of achieving drag augmentation. Numerical studies of retropropulsion flows were conducted using a Cartesian Euler solver with adjoint-driven mesh refinement. After first validating this simulation tool with existing experimental data, a series of three broad parametric studies comprising 181 total runs was conducted using tri- and quad-nozzle capsule configurations. These studies chronicle the effects of nozzle location, orientation, and jet strength over Mach numbers from two to eight and angles of attack ranging from 5 to 10. Although many simulations in these studies actually produced negative drag augmentation, some simulations displayed local overpressures 60% higher than that possible behind a normal shock and produced drag augmentation on the order of 20%. Examination of these cases leads to the development of an aerodynamic model for significant drag augmentation in which the retrojets are viewed as oblique shock generators and flow approaching the capsule face is decelerated and compressed by multiple oblique shocks. By avoiding the massive stagnation pressure losses associated with the bow shock in typical entry systems, this approach achieves significant overpressure on the capsule face and strong drag amplification. With a fundamental physical mechanism for drag augmentation identified, follow-on studies are planned to exploit this feature and to understand its impact on potential entry trajectories and delivered mass limits for future Mars missions. C1 [Bakhtian, Noel M.] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. [Aftosmis, Michael J.] NASA, Ames Res Ctr, NASA Adv Supercomp Div, Moffett Field, CA 94035 USA. RP Bakhtian, NM (reprint author), Stanford Univ, Dept Aeronaut & Astronaut, Durand Bldg,496 Lomita Mall, Stanford, CA 94305 USA. NR 35 TC 6 Z9 7 U1 0 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD NOV-DEC PY 2010 VL 47 IS 6 BP 935 EP 950 DI 10.2514/1.48887 PG 16 WC Engineering, Aerospace SC Engineering GA 699KN UT WOS:000285662400011 ER PT J AU Adamo, DR Giorgini, JD Abell, PA Landis, RR AF Adamo, Daniel R. Giorgini, Jon D. Abell, Paul A. Landis, Rob R. TI Asteroid Destinations Accessible for Human Exploration: A Preliminary Survey in Mid-2009 SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article AB The flexible path is one of several space exploration strategy options developed by the Review of U.S. Human Space Flight Plans Committee in 2009. Among proposed flexible path destinations are near-Earth objects, those asteroids and comets having perihelions of less than 1.3 astronomical units and periods of less than 200 years. Heliocentric-orbit element criteria have been developed with the objective of rapidly identifying the near-Earth object subset potentially accessible for human exploration capabilities. When these criteria were applied to the Jet Propulsion Laboratory's small-body database in June 2009, the accessible subset was found to contain 36 near-Earth objects. Opportunities to visit these destinations have been obtained and assessed over the interval from 2020 through 2050. With the number of cataloged near-Earth objects expected to grow by more than an order of magnitude in the next 20 years, the number and frequency of human near-Earth object exploration opportunities will likewise increase. C1 [Giorgini, Jon D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Landis, Rob R.] NASA, Lyndon B Johnson Space Ctr, Intelligent Syst Div, Houston, TX 77058 USA. RP Adamo, DR (reprint author), 4203 Moonlight Shadow Court, Houston, TX 77059 USA. EM adamod@earthlink.net; jon.d.giorgini@nasa.gov; paul.a.abell@nasa.gov; rob.r.landis@nasa.gov NR 8 TC 9 Z9 9 U1 0 U2 1 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD NOV-DEC PY 2010 VL 47 IS 6 BP 994 EP 1002 DI 10.2514/1.48681 PG 9 WC Engineering, Aerospace SC Engineering GA 699KN UT WOS:000285662400017 ER PT J AU Park, RS Bhaskaran, S Cheng, Y Johnson, AJ Lisano, ME Wolf, AA AF Park, Ryan S. Bhaskaran, Shyam Cheng, Yang Johnson, Andrew J. Lisano, Michael E. Wolf, Aron A. TI Trajectory Reconstruction of Sounding Rocket Using Inertial Measurement Unit and Landmark Data SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT AAS/AIAA Astrodynamics Specialist Conference CY AUG 09-13, 2009 CL Pittsburgh, PA SP Amer Astronaut Soc, Amer Inst Aeronaut & Astronaut AB This paper presents trajectory reconstruction of the ST-9 (space technology) sounding rocket experiment using the onboard inertial measurement unit data and descent imagery. The raw inertial measurement unit accelerometer measurements are first converted into inertial acceleration and then used in trajectory integration. The descent images are preprocessed using a map-matching algorithm and unique landmarks for each image are created. Using the converted inertial measurement unit data and descent images, the result from dead-reckoning and the kinematic-fix approaches are first compared with the global positioning system measurements. Then, both the inertial measurement unit data and landmarks are processed together using a batch least-squares filter and the position, velocity, stochastic acceleration, and camera orientation of each image are estimated. The reconstructed trajectory is compared with the global positioning system data and the corresponding formal uncertainties are presented. The result shows that inertial measurement unit data and descent images processed with a batch filter algorithm provide the trajectory accuracy required for pinpoint landing. C1 [Bhaskaran, Shyam] CALTECH, Jet Prop Lab, Outer Planet Nav Grp, Pasadena, CA 91109 USA. [Lisano, Michael E.] CALTECH, Jet Prop Lab, Orbiter Missions Syst Engn Grp, Pasadena, CA 91109 USA. [Wolf, Aron A.] CALTECH, Jet Prop Lab, EDL Aero Applicat Grp, Pasadena, CA 91109 USA. EM Ryan.S.Park@jpl.nasa.gov; Shyam.Bhaskaran@jpl.nasa.gov; Yang.Cheng@jpl.nasa.gov; Andrew.E.Johnson@jpl.nasa.gov; Michael.E.Lisano@jpl.nasa.gov; Aron.A.Wolf@jpl.nasa.gov NR 8 TC 2 Z9 3 U1 0 U2 5 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD NOV-DEC PY 2010 VL 47 IS 6 BP 1003 EP 1009 DI 10.2514/1.46950 PG 7 WC Engineering, Aerospace SC Engineering GA 699KN UT WOS:000285662400018 ER PT J AU Wercinski, PF Jenniskens, P AF Wercinski, Paul F. Jenniskens, Peter TI Digital Still Snapshots of the Stardust Sample Return Capsule Entry SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article AB The 15 January 2006 reentry of the Stardust Sample Return capsule was photographed from 11.2-km altitude onboard NASA's DC-8 Airborne Laboratory in a series of brief 1/320 s exposures with a Nikon D70 digital still camera. The entry was detected from 09:57:13.5 to 09:57:53.5 UTC. Other instruments have demonstrated that most of the observed broadband flux is due to gray body radiation from the hot surface of the thermal protection system, except in the very beginning when strong emission lines of zinc from an ablating paint layer contributed significantly to the blue band. The measured flux in the green band was used to measure the surface-averaged temperature variation during flight, and the corresponding flux in the blue and red bands were used to verify the expected wavelength dependence of the gray body emission. C1 [Wercinski, Paul F.] NASA, Ames Res Ctr, Space Technol Div, Moffett Field, CA 94035 USA. [Jenniskens, Peter] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. RP Wercinski, PF (reprint author), NASA, Ames Res Ctr, Space Technol Div, Mail Stop 230-2, Moffett Field, CA 94035 USA. EM Paul.F.Wercinski@nasa.gov; Petrus.M.Jenniskens@nasa.gov FU NASA Wallops Flight Center; Orion Thermal Protection System Advanced Development Project; NASA Engineering and Safety Center FX We thank the ground-based observers that contributed to this article, in particular Bryan Murahashi of San Jose. NASA's DC-8 Airborne Laboratory was deployed by the University of North Dakota/National Suborbital Education and Research Center under contract with NASA Wallops Flight Center. This work was funded and managed by the Orion Thermal Protection System Advanced Development Project and the NASA Engineering and Safety Center. NR 7 TC 2 Z9 2 U1 0 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD NOV-DEC PY 2010 VL 47 IS 6 BP 889 EP 894 DI 10.2514/1.40248 PG 6 WC Engineering, Aerospace SC Engineering GA 699KN UT WOS:000285662400006 ER PT J AU Pancoast, A Sajina, A Lacy, M Noriega-Crespo, A Rho, J AF Pancoast, Anna Sajina, Anna Lacy, Mark Noriega-Crespo, Alberto Rho, Jeonghee TI STAR FORMATION AND DUST OBSCURATION IN THE TIDALLY DISTORTED GALAXY NGC 2442 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: individual (NGC 2442); galaxies: star formation; galaxies: structure ID LUMINOUS INFRARED GALAXIES; FORMATION RATE INDICATORS; SPITZER-SPACE-TELESCOPE; SMALL-MAGELLANIC-CLOUD; NEARBY GALAXIES; SPIRAL GALAXIES; FORMATION RATES; STARBURST GALAXIES; FORMATION HISTORY; FORMING GALAXIES AB We present a detailed investigation of the morphological distribution and level of star formation and dust obscuration in the nearby tidally distorted galaxy NGC 2442. Spitzer images in the IR at 3.6, 4.5, 5.8, 8.0, and 24 mu m and GALEX images at 1500 angstrom and 2300 angstrom allow us to resolve the galaxy on scales between similar to 240 and 600 pc. We supplement these with archival data in the B, J, H, and K bands. We use the 8 mu m, 24 mu m, and FUV (1500 angstrom) emission to study the star formation rate (SFR). We find that, globally, these tracers of star formation give a range of results of similar to 6-11 M(circle dot) yr(-1), with the dust-corrected FUV giving the highest value of SFR. We can reconcile the UV- and IR-based estimates by adopting a steeper UV extinction curve that lies in between the starburst (Calzetti) and Small Magellanic Cloud extinction curves. However, the regions of the highest SFR intensity along the spiral arms are consistent with a starburst-like extinction. Overall, the level of star formation we find is higher than previously published for this galaxy, by about a factor of 2, which, contrary to previous conclusions, implies that the interaction that caused the distorted morphology of NGC 2442 likely also triggered increased levels of star formation activity. We also find marked asymmetry in that the north spiral arm has a noticeably higher SFR than the southern arm. The tip of the southern spiral arm shows a likely tidally distorted peculiar morphology. It is UV bright and shows unusual IRAC colors, consistent with other published tidal features IRAC data. Outside of the spiral arms, we discover what appears to be a superbubble, similar to 1.7 kpc across, which is seen most clearly in the IRAC images. Significant H alpha, UV, and IR emission in the area also suggest vigorous ongoing star formation. A known, recent supernova (SN 1999ga) is located at the edge of this superbubble. Although speculative at this stage, this area suggests a large star-forming region with a morphology shaped by generations of supernovae. Lastly, we discover an 8 mu m (polycyclic aromatic hydrocarbon) circumnuclear ring with an similar to 0.8 kpc radius. The H alpha emission is largely concentrated inside that ring and shows a vague spiral structure in the rest of the galaxy. The nuclear region shows the highest obscuration levels in the galaxy (A(1600) similar to 3-4) most likely due to the circumnuclear dust ring. C1 [Pancoast, Anna; Sajina, Anna] Haverford Coll, Haverford, PA 19041 USA. [Pancoast, Anna] UC Santa Barbara, Santa Barbara, CA 93106 USA. [Lacy, Mark] Natl Radio Astron Observ, N Amer ALMA Sci Ctr, Charlottesville, VA 22903 USA. [Noriega-Crespo, Alberto] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Rho, Jeonghee] NASA, Ames Res Ctr, SOFIA, Moffett Field, CA 94035 USA. RP Pancoast, A (reprint author), Haverford Coll, Haverford, PA 19041 USA. FU JPL/Caltech; National Aeronautics and Space Administration; National Science Foundation FX We are grateful to the anonymous referee for their careful reading of our manuscript and thoughtful suggestions that have significantly improved the content and clarity of this paper. We thank Beth Willman and Brian Siana for helpful discussions. Support for this work was provided by NASA through an award issued by JPL/Caltech. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This work uses observations made by Galaxy Evolution Explorer (GALEX), a NASA Small Explorer, launched in 2003 April and developed in cooperation with the Centre National d'Etudes Spatiales of France and the Korean Ministry of Science and Technology. This work makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This work has also made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 64 TC 6 Z9 6 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 530 EP 543 DI 10.1088/0004-637X/723/1/530 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100045 ER PT J AU Carroll, PB Drouin, BJ Weaver, SLW AF Carroll, P. Brandon Drouin, Brian J. Weaver, Susanna L. Widicus TI THE SUBMILLIMETER SPECTRUM OF GLYCOLALDEHYDE SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: molecules; line: identification; methods: data analysis; methods: laboratory; molecular data; molecular processes; radio lines: ISM ID INTERSTELLAR GLYCOLALDEHYDE; MILLIMETER-WAVE; DIPOLE-MOMENT; SUGAR AB Glycolaldehyde (HOCH(2)CHO) is a sugar-related interstellar prebiotic molecule that has been detected in two star-forming regions, Sgr B2(N) and G31.41+0.31. Glycolaldehyde is suspected to form from photodissociation-driven ice chemistry, and therefore can be used to trace complex organic chemistry in interstellar environments. The relative abundance of glycolaldehyde to its structural isomers, methyl formate (HCOOCH(3)) and acetic acid (CH(3)COOH), can be used to constrain astrochemical models. Given its central role in the complex chemistry of the interstellar medium, glycolaldehyde has been suggested as a prime molecular target for upcoming high-frequency molecular line searches using new far-infrared observatories. In particular, glycolaldehyde is a target for the Herschel Space Observatory HEXOS Key Program, which is conducting spectral line surveys of the Sgr B2(N) and Orion KL star-forming regions across the entire HIFI band. Laboratory investigation of glycolaldehyde in the HIFI frequency range is required before its lines can be identified in these spectra. We have therefore acquired the laboratory spectrum of glycolaldehyde in selected frequency ranges across the submillimeter range. We present here the laboratory spectral analysis of the ground vibrational state of glycolaldehyde up to 1.2 THz. C1 [Carroll, P. Brandon; Weaver, Susanna L. Widicus] Emory Univ, Dept Chem, Atlanta, GA 30322 USA. [Drouin, Brian J.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Carroll, PB (reprint author), Emory Univ, Dept Chem, 1515 Pierce Dr, Atlanta, GA 30322 USA. EM pbcarro@emory.edu; brian.j.drouin@jpl.nasa.gov; susanna.widicus.weaver@emory.edu FU National Aeronautics and Space Administration; Emory University FX Portions of this paper present research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This work was supported by SLWW's startup funds provided by Emory University. We are grateful to Geoffrey Blake for providing lodging for P.B.C. during his visit to Pasadena. We thank the JPL Microwave, Millimeter, and Submillimeter Spectroscopy Group, particularly Shanshan Yu, for their help during data collection. We also gratefully acknowledge the support and services rendered by the Emory and JPL staff. NR 11 TC 22 Z9 22 U1 1 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 845 EP 849 DI 10.1088/0004-637X/723/1/845 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100073 ER PT J AU Rivera-Ingraham, A Ade, PAR Bock, JJ Chapin, EL Devlin, MJ Dicker, SR Griffin, M Gundersen, JO Halpern, M Hargrave, PC Hughes, DH Klein, J Marsden, G Martin, PG Mauskopf, P Netterfield, CB Olmi, L Patanchon, G Rex, M Scott, D Semisch, C Truch, MDP Tucker, C Tucker, GS Viero, MP Wiebe, DV AF Rivera-Ingraham, Alana Ade, Peter A. R. Bock, James J. Chapin, Edward L. Devlin, Mark J. Dicker, Simon R. Griffin, Matthew Gundersen, Joshua O. Halpern, Mark Hargrave, Peter C. Hughes, David H. Klein, Jeff Marsden, Gaelen Martin, Peter G. Mauskopf, Philip Netterfield, Calvin B. Olmi, Luca Patanchon, Guillaume Rex, Marie Scott, Douglas Semisch, Christopher Truch, Matthew D. P. Tucker, Carole Tucker, Gregory S. Viero, Marco P. Wiebe, Donald V. TI THE BLAST VIEW OF THE STAR-FORMING REGION IN AQUILA (l=45 degrees, b=0 degrees) SO ASTROPHYSICAL JOURNAL LA English DT Article DE balloons; ISM: clouds; stars: formation; submillimeter: ISM ID H-II REGIONS; GALACTIC RING SURVEY; ULTRACOMPACT HII-REGIONS; APERTURE-SUBMILLIMETER-TELESCOPE; IRAS POINT SOURCES; PLANE SURVEY; MOLECULAR CLOUDS; VLA OBSERVATIONS; IONIZING STARS; MASER EMISSION AB We have carried out the first general submillimeter analysis of the field toward GRSMC 45.46+0.05, a massive star-forming region in Aquila. The deconvolved 6 deg(2) (3 degrees x 2 degrees) maps provided by BLAST in 2005 at 250, 350, and 500 mu m were used to perform a preliminary characterization of the clump population previously investigated in the infrared, radio, and molecular maps. Interferometric CORNISH data at 4.8 GHz have also been used to characterize the Ultracompact Hii regions (UCHiiRs) within the main clumps. By means of the BLAST maps, we have produced an initial census of the submillimeter structures that will be observed by Herschel, several of which are known Infrared Dark Clouds. Our spectral energy distributions of the main clumps in the field, located at similar to 7 kpc, reveal an active population with temperatures of T similar to 35-40 K and masses of similar to 10(3) M-circle dot for a dust emissivity index beta = 1.5. The clump evolutionary stages range from evolved sources, with extended Hii regions and prominent IR stellar population, to massive young stellar objects, prior to the formation of an UCHIIR. The CORNISH data have revealed the details of the stellar content and structure of the UCHIIRs. In most cases, the ionizing stars corresponding to the brightest radio detections are capable of accounting for the clump bolometric luminosity, in most cases powered by embedded OB stellar clusters. C1 [Rivera-Ingraham, Alana; Martin, Peter G.; Netterfield, Calvin B.; Viero, Marco P.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Tucker, Carole] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bock, James J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bock, James J.] CALTECH, Pasadena, CA 91125 USA. [Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas; Wiebe, Donald V.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff; Rex, Marie; Semisch, Christopher; Truch, Matthew D. P.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Gundersen, Joshua O.] Univ Miami, Dept Phys, Carol Gables, FL 33146 USA. [Hughes, David H.] INAOE, Puebla, Mexico. [Martin, Peter G.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Netterfield, Calvin B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Olmi, Luca] Univ Puerto Rico, Dept Phys, San Juan, PR 00936 USA. [Olmi, Luca] Ist Radioastron, I-50125 Florence, Italy. [Patanchon, Guillaume] Lab APC, F-75205 Paris, France. [Tucker, Gregory S.] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Rivera-Ingraham, A (reprint author), Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. RI Klein, Jeffrey/E-3295-2013 FU NASA [NAG5-12785, NAG5-13301, NNGO-6GI11G]; Canadian Space Agency (CSA); UK Particle Physics and Astronomy Research Council (PPARC); Canada Foundation for Innovation (CFI); Ontario Innovation Trust (OIT); Canada's Natural Sciences and Engineering Research Council (NSERC) FX The BLAST collaboration acknowledges the support of NASA through grants NAG5-12785, NAG5-13301, and NNGO-6GI11G, the Canadian Space Agency (CSA), the UK Particle Physics and Astronomy Research Council (PPARC), the Canada Foundation for Innovation (CFI), the Ontario Innovation Trust (OIT), and Canada's Natural Sciences and Engineering Research Council (NSERC). We also thank the Columbia Scientific Balloon Facility (CSBF) staff for their outstanding work. We also thank the referee for very useful suggestions and improvements to our paper, and Mubdi Rahman for useful discussions. NR 74 TC 6 Z9 6 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 915 EP 934 DI 10.1088/0004-637X/723/1/915 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100077 ER PT J AU Bauer, JM Buratti, BJ Li, JY Mosher, JA Hicks, MD Schmidt, BE Goguen, JD AF Bauer, James M. Buratti, Bonnie J. Li, Jian-Yang Mosher, Joel A. Hicks, Michael D. Schmidt, Britney E. Goguen, Jay D. TI DIRECT DETECTION OF SEASONAL CHANGES ON TRITON WITH HUBBLE SPACE TELESCOPE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planets and satellites: individual (Triton); planets and satellites: surfaces ID SURFACE; PHOTOMETRY; VARIABILITY; ATMOSPHERE; SHAPE; IRAF AB Triton is one of the few bodies in the solar system with observed cryo-volcanic activity, in the form of plumes at its south pole, which suggests large-scale surface volatile transport over time. Triton's large variations in obliquity have motivated prior predictions of changing atmospheric column densities of several orders of magnitude, driven by seasonal evaporation of surface volatiles. Using the Hubble Space Telescope, we directly imaged Triton's surface and have detected large-scale differences in increased and decreased reflectance when compared with Voyager data at UV, visual, and methane-band wavelengths. Our surface map shows regions of increased brightness at near-equatorial latitudes and near the Neptune-facing side, and darkened regions near longitudes of +/- 180 degrees, indicating the presence of ongoing seasonal volatile transport. C1 [Bauer, James M.; Buratti, Bonnie J.; Mosher, Joel A.; Hicks, Michael D.; Goguen, Jay D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Li, Jian-Yang] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Schmidt, Britney E.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90064 USA. RP Bauer, JM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 183-401, Pasadena, CA 91109 USA. EM bauer@scn.jpl.nasa.gov; Bonnie.Buratti@jpl.nasa.gov; jyli@astro.umd.edu; jam@joelmosher.com; hicksm@scn.jpl.nasa.gov; britneys@ucla.edu; jdg@scn.jpl.nasa.gov OI Schmidt, Britney/0000-0001-7376-8510 FU NASA [NAS 5-26555]; Space Telescope Science Institute FX Funding for the analysis of the Voyager images was provided in part by the NASA Discovery Data Analysis Program. The research presented was partially based on observations made with the NASA/ESA Hubble Space Telescope, the analysis of which was funded through a grant from the Space Telescope Science Institute. STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555. NR 24 TC 5 Z9 5 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2010 VL 723 IS 1 BP L49 EP L52 DI 10.1088/2041-8205/723/1/L49 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LJ UT WOS:000284075200010 ER PT J AU Culverhouse, TL Bonamente, M Bulbul, E Carlstrom, JE Gralla, MB Greer, C Hasler, N Hawkins, D Hennessy, R Jetha, NN Joy, M Lamb, JW Leitch, EM Marrone, DP Miller, A Mroczkowski, T Muchovej, S Pryke, C Sharp, M Woody, D Andreon, S Maughan, B Stanford, SA AF Culverhouse, T. L. Bonamente, M. Bulbul, E. Carlstrom, J. E. Gralla, M. B. Greer, C. Hasler, N. Hawkins, D. Hennessy, R. Jetha, N. N. Joy, M. Lamb, J. W. Leitch, E. M. Marrone, D. P. Miller, A. Mroczkowski, T. Muchovej, S. Pryke, C. Sharp, M. Woody, D. Andreon, S. Maughan, B. Stanford, S. A. TI GALAXY CLUSTERS AT z >= 1: GAS CONSTRAINTS FROM THE SUNYAEV-ZEL'DOVICH ARRAY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmic background radiation; cosmology: observations; galaxies: clusters: general; galaxies: clusters: intracluster medium ID X-RAY MEASUREMENTS; HIGH-REDSHIFT; SCALING RELATIONS; HUBBLE CONSTANT; CHANDRA; TELESCOPE; COSMOLOGY; UNIVERSE AB We present gas constraints from Sunyaev-Zel'dovich (SZ) effect measurements in a sample of 11 X-ray and infrared (IR) selected galaxy clusters at z >= 1, using data from the Sunyaev-Zel'dovich Array (SZA). The cylindrically integrated Compton-y parameter, Y, is calculated by fitting the data to a two-parameter gas pressure profile. Where possible, we also determine the temperature of the hot intracluster plasma from Chandra and XMM-Newton data and constrain the gas mass within the same aperture (r(2500)) as Y. The SZ effect is detected in the clusters for which the X-ray data indicate gas masses above similar to 10(13) M(circle dot), including XMMU J2235-2557 at redshift z = 1.39, which to date is one of the most distant clusters detected using the SZ effect. None of the IR-selected targets are detected by the SZA measurements, indicating low gas masses for these objects. For these and the four other undetected clusters, we quote upper limits on Y and M(gas,SZ), with the latter derived from scaling relations calibrated with lower redshift clusters. We compare the constraints on Y and X-ray-derived gas mass M(gas,X-ray) to self-similar scaling relations between these observables determined from observations of lower redshift clusters, finding consistency given the measurement error. C1 [Culverhouse, T. L.; Carlstrom, J. E.; Gralla, M. B.; Greer, C.; Hennessy, R.; Leitch, E. M.; Marrone, D. P.; Pryke, C.; Sharp, M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Culverhouse, T. L.; Carlstrom, J. E.; Gralla, M. B.; Greer, C.; Hennessy, R.; Leitch, E. M.; Pryke, C.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Bonamente, M.; Bulbul, E.; Hasler, N.; Jetha, N. N.] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. [Bonamente, M.; Jetha, N. N.; Joy, M.] NASA, Space Sci VP62, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Carlstrom, J. E.; Marrone, D. P.; Pryke, C.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carlstrom, J. E.; Sharp, M.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Hawkins, D.; Lamb, J. W.; Muchovej, S.; Woody, D.] CALTECH, Owens Valley Radio Observ, Big Pine, CA 93513 USA. [Miller, A.; Mroczkowski, T.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Miller, A.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Mroczkowski, T.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Mroczkowski, T.; Muchovej, S.] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Andreon, S.] INAF Osservatorio Astron Brera, I-20121 Milan, Italy. [Maughan, B.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Stanford, S. A.] Univ Calif Davis, Davis, CA 95618 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. RP Culverhouse, TL (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. OI Andreon, Stefano/0000-0002-2041-8784 FU NSF [AST-0604982, AST-0838187, AST-0507545, AST-05-07161]; University of Chicago [PHY-0114422]; CARMA partner universities; NASA [HF-51259.01] FX The operation of the SZA is supported by the NSF through grant AST-0604982 and AST-0838187. Partial support is also provided from grant PHY-0114422 at the University of Chicago, and by the NSF grants AST-0507545 and AST-05-07161 to Columbia University. CARMA operations are supported by the NSF under a cooperative agreement, and by the CARMA partner universities. S.M. acknowledges support from an NSF Astronomy and Astrophysics Fellowship; C.G., S.M., and M.S. from NSF Graduate Research Fellowships; D.P.M. from NASA Hubble Fellowship grant HF-51259.01. NR 36 TC 15 Z9 15 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2010 VL 723 IS 1 BP L78 EP L83 DI 10.1088/2041-8205/723/1/L78 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LJ UT WOS:000284075200016 ER PT J AU Lee, JC Liou, MS AF Lee, Jang-Chang Liou, Meng-Sing TI Accurate calculation of the pressure and temperature of water, steam, and ice Formulation for CFD SO JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY LA English DT Article DE Gibbs free energy; Equation of state for steam; Water and ice; IAPWS ID EQUATION; STATE AB An accurate approach is proposed for calculating the thermodynamic properties of water in three states liquid, steam and ice, and the transitional states among them The formulation is expressed in terms of quantities that are naturally used in Computational Fluid Dynamics (CFD), namely the specific volume (v) and specific internal energy (u), through the use of Gibbs free energy The Gibbs free energy formula proposed by IAPWS, formulated as a function of pressure and temperature, is used as a basis in our calculations The Jacobian matrix resulting from the transformation between sets of variables (p,T) and (v,u) are derived for each phase, the Newton-Raphson method is used to iteratively solve the nonlinear equations Numerical calculations have been carried out for the entire phase diagram covering all three phases The numerical results are compared with the original data of IAPWS and the associated errors are analyzed It is confirmed that the pressure and temperature are accurately calculated, with largest relative error on the order of 10(-7) in the ice phase Hence, other thermodynamic properties are also obtained within the same level of accuracy The method proposed in this paper for calculating pressure and temperature, variables needed in CFD, is reliable and can be applied to the numerical simulation of multiphase flows, including phase changes C1 [Lee, Jang-Chang] Andong Natl Univ, Dept Mech Engn, Andong 760749, South Korea. [Liou, Meng-Sing] NASA Glenn Res Ctr Lewis Field, Cleveland, OH 44135 USA. RP Lee, JC (reprint author), Andong Natl Univ, Dept Mech Engn, Andong 760749, South Korea. FU Andong National University FX This work was supported by a grant from 2007 Research Fund of Andong National University NR 11 TC 0 Z9 0 U1 0 U2 5 PU KOREAN SOC MECHANICAL ENGINEERS PI SEOUL PA KSTC NEW BLD. 7TH FLOOR, 635-4 YEOKSAM-DONG KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 1738-494X J9 J MECH SCI TECHNOL JI J. Mech. Sci. Technol. PD NOV PY 2010 VL 24 IS 11 BP 2333 EP 2340 DI 10.1007/s12206-010-0906-2 PG 8 WC Engineering, Mechanical SC Engineering GA 677WG UT WOS:000284024100024 ER PT J AU Braakman, R Drouin, BJ Weaver, SLW Blake, GA AF Braakman, Rogier Drouin, Brian J. Weaver, Susanna L. Widicus Blake, Geoffrey A. TI Extended analysis of hydroxyacetone in the torsional ground state SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Rotational spectroscopy; Internal rotation; Torsion-rotational coupling ID METHYL FORMATE HCOOCH3; INTERSTELLAR GLYCOLALDEHYDE; SAGITTARIUS B2(N); MILLIMETER; MICROWAVE; 1,3-DIHYDROXYACETONE; SUBMILLIMETER; MOLECULES; ROTATION; SPECTRA AB The torsion-rotation spectrum of hydroxyacetone presents a highly challenging analysis problem in molecular physics Continuing analyses of this species are compelling due to a nascent interest from astronomers who believe hydroxyacetone may link a variety of organic chemical families observed in the interstellar medium (ISM) Recent work has demonstrated the difficulties in analysis of the millimeter spectrum and the modestly weaker spectrum in this region has not afforded an ISM detection We present an extension of the laboratory measurements and analysis up to the room temperature Boltzmann peak near 300 GHz thus providing sufficient coverage to examine the ISM for the strongest features expected in star-forming hot cores Even without subsequent detection searches for the stronger features will produce the lowest possible upper limits of this elusive species (C) 2010 Elsevier Inc All rights reserved C1 [Braakman, Rogier] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Drouin, Brian J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Weaver, Susanna L. Widicus] Emory Univ, Dept Chem, Atlanta, GA 30322 USA. [Blake, Geoffrey A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Braakman, R (reprint author), Santa Fe Inst, Hyde Pk Rd 1399, Santa Fe, NM 87501 USA. FU NASA [NAG5-13457]; National Aeronautics and Space Administration FX R B acknowledge J Hougen at NIST for useful discussions on internal axis system (IAM) methods The efforts of R B and G A B were funded in part by the NASA SARA program Grant NAG5-13457 Portions of this paper present research carried out at the Jet Propulsion Laboratory California Institute of Technology under contract with the National Aeronautics and Space Administration NR 28 TC 2 Z9 2 U1 1 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD NOV PY 2010 VL 264 IS 1 BP 43 EP 49 DI 10.1016/jjms.2010.09.003 PG 7 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 679SS UT WOS:000284181700006 ER PT J AU Beyersdorf, AJ Blake, DR Swanson, A Meinardi, S Rowland, FS Davis, D AF Beyersdorf, Andreas J. Blake, Donald R. Swanson, Aaron Meinardi, Simone Rowland, F. S. Davis, Douglas TI Abundances and variability of tropospheric volatile organic compounds at the South Pole and other Antarctic locations SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Antarctic troposphere; Airborne measurements; Alkyl nitrate production; Mount Erebus; VOC seasonal variability; ANTCI ID DURVILLE COASTAL ANTARCTICA; SALT SULFATE AEROSOLS; BOUNDARY-LAYER; NONMETHANE HYDROCARBONS; DIMETHYL SULFIDE; ISCAT 2000; ALKYL NITRATES; ATMOSPHERIC DIMETHYLSULFIDE; SEASONAL-VARIATIONS; PACIFIC-OCEAN AB Multiyear (2000-2006) seasonal measurements of carbon monoxide, hydrocarbons, halogenated species, dimethyl sulfide, carbonyl sulfide and C(1)-C(4) alkyl nitrates at the South Pole are presented for the first time. At the South Pole, short-lived species (such as the alkenes) typically were not observed above their limits of detection because of long transit times from source regions. Peak mixing ratios of the longer lived species with anthropogenic sources were measured in late winter (August and September) with decreasing mixing ratios throughout the spring. In comparison, compounds with a strong oceanic source, such as bromoform and methyl iodide, had peak mixing ratios earlier in the winter (June and July) because of decreased oceanic production during the winter months. Dimethyl sulfide (DMS), which is also oceanically emitted but has a short lifetime, was rarely measured above 5 pptv. This is in contrast to high DMS mixing ratios at coastal locations and shows the importance of photochemical removal during transport to the pole. Alkyl nitrate mixing ratios peaked during April and then decreased throughout the winter. The dominant source of the alkyl nitrates in the region is believed to be oceanic emissions rather than photochemical production due to low alkane levels. Sampling of other tropospheric environments via a Twin Otter aircraft included the west coast of the Ross Sea and large stretches of the Antarctic Plateau. In the coastal atmosphere, a vertical gradient was found with the highest mixing ratios of marine emitted compounds at low altitudes. Conversely, for anthropogenically produced species the highest mixing ratios were measured at the highest altitudes, suggesting long-range transport to the continent. Flights flown through the plume of Mount Erebus, an active volcano, revealed that both carbon monoxide and carbonyl sulfide are emitted with an OCS/CO molar ratio of 3.3 x 10(-3) consistent with direct observations by other investigators within the crater rim. Published by Elsevier Ltd. C1 [Beyersdorf, Andreas J.] NASA, Langley Res Ctr, Hampton, VA 23662 USA. [Blake, Donald R.; Meinardi, Simone; Rowland, F. S.] Univ Calif Irvine, Irvine, CA 92697 USA. [Swanson, Aaron] Northrop Grumman Aerosp Syst, Redondo Beach, CA 90278 USA. [Davis, Douglas] Georgia Inst Technol, Atlanta, GA 30332 USA. RP Beyersdorf, AJ (reprint author), NASA, Langley Res Ctr, Mail Stop 483, Hampton, VA 23681 USA. EM andreas.j.beyersdorf@nasa.gov RI Beyersdorf, Andreas/N-1247-2013 FU NSF FX This research was supported by NSF. This work could not be performed without the help of the staff at the South Pole and McMurdo research stations with particular gratitude to Stephanie Koes and the South Pole winter-over staff. Assistance with the airborne sample collection was provided by the entire ANTCI science group but particularly by Saewung Kim, Ed Kosciuch, Lee Mauldin and Dave Tanner. At UC Irvine, the assistance of Barbara Chisholm, Gloria Liu and Brent Love is appreciated. We also thank William Neff at NOAA's Boulder lab for his helpful suggestions regarding transport processes in defining South Pole trace gas levels. NR 68 TC 7 Z9 7 U1 1 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD NOV PY 2010 VL 44 IS 36 BP 4565 EP 4574 DI 10.1016/j.atmosenv.2010.08.025 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 672FO UT WOS:000283568600005 ER PT J AU Saha, S Bambha, NK Bhattacharyya, SS AF Saha, Sankalita Bambha, Neal K. Bhattacharyya, Shuvra S. TI Design and implementation of embedded computer vision systems based on particle filters SO COMPUTER VISION AND IMAGE UNDERSTANDING LA English DT Article DE Design space exploration; Particle filters; Reconfigurable platforms AB Particle filtering methods are gradually attaining significant importance in a variety of embedded computer vision applications. For example, in smart camera systems, object tracking is a very important application and particle filter based tracking algorithms have shown promising results with robust tracking performance. However, most particle filters involve vast amount of computational complexity, thereby intensifying the challenges faced in their real-time, embedded implementation. Many of these applications share common characteristics, and the same system design can be reused by identifying and varying key system parameters and varying them appropriately. In this paper, we present a System-on-Chip (SoC) architecture involving both hardware and software components for a class of particle filters. The framework uses parameterization to enable fast and efficient reuse of the architecture with minimal re-design effort for a wide range of particle filtering applications as well as implementation platforms. Using this framework, we explore different design options for implementing three different particle filtering applications on field-programmable gate arrays (FPGAs). The first two applications involve particle filters with one-dimensional state transition models, and are used to demonstrate the key features of the framework The main focus of this paper is on design methodology for hardware/software implementation of multi-dimensional particle filter application and we explore this in the third application which is a 3D facial pose tracking system for videos. In this multi-dimensional particle filtering application, we extend our proposed architecture with models for hardware/software co-design so that limited hardware resources can be utilized most effectively. Our experiments demonstrate that the framework is easy and intuitive to use, while providing for efficient design and implementation. We present different memory management schemes along with results on trade-offs between area (FPGA resource requirement) and execution speed. (c) 2010 Elsevier Inc. All rights reserved. C1 [Saha, Sankalita] NASA, Ames Res Ctr, Mission Crit Technol Inc, Moffett Field, CA 94035 USA. [Bambha, Neal K.] USA, Res Lab, Adelphi, MD 20783 USA. [Bhattacharyya, Shuvra S.] Univ Maryland, Inst Adv Comp Studies, Dept Elect & Comp Engn, College Pk, MD 20742 USA. RP Saha, S (reprint author), NASA, Ames Res Ctr, Mission Crit Technol Inc, Moffett Field, CA 94035 USA. EM sankalita.saha@nasa.gov; nbambha@arl.army.mil; ssb@umd.edu OI Bhattacharyya, Shuvra/0000-0001-7719-1106 NR 20 TC 7 Z9 7 U1 1 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1077-3142 EI 1090-235X J9 COMPUT VIS IMAGE UND JI Comput. Vis. Image Underst. PD NOV PY 2010 VL 114 IS 11 BP 1203 EP 1214 DI 10.1016/j.cviu.2010.03.018 PG 12 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 675MN UT WOS:000283834900008 ER PT J AU Wincheski, B Yu, F Simpon, J Williams, P Rackow, K AF Wincheski, Buzz Yu, Feng Simpon, John Williams, Phillip Rackow, Kirk TI Development of SDT sensor based eddy current probe for detection of deep fatigue cracks in multi-layer structure SO NDT & E INTERNATIONAL LA English DT Article DE Eddy current; Spin-dependent tunneling sensor; Multi-layer; Crack AB The detection and characterization of deeply buried fatigue damage in thick, multi-layer airframe components pose significant technical challenges to the aviation safety community. Currently, no nondestructive evaluation technique is available to reliably detect such potential damage from the exterior of the airframe, which is highly desirable in light of inspection cost as well as avoidance of structure damage. Recent technological advances in high-sensitivity magnetic sensors, i e., spin-dependent tunneling (SDT) sensors, make it feasible to employ electromagnetic inspection techniques for deep fatigue crack inspection. In this work, we report on the development and fabrication of a low frequency eddy current probe based on a magnetically shielded SDT pickup sensor concentrically located in the interior of an induction drive coil to enable localized deep diffusion of the electromagnetic field Into the part under test. Simulation studies were conducted to demonstrate the deep penetration capability of this probe configuration and to understand inspection sensitivity based on magnetic field perturbation due to subsurface cracking Experimental results obtained using this SDT sensor on samples with Induced flaws demonstrate its potential for practical application. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Wincheski, Buzz; Williams, Phillip] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Yu, Feng] Cessna Aircraft Co, Wichita, KS USA. [Simpon, John] Lockheed Martin, Hampton, VA USA. [Rackow, Kirk] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Yu, F (reprint author), Cessna Aircraft Co, Wichita, KS USA. NR 14 TC 4 Z9 4 U1 2 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0963-8695 J9 NDT&E INT JI NDT E Int. PD NOV PY 2010 VL 43 IS 8 BP 718 EP 725 DI 10.1016/j.ndteint.2010.08.005 PG 8 WC Materials Science, Characterization & Testing SC Materials Science GA 673SY UT WOS:000283684500010 ER PT J AU Moore, CL AF Moore, Christopher L. TI Technology development for human exploration of Mars SO ACTA ASTRONAUTICA LA English DT Article; Proceedings Paper CT 60th International Astronautical Congress CY OCT 12-16, 2009 CL Daejeon, SOUTH KOREA DE Technology; Mars exploration AB Current plans call for the first human missions to Mars to be launched perhaps as early as 2035. The recently completed "Mars Design Reference Architecture 5.0" study defines a conceptual mission architecture and identifies enabling technologies. NASA is beginning long range development on key technologies needed for these missions because it will take many years for them to reach maturity. The ISS and the lunar outpost will be used as test beds for these technologies to reduce risk and prepare for human exploration of Mars. NASA's Exploration Technology Development Program is maturing technologies and demonstrating operational scenarios for lunar exploration that are extensible to future human missions to Mars. These include entry, descent, and landing systems for large payloads; fission surface power systems; liquid oxygen-liquid methane propulsion systems; cryogenic fluid management; closed-loop life support; small pressurized rovers for surface mobility; in-situ resource utilization; radiation shielding; and optical communications. Advanced technologies will enable more affordable and sustainable Mars exploration. (c) 2010 Elsevier Ltd. All rights reserved. C1 NASA, Washington, DC 20546 USA. RP Moore, CL (reprint author), NASA, Mail Suite 7V20, Washington, DC 20546 USA. EM christopher.moore@nasa.gov NR 14 TC 4 Z9 4 U1 2 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD NOV-DEC PY 2010 VL 67 IS 9-10 BP 1170 EP 1175 DI 10.1016/j.actaastro.2010.06.031 PG 6 WC Engineering, Aerospace SC Engineering GA 652FL UT WOS:000281987800019 ER PT J AU Fong, T Abercromby, A Bualat, MG Deans, MC Hodges, KV Hurtado, JM Landis, R Lee, P Schreckenghost, D AF Fong, Terrence Abercromby, Andrew Bualat, Maria G. Deans, Matthew C. Hodges, Kip V. Hurtado, Jose M., Jr. Landis, Rob Lee, Pascal Schreckenghost, Debra TI Assessment of robotic recon for human exploration of the Moon SO ACTA ASTRONAUTICA LA English DT Article; Proceedings Paper CT 60th International Astronautical Congress CY OCT 12-16, 2009 CL Daejeon, SOUTH KOREA DE Planetary rovers; Robotic exploration; Scouting AB Robotic reconnaissance ("recon") has the potential to significantly improve scientific and technical return from lunar surface exploration. In particular, robotic recon can be used to improve traverse planning, reduce operational risk, and increase crew productivity. To study how robotic recon can benefit human exploration, we recently conducted a field experiment at Black Point Lava Flow (BPLF), Arizona. In our experiment, a simulated ground control team at NASA Ames teleoperated a planetary rover to scout geology traverses at BPLF. The recon data were then used to plan revised traverses. Two-man crews subsequently performed both types of traverses using the NASA "Lunar Electric Rover" (LER) and simulated extra-vehicular activity (EVA) suits. This paper describes the design of our experiment, presents our results, and discusses directions for future research. Published by Elsevier Ltd. C1 [Fong, Terrence; Bualat, Maria G.; Deans, Matthew C.; Landis, Rob] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Abercromby, Andrew] Wyle Labs, Houston, TX USA. [Hodges, Kip V.] Arizona State Univ, Tempe, AZ USA. [Hurtado, Jose M., Jr.] Univ Texas El Paso, El Paso, TX 79968 USA. [Lee, Pascal] Mars Inst, Moffett Field, CA USA. [Schreckenghost, Debra] TRACLabs Inc, Houston, TX USA. RP Fong, T (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM terrence.fong@nasa.gov; andrew.f.abercromby@nasa.gov; maria.g.bualat@nasa.gov; matthew.c.deans@nasa.gov; kvhodges@asu.edu; jhurtado@utep.edu; rob.r.landis@nasa.gov; pascal.lee@marsinstitute.net; schreck@traclabs.com RI Hodges, Kip/A-7992-2009 OI Hodges, Kip/0000-0003-2805-8899 NR 11 TC 8 Z9 10 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD NOV-DEC PY 2010 VL 67 IS 9-10 BP 1176 EP 1188 DI 10.1016/j.actaastro.2010.06.029 PG 13 WC Engineering, Aerospace SC Engineering GA 652FL UT WOS:000281987800020 ER PT J AU El-Raheb, M AF El-Raheb, Michael TI Transient response of a square plate from an expanding footprint SO ACTA MECHANICA LA English DT Article ID THICK RECTANGULAR-PLATES; DIFFERENTIAL QUADRATURE METHOD; DISCRETE SINGULAR CONVOLUTION; 3-DIMENSIONAL VIBRATION ANALYSIS; SUPERPOSITION-GALERKIN METHOD; BOUNDARY-CONDITIONS; CONSTRAINTS AB The transient response of a free disk on crushable material striking a rigid surface was analyzed by El-Raheb (IJSS 45, 4289-4306, 2008). Unlike the free disk whose fundamental mode has a dish-like axisymmetric shape, the free square plate includes two additional modes at lower frequencies. Treated is the response of the square plate to a moving front either parallel to a diagonal or to an edge, simulating two limiting cases of oblique impact of the plate on crushable material. Emphasis is given to the difference between the two fronts and comparison to the case of the disk. C1 NASA Langley, Pasadena, CA 91107 USA. RP El-Raheb, M (reprint author), NASA Langley, 1000 Oakforest Lane, Pasadena, CA 91107 USA. EM mertrident@earthlink.net NR 26 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0001-5970 J9 ACTA MECH JI Acta Mech. PD NOV PY 2010 VL 214 IS 3-4 BP 375 EP 394 DI 10.1007/s00707-010-0297-6 PG 20 WC Mechanics SC Mechanics GA 666BR UT WOS:000283084200011 ER PT J AU Pulkkinen, A Kataoka, R Watari, S Ichiki, M AF Pulkkinen, A. Kataoka, R. Watari, S. Ichiki, M. TI Modeling geomagnetically induced currents in Hokkaido, Japan SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Space weather; Geomagnetically induced currents; Modeling; Subduction zone ID CONDUCTIVITY; SYSTEM; CRUST AB In this paper a model for computing geomagnetically induced currents (GIC) from local geomagnetic field observations carried out in Hokkaido, Japan is constructed. The model is composed of system parameters mapping the horizontal geoelectric field to GIC and of ID conductivity model. A rigorous model validation is used to show that the model reproduces the observed GIC with a very good accuracy. Statistical occurrence of GIC is computed using the constructed model and geomagnetic field recordings covering years 1986-2008. The modeled GIC is used to generate a list of 10 largest GIC events in Hokkaido, Japan. It is found that the 10 largest events between 1986 and 2008 were associated with various phases of coronal mass ejection driven major geomagnetic storms. It is also shown that although smaller GIC are fairly common, the largest possible GIC are likely limited to the amplitudes of the order of 10 A. The constructed ID ground conductivity model is interpreted in the context of the local geological setting and it is shown that the subduction zone dynamics likely play an important role in the observed GIC and geomagnetic field characteristics. Crustal conductor associated with the subduction zone is the cause for unusual direct relation between GIC and the local geomagnetic field rather than its time derivative and GIC. (c) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Pulkkinen, A.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 20771 USA. [Kataoka, R.; Ichiki, M.] Tokyo Inst Technol, Meguro Ku, Tokyo 1528550, Japan. [Watari, S.] Natl Inst Informat & Commun Technol, Koganei, Tokyo 1848795, Japan. RP Pulkkinen, A (reprint author), Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 20771 USA. EM antti.a.pulkkinen@nasa.gov NR 18 TC 10 Z9 10 U1 3 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD NOV 1 PY 2010 VL 46 IS 9 BP 1087 EP 1093 DI 10.1016/j.asr.2010.05.024 PG 7 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 662YV UT WOS:000282851100001 ER PT J AU Peeters, Z Vos, D ten Kate, IL Selch, F van Sluis, CA Sorokin, DY Muijzer, G Stan-Lotter, H van Loosdrecht, MCM Ehrenfreund, P AF Peeters, Z. Vos, D. ten Kate, I. L. Selch, F. van Sluis, C. A. Sorokin, D. Yu. Muijzer, G. Stan-Lotter, H. van Loosdrecht, M. C. M. Ehrenfreund, P. TI Survival and death of the haloarchaeon Natronorubrum strain HG-1 in a simulated martian environment SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Halophiles; Natronorubrum; Mars simulation; Mars soil analogue; Survival ID EARLY MARS; MICROBIAL SURVIVAL; MERIDIANI-PLANUM; FLUID INCLUSIONS; UV-IRRADIATION; LIFE; SALT; RADIATION; MICROORGANISMS; RELEVANCE AB Halophilic archaea are of interest to astrobiology due to their survival capabilities in desiccated and high salt environments. The detection of remnants of salty pools on Mars stimulated investigations into the response of haloarchaea to martian conditions. Natronorubrum sp. strain HG-1 is an extremely halophilic archaeon with unusual metabolic pathways, growing on acetate and stimulated by tetrathionate. We exposed Natronorubrum strain HG-1 to ultraviolet (UV) radiation, similar to levels currently prevalent on Mars. In addition, the effects of low temperature (4, -20, and -80 degrees C), desiccation, and exposure to a Mars soil analogue from the Atacama desert on the viability of Natronorubrum strain HG-1 cultures were investigated. The results show that Natronorubrum strain HG-1 cannot survive for more than several hours when exposed to UV radiation equivalent to that at the martian equator. Even when protected from UV radiation, viability is impaired by a combination of desiccation and low temperature. Desiccating Natronorubrum strain HG-1 cells when mixed with a Mars soil analogue impaired growth of the culture to below the detection limit. Overall, we conclude that Natronorubrum strain HG-1 cannot survive the environment currently present on Mars. Since other halophilic microorganisms were reported to survive simulated martian conditions, our results imply that survival capabilities are not necessarily shared between phylogenetically related species. (c) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Peeters, Z.; Vos, D.; van Sluis, C. A.; Ehrenfreund, P.] Leiden Univ, Leiden Inst Chem, Astrobiol Grp, NL-2333 CC Leiden, Netherlands. [ten Kate, I. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Selch, F.] Carnegie Mellon Univ, NASA, Ames Res Ctr, Mountain View, CA USA. [van Sluis, C. A.; Sorokin, D. Yu.; Muijzer, G.; van Loosdrecht, M. C. M.] Delft Univ Technol, Fac Sci Appl, Dept Biotechnol, NL-2628 BC Delft, Netherlands. [Stan-Lotter, H.] Salzburg Univ, Div Mol Biol, Dept Microbiol, A-5020 Salzburg, Austria. [Ehrenfreund, P.] George Washington Univ, Inst Space Policy, Washington, DC 20052 USA. RP Ehrenfreund, P (reprint author), Leiden Univ, Leiden Inst Chem, Astrobiol Grp, Einsteinweg 55, NL-2333 CC Leiden, Netherlands. EM p.ehrenfreund@chem.leidenuniv.nl RI van Loosdrecht, Mark/B-2738-2009 OI van Loosdrecht, Mark/0000-0003-0658-4775 FU ESA; NASA Astrobiology Institute; BioScience Initiative of Leiden University FX The authors would like to thank Danielle Wills and Euan Monaghan for their help with the experiments. ZP and PE were supported by ESA grant for Ground based facilities: "Simulations of organic compounds and microorganisms in martian regolith analogues: SocMar" and by the NASA Astrobiology Institute. ILtK was supported by the BioScience Initiative of Leiden University. This research was conducted in the framework of the Mars Express Recognized Cooperating Laboratory for geochemistry. NR 38 TC 6 Z9 6 U1 1 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD NOV 1 PY 2010 VL 46 IS 9 BP 1149 EP 1155 DI 10.1016/j.asr.2010.05.025 PG 7 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 662YV UT WOS:000282851100007 ER PT J AU Masuoka, PM Klein, TA Kim, HC Claborn, DM Achee, N Andre, R Chamberlin, J Small, J Anyamba, A Lee, DK Yi, SH Sardelis, M Grieco, J AF Masuoka, Penny M. Klein, Terry A. Kim, Heung-Chul Claborn, David M. Achee, Nicole Andre, Richard Chamberlin, Judith Small, Jennifer Anyamba, Assaf Lee, Dong-Kyu Yi, Suk H. Sardelis, Michael Grieco, John TI MODELING CULEX TRITAENIORHYNCHUS MOSQUITOES TO PREDICT THE GEOGRAPHIC DISTRIBUTION OF JAPANESE ENCEPHALITIS IN THE REPUBLIC OF KOREA SO AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE LA English DT Meeting Abstract CT 59th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene (ASTMH) CY NOV 03-07, 2010 CL Atlanta, GA SP Amer Soc Trop Med & Hyg (ASTMH) C1 [Masuoka, Penny M.; Achee, Nicole; Andre, Richard; Chamberlin, Judith; Grieco, John] Uniformed Serv Univ Hlth Sci, Dept Prevent Med & Biometr, Bethesda, MD 20814 USA. [Klein, Terry A.; Kim, Heung-Chul; Yi, Suk H.] 65th Med Brigade US Army MEDDAC Korea, Seoul, South Korea. [Claborn, David M.] Missouri State Univ, Ctr Homeland Secur, Springfield, MO USA. [Small, Jennifer; Anyamba, Assaf] NASAs Goddard Space Flight Ctr, Hydrol & Biospher Sci Lab, Greenbelt, MD USA. [Lee, Dong-Kyu] Kosin Univ, Dept Hlth & Environm, Pusan, South Korea. [Sardelis, Michael] Natl Ctr Med Intelligence, Ft Detrick, MD USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC TROP MED & HYGIENE PI MCLEAN PA 8000 WESTPARK DR, STE 130, MCLEAN, VA 22101 USA SN 0002-9637 J9 AM J TROP MED HYG JI Am. J. Trop. Med. Hyg. PD NOV PY 2010 VL 83 IS 5 SU S MA 607 BP 182 EP 182 PG 1 WC Public, Environmental & Occupational Health; Tropical Medicine SC Public, Environmental & Occupational Health; Tropical Medicine GA 832QF UT WOS:000295819700608 ER PT J AU Soebiyanto, RP Kiang, RK AF Soebiyanto, Radina P. Kiang, Richard K. TI CLIMATE AS SEASONAL INFLUENZA PREDICTORS SO AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE LA English DT Meeting Abstract CT 59th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene (ASTMH) CY NOV 03-07, 2010 CL Atlanta, GA SP Amer Soc Trop Med & Hyg (ASTMH) C1 [Soebiyanto, Radina P.; Kiang, Richard K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC TROP MED & HYGIENE PI MCLEAN PA 8000 WESTPARK DR, STE 130, MCLEAN, VA 22101 USA SN 0002-9637 J9 AM J TROP MED HYG JI Am. J. Trop. Med. Hyg. PD NOV PY 2010 VL 83 IS 5 SU S MA 1134 BP 338 EP 338 PG 1 WC Public, Environmental & Occupational Health; Tropical Medicine SC Public, Environmental & Occupational Health; Tropical Medicine GA 832QF UT WOS:000295819701501 ER PT J AU Zhang, FF Xu, HF Konishi, H Roden, EE AF Zhang, Fangfu Xu, Huifang Konishi, Hiromi Roden, Eric E. TI A relationship between d(104) value and composition in the calcite-disordered dolomite solid-solution series SO AMERICAN MINERALOGIST LA English DT Article DE High-magnesian calcite; d(104); calcite; disordered dolomite; solid solution; Mg-Ca ordering in dolomite ID MAGNESIAN CALCITES; LATTICE CONSTANTS; PROTODOLOMITE; REFINEMENTS; CARBONATES; PHASE; WATER AB X-ray diffraction has been widely used in analyzing Ca-Mg carbonates. Compositions of biogenic and inorganic (Ca,Mg)CO3 crystals are often calculated by comparing their d(104) values with published empirical curves. However, previous studies suggested that these curves do not apply to very high-Mg calcite and disordered dolomite. Based on synthesized high-Mg calcite and disordered dolomite, a new empirical curve between values of magnesian calcite d(104) and MgCO3 content in the calcite-disordered dolomite solid-solution series is constructed. This new curve is consistent with the significant cell parameter changes accompanying the Mg-Ca cation disorder in dolomite, and it can help the characterization of the MgCO3 content of both natural and synthetic magnesian calcite and disordered dolomite, especially for the mineral mixtures that are not suitable for other analysis methods. C1 [Zhang, Fangfu; Xu, Huifang; Konishi, Hiromi; Roden, Eric E.] Univ Wisconsin, NASA Astrobiol Inst, Dept Geosci, Madison, WI 53706 USA. RP Zhang, FF (reprint author), Univ Wisconsin, NASA Astrobiol Inst, Dept Geosci, Madison, WI 53706 USA. EM hfxu@geology.wisc.edu RI Zhang, Fangfu/B-4295-2014 OI Zhang, Fangfu/0000-0001-7550-9483 FU NASA Astrobiology Institute [N07-5489]; NSF [EAR-0810150, EAR-095800]; U.S. Department of Energy [DE-SC0001929]; Department of Geoscience, University of Wisconsin-Madison; Geological Society of America; ExxonMobil FX We thank Abby Kavner and the other anonymous reviewer, and the associate editor, Darrell Henry, for their great comments and suggestions. We also want to thank John Fournelle for providing the dolomite standard and Nita Sahai for constructive discussions, This work is supported by NASA Astrobiology Institute (N07-5489), NSF (EAR-0810150, EAR-095800), and U.S. Department of Energy (DE-SC0001929). Zhang also thanks Department of Geoscience, University of Wisconsin-Madison and ExxonMobil for 2008 Summer Research Grant, and Geological Society of America for 2009 Graduate Research Grant. NR 28 TC 40 Z9 41 U1 3 U2 33 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD NOV-DEC PY 2010 VL 95 IS 11-12 BP 1650 EP 1656 DI 10.2138/am.2010.3414 PG 7 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 679XW UT WOS:000284195100007 ER PT J AU Bhartia, R Salas, EC Hug, WF Reid, RD Lane, AL Edwards, KJ Nealson, KH AF Bhartia, Rohit Salas, Everett C. Hug, William F. Reid, Ray D. Lane, Arthur L. Edwards, Katrina J. Nealson, Kenneth H. TI Label-Free Bacterial Imaging with Deep-UV-Laser-Induced Native Fluorescence SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SUBTILIS SPORE COAT; MICROBIAL LIFE; ENUMERATION; IDENTIFICATION; ENVIRONMENTS; SPECTROSCOPY; MICROSCOPY; SILICATES; BIOSPHERE; SEDIMENTS AB We introduce a near-real-time optical imaging method that works via the detection of the intrinsic fluorescence of life forms upon excitation by deep-UV (DUV) illumination. A DUV (< 250-nm) source enables the detection of microbes in their native state on natural materials, avoiding background autofluorescence and without the need for fluorescent dyes or tags. We demonstrate that DUV-laser-induced native fluorescence can detect bacteria on opaque surfaces at spatial scales ranging from tens of centimeters to micrometers and from communities to single cells. Given exposure times of 100 mu s and low excitation intensities, this technique enables rapid imaging of bacterial communities and cells without irreversible sample alteration or destruction. We also demonstrate the first noninvasive detection of bacteria on in situ-incubated environmental experimental samples from the deep ocean (Lo'ihi Seamount), showing the use of DUV native fluorescence for in situ detection in the deep biosphere and other nutrient-limited environments. C1 [Bhartia, Rohit; Lane, Arthur L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bhartia, Rohit; Edwards, Katrina J.; Nealson, Kenneth H.] Univ So Calif, Dept Earth Sci, Los Angeles, CA USA. [Salas, Everett C.] Rice Univ, Dept Earth Sci, Houston, TX USA. [Hug, William F.; Reid, Ray D.] Photon Syst Inc, Covina, CA USA. [Edwards, Katrina J.] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA. RP Bhartia, R (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 183-301, Pasadena, CA 91109 USA. EM rbhartia@jpl.nasa.gov FU Air Force under an AFOSR MURI; Defense University; NASA; NASA Astrobiology Institute (NAI) FX This work was supported by the Air Force under an AFOSR MURI grant (to K.H.N.), a Defense University Research Industry Program (DURIP; USC/Photon Systems Inc.), NASA Planetary Protection Research, and the JPL Icy Worlds node of the NASA Astrobiology Institute (NAI). NR 34 TC 18 Z9 18 U1 2 U2 31 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD NOV PY 2010 VL 76 IS 21 BP 7231 EP 7237 DI 10.1128/AEM.00943-10 PG 7 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 670PM UT WOS:000283439800032 PM 20817797 ER PT J AU Rosario-Castro, BI Contes-de-Jesus, EJ Lebron-Colon, M Meador, MA Scibioh, MA Cabrera, CR AF Rosario-Castro, Belinda I. Contes-de-Jesus, Enid J. Lebron-Colon, Marisabel Meador, Michael A. Scibioh, M. Aulice Cabrera, Carlos R. TI Single-wall carbon nanotube chemical attachment at platinum electrodes SO APPLIED SURFACE SCIENCE LA English DT Article DE Single-wall carbon nanotubes; Self-assembled monolayers; Platinum electrodes; 4-Aminothiophenol; Transmission electron microscopy; Atomic force microscopy; Raman spectroscopy ID SELF-ASSEMBLED MONOLAYERS; ELECTROCHEMICAL CHARACTERIZATION; LOGIC-CIRCUITS; SURFACE; GOLD; FUNCTIONALIZATION; TRANSISTORS; HYDROGEN; STORAGE; RAMAN AB Self-assembled monolayer (SAM) techniques were used to adsorb 4-aminothiophenol (4-ATP) on platinum electrodes in order to obtain an amino-terminated SAM as the base for the chemical attachment of single-wall carbon nanotubes (SWCNTs). Aphysico-chemical, morphological and electrochemical characterizations of SWCNTs attached onto the modified Pt electrodes was done by using reflection-absorption infrared spectroscopy (RAIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and cyclic voltammetry (CV) techniques. The SWNTs/4-ATP/Pt surface had regions of small, medium, and large thickness of carbon nanotubes with heights of 100-200 nm, 700nm to 1.5 mu m, and 1.0-3.0 mu m, respectively. Cyclic voltammetries (CVs) in sulfuric acid demonstrated that attachment of SWNTs on 4-ATP/Pt is markedly stable, even after 30 potential cycles. CV in ruthenium hexamine was similar to bare Pt electrodes, suggesting that SWNTs assembly is similar to a closely packed microelectrode array. (C) 2010 Published by Elsevier B.V. C1 [Rosario-Castro, Belinda I.; Contes-de-Jesus, Enid J.; Scibioh, M. Aulice; Cabrera, Carlos R.] Univ Puerto Rico, Dept Chem, San Juan, PR 00931 USA. [Rosario-Castro, Belinda I.; Contes-de-Jesus, Enid J.; Scibioh, M. Aulice; Cabrera, Carlos R.] Univ Puerto Rico, Ctr Adv Nanoscale Mat, San Juan, PR 00931 USA. [Lebron-Colon, Marisabel; Meador, Michael A.] NASA, John H Glenn Res Ctr, Cleveland, OH 44135 USA. RP Cabrera, CR (reprint author), Univ Puerto Rico, Dept Chem, Rio Pledras Campus,POB 23346, San Juan, PR 00931 USA. EM carlos.cabrera2@uprrp.edu OI Cabrera, Carlos/0000-0002-3342-8666 FU NASA-URC [NCC3-1034, NNX08BA48A]; NASA [NGT3-52381] FX The authors acknowledge the assistance of members of the Materials Characterization Center and the NASA Center for Advanced Nanoscale Materials, both at the University of Puerto Rico, Rio Piedras Campus, for XPS and TEM characterization, respectively. We are grateful to Eunice Wong for her assistance with the TGA and Raman analysis at NASA Glenn Research Center. This project was partially funded by NASA-URC Grant Numbers NCC3-1034 and NNX08BA48A. B. I. R. C. would like to acknowledge the financial support from NASA Graduate Student Researcher Program (GSRP) fellowship (NGT3-52381). NR 38 TC 5 Z9 5 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD NOV 1 PY 2010 VL 257 IS 2 BP 340 EP 353 DI 10.1016/j.apsusc.2010.06.072 PG 14 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 648EW UT WOS:000281674200002 ER PT J AU Hoehler, TM Westall, F AF Hoehler, Tori M. Westall, Frances TI Mars Exploration Program Analysis Group Goal One: Determine If Life Ever Arose on Mars SO ASTROBIOLOGY LA English DT Article DE Mars; Life AB The Mars Exploration Program Analysis Group (MEPAG) maintains a standing document that articulates scientific community goals, objectives, and priorities for mission-enabled Mars science. Each of the goals articulated within the document is periodically revisited and updated. The astrobiology-related Goal One, "Determine if life ever arose on Mars," has recently undergone such revision. The finalized revision, which appears in the version of the MEPAG Goals Document posted on September 24, 2010, is presented here. C1 [Hoehler, Tori M.] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. [Westall, Frances] CNRS, Ctr Biophys Mol, F-75700 Paris, France. RP Hoehler, TM (reprint author), NASA, Ames Res Ctr, Exobiol Branch, Mail Stop 239-4, Moffett Field, CA 94035 USA. EM tori.m.hoehler@nasa.gov NR 2 TC 8 Z9 8 U1 6 U2 24 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD NOV PY 2010 VL 10 IS 9 BP 859 EP 867 DI 10.1089/ast.2010.0527 PG 9 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 688GE UT WOS:000284837000001 PM 21118019 ER PT J AU Sugitani, K Lepot, K Nagaoka, T Mimura, K Van Kranendonk, M Oehler, DZ Walter, MR AF Sugitani, Kenichiro Lepot, Kevin Nagaoka, Tsutomu Mimura, Koichi Van Kranendonk, Martin Oehler, Dorothy Z. Walter, Malcolm R. TI Biogenicity of Morphologically Diverse Carbonaceous Microstructures from the ca. 3400Ma Strelley Pool Formation, in the Pilbara Craton, Western Australia SO ASTROBIOLOGY LA English DT Article DE Archean; Biogenicity; Microfossils; Pilbara ID BARBERTON MOUNTAIN LAND; SOUTH-AFRICA; FOSSIL BACTERIA; MICROBIAL MATS; 3.2 GA; ARCHEAN STROMATOLITES; GREENSTONE-BELT; NORTH-POLE; STRUCTURAL-CHARACTERIZATION; FILAMENTOUS MICROFOSSILS AB Morphologically diverse structures that may constitute organic microfossils are reported from three remote and widely separated localities assigned to the ca. 3400Ma Strelley Pool Formation in the Pilbara Craton, Western Australia. These localities include the Panorama, Warralong, and Goldsworthy greenstone belts. From the Panorama greenstone belt, large (>40 mu m) lenticular to spindle-like structures, spheroidal structures, and mat-forming thread-like structures are found. Similar assemblages of carbonaceous structures have been identified from the Warralong and Goldsworthy greenstone belts, though these assemblages lack the thread-like structures but contain film-like structures. All structures are syngenetic with their host sedimentary black chert, which is associated with stromatolites and evaporites. The host chert is considered to have been deposited in a shallow water environment. Rigorous assessment of biogenicity (considering composition, size range, abundance, taphonomic features, and spatial distributions) suggests that cluster-forming small (<15 mu m) spheroids, lenticular to spindle-like structures, and film-like structures with small spheroids are probable microfossils. Thread-like structures are more likely fossilized fibrils of biofilm, rather than microfossils. The biogenicity of solitary large (>15 mu m) spheroids and simple film-like structures is less certain. Although further investigations are required to confirm the biogenicity of carbonaceous structures from the Strelley Pool Formation, this study presents evidence for the existence of morphologically complex and large microfossils at 3400Ma in the Pilbara Craton, which can be correlated to the contemporaneous, possible microfossils reported from South Africa. Although there is still much to be learned, they should provide us with new insights into the early evolution of life and shallow water ecosystems. C1 [Sugitani, Kenichiro] Nagoya Univ, Grad Sch Environm Studies, Dept Environm Engn & Architecture, Nagoya, Aichi 4648601, Japan. [Lepot, Kevin] Univ Liege, Dept Geol, Liege, Belgium. [Nagaoka, Tsutomu] Nagoya Univ, Sch Informat & Sci, Nagoya, Aichi 4648601, Japan. [Mimura, Koichi] Nagoya Univ, Grad Sch Environm Studies, Dept Earth & Environm Sci, Nagoya, Aichi 4648601, Japan. [Van Kranendonk, Martin] Geol Survey Western Australia, Dept Mines & Petr, Perth, WA, Australia. [Van Kranendonk, Martin; Oehler, Dorothy Z.; Walter, Malcolm R.] Univ New S Wales, Australian Ctr Astrobiol, Sydney, NSW, Australia. [Oehler, Dorothy Z.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Sugitani, K (reprint author), Nagoya Univ, Grad Sch Environm Studies, Dept Environm Engn & Architecture, Nagoya, Aichi 4648601, Japan. EM sugi@info.human.nagoya-u.ac.jp RI Van Kranendonk, Martin/J-8755-2012; Lepot, Kevin/C-7072-2014 OI Lepot, Kevin/0000-0003-0556-0405 FU Japan Society for the Promotion of Science [19340150]; FNRS; FRFC [2.4.558.09]; Region Ile-de-France (IPG Paris) FX Financial support to K.S. from the Japan Society for the Promotion of Science (the Joint Research Program, Japan-Australia and a grant-in-aid, No. 19340150) and from the FNRS (Belgium National Funds for Research postdoctoral fellowship) to K.L. are gratefully acknowledged. Helpful comments and encouragement by Kath Grey and Emmanuelle Javaux are greatly appreciated. We also appreciate Arthur Hickman, who provided useful comments on the stratigraphic interpretations on the SPF. Maud Walsh and an anonymous referee are acknowledged for their constructive comments. We thank Sherry Cady for her editorial assistance. Raman analyses were funded by a FRFC No. 2.4.558.09 grant (E.J.) and Region Ile-de-France (IPG Paris). NR 75 TC 31 Z9 33 U1 2 U2 27 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD NOV PY 2010 VL 10 IS 9 BP 899 EP 920 DI 10.1089/ast.2010.0513 PG 22 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 688GE UT WOS:000284837000005 PM 21118023 ER PT J AU Connelley, MS Greene, TP AF Connelley, Michael S. Greene, Thomas P. TI A NEAR-INFRARED SPECTROSCOPIC SURVEY OF CLASS I PROTOSTARS SO ASTRONOMICAL JOURNAL LA English DT Article DE infrared: stars; stars: formation; stars: pre-main sequence; surveys; techniques: spectroscopic ID YOUNG STELLAR OBJECTS; T-TAURI STARS; HARO ENERGY-SOURCES; LOW-MASS STARS; HERBIG AE/BE STARS; SPACE-TELESCOPE; BROWN DWARFS; MU-M; EMBEDDED PROTOSTARS; EVOLUTIONARY MODELS AB We present the results of a near-IR spectroscopic survey of 110 Class I protostars observed from 0.80 mu m to 2.43 mu m at a spectroscopic resolution of R = 1200. This survey is unique in its selection of targets from the whole sky, its sample size, wavelength coverage, depth, and sample selection. We find that Class I objects exhibit a wide range of lines and the continuum spectroscopic features. Eighty-five percent of Class I protostars exhibit features indicative of mass accretion, and we found that the veiling excess, CO emission, and Br gamma emission are closely related. We modeled the spectra to estimate the veiling excess (r(k)) and extinction to each target. We also used near-IR colors and emission line ratios, when available, to also estimate extinction. In the course of this survey, we observed the spectra of 10 FU Orionis-like objects, including 2 new ones, as well as 3 Herbig Ae-type stars among our Class I young stellar objects. We used photospheric absorption lines, when available, to estimate the spectral type of each target. Although most targets are late-type stars, there are several A-and F-type stars in our sample. Notably, we found no A or F class stars in the Taurus-Auriga or Perseus star-forming regions. There are several cases where the observed CO and/or water absorption bands are deeper than expected from the photospheric spectral type. We find a correlation between the appearance of the reflection nebula, which traces the distribution of material on very large scales, and the near-IR spectrum, which probes smaller scales. All of the FU Orionis-like objects are associated with reflection nebulae. The spectra of the components of spatially resolved protostellar binaries tend to be very similar. In particular both components tend to have similar veiling and H(2) emission, inconsistent with random selection from the sample as a whole. There is a strong correlation between [Fe II] and H(2) emission, supporting previous results showing that H(2) emission in the spectra of young stars is usually shock excited by stellar winds. C1 [Connelley, Michael S.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Greene, Thomas P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Connelley, MS (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. FU NASA [811073.02.07.01.89]; National Science Foundation; National Aeronautics and Space Administration, Science Mission Directorate; [NNX08AE38A] FX We acknowledge support from NASA's Origins of Solar Systems program via WBS 811073.02.07.01.89. We are grateful for the professional assistance from Bill Golish, Dave Griep, Paul Sears, and Eric Volquardsen. We thank the referee and Bo Reipurth for their helpful and constructive comments. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and NASA's Astrophysics Data System. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has made use of NASA's Astrophysics Data System. This research was supported by an appointment to the NASA Postdoctoral Program at the Ames Research Center, administered by the Oak Ridge Associated Universities through a contract with NASA.; Visiting Astronomer at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NNX08AE38A with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. NR 77 TC 51 Z9 51 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD NOV PY 2010 VL 140 IS 5 BP 1214 EP 1240 DI 10.1088/0004-6256/140/5/1214 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665SI UT WOS:000283055400008 ER PT J AU Walker, LM Johnson, KE Gallagher, SC Hibbard, JE Hornschemeier, AE Tzanavaris, P Charlton, JC Jarrett, TH AF Walker, Lisa May Johnson, Kelsey E. Gallagher, Sarah C. Hibbard, John E. Hornschemeier, Ann E. Tzanavaris, Panayiotis Charlton, Jane C. Jarrett, Thomas H. TI MID-INFRARED EVIDENCE FOR ACCELERATED EVOLUTION IN COMPACT GROUP GALAXIES SO ASTRONOMICAL JOURNAL LA English DT Article DE galaxies: clusters: general; galaxies: evolution; galaxies: interactions; galaxies: statistics; infrared: galaxies ID STAR-FORMATION RATES; DIGITAL SKY SURVEY; NEARBY GALAXIES; SPITZER; REDSHIFT; SEQUENCE; POPULATION; MORPHOLOGY; SELECTION; EMISSION AB Compact galaxy groups are at the extremes of the group environment, with high number densities and low velocity dispersions that likely affect member galaxy evolution. To explore the impact of this environment in detail, we examine the distribution in the mid-infrared (MIR) 3.6-8.0 mu m color space of 42 galaxies from 12 Hickson compact groups (HCGs) in comparison with several control samples, including the LVL+SINGS galaxies, interacting galaxies, and galaxies from the Coma Cluster. We find that the HCG galaxies are strongly bimodal, with statistically significant evidence for a gap in their distribution. In contrast, none of the other samples show such a marked gap, and only galaxies in the Coma infall region have a distribution that is statistically consistent with the HCGs in this parameter space. To further investigate the cause of the HCG gap, we compare the galaxy morphologies of the HCG and LVL+SINGS galaxies, and also probe the specific star formation rate (SSFR) of the HCG galaxies. While galaxy morphology in HCG galaxies is strongly linked to position with MIR color space, the more fundamental property appears to be the SSFR, or star formation rate normalized by stellar mass. We conclude that the unusual MIR color distribution of HCG galaxies is a direct product of their environment, which is most similar to that of the Coma infall region. In both cases, galaxy densities are high, but gas has not been fully processed or stripped. We speculate that the compact group environment fosters accelerated evolution of galaxies from star-forming and neutral gas-rich to quiescent and neutral gas-poor, leaving few members in the MIR gap at any time. C1 [Walker, Lisa May; Johnson, Kelsey E.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Gallagher, Sarah C.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Hibbard, John E.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Hornschemeier, Ann E.; Tzanavaris, Panayiotis] NASA, Goddard Space Flight Ctr, Lab Xray Astrophys, Greenbelt, MD 20771 USA. [Charlton, Jane C.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Jarrett, Thomas H.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. RP Walker, LM (reprint author), Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. FU NSF [0908984, 0548103]; David and Lucile Packard Foundation; National Science and Engineering Research Council of Canada; National Aeronautics and Space Administration FX J.C.C. thanks the NSF for funding under award 0908984. K.E.J. gratefully acknowledges support for this paper provided by NSF through CAREER award 0548103 and the David and Lucile Packard Foundation through a Packard Fellowship. S. C. G. thanks the National Science and Engineering Research Council of Canada for support. For helpful discussions on statistical tests, L. M. W. thanks statistics professor Tao Huang. We also thank the anonymous referee for their constructive comments. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 37 TC 28 Z9 28 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD NOV PY 2010 VL 140 IS 5 BP 1254 EP 1267 DI 10.1088/0004-6256/140/5/1254 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665SI UT WOS:000283055400010 ER PT J AU Meier, DS Turner, JL Beck, SC Gorjian, V Tsai, CW Van Dyk, SD AF Meier, David S. Turner, Jean L. Beck, Sara C. Gorjian, Varoujan Tsai, Chao-Wei Van Dyk, Schuyler D. TI FIRST VIEWS OF A NEARBY LIRG: STAR FORMATION AND MOLECULAR GAS IN IRAS 04296+2923 SO ASTRONOMICAL JOURNAL LA English DT Article DE galaxies: individual (IRAS 04296+2923, 2MASX J04324860+2929578); galaxies: ISM; galaxies: starburst; radio continuum: galaxies ID ULTRALUMINOUS INFRARED GALAXIES; LUMINOUS GALAXIES; INTERSTELLAR-MEDIUM; EMBEDDED CLUSTERS; SPIRAL GALAXIES; MAPPING SURVEY; FORMATION LAW; IONIZED-GAS; EMISSION; STARBURSTS AB We present a first look at the local luminous infrared galaxy (LIRG) IRAS 04296+2923. This barred spiral galaxy, overlooked because of its location behind the Taurus molecular cloud, is among the half dozen closest (D = 29 Mpc) LIRGs. More IR-luminous than either M82 or the Antennae, it may be the best local example of a nuclear starburst caused by bar-mediated secular evolution. We present Palomar J and Pa beta images, Very Large Array continuum maps from lambda = 20-1.3 cm, a subarcsecond Keck Long Wavelength Spectrometer image at 11.7 mu m and Owens Valley Millimeter Array CO(1-0), (13)CO(1-0), and 2.7 mm continuum images. The J-band image reveals a symmetric barred spiral galaxy. Two bright, compact mid-infrared and radio sources in the nucleus mark a starburst that is energetically equivalent to similar to 10(5) O7 stars, separated by <= 50 pc. This is probably a pair of young super star clusters, with estimated stellar masses of similar to 10(7)M(circle dot) each. The nuclear starburst is forming stars at the rate of similar to 12 +/- 6M(circle dot)yr(-1), or about half of the total star formation rate for the galaxy of similar to 25 +/- 10M(circle dot)yr(-1). IRAS 04296+2923 is very bright in CO, and among the most gas-rich galaxies in the local universe. The (12)CO luminosity of the inner half kpc is equivalent to that of the entire Milky Way. While the most intense CO emission is extended over a 15 '' (2 kpc) diameter region, the nuclear starburst is confined to within 1 ''-2 '' (150-250 pc) of the dynamical center. Based on masses obtained with (13)CO, we find that the CO conversion factor in the nucleus is lower than the Galactic value, X(CO)(Gal) by a factor of three to four, typical of gas-rich spiral nuclei. The nuclear star formation efficiency (SFE) is (nuc)M(gas)/SFR(nuc) = 2.7 x 10(-8)yr(-1), corresponding to a gas consumption timescale, tau(nuc)(SF) similar to 4 x 10(7) yr. The SFE is 10 times lower in the disk, with tau(disk)(SF) similar to 3.3 x 10(8) yr. The low absolute SFE in the disk implies that the molecular gas is not completely consumed before it drifts into the nucleus, and is capable of fueling a sustained nuclear starburst. IRAS 04296+2923 appears to be beginning a 100 Myr period as an LIRG, during which it will turn much of its 6 x 10(9) M(circle dot) of molecular gas into a nuclear cluster of stars. C1 [Meier, David S.] New Mexico Inst Min & Technol, Dept Phys, Socorro, NM 87801 USA. [Meier, David S.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Turner, Jean L.; Tsai, Chao-Wei] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Beck, Sara C.] Tel Aviv Univ, Dept Phys & Astron, IL-69978 Ramat Aviv, Israel. [Gorjian, Varoujan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Van Dyk, Schuyler D.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. RP Meier, DS (reprint author), New Mexico Inst Min & Technol, Dept Phys, 801 Leroy Pl, Socorro, NM 87801 USA. EM dmeier@nmt.edu; turner@astro.ucla.edu; sara@wise.tau.ac.il; varoujan.gorjian@jpl.nasa.gov; cwtsai@astro.ucla.edu; vandyk@ipac.caltech.edu OI Van Dyk, Schuyler/0000-0001-9038-9950 FU National Radio Astronomy Observatory; National Science Foundation [AST-9981546]; National Aeronautics and Space Administration FX D. S. M. acknowledges support from the National Radio Astronomy Observatory which is operated by Associated Universities, Inc., under cooperative agreement with the National Science Foundation. The anonymous referee is thanked for a helpful report. The Owens Valley Millimeter Interferometer is operated by Caltech with support from the NSF under grant AST-9981546. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 66 TC 10 Z9 10 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD NOV PY 2010 VL 140 IS 5 BP 1294 EP 1305 DI 10.1088/0004-6256/140/5/1294 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665SI UT WOS:000283055400013 ER PT J AU Hoard, DW Lu, TN Knigge, C Homer, L Szkody, P Still, M Long, KS Dhillon, VS Wachter, S AF Hoard, D. W. Lu, Ting-Ni Knigge, Christian Homer, Lee Szkody, Paula Still, M. Long, Knox S. Dhillon, V. S. Wachter, S. TI SIMULTANEOUS X-RAY AND ULTRAVIOLET OBSERVATIONS OF THE SW SEXTANTIS STAR DW URSAE MAJORIS SO ASTRONOMICAL JOURNAL LA English DT Article DE accretion, accretion disks; novae, cataclysmic variables; stars: individual (DW Ursae Majoris); X-rays: binaries; X-rays: stars ID XMM-NEWTON OBSERVATION; DWARF-NOVA OUTBURSTS; CATACLYSMIC VARIABLES; ACCRETION DISK; ORBITAL PERIOD; WHITE-DWARF; WX-ARIETIS; EX-HYDRAE; EMISSION; ECLIPSE AB We present the first pointed X-ray observation of DW Ursae Majoris, a novalike cataclysmic variable (CV) and one of the archetype members of the SW Sextantis class, obtained with the XMM-Newton satellite. These data provide the first detailed look at an SW Sex star in the X-ray regime (with previous X-ray knowledge of the SW Sex stars limited primarily to weak or non-detections in the ROSAT All Sky Survey). It is also one of only a few XMM-Newton observations (to date) of any high mass transfer rate novalike CV, and the only one in the evolutionarily important 3-4 hr orbital period range. The observed X-ray spectrum of DW UMa is very soft, with similar to 95% of the detected X-ray photons at energies <2 keV. The spectrum can be fit equally well by a one-component cooling flow model, with a temperature range of 0.2-3.5 keV, or a two-component, two-temperature thermal plasma model, containing hard (similar to 5-6 keV) and soft (similar to 0.8 keV) components. The X-ray light curve of DW UMa shows a likely partial eclipse, implying X-ray reprocessing in a vertically extended region, and an orbital modulation, implying a structural asymmetry in the X-ray reprocessing site (e.g., it cannot be a uniform corona). We also obtained a simultaneous near-ultraviolet light curve of DW UMa using the Optical Monitor on XMM-Newton. This light curve is similar in appearance to published optical-UV light curves of DW UMa and shows a prominent deep eclipse. Regardless of the exact nature of the X-ray reprocessing site in DW UMa, the lack of a prominent hard X-ray total eclipse and very low fraction of high energy X-rays point to the presence of an optically and geometrically thick accretion disk that obscures the boundary layer and modifies the X-ray spectrum emitted near the white dwarf. C1 [Hoard, D. W.; Wachter, S.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Hoard, D. W.] Eureka Sci Inc, Oakland, CA 94602 USA. [Lu, Ting-Ni] Natl Tsing Hua Univ, Inst Astron, Hsinchu 30013, Taiwan. [Knigge, Christian] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Homer, Lee; Szkody, Paula] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Still, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Long, Knox S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Dhillon, V. S.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. RP Hoard, DW (reprint author), CALTECH, Spitzer Sci Ctr, MS 220-6,1200 E Calif Blvd, Pasadena, CA 91125 USA. EM hoard@ipac.caltech.edu FU XMM-Newton, a European Space Agency (ESA) [014297]; ESA Member States; United States of America ( through the National Aeronautics and Space Administration) FX This work was supported by an XMM-Newton Guest Observer grant for program 014297 and is based on observations obtained with XMM-Newton, a European Space Agency (ESA) science mission with instruments and contributions directly funded by ESA Member States and the United States of America (through the National Aeronautics and Space Administration). This work was performed, in part, at the Jet Propulsion Laboratory, California Institute of Technology. We utilized the SIMBAD database, operated at CDS, Strasbourg, France, and NASA's Astrophysics Data System. NR 65 TC 7 Z9 7 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD NOV PY 2010 VL 140 IS 5 BP 1313 EP 1320 DI 10.1088/0004-6256/140/5/1313 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665SI UT WOS:000283055400015 ER PT J AU Helton, LA Woodward, CE Walter, FM Vanlandingham, K Schwarz, GJ Evans, A Ness, JU Geballe, TR Gehrz, RD Greenhouse, M Krautter, J Liller, W Lynch, DK Rudy, RJ Shore, SN Starrfield, S Truran, J AF Helton, L. Andrew Woodward, Charles E. Walter, Frederick M. Vanlandingham, Karen Schwarz, Greg J. Evans, Aneurin Ness, Jan-Uwe Geballe, Thomas R. Gehrz, Robert D. Greenhouse, Matthew Krautter, Joachim Liller, William Lynch, David K. Rudy, Richard J. Shore, Steven N. Starrfield, Sumner Truran, Jim TI THE DUSTY NOVA V1065 CENTAURI (NOVA CEN 2007): A SPECTROSCOPIC ANALYSIS OF ABUNDANCES AND DUST PROPERTIES SO ASTRONOMICAL JOURNAL LA English DT Article DE circumstellar matter; novae, cataclysmic variables; stars: individual (V1065 Cen, Nova Cen 2007) ID CLASSICAL NOVAE; INFRARED-SPECTROSCOPY; TEMPORAL EVOLUTION; SPECTRAL EVOLUTION; WHITE-DWARFS; GAMMA-RATIO; V1974 CYGNI; EXTINCTION; EMISSION; LINES AB We examine the ejecta evolution of the classical nova V1065 Centauri, constructing a detailed picture of the system based on spectrophotometric observations obtained from 9 to approximately 900 days post-outburst with extensive coverage from optical to mid-infrared wavelengths. We estimate a reddening toward the system of E(B - V) = 0.5 +/- 0.1, based upon the B - V color and analysis of the Balmer decrement, and derive a distance estimate of 8.7(-2.1)(+2.8) - kpc. The optical spectral evolution is classified as P(fe)(o)N(ne)A(o) according to the CTIO Nova Classification system of Williams et al. Photoionization modeling yields absolute abundance values by number, relative to solar of He/H = 1.6 +/- 0.3, N/H = 144 +/- 34, O/H = 58 +/- 18, and Ne/H = 316 +/- 58 for the ejecta. We derive an ejected gas mass of M-g = (1.6 +/- 0.2) x 10(-4) M-circle dot. The infrared excess at late epochs in the evolution of the nova arises from dust condensed in the ejecta composed primarily of silicate grains. We estimate a total dust mass, M-d, of order (0.2-3.7) x 10 (7) M-circle dot, inferred from modeling the spectral energy distribution observed with the Spitzer IRS and Gemini-South GNIRS spectrometers. Based on the speed class, neon abundance, and the predominance of silicate dust, we classify V1065 Cen as an ONe-type classical nova. C1 [Helton, L. Andrew; Woodward, Charles E.; Gehrz, Robert D.] Univ Minnesota, Sch Phys & Astron, Dept Astron, Minneapolis, MN 55455 USA. [Walter, Frederick M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Vanlandingham, Karen] W Chester Univ, Dept Geol & Astron, W Chester, PA 19383 USA. [Schwarz, Greg J.] Amer Astron Soc, Washington, DC 20009 USA. [Evans, Aneurin] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Ness, Jan-Uwe] European Space Astron Ctr, XMM Newton Observ SOC, Madrid 28691, Spain. [Geballe, Thomas R.] Gemini Observ, Hilo, HI 96720 USA. [Greenhouse, Matthew] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krautter, Joachim] Heidelberg Univ, Landessternwarte Zentrum Astron, D-69117 Heidelberg, Germany. [Liller, William] Inst Nova Studies, Vina Del Mar, Chile. [Lynch, David K.; Rudy, Richard J.] Aerosp Corp, Los Angeles, CA 90009 USA. [Shore, Steven N.] Univ Pisa, Dipartimento Fis Enrico Fermi, I-56127 Pisa, Italy. [Shore, Steven N.] Ist Nazl Fis Nucl, Sez Pisa, Milan, Italy. [Starrfield, Sumner] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Truran, Jim] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Truran, Jim] Argonne Natl Lab, Argonne, IL 60439 USA. RP Helton, LA (reprint author), Univ Minnesota, Sch Phys & Astron, Dept Astron, 116 Church St SE, Minneapolis, MN 55455 USA. EM ahelton@astro.umn.edu FU NASA/JPL Spitzer [1289430, 1314757, 1267992, 1256406, 1215746]; Independent Research and Development program of the Aerospace Corporation; NSF [PHY 02-16783]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; UK STFC FX This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. This work is also based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacieon Productiva (Argentina). Stony Brook University's initial participation in the SMARTS consortium was made possible by generous contributions from the Dean of Arts and Sciences, the Provost, and the Vice President for Research of Stony Brook University. L. A. Helton, C. E. Woodward, and R. D. Gehrz were supported in part by NASA/JPL Spitzer grants 1289430, 1314757, 1267992, 1256406, and 1215746 to the University of Minnesota as well as various National Science Foundation grants. D. K. Lynch and R. J. Rudy received partial support from the Independent Research and Development program of the Aerospace Corporation. S. Starrfield acknowledges partial support from NSF and NASA grants to ASU. J. Truran acknowledges support at the Argonne National Laboratory by the US Department of Energy, Office of Nuclear Physics, under contract DE-AC02-06CH11357, and by the NSF under grant PHY 02-16783 for the Frontier Center "Joint Institute for Nuclear Astrophysics." This work was also supported by the UK STFC, and various NASA Swift Grants to the investigators. We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research. NR 73 TC 20 Z9 20 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD NOV PY 2010 VL 140 IS 5 BP 1347 EP 1369 DI 10.1088/0004-6256/140/5/1347 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665SI UT WOS:000283055400019 ER PT J AU Cushing, MC Saumon, D Marley, MS AF Cushing, Michael C. Saumon, D. Marley, Mark S. TI SDSS J141624.08+134826.7: BLUE L DWARFS AND NON-EQUILIBRIUM CHEMISTRY SO ASTRONOMICAL JOURNAL LA English DT Article DE brown dwarfs; infrared: stars; stars: individual (SDSS J141624.08+134826.7); stars: low-mass; subdwarfs ID DIGITAL SKY SURVEY; INFRARED TELESCOPE FACILITY; SPECTRAL TYPE-L; T-DWARFS; BROWN DWARFS; DUST FORMATION; CHEMICAL-EQUILIBRIUM; ULTRACOOL DWARFS; CARBON-MONOXIDE; COOL NEIGHBORS AB We present an analysis of the recently discovered blue L dwarf SDSS J141624.08+134826.7. We extend the spectral coverage of its published spectrum to similar to 4 mu m by obtaining a low-resolution L-band spectrum with SpeX on the NASA IRTF. The spectrum exhibits a tentative weak CH(4) absorption feature at 3.3 mu m but is otherwise featureless. We derive the atmospheric parameters of SDSS J141624.08+134826.7 by comparing its 0.7-4.0 mu m spectrum to the atmospheric models of Marley and Saumon which include the effects of both condensate cloud formation and non-equilibrium chemistry due to vertical mixing and find the best-fitting model has T(eff) = 1700 K, log g = 5.5 (cm s(-2)), f(sed) = 4, and K(zz) = 10(4) cm(2) s(-1). The derived effective temperature is significantly cooler than previously estimated but we confirm the suggestion by Bowler et al. that the peculiar spectrum of SDSS J141624.08+134826.7 is primarily a result of thin condensate clouds. In addition, we find strong evidence of vertical mixing in the atmosphere of SDSS J141624.08+134826.7 based on the absence of the deep 3.3 mu m CH(4) absorption band predicted by models computed in chemical equilibrium. Finally, this result suggests that observations of blue L dwarfs are an appealing way to quantitatively estimate the vigor of mixing in the atmospheres of L dwarfs because of the dramatic impact such mixing has on the strength of the 3.3 mu m CH(4) band in the emergent spectra of L dwarfs with thin condensate clouds. C1 [Cushing, Michael C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Saumon, D.] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. [Marley, Mark S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Cushing, MC (reprint author), CALTECH, Jet Prop Lab, MS 264-723,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM michael.cushing@gmail.com; dsaumon@lanl.gov; Mark.S.Marley@NASA.gov OI Marley, Mark/0000-0002-5251-2943 FU National Aeronautics and Space Administration; National Science Foundation; Oak Ridge Associated Universities; NASA, Spitzer Science Center FX Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, and funded by the National Aeronautics and Space Administration and the National Science Foundation, the SIMBAD database, operated at CDS, Strasbourg, France, NASA's Astrophysics Data System Bibliographic Services, the M, L, and T dwarf compendium housed at DwarfArchives.org and maintained by Chris Gelino, Davy Kirkpatrick, and Adam Burgasser, and the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research was supported (in part) by an appointment to the NASA Postdoctoral Program at the JET Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. Support for the modeling work of D. S. was provided by NASA through the Spitzer Science Center. NR 52 TC 8 Z9 8 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD NOV PY 2010 VL 140 IS 5 BP 1428 EP 1432 DI 10.1088/0004-6256/140/5/1428 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665SI UT WOS:000283055400025 ER PT J AU Abdo, AA Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, D Bloom, ED Bonamente, E Borgland, AW Bouvier, A Brandt, TJ Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cecchi, C Celik, O Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Dermer, CD de Palma, F Digel, SW Silva, EDE Drell, PS Dubois, R Dumora, D Favuzzi, C Fegan, SJ Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guiriec, S Hadasch, D Harding, AK Hayashida, M Hays, E Horan, D Hughes, RE Jean, P Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kataoka, J Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Lemoine-Goumard, M Garde, ML Longo, F Loparco, F Lovellette, MN Lubrano, P Makeev, A Martin, P Mazziotta, MN McEnery, JE Michelson, PF Mitthumsiri, W Mizuno, T Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Naumann-Godo, M Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reposeur, T Ripken, J Ritz, S Romani, RW Sadrozinski, HFW Sander, A Parkinson, PMS Scargle, JD Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Strong, AW Suson, DJ Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Brandt, T. J. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cecchi, C. Celik, Oe. Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Dermer, C. D. de Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Favuzzi, C. Fegan, S. J. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guiriec, S. Hadasch, D. Harding, A. K. Hayashida, M. Hays, E. Horan, D. Hughes, R. E. Jean, P. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Lemoine-Goumard, M. Garde, M. Llena Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Makeev, A. Martin, P. Mazziotta, M. N. McEnery, J. E. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Naumann-Godo, M. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Ripken, J. Ritz, S. Romani, R. W. Sadrozinski, H. F. -W. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Strong, A. W. Suson, D. J. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. TI Detection of the Small Magellanic Cloud in gamma-rays with Fermi/LAT SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE acceleration of particles; cosmic rays; Magellanic Clouds; gamma rays: general ID ENERGY COSMIC-RAYS; ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; ALL-SKY SURVEY; X-RAY; INFRARED-EMISSION; STAR-FORMATION; DRIVEN DYNAMO; SOURCE LIST; GALAXY AB Context. The flux of gamma rays with energies greater than 100 MeV is dominated by diffuse emission coming from cosmic-rays (CRs) illuminating the interstellar medium (ISM) of our Galaxy through the processes of Bremsstrahlung, pion production and decay, and inverse-Compton scattering. The study of this diffuse emission provides insight into the origin and transport of cosmic rays. Aims. We searched for gamma-ray emission from the Small Magellanic Cloud (SMC) in order to derive constraints on the cosmic-ray population and transport in an external system with properties different from the Milky Way. Methods. We analysed the first 17 months of continuous all-sky observations by the Large Area Telescope (LAT) of the Fermi mission to determine the spatial distribution, flux and spectrum of the gamma-ray emission from the SMC. We also used past radio synchrotron observations of the SMC to study the population of CR electrons specifically. Results. We obtained the first detection of the SMC in high-energy gamma rays, with an integrated >100 MeV flux of (3.7 +/- 0.7) x 10(-8) ph cm(-2) s(-1), with additional systematic uncertainty of <= 16%. The emission is steady and from an extended source similar to 3 degrees in size. It is not clearly correlated with the distribution of massive stars or neutral gas, nor with known pulsars or supernova remnants, but a certain correlation with supergiant shells is observed. Conclusions. The observed flux implies an upper limit on the average CR nuclei density in the SMC of similar to 15% of the value measured locally in the Milky Way. The population of high-energy pulsars of the SMC may account for a substantial fraction of the gamma-ray flux, which would make the inferred CR nuclei density even lower. The average density of CR electrons derived from radio synchrotron observations is consistent with the same reduction factor but the uncertainties are large. From our current knowledge of the SMC, such a low CR density does not seem to be due to a lower rate of CR injection and rather indicates a smaller CR confinement volume characteristic size. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Strickman, M. S.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.; Tibaldo, L.] Univ Paris Diderot, CEA Saclay, CNRS, Serv Astrophys,Lab AIM,CEA IRFU, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brandt, T. J.; Jean, P.; Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Brandt, T. J.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Celik, Oe.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Reposeur, T.; Smith, D. A.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gasparrini, D.] ASI, Sci Data Ctr, I-00044 Frascati, Roma, Italy. [Giroletti, M.] INAF Inst Radioastron, I-40129 Bologna, Italy. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Kerr, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Martin, P.; Orlando, E.; Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [McEnery, J. E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Scargle, J. D.] NASA, Div Space Sci, Ames Res Ctr, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Royal Inst Technol KTH, Dept Phys, S-10691 Stockholm, Sweden. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, S-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. EM jean@cesr.fr; knodlseder@cesr.fr; martinp@mpe.mpg.de RI Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Funk, Stefan/B-7629-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; OI Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Giordano, Francesco/0000-0002-8651-2394; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726 NR 65 TC 40 Z9 40 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV-DEC PY 2010 VL 523 AR A46 DI 10.1051/0004-6361/201014855 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 695BW UT WOS:000285346600050 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Atwood, WB Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Brandt, TJ Bregeon, J Brigida, M Bruel, P Buehler, R Burnett, TH Buson, S Caliandro, GA Cameron, RA Cannon, A Caraveo, PA Casandjian, JM Cecchi, C Celik, O Charles, E Chekhtman, A Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Dermer, CD de Angelis, A de Palma, F Digel, SW Silva, EDE Drell, PS Drlica-Wagner, A Dubois, R Favuzzi, C Fegan, SJ Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Germani, S Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grondin, MH Guiriec, S Gustafsson, M Hadasch, D Harding, AK Hayashi, K Hayashida, M Hays, E Healey, SE Jean, P Johannesson, G Johnson, AS Johnson, RP Johnson, TJ Kamae, T Katagiri, H Kataoka, J Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Martin, P Mazziotta, MN Mehault, J Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Naumann-Godo, M Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pepe, M Persic, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Ritz, S Romani, RW Sadrozinski, HFW Parkinson, PMS Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Strigari, L Strong, AW Suson, DJ Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vandenbroucke, J Vianello, G Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Yang, Z Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Atwood, W. B. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Brandt, T. J. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Cannon, A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Celik, Oe. Charles, E. Chekhtman, A. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Drlica-Wagner, A. Dubois, R. Favuzzi, C. Fegan, S. J. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Germani, S. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Guiriec, S. Gustafsson, M. Hadasch, D. Harding, A. K. Hayashi, K. Hayashida, M. Hays, E. Healey, S. E. Jean, P. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, T. J. Kamae, T. Katagiri, H. Kataoka, J. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Martin, P. Mazziotta, M. N. Mehault, J. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Naumann-Godo, M. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pepe, M. Persic, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Ritz, S. Romani, R. W. Sadrozinski, H. F. -W. Parkinson, P. M. Saz Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Strigari, L. Strong, A. W. Suson, D. J. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vianello, G. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ziegler, M. TI Fermi Large Area Telescope observations of Local Group galaxies: detection of M31 and search for M33 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Local Group; cosmic rays; gamma rays: galaxies ID LARGE-MAGELLANIC-CLOUD; GAMMA-RAY EMISSION; STAR-FORMATION; NGC 253; NEUTRAL HYDROGEN; NEARBY GALAXIES; SPACE-TELESCOPE; ATOMIC GAS; STARBURST; DISTANCE AB Context. Cosmic rays (CRs) can be studied through the galaxy-wide gamma-ray emission that they generate when propagating in the interstellar medium. The comparison of the diffuse signals from different systems may inform us about the key parameters in CR acceleration and transport. Aims. We aim to determine and compare the properties of the cosmic-ray-induced gamma-ray emission of several Local Group galaxies. Methods. We use 2 years of nearly continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope to search for gamma-ray emission from M31 and M33. We compare the results with those for the Large Magellanic Cloud, the Small Magellanic Cloud, the Milky Way, and the starburst galaxies M82 and NGC 253. Results. We detect a gamma-ray signal at 5 sigma significance in the energy range 200 MeV-20 GeV that is consistent with originating from M31. The integral photon flux above 100 MeV amounts to (9.1 +/- 1.9(stat) +/- 1.0(sys)) x 10(-9) ph cm(-2) s(-1). We find no evidence for emission from M33 and derive an upper limit on the photon flux > 100 MeV of 5.1 x 10(-9) ph cm(-2) s(-1) (2 sigma). Comparing these results to the properties of other Local Group galaxies, we find indications of a correlation between star formation rate and gamma-ray luminosity that also holds for the starburst galaxies. Conclusions. The gamma-ray luminosity of M31 is about half that of the Milky Way, which implies that the ratio between the average CR densities in M31 and the Milky Way amounts to xi = 0.35 +/- 0.25. The observed correlation between gamma-ray luminosity and star formation rate suggests that the flux of M33 is not far below the current upper limit from the LAT observations. C1 [Abdo, A. A.; Chekhtman, A.; Dermer, C. D.; Lovellette, M. N.; Makeev, A.; Parent, D.; Strickman, M. S.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Abdo, A. A.] Natl Acad Sci, Natl Res Council, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Healey, S. E.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Strigari, L.; Tanaka, T.; Thayer, J. B.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Healey, S. E.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Strigari, L.; Tanaka, T.; Thayer, J. B.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Johnson, R. P.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Johnson, R. P.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.; Tibaldo, L.] Univ Paris Diderot, CEA Saclay, CNRS, CEA IRFU,Lab AIM,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.; Persic, M.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Gustafsson, M.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brandt, T. J.; Jean, P.; Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Brandt, T. J.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Dept Phys, Columbus, OH 43210 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Hadasch, D.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Cannon, A.; Celik, Oe.; Harding, A. K.; Hays, E.; Johnson, T. J.; Moiseev, A. A.; Thompson, D. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, A.] Univ Coll Dublin, Dublin 4, Ireland. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Celik, Oe.; Moiseev, A. A.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Conrad, J.; Yang, Z.] Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Frailis, M.; Persic, M.] Osserv Astron Trieste, Ist Nazl Astrofis, I-34143 Trieste, Italy. [Fukazawa, Y.; Hayashi, K.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF, Ist Radioastron, I-40129 Bologna, Italy. [Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Smith, D. A.] Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Johnson, T. J.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Johnson, T. J.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Martin, P.; Orlando, E.; Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.; Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tibaldo, L.] ICREA, Barcelona, Spain. [Tramacere, A.; Vianello, G.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. RP Abdo, AA (reprint author), USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. EM bechtol@stanford.edu; jean@cesr.fr; knodlseder@cesr.fr; martinp@mpe.mpg.de RI Loparco, Francesco/O-8847-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Thompson, David/D-2939-2012; Gargano, Fabio/O-8934-2015; Harding, Alice/D-3160-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Funk, Stefan/B-7629-2015 OI Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Loparco, Francesco/0000-0002-1173-5673; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Thompson, David/0000-0001-5217-9135; Gargano, Fabio/0000-0002-5055-6395; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080 NR 47 TC 49 Z9 49 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV-DEC PY 2010 VL 523 AR L2 DI 10.1051/0004-6361/201015759 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 695BW UT WOS:000285346600003 ER PT J AU da Cunha, E Charmandaris, V Diaz-Santos, T Armus, L Marshall, JA Elbaz, D AF da Cunha, E. Charmandaris, V. Diaz-Santos, T. Armus, L. Marshall, J. A. Elbaz, D. TI Exploring the physical properties of local star-forming ULIRGs from the ultraviolet to the infrared SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: evolution; galaxies: fundamental parameters; galaxies: starburst; galaxies: ISM ID ULTRALUMINOUS IRAS GALAXIES; SPECTRAL ENERGY-DISTRIBUTION; RESOLUTION CO OBSERVATIONS; OPTICAL SPECTROSCOPY; STARBURST GALAXIES; LUMINOSITY FUNCTION; FORMATION HISTORY; HIGH-REDSHIFT; SIMPLE-MODEL; SAMPLE AB We apply the da Cunha et al. (2008, MNRAS, 388, 1595) model of the spectral energy distribution (SEDs) of galaxies to a small pilot sample of purely star-forming ultra-luminous infrared galaxies (ULIRGs). We interpret the observed SEDs of 16 ULIRGs using this physically-motivated model that accounts for both the emission of stellar populations from the ultraviolet to the near-infrared and for the attenuation by dust in two components: an optically-thick starburst component and the diffuse ISM. The infrared emission is computed by assuming that all the energy absorbed by dust in these components is re-radiated at mid-and far-infrared wavelengths. This model allows us to derive statistically physical properties including star formation rates, stellar masses, the temperatures and masses of different dust components, and plausible star formation histories. We find that, although the ultraviolet-to-near-infrared emission represents only a small fraction of the total power radiated by ULIRGs, observations in this wavelength range are important for understanding the properties of the stellar populations and dust attenuation in the diffuse ISM of these galaxies. Furthermore, our analysis indicates that the use of mid-infrared spectroscopy from the infrared spectrograph on the Spitzer Space Telescope is crucial to obtain realistic estimates of the extinction to the central energy source, mainly via the depth of the 9.7-mu m silicate feature, and thus accurately constrain the total energy balance. Our findings are consistent with the notion that, in the local Universe, the physical properties of ULIRGs are fundamentally different from those of galaxies with lower infrared luminosities and that local ULIRGs are the result of merger-induced starbursts. While these are well-established ideas, we demonstrate the usefulness of our SED modelling in deriving relevant physical parameters that provide clues to the star formation mode of galaxies. C1 [da Cunha, E.; Charmandaris, V.; Diaz-Santos, T.] Univ Crete, Dept Phys, Iraklion 71003, Greece. [da Cunha, E.; Charmandaris, V.; Diaz-Santos, T.] Fdn Res & Technol Hellas, IESL, Iraklion 71110, Greece. [Charmandaris, V.] Observ Paris, F-75014 Paris, France. [Armus, L.; Marshall, J. A.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Marshall, J. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Elbaz, D.] Univ Paris Diderot, CEA Saclay, Lab AIM, CEA,DSM CNRS,IRFU,Serv Astrophys, F-91191 Gif Sur Yvette, France. RP da Cunha, E (reprint author), Univ Crete, Dept Phys, Iraklion 71003, Greece. EM dacunha@physics.uoc.gr RI Charmandaris, Vassilis/A-7196-2008; Diaz-Santos, Tanio/B-4875-2011; OI Charmandaris, Vassilis/0000-0002-2688-1956; da Cunha, Elisabete/0000-0001-9759-4797 FU EU [39965]; FP7-REGPOT [206469]; National Aeronautics and Space Administration FX We thank the anonymous referee for comments and suggestions that significantly helped improve this paper. E.d.C., V. C. and T. D. S. acknowledge partial support from the EU ToK grant 39965 and FP7-REGPOT 206469. We thank David Sanders and Vivian U for providing us the optical photometry for some of our galaxies. We are grateful to Bernhard Brandl and Emanuele Daddi for useful discussions, and to Brent Groves, Nick Kylafis, Vivienne Wild and Stephanie Juneau for comments on the manuscript. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 81 TC 35 Z9 35 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV-DEC PY 2010 VL 523 AR A78 DI 10.1051/0004-6361/201014498 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 695BW UT WOS:000285346600081 ER PT J AU Hildebrandt, H Arnouts, S Capak, P Moustakas, LA Wolf, C Abdalla, FB Assef, RJ Banerji, M Benitez, N Brammer, GB Budavari, T Carliles, S Coe, D Dahlen, T Feldmann, R Gerdes, D Gillis, B Ilbert, O Kotulla, R Lahav, O Li, IH Miralles, JM Purger, N Schmidt, S Singal, J AF Hildebrandt, H. Arnouts, S. Capak, P. Moustakas, L. A. Wolf, C. Abdalla, F. B. Assef, R. J. Banerji, M. Benitez, N. Brammer, G. B. Budavari, T. Carliles, S. Coe, D. Dahlen, T. Feldmann, R. Gerdes, D. Gillis, B. Ilbert, O. Kotulla, R. Lahav, O. Li, I. H. Miralles, J. -M. Purger, N. Schmidt, S. Singal, J. TI PHAT: PHoto-z Accuracy Testing SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE techniques: photometric; galaxies: distances and redshifts; galaxies: photometry; cosmology: observations; methods: data analysis ID HUBBLE-DEEP-FIELD; DIGITAL SKY SURVEY; SPECTRAL ENERGY-DISTRIBUTIONS; ARTIFICIAL NEURAL-NETWORKS; STAR-FORMING GALAXIES; ESTIMATING PHOTOMETRIC REDSHIFTS; NEAR-INFRARED PHOTOMETRY; ACTIVE GALACTIC NUCLEI; LYMAN BREAK GALAXIES; GOODS-NORTH FIELD AB Context. Photometric redshifts (photo-z's) have become an essential tool in extragalactic astronomy. Many current and upcoming observing programmes require great accuracy of photo-z's to reach their scientific goals. Aims. Here we introduce PHAT, the PHoto-z Accuracy Testing programme, an international initiative to test and compare different methods of photo-z estimation. Methods. Two different test environments are set up, one (PHAT0) based on simulations to test the basic functionality of the different photo-z codes, and another one (PHAT1) based on data from the GOODS survey including 18-band photometry and similar to 2000 spectroscopic redshifts. Results. The accuracy of the different methods is expressed and ranked by the global photo-z bias, scatter, and outlier rates. While most methods agree very well on PHAT0 there are differences in the handling of the Lyman-alpha forest for higher redshifts. Furthermore, different methods produce photo-z scatters that can differ by up to a factor of two even in this idealised case. A larger spread in accuracy is found for PHAT1. Few methods benefit from the addition of mid-IR photometry. The accuracy of the other methods is unaffected or suffers when IRAC data are included. Remaining biases and systematic effects can be explained by shortcomings in the different template sets (especially in the mid-IR) and the use of priors on the one hand and an insufficient training set on the other hand. Some strategies to overcome these problems are identified by comparing the methods in detail. Scatters of 4-8% in Delta z/(1 + z) were obtained, consistent with other studies. However, somewhat larger outlier rates (> 7.5% with Delta z/(1 + z) > 0.15; > 4.5% after cleaning) are found for all codes that can only partly be explained by AGN or issues in the photometry or the spec-z catalogue. Some outliers were probably missed in comparisons of photo-z's to other, less complete spectroscopic surveys in the past. There is a general trend that empirical codes produce smaller biases than template-based codes. Conclusions. The systematic, quantitative comparison of different photo-z codes presented here is a snapshot of the current state-of-the-art of photo-z estimation and sets a standard for the assessment of photo-z accuracy in the future. The rather large outlier rates reported here for PHAT1 on real data should be investigated further since they are most probably also present (and possibly hidden) in many other studies. The test data sets are publicly available and can be used to compare new, upcoming methods to established ones and help in guiding future photo-z method development. C1 [Hildebrandt, H.] Leiden Univ, Leiden Observ, NL-2333 CA Leiden, Netherlands. [Arnouts, S.] Canada France Hawaii Telescope Corp, Kamuela, HI 96743 USA. [Capak, P.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Moustakas, L. A.; Coe, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wolf, C.] Univ Oxford, Dept Phys, DWB, Oxford OX1 3RH, England. [Abdalla, F. B.; Lahav, O.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Assef, R. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Banerji, M.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Benitez, N.] CSIC, Inst Astrofis Andalucia, E-18008 Granada, Spain. [Brammer, G. B.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Budavari, T.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Carliles, S.] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA. [Dahlen, T.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Feldmann, R.] ETH, Inst Astron, Dept Phys, CH-8093 Zurich, Switzerland. [Gerdes, D.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Gillis, B.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Ilbert, O.] Univ Aix Marseille, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Kotulla, R.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Kotulla, R.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Li, I. H.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Miralles, J. -M.] Inst Estudis Andorrans, St Julia De Loria 600, Andorra. [Purger, N.] Eotvos Lorand Univ, Dept Phys Complex Syst, H-1518 Budapest, Hungary. [Schmidt, S.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Singal, J.] SLAC Natl Accelerator Lab, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. RP Hildebrandt, H (reprint author), Leiden Univ, Leiden Observ, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands. EM hendrik@strw.leidenuniv.nl RI Moustakas, Leonidas/F-3052-2014; OI Moustakas, Leonidas/0000-0003-3030-2360; Banerji, Manda/0000-0002-0639-5141; Abdalla, Filipe/0000-0003-2063-4345; Benitez, Narciso/0000-0002-0403-7455 FU European DUEL RTN [MRTN-CT-2006-036133]; NASA; STFC; NKTH:Polanyi; [KCKHA005] FX We would like to thank JPL/Caltech for hospitality and support during the 2008 PHAT workshop. We are grateful to the large number of colleagues who made PHAT a success through discussions, criticism, and encouragement. A special thanks goes to Mike Hudson who came up with the acronym "PHAT". HH would like to thank in particular Catherine Heymans, Konrad Kuijken, Ludovic van Waerbeke, and Peter Schneider for supporting the PHAT effort. HH was supported by the European DUEL RTN, project MRTN-CT-2006-036133. The work of LAM and DC was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.; LAM acknowledges support by the NASA ATFP program. CW was supported by an STFC Advanced Fellowship. NP acknowledges support from NKTH:Polanyi and KCKHA005 grants. NR 99 TC 81 Z9 81 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV-DEC PY 2010 VL 523 AR A31 DI 10.1051/0004-6361/201014885 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 695BW UT WOS:000285346600035 ER PT J AU Thatte, A Deroo, P Swain, MR AF Thatte, A. Deroo, P. Swain, M. R. TI Selective principal component extraction and reconstruction: a novel method for ground based exoplanet spectroscopy SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE infrared: planetary systems; planets and satellites: atmospheres; techniques: spectroscopic; methods: data analysis; methods: numerical ID INFRARED-EMISSION-SPECTRUM; HD 189733B; DAYSIDE SPECTRUM; ATMOSPHERE; ABSORPTION; 209458B; METHANE; PLANET; WATER AB Context. Infrared spectroscopy of primary and secondary eclipse events probes the composition of exoplanet atmospheres and, using space telescopes, has detected H(2)O, CH(4) and CO(2) in three hot Jupiters. However, the available data from space telescopes has limited spectral resolution and does not cover the 2.4-5.2 mu m spectral region. While large ground based telescopes have the potential to obtain molecular-abundance-grade spectra for many exoplanets, realizing this potential requires retrieving the astrophysical signal in the presence of large Earth-atmospheric and instrument systematic errors. Aims. Here we report a wavelet-assisted, selective principal component extraction method for ground based retrieval of the dayside spectrum of HD189733b from data containing systematic errors. Methods. The method uses singular value decomposition and extracts those critical points of the Rayleigh quotient which correspond to the planet induced signal. The method does not require prior knowledge of the planet spectrum or the physical mechanisms causing systematic errors. Results. The spectrum obtained with our method is in excellent agreement with space based measurements made with HST and Spitzer and confirms the recent ground based measurements including the strong similar to 3.3 mu m emission. C1 [Thatte, A.] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Deroo, P.; Swain, M. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Thatte, A (reprint author), Georgia Inst Technol, George W Woodruff Sch Mech Engn, MRDC Bldg,Room 4111, Atlanta, GA 30332 USA. EM azamthatte@gatech.edu NR 15 TC 5 Z9 5 U1 1 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV-DEC PY 2010 VL 523 AR A35 DI 10.1051/0004-6361/201015148 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 695BW UT WOS:000285346600039 ER PT J AU D'Avanzo, P Perri, M Fugazza, D Salvaterra, R Chincarini, G Margutti, R Wu, XF Thone, CC Fernandez-Soto, A Ukwatta, TN Burrows, DN Gehrels, N Meszaros, P Toma, K Zhang, B Covino, S Campana, S D'Elia, V Della Valle, M Piranomonte, S AF D'Avanzo, P. Perri, M. Fugazza, D. Salvaterra, R. Chincarini, G. Margutti, R. Wu, X. F. Thoene, C. C. Fernandez-Soto, A. Ukwatta, T. N. Burrows, D. N. Gehrels, N. Meszaros, P. Toma, K. Zhang, B. Covino, S. Campana, S. D'Elia, V. Della Valle, M. Piranomonte, S. TI The afterglow and host galaxy of GRB 090205: evidence of a Ly-alpha emitter at z=4.65 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gamma rays: general ID GAMMA-RAY BURSTS; LYMAN-BREAK GALAXIES; STAR-FORMATION; TELESCOPE OBSERVATIONS; STELLAR POPULATIONS; HIGH-REDSHIFT; 1ST SURVEY; SWIFT; ORIGIN; FLARES AB Context. Gamma-ray bursts (GRBs) have proven to be detectable to distances much larger than any other astrophysical object, providing the most effective way, complementing ordinary surveys of studying the high redshift universe. Aims. We present the results of an observational campaign devoted to the study of the high-z GRB 090205. Methods. We carried out optical/NIR spectroscopy and imaging of GRB 090205 with the ESO-VLT starting from hours after the event to several days later to detect the host galaxy. We compared the results obtained from our optical/NIR observations with the available Swift high-energy data of this burst. Results. Our observational campaign led to the detection of the optical afterglow and host galaxy of GRB 090205 and to the first measure of its redshift, z = 4.65. As in other high-z GRBs, GRB 090205 has a short duration in the rest frame with T(90,rf) = 1.6 s, which suggests that it might belong to the short GRB class. The X-ray afterglow of GRB 090205 has a complex and interesting behavior with a possible rebrightening at 500-1000 s from the trigger time and late flaring activity. Photometric observations of the GRB 090205 host galaxy imply that it is a starburst galaxy with a stellar population younger than similar to 150 Myr. Moreover, the metallicity of Z > 0.27 Z(circle dot) derived from the GRB afterglow spectrum is among the highest derived from GRB afterglow measurement at high-z, suggesting that the burst occurred in a rather enriched environment. Finally, a detailed analysis of the afterglow spectrum shows the existence of a line corresponding to Lyman-alpha emission at the redshift of the burst. GRB 090205 is thus hosted by a typical Lyman-alpha emitter (LAE) at z = 4.65. This makes the host galaxy of GRB 090205 the farthest GRB host galaxy, spectroscopically confirmed, detected to date. C1 [D'Avanzo, P.; Fugazza, D.; Chincarini, G.; Margutti, R.; Thoene, C. C.; Covino, S.; Campana, S.] INAF Osservatorio Astron Brera, I-23807 Merate, Italy. [Perri, M.; D'Elia, V.] ASI Sci Data Ctr, I-00044 Frascati, Italy. [Salvaterra, R.] Univ Insubria, Dipartimento Fis & Matemat, I-22100 Como, Italy. [Chincarini, G.; Margutti, R.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Wu, X. F.; Burrows, D. N.; Meszaros, P.; Toma, K.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Wu, X. F.; Meszaros, P.; Toma, K.] Penn State Univ, Ctr Particle Astrophys, University Pk, PA 16802 USA. [Wu, X. F.] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Fernandez-Soto, A.] Inst Fis Cantabria CSIC UC, Santander 39005, Spain. [Ukwatta, T. N.] George Washington Univ, Washington, DC 20052 USA. [Ukwatta, T. N.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Meszaros, P.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Zhang, B.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. [D'Elia, V.; Piranomonte, S.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Della Valle, M.] INAF Osservatorio Astron Capodimonte, I-80131 Naples, Italy. [Della Valle, M.] Int Ctr Relativist Astrophys, I-65122 Pescara, Italy. RP D'Avanzo, P (reprint author), INAF Osservatorio Astron Brera, Via Bianchi 46, I-23807 Merate, Italy. EM paolo.davanzo@brera.inaf.it RI Gehrels, Neil/D-2971-2012; Wu, Xuefeng/G-5316-2015; Fernandez-Soto, Alberto/A-2443-2009; OI Wu, Xuefeng/0000-0002-6299-1263; Fernandez-Soto, Alberto/0000-0002-5732-3121; Campana, Sergio/0000-0001-6278-1576; D'Elia, Valerio/0000-0002-7320-5862; Della Valle, Massimo/0000-0003-3142-5020 FU ASI [SWIFT I/011/07/0] FX We thank the referee for his/her useful comments and suggestions. We acknowledge support by ASI grant SWIFT I/011/07/0. This research has made use of the XRT Data Analysis Software (XRTDAS) developed under the responsibility of the ASI Science Data Center (ASDC), Italy. We acknowledge the invaluable help from the ESO staff at Paranal in carrying out our target-of-opportunity observations. NR 51 TC 15 Z9 15 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2010 VL 522 AR A20 DI 10.1051/0004-6361/201014801 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679HS UT WOS:000284153100026 ER PT J AU Grosso, N Hamaguchi, K Kastner, JH Richmond, MW Weintraub, DA AF Grosso, N. Hamaguchi, K. Kastner, J. H. Richmond, M. W. Weintraub, D. A. TI A few days before the end of the 2008 extreme outburst of EX Lupi: accretion shocks and a smothered stellar corona unveiled by XMM-Newton SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE X-rays: stars; stars: individual: EX Lup; stars: pre-main sequence; stars: coronae; stars: activity accretion; accretion disks ID T-TAURI-STARS; X-RAY-EMISSION; ILLUMINATING MCNEIL-NEBULA; ORION ULTRADEEP PROJECT; PHOTON IMAGING CAMERA; Z CANIS MAJORIS; YOUNG STAR; FU ORIONIS; CIRCUMSTELLAR DISKS; SPECTRAL-ANALYSIS AB Context. EX Lup is a pre-main sequence star that exhibits repetitive and irregular optical outbursts driven by an increase in the mass accretion rate in its circumstellar disk. In mid-January 2008, EX Lup, the prototype of the small class of eruptive variables called EXors, began an extreme outburst that lasted seven months. Aims. We attempt to characterize the X-ray and UV emission of EX Lup during this outburst. Methods. We observed EX Lup during about 21 h with XMM-Newton, simultaneously in X-rays and UV, on August 10-11, 2008 a few days before the end of its 2008 outburst -when the optical flux of EX Lup remained about 4 times above its pre-outburst level. Results. We detected EX Lup in X-rays with an observed flux in the 0.2-10 keV energy range of 5.4 x 10(-14) erg s(-1) cm(-2) during a low-level period. This observed flux increased by a factor of four during a flaring period that lasted about 2 h. The observed spectrum of the low-level period is dominated below similar to 1.5 keV by emission from a relatively cool plasma (similar to 4.7 MK) that is lightly absorbed (N-H similar or equal to 3.6 x 10(20) cm(-2)) and above similar to 1.5 keV by emission from a plasma that is similar to ten times hotter and affected by a photoelectric absorption that is 75 times larger. The intrinsic X-ray luminosity of the relatively cool plasma is similar to 4x 10(28) erg s(-1). The intrinsic X-ray luminosity of EX Lup, similar to 3.4 x 10(29) erg s(-1), is hence dominated by emission from the hot plasma. During the X-ray flare, the emission measure and the intrinsic X-ray luminosity of this absorbed plasma component is five times higher than during the low-level period. We detected UV variability on timescales ranging from less than one hour up to about four hours. We show from simulated light curves that the power spectral density of the UV light curve can be modeled with a red-noise spectrum with a power-law index of 1.39 +/- 0.06. None of the UV events observed on August 10-11, 2008 correlate unambiguously with simultaneous X-ray peaks. Conclusions. The soft X-ray spectral component is most likely associated with accretion shocks, as opposed to jet activity, given the absence of forbidden emission lines of low-excitation species (e. g., [OI]) in optical spectra of EX Lup obtained during outburst. The hard X-ray spectral component, meanwhile, is most likely associated with a smothered stellar corona. The UV emission is reminiscent of accretion events, such as those already observed with the Optical/UV Monitor from other accreting pre-main sequence stars, and is evidently dominated by emission from accretion hot spots. The large photoelectric absorption of the active stellar corona is most likely due to high-density gas above the corona in accretion funnel flows. C1 [Grosso, N.] Univ Strasbourg, CNRS, UMR 7550, Observ Astron Strasbourg, F-67000 Strasbourg, France. [Hamaguchi, K.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Hamaguchi, K.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Hamaguchi, K.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Kastner, J. H.] Rochester Inst Technol, Ctr Imaging Sci, Rochester, NY 14623 USA. [Richmond, M. W.] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA. [Weintraub, D. A.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RP Grosso, N (reprint author), Univ Strasbourg, CNRS, UMR 7550, Observ Astron Strasbourg, 11 Rue Univ, F-67000 Strasbourg, France. EM nicolas.grosso@astro.unistra.fr FU ESA Member States; NASA [NNX09AC11G] FX We thanks the XMM-Newton Science Operations Centre for the prompt schedule of this observation. This research is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research. J.K.'s research on X-rays from erupting YSOs is supported by NASA/GSFC XMM-Newton Guest Observer grant NNX09AC11G to RIT. NR 74 TC 15 Z9 15 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2010 VL 522 AR A56 DI 10.1051/0004-6361/200913850 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679HS UT WOS:000284153100062 ER PT J AU Kallinger, T Mosser, B Hekker, S Huber, D Stello, D Mathur, S Basu, S Bedding, TR Chaplin, WJ De Ridder, J Elsworth, YP Frandsen, S Garcia, RA Gruberbauer, M Matthews, JM Borucki, WJ Bruntt, H Christensen-Dalsgaard, J Gilliland, RL Kjeldsen, H Koch, DG AF Kallinger, T. Mosser, B. Hekker, S. Huber, D. Stello, D. Mathur, S. Basu, S. Bedding, T. R. Chaplin, W. J. De Ridder, J. Elsworth, Y. P. Frandsen, S. Garcia, R. A. Gruberbauer, M. Matthews, J. M. Borucki, W. J. Bruntt, H. Christensen-Dalsgaard, J. Gilliland, R. L. Kjeldsen, H. Koch, D. G. TI Asteroseismology of red giants from the first four months of Kepler data: Fundamental stellar parameters SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: late-type; stars: oscillations; stars: fundamental parameters ID SOLAR-LIKE OSCILLATIONS; EPSILON-OPHIUCHI; RADIUS DETERMINATION; K-GIANTS; P-MODES; STARS; PHOTOMETRY; COROT; CLUSTER; INCLINATION AB Context. Clear power excess in a frequency range typical for solar-type oscillations in red giants has been detected in more than 1000 stars, which have been observed during the first 138 days of the science operation of the NASA Kepler satellite. This sample includes stars in a wide mass and radius range with spectral types G and K, extending in luminosity from the bottom of the giant branch up to high-luminous red giants, including the red bump and clump. The high-precision asteroseismic observations with Kepler provide a perfect source for testing stellar structure and evolutionary models, as well as investigating the stellar population in our Galaxy. Aims. We aim to extract accurate seismic parameters from the Kepler time series and use them to infer asteroseismic fundamental parameters from scaling relations and a comparison with red-giant models. Methods. We fit a global model to the observed power density spectra, which allows us to accurately estimate the granulation background signal and the global oscillation parameters, such as the frequency of maximum oscillation power. We find regular patterns of radial and non-radial oscillation modes and use a new technique to automatically identify the mode degree and the characteristic frequency separations between consecutive modes of the same spherical degree. In most cases, we can also measure the small separation between l = 0, 1, and 2 modes. Subsequently, the seismic parameters are used to estimate stellar masses and radii and to place the stars in an H-R diagram by using an extensive grid of stellar models that covers a wide parameter range. Using Bayesian techniques throughout our entire analysis allows us to determine reliable uncertainties for all parameters. Results. We provide accurate seismic parameters and their uncertainties for a large sample of red giants and determine their asteroseismic fundamental parameters. We investigate the influence of the stars' metallicities on their positions in the H-R diagram. Finally, we study the red-giant populations in the red clump and bump and compare them to a synthetic population. We find a mass and metallicity gradient in the red clump and clear evidence of a secondary-clump population. C1 [Kallinger, T.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Kallinger, T.; Matthews, J. M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Mosser, B.] Univ Denis, Univ Paris 06, CNRS, LESIA,Observ Paris, F-92195 Meudon, France. [Hekker, S.; Chaplin, W. J.; Elsworth, Y. P.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Huber, D.; Stello, D.; Bedding, T. R.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Mathur, S.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Basu, S.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [De Ridder, J.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Frandsen, S.] Aarhus Univ, Dept Phys & Astron, DASC, DK-8000 Aarhus C, Denmark. [Garcia, R. A.] Univ Paris 07, Ctr Saclay, IRFU SAp, Lab AIM,CEA DSM CNRS, F-91191 Gif Sur Yvette, France. [Gruberbauer, M.] St Marys Univ, Dept Phys & Astron, Inst Computat Astrophys, Halifax, NS B3H 3C3, Canada. [Borucki, W. J.; Koch, D. G.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gilliland, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Kallinger, T (reprint author), Univ Vienna, Inst Astron, Turkenschanzstr 17, A-1180 Vienna, Austria. EM kallinger@phas.ubc.ca OI Kallinger, Thomas/0000-0003-3627-2561; Garcia, Rafael/0000-0002-8854-3776 FU NASA's Science Mission Directorate; Canadian Space Agency; Austrian Research Promotion Agency; Austrian Science Fund; UK Science and Technology Facilities Council; Astronomical Society of Australia; European Research Council [FP7/2007-2013, 227224]; Research Council of K.U. Leuven [GOA/2008/04]; US National Science Foundation; Australian Research Council FX Funding for the Kepler Mission is provided by NASA's Science Mission Directorate. T.K. is supported by the Canadian Space Agency, the Austrian Research Promotion Agency, and the Austrian Science Fund. S.H., Y.P.E. and W.J.C. acknowledge support by the UK Science and Technology Facilities Council. D.H. acknowledges support by the Astronomical Society of Australia. The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 227224 (PROSPERITY), as well as from the Research Council of K.U. Leuven grant agreement GOA/2008/04. The National Center for Atmospheric Research is a federally funded research and development center sponsored by the US National Science Foundation. We acknowledge support from the Australian Research Council. The authors gratefully acknowledge the Kepler Science Team and all those who have contributed to making the Kepler Mission possible. NR 61 TC 96 Z9 96 U1 1 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2010 VL 522 AR A1 DI 10.1051/0004-6361/201015263 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679HS UT WOS:000284153100007 ER PT J AU Keskitalo, R Ashdown, MAJ Cabella, P Kisner, T Poutanen, T Stompor, R Bartlett, JG Borrill, J Cantalupo, C de Gasperis, G de Rosa, A de Troia, G Eriksen, HK Finelli, F Gorski, KM Gruppuso, A Hivon, E Jaffe, A Keihanen, E Kurki-Suonio, H Lawrence, CR Natoli, P Paci, F Polenta, G Rocha, G AF Keskitalo, R. Ashdown, M. A. J. Cabella, P. Kisner, T. Poutanen, T. Stompor, R. Bartlett, J. G. Borrill, J. Cantalupo, C. de Gasperis, G. de Rosa, A. de Troia, G. Eriksen, H. K. Finelli, F. Gorski, K. M. Gruppuso, A. Hivon, E. Jaffe, A. Keihanen, E. Kurki-Suonio, H. Lawrence, C. R. Natoli, P. Paci, F. Polenta, G. Rocha, G. TI Residual noise covariance for Planck low-resolution data analysis SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic microwave background; cosmology: observations; methods: data analysis; methods: numerical ID MICROWAVE BACKGROUND ANISOTROPY; PROBE WMAP OBSERVATIONS; MAP-MAKING ALGORITHM; 30 GHZ DATA; POWER SPECTRUM; RADIOMETER CHARACTERIZATION; POLARIZATION MAPS; DESTRIPING ERRORS; CMB EXPERIMENTS; SKY MAPS AB Aims. We develop and validate tools for estimating residual noise covariance in Planck frequency maps, we also quantify signal error effects and compare different techniques to produce low-resolution maps. Methods. We derived analytical estimates of covariance of the residual noise contained in low-resolution maps produced using a number of mapmaking approaches. We tested these analytical predictions using both Monte Carlo simulations and by applying them to angular power spectrum estimation. We used simulations to quantify the level of signal errors incurred in the different resolution downgrading schemes considered in this work. Results. We find excellent agreement between the optimal residual noise covariance matrices and Monte Carlo noise maps. For destriping mapmakers, the extent of agreement is dictated by the knee frequency of the correlated noise component and the chosen baseline offset length. Signal striping is shown to be insignificant when properly dealt with. In map resolution downgrading, we find that a carefully selected window function is required to reduce aliasing to the subpercent level at multipoles, l > 2N(side), where N(side) is the HEALPix resolution parameter. We show that, for a polarization measurement, reliable characterization of the residual noise is required to draw reliable constraints on large-scale anisotropy. Conclusions. Methods presented and tested in this paper allow for production of low-resolution maps with both controlled sky signal error level and a reliable estimate of covariance of the residual noise. We have also presented a method for smoothing the residual noise covariance matrices to describe the noise correlations in smoothed, bandwidth-limited maps. C1 [Keskitalo, R.; Poutanen, T.; Keihanen, E.; Kurki-Suonio, H.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. [Keskitalo, R.; Poutanen, T.; Kurki-Suonio, H.] Helsinki Inst Phys, Helsinki 00014, Finland. [Keskitalo, R.; Gorski, K. M.; Lawrence, C. R.; Rocha, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ashdown, M. A. J.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Ashdown, M. A. J.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Cabella, P.; Polenta, G.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Cabella, P.; de Gasperis, G.; de Troia, G.; Natoli, P.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Kisner, T.; Borrill, J.; Cantalupo, C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Poutanen, T.] Helsinki Univ Technol, Metsahovi Radio Observ, Kylmala 02540, Finland. [Stompor, R.; Bartlett, J. G.] Univ Paris Diderot, CNRS, UMR 7164, Lab Astroparticule & Cosmol APC, F-75205 Paris 13, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [de Rosa, A.; Finelli, F.; Gruppuso, A.] Bologna Ist Nazl Astrofis, Ist Astrofis Spaziale & Fis Cosm, INAF IASF Bologna, I-40129 Bologna, Italy. [Eriksen, H. K.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Eriksen, H. K.] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway. [Finelli, F.; Gruppuso, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Finelli, F.] Ist Nazl Astrofis, Osservatorio Astron Bologna, INAF OAB, I-40127 Bologna, Italy. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Hivon, E.] Inst Astrophys, F-75014 Paris, France. [Jaffe, A.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, London SW7 2AZ, England. [Natoli, P.] Ist Nazl Fis Nucl, Sez Tor Vergata, I-00133 Rome, Italy. [Paci, F.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Polenta, G.] ESRIN, ASI Sci Data Ctr, I-00044 Frascati, Italy. [Rocha, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. RP Keskitalo, R (reprint author), Univ Helsinki, Dept Phys, POB 64, Helsinki 00014, Finland. EM reijo.t.keskitalo@jpl.nasa.gov RI de Gasperis, Giancarlo/C-8534-2012; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; OI de Gasperis, Giancarlo/0000-0003-2899-2171; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Finelli, Fabio/0000-0002-6694-3269; Polenta, Gianluca/0000-0003-4067-9196; Hivon, Eric/0000-0003-1880-2733 NR 45 TC 7 Z9 7 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2010 VL 522 AR A94 DI 10.1051/0004-6361/200912606 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679HS UT WOS:000284153100100 ER PT J AU Lendl, M Afonso, C Koppenhoefer, J Nikolov, N Henning, T Swain, M Greiner, J AF Lendl, M. Afonso, C. Koppenhoefer, J. Nikolov, N. Henning, Th. Swain, M. Greiner, J. TI New parameters and transit timing studies for OGLE2-TR-L9 b SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE techniques: photometric; planetary systems; planets and satellites: individual: OGLE2-TR-L9 b ID EXTRASOLAR PLANET; LIGHT-CURVE; OGLE-TR-111B; ATMOSPHERE; PROJECT; STAR AB Context. Repeated observations of exoplanet transits allow us to refine the planetary parameters and probe them for any time dependent variations. In particular deviations of the period from a strictly linear ephemeris, transit timing variations ( TTVs), can indicate the presence of additional bodies in the planetary system. Aims. Our goal was to reexamine the largely unstudied OGLE2-TR-L9 system with high cadence, multi-color photometry in order to refine the planetary parameters and probe the system for TTVs. Methods. We observed five full transits of OGLE2-TR-L9 with the GROND instrument at the ESO/MPG 2.2 m telescope at La Silla Observatory. GROND is a multichannel imager that allowed us to gather simultaneous light curves in the g', r', i', and z' filters. Results. From our analysis we find that the semi-major axis and the inclination differ from the previously published values. With the newly observed transits, we were able to refine the ephemeris to 2 454 492.80008(+/- 0.00014) + 2.48553417(+/- 6.4 x 10(-7)) E. The newly derived parameters are a = 0.0418 +/- 0.0015 AU, r(p) = 1.67 +/- 0.05 R-j, and inc = 82.47 degrees +/- 0.12, differing significantly in a and inc from the previously published values. Within our data, we find indications for TTVs. C1 [Lendl, M.; Afonso, C.; Nikolov, N.; Henning, Th.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Koppenhoefer, J.] Univ Sternwarte Munchen, D-81679 Munich, Germany. [Lendl, M.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Swain, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lendl, M.] Univ Geneva, Observ Geneva, CH-1290 Versoix, Switzerland. [Koppenhoefer, J.; Greiner, J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. RP Lendl, M (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM Monika.Lendl@unige.ch FU Leibniz-Prize [HA 1850/28-1] FX Part of the funding for GROND (both hardware as well as personnel) was generously granted from the Leibniz-Prize to Prof. G. Hasinger (DFG grant HA 1850/28-1). NR 18 TC 3 Z9 3 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2010 VL 522 AR A29 DI 10.1051/0004-6361/201014940 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679HS UT WOS:000284153100035 ER PT J AU Pandian, JD Momjian, E Xu, Y Menten, KM Goldsmith, PF AF Pandian, J. D. Momjian, E. Xu, Y. Menten, K. M. Goldsmith, P. F. TI Spectral energy distributions of 6.7 GHz methanol masers SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE masers; stars: formation; HII regions ID RADIO-CONTINUUM EMISSION; ULTRACOMPACT HII-REGIONS; YOUNG STELLAR OBJECTS; GALACTIC PLANE SURVEY; STAR-FORMING REGIONS; HIGH-MASS PROTOSTARS; H II REGIONS; VLBI OBSERVATIONS; HIGH-RESOLUTION; MU-M AB Context. The 6.7 GHz maser transition of methanol has been found exclusively towards massive star forming regions. A majority of the masers have been found to lack the presence of any associated radio continuum. This could be due to the maser emission originating prior to the formation of an HII region around the central star, or from the central object being too cool to produce a HII region. Aims. One way to distinguish between the two scenarios is to determine and model the spectral energy distributions (SEDs) of the masers. Methods. We observed a sample of 20 6.7 GHz methanol masers selected from the blind Arecibo survey, from centimeter to submillimeter wavelengths. We combined our observations with existing data from various Galactic plane surveys to determine SEDs from centimeter to near-infrared wavelengths. Results. We find that 70% of the masers do not have any associated radio continuum, with the rest of the sources being associated with hypercompact and ultracompact HII regions. Modeling the SEDs shows them to be consistent with rapidly accreting massive stars, with accretion rates well above 10(-3) M-circle dot yr(-1). The upper limits on the radio continuum are also consistent with any ionized region being confined close to the stellar surface. Conclusions. This confirms the paradigm of 6.7 GHz methanol masers being signposts of early phases of massive star formation, mostly prior to the formation of a hypercompact HII region. C1 [Pandian, J. D.] Univ Hawaii, Inst Astron, Honolulu, HI 96814 USA. [Pandian, J. D.; Menten, K. M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Momjian, E.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Xu, Y.] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Goldsmith, P. F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Pandian, JD (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96814 USA. EM jpandian@mpifr-bonn.mpg.de; emomjian@aoc.nrao.edu; xuye@pmo.ac.cn; kmenten@mpifr-bonn.mpg.de; Paul.F.Goldsmith@jpl.nasa.gov RI Goldsmith, Paul/H-3159-2016 FU National Aeronautics and Space Administration; National Science Foundation; Chinese NSF [NSF 10673024, NSF 10733030, NSF 10703010, NSF 10621303]; NBRPC [2007CB815403]; Jet Propulsion Laboratory, California Institute of Technology FX We thank R. Zylka for help in reducing the MAMBO data, and F. Schuller and A. Belloche for help in reducing the LABOCA data. We also thank S. Kurtz and J. Williams for insightful discussions. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. Y.X. was supported by the Chinese NSF through grants NSF 10673024, NSF 10733030, NSF 10703010 and NSF 10621303, and NBRPC (973 Program) under grant 2007CB815403. This work was supported in part by the Jet Propulsion Laboratory, California Institute of Technology. This research has made use of NASA's Astrophysics Data System. NR 47 TC 11 Z9 11 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2010 VL 522 AR A8 DI 10.1051/0004-6361/201014937 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679HS UT WOS:000284153100014 ER PT J AU Pucella, G D'Ammando, F Romano, P Treves, A Pian, E Vercellone, S Vittorini, V Piano, G Impiombato, D Fugazza, D Verrecchia, F Krimm, HA Donnarumma, I Tavani, M Bulgarelli, A Chen, AW Giuliani, A Longo, F Pacciani, L Argan, A Barbiellini, G Boffelli, F Caraveo, P Cattaneo, PW Cocco, V Costa, E Del Monte, E De Paris, G Di Cocco, G Evangelista, Y Feroci, M Fiorini, M Froysland, T Fuschino, F Galli, M Gianotti, F Labanti, C Lapshov, I Lazzarotto, F Lipari, P Marisaldi, M Mereghetti, S Morelli, E Morselli, A Pellizzoni, A Perotti, F Picozza, P Pilia, M Prest, M Rapisarda, M Rappoldi, A Sabatini, S Soffitta, P Striani, E Trifoglio, M Trois, A Vallazza, E Zambra, A Zanello, D Perri, M Pittori, C Santolamazza, P Giommi, P Antonelli, LA Colafrancesco, S Salotti, L AF Pucella, G. D'Ammando, F. Romano, P. Treves, A. Pian, E. Vercellone, S. Vittorini, V. Piano, G. Impiombato, D. Fugazza, D. Verrecchia, F. Krimm, H. A. Donnarumma, I. Tavani, M. Bulgarelli, A. Chen, A. W. Giuliani, A. Longo, F. Pacciani, L. Argan, A. Barbiellini, G. Boffelli, F. Caraveo, P. Cattaneo, P. W. Cocco, V. Costa, E. Del Monte, E. De Paris, G. Di Cocco, G. Evangelista, Y. Feroci, M. Fiorini, M. Froysland, T. Fuschino, F. Galli, M. Gianotti, F. Labanti, C. Lapshov, I. Lazzarotto, F. Lipari, P. Marisaldi, M. Mereghetti, S. Morelli, E. Morselli, A. Pellizzoni, A. Perotti, F. Picozza, P. Pilia, M. Prest, M. Rapisarda, M. Rappoldi, A. Sabatini, S. Soffitta, P. Striani, E. Trifoglio, M. Trois, A. Vallazza, E. Zambra, A. Zanello, D. Perri, M. Pittori, C. Santolamazza, P. Giommi, P. Antonelli, L. A. Colafrancesco, S. Salotti, L. TI AGILE detection of intense gamma-ray activity from the blazar PKS 0537-441 in October 2008 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gamma rays: general; BL Lacertae objects: individual: PKS 0537-441; radiation mechanisms: non-thermal ID SILICON TRACKER; GALACTIC NUCLEI; REM TELESCOPE; SPACE MISSION; RADIO-SOURCES; SWIFT; ENERGY; PKS-0537-441; CONTINUUM; EMISSION AB Context. We report the detection by the AGILE satellite of intense gamma-ray activity from the source 1AGL J0538-4424, associated with the low-energy-peaked BL Lac PKS 0537-441, during a target of opportunity (ToO) observation performed on 2008 October 10-17, triggered by a Fermi-LAT alert, together with REM and Swift observations. Aims. The quasi-simultaneous near-infrared, optical, UV, X-ray, and gamma-ray coverage allowed us to investigate the behaviour of the source in different energy bands and study the spectral energy distribution and a theoretical model that can describe the gamma-ray state observed in mid-October. Methods. AGILE observed the source with its two co-aligned imagers: the Gamma-Ray Imaging Detector (GRID) and the hard X-ray imager (SuperAGILE), sensitive in the 30 MeV-30 GeV and 18-60 keV ranges, respectively. During the AGILE observation, the source was monitored simultaneously in the UV and X-ray bands by the Swift satellite through 6 ToO observations carried out between 2008 October 8 and 17. Moreover, the source was observed in the near-infrared and optical bands by the REM telescope on 2008 October 7, 8, and 9. Results. During 2008 October 10-17, AGILE-GRID detected gamma-ray emission from PKS 0537-441 at a significance level of 5.3-sigma with an average flux of (42 +/- 11) x 10(-8) photons cm(-2) s(-1) for energies higher than 100 MeV. A significant increase in the gamma-ray activity was detected between the first and the second halves of the observing period. REM and Swift/XRT detected the source in near-infrared/optical and X-rays during a relatively low and intermediate activity state, respectively, with no signs of evident variability in the different observations. However, Swift/UVOT detected an increase between the first and the second parts of the observing period, smaller than in the gamma-rays. Conclusions. The average gamma-ray flux of PKS 0537-441 detected by AGILE is close to the average flux observed for this source by the EGRET and Fermi-LAT instruments, with an increase of a factor 3 throughout the observation period up to a flux level slightly lower than the highest flux observed by Fermi-LAT during the first 11 months of operation. The spectral energy distribution of PKS 0537-441 in mid-October 2008 seems to require two synchrotron self-Compton components to be modelled, to account for both the near-infrared/optical bump and the X-ray data, together with the information on the gamma-ray flux level observed by AGILE. An alternative model based on the external Compton radiation, which requires an accretion disk with a relatively high luminosity, is also proposed. C1 [Pucella, G.; D'Ammando, F.; Vittorini, V.; Piano, G.; Donnarumma, I.; Tavani, M.; Pacciani, L.; Argan, A.; Cocco, V.; Costa, E.; Del Monte, E.; De Paris, G.; Evangelista, Y.; Feroci, M.; Lapshov, I.; Lazzarotto, F.; Sabatini, S.; Soffitta, P.; Trois, A.] INAF IASF Roma, I-00133 Rome, Italy. [D'Ammando, F.; Piano, G.; Tavani, M.; Froysland, T.; Picozza, P.; Striani, E.] Univ Roma Tor Vergata, Dip Fis, I-00133 Rome, Italy. [D'Ammando, F.; Romano, P.; Vercellone, S.] INAF IASF Palermo, I-90146 Palermo, Italy. [Treves, A.; Impiombato, D.; Pilia, M.; Vallazza, E.] Univ Insubria, Dip Fis, I-22100 Como, Italy. [Pian, E.] INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Pian, E.] Scuola Normale Super Pisa, I-56126 Pisa, Italy. [Impiombato, D.] Univ Perugia, Dip Fis, I-06126 Perugia, Italy. [Fugazza, D.] INAF Osservatorio Astronom Brera, I-23807 Merate, LC, Italy. [Verrecchia, F.; Perri, M.; Pittori, C.; Santolamazza, P.; Giommi, P.; Antonelli, L. A.] ASI ASDC, I-00044 Rome, Italy. [Krimm, H. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bulgarelli, A.; Di Cocco, G.; Fuschino, F.; Gianotti, F.; Labanti, C.; Marisaldi, M.; Morelli, E.; Trifoglio, M.] INAF IASF Bologna, I-40129 Bologna, Italy. [Chen, A. W.; Giuliani, A.; Caraveo, P.; Fiorini, M.; Mereghetti, S.; Perotti, F.; Zambra, A.] INAF IASF Milano, I-20133 Milan, Italy. [Longo, F.; Barbiellini, G.] INFN Trieste, I-34127 Trieste, Italy. [Longo, F.; Barbiellini, G.] Dip Fis, I-34127 Trieste, Italy. [Boffelli, F.; Cattaneo, P. W.; Rappoldi, A.] INFN Pavia, I-27100 Pavia, Italy. [Boffelli, F.; Prest, M.] Univ Pavia, Dip Fis Nucl & Teor, I-27100 Pavia, Italy. [Galli, M.] ENEA, I-40129 Bologna, Italy. [Lipari, P.; Zanello, D.] INFN Roma La Sapienza, I-00185 Rome, Italy. [Morselli, A.; Picozza, P.; Striani, E.] INFN Roma Tor Vergata, I-00133 Rome, Italy. [Pellizzoni, A.; Pilia, M.] INAF OA Cagliari, I-09012 Capoterra, Italy. [Rapisarda, M.] ENEA Frascati, I-00044 Rome, Italy. [Salotti, L.] ASI, I-00198 Rome, Italy. RP Pucella, G (reprint author), INAF IASF Roma, Via Fosso Cavaliere 100, I-00133 Rome, Italy. EM gianluca.pucella@iasf-roma.inaf.it RI Morselli, Aldo/G-6769-2011; Lazzarotto, Francesco/J-4670-2012; Trifoglio, Massimo/F-5302-2015; Pittori, Carlotta/C-7710-2016; OI galli, marcello/0000-0002-9135-3228; Morselli, Aldo/0000-0002-7704-9553; Trifoglio, Massimo/0000-0002-2505-3630; Pacciani, Luigi/0000-0001-6897-5996; Fiorini, Mauro/0000-0001-8297-1983; Pittori, Carlotta/0000-0001-6661-9779; Bulgarelli, Andrea/0000-0001-6347-0649; trois, alessio/0000-0002-3180-6002; Verrecchia, Francesco/0000-0003-3455-5082; Pellizzoni, Alberto Paolo/0000-0002-4590-0040; giommi, paolo/0000-0002-2265-5003; Labanti, Claudio/0000-0002-5086-3619; Feroci, Marco/0000-0002-7617-3421; Soffitta, Paolo/0000-0002-7781-4104; Picozza, Piergiorgio/0000-0002-7986-3321; Fuschino, Fabio/0000-0003-2139-3299; Caraveo, Patrizia/0000-0003-2478-8018; PREST, MICHELA/0000-0003-3161-4454; Gianotti, Fulvio/0000-0003-4666-119X; Lazzarotto, Francesco/0000-0003-4871-4072; Costa, Enrico/0000-0003-4925-8523; Donnarumma, Immacolata/0000-0002-4700-4549; Sabatini, Sabina/0000-0003-2076-5767 FU Italian Space Agency (ASI) [I/089/06/1, ASI-INAF I/088/06/0] FX We thank the referee, R. Hartman, for his very useful suggestions and comments. The AGILE Mission is funded by the Italian Space Agency (ASI) with scientific and programmatic participation by the Italian Institute of Astrophysics (INAF) and the Italian Institute of Nuclear Physics (INFN). We wish to express our gratitude to the Carlo Gavazzi Space, Thales Alenia Space, Telespazio and ASDC/Dataspazio Teams that implemented the necessary procedures to carry out the AGILE re-pointing. We thank the Swift Team for making these observations possible, particularly the duty scientists and science planners. We thank A. Beardmore for useful discussions. This investigation was carried out with partial support under ASI contract N. I/089/06/1. We acknowledge financial support by the Italian Space Agency through contract ASI-INAF I/088/06/0 for the Study of High-Energy Astrophysics. NR 44 TC 2 Z9 2 U1 0 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2010 VL 522 AR A109 DI 10.1051/0004-6361/201014953 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679HS UT WOS:000284153100115 ER PT J AU Sazhin, MV Vlasov, IY Sazhina, OS Turyshev, VG AF Sazhin, M. V. Vlasov, I. Yu Sazhina, O. S. Turyshev, V. G. TI RadioAstron: relativistic frequency change and time-scale shift SO ASTRONOMY REPORTS LA English DT Article ID CELESTIAL MECHANICS; REFERENCE SYSTEMS; MOTION; VICINITY; EARTH AB The plans to launch the RadioAstron space system in the near future and the realization the planned record resolution of 1 microarcsecond will require the precise determination of the satellite orbit. Suitable models for the satellite motion must be provided, including taking into account relativistic effects. We have obtained equations making it possible to construct time scales on board the satellite and at the observation point with accuracy up to 1 ps, as well as relativistic relations for measuring the distance to the satellite using one-way and two-way techniques and the Doppler effect, with a relative uncertainty of 10(-15), necessary for achieving the precision required for the RadioAstron mission. C1 [Sazhin, M. V.; Vlasov, I. Yu; Sazhina, O. S.; Turyshev, V. G.] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow, Russia. [Turyshev, V. G.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Sazhin, MV (reprint author), Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow, Russia. FU Russian Foundation for Basic Research [10-02-00961a]; Moscow State University; Russian Federation [MK-473.2010.2]; Ministry of Science and Education of the Russian Federation [02.740.11.5070] FX The authors thank Profs. V.E. Zharov and Yu.N. Ponomarev for numerous fruitful discussions of this work. This work was supported by the Russian Foundation for Basic Research (project 10-02-00961a), a Rector's Stipend of Moscow State University, a grant from the President of the Russian Federation for the State Support of Young Russian Candidates of Science (MK-473.2010.2), and the Ministry of Science and Education of the Russian Federation (grant 02.740.11.5070). NR 15 TC 4 Z9 4 U1 0 U2 1 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7729 J9 ASTRON REP+ JI Astron. Rep. PD NOV PY 2010 VL 54 IS 11 BP 959 EP 973 DI 10.1134/S1063772910110016 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 679JG UT WOS:000284157100001 ER PT J AU Pietrobon, D Balbi, A Cabella, P Gorski, KM AF Pietrobon, Davide Balbi, Amedeo Cabella, Paolo Gorski, Krzysztof M. TI NeedATool: A NEEDLET ANALYSIS TOOL FOR COSMOLOGICAL DATA PROCESSING SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; methods: data analysis; methods: numerical; methods: statistical ID PRIMORDIAL NON-GAUSSIANITY; INFLATIONARY UNIVERSE; SPHERICAL WAVELETS; PARAMETER F(NL); MICROWAVE; WMAP; CONSTRAINTS; BISPECTRUM; CURVELETS; EXPANSION AB We introduce NeedATool (Needlet Analysis Tool), a software for data analysis based on needlets, a wavelet rendition which is powerful for the analysis of fields defined on a sphere. Needlets have been applied successfully to the treatment of astrophysical and cosmological observations, and in particular to the analysis of cosmic microwave background (CMB) data. Usually, such analyses are performed in real space as well as in its dual domain, the harmonic one. Both spaces have advantages and disadvantages: for example, in pixel space it is easier to deal with partial sky coverage and experimental noise; in the harmonic domain, beam treatment and comparison with theoretical predictions are more effective. During the last decade, however, wavelets have emerged as a useful tool for CMB data analysis, since they allow us to combine most of the advantages of the two spaces, one of the main reasons being their sharp localization. In this paper, we outline the analytical properties of needlets and discuss the main features of the numerical code, which should be a valuable addition to the CMB analyst's toolbox. C1 [Pietrobon, Davide; Gorski, Krzysztof M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Balbi, Amedeo; Cabella, Paolo] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Balbi, Amedeo] INFN Sez Roma Tor Vergata, I-00133 Rome, Italy. [Gorski, Krzysztof M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Pietrobon, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM davide.pietrobon@jpl.nasa.gov; amedeo.balbi@roma2.infn.it; paolo.cabella@roma2.infn.it; krzysztof.m.gorski@jpl.nasa.gov NR 66 TC 10 Z9 10 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 1 EP 9 DI 10.1088/0004-637X/723/1/1 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100001 ER PT J AU Ryu, YH Han, C Hwang, KH Street, R Udalski, A Sumi, T Fukui, A Beaulieu, JP Gould, A Dominik, M Abe, F Bennett, DP Bond, IA Botzler, CS Furusawa, K Hayashi, F Hearnshaw, JB Hosaka, S Itow, Y Kamiya, K Kilmartin, PM Korpela, A Lin, W Ling, CH Makita, S Masuda, K Matsubara, Y Miyake, N Muraki, Y Nishimoto, K Ohnishi, K Perrott, YC Rattenbury, N Saito, T Skuljan, L Sullivan, DJ Suzuki, D Sweatman, WL Tristram, PJ Wada, K Yock, PCM Szymanski, MK Kubiak, M Pietrzynski, G Poleski, R Soszynski, I Szewczyk, O Wyrzykowski, L Ulaczyk, K Bos, M Christie, GW Depoy, DL Gal-Yam, A Gaudi, BS Kaspi, S Lee, CU Maoz, D McCormick, J Monard, B Moorhouse, D Pogge, RW Polishook, D Shvartzvald, Y Shporer, A Thornley, G Yee, JC Albrow, MD Batista, V Brillant, S Cassan, A Cole, A Corrales, E Coutures, C Dieters, S Fouque, P Greenhill, J Menzies, J Allan, A Bramich, DM Browne, P Horne, K Kains, N Snodgrass, C Steele, I Tsapras, Y Bozza, V Burgdorf, MJ Novati, SC Dreizler, S Finet, F Glitrup, M Grundahl, F Harpsoe, K Hessman, FV Hinse, TC Hundertmark, M Jorgensen, UG Liebig, C Maier, G Mancini, L Mathiasen, M Rahvar, S Ricci, D Scarpetta, G Skottfelt, J Surdej, J Southworth, J Wambsganss, J Zimmer, F AF Ryu, Y. -H. Han, C. Hwang, K. -H. Street, R. Udalski, A. Sumi, T. Fukui, A. Beaulieu, J. -P. Gould, A. Dominik, M. Abe, F. Bennett, D. P. Bond, I. A. Botzler, C. S. Furusawa, K. Hayashi, F. Hearnshaw, J. B. Hosaka, S. Itow, Y. Kamiya, K. Kilmartin, P. M. Korpela, A. Lin, W. Ling, C. H. Makita, S. Masuda, K. Matsubara, Y. Miyake, N. Muraki, Y. Nishimoto, K. Ohnishi, K. Perrott, Y. C. Rattenbury, N. Saito, To. Skuljan, L. Sullivan, D. J. Suzuki, D. Sweatman, W. L. Tristram, P. J. Wada, K. Yock, P. C. M. Szymanski, M. K. Kubiak, M. Pietrzynski, G. Poleski, R. Soszynski, I. Szewczyk, O. Wyrzykowski, L. Ulaczyk, K. Bos, M. Christie, G. W. Depoy, D. L. Gal-Yam, A. Gaudi, B. S. Kaspi, S. Lee, C. -U. Maoz, D. McCormick, J. Monard, B. Moorhouse, D. Pogge, R. W. Polishook, D. Shvartzvald, Y. Shporer, A. Thornley, G. Yee, J. C. Albrow, M. D. Batista, V. Brillant, S. Cassan, A. Cole, A. Corrales, E. Coutures, Ch. Dieters, S. Fouque, P. Greenhill, J. Menzies, J. Allan, A. Bramich, D. M. Browne, P. Horne, K. Kains, N. Snodgrass, C. Steele, I. Tsapras, Y. Bozza, V. Burgdorf, M. J. Novati, S. Calchi Dreizler, S. Finet, F. Glitrup, M. Grundahl, F. Harpsoe, K. Hessman, F. V. Hinse, T. C. Hundertmark, M. Jorgensen, U. G. Liebig, C. Maier, G. Mancini, L. Mathiasen, M. Rahvar, S. Ricci, D. Scarpetta, G. Skottfelt, J. Surdej, J. Southworth, J. Wambsganss, J. Zimmer, F. CA MOA Collaboration OGLE Collaboration FUN Collaboration PLANET Collaboration RoboNet Collaboration MiNDSTEp Collaboration TI OGLE-2009-BLG-092/MOA-2009-BLG-137: A DRAMATIC REPEATING EVENT WITH THE SECOND PERTURBATION PREDICTED BY REAL-TIME ANALYSIS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational lensing: micro ID MICROLENSING EVENTS; GRAVITATIONAL LENS; HIGH-MAGNIFICATION; MASS PLANET; SEARCH; STARS; PHOTOMETRY; ROTATION; SYSTEMS; COMMON AB We report the result of the analysis of a dramatic repeating gravitational microlensing event OGLE-2009-BLG-092/MOA-2009-BLG-137, for which the light curve is characterized by two distinct peaks with perturbations near both peaks. We find that the event is produced by the passage of the source trajectory over the central perturbation regions associated with the individual components of a wide-separation binary. The event is special in the sense that the second perturbation, occurring similar to 100 days after the first, was predicted by the real-time analysis conducted after the first peak, demonstrating that real-time modeling can be routinely done for binary and planetary events. With the data obtained from follow-up observations covering the second peak, we are able to uniquely determine the physical parameters of the lens system. We find that the event occurred on a bulge clump giant and it was produced by a binary lens composed of a K-and M-type main-sequence stars. The estimated masses of the binary components are M(1) = 0.69 +/- 0.11 M(circle dot) and M(2) = 0.36 +/- 0.06 M(circle dot), respectively, and they are separated in projection by r(perpendicular to) = 10.9 +/- 1.3 AU. The measured distance to the lens is D(L) = 5.6 +/- 0.7 kpc. We also detect the orbital motion of the lens system. C1 [Ryu, Y. -H.; Han, C.; Hwang, K. -H.] Chungbuk Natl Univ, Dept Phys, Inst Astrophys, Cheongju 371763, South Korea. [Street, R.; Tsapras, Y.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Poleski, R.; Soszynski, I.; Ulaczyk, K.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Sumi, T.; Fukui, A.; Abe, F.; Furusawa, K.; Hayashi, F.; Hosaka, S.; Itow, Y.; Kamiya, K.; Makita, S.; Masuda, K.; Matsubara, Y.; Miyake, N.; Nishimoto, K.; Suzuki, D.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Beaulieu, J. -P.; Batista, V.; Cassan, A.; Corrales, E.; Coutures, Ch.; Dieters, S.] Univ Paris 06, CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France. [Gould, A.; Gaudi, B. S.; Pogge, R. W.; Yee, J. C.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Dominik, M.; Browne, P.; Horne, K.; Liebig, C.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Bennett, D. P.] Univ Notre Damey, Dept Phys, Notre Dame, IN 46556 USA. [Bond, I. A.; Lin, W.; Ling, C. H.; Skuljan, L.; Sweatman, W. L.] Massey Univ, Inst Informat & Math Sci, N Shore Mail Ctr, Auckland, New Zealand. [Botzler, C. S.; Perrott, Y. C.; Rattenbury, N.; Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland, New Zealand. [Hearnshaw, J. B.; Albrow, M. D.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Kilmartin, P. M.; Tristram, P. J.] Mt John Observ, Lake Tekapo 8770, New Zealand. [Korpela, A.; Sullivan, D. J.] Victoria Univ Wellington, Sch Chem & Phys Sci, Wellington, New Zealand. [Muraki, Y.; Wada, K.] Konan Univ, Dept Phys, Kobe, Hyogo 6588501, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Saito, To.] Tokyo Metropolitan Coll Ind Technol, Tokyo 1168523, Japan. [Pietrzynski, G.; Szewczyk, O.] Univ Concepcion, Dept Fis, Concepcion, Chile. [Wyrzykowski, L.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Bos, M.] Molehill Astron Observ, N Shore, New Zealand. [Christie, G. W.] Auckland Observ, Auckland, New Zealand. [Depoy, D. L.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Gal-Yam, A.; Tsapras, Y.] Univ London, Sch Math Sci, London E1 4NS, England. [Kaspi, S.; Maoz, D.; Polishook, D.; Shvartzvald, Y.; Shporer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lee, C. -U.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [McCormick, J.] Farm Cove Observ, Auckland, New Zealand. [Monard, B.] Bronberg Observ, Pretoria, South Africa. [Moorhouse, D.; Thornley, G.] Kumeu Observ, Kumeu, New Zealand. [Batista, V.] UPMC Univ Paris 06, Inst Astrophys Paris, UMR7095, F-75014 Paris, France. [Brillant, S.; Snodgrass, C.] European So Observ, Santiago 19, Chile. [Cole, A.; Greenhill, J.] Univ Tasmania, Sch Math & Phys, Gpo Hobart, Tas 7001, Australia. [Dieters, S.; Fouque, P.] Univ Toulouse, CNRS, LATT, F-31400 Toulouse, France. [Menzies, J.] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Allan, A.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Bramich, D. M.; Kains, N.] European So Observ, D-85748 Garching, Germany. [Snodgrass, C.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Steele, I.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84085 Fisciano, SA, Italy. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] Ist Nazl Fis Nucl, Grp Collegato Salerno, Sezione Di Napoli, Italy. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] IIASS, I-84019 Vietri Sul Mare, SA, Italy. [Burgdorf, M. J.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Burgdorf, M. J.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Dreizler, S.; Hessman, F. V.; Hundertmark, M.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Finet, F.; Ricci, D.; Surdej, J.] Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Glitrup, M.; Grundahl, F.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Harpsoe, K.; Hinse, T. C.; Jorgensen, U. G.; Mathiasen, M.; Skottfelt, J.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Hinse, T. C.; Wambsganss, J.; Zimmer, F.] Armagh Observ, Armagh BT61 9DG, North Ireland. [Jorgensen, U. G.] Univ Copenhagen, Ctr Star & Planet Format, DK-1350 Copenhagen O, Denmark. [Liebig, C.; Maier, G.] Univ Heidelberg, Zentrum Astron, Astronom Rechen Inst, D-69120 Heidelberg, Germany. [Mancini, L.] Univ Sannio, Dipartimento Ingn, I-82100 Benevento, Italy. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran, Iran. [Rahvar, S.] IPM Inst Studies Theoret Phys & Math, Sch Astron, Tehran, Iran. [Southworth, J.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. RP Han, C (reprint author), Chungbuk Natl Univ, Dept Phys, Inst Astrophys, Cheongju 371763, South Korea. RI Gaudi, Bernard/I-7732-2012; Greenhill, John/C-8367-2013; Hundertmark, Markus/C-6190-2015; Rahvar, Sohrab/A-9350-2008; OI Hundertmark, Markus/0000-0003-0961-5231; Rahvar, Sohrab/0000-0002-7084-5725; Cole, Andrew/0000-0003-0303-3855; Dominik, Martin/0000-0002-3202-0343; Ricci, Davide/0000-0002-9790-0552; Snodgrass, Colin/0000-0001-9328-2905 FU National Research Foundation of Korea [2009-0081561]; Korea Astronomy and Space Science Institute; NSF [AST-0757888]; NASA [NNG04GL51G]; Royal Society University; [JSPS20740104]; [JSPS19340058]; [JSPS20340052]; [JSPS18253002] FX We acknowledge the support of Creative Research Initiative Program (2009-0081561) of National Research Foundation of Korea (C.H.), Korea Astronomy and Space Science Institute (C.-U.L.), NSF AST-0757888 (A.G.), NASA NNG04GL51G (B.S.G., A.G., and R.W.P.), Royal Society University Research Fellow (M.D.), JSPS20740104 (T.S.), JSPS19340058 (Y.M.), and JSPS20340052 and JSPS18253002 (MOA). The MiND-STEp monitoring campaign is powered by ARTEMiS (Automated Terrestrial Exoplanet Microlensing Search; Dominik et al. 2008). Astronomical research at Armagh Observatory is funded by the Department of Culture, Arts and Leisure, Northern Ireland, UK (T.C.H.). NR 37 TC 11 Z9 11 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 81 EP 88 DI 10.1088/0004-637X/723/1/81 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100008 ER PT J AU Konstantopoulos, IS Gallagher, SC Fedotov, K Durrell, PR Heiderman, A Elmegreen, DM Charlton, JC Hibbard, JE Tzanavaris, P Chandar, R Johnson, KE Maybhate, A Zabludoff, AE Gronwall, C Szathmary, D Hornschemeier, AE English, J Whitmore, B de Oliveira, CM Mulchaey, JS AF Konstantopoulos, I. S. Gallagher, S. C. Fedotov, K. Durrell, P. R. Heiderman, A. Elmegreen, D. M. Charlton, J. C. Hibbard, J. E. Tzanavaris, P. Chandar, R. Johnson, K. E. Maybhate, A. Zabludoff, A. E. Gronwall, C. Szathmary, D. Hornschemeier, A. E. English, J. Whitmore, B. de Oliveira, C. Mendes Mulchaey, J. S. TI GALAXY EVOLUTION IN A COMPLEX ENVIRONMENT: A MULTI-WAVELENGTH STUDY OF HCG 7 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: groups: individual (HCG 7); galaxies: interactions; galaxies: star clusters: general; galaxies: star formation ID GLOBULAR-CLUSTER SYSTEMS; HUBBLE-SPACE-TELESCOPE; HICKSON COMPACT-GROUPS; YOUNG STAR-CLUSTERS; GEMINI SPECTROSCOPIC SURVEY; SPIRAL GALAXIES; FORMATION LAW; ELLIPTIC GALAXIES; ANTENNAE GALAXIES; NEARBY GALAXIES AB The environment where galaxies are found heavily influences their evolution. Close groupings, like the ones in the cores of galaxy clusters or compact groups, evolve in ways far more dramatic than their isolated counterparts. We have conducted a multi-wavelength study of Hickson Compact Group 7 (HCG 7), consisting of four giant galaxies: three spirals and one lenticular. We use Hubble Space Telescope (HST) imaging to identify and characterize the young and old star cluster populations. We find young massive clusters (YMCs) mostly in the three spirals, while the lenticular features a large, unimodal population of globular clusters (GCs) but no detectable clusters with ages less than a few Gyr. The spatial and approximate age distributions of the similar to 300 YMCs and similar to 150 GCs thus hint at a regular star formation history in the group over a Hubble time. While at first glance the HST data show the galaxies as undisturbed, our deep ground-based, wide-field imaging that extends the HST coverage reveals faint signatures of stellar material in the intragroup medium (IGM). We do not, however, detect the IGM in H I or Chandra X-ray observations, signatures that would be expected to arise from major mergers. Despite this fact, we find that the H I gas content of the individual galaxies and the group as a whole are a third of the expected abundance. The appearance of quiescence is challenged by spectroscopy that reveals an intense ionization continuum in one galaxy nucleus, and post-burst characteristics in another. Our spectroscopic survey of dwarf galaxy members yields a single dwarf elliptical galaxy in an apparent stellar tidal feature. Based on all this information, we suggest an evolutionary scenario for HCG 7, whereby the galaxies convert most of their available gas into stars without the influence of major mergers and ultimately result in a dry merger. As the conditions governing compact groups are reminiscent of galaxies at intermediate redshift, we propose that HCGs are appropriate for studying galaxy evolution at z similar to 1-2. C1 [Konstantopoulos, I. S.; Charlton, J. C.; Gronwall, C.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gallagher, S. C.; Fedotov, K.; Szathmary, D.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Durrell, P. R.] Youngstown State Univ, Dept Phys & Astron, Youngstown, OH 44555 USA. [Heiderman, A.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Elmegreen, D. M.] Vassar Coll, Dept Phys & Astron, Poughkeepsie, NY 12604 USA. [Hibbard, J. E.; Johnson, K. E.] Natl Radio Astron Observ, Charlottesville, VA USA. [Tzanavaris, P.; Hornschemeier, A. E.] NASA, Goddard Space Flight Ctr, Lab Xray Astrophys, Greenbelt, MD 20771 USA. [Tzanavaris, P.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Chandar, R.] Univ Toledo, Toledo, OH 43606 USA. [Johnson, K. E.] Univ Virginia, Charlottesville, VA USA. [Maybhate, A.; Whitmore, B.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Zabludoff, A. E.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [English, J.] Univ Manitoba, Winnipeg, MB, Canada. [de Oliveira, C. Mendes] Univ Sao Paulo, BR-05508900 Sao Paulo, Brazil. [Mulchaey, J. S.] Carnegie Observ, Pasadena, CA 91101 USA. RP Konstantopoulos, IS (reprint author), Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. EM iraklis@psu.edu RI Mendes de Oliveira, Claudia/F-2391-2012; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; OI Mendes de Oliveira, Claudia/0000-0002-7736-4297; Konstantopoulos, Iraklis/0000-0003-2177-0146 FU NASA [SAO SV4-74018]; Space Telescope Science Institute under NASA [NAS 5-26555]; National Science and Engineering Council of Canada; HST [HST-GO-10787.07-A]; National Science Foundation [0908984, 0548103]; David and Lucile Packard Foundation FX We thank the anonymous referee for the valuable and positive input, which led to an improved manuscript. I.S.K. thanks Amanda Kepley for help with the interpretation of the radio data. We also thank Rodrigo Carrasco for useful discussions regarding the use of the Hydra iraf package. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through grant number HST-GO-10787.15-A from the Space Telescope Science Institute which is operated by AURA, Inc., under NASA contract NAS 5-26555, and the National Science and Engineering Council of Canada (S.C.G. & K.F.). We acknowledge the financial support of NASA grant SAO SV4-74018 (PI: G. P. Garmire) which supports the Chandra ACIS team. P.R.D. acknowledges support from HST grant HST-GO-10787.07-A. Funding was provided by the National Science Foundation under award 0908984. K.E.J. gratefully acknowledges support for this work provided by NSF through CAREER award 0548103 and the David and Lucile Packard Foundation through a Packard Fellowship. NR 119 TC 22 Z9 22 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 197 EP 217 DI 10.1088/0004-637X/723/1/197 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100017 ER PT J AU Siana, B Teplitz, HI Ferguson, HC Brown, TM Giavalisco, M Dickinson, M Chary, RR de Mello, DF Conselice, CJ Bridge, CR Gardner, JP Colbert, JW Scarlata, C AF Siana, Brian Teplitz, Harry I. Ferguson, Henry C. Brown, Thomas M. Giavalisco, Mauro Dickinson, Mark Chary, Ranga-Ram de Mello, Duilia F. Conselice, Christopher J. Bridge, Carrie R. Gardner, Jonathan P. Colbert, James W. Scarlata, Claudia TI A DEEP HUBBLE SPACE TELESCOPE SEARCH FOR ESCAPING LYMAN CONTINUUM FLUX AT z similar to 1.3: EVIDENCE FOR AN EVOLVING IONIZING EMISSIVITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE intergalactic medium; galaxies: high-redshift; galaxies: starburst; ultraviolet: galaxies ID QUASAR LUMINOSITY FUNCTION; STAR-FORMING GALAXIES; STARBURST GALAXIES; FAR-ULTRAVIOLET; Z-SIMILAR-TO-6 QUASARS; BACKGROUND-RADIATION; FORMATION HISTORY; ALPHA FOREST; H-ALPHA; EVOLUTION AB We have obtained deep Hubble Space Telescope far-UV images of 15 starburst galaxies at z similar to 1.3 in the GOODS fields to search for escaping Lyman continuum (LyC) photons. These are the deepest far-UV images (m(AB) = 28.7, 3 sigma, 1" diameter) over this large an area (4.83 arcmin(2)) and provide some of the best escape fraction constraints for any galaxies at any redshift. We do not detect any individual galaxies, with 3s limits to the LyC (similar to 700 angstrom) flux 50-149 times fainter (in f(nu)) than the rest-frame UV (1500 angstrom) continuum fluxes. Correcting for the mean intergalactic medium (IGM) attenuation (factor similar to 2), as well as an intrinsic stellar Lyman break (factor similar to 3), these limits translate to relative escape fraction limits of f(esc,rel) < [0.03, 0.21]. The stacked limit is f(esc,rel)(3 sigma) < 0.02. We use a Monte Carlo simulation to properly account for the expected distribution of line-of-sight IGM opacities. When including constraints from previous surveys at z similar to 1.3 we find that, at the 95% confidence level, no more than 8% of star-forming galaxies at z similar to 1.3 can have relative escape fractions greater than 0.50. Alternatively, if the majority of galaxies have low, but non-zero, escaping LyC, the escape fraction cannot be more than 0.04. In light of some evidence for strong LyC emission from UV-faint regions of Lyman break galaxies (LBGs) at z similar to 3, we also stack sub-regions of our galaxies with different surface brightnesses and detect no significant LyC flux at the f(esc,rel) < 0.03 level. Both the stacked limits and the limits from the Monte Carlo simulation suggest that the average ionizing emissivity (relative to non-ionizing UV emissivity) at z similar to 1.3 is significantly lower than has been observed in LBGs at z similar to 3. If the ionizing emissivity of star-forming galaxies is in fact increasing with redshift, it would help to explain the high photoionization rates seen in the IGM at z > 4 and reionization of the IGM at z > 6. C1 [Siana, Brian; Teplitz, Harry I.; Chary, Ranga-Ram; Colbert, James W.; Scarlata, Claudia] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Ferguson, Henry C.; Brown, Thomas M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Giavalisco, Mauro] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Dickinson, Mark] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [de Mello, Duilia F.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Conselice, Christopher J.] Univ Nottingham, Nottingham NG7 2RD, England. [Gardner, Jonathan P.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Observat Cosmol Lab, Greenbelt, MD 20771 USA. RP Siana, B (reprint author), CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. RI Conselice, Christopher/B-4348-2013; OI Brown, Thomas/0000-0002-1793-9968 FU NASA [NAS 5-26555] FX Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 10872. NR 61 TC 91 Z9 91 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 241 EP 250 DI 10.1088/0004-637X/723/1/241 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100020 ER PT J AU Landi, E Klimchuk, JA AF Landi, E. Klimchuk, J. A. TI ON THE ISOTHERMALITY OF SOLAR PLASMAS SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: data analysis; stars: coronae; Sun: corona; Sun: UV radiation; Sun: X-rays, gamma rays; techniques: spectroscopic ID ACTIVE-REGION LOOPS; IMAGING SPECTROMETER OBSERVATIONS; EMISSION-LINES; ATOMIC DATABASE; CORONAL LOOPS; TEMPERATURE-MEASUREMENTS; THERMAL STRUCTURE; QUIET-SUN; TRACE; CHIANTI AB Recent measurements have shown that the quiet unstructured solar corona observed at the solar limb is close to isothermal, at a temperature that does not appear to change over wide areas or with time. Some individual active region loop structures have also been found to be nearly isothermal both along their axis and across their cross section. Even a complex active region observed at the solar limb has been found to be composed of three distinct isothermal plasmas. If confirmed, these results would pose formidable challenges to the current theoretical understanding of the thermal structure and heating of the solar corona. For example, no current theoretical model can explain the excess densities and lifetimes of many observed loops if the loops are in fact isothermal. All of these measurements are based on the so-called emission measure (EM) diagnostic technique that is applied to a set of optically thin lines under the assumption of isothermal plasma. It provides simultaneous measurement of both the temperature and EM. In this work, we develop a new method to quantify the uncertainties in the technique and to rigorously assess its ability to discriminate between isothermal and multithermal plasmas. We define a formal measure of the uncertainty in the EM diagnostic technique that can easily be applied to real data. We here apply it to synthetic data based on a variety of assumed plasma thermal distributions and develop a method to quantitatively assess the degree of multithermality of a plasma. C1 [Landi, E.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Landi, E.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Klimchuk, J. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Landi, E (reprint author), Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RI Landi, Enrico/H-4493-2011; Klimchuk, James/D-1041-2012 OI Klimchuk, James/0000-0003-2255-0305 FU NASA; ONR FX The work of E.L. is supported by several NASA grants. The work of J.A.K. was supported by the NASA Living With a Star Program and by ONR. The idea for this study was born at a meeting of the International Space Science Institute (ISSI) working group on The Role of Spectroscopic and Imaging Data in Understanding Coronal Heating led by Dr. Susanna Parenti. NR 28 TC 16 Z9 16 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 320 EP 328 DI 10.1088/0004-637X/723/1/320 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100026 ER PT J AU Katsuda, S Petre, R Mori, K Reynolds, SP Long, KS Winkler, PF Tsunemi, H AF Katsuda, Satoru Petre, Robert Mori, Koji Reynolds, Stephen P. Long, Knox S. Winkler, P. Frank Tsunemi, Hiroshi TI STEADY X-RAY SYNCHROTRON EMISSION IN THE NORTHEASTERN LIMB OF SN 1006 SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; ISM: individual objects (SN 1006); ISM: supernova remnants; shock waves; X-rays: ISM ID MAGNETIC-FIELD AMPLIFICATION; SUPERNOVA REMNANT SN-1006; SHOCK ACCELERATION; INTERSTELLAR-MEDIUM; HIGH-ENERGY; FILAMENTS; CHANDRA; SPECTROSCOPY; ABSORPTION; CASSIOPEIA AB We investigate time variations and detailed spatial structures of X-ray synchrotron emission in the northeastern limb of SN 1006, using two Chandra observations taken in 2000 and 2008. We extract spectra from a number of small (similar to 10 '') regions. After taking account of proper motion and isolating the synchrotron from the thermal emission, we study time variations in the synchrotron emission in the small regions. We find that there are no regions showing strong flux variations. Our analysis shows an apparent flux decline in the overall synchrotron flux of similar to 4% at high energies, but we suspect that this is mostly a calibration effect, and that flux is actually constant to similar to 1%. This is much less than the variation found in other remnants where it was used to infer magnetic-field strengths up to 1 mG. We attribute the lack of variability to the smoothness of the synchrotron morphology, in contrast to the small-scale knots found to be variable in other remnants. The smoothness is to be expected for a Type Ia remnant encountering uniform material. Finally, we find a spatial correlation between the flux and the cutoff frequency in synchrotron emission. The simplest interpretation is that the cutoff frequency depends on the magnetic-field strength. This would require that the maximum energy of accelerated electrons is not limited by synchrotron losses, but by some other effect. Alternatively, the rate of particle injection and acceleration may vary due to some effect not yet accounted for, such as a dependence on shock obliquity. C1 [Katsuda, Satoru; Petre, Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mori, Koji] Miyazaki Univ, Fac Engn, Dept Appl Phys, Miyazaki 8892192, Japan. [Reynolds, Stephen P.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Long, Knox S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Winkler, P. Frank] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA. [Tsunemi, Hiroshi] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Osaka 5600043, Japan. RP Katsuda, S (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Satoru.Katsuda@nasa.gov; Robert.Petre-1@nasa.gov; mori@astro.miyazaki-u.ac.jp; reynolds@ncsu.edu; long@stsci.edu; winkler@middlebury.edu; tsunemi@ess.sci.osaka-u.ac.jp FU JSPS for Research Abroad; NASA [NNG06EO90A]; NSF [AST 0908566] FX We acknowledge helpful scientific discussions with Una Hwang. We are grateful to Paul Plucinsky and Alexey Vikhlinin for discussion of the Chandra ACIS calibration. S.K. is supported by a JSPS Research Fellowship for Research Abroad, and in part by the NASA grant under the contract NNG06EO90A. P.F.W. acknowledges the support of the NSF through grant AST 0908566. NR 37 TC 21 Z9 21 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 383 EP 392 DI 10.1088/0004-637X/723/1/383 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100031 ER PT J AU Millan-Gabet, R Monnier, JD Touhami, Y Gies, D Hesselbach, E Pedretti, E Thureau, N Zhao, M ten Brummelaar, T AF Millan-Gabet, R. Monnier, J. D. Touhami, Y. Gies, D. Hesselbach, E. Pedretti, E. Thureau, N. Zhao, M. ten Brummelaar, T. CA CHARA Grp TI SPECTRO-INTERFEROMETRY OF THE Be STAR delta Sco: NEAR-INFRARED CONTINUUM AND GAS EMISSION REGION SIZES IN 2007 SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: emission-line, Be; stars: individual (delta Sco); techniques: high angular resolution ID CIRCUMSTELLAR DISK; SCORPII; SURFACE; STELLAR; BINARY AB We present near-infrared H- and K-band spectro-interferometric observations of the gaseous disk around the primary Be star in the delta Sco binary system, obtained in 2007 (between periastron passages in 2000 and 2011). Observations using the CHARA/MIRC instrument at H band resolve an elongated disk with a Gaussian FWHM 1.18 x 0.91 mas. Using the Keck Interferometer (KI), the source of the K-band continuum emission is only marginally spatially resolved, and consequently we estimate a relatively uncertain K-band continuum disk FWHM of 0.7 +/- 0.3 mas. Line emission on the other hand, He I lambda 2.0583 mu m and Br gamma lambda 2.1657 mu m, is clearly detected, with similar to 10% lower visibilities than those of the continuum. When taking into account the continuum/line flux ratio this translates into much larger sizes for the line emission regions: 2.2 +/- 0.4 mas and 1.9 +/- 0.3 mas for He I and Br gamma, respectively. Our KI data also reveal a relatively flat spectral differential phase response, ruling out significant off-center emission. We expect that these new measurements will help constrain dynamical models being actively developed in order to explain the disk formation process in the delta Sco system and Be stars in general. C1 [Millan-Gabet, R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Monnier, J. D.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Touhami, Y.; Gies, D.; ten Brummelaar, T.; CHARA Grp] Georgia State Univ, Ctr High Angular Resolut Astron, Atlanta, GA 30302 USA. [Touhami, Y.; Gies, D.] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30302 USA. [Hesselbach, E.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Pedretti, E.; Thureau, N.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Zhao, M.] Jet Prop Lab, Pasadena, CA 91101 USA. RP Millan-Gabet, R (reprint author), CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. EM R.Millan-Gabet@caltech.edu FU National Aeronautics and Space Administration; W.M. Keck Foundation; National Science Foundation through NSF [AST-0307562, AST-0606958]; Georgia State University; NSF [AST-0352723, AST-0707927] FX The Keck Interferometer is funded by the National Aeronautics and Space Administration as part of its Navigator program. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. The CHARA Array is funded by the National Science Foundation through NSF grants AST-0307562 and AST-0606958 and by the Georgia State University. J.D.M. acknowledges support from NSF grants AST-0352723 and AST-0707927. NR 28 TC 11 Z9 11 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 544 EP 549 DI 10.1088/0004-637X/723/1/544 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100046 ER PT J AU Reames, DV Lal, N AF Reames, Donald V. Lal, Nand TI A MULTI-SPACECRAFT VIEW OF SOLAR-ENERGETIC-PARTICLE ONSETS IN THE 1977 NOVEMBER 22 EVENT SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; shock waves; Sun: coronal mass ejections (CMEs); Sun: particle emission; Sun: radio radiation ID CORONAL MASS EJECTIONS; KEV ELECTRONS; HIGH-ENERGIES; ACCELERATION; SHOCK; HELIOSPHERE; TOPOLOGY; FLARES; WIND; SUN AB We examine the onset timing of solar energetic particles in the large ground-level event (GLE) of 1977 November 22 as observed from six spacecraft at four distinct solar longitudes. In most cases, it was possible to use velocity dispersion of the energetic protons to fix the solar particle release (SPR) time and the path length traveled by the initial particle burst from each solar longitude. We find that the SPR times do depend upon solar longitude, being earliest for spacecraft that are magnetically well connected to the source region, and later for longitudes on the flanks of the outward-driven shock wave. The earliest SPR time occurs well after peak photon emission from the associated Ha flare. These observations are consistent with conclusions derived from single-longitude observations of different GLE events. They are consistent with shock acceleration over a broad spatial region with heights rising, and/or shock speeds falling, for longitudes on the flanks of the shock. C1 [Reames, Donald V.] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA. [Lal, Nand] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Reames, DV (reprint author), Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA. EM dvreames@umd.edu FU NASA [NNX08AQ02G] FX We thank Bryant Heikkila for his assistance in obtaining data from IMP and Voyager spacecraft. We thank Daniel Berdichevsky for a helpful discussion of Helios shock data and are especially grateful to Ed Cliver for helpful suggestions regarding the radio observations. We also thank Frank McDonald, Chee Ng, and Allan Tylka for helpful discussions and for their comments on this paper. This work was funded in part by NASA grant NNX08AQ02G. NR 29 TC 8 Z9 8 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 550 EP 554 DI 10.1088/0004-637X/723/1/550 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100047 ER PT J AU Balasubramaniam, KS Cliver, EW Pevtsov, A Temmer, M Henry, TW Hudson, HS Imada, S Ling, AG Moore, RL Muhr, N Neidig, DF Petrie, GJD Veronig, AM Vrsnak, B White, SM AF Balasubramaniam, K. S. Cliver, E. W. Pevtsov, A. Temmer, M. Henry, T. W. Hudson, H. S. Imada, S. Ling, A. G. Moore, R. L. Muhr, N. Neidig, D. F. Petrie, G. J. D. Veronig, A. M. Vrsnak, B. White, S. M. TI ON THE ORIGIN OF THE SOLAR MORETON WAVE OF 2006 DECEMBER 6 SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: activity; Sun: coronal mass ejections (CMEs); Sun: flares ID CORONAL MASS EJECTION; WIND SPACECRAFT DATA; EXTREME-ULTRAVIOLET WAVE; ENERGETIC PROTON EVENTS; GOPALSWAMY,N. ET-AL; X-RAY OBSERVATIONS; LARGE-SCALE WAVES; II RADIO-BURSTS; EIT WAVES; INTERPLANETARY SHOCKS AB We analyzed ground- and space-based observations of the eruptive flare (3B/X6.5) and associated Moreton wave (similar to 850 km s(-1); similar to 270 degrees azimuthal span) of 2006 December 6 to determine the wave driver-either flare pressure pulse (blast) or coronal mass ejection (CME). Kinematic analysis favors a CME driver of the wave, despite key gaps in coronal data. The CME scenario has a less constrained/smoother velocity versus time profile than is the case for the flare hypothesis and requires an acceleration rate more in accord with observations. The CME picture is based, in part, on the assumption that a strong and impulsive magnetic field change observed by a GONG magnetograph during the rapid rise phase of the flare corresponds to the main acceleration phase of the CME. The Moreton wave evolution tracks the inferred eruption of an extended coronal arcade, overlying a region of weak magnetic field to the west of the principal flare in NOAA active region 10930. Observations of H alpha foot point brightenings, disturbance contours in off-band H alpha images, and He I 10830 angstrom flare ribbons trace the eruption from 18:42 to 18:44 UT as it progressed southwest along the arcade. Hinode EIS observations show strong blueshifts at foot points of this arcade during the post-eruption phase, indicating mass outflow. At 18:45 UT, the Moreton wave exhibited two separate arcs (one off each flank of the tip of the arcade) that merged and coalesced by 18:47 UT to form a single smooth wave front, having its maximum amplitude in the southwest direction. We suggest that the erupting arcade (i.e., CME) expanded laterally to drive a coronal shock responsible for the Moreton wave. We attribute a darkening in H alpha from a region underlying the arcade to absorption by faint unresolved post-eruption loops. C1 [Balasubramaniam, K. S.] USAF, Res Lab, Space Vehicles Directorate, Sunspot, NM 88349 USA. [Cliver, E. W.] USAF, Res Lab, Space Vehicles Directorate, Hanscom AFB, MA 01731 USA. [Pevtsov, A.; Henry, T. W.; Neidig, D. F.] Natl Solar Observ, Sunspot, NM 88349 USA. [Temmer, M.; Muhr, N.; Veronig, A. M.] Graz Univ, Inst Phys, IGAM Kanzelhohe Observ, A-8010 Graz, Austria. [Hudson, H. S.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Imada, S.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ling, A. G.] Atmospher Environm Res Inc, Lexington, MA 02421 USA. [Moore, R. L.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Petrie, G. J. D.] Natl Solar Observ, Tucson, AZ 85719 USA. [Vrsnak, B.] Univ Zagreb, Fac Geodesy, Hvar Observ, HR-10000 Zagreb, Croatia. [White, S. M.] USAF, Res Lab, Space Vehicles Directorate, Kirtland AFB, NM 87117 USA. RP Balasubramaniam, KS (reprint author), USAF, Res Lab, Space Vehicles Directorate, Sunspot, NM 88349 USA. RI Veronig, Astrid/B-8422-2009; OI Balasubramaniam, Krishnan/0000-0003-2221-0933; Temmer, Manuela/0000-0003-4867-7558 FU AFOSR [2301RDA1]; Austrian Academy of Sciences at the Institute of Physics, University of Graz [APART11262]; Austrian Science Fund (FWF) [P20867-N16]; AFRL [FA8718-05-C-0036]; European Community [FP7/2007-2013, 218816]; National Science Foundation FX K.S.B., E.W.C., A.P., T.W.H., H.S.H., R.L.M., and B.V. acknowledge support from AFOSR Task 2301RDA1. M.T. is a recipient of an APART-fellowship of the Austrian Academy of Sciences at the Institute of Physics, University of Graz (APART11262). N.M. and A.M.V. acknowledge the Austrian Science Fund (FWF): [P20867-N16]. A.G.L. acknowledges support from AFRL contract FA8718-05-C-0036. B.V. acknowledges funding from European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 218816. The National Solar Observatory (NSO) is operated by the Association of Universities for Research in Astronomy under cooperative agreement with the National Science Foundation. SOHO is a project of international cooperation between ESA and NASA. This work utilizes data obtained by the GONG program, managed by NSO. The data were acquired by instruments operated by Big Bear Solar Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofisica de Canarias, and Cerro Tololo Inter-American Observatory. This research has made use of NASA's Astrophysics Data System Bibliographic Services. We thank the SOHO, LASCO, and TRACE, and Waves teams for their open data policy. NR 135 TC 27 Z9 27 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 587 EP 601 DI 10.1088/0004-637X/723/1/587 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100051 ER PT J AU Bennett, CJ Jones, B Knox, E Perry, J Kim, YS Kaiser, RI AF Bennett, C. J. Jones, B. Knox, E. Perry, J. Kim, Y. S. Kaiser, R. I. TI MECHANISTICAL STUDIES ON THE FORMATION AND NATURE OF THE "XCN" (OCN-) SPECIES IN INTERSTELLAR ICES SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; comets: general; cosmic rays; infrared: ISM; ISM: molecules; methods: laboratory; molecular processes ID CHARGE-TRANSFER COMPLEXES; SOLAR-SYSTEM; EXTRATERRESTRIAL ICES; ISOTOPIC-SUBSTITUTION; MICRON ABSORPTION; CARBON-MONOXIDE; SOLID AMMONIA; BAND; ANALOGS; HYDROGEN AB We conducted laboratory experiments on the interaction of ionizing radiation in the form of energetic electrons with interstellar model ices to investigate the nature and possible routes to form the "XCN" species as observed at 4.62 mu m (2164 cm(-1)) in the interstellar medium. Our laboratory experiments provided compelling evidence that the isocyanide ion (OCN-) presents the carrier of the "XCN" feature in interstellar ices. Most importantly, the studies exposed-based on kinetic fits of the temporal profiles of important reactants, intermediates, and products-that two formation mechanisms can lead to the production of the isocyanide ion (OCN-) in low-temperature interstellar ices. In carbon monoxide-ammonia ices, unimolecular decomposition of ammonia leads to reactive NH2 and NH radical species, which in turn can react with neighboring carbon monoxide to form ultimately the isocyanide ion (OCN-); this process also involves a fast proton transfer to a base molecule in the surrounding ice. Second, cyanide ions (CN-)-formed via unimolecular decomposition of methylamine (CH3NH2) via a methanimine (CH2NH) intermediate-can react with suprathermal oxygen atoms forming the isocyanide ion (OCN-). We also discuss that the isocyanide ion (OCN-) can be used as a molecular tracer to determine, for instance, the development stage of young stellar objects and also the chemical history of ices processed by ionizing radiation. C1 [Bennett, C. J.; Jones, B.; Knox, E.; Perry, J.; Kim, Y. S.; Kaiser, R. I.] Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. [Bennett, C. J.; Jones, B.; Kaiser, R. I.] Univ Hawaii Manoa, NASA Astrobiol Inst, Honolulu, HI 96822 USA. RP Kaiser, RI (reprint author), Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. EM ralfk@hawaii.edu OI Bennett, Christopher/0000-0002-4181-6976 FU National Aeronautics and Space Administration (NASA Astrobiology Institute through the Office of Space Science) [NNA09DA77A] FX This material was based upon work supported by the National Aeronautics and Space Administration (NASA Astrobiology Institute under Cooperative Agreement No. NNA09DA77A issued through the Office of Space Science). NR 39 TC 11 Z9 11 U1 3 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 641 EP 648 DI 10.1088/0004-637X/723/1/641 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100056 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bonamente, E Borgland, AW Bouvier, A Brandt, TJ Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Burnett, TH Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cecchi, C Celik, O Chaty, S Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Conrad, J Dermer, CD de Palma, F Digel, SW Silva, EDE Drell, PS Dubois, R Dumora, D Favuzzi, C Fegan, SJ Ferrara, EC Frailis, M Fukazawa, Y Fusco, P Gargano, F Gehrels, N Germani, S Giglietto, N Giordano, F Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hadasch, D Hanabata, Y Harding, AK Hayashida, M Hays, E Hill, AB Horan, D Hughes, RE Itoh, R Jackson, MS Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kataoka, J Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Lemoine-Goumard, M Livingstone, M Garde, ML Longo, F Loparco, F Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN McEnery, JE Mehault, J Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Naumann-Godo, M Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Ozaki, M Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reposeur, T Rodriguez, AY Romani, RW Roth, M Sadrozinski, HFW Sander, A Parkinson, PMS Scargle, JD Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Suson, DJ Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Tibolla, O Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vilchez, N Vitale, V Waite, AP Wallace, E Wang, P Winer, BL Wood, KS Yang, Z Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bonamente, E. Borgland, A. W. Bouvier, A. Brandt, T. J. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cecchi, C. Celik, Oe Chaty, S. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Conrad, J. Dermer, C. D. de Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Frailis, M. Fukazawa, Y. Fusco, P. Gargano, F. Gehrels, N. Germani, S. Giglietto, N. Giordano, F. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Hadasch, D. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Hill, A. B. Horan, D. Hughes, R. E. Itoh, R. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Lemoine-Goumard, M. Livingstone, M. Garde, M. Llena Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. McEnery, J. E. Mehault, J. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Naumann-Godo, M. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Rodriguez, A. Y. Romani, R. W. Roth, M. Sadrozinski, H. F. -W. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Tibolla, O. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wallace, E. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ylinen, T. Ziegler, M. TI FERMI LARGE AREA TELESCOPE OBSERVATION OF A GAMMA-RAY SOURCE AT THE POSITION OF ETA CARINAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: general; stars: individual (Eta Carinae); supergiants ID PROPORTIONAL COUNTER ARRAY; SOURCE LIST; EMISSION; CATALOG; PULSARS; CALIBRATION; BINARIES; SEARCHES; STARS; LAT AB The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope detected a gamma-ray source that is spatially consistent with the location of Eta Carinae. This source has been persistently bright since the beginning of the LAT survey observations (from 2008 August to 2009 July, the time interval considered here). The gamma-ray signal is detected significantly throughout the LAT energy band (i.e., up to similar to 100 GeV). The 0.1-100 GeV energy spectrum is well represented by a combination of a cutoff power-law model (<10 GeV) and a hard power-law component (>10 GeV). The total flux (>100 MeV) is 3.7(-0.1)(+0.3) x 10(-7) photons s(-1) cm(-2), with additional systematic uncertainties of 10%, and consistent with the average flux measured by AGILE. The light curve obtained by Fermi is consistent with steady emission. Our observations do not confirm the presence of a gamma-ray flare in 2008 October, as reported by Tavani et al., although we cannot exclude that a flare lasting only a few hours escaped detection by the Fermi LAT. We also do not find any evidence for gamma-ray variability that correlates with the large X-ray variability of Eta Carinae observed during 2008 December and 2009 January. We are thus not able to establish an unambiguous identification of the LAT source with Eta Carinae. C1 [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Chaty, S.; Grenier, I. A.; Naumann-Godo, M.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CNRS, CEA Saclay,CEA,IRFU,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brandt, T. J.; Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Brandt, T. J.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Horan, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.; Wallace, E.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Celik, Oe; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] NASA, CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Garde, M. Llena; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Jackson, M. S.; Garde, M. Llena; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Reposeur, T.; Smith, D. A.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, UMR 5797, IN2P3, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fukazawa, Y.; Hanabata, Y.; Itoh, R.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Hill, A. B.] Univ Grenoble 1, CNRS, UMR 5571, Lab Astrophys Grenoble LAOG, F-38041 Grenoble 09, France. [Jackson, M. S.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Livingstone, M.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.; Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. RP Abdo, AA (reprint author), Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. EM Jurgen.Knodlseder@cesr.fr; hirotaka@hep01.hepl.hiroshima-u.ac.jp RI Johnson, Neil/G-3309-2014; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012 OI Hill, Adam/0000-0003-3470-4834; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Chaty, Sylvain/0000-0002-5769-8601; Pesce-Rollins, Melissa/0000-0003-1790-8018; Berenji, Bijan/0000-0002-4551-772X; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; FU European Community [ERC-StG-200911]; International Doctorate on Astroparticle Physics (IDAPP) FX Funded by contract ERC-StG-200911 from the European Community.; Partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program. NR 29 TC 27 Z9 27 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 649 EP 657 DI 10.1088/0004-637X/723/1/649 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100057 ER PT J AU Tripathi, D Mason, HE Klimchuk, JA AF Tripathi, Durgesh Mason, Helen E. Klimchuk, James A. TI EVIDENCE OF IMPULSIVE HEATING IN ACTIVE REGION CORE LOOPS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: atmosphere; Sun: corona; Sun: transition region; Sun: UV radiation ID EUV IMAGING SPECTROMETER; AN ATOMIC DATABASE; TRANSITION-REGION; EMISSION-LINES; CORONAL LOOPS; SOLAR CORONA; ULTRAVIOLET SPECTRUM; ELEMENTAL ABUNDANCES; HINODE EIS; QUIET-SUN AB Using a full spectral scan of an active region from the Extreme-Ultraviolet Imaging Spectrometer (EIS) we have obtained emission measure EM(T) distributions in two different moss regions within the same active region. We have compared these with theoretical transition region EMs derived for three limiting cases, namely, static equilibrium, strong condensation, and strong evaporation from Klimchuk et al. The EM distributions in both the moss regions are strikingly similar and show a monotonically increasing trend from log T [K] = 5.15-6.3. Using photospheric abundances, we obtain a consistent EM distribution for all ions. Comparing the observed and theoretical EM distributions, we find that the observed EM distribution is best explained by the strong condensation case (EM(con)), suggesting that a downward enthalpy flux plays an important and possibly dominant role in powering the transition region moss emission. The downflows could be due to unresolved coronal plasma that is cooling and draining after having been impulsively heated. This supports the idea that the hot loops (with temperatures of 3-5 MK) seen in the core of active regions are heated by nanoflares. C1 [Tripathi, Durgesh; Mason, Helen E.] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England. [Klimchuk, James A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Tripathi, D (reprint author), Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England. EM d.tripathi@damtp.cam.ac.uk RI Klimchuk, James/D-1041-2012; Tripathi, Durgesh/D-9390-2012 OI Klimchuk, James/0000-0003-2255-0305; Tripathi, Durgesh/0000-0003-1689-6254 FU STFC; NASA FX We thank an anonymous referee for carefully reading the manuscript and comments. D.T. and H.E.M. acknowledge support from STFC. The work of J.A.K was supported by the NASA Living With a Star Program. We acknowledge the loops workshops as an opportunity to stimulate discussions and collaborate on this project. We thank the CHIANTI consortium. We thank Dr Giulio Del Zanna for various discussions and Dr Peter Young for providing his fitting IDL routines in Solarsoft. Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner, and NASA and STFC (UK) as international partners. Scientific operation of the Hinode mission is conducted by the Hinode science team organized at ISAS/JAXA. This team mainly consists of scientists from institutes in the partner countries. Support for the post-launch operation is provided by JAXA and NAOJ (Japan), STFC (UK), NASA, ESA, and NSC (Norway). NR 52 TC 25 Z9 25 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 713 EP 718 DI 10.1088/0004-637X/723/1/713 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100061 ER PT J AU Bowler, BP Liu, MC Dupuy, TJ Cushing, MC AF Bowler, Brendan P. Liu, Michael C. Dupuy, Trent J. Cushing, Michael C. TI NEAR-INFRARED SPECTROSCOPY OF THE EXTRASOLAR PLANET HR 8799 b SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; stars: individual (HR 8799); techniques: image processing ID INTEGRAL FIELD SPECTROGRAPH; DWARF MODEL ATMOSPHERES; FREQUENCY RATIO METHOD; GAMMA-DORADUS STARS; YOUNG SOLAR ANALOG; DUSTY DEBRIS DISKS; DIGITAL SKY SURVEY; T-DWARFS; GIANT PLANETS; BROWN DWARFS AB We present 2.12-2.23 mu m high contrast integral field spectroscopy of the extrasolar planet HR 8799 b. Our observations were obtained with OSIRIS on the Keck II telescope and sample the 2.2 mu m CH4 feature, which is useful for spectral classification and as a temperature diagnostic for ultracool objects. The spectrum of HR 8799 b is relatively featureless, with little or no methane absorption, and does not exhibit the strong CH4 seen in T dwarfs of similar absolute magnitudes. The spectrum is consistent with field objects from early-L to T4 (3 sigma confidence level), with a best-fitting type of T2. A similar analysis of the published 1-4 mu m photometry shows the infrared spectral energy distribution (SED) matches L5-L8 field dwarfs, especially the reddest known objects which are believed to be young and/or very dusty. Overall, we find that HR 8799 b has a spectral type consistent with L5-T2, although its SED is atypical compared to most field objects. We fit the 2.2 mu m spectrum and the infrared SED using the Hubeny & Burrows, Burrows et al., and Ames-Dusty model atmosphere grids, which incorporate non-equilibrium chemistry, non-solar metallicities, and clear and cloudy variants. No models agree with all of the data, but those with intermediate clouds produce significantly better fits. The largest discrepancy occurs in the J band, which is highly suppressed in HR 8799 b. Models with high eddy diffusion coefficients and high metallicities are somewhat preferred over those with equilibrium chemistry and solar metallicity. The best-fitting effective temperatures range from 1300 to 1700 K with radii between similar to 0.3 and 0.5 R-Jup. These values are inconsistent with evolutionary model-derived values of 800-900 K and 1.1-1.3 R-Jup based on the luminosity of HR 8799 b and the age of HR 8799, a discrepancy that probably results from imperfect atmospheric models or the limited range of physical parameters covered by the models. The low temperature inferred from evolutionary models indicates that HR 8799 b is similar to 400 K cooler than field L/T transition objects, providing further evidence that the L/T transition is gravity-dependent. With an unusually dusty photosphere, an exceptionally low luminosity for its spectral type, and hints of extreme secondary physical parameters, HR 8799 b appears to be unlike any class of field brown dwarf currently known. C1 [Bowler, Brendan P.; Liu, Michael C.; Dupuy, Trent J.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Cushing, Michael C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bowler, BP (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. EM bpbowler@ifa.hawaii.edu FU NSF [AST-0507833, AST09-09222]; W. M. Keck Foundation FX The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.; We thank the referee for his thorough analysis and helpful comments, as well as Beth Biller, Adam Kraus, Didier Saumon, Mark Marley, and Adam Burgasser for helpful discussions and suggestions. We are grateful to Adam Burrows, Ivan Hubeny, and David Sudarsky for the distributing their atmospheric models to the public. Additionally, we thank James Larkin, Shelly Wright, and the OSIRIS team for creating and maintaining the OSIRIS data reduction pipeline. It is a pleasure to acknowledge Al Conrad, Jim Lyke, Jason McIlroy, and the Keck Observatory staff for assistance with our observations. Katelyn Allers, Jenny Patience, Mickael Bonnefoy, and David Lafreniere kindly provided us with their published spectra of young L-type objects. Our research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. B.P.B., M.C.L., and T.J.D. acknowledge support from NSF grants AST-0507833 and AST09-09222. This research has benefitted from the SpeX Prism Spectral Libraries, maintained by Adam Burgasser at http://www.browndwarfs.org/spexprism. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 135 TC 110 Z9 110 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 850 EP 868 DI 10.1088/0004-637X/723/1/850 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100074 ER PT J AU Vogt, SS Butler, RP Rivera, EJ Haghighipour, N Henry, GW Williamson, MH AF Vogt, Steven S. Butler, R. Paul Rivera, E. J. Haghighipour, N. Henry, Gregory W. Williamson, Michael H. TI THE LICK-CARNEGIE EXOPLANET SURVEY: A 3.1 M-circle plus PLANET IN THE HABITABLE ZONE OF THE NEARBY M3V STAR GLIESE 581 SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrobiology; planetary systems; stars: individual (GJ 581, HIP 74995) ID SHORT-PERIOD PLANETS; EXTRA-SOLAR PLANETS; LOW-MASS STARS; M DWARFS; HARPS SEARCH; SUPER-EARTHS; MODEL; METALLICITIES; VARIABILITY; SYSTEM AB We present 11 years of HIRES precision radial velocities (RVs) of the nearby M3V star Gliese 581, combining our data set of 122 precision RVs with an existing published 4.3-year set of 119 HARPS precision RVs. The velocity set now indicates six companions in Keplerian motion around this star. Differential photometry indicates a likely stellar rotation period of similar to 94 days and reveals no significant periodic variability at any of the Keplerian periods, supporting planetary orbital motion as the cause of all the RV variations. The combined data set strongly confirms the 5.37-day, 12.9-day, 3.15-day, and 67-day planets previously announced by Bonfils et al., Udry et al., and Mayor et al.. The observations also indicate a fifth planet in the system, GJ 581f, a minimum-mass 7.0M(circle plus) planet orbiting in a 0.758 AU orbit of period 433 days, and a sixth planet, GJ 581g, a minimum-mass 3.1M(circle plus) planet orbiting at 0.146 AU with a period of 36.6 days. The estimated equilibrium temperature of GJ 581g is 228 K, placing it squarely in the middle of the habitable zone of the star and offering a very compelling case for a potentially habitable planet around a very nearby star. That a system harboring a potentially habitable planet has been found this nearby, and this soon in the relatively early history of precision RV surveys, indicates that eta(circle plus), the fraction of stars with potentially habitable planets, is likely to be substantial. This detection, coupled with statistics of the incompleteness of present-day precision RV surveys for volume-limited samples of stars in the immediate solar neighborhood, suggests that.. could well be on the order of a few tens of percent. If the local stellar neighborhood is a representative sample of the galaxy as a whole, our Milky Way could be teeming with potentially habitable planets. C1 [Vogt, Steven S.; Rivera, E. J.] Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Butler, R. Paul] Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA. [Haghighipour, N.] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. [Haghighipour, N.] Univ Hawaii Manoa, NASA Astrobiol Inst, Honolulu, HI 96822 USA. [Henry, Gregory W.; Williamson, Michael H.] Tennessee State Univ, Ctr Excellence Informat Syst, Nashville, TN 37209 USA. RP Vogt, SS (reprint author), Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. RI Butler, Robert/B-1125-2009 FU NSF [AST-0307493]; NASA [NNX07AR40G, NNX09AN05G]; Carnegie Institution of Washington; NASA Astrobiology Institute at the Institute for Astronomy, University of Hawaii [NNA04CC08A]; Tennessee State University; State of Tennessee FX S.S.V. gratefully acknowledges support from NSF grant AST-0307493. R.P.B. gratefully acknowledges support from NASA OSS Grant NNX07AR40G, the NASA Keck PI program, and from the Carnegie Institution of Washington. N.H. acknowledges support from the NASA Astrobiology Institute under cooperative agreement NNA04CC08A at the Institute for Astronomy, University of Hawaii, and NASA EXOB grant NNX09AN05G. G.W.H. and M.H.W. acknowledge support by NASA, NSF, Tennessee State University, and the State of Tennessee through its Centers of Excellence program. The work herein is based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology, and we thank the UC-Keck and NASA-Keck Time Assignment Committees for their support. This research has made use of the Keck Observatory Archive, which is operated by the W. M. Keck Observatory and the NASA Exoplanet Science Institute (NExScI), under contract with the National Aeronautics and Space Administration. We also acknowledge the contributions of fellow members of our previous California-Carnegie Exoplanet team in helping to obtain some of the earlier RVs presented in this paper. We also wish to extend our special thanks to those of Hawaiian ancestry on whose sacred mountain of Mauna Kea we are privileged to be guests. Without their generous hospitality, the Keck observations presented herein would not have been possible. Finally, S.S.V. would like to extend a very special thanks to his wife Zarmina Dastagir for her patience, encouragement, and wise counsel. And even though, if confirmed, the habitable planet presented herein will officially be referred to by the name GJ 581g, it shall always be known to S.S.V. as "Zarmina's World." NR 42 TC 116 Z9 118 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2010 VL 723 IS 1 BP 954 EP 965 DI 10.1088/0004-637X/723/1/954 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678OX UT WOS:000284090100079 ER PT J AU Kasliwal, MM Kulkarni, SR Gal-Yam, A Yaron, O Quimby, RM Ofek, EO Nugent, P Poznanski, D Jacobsen, J Sternberg, A Arcavi, I Howell, DA Sullivan, M Rich, DJ Burke, PF Brimacombe, J Milisavljevic, D Fesen, R Bildsten, L Shen, K Cenko, SB Bloom, JS Hsiao, E Law, NM Gehrels, N Immler, S Dekany, R Rahmer, G Hale, D Smith, R Zolkower, J Velur, V Walters, R Henning, J Bui, K McKenna, D AF Kasliwal, Mansi M. Kulkarni, S. R. Gal-Yam, Avishay Yaron, Ofer Quimby, Robert M. Ofek, Eran O. Nugent, Peter Poznanski, Dovi Jacobsen, Janet Sternberg, Assaf Arcavi, Iair Howell, D. Andrew Sullivan, Mark Rich, Douglas J. Burke, Paul F. Brimacombe, Joseph Milisavljevic, Dan Fesen, Robert Bildsten, Lars Shen, Ken Cenko, S. Bradley Bloom, Joshua S. Hsiao, Eric Law, Nicholas M. Gehrels, Neil Immler, Stefan Dekany, Richard Rahmer, Gustavo Hale, David Smith, Roger Zolkower, Jeff Velur, Viswa Walters, Richard Henning, John Bui, Kahnh McKenna, Dan TI RAPIDLY DECAYING SUPERNOVA 2010X: A CANDIDATE ".Ia" EXPLOSION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE supernovae: general; supernovae: individual (SN2010X, SN2002bj); surveys; white dwarfs ID LIGHT CURVES; FAINT TYPE; SN 2008HA; PHOTOMETRY; ORIGIN AB We present the discovery, photometric, and spectroscopic follow-up observations of SN 2010X ( PTF 10bhp). This supernova decays exponentially with tau(d) = 5 days and rivals the current recordholder in speed, SN 2002bj. SN 2010X peaks at M(r) = -17 mag and has mean velocities of 10,000 km s(-1). Our light curve modeling suggests a radioactivity-powered event and an ejecta mass of 0.16 M(circle dot). If powered by Nickel, we show that the Nickel mass must be very small (approximate to 0.02 M(circle dot)) and that the supernova quickly becomes optically thin to gamma-rays. Our spectral modeling suggests that SN 2010X and SN 2002bj have similar chemical compositions and that one of aluminum or helium is present. If aluminum is present, we speculate that this may be an accretion-induced collapse of an O-Ne-Mg white dwarf. If helium is present, all observables of SN 2010X are consistent with being a thermonuclear helium shell detonation on a white dwarf, a ".Ia" explosion. With the 1 day dynamic-cadence experiment on the Palomar Transient Factory, we expect to annually discover a few such events. C1 [Kasliwal, Mansi M.; Kulkarni, S. R.; Quimby, Robert M.; Ofek, Eran O.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Gal-Yam, Avishay; Yaron, Ofer; Sternberg, Assaf; Arcavi, Iair] Weizmann Inst Sci, Fac Phys, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Nugent, Peter; Poznanski, Dovi; Jacobsen, Janet] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Poznanski, Dovi; Shen, Ken; Cenko, S. Bradley; Bloom, Joshua S.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Howell, D. Andrew] Global Telescope Network Inc, Las Cumbres Observ, Santa Barbara, CA 93117 USA. [Howell, D. Andrew; Bildsten, Lars] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Sullivan, Mark] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Rich, Douglas J.] Rich Observ, Hampden, ME USA. [Burke, Paul F.] Burke Observ, Pittsfield, ME USA. [Brimacombe, Joseph] New Mexico Skies Observ, Mayhill, NM USA. [Brimacombe, Joseph] James Cook Univ, Cairns, Australia. [Milisavljevic, Dan; Fesen, Robert] Dartmouth Coll, Dept Phys & Astron, Wilder Lab 6127, Hanover, NH 03755 USA. [Bildsten, Lars] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Law, Nicholas M.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Gehrels, Neil; Immler, Stefan] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dekany, Richard; Rahmer, Gustavo; Hale, David; Smith, Roger; Zolkower, Jeff; Velur, Viswa; Walters, Richard; Henning, John; Bui, Kahnh; McKenna, Dan] CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. RP Kasliwal, MM (reprint author), CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. RI Gehrels, Neil/D-2971-2012; OI Sullivan, Mark/0000-0001-9053-4820 FU Gordon and Betty Moore Foundation; Israel Science Foundation; US-Israel Binational Science Foundation; Einstein Fellowship; Gary and Cynthia Bengier Fund; Richard and Rhoda Goldman Fund; US DoE [DE-AC02-05CH11231, DE-FG02-06ER06-04] FX M.M.K. thanks the Gordon and Betty Moore Foundation for a Hale Fellowship in support of graduate study. M.M.K. thanks the Pumarth Headquarters in Indore, India for their warm hospitality while writing this manuscript.; The Weizmann Institute PTF participation is supported by grants to A.G.Y. from the Israel Science Foundation and the US-Israel Binational Science Foundation. E.O.O. and D.P. are supported by an Einstein Fellowship. S.B.C. is grateful for support from Gary and Cynthia Bengier and the Richard and Rhoda Goldman Fund. Computational resources and data storage were contributed by NERSC, supported by US DoE contract DE-AC02-05CH11231. P.E.N. acknowledges support from the US DoE contract DE-FG02-06ER06-04. NR 34 TC 57 Z9 57 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2010 VL 723 IS 1 BP L98 EP L102 DI 10.1088/2041-8205/723/1/L98 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LJ UT WOS:000284075200020 ER PT J AU Kauffmann, J Pillai, T AF Kauffmann, Jens Pillai, Thushara TI HOW MANY INFRARED DARK CLOUDS CAN FORM MASSIVE STARS AND CLUSTERS? SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE ISM: clouds; methods: data analysis; stars: formation ID GALACTIC DISTRIBUTION; MOLECULAR CLOUDS; DUST CONTINUUM; SIZE RELATION; COLD CORES; PERSEUS; DENSITY AB We present a new assessment of the ability of Infrared Dark Clouds (IRDCs) to form massive stars and clusters. This is done by comparison with an empirical mass-size threshold for massive star formation (MSF). We establish m(r) > 870M(circle dot) (r/pc)(1.33) as a novel approximate MSF limit, based on clouds with and without MSF. Many IRDCs, if not most, fall short of this threshold. Without significant evolution, such clouds are unlikely MSF candidates. This provides a first quantitative assessment of the small number of IRDCs evolving toward MSF. IRDCs below this limit might still form stars and clusters of up to intermediate mass, though (like, e.g., the Ophiuchus and Perseus Molecular Clouds). Nevertheless, a major fraction of the mass contained in IRDCs might reside in few 10(2) clouds sustaining MSF. C1 [Kauffmann, Jens] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Pillai, Thushara] Caltech Astron Dept, Pasadena, CA 91125 USA. RP Kauffmann, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM jens.kauffmann@jpl.nasa.gov FU NASA at the Jet Propulsion Laboratory; NASA FX We are indebted to a careful referee, who helped to significantly improve the text. This research was supported by an appointment of J.K. to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. It was excuted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 32 TC 78 Z9 78 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2010 VL 723 IS 1 BP L7 EP L12 DI 10.1088/2041-8205/723/1/L7 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LJ UT WOS:000284075200002 ER PT J AU Liu, R Lee, J Wang, TJ Stenborg, G Liu, C Wang, HM AF Liu, Rui Lee, Jeongwoo Wang, Tongjiang Stenborg, Guillermo Liu, Chang Wang, Haimin TI A RECONNECTING CURRENT SHEET IMAGED IN A SOLAR FLARE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: corona; Sun: coronal mass ejections (CMEs); Sun: flares ID CORONAL MASS EJECTIONS; MAGNETIC RECONNECTION; PLASMA; THICKNESS; ERUPTIONS; RADIO; MODEL AB Magnetic reconnection changes the magnetic field topology and powers explosive events in astrophysical, space, and laboratory plasmas. For flares and coronal mass ejections (CMEs) in the solar atmosphere, the standard model predicts the presence of a reconnecting current sheet, which has been the subject of considerable theoretical and numerical modeling over the last 50 years, yet direct, unambiguous observational verification has been absent. In this Letter, we show a bright sheet structure of global length (>0.25 R(circle dot)) and macroscopic width ((5-10) x 10(3) km) distinctly above the cusp-shaped flaring loop, imaged during the flare rising phase in EUV. The sheet formed due to the stretch of a transequatorial loop system and was accompanied by various reconnection signatures. This unique event provides a comprehensive view of the reconnection geometry and dynamics in the solar corona. C1 [Liu, Rui; Liu, Chang; Wang, Haimin] New Jersey Inst Technol, Ctr Solar Terr Res, Space Weather Res Lab, Newark, NJ 07102 USA. [Lee, Jeongwoo] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. [Wang, Tongjiang] Catholic Univ Amer, Greenbelt, MD 20771 USA. [Wang, Tongjiang] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Stenborg, Guillermo] Interferometrics Inc, Herndon, VA 20171 USA. RP Liu, R (reprint author), New Jersey Inst Technol, Ctr Solar Terr Res, Space Weather Res Lab, Newark, NJ 07102 USA. EM rui.liu@njit.edu RI Liu, Rui/B-4107-2012; OI Liu, Rui/0000-0003-4618-4979; Liu, Chang/0000-0002-6178-7471 FU NASA [NNX08-AJ23G, NNX08-AQ90G, NNX08AP88G, NNX09AG10G]; NSF [ATM-0849453, AST-0908344] FX SOHO is a project of international cooperation between ESA and NASA. R.L., C.L., and H.W. were supported by NASA grant NNX08-AJ23G and NNX08-AQ90G, and by NSF grant ATM-0849453. J.L. was supported by NSF grant AST-0908344. T.W. was supported by NASA grant NNX08AP88G and NNX09AG10G. NR 39 TC 47 Z9 48 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2010 VL 723 IS 1 BP L28 EP L33 DI 10.1088/2041-8205/723/1/L28 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LJ UT WOS:000284075200006 ER PT J AU Marley, MS Saumon, D Goldblatt, C AF Marley, Mark S. Saumon, Didier Goldblatt, Colin TI A PATCHY CLOUD MODEL FOR THE L TO T DWARF TRANSITION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE brown dwarfs; stars: atmospheres ID ULTRACOOL DWARFS; THERMAL STRUCTURE; SURFACE GRAVITY; VARIABILITY; POLARIZATION; TEMPERATURE; ATMOSPHERES; PARALLAXES; PHOTOMETRY; DISCOVERY AB One mechanism suggested for the L to T dwarf spectral type transition is the appearance of relatively cloud-free regions across the disk of brown dwarfs as they cool. The existence of partly cloudy regions has been supported by evidence for variability in dwarfs in the late L to early T spectral range, but no self-consistent atmosphere models of such partly cloudy objects have yet been constructed. Here, we present a new approach for consistently modeling partly cloudy brown dwarfs and giant planets. We find that even a small fraction of cloud holes dramatically alter the atmospheric thermal profile, spectra, and photometric colors of a given object. With decreasing cloudiness objects briskly become bluer in J - K and brighten in J band, as is observed at the L/T transition. Model spectra of partly cloudy objects are similar to our models with globally homogenous, but thinner, clouds. Hence, spectra alone may not be sufficient to distinguish partial cloudiness although variability and polarization measurements are potential observational signatures. Finally, we note that partial cloud cover may be an alternative explanation for the blue L dwarfs. C1 [Marley, Mark S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Saumon, Didier] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Goldblatt, Colin] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Goldblatt, Colin] Univ Washington, NASA, Astrobiol Inst, Virtual Planetary Lab, Seattle, WA 98195 USA. RP Marley, MS (reprint author), NASA, Ames Res Ctr, MS 245-3, Moffett Field, CA 94035 USA. EM Mark.S.Marley@NASA.gov; dsaumon@lanl.gov; cgoldbla@uw.edu RI Marley, Mark/I-4704-2013; OI Marley, Mark/0000-0002-5251-2943 FU NASA; Spitzer Space Telescope Theoretical Research Program; Astrobiology Institute's Virtual Planetary Laboratory FX We thank M. C. Cushing for performing partly cloudy fits. NASA provided support for this work via the Planetary Atmospheres Program (M.S.M. and C.G.), the Spitzer Space Telescope Theoretical Research Program (D.S.), and Astrobiology Institute's Virtual Planetary Laboratory Lead Team (C.G.). NR 38 TC 73 Z9 73 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2010 VL 723 IS 1 BP L117 EP L121 DI 10.1088/2041-8205/723/1/L117 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LJ UT WOS:000284075200024 ER PT J AU Mewaldt, RA Davis, AJ Lave, KA Leske, RA Stone, EC Wiedenbeck, ME Binns, WR Christian, ER Cummings, AC de Nolfo, GA Israel, MH Labrador, AW von Rosenvinge, TT AF Mewaldt, R. A. Davis, A. J. Lave, K. A. Leske, R. A. Stone, E. C. Wiedenbeck, M. E. Binns, W. R. Christian, E. R. Cummings, A. C. de Nolfo, G. A. Israel, M. H. Labrador, A. W. von Rosenvinge, T. T. TI RECORD-SETTING COSMIC-RAY INTENSITIES IN 2009 AND 2010 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmic rays; solar wind; Sun: activity; Sun: heliosphere ID ADVANCED COMPOSITION EXPLORER; SOLAR-CYCLE 23; MAGNETIC-FIELD; MODULATION; HELIOSPHERE; MINIMUM; SPECTRA; HELIUM; SPECTROMETER; DEPENDENCE AB We report measurements of record-setting intensities of cosmic-ray nuclei from C to Fe, made with the Cosmic Ray Isotope Spectrometer carried on the Advanced Composition Explorer in orbit about the inner Sun-Earth Lagrangian point. In the energy interval from similar to 70 to similar to 450 MeV nucleon(-1), near the peak in the near-Earth cosmic-ray spectrum, the measured intensities of major species from C to Fe were each 20%-26% greater in late 2009 than in the 1997-1998 minimum and previous solar minima of the space age (1957-1997). The elevated intensities reported here and also at neutron monitor energies were undoubtedly due to several unusual aspects of the solar cycle 23/24 minimum, including record-low interplanetary magnetic field (IMF) intensities, an extended period of reduced IMF turbulence, reduced solar-wind dynamic pressure, and extremely low solar activity during an extended solar minimum. The estimated parallel diffusion coefficient for cosmic-ray transport based on measured solar-wind properties was 44% greater in 2009 than in the 1997-1998 solar-minimum period. In addition, the weaker IMF should result in higher cosmic-ray drift velocities. Cosmic-ray intensity variations at 1 AU are found to lag IMF variations by 2-3 solar rotations, indicating that significant solar modulation occurs inside similar to 20 AU, consistent with earlier galactic cosmic-ray radial-gradient measurements. In 2010, the intensities suddenly decreased to 1997 levels following increases in solar activity and in the inclination of the heliospheric current sheet. We describe the conditions that gave cosmic rays greater access to the inner solar system and discuss some of their implications. C1 [Mewaldt, R. A.; Davis, A. J.; Leske, R. A.; Stone, E. C.; Cummings, A. C.; Labrador, A. W.] CALTECH, Pasadena, CA 91125 USA. [Lave, K. A.; Binns, W. R.; Israel, M. H.] Washington Univ, St Louis, MO 63130 USA. [Wiedenbeck, M. E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Christian, E. R.; de Nolfo, G. A.; von Rosenvinge, T. T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Mewaldt, RA (reprint author), CALTECH, Pasadena, CA 91125 USA. RI Christian, Eric/D-4974-2012; de Nolfo, Georgia/E-1500-2012 OI Christian, Eric/0000-0003-2134-3937; FU NASA at Caltech [NNX08AI11G, NNX10AE45G]; Jet Propulsion Laboratory; Goddard Space Flight Center; Washington University in St. Louis; University of New Hampshire (under NSF) [ATM-0339257] FX This work was supported by NASA at Caltech (under grants NNX08AI11G and NNX10AE45G), the Jet Propulsion Laboratory, the Goddard Space Flight Center, and Washington University in St. Louis. We thank Wilcox Solar Observatory for making HCS data available, Robert McGuire for providing IMP-8/GME data, and NASA's OmniWeb for providing solar wind data. We also appreciate the availability of neutron monitor data from the University of New Hampshire (under NSF grant ATM-0339257), sunspot data from the Royal Observatory of Belgium, and CME data from the SOHO/LASCO CME Catalog. Finally, we thank the MAG, SWEPAM, and SWICS teams for providing data through the ACE Science Center. NR 47 TC 87 Z9 87 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2010 VL 723 IS 1 BP L1 EP L6 DI 10.1088/2041-8205/723/1/L1 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678LJ UT WOS:000284075200001 ER PT J AU Moore, MH Ferrante, RF Moore, WJ Hudson, R AF Moore, Marla H. Ferrante, Robert F. Moore, W. James Hudson, Reggie TI INFRARED SPECTRA AND OPTICAL CONSTANTS OF NITRILE ICES RELEVANT TO TITAN'S ATMOSPHERE SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; infrared: planetary systems; methods: laboratory; planets and satellites: individual (Titan); techniques: spectroscopic ID DIFFERENT TEMPERATURES; REFRACTIVE-INDEXES; CO2; STRATOSPHERE; INTENSITIES; HC3N; DENSITIES; REGION; C2N2; C4N2 AB Spectra and optical constants of nitrile ices known or suspected to be in Titan's atmosphere are presented from 2.0 to 333.3 mu m (similar to 5000-30 cm(-1)). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan's winter pole. Ices studied are: HCN, hydrogen cyanide; C2N2, cyanogen; CH3CN, acetonitrile; C2H5CN, propionitrile; and HC3N, cyanoacetylene. For each of these molecules, we also report new cryogenic measurements of the real refractive index, n, determined in both the amorphous and crystalline phases at 670 nm. These new values have been incorporated into our optical constant calculations. Spectra were measured and optical constants were calculated for each nitrile at a variety of temperatures, including, but not limited to, 20, 35, 50, 75, 95, and 110 K, in both the amorphous phase and the crystalline phase. This laboratory effort used a dedicated FTIR spectrometer to record transmission spectra of thin-film ice samples. Laser interference was used to measure film thickness during condensation onto a transparent cold window attached to the tail section of a closed-cycle helium cryostat. Optical constants, real (n) and imaginary (k) refractive indices, were determined using Kramers-Kronig analysis. Our calculation reproduces the complete spectrum, including all interference effects. C1 [Moore, Marla H.; Moore, W. James] NASA, USRA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ferrante, Robert F.] USN Acad, Dept Chem, Annapolis, MD 21402 USA. RP Moore, MH (reprint author), NASA, USRA, Goddard Space Flight Ctr, Code 691, Greenbelt, MD 20771 USA. EM Marla.h.moore@nasa.gov RI Hudson, Reggie/E-2335-2012 FU NASA; Goddard Center for Astrobiology FX The authors acknowledge support through NASA's Cassini Data Analysis and Planetary Atmospheres programs, and The Goddard Center for Astrobiology. We thank Mark Loeffler for measuring the index of refraction of nitrile ices at 670 nm. We acknowledge the initial driving force for new spectroscopy measurements by Raj Khanna (deceased), data sharing by Neil Dello Russo, and ongoing guidance for Titan relevance from Bob Samuelson and Carrie Anderson. We also thank an anonymous referee for helpful comments that led to the improvement of this manuscript. NR 40 TC 25 Z9 25 U1 2 U2 26 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD NOV PY 2010 VL 191 IS 1 BP 96 EP 112 DI 10.1088/0067-0049/191/1/96 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 688EU UT WOS:000284833400006 ER PT J AU Silverman, JD Mainieri, V Salvato, M Hasinger, G Bergeron, J Capak, P Szokoly, G Finoguenov, A Gilli, R Rosati, P Tozzi, P Vignali, C Alexander, DM Brandt, WN Lehmer, BD Luo, B Rafferty, D Xue, YQ Balestra, I Bauer, FE Brusa, M Comastri, A Kartaltepe, J Koekemoer, AM Miyaji, T Schneider, DP Treister, E Wisotski, L Schramm, M AF Silverman, J. D. Mainieri, V. Salvato, M. Hasinger, G. Bergeron, J. Capak, P. Szokoly, G. Finoguenov, A. Gilli, R. Rosati, P. Tozzi, P. Vignali, C. Alexander, D. M. Brandt, W. N. Lehmer, B. D. Luo, B. Rafferty, D. Xue, Y. Q. Balestra, I. Bauer, F. E. Brusa, M. Comastri, A. Kartaltepe, J. Koekemoer, A. M. Miyaji, T. Schneider, D. P. Treister, E. Wisotski, L. Schramm, M. TI THE EXTENDED CHANDRA DEEP FIELD-SOUTH SURVEY: OPTICAL SPECTROSCOPY OF FAINT X-RAY SOURCES WITH THE VLT AND KECK SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE galaxies: active; galaxies: Seyfert; quasars: general; surveys; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; SUPERMASSIVE BLACK-HOLES; XMM-NEWTON OBSERVATIONS; LARGE-SCALE STRUCTURES; STAR-FORMING GALAXIES; POINT-SOURCE CATALOGS; MS SOURCE CATALOGS; ESO IMAGING SURVEY; APPROXIMATE-TO 2; COSMOS FIELD AB We present the results of a program to acquire high-quality optical spectra of X-ray sources detected in the Extended-Chandra Deep Field-South (E-CDF-S) and its central 2 Ms area. New spectroscopic redshifts, up to z = 4, are measured for 283 counterparts to Chandra sources with deep exposures (t similar to 2-9 hr per pointing) using multi-slit facilities on both VLT (VIMOS) and Keck (DEIMOS), thus bringing the total number of spectroscopically identified X-ray sources to over 500 in this survey field. Since our new spectroscopic identifications are mainly associated with X-ray sources in the shallower 250 ks coverage, we provide a comprehensive catalog of X-ray sources detected in the E-CDF-S including the optical and near-infrared counterparts, determined by a likelihood routine, and redshifts (both spectroscopic and photometric), that incorporate published spectroscopic catalogs, thus resulting in a final sample with a high fraction (80%) of X-ray sources having secure identifications. We demonstrate the remarkable coverage of the luminosity-redshift plane now accessible from our data while emphasizing the detection of active galactic nuclei (AGNs) that contribute to the faint end of the luminosity function (L0.5-8 keV similar to 10(43)-10(44) erg s(-1)) at 1.5 less than or similar to z less than or similar to 3 including those with and without broad emission lines. Our redshift catalog includes 17 type-2 QSOs at 1 less than or similar to z less than or similar to 3.5 that significantly increases such samples (2x). Based on our deepest (9 hr) VLT/VIMOS observation, we identify "elusive" optically faint galaxies (R-mag similar to 25) at z similar to 2-3 based upon the detection of interstellar absorption lines (e. g., O II+Si IV, C II], C IV); we highlight one such case, an absorption-line galaxy at z = 3.208 having no obvious signs of an AGN in its optical spectrum. In addition, we determine accurate distances to eight galaxy groups with extended X-ray emission detected both by Chandra and XMM-Newton. Finally, we measure the physical extent of known large-scale structures (z similar to 0.7) evident in the CDF-S. While a thick sheet (a radial size of 67.7 Mpc) at z similar to 0.67 extends over the full field, the z similar to 0.73 structure is thin (18.8 Mpc) and filamentary as traced by both AGNs and galaxy groups. In the Appendix, we provide spectroscopic redshifts for 49 counterparts to fainter X-ray sources detected only in the 1 and 2 Ms catalogs, and 48 Very Large Array radio sources not detected in X-rays. C1 [Silverman, J. D.] Univ Tokyo, IPMU, Kashiwa, Chiba 2778568, Japan. [Silverman, J. D.; Finoguenov, A.; Balestra, I.; Brusa, M.] Max Planck Inst Extraterr Phys, D-84571 Garching, Germany. [Silverman, J. D.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Mainieri, V.; Rosati, P.] European So Observ, D-85748 Garching, Germany. [Salvato, M.; Hasinger, G.] Max Planck Inst Plasma Phys, D-85748 Garching, Germany. [Bergeron, J.] Inst Astrophys Paris, F-75014 Paris, France. [Capak, P.] CALTECH, Pasadena, CA 91125 USA. [Szokoly, G.] Eotvos Lorand Univ, Inst Phys, H-1117 Budapest, Hungary. [Gilli, R.; Comastri, A.] Osservatorio Astron Bologna, Inst Nazl Astrofis INAF, I-40127 Bologna, Italy. [Tozzi, P.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Vignali, C.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [Alexander, D. M.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Brandt, W. N.; Luo, B.; Rafferty, D.; Xue, Y. Q.; Schneider, D. P.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Lehmer, B. D.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Lehmer, B. D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bauer, F. E.] Space Sci Inst, Boulder, CO 80301 USA. [Bauer, F. E.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. [Kartaltepe, J.; Treister, E.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Koekemoer, A. M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Wisotski, L.] Astrophys Inst Potsdam, D-14482 Potsdam, Germany. [Schramm, M.] Kyoto Univ, Dept Astron, Kyoto 6068502, Japan. RP Silverman, JD (reprint author), Univ Tokyo, IPMU, Kashiwanoha 5-1-5, Kashiwa, Chiba 2778568, Japan. RI Vignali, Cristian/J-4974-2012; Brandt, William/N-2844-2015; Comastri, Andrea/O-9543-2015; Gilli, Roberto/P-1110-2015; OI Koekemoer, Anton/0000-0002-6610-2048; Brusa, Marcella/0000-0002-5059-6848; Vignali, Cristian/0000-0002-8853-9611; Brandt, William/0000-0002-0167-2453; Comastri, Andrea/0000-0003-3451-9970; Gilli, Roberto/0000-0001-8121-6177; Balestra, Italo/0000-0001-9660-894X; Alexander, David/0000-0002-5896-6313 FU W.M. Keck Foundation; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; NSF [AST-0071048]; Chandra X-ray Center [SP8-9003A]; NASA ADP [NNX10AC99G]; NKTH; Royal Society; Leverhulme Trust; Deutsche Forschungsgemeinschaft, DFG [HA 1850/28-1]; ASI-INAF [I/023/05/00, I/088/06, I/088/06/0] FX "Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation."; J.D.S. is supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. The authors recognize support from Michael Cooper for the use of the DEEP2 pipeline that was developed at UC Berkeley with support from NSF grant AST-0071048. W.N.B., B. L., and Y.X. acknowledge support from the Chandra X-ray Center grant SP8-9003A and NASA ADP grant NNX10AC99G. G. S. acknowledges support of the Polanyi Fellowship of NKTH. D. A. is funded by the Royal Society and Leverhulme Trust. M. S. and G. H. acknowledge support by the Leibniz Prize of the Deutsche Forschungsgemeinschaft, DFG (HA 1850/28-1). A. C. is supported through ASI-INAF grants I/023/05/00 and I/088/06. P. T. acknowledges financial contribution from contract ASIINAF I/088/06/0. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 136 TC 82 Z9 82 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD NOV PY 2010 VL 191 IS 1 BP 124 EP 142 DI 10.1088/0067-0049/191/1/124 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 688EU UT WOS:000284833400008 ER PT J AU Hammer, D Kleijn, GV Hoyos, C den Brok, M Balcells, M Ferguson, HC Goudfrooij, P Carter, D Guzman, R Peletier, RF Smith, RJ Graham, AW Trentham, N Peng, E Puzia, TH Lucey, JR Jogee, S Aguerri, AL Batcheldor, D Bridges, TJ Chiboucas, K Davies, JI del Burgo, C Erwin, P Hornschemeier, A Hudson, MJ Huxor, A Jenkins, L Karick, A Khosroshahi, H Kourkchi, E Komiyama, Y Lotz, J Marzke, RO Marinova, I Matkovic, A Merritt, D Miller, BW Miller, NA Mobasher, B Mouhcine, M Okamura, S Percival, S Phillipps, S Poggianti, BM Price, J Sharples, RM Tully, RB Valentijn, E AF Hammer, Derek Kleijn, Gijs Verdoes Hoyos, Carlos den Brok, Mark Balcells, Marc Ferguson, Henry C. Goudfrooij, Paul Carter, David Guzman, Rafael Peletier, Reynier F. Smith, Russell J. Graham, Alister W. Trentham, Neil Peng, Eric Puzia, Thomas H. Lucey, John R. Jogee, Shardha Aguerri, Alfonso L. Batcheldor, Dan Bridges, Terry J. Chiboucas, Kristin Davies, Jonathan I. del Burgo, Carlos Erwin, Peter Hornschemeier, Ann Hudson, Michael J. Huxor, Avon Jenkins, Leigh Karick, Arna Khosroshahi, Habib Kourkchi, Ehsan Komiyama, Yutaka Lotz, Jennifer Marzke, Ronald O. Marinova, Irina Matkovic, Ana Merritt, David Miller, Bryan W. Miller, Neal A. Mobasher, Bahram Mouhcine, Mustapha Okamura, Sadanori Percival, Sue Phillipps, Steven Poggianti, Bianca M. Price, James Sharples, Ray M. Tully, R. Brent Valentijn, Edwin TI THE HST/ACS COMA CLUSTER SURVEY. II. DATA DESCRIPTION AND SOURCE CATALOGS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; galaxies: clusters: individual (Coma); galaxies: dwarf; galaxies: elliptical and lenticular, cD; galaxies: photometry ID HUBBLE-SPACE-TELESCOPE; COLOR-MAGNITUDE RELATION; EARLY-TYPE GALAXIES; SURFACE BRIGHTNESS GALAXIES; DIGITAL SKY SURVEY; DWARF GALAXIES; ADVANCED CAMERA; VIRGO-CLUSTER; ELLIPTIC GALAXIES; FORNAX CLUSTER AB The Coma cluster, Abell 1656, was the target of an HST-ACS Treasury program designed for deep imaging in the F475W and F814W passbands. Although our survey was interrupted by the ACS instrument failure in early 2007, the partially completed survey still covers similar to 50% of the core high-density region in Coma. Observations were performed for 25 fields that extend over a wide range of cluster-centric radii (similar to 1.75 Mpc or 1 degrees) with a total coverage area of 274 arcmin(2). The majority of the fields are located near the core region of Coma (19/25 pointings) with six additional fields in the southwest region of the cluster. In this paper, we present reprocessed images and SEXTRACTOR source catalogs for our survey fields, including a detailed description of the methodology used for object detection and photometry, the subtraction of bright galaxies to measure faint underlying objects, and the use of simulations to assess the photometric accuracy and completeness of our catalogs. We also use simulations to perform aperture corrections for the SEXTRACTOR Kron magnitudes based only on the measured source flux and its half-light radius. We have performed photometry for similar to 73,000 unique objects; approximately one-half of our detections are brighter than the 10 sigma point-source detection limit at F814W = 25.8 mag (AB). The slight majority of objects (60%) are unresolved or only marginally resolved by ACS. We estimate that Coma members are 5%-10% of all source detections, which consist of a large population of unresolved compact sources (primarily globular clusters but also ultra-compact dwarf galaxies) and a wide variety of extended galaxies from a cD galaxy to dwarf low surface brightness galaxies. The red sequence of Coma member galaxies has a color-magnitude relation with a constant slope and dispersion over 9 mag (-21 < M-F814W < -13). The initial data release for the HST-ACS Coma Treasury program was made available to the public in 2008 August. The images and catalogs described in this study relate to our second data release. C1 [Hammer, Derek] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Hammer, Derek; Hornschemeier, Ann; Jenkins, Leigh] NASA, Goddard Space Flight Ctr, Lab Xray Astrophys, Greenbelt, MD 20771 USA. [Kleijn, Gijs Verdoes; den Brok, Mark; Peletier, Reynier F.; Valentijn, Edwin] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Hoyos, Carlos] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Balcells, Marc; Aguerri, Alfonso L.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Balcells, Marc] Isaac Newton Grp Telescopes, Santa Cruz De La Palma 38700, Spain. [Ferguson, Henry C.; Goudfrooij, Paul; Matkovic, Ana] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Carter, David; Karick, Arna; Mouhcine, Mustapha; Percival, Sue] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Guzman, Rafael] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Smith, Russell J.; Lucey, John R.; Sharples, Ray M.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Graham, Alister W.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Trentham, Neil] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Peng, Eric] Peking Univ, Dept Astron, Beijing 100871, Peoples R China. [Peng, Eric] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China. [Puzia, Thomas H.] Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Jogee, Shardha; Marinova, Irina] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Batcheldor, Dan; Merritt, David] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA. [Bridges, Terry J.] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON K7L 3N6, Canada. [Chiboucas, Kristin] Gemini Observ, Hilo, HI 96720 USA. [Davies, Jonathan I.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [del Burgo, Carlos] Univ Nova Lisboa, UNINOVA CA3, P-2825149 Monte De Caparica, Caparica, Portugal. [del Burgo, Carlos] Dublin Inst Adv Studies, Sch Cosm Phys, Dublin 2, Ireland. [Erwin, Peter] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Erwin, Peter] Univ Sternwarte, D-81679 Munich, Germany. [Hudson, Michael J.; Phillipps, Steven; Price, James] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Huxor, Avon] Univ Bristol, HH Wills Phys Lab, Astrophys Grp, Bristol BS8 1TL, Avon, England. [Khosroshahi, Habib; Kourkchi, Ehsan] Inst Res Fundamental Sci IPM, Sch Astron, Tehran, Iran. [Komiyama, Yutaka] Natl Astron Observ Japan, Hilo, HI 96720 USA. [Lotz, Jennifer] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Marzke, Ronald O.] San Francisco State Univ, Dept Phys & Astron, San Francisco, CA 94132 USA. [Miller, Bryan W.] Gemini Observ, La Serena, Chile. [Miller, Neal A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Mobasher, Bahram] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Okamura, Sadanori] Univ Tokyo, Dept Astron, Bunkyo Ku, Tokyo 1130033, Japan. [Poggianti, Bianca M.] Osserv Astron Padova, INAF, I-35122 Padua, Italy. [Tully, R. Brent] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. RP Hammer, D (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. RI Peletier, Reynier/B-9633-2012; Hudson, Michael/H-3238-2012; Graham, Alister/G-1217-2013; Sharples, Ray/N-7309-2013; OI Erwin, Peter/0000-0003-4588-9555; Phillipps, Steven/0000-0001-5991-3486; Hudson, Michael/0000-0002-1437-3786; Graham, Alister/0000-0002-6496-9414; Sharples, Ray/0000-0003-3449-8583; del Burgo, Carlos/0000-0002-8949-5200; Jenkins, Leigh/0000-0001-9464-0719; Batcheldor, Daniel/0000-0002-8588-5682; De Hoyos Fernandez De Cordova, Carlos/0000-0003-3120-6856 FU NASA [NAS 5-26555, GO10861, NNX07AH15G]; STScI [HST-GO-10861, HST-E0-10861.35-A]; UK STFC [PP/E001149/1]; DFG [1177]; Science Ministry of Spain [AYA2006-12955, AYA2009-11137]; NSERC; Spanish MICINN [CSD2006-00070]; NSF [AST-0807910] FX Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO10861.; We thank the referee for their helpful comments, Panayiotis Tzanavaris for assistance with the Scamp software, Antara Basu-Zych for useful science discussion, Karen Levay for implementing the data release on MAST, and Zolt Levay for constructing the two-color images. This research and associated EPO program are supported by STScI through grants HST-GO-10861 and HST-E0-10861.35-A, respectively. Partial support is also provided for the following individuals: D. C. and A. K. are supported by UK STFC rolling grant PP/E001149/1; P. E. is supported by DFG Priority Programme 1177; M. B. is supported by the Science Ministry of Spain through grants AYA2006-12955 and AYA2009-11137; Hudson is supported by NSERC; R. G. is supported by Spanish MICINN under the Consolider-Ingenio 2010 Programme grant CSD2006-00070; D. M. is supported by grants AST-0807910 (NSF) and NNX07AH15G (NASA). NR 71 TC 24 Z9 24 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD NOV PY 2010 VL 191 IS 1 BP 143 EP 159 DI 10.1088/0067-0049/191/1/143 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 688EU UT WOS:000284833400009 ER PT J AU Hurley, K Guidorzi, C Frontera, F Montanari, E Rossi, F Feroci, M Mazets, E Golenetskii, S Frederiks, DD Pal'shin, VD Aptekar, RL Cline, T Trombka, J McClanahan, T Starr, R Atteia, JL Barraud, C Pelangoen, A Boer, M Vanderspek, R Ricker, G Mitrofanov, IG Golovin, DV Kozyrev, AS Litvak, ML Sanin, AB Boynton, W Fellows, C Harshman, K Goldsten, J Gold, R Smith, DM Wigger, C Hajdas, W AF Hurley, K. Guidorzi, C. Frontera, F. Montanari, E. Rossi, F. Feroci, M. Mazets, E. Golenetskii, S. Frederiks, D. D. Pal'shin, V. D. Aptekar, R. L. Cline, T. Trombka, J. McClanahan, T. Starr, R. Atteia, J. -L. Barraud, C. Pelangoen, A. Boer, M. Vanderspek, R. Ricker, G. Mitrofanov, I. G. Golovin, D. V. Kozyrev, A. S. Litvak, M. L. Sanin, A. B. Boynton, W. Fellows, C. Harshman, K. Goldsten, J. Gold, R. Smith, D. M. Wigger, C. Hajdas, W. TI THE INTERPLANETARY NETWORK SUPPLEMENT TO THE BeppoSAX GAMMA-RAY BURST CATALOGS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE astronomical databases: miscellaneous; catalogs; gamma-ray burst: general; techniques: miscellaneous ID ARRIVAL-TIME LOCALIZATIONS; PIONEER-VENUS-ORBITER; WIDE-FIELD CAMERAS; ULYSSES SUPPLEMENT; ASTRONOMY SATELLITE; BATSE; MONITOR; SPECTROMETER; EXPLORER; ONBOARD AB Between 1996 July and 2002 April, one or more spacecraft of the interplanetary network detected 786 cosmic gamma-ray bursts that were also detected by the Gamma-Ray Burst Monitor and/or Wide-Field X-Ray Camera experiments aboard the BeppoSAX spacecraft. During this period, the network consisted of up to six spacecraft, and using triangulation, the localizations of 475 bursts were obtained. We present the localization data for these events. C1 [Hurley, K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Guidorzi, C.; Frontera, F.; Montanari, E.; Rossi, F.] Univ Ferrara, Dept Phys, I-44100 Ferrara, Italy. [Frontera, F.] INAF Ist Astrofis Spaziale & Fis Cosm Bologna, I-40129 Bologna, Italy. [Feroci, M.] INAF Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [Mazets, E.; Golenetskii, S.; Frederiks, D. D.; Pal'shin, V. D.; Aptekar, R. L.] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia. [Cline, T.; Trombka, J.; McClanahan, T.; Starr, R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Atteia, J. -L.; Barraud, C.; Pelangoen, A.] Observ Midi Pyrenees, Astrophys Lab, F-31400 Toulouse, France. [Boer, M.] Observ Haute Provence, F-04870 St Michel lObservatoire, France. [Vanderspek, R.; Ricker, G.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B.] Space Res Inst, Moscow 117997, Russia. [Boynton, W.; Fellows, C.; Harshman, K.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Goldsten, J.; Gold, R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Smith, D. M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Smith, D. M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Wigger, C.; Hajdas, W.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Montanari, E.] Ist IS Calvi, Finale Emilia, MO, Italy. RP Hurley, K (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. EM khurley@ssl.berkeley.edu RI McClanahan, Timothy/C-8164-2012; Frederiks, Dmitry/C-7612-2014; Pal'shin, Valentin/F-3973-2014; Aptekar, Raphail/B-3456-2015; Golenetskii, Sergey/B-3818-2015; OI Frederiks, Dmitry/0000-0002-1153-6340; Feroci, Marco/0000-0002-7617-3421 FU JPL (Ulysses) [958056, 1268385]; MIT [SC-R-293291]; NASA (HETE) [NAG5-11451]; NASA (Konus) [NNX07AH52G]; NASA (RHESSI) [NAG5-13080]; NASA [NAG5-11451, NAG5-7766, NAG5-9126, NAG5-10710]; JPL (OdysseyU.S. SAX Guest Investigator program (BeppoSAX)) [1282043]; U.S. SAX Guest Investigator program (BeppoSAX); NASA (NEAR) [NAG5-9503]; ASI-INAF [I/088/06/0]; Federal Space Agency of Russia; RFBR [09-02-00166a] FX Support for the interplanetary network came from the following sources: JPL Contracts 958056 and 1268385 (Ulysses); MIT Contract SC-R-293291 and NASA NAG5-11451 (HETE); NASA NNX07AH52G (Konus); NASA NAG5-13080 (RHESSI); NASA NAG5-11451 and JPL Contract 1282043 (Odyssey); NASA NAG5-7766, NAG5-9126, NAG5-10710, and the U.S. SAX Guest Investigator program (BeppoSAX); and NASA NAG5-9503 (NEAR). C. G., F. F., and E. M. acknowledge financial support from the ASI-INAF contract I/088/06/0. In Russia, this work was supported by the Federal Space Agency of Russia and RFBR grant 09-02-00166a. NR 33 TC 5 Z9 5 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD NOV PY 2010 VL 191 IS 1 BP 179 EP 184 DI 10.1088/0067-0049/191/1/179 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 688EU UT WOS:000284833400011 ER PT J AU Dopita, MA Calzetti, D Apellaniz, JM Blair, WP Long, KS Mutchler, M Whitmore, BC Bond, HE MacKenty, J Balick, B Carollo, M Disney, M Frogel, JA O'Connell, R Hall, D Holtzman, JA Kimble, RA McCarthy, P Paresce, F Saha, A Walker, AR Silk, J Sirianni, M Trauger, J Windhorst, R Young, E AF Dopita, Michael A. Calzetti, Daniela Maiz Apellaniz, Jesus Blair, William P. Long, Knox S. Mutchler, Max Whitmore, Bradley C. Bond, Howard E. MacKenty, John Balick, Bruce Carollo, Marcella Disney, Michael Frogel, Jay A. O'Connell, Robert Hall, Donald Holtzman, Jon A. Kimble, Randy A. McCarthy, Patrick Paresce, Francesco Saha, Abhijit Walker, Alistair R. Silk, Joe Sirianni, Marco Trauger, John Windhorst, Rogier Young, Erick TI Supernova remnants, planetary nebulae and the distance to NGC 4214 SO ASTROPHYSICS AND SPACE SCIENCE LA English DT Article DE Supernovae: general; ISM: structure, supernova remnants; Stars: planetary nebulae; Galaxies: ISM, starburst, structure ID LARGE-MAGELLANIC-CLOUD; HUBBLE-SPACE-TELESCOPE; STANDARD CANDLES; NOVA REMNANTS; OPTICAL-EMISSION; SHOCK-WAVES; IONIZED-GAS; NGC-4214; M33; POPULATION AB We present narrow band, continuum subtracted H alpha, [S ii], H beta, [O iii] and [O ii] data taken with the Wide Field Camera 3 on the Hubble Space Telescope in the nearby dwarf starburst galaxy NGC 4214. From these images, we identify seventeen new planetary nebula candidates, and seven supernova remnant candidates. We use the observed emission line luminosity function of the planetary nebulae to establish a new velocity-independent distance to NGC 4214. We conclude that the PNLF technique gives a reddening independent distance to NGC 4214 of 3.19 +/- 0.36 Mpc, and that our current best-estimate of the distance to this galaxy ids 2.98 +/- 0.13 Mpc. C1 [Dopita, Michael A.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Calzetti, Daniela] Univ Massachusetts, Amherst, MA 01003 USA. [Maiz Apellaniz, Jesus] CSIC, Inst Astrofis Andalucia, Granada, Spain. [Blair, William P.] Johns Hopkins Univ, Baltimore, MD USA. [Long, Knox S.; Mutchler, Max; Whitmore, Bradley C.; Bond, Howard E.; MacKenty, John] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Balick, Bruce] Univ Washington, Seattle, WA 98195 USA. [Carollo, Marcella] ETH, Inst Astron, CH-8092 Zurich, Switzerland. [Disney, Michael] Cardiff Univ, Cardiff, S Glam, Wales. [Frogel, Jay A.] Assoc Univ Res Astron, Washington, DC USA. [O'Connell, Robert] Univ Virginia, Charlottesville, VA USA. [Hall, Donald] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Holtzman, Jon A.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Kimble, Randy A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McCarthy, Patrick] Carnegie Inst Washington, Pasadena, CA USA. [Paresce, Francesco] INAF, Inst Space Astrophys, Bologna, Italy. [Saha, Abhijit; Walker, Alistair R.] Natl Opt Astron Observ, Tucson, AZ USA. [Silk, Joe] Univ Oxford, Oxford, England. [Sirianni, Marco] European Space Agcy, Darmstadt, Germany. [Trauger, John] NASA JPL, Pasadena, CA USA. [Windhorst, Rogier] Arizona State Univ, Tempe, AZ USA. [Young, Erick] Univ Arizona, Tucson, AZ USA. RP Dopita, MA (reprint author), Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. EM michael.dopita@anu.edu.au RI Kimble, Randy/D-5317-2012; Dopita, Michael/P-5413-2014; Maiz Apellaniz, Jesus/C-2825-2017; OI Dopita, Michael/0000-0003-0922-4986; Maiz Apellaniz, Jesus/0000-0003-0825-3443; silk, joe/0000-0002-1566-8148 FU NASA [NAS5-26555]; Australian Research Council (ARC) [DP0984657, DP0664434] FX This paper is based on observations with the NASA & ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. It uses Early Release Science observations made by the WFC3 Scientific Oversight Committee. We are grateful to the Director of the Space Telescope Science Institute for awarding Director's Discretionary time for this program. Dopita acknowledges the support of the Australian Research Council (ARC) through Discovery projects DP0984657 and DP0664434. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has also made use of NASA's Astrophysics Data System, and of SAOImage DS9 (Joye and Mandel 2003), developed by the Smithsonian Astrophysical Observatory. NR 45 TC 9 Z9 9 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0004-640X J9 ASTROPHYS SPACE SCI JI Astrophys. Space Sci. PD NOV PY 2010 VL 330 IS 1 BP 123 EP 131 DI 10.1007/s10509-010-0376-0 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 662PI UT WOS:000282823400017 ER PT J AU Oltmans, SJ Lefohn, AS Harris, JM Tarasick, DW Thompson, AM Wernli, H Johnson, BJ Novelli, PC Montzka, SA Ray, JD Patrick, LC Sweeney, C Jefferson, A Dann, T Davies, J Shapiro, M Holben, BN AF Oltmans, S. J. Lefohn, A. S. Harris, J. M. Tarasick, D. W. Thompson, A. M. Wernli, H. Johnson, B. J. Novelli, P. C. Montzka, S. A. Ray, J. D. Patrick, L. C. Sweeney, C. Jefferson, A. Dann, T. Davies, J. Shapiro, M. Holben, B. N. TI Enhanced ozone over western North America from biomass burning in Eurasia during April 2008 as seen in surface and profile observations SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Ozone; Biomass burning; Pollution; Arctic; Transport; Trajectories ID BACKGROUND OZONE; VARIABILITY; MISSION; ARCTAS; TROPOSPHERE; TRANSPORT; POLLUTION; AIRCRAFT AB During April 2008, as part of the International Polar Year (IPY), a number of ground-based and aircraft campaigns were carried out in the North American Arctic region (e.g., ARCTAS, ARCPAC). The widespread presence during this period of biomass burning effluent, both gaseous and particulate, has been reported. Unusually high ozone readings for this time of year were recorded at surface ozone monitoring sites from northern Alaska to northern California. At Barrow, Alaska, the northernmost point in the United States, the highest April ozone readings recorded at the surface (hourly average values >55 ppbv) in 37 years of observation were measured on April 19, 2008. At Denali National Park in central Alaska, an hourly average of 79 ppbv was recorded during an 8-h period in which the average was over 75 ppbv, exceeding the ozone ambient air quality standard threshold value in the U.S. Elevated ozone (>60 ppbv) persisted almost continuously from April 19-23 at the monitoring site during this event. At a coastal site in northern California (Trinidad Head), hourly ozone readings were >50 ppbv almost continuously for a 35-h period from April 18-20. At several sites in northern California, located to the east of Trinidad Head, numerous occurrences of ozone readings exceeding 60 ppbv were recorded during April 2008. Ozone profiles from an extensive series of balloon soundings showed lower tropospheric features at similar to 1-6 km with enhanced ozone during the times of elevated ozone amounts at surface sites in western Canada and the U.S. Based on extensive trajectory calculations, biomass burning in regions of southern Russia was identified as the likely source of the observed ozone enhancements. Ancillary measurements of atmospheric constituents and optical properties (aerosol optical thickness) supported the presence of a burning plume at several locations. At two coastal sites (Trinidad Head and Vancouver Island), profiles of a large suite of gases were measured from airborne flask samples taken during probable encounters with burning plumes. These profiles aided in characterizing the vertical thickness of the plumes, as well as confirming that the plumes reaching the west coast of North America were associated with biomass burning events. Published by Elsevier Ltd. C1 [Oltmans, S. J.; Harris, J. M.; Johnson, B. J.; Novelli, P. C.; Montzka, S. A.; Patrick, L. C.; Sweeney, C.; Jefferson, A.] NOAA Earth Syst Res Lab, Global Monitoring Div, Boulder, CO 80305 USA. [Lefohn, A. S.] ASL & Associates, Helena, MT USA. [Tarasick, D. W.; Davies, J.] Environm Canada, Air Qual Res Div, Downsview, ON, Canada. [Thompson, A. M.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Wernli, H.] ETHZ, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Ray, J. D.] Natl Pk Serv, Air Resources Div, Denver, CO USA. [Patrick, L. C.; Sweeney, C.; Jefferson, A.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Dann, T.] Environm Canada, Anal & Air Qual Div, Ottawa, ON K1A 0H3, Canada. [Shapiro, M.] NCAR, Boulder, CO USA. [Holben, B. N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Oltmans, SJ (reprint author), NOAA Earth Syst Res Lab, Global Monitoring Div, 325 Broadway, Boulder, CO 80305 USA. EM Samuel.J.Oltmans@noaa.gov RI Jefferson, Anne/K-4793-2012; Thompson, Anne /C-3649-2014; OI Thompson, Anne /0000-0002-7829-0920; Montzka, Stephen/0000-0002-9396-0400; Tarasick, David/0000-0001-9869-0692 FU NASA as part of ARCTAS; Environment Canada; NOAA/ESRL/GMD FX Debbie Miller, U.S. National Park Service, provided the IMPROVE aerosol data. Funding for the ozonesonde launches was provided by NASA as part of ARCTAS, Environment Canada, and NOAA/ESRL/GMD. NR 32 TC 31 Z9 32 U1 2 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD NOV PY 2010 VL 44 IS 35 BP 4497 EP 4509 DI 10.1016/j.atmosenv.2010.07.004 PG 13 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 672FL UT WOS:000283568300021 ER PT J AU Lewis, J De Young, R Ferrare, R Chu, DA AF Lewis, Jasper De Young, Russell Ferrare, Richard Chu, D. Allen TI Comparison of summer and winter California central valley aerosol distributions from lidar and MODIS measurements SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE MODIS; Aerosol; California; San Joaquin Valley; Lidar ID SPECTRAL-RESOLUTION LIDAR; AIRBORNE LIDAR; OPTICAL DEPTH; AIR-QUALITY; VALIDATION; SPACE; PM2.5; DELHI AB Aerosol distributions from two aircraft lidar campaigns conducted in the California Central Valley are compared in order to identify seasonal variations. Aircraft lidar flights were conducted in June 2003 and February 2007. While the ground PM(2.5) (particulate matter with diameter <= 2.5 mu m) concentration was highest in the winter, the aerosol optical depth (ADD) measured from the MODIS and lidar instruments was highest in the summer. A multiyear seasonal comparison shows that PM(2.5) in the winter can exceed summer PM(2.5) by 68%, while summer AOD from MODIS exceeds winter AOD by 29%. Warmer temperatures and wildfires in the summer produce elevated aerosol layers that are detected by satellite measurements, but not necessarily by surface particulate matter monitors. Temperature inversions, especially during the winter, contribute to higher PM(2.5) measurements at the surface. Measurements of the mixing layer height from lidar instruments provide valuable information needed to understand the correlation between satellite measurements of AOD and in situ measurements of PM(2.5). Lidar measurements also reflect the ammonium nitrate chemistry observed in the San Joaquin Valley, which may explain the discrepancy between the MODIS AOD and PM(2.5) measurements. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Lewis, Jasper] Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23668 USA. [De Young, Russell; Ferrare, Richard] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. [Chu, D. Allen] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Greenbelt, MD 20771 USA. RP Lewis, J (reprint author), Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23668 USA. EM jasper.r.lewis@nasa.gov FU US EPA Advanced Monitoring Initiative; NASA FX The authors thank James J. Szykman, Jassim A. Al-Saadi, Chris A. Hostetler, Johnathan W. Hair, Anthony L Cook, and David B. Harper, for the planning, collection, and use of the 2007 San Joaquin Valley HSRL data. This research is supported by the US EPA Advanced Monitoring Initiative and NASA Applied Sciences Program. NR 38 TC 7 Z9 7 U1 3 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD NOV PY 2010 VL 44 IS 35 BP 4510 EP 4520 DI 10.1016/j.atmosenv.2010.07.006 PG 11 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 672FL UT WOS:000283568300022 ER PT J AU Singh, HB Anderson, BE Brune, WH Cai, C Cohen, RC Crawford, JH Cubison, MJ Czech, EP Emmons, L Fuelberg, HE Huey, G Jacob, DJ Jimenez, JL Kaduwela, A Kondo, Y Mao, J Olson, JR Sachse, GW Vay, SA Weinheimer, A Wennberg, PO Wisthaler, A AF Singh, H. B. Anderson, B. E. Brune, W. H. Cai, C. Cohen, R. C. Crawford, J. H. Cubison, M. J. Czech, E. P. Emmons, L. Fuelberg, H. E. Huey, G. Jacob, D. J. Jimenez, J. L. Kaduwela, A. Kondo, Y. Mao, J. Olson, J. R. Sachse, G. W. Vay, S. A. Weinheimer, A. Wennberg, P. O. Wisthaler, A. CA ARCTAS Sci Team TI Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Arctic pollution; Ozone; Aerosols; Greenhouse gases; Wild fires; Models ID ARCTIC AIR-POLLUTION; INTERANNUAL VARIABILITY; CURRENT KNOWLEDGE; ODD NITROGEN; TROPOSPHERE; TRANSPORT; SATELLITE; AIRCRAFT; OZONE; MODEL AB We analyze detailed atmospheric gas/aerosol composition data acquired during the 2008 NASA ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) airborne campaign performed at high northern latitudes in spring (ARCTAS-A) and summer (ARCTAS-B) and in California in summer (ARCTAS-CARB). Biomass burning influences were widespread throughout the ARCTAS campaign. MODIS data from 2000 to 2009 indicated that 2008 had the second largest fire counts over Siberia and a more normal Canadian boreal forest fire season. Near surface arctic air in spring contained strong anthropogenic signatures indicated by high sulfate. In both spring and summer most of the pollution plumes transported to the Arctic region were from Europe and Asia and were present in the mid to upper troposphere and contained a mix of forest fire and urban influences. The gas/aerosol composition of the high latitude troposphere was strongly perturbed at all altitudes in both spring and summer. The reactive nitrogen budget was balanced with PAN as the dominant component. Mean ozone concentrations in the high latitude troposphere were only minimally perturbed (<5 ppb), although many individual pollution plumes sampled in the mid to upper troposphere, and mixed with urban influences, contained elevated ozone (Delta O-3/Delta CO = 0.11 +/- 0.09 v/v). Emission and optical characteristics of boreal and California wild fires were quantified and found to be broadly comparable. Greenhouse gas emission estimates derived from ARCTAS-CARB data for the South Coast Air Basin of California show good agreement with state inventories for CO2 and N2O but indicate substantially larger emissions of CH4. Simulations by multiple models of transport and chemistry were found to be broadly consistent with observations with a tendency towards under prediction at high latitudes. Published by Elsevier Ltd. C1 [Singh, H. B.; Czech, E. P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Anderson, B. E.; Crawford, J. H.; Olson, J. R.; Sachse, G. W.; Vay, S. A.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Brune, W. H.] Penn State Univ, University Pk, PA 16802 USA. [Cai, C.; Kaduwela, A.] Calif Environm Protect Agcy, Sacramento, CA USA. [Cohen, R. C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Emmons, L.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Fuelberg, H. E.] Florida State Univ, Tallahassee, FL 32306 USA. [Jacob, D. J.; Mao, J.] Harvard Univ, Cambridge, MA 02138 USA. [Huey, G.] Georgia Inst Technol, Atlanta, GA 30332 USA. [Cubison, M. J.; Jimenez, J. L.] Univ Colorado, Boulder, CO 80309 USA. [Kondo, Y.] Univ Tokyo, Tokyo, Japan. [Wennberg, P. O.] CALTECH, Pasadena, CA 91125 USA. [Wisthaler, A.] Univ Innsbruck, A-6020 Innsbruck, Austria. RP Singh, HB (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM hanwant.b.singh@nasa.gov RI Crawford, James/L-6632-2013; Emmons, Louisa/R-8922-2016; Jimenez, Jose/A-5294-2008; Mao, Jingqiu/F-2511-2010; Wennberg, Paul/A-5460-2012; Kondo, Yutaka/D-1459-2012; Cohen, Ronald/A-8842-2011 OI Crawford, James/0000-0002-6982-0934; Emmons, Louisa/0000-0003-2325-6212; Kaduwela, Ajith/0000-0002-7236-2698; Jimenez, Jose/0000-0001-6203-1847; Mao, Jingqiu/0000-0002-4774-9751; Cohen, Ronald/0000-0001-6617-7691 FU NASA; California Air Resources Board FX The ARCTAS campaign was funded by the NASA Tropospheric Chemistry Program, the NASA Radiation Sciences Program, and the California Air Resources Board. PTR-MS measurements were supported by the Austrian Research Promotion Agency (FFG), the Tiroler Zukunftstiftung, and the University of Innsbruck. We thank all ARCTAS participants for their contributions. NR 54 TC 64 Z9 64 U1 3 U2 46 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD NOV PY 2010 VL 44 IS 36 BP 4553 EP 4564 DI 10.1016/j.atmosenv.2010.08.026 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 672FO UT WOS:000283568600004 ER PT J AU Wilson, DI Piketh, SJ Smirnov, A Holben, BN Kuyper, B AF Wilson, D. I. Piketh, S. J. Smirnov, A. Holben, B. N. Kuyper, B. TI Aerosol optical properties over the South Atlantic and Southern Ocean during the 140th cruise of the M/V SA Agulhas SO ATMOSPHERIC RESEARCH LA English DT Article DE Aerosols; Angstrom exponent; AERONET; Antarctica; Aerosol optical properties; Climate; HYSPLIT; South Atlantic; Southern Ocean; MODIS ID ATMOSPHERIC AEROSOL; SUN PHOTOMETERS; SEA-SALT; THICKNESS; ANTARCTICA AB The research analysed the aerosol optical properties of the South Atlantic and Southern Ocean regions during the South African National Antarctic Expedition 2007/2008 (SANAE 47) take-over cruise on board the MN S.A. Agulhas Very low aerosol optical thickness values were obtained for the Antarctic Coastal region with a mean AOT 500 nm of 003 and a mean Angstrom exponent of 1 77 The South Atlantic region showed a mean AOT 500 nm of 006 and a mean Angstrom exponent of 0 69 AOT values for the South African coastal region were similar to those in the South Atlantic and had a mean AOT 500 nm of 007 and a mean Angstrom exponent of 076 A discrepancy exists between the MODIS TERRA and AQUA aerosol product and the acquired dataset using the Microtops II Sunphotometer (c) 2010 Elsevier BV All rights reserved C1 [Wilson, D. I.; Piketh, S. J.] Univ Witwatersrand, Climatol Res Grp, ZA-2050 Johannesburg, South Africa. [Smirnov, A.; Holben, B. N.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Kuyper, B.] Univ Cape Town, Dept Oceanog, ZA-7925 Cape Town, South Africa. RP Wilson, DI (reprint author), Univ Witwatersrand, Climatol Res Grp, Private Bag X3, ZA-2050 Johannesburg, South Africa. RI Smirnov, Alexander/C-2121-2009 OI Smirnov, Alexander/0000-0002-8208-1304 FU NASA FX The authors wish to thank operational and managerial support from the South African National Antarctic (SANAP), the Department of Environmental Affairs and Tourism (DEAT), Isabelle Ansorge (UCT Oceanography Department) and Roelof Burger (Climatology Research Group) This research was supported by NASA s Giovanni an online data visualization and analysis tool maintained by the Goddard Earth Sciences (GES) Data and Information Services Centre (DISC), a part of the NASA Earth-Sun System Division The authors would also like to acknowledge the constructive criticism of the anonymous reviewers during the publication review NR 32 TC 3 Z9 3 U1 0 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0169-8095 J9 ATMOS RES JI Atmos. Res. PD NOV-DEC PY 2010 VL 98 IS 2-4 BP 285 EP 296 DI 10.1016/j.atmosres.2010.07.007 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 690DT UT WOS:000284983400011 ER PT J AU Wang, DH Li, XF Tao, WK AF Wang, Donghai Li, Xiaofan Tao, Wei-Kuo TI Cloud radiative effects on responses of rainfall to large-scale forcing during a landfall of severe tropical storm Bilis (2006) SO ATMOSPHERIC RESEARCH LA English DT Article DE Cloud-radiation interaction; Cloud radiative effects; Convective and stratiform rainfall; Cloud-resolving model simulation ID SOUTH CHINA SEA; MICROSCALE STRUCTURE; STRATIFORM REGIONS; FRONTAL RAINBANDS; RESOLVING MODEL; PHASE-III; SYSTEMS; WATER; PRECIPITATION; CONVECTION AB The cloud radiative effects on responses of rainfall to the large-scale forcing during a landfall of severe tropical storm Bilis (2006) are investigated by analyzing sensitivity experiments Imposed by large-scale forcing from NCEP/GDAS data in a two-dimensional cloud-resolving model The daily average analysis is conducted on 15 and 16 July 2009 respectively due to dominant stratiform and convective rainfall associated with different large-scale forcing When cloud radiative effects are excluded the increased mean rainfall is associated with the increased mean radiative cooling through the enhanced mean latent heat on 15 July The reduction in mean rain rate is related to the slowdown in the mean net condensation while the enhanced mean radiative cooling from the removal of cloud radiative effects is balanced by the suppressed heat divergence on 16 July The increased mean rainfall on 15 July and decreased mean rainfall on 16 July are mainly from raining stratiform regions The enhanced stratiform rainfall is associated with the weakened local atmospheric moistening and strengthened local hydrometeor loss on 15 July whereas the reduced stratiform rainfall is related to the weakened water vapor convergence on 16 July When cloud-radiation interaction is excluded the decreases in the mean ram rate are associated with the slowdown in the mean hydrometeor loss on 15 July and the suppression in the net condensation on 16 July The decreased mean rainfall is mainly from convective regions on 15 July and raining stratiform regions on 16 July The reduced convective rainfall is associated with strengthened transport of hydrometeor concentration from convective regions to raining stratiform regions on 15 July whereas the decreased stratiform rainfall is related to the weakened water vapor convergence on 16 July (C) 2010 Elsevier B V All rights reserved C1 [Wang, Donghai] Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China. [Wang, Donghai] Sci Syst & Applicat Inc, Lanham, MD USA. [Li, Xiaofan] NOAA, NESDIS, Ctr Satellite Applicat & Res, Camp Springs, MD USA. [Tao, Wei-Kuo] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Wang, DH (reprint author), Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China. RI Li, Xiaofan/F-5605-2010; Li, Xiaofan/G-2094-2014 FU State Key Basic Research Development Program [2009CB421504]; National Natural Science Foundation of China [40633016, 40875022, 40830958] FX The authors thank two anonymous reviewers for their constructive comments This research was supported by the State Key Basic Research Development Program (2009CB421504), and the National Natural Science Foundation of China under grant No 40633016, 40875022 and 40830958 NR 33 TC 11 Z9 11 U1 0 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0169-8095 J9 ATMOS RES JI Atmos. Res. PD NOV-DEC PY 2010 VL 98 IS 2-4 BP 512 EP 525 DI 10.1016/j.atmosres.2010.08.020 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 690DT UT WOS:000284983400033 ER PT J AU Webb, JT Krock, LP Gernhardt, ML AF Webb, James T. Krock, Larry P. Gernhardt, Michael L. TI Oxygen Consumption at Altitude as a Risk Factor for Altitude Decompression Sickness SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Article DE oxygen consumption; exercise; DCS ID EXERCISE; VALIDATION; AIRCRAFT; MODEL AB WEBB JT, KROCK LP, GERNHARDT ML. Oxygen consumption at altitude as a risk factor for altitude decompression sickness. Aviat Space Environ Med 2010; 81:987-92. Introduction: The existence of a general influence of exercise on the incidence of decompression sickness (DCS) has been known for more than a half-century. However, quantification of the effect has not been done for several reasons, including isolation of exercise as the only variable. The DCS database at Brooks City-Base, TX, contains detailed physiologic information on over 3000 altitude exposures. The purpose of this study was to measure (V) over dotO(2) during the activities performed during those exposures to retrospectively determine if (V) over dotO(2), a quantifiable index of exercise intensity, was related to the level of reported DCS. Methods: Ground-level activity was designed to duplicate the standardized activity during the altitude exposures. Breath-by-breath (V) over dotO(2), was determined for each activity using a COSMED (R) metabolic measurement system. Comparison of the (V) over dotO(2) during four levels of activity performed under otherwise comparable conditions allowed a determination of correlation between (V) over dotO(2) and DCS risk observed during the altitude exposures. Results and Discussion: Four previous altitude exposure profiles at 8992 m to 9144 m (29,500 to 30,000 ft; 231 to 226 mmHg) for 4 h following a 1-h prebreathe resulted in 38-86% DCS. This study provided the (V) over dotO(2) of activities during those studies. The correlation between DCS incidence and the highest 1-min (V) over dotO(2) of activity was 0.89. Conclusion: The highest 1-min (V) over dotO(2) showed a high correlation with level of DCS risk. Future exposures involving lower levels of activity could provide data that would allow improvement in modeling of DCS risk. C1 [Webb, James T.; Krock, Larry P.; Gernhardt, Michael L.] NASA Johnson Space Ctr, Houston, TX USA. RP Webb, JT (reprint author), 13818 Chittim Oak, San Antonio, TX 78232 USA. EM jtwebb@swbell.net FU NASA [9-02078] FX This research was sponsored by NASA Prime Contract 9-02078. We appreciate the efforts of the volunteer research subjects and medical monitors who made this collection of data and analyses possible. Jason Norcross and Lesley Lee of Wyle in Houston provided professional technical support, and Frances Laue of San Antonio edited for clarity, flow, spelling, etc. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by NASA or the United States Air Force. NR 26 TC 4 Z9 4 U1 0 U2 0 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD NOV PY 2010 VL 81 IS 11 BP 987 EP 992 DI 10.3357/ASEM.2787.2010 PG 6 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA 670FB UT WOS:000283405500001 PM 21043293 ER PT J AU Coops, NC Hilker, T Hall, FG Nichol, CJ Drolet, GG AF Coops, Nicholas C. Hilker, Thomas Hall, Forrest G. Nichol, Caroline J. Drolet, Guillaume G. TI Estimation of Light-use Efficiency of Terrestrial Ecosystem from Space: A Status Report SO BIOSCIENCE LA English DT Article DE light-use efficiency; gross primary production; remote sensing; biochemical; satellite ID PHOTOCHEMICAL REFLECTANCE INDEX; RADIATION-USE EFFICIENCY; CHLOROPHYLL FLUORESCENCE; BOREAL FOREST; PHOTOSYNTHETIC EFFICIENCY; CARBON BALANCE; CO2 FLUX; CANOPY; MODEL; VEGETATION AB A critical variable in the estimation of gross primary production of terrestrial ecosystems is light-use efficiency (LUE), a value that represents the actual efficiency of a plant's use of absorbed radiation energy to produce biomass. Light-use efficiency is driven by the most limiting of a number of environmental stress factors that reduce plants' photosynthetic capacity; these include short-term stressors, such as photoinhibition, as well as longer-term stressors, such as soil water and temperature. Modeling LUE from remote sensing is governed largely by the biochemical composition of plant foliage, with the past decade seeing important theoretical and modeling advances for understanding the role of these stresses on LUE. In this article we provide a summary of the tower-, aircraft-, and satellite-based research undertaken to date, and discuss the broader scalability of these methods, concluding with recommendations for ongoing research possibilities. C1 [Coops, Nicholas C.; Hilker, Thomas] Univ British Columbia, Dept Forest Resource Management, Vancouver, BC V5Z 1M9, Canada. [Hall, Forrest G.] Univ Maryland, Goddard Space Flight Ctr, Joint Ctr Earth Syst Technol, Greenbelt, MD USA. [Nichol, Caroline J.; Drolet, Guillaume G.] Univ Edinburgh, Sch Geosci, Edinburgh EH8 9YL, Midlothian, Scotland. RP Coops, NC (reprint author), Univ British Columbia, Dept Forest Resource Management, Vancouver, BC V5Z 1M9, Canada. EM nicholas.coops@ubc.ca RI Coops, Nicholas/J-1543-2012 OI Coops, Nicholas/0000-0002-0151-9037 FU Natural Sciences and Engineering Research Council FX We are very grateful for many fruitful conversations, collaborations, and discussions with colleagues working in this research field. In particular we thank Elizabeth Middleton, Karl (Fred) Hummerich, and Alexei Lyapustin (NASA Goddard Space Flight Center); John Gamon (University of Alberta), leader of the SPECNET network (http://spectralnetwork.net); and Lee Vier ling (University of Idaho) and colleagues. We are grateful for the additional comments provided by three reviewers. This work was partly funded by a Natural Sciences and Engineering Research Council Accelerator grant to NCC. NR 62 TC 36 Z9 36 U1 4 U2 34 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0006-3568 EI 1525-3244 J9 BIOSCIENCE JI Bioscience PD NOV PY 2010 VL 60 IS 10 BP 788 EP 797 DI 10.1525/bio.2010.60.10.5 PG 10 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 675GC UT WOS:000283813700006 ER PT J AU DiRienzi, J Drachman, RJ AF DiRienzi, Joseph Drachman, Richard J. TI Resonances in the dipositronium system: Rydberg states SO CANADIAN JOURNAL OF PHYSICS LA English DT Article ID POSITRONIUM HYDRIDE; SCATTERING AB We were previously successful in representing series of Ps + H scattering resonances as mainly due to quasi-bound Rydberg states in either the closed e(+) + H- or Ps(-) + H+ system. An obvious extension would be to investigate the analogous Ps + Ps system, as either e(+) + Ps(-) or e(-) + Ps(+). Here we treat the system in four increasingly complete approximations: with and without including electron and positron symmetry and charge conjugation symmetry. A comparison is made with previous calculations, and in an Appendix the relationship between quasi-bound states and scattering resonances is clarified. C1 [Drachman, Richard J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [DiRienzi, Joseph] Coll Notre Dame Maryland, Baltimore, MD 21210 USA. RP Drachman, RJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Richard.j.drachman@nasa.gov NR 18 TC 3 Z9 3 U1 0 U2 1 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA SN 0008-4204 J9 CAN J PHYS JI Can. J. Phys. PD NOV PY 2010 VL 88 IS 11 BP 877 EP 883 DI 10.1139/P10-079 PG 7 WC Physics, Multidisciplinary SC Physics GA 681AG UT WOS:000284278000009 ER PT J AU Harstad, K Bellan, J AF Harstad, Kenneth Bellan, Josette TI A model of reduced oxidation kinetics using constituents and species: Iso-octane and its mixtures with n-pentane, iso-hexane and n-heptane SO COMBUSTION AND FLAME LA English DT Article DE Reduced oxidation kinetics for iso-octane; Iso-octane mixtures ID MECHANISMS; CHEMISTRY AB A previously described methodology for deriving a reduced kinetic mechanism for alkane oxidation and tested for n-heptane is here shown to be valid, in a slightly modified version, for iso-octane and its mixtures with n-pentane, iso-hexane and n-heptane. The model is still based on partitioning the species into lights, defined as those having a carbon number smaller than 3, and heavies, which are the complement in the species ensemble, and mathematically decomposing the heavy species into constituents which are radicals. For the same similarity variable found from examining the n-heptane LLNL mechanism in conjunction with CHEMKIN II, the appropriately scaled total constituent molar density still exhibits a self-similar behavior over a very wide range of equivalence ratios, initial pressures and initial temperatures in the cold ignition regime. When extended to larger initial temperatures than for cold ignition, the self-similar behavior becomes initial temperature dependent, which indicates that rather than using functional fits for the enthalpy generation due to the heavy species' oxidation, an ideal model based on tabular information extracted from the complete LLNL kinetics should be used instead. Similarly to n-heptane, the oxygen and water molar densities are shown to display a quasi-linear behavior with respect to the similarity variable, but here their slope variation is no longer fitted and instead, their rate equations are used with the ideal model to calculate them. As in the original model, the light species ensemble is partitioned into quasi-steady and unsteady species; the quasi-steady light species mole fractions are computed using the ideal model and the unsteady species are calculated as progress variables using rates extracted from the ideal model. Results are presented comparing the performance of the model with that of the LLNL mechanism using CHEMKIN II The model reproduces excellently the temperature and species evolution versus time or versus the similarity variable, with the exception of very rich mixtures, where the predictions are still very good but the multivalued aspect of these functions at the end of oxidation is not captured in the reduction. The ignition time is predicted within percentages of the LLNL values over a wide range of equivalence ratios, initial pressures and initial temperatures. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Harstad, Kenneth; Bellan, Josette] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Bellan, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 125-109, Pasadena, CA 91109 USA. EM Josette.Bellan@jpl.nasa.gov FU Army Research Office FX This study was conducted at the California Institute of Technology, Jet Propulsion Laboratory (JPL), and was sponsored by the Army Research Office, with Dr. Ralph Anthenien as Program Manager. Computation with the full kinetic mechanisms were performed using the JPL Supercomputing facility. NR 15 TC 4 Z9 5 U1 1 U2 21 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD NOV PY 2010 VL 157 IS 11 BP 2184 EP 2197 DI 10.1016/j.combustflame.2010.06.010 PG 14 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 661HR UT WOS:000282717200017 ER PT J AU Liou, MS AF Liou, Meng-Sing TI The Evolution of AUSM Schemes SO DEFENCE SCIENCE JOURNAL LA English DT Article DE Computational fluid dynamics methods; hyperbolic systems; advection upstream splitting method; conservation laws; upwinding; CFD ID CONSERVATION-LAWS; DIFFERENCE-SCHEMES; REAL GASES; SEQUEL; FLOW; AUSM(+)-UP; EQUATIONS; DYNAMICS; SYSTEMS; ROBUST AB This paper focuses on the evolution of advection upstream splitting method(AUSM) schemes The main ingredients that have led to the development of modern computational fluid dynamics (CFD) methods have been reviewed, thus the ideas behind AUSM First and foremost is the concept of upwinding Second, the use of Riemann problem in constructing the numerical flux in the finite-volume setting Third, the necessity of including all physical processes, as characterised by the linear (convection) and nonlinear (acoustic) fields Fourth, the realisation of separating the flux into convection and pressure fluxes The rest of this review briefly outlines the technical evolution of AUSM and more details can be found in the cited references C1 NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Liou, MS (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. NR 41 TC 1 Z9 1 U1 0 U2 5 PU DEFENCE SCIENTIFIC INFORMATION DOCUMENTATION CENTRE PI DELHI PA METCALFE HOUSE, DELHI 110054, INDIA SN 0011-748X EI 0976-464X J9 DEFENCE SCI J JI Def. Sci. J. PD NOV PY 2010 VL 60 IS 6 SI SI BP 606 EP 613 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 690TY UT WOS:000285032400005 ER PT J AU Comarazamy, DE Gonzalez, JE Luvall, JC Rickman, DL Mulero, PJ AF Comarazamy, Daniel E. Gonzalez, Jorge E. Luvall, Jeffrey C. Rickman, Douglas L. Mulero, Pedro J. TI A Land-Atmospheric Interaction Study in the Coastal Tropical City of San Juan, Puerto Rico SO EARTH INTERACTIONS LA English DT Article DE Land/atmosphere interactions; Land-cover change; Regional climate modeling ID URBAN HEAT-ISLAND; MEXICO-CITY; PRECIPITATION; RAMS; THUNDERSTORMS; SIMULATION; CLIMATE; ATLANTA AB This paper focuses on the surface-atmospheric interaction in a tropical coastal city including the validation of an atmospheric modeling and an impact study of land-cover and land-use (LCLU) changes. The Regional Atmospheric Modeling System (RAMS), driven with regional reanalysis data for a 10-day simulation, is used to perform the study in the San Juan metropolitan area (SJMA), one of the largest urban conglomerations in the Caribbean, which is located in the island of Puerto Rico and taken as the test case. The model's surface characteristics were updated using airborne high-resolution remote sensing information to obtain a more accurate and detailed configuration of the SJMA. Surface and rawinsonde data from the San Juan Airborne Thermal and Land Applications Sensor (ATLAS) Mission are used to validate the modeling system, yielding satisfactory results in surface/canopy temperature, near-surface air temperatures, and vertical profiles. The impact analysis, performed with the updated SJMA configuration and a potential natural vegetation (PNV) scenario, showed that the simulation with specified urban LCLU indexes in the bottom boundary produced higher air temperatures over the area occupied by the city, with positive values of up to 2.5 degrees C. The same analysis showed changes in the surface radiative balance in the urban case attributed to modifications in the LCLU. This additional heat seems to motivate additional vertical convection that may be leading to possible urban-induced precipitation downwind of the SJMA. This was evident in a precipitation disturbance when the city is present (similar to 0.9 mm, 22.5% increase) captured by the model that was accompanied by increases in cloud formation and vertical motions mainly downwind of the city. C1 [Gonzalez, Jorge E.] CUNY City Coll, Dept Mech Engn, New York, NY 10031 USA. [Comarazamy, Daniel E.] Santa Clara Univ, Dept Mech Engn, Santa Clara, CA 95053 USA. [Luvall, Jeffrey C.; Rickman, Douglas L.] NASA Marshall Space Flight Ctr, Global Hydrol & Climate Ctr, Huntsville, AL USA. [Mulero, Pedro J.] Iberdrola Renewables, Portland, OR USA. RP Gonzalez, JE (reprint author), CUNY City Coll, Dept Mech Engn, Steinman Hall T-238, New York, NY 10031 USA. EM gonzalez@me.ccny.cuny.edu RI Comarazamy, Daniel/C-8246-2014; OI Rickman, Doug/0000-0003-3409-2882 FU NASA, University of Puerto Rico; NOAA/CREST [NA06OAR4810162] FX This research was partially funded by the NASA EPSCoR program of the University of Puerto Rico and by NOAA/CREST Grant NA06OAR4810162. The atmospheric model simulations were performed at the High Performance Computing Facilities in Rio Piedras. Thanks are due to Ana J. Picon and Pieter Van der Mier from UPR for their assistance and help in processing the airborne remote sensing data. NR 33 TC 15 Z9 15 U1 2 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1087-3562 J9 EARTH INTERACT JI Earth Interact. PD NOV PY 2010 VL 14 AR 16 DI 10.1175/2010EI309.1 PG 24 WC Geosciences, Multidisciplinary SC Geology GA 700ES UT WOS:000285720300001 ER PT J AU Timko, MT Yu, Z Onasch, TB Wong, HW Miake-Lye, RC Beyersdorf, AJ Anderson, BE Thornhill, KL Winstead, EL Corporan, E DeWitt, MJ Klingshirn, CD Wey, C Tacina, K Liscinsky, DS Howard, R Bhargava, A AF Timko, M. T. Yu, Z. Onasch, T. B. Wong, H-W Miake-Lye, R. C. Beyersdorf, A. J. Anderson, B. E. Thornhill, K. L. Winstead, E. L. Corporan, E. DeWitt, M. J. Klingshirn, C. D. Wey, C. Tacina, K. Liscinsky, D. S. Howard, R. Bhargava, A. TI Particulate Emissions of Gas Turbine Engine Combustion of a Fischer-Tropsch Synthetic Fuel SO ENERGY & FUELS LA English DT Article ID AERODYNAMIC DIAMETER MEASUREMENTS; POLYCYCLIC AROMATIC-HYDROCARBONS; COMMERCIAL AIRCRAFT ENGINE; GENERATING PARTICLE BEAMS; AEROSOL MASS-SPECTROMETER; DENSITY CHARACTERIZATION; CONTROLLED DIMENSIONS; NOZZLE EXPANSIONS; COMBINED MOBILITY; DIESEL-ENGINE AB We have performed a comprehensive test of the effects of alternative fuels on the trace gas, nonvolatile particulate material (PM), and volatile PM emissions performance of a PW308 aircraft engine The tests evaluated standard JP-8 Jet fuel, a 'zero sulfur and 'zero aromatic' synthetic fuel produced from a natural gas feedstock using the Fischer-Tropsch (FT) process, and a 50/50 blend of the FT fuel and JP-8 A Pratt & Whitney PW308 engine was operated under the same thrust and combustion conditions to ensure that the tests captured fuel differences, rather than engine operation differences Emissions of trace gases, soot particles, and nucleation/growth PM were directly impacted by the sulfur and aromatic content of the fuel FT fuel combustion greatly reduced SO(2) (> 90%), gaseous hydrocarbons (40%) and NO (6-11%) content compared to JP 8 combustion In general, combustion of the JP-8/FT fuel blend resulted in emissions intermediate to the FT and JP-8 values FT combustion dramatically reduces soot particle number, mass, and size relative to JP-8, but increases effective soot particle density In all cases, the drag behavior of the soot particles indicates deviations from spherical shape and effective soot particle densities are consistent with the soot particles being aggregates of primary spherules As expected, FT combustion plumes support negligible formation of nucleation/growth mode particles (the number of nucleation growth mode particles is <20% the number of soot particles compared to > 500% for sulfur containing JP-8) However, particle nucleation/growth for blended fuel combustion is enhanced relative to JP 8, despite the lower sulfur content of the FT/JP-8 fuel blend A computational model explains the unexpected particle formation result primarily as the effect of much lower soot emissions present in blended fuel combustion exhaust compared to JP-8 Fuel composition, specifically aromatic and sulfur content, affect all aspects of emissions performance and the effect of simultaneously reducing aromatic and sulfur content can lead to surprising behavior C1 [Bhargava, A.] Pratt & Whitney, E Hartford, CT 06108 USA. [Timko, M. T.; Yu, Z.; Onasch, T. B.; Wong, H-W; Miake-Lye, R. C.] Aerodyne Res Inc, Billerica, MA 01821 USA. [Beyersdorf, A. J.; Anderson, B. E.] NASA Langley Res Ctr, Hampton, VA 23681 USA. [Thornhill, K. L.; Winstead, E. L.] Sci Syst & Applicat Inc, Hampton, VA 23681 USA. [Corporan, E.] USAF, Res Lab, Dayton, OH 45433 USA. [DeWitt, M. J.; Klingshirn, C. D.] Univ Dayton, Res Inst, Dayton, OH 45433 USA. [Wey, C.] ASRC Aerosp Corp, Cleveland, OH 44135 USA. [Tacina, K.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. [Liscinsky, D. S.] United Technol Res Ctr, E Hartford, CT 06108 USA. [Howard, R.] AEDC ATA, Arnold AFB, TN 37389 USA. RP Bhargava, A (reprint author), Pratt & Whitney, E Hartford, CT 06108 USA. RI Beyersdorf, Andreas/N-1247-2013 FU NASA [NNC07CB57C, NNC07CB58C]; U S Air Force [F33615 03 D-2354] FX The U S Air Force sponsored this measurement effort (F33615 03 D-2354) The entire measurement team thanks the Pratt & Whitney test stand crew for use of engine facilities and kind support during the emissions tests Aerodyne personnel thank NASA (NRA grants NNC07CB57C and #NNC07CB58C) for supporting their involvement in this measurement and analysis activity Scott Herndon and Ezra Wood (Aerodyne) offered helpful advice before and during the engine tests, during data analysis and throughout the manuscript preparation process Charlie Hudgins (NASA Langley Research Center), Dan Bulzan (NASA Glenn Research Center) John Jayne (Aerodyne) Joel Kimmel (Aerodyne) and Bill Brooks (Aerodyne) assisted during instrument preparation activities and provided logistical support during field measurement activities NR 70 TC 41 Z9 41 U1 3 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2010 VL 24 BP 5883 EP 5896 DI 10.1021/ef100727t PG 14 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 694AE UT WOS:000285265800009 ER PT J AU Otake, T Wesolowski, DJ Anovitz, LM Allard, LF Ohmoto, H AF Otake, Tsubasa Wesolowski, David J. Anovitz, Lawrence M. Allard, Lawrence F. Ohmoto, Hiroshi TI Mechanisms of iron oxide transformations in hydrothermal systems SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID MOLAL THERMODYNAMIC PROPERTIES; LEPIDOCROCITE GAMMA-FEOOH; GOETHITE ALPHA-FEOOH; NONREDOX TRANSFORMATIONS; MAGHEMITE GAMMA-FE2O3; FE OXIDES; MAGNETITE; GEOCHEMISTRY; HEMATITE; SEA AB Coexistence of magnetite and hematite in hydrothermal systems has often been used to constrain the redox potential of fluids, assuming that the redox equilibrium is attained among all minerals and aqueous species. However, as temperature decreases, disequilibrium mineral assemblages may occur due to the slow kinetics of reaction involving the minerals and fluids. In this study, we conducted a series of experiments in which hematite or magnetite was reacted with an acidic solution under H(2)-rich hydrothermal conditions (T = 100-250 degrees C, P(H2) = 0.05-5 MPa) to investigate the kinetics of redox and non-redox transformations between hematite and magnetite, and the mechanisms of iron oxide transformation under hydrothermal conditions. The formation of euhedral crystals of hematite in 150 and 200 degrees C experiments, in which magnetite was used as the starting material, indicates that non-redox transformation of magnetite to hematite occurred within 24 h. The chemical composition of the experimental solutions was controlled by the non-redox transformation between magnetite and hematite throughout the experiments. While solution compositions were controlled by the non-redox transformation in the first 3 days in a 250 degrees C experiment, reductive dissolution of magnetite became important after 5 days and affected the solution chemistry. At 100 degrees C, the presence of maghemite was indicated in the first 7 days. Based on these results, equilibrium constants of non-redox transformation between magnetite and hematite and those of non-redox transformation between magnetite and maghemite were calculated. Our results suggest that the redox transformation of hematite to magnetite occurs in the following steps: (1) reductive dissolution of hematite to Fe((aq))(2+) and (2) non-redox transformation of hematite and Fe((aq))(2+) to magnetite. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Otake, Tsubasa; Ohmoto, Hiroshi] Penn State Univ, NASA, Astrobiol Inst, University Pk, PA 16802 USA. [Otake, Tsubasa; Ohmoto, Hiroshi] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. [Wesolowski, David J.; Anovitz, Lawrence M.; Allard, Lawrence F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Anovitz, Lawrence M.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. RP Otake, T (reprint author), Tohoku Univ, Grad Sch Sci, Dept Earth & Planetary Mat Sci, Aoba Ku, Aoba 6-3, Sendai, Miyagi 9808578, Japan. EM totake@m.tohoku.ac.jp RI Otake, Tsubasa/D-6137-2012; Anovitz, Lawrence/P-3144-2016 OI Anovitz, Lawrence/0000-0002-2609-8750 FU NASA Astrobiology Institute [NCC2-1057, NNA04CC06A]; NSF [EAR-0229556]; U.S. Department of Energy, Office of Basic Energy at Oak Ridge National Laboratory [DE-AC05-00OR22725] FX The authors acknowledge H. Barnes, S. Brantley, P. Heaney, T. Lasaga, K. Osseo-Asare, I. Johnson, and D. Bevacqua for valuable comments on the early manuscript. The authors also acknowledge J. Rosenqvist, M. Angelone, and J. Cantolina for technical assistance. Comments by K.M. Rosso and two anonymous reviewers are greatly appreciated. This project was supported by grants from NASA Astrobiology Institute (NCC2-1057; NNA04CC06A) and NSF (EAR-0229556) to H.O. D.J.W.'s effort and a portion of the effort of T.O. were supported by the U.S. Department of Energy, Office of Basic Energy, Geoscience Research Program, at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy (DE-AC05-00OR22725). NR 52 TC 13 Z9 14 U1 3 U2 58 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD NOV 1 PY 2010 VL 74 IS 21 BP 6141 EP 6156 DI 10.1016/j.gca.2010.07.024 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 658OQ UT WOS:000282499700011 ER PT J AU Pizzarello, S Wang, Y Chaban, GM AF Pizzarello, Sandra Wang, Yi Chaban, Galina M. TI A comparative study of the hydroxy acids from the Murchison, GRA 95229 and LAP 02342 meteorites SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID REPORTED OPTICAL-ACTIVITY; INDIVIDUAL AMINO-ACIDS; ENANTIOMER ENRICHMENT; ISOTOPIC ANALYSES; PEPTIDES; ORIGIN; LIGHT AB The hydroxy acid suites extracted from the Murchison (MN), GRA 95229 (GRA) and LAP 02342 (LAP) meteorites have been investigated for their molecular, chiral and isotopic composition. Substantial amounts of the compounds have been detected in all three meteorites, with a total abundance that is lower than that of the amino acids in the same stones. Overall, their molecular distributions mirror closely that of the corresponding amino acids and most evidently so for the LAP meteorite. A surprising L-lactic acid enantiomeric excess was found present in all three stones, which cannot be easily accounted by terrestrial contamination; all other compounds of the three hydroxy acid suites were found racemic. The branched-chain five carbon and the diastereomer six-carbon hydroxy acids were also studied vis-a-vis the corresponding amino acids and calculated ab initio thermodynamic data, with the comparison allowing the suggestion that meteoritic hydroxyacid at these chain lengths formed under thermodynamic control and, possibly, at a later stage than the corresponding amino acids. (13)C and D isotopic enrichments were detected for many of the meteoritic hydroxy acids and found to vary between molecular species with trends that also appear to correlate to those of amino acids; the highest delta D value (+3450 parts per thousand) was displayed by GRA 2-OH-2-methylbutyric acid. The data suggest that, while the amino- and hydroxy acids likely relate to common presolar precursor, their final distribution in meteorites was determined to large extent by the overall composition of the environments that saw their formation, with ammonia being the determining factor in their final abundance ratios. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Pizzarello, Sandra] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Wang, Yi] ZymaX Forens, Escondido, CA 92029 USA. [Chaban, Galina M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Pizzarello, S (reprint author), Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. EM pizzar@asu.edu FU NASA FX The authors thank Cecilia Satterwhite, Kevin Righter, the Meteorite Working Group and the Center for Meteorite Studies at Arizona State University for providing the CR2 and Murchison stones used in this study. S.P. is grateful for the NASA funding provided by the Cosmochemistry, Origins of the Solar System and Exobiology Programs. The authors thank L. Remusat, two anonymous referees and Associate Editor A.N. Krot for their reviews and helpful comments. NR 41 TC 23 Z9 25 U1 2 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD NOV 1 PY 2010 VL 74 IS 21 BP 6206 EP 6217 DI 10.1016/j.gca.2010.08.013 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 658OQ UT WOS:000282499700015 ER PT J AU Masuoka, P Klein, TA Kim, HC Claborn, DM Achee, N Andre, R Chamberlin, J Small, J Anyamba, A Lee, DK Yi, SH Sardelis, M Ju, YR Grieco, J AF Masuoka, Penny Klein, Terry A. Kim, Heung-Chul Claborn, David M. Achee, Nicole Andre, Richard Chamberlin, Judith Small, Jennifer Anyamba, Assaf Lee, Dong-Kyu Yi, Suk H. Sardelis, Michael Ju, Young-Ran Grieco, John TI Modeling the distribution of Culex tritaeniorhynchus to predict Japanese encephalitis distribution in the Republic of Korea SO GEOSPATIAL HEALTH LA English DT Article DE Culex tritaeniorhynchus; geographical distribution; ecological niche modeling; Japanese encephalitis virus; Republic of Korea ID SPECIES DISTRIBUTIONS; ECOLOGY; VECTORS; AREAS AB Over 35,000 cases of Japanese encephalitis (JE) are reported worldwide each year. Culex tritaeniorhynchus is the primary vector of the JE virus, while wading birds are natural reservoirs and swine amplifying hosts. As part of a JE risk analysis, the ecological niche modeling programme, Maxent, was used to develop a predictive model for the distribution of Cx. tritaeniorhynchus in the Republic of Korea, using mosquito collection data, temperature, precipitation, elevation, land cover and the normalized difference vegetation index (NDVI). The resulting probability maps from the model were consistent with the known environmental limitations of the mosquito with low probabilities predicted for forest covered mountains. July minimum temperature and land cover were the most important variables in the model. Elevation, summer NDVI (July-September), precipitation in July, summer minimum temperature (May-August) and maximum temperature for fall and winter months also contributed to the model. Comparison of the Cx. tritaeniorhynchus model to the distribution of JE cases in the Republic of Korea from 2001 to 2009 showed that cases among a highly vaccinated Korean population were located in high-probability areas for Cx. tritaeniorhynchus. No recent JE cases were reported from the eastern coastline, where higher probabilities of mosquitoes were predicted, but where only small numbers of pigs are raised. The geographical distribution of reported JE cases corresponded closely with the predicted high-probability areas for Cx. tritaeniorhynchus, making the map a useful tool for health risk analysis that could be used for planning preventive public health measures. C1 [Masuoka, Penny; Achee, Nicole; Andre, Richard; Chamberlin, Judith; Grieco, John] Uniformed Serv Univ Hlth Sci, Dept Prevent Med & Biometr, Bethesda, MD 20814 USA. [Klein, Terry A.; Yi, Suk H.] USA, Med Brigade 65, MEDDAC Korea, APO, AP 96205 USA. [Claborn, David M.] Missouri State Univ, Ctr Homeland Secur, Springfield, MO 65897 USA. [Small, Jennifer; Anyamba, Assaf] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Lee, Dong-Kyu] Kosin Univ, Dept Hlth & Environm, Pusan 606701, South Korea. [Sardelis, Michael] Natl Ctr Med Intelligence, Ft Detrick, MD 21702 USA. [Kim, Heung-Chul] 65th Med Brigade, Med Detachment 5, Multifunct Med Battal 168, APO, AP 96205 USA. RP Masuoka, P (reprint author), Uniformed Serv Univ Hlth Sci, Dept Prevent Med & Biometr, 4301 Jones Bridge Rd, Bethesda, MD 20814 USA. EM pmasuoka@usuhs.mil RI Valle, Ruben/A-7512-2013 FU Armed Forces Health Surveillance Center, Division of GEIS Operations FX The vector surveillance and modeling was funded by the Armed Forces Health Surveillance Center, Division of GEIS Operations. NR 26 TC 17 Z9 21 U1 0 U2 8 PU UNIV NAPLES FEDERICO II PI NAPLES PA FAC VET MED, DEP PATHOLOGY & ANIMAL HEALTH, VET PARASITOLOGY, VIA DELLA VETERINARIA 1, NAPLES, 80137, ITALY SN 1827-1987 J9 GEOSPATIAL HEALTH JI Geospatial Health PD NOV PY 2010 VL 5 IS 1 BP 45 EP 57 PG 13 WC Health Care Sciences & Services; Public, Environmental & Occupational Health SC Health Care Sciences & Services; Public, Environmental & Occupational Health GA 678OS UT WOS:000284089600005 PM 21080320 ER PT J AU Kharuk, VI Ranson, KJ Im, ST Vdovin, AS AF Kharuk, Vyacheslav I. Ranson, Kenneth J. Im, Sergey T. Vdovin, Alexander S. TI Spatial distribution and temporal dynamics of high-elevation forest stands in southern Siberia SO GLOBAL ECOLOGY AND BIOGEOGRAPHY LA English DT Article DE Alpine ecotone; climate change; landscape ecology; mountain forests; Siberia; tree line; topographic analysis ID GLACIER-NATIONAL-PARK; CLIMATE-CHANGE; SWEDISH SCANDES; TUNDRA ECOTONE; ALPINE; MOUNTAINS; TREELINE; 20TH-CENTURY; PERSPECTIVE; ENVIRONMENT AB Aim To evaluate the hypothesis that topographic features of high-elevation mountain environments govern spatial distribution and climate-driven dynamics of the forest. Location Upper mountain forest stands (elevation range 1800-2600 m) in the mountains of southern Siberia. Methods Archive maps, satellite and on-ground data from1960 to 2002 were used. Data were normalized to avoid bias caused by uneven distribution of topographic features (elevation, azimuth and slope steepness) within the analysed area. Spatial distribution of forest stands was analysed with respect to topography based on a digital elevation model (DEM). Results Spatial patterns in mountain forests are anisotropic with respect to azimuth, slope steepness and elevation. At a given elevation, the majority of forests occupied slopes with greater than mean slope values. As the elevation increased, forests shifted to steeper slopes. The orientation of forest azimuth distribution changed clockwise with increase in elevation (the total shift was 120 degrees), indicating a combined effect of wind and water stress on the observed forest patterns. Warming caused changes in the forest distribution patterns during the last four decades. The area of closed forests increased 1.5 times, which was attributed to increased stand density and tree migration. The migration rate was 1.5 +/- 0.9 m year-1, causing a mean forest line shift of 63 +/- 37 m. Along with upward migration, downward tree migration onto hill slopes was observed. Changes in tree morphology were also noted as widespread transformation of the prostrate forms of Siberian pine and larch into erect forms. Main conclusions The spatial pattern of upper mountain forests as well as the response of forests to warming strongly depends on topographic relief features (elevation, azimuth and slope steepness). With elevation increase (and thus a harsher environment) forests shifted to steep wind-protected slopes. A considerable increase in the stand area and increased elevation of the upper forest line was observed coincident with the climate warming that was observed. Warming promotes migration of trees to areas that are less protected from winter desiccation and snow abrasion (i.e. areas with lower values of slope steepness). Climate-induced forest response has significantly modified the spatial patterns of high-elevation forests in southern Siberia during the last four decades, as well as tree morphology. C1 [Kharuk, Vyacheslav I.; Im, Sergey T.] Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia. [Ranson, Kenneth J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Vdovin, Alexander S.] Siberian Fed Univ, Krasnoyarsk 660041, Russia. RP Kharuk, VI (reprint author), Sukachev Inst Forest SB RAS, Academgorodok 50-28, Krasnoyarsk 660036, Russia. EM kharuk@ksc.krasn.ru RI Ranson, Kenneth/G-2446-2012; Im, Sergei/J-2736-2016 OI Ranson, Kenneth/0000-0003-3806-7270; Im, Sergei/0000-0002-5794-7938 FU NASA Science Mission Directorate; Siberian Branch Russian Academy of Science [23.3.33, MK-2497.2009.5] FX This research was supported by the NASA Science Mission Directorate, Terrestrial Ecology Program, the Siberian Branch Russian Academy of Science Program no. 23.3.33, and grant no. MK-2497.2009.5. Thanks to Joanne Howl for edits of the manuscript. NR 33 TC 25 Z9 27 U1 2 U2 27 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1466-822X J9 GLOBAL ECOL BIOGEOGR JI Glob. Ecol. Biogeogr. PD NOV PY 2010 VL 19 IS 6 BP 822 EP 830 DI 10.1111/j.1466-8238.2010.00555.x PG 9 WC Ecology; Geography, Physical SC Environmental Sciences & Ecology; Physical Geography GA 664SH UT WOS:000282982300006 ER PT J AU Pankine, AA Tamppari, LK Smith, MD AF Pankine, Alexey A. Tamppari, Leslie K. Smith, Michael D. TI MGS TES observations of the water vapor above the seasonal and perennial ice caps during northern spring and summer SO ICARUS LA English DT Article DE Mars; Mars, Atmosphere; Mars, Climate; Mars, Polar caps ID THERMAL EMISSION SPECTROMETER; POLAR-CAP; INTERANNUAL VARIABILITY; OMEGA/MARS EXPRESS; MARS ATMOSPHERE; LIQUID WATER; DUST; CLOUDS; BEHAVIOR; SURFACE AB We report on new retrievals of water vapor column abundances from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data. The new retrievals are from the TES nadir data taken above the 'cold' surface areas in the North polar region (T(suff) < 220 K, including seasonal frost and permanent ice cap) during spring and summer seasons, where retrievals were not performed initially. Retrievals are possible (with some modifications to the original algorithm) over cold surfaces overlaid by sufficiently warm atmosphere. The retrieved water vapor column abundances are compared to the column abundances observed by other spacecrafts in the Northern polar region during spring and summer and good agreement is found. We detect an annulus of water vapor growing above the edge of the retreating seasonal cap during spring. The formation of the vapor annulus is consistent with the previously proposed mechanism for water cycling in the polar region, according to which vapor released by frost sublimation during spring re-condenses on the retreating seasonal CO(2) cap. The source of the vapor in the vapor annulus, according to this model, is the water frost on the surface of the CO(2) at the retreating edge of the cap and the frost on the ground that is exposed by the retreating cap. Small contribution from regolith sources is possible too, but cannot be quantified based on the TES vapor data alone. Water vapor annulus exhibits interannual variability, which we attribute to variations in the atmospheric temperature. We propose that during spring and summer the water ice sublimation is retarded by high relative humidity of the local atmosphere, and that higher atmospheric temperatures lead to higher vapor column abundances by increasing the water holding capacity of the atmosphere. Since the atmospheric temperatures are strongly influenced by the atmospheric dust content, local dust storms may be controlling the release of vapor into the polar atmosphere. Water vapor abundances above the residual polar cap also exhibit noticeable interannual variability. In some years abundances above the cap are lower than the abundances outside of the cap, consistent with previous observations, while in the other years the abundances above the cap are higher or similar to abundances outside of the cap. We speculate that the differences may be due to weaker off-cap transport in the latter case, keeping more vapor closer to the source at the surface of the residual cap. Despite the large observed variability in water vapor column abundances in the Northern polar region during spring and summer, the latitudinal distribution of the vapor mass in the atmosphere is very similar during the summer season. If the variability in vapor abundances is caused by the variability of vapor sources across the residual cap then this would mean that they annually contribute relatively little vapor mass to significantly affect the vapor mass budget. Alternatively this may suggest that the vapor variability is caused by the variability of the polar atmospheric circulation. The new water vapor retrievals should be useful in tuning the Global Circulation Models of the martian water cycle. (C) 2010 Elsevier Inc. All rights reserved. C1 [Pankine, Alexey A.; Tamppari, Leslie K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Smith, Michael D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Pankine, AA (reprint author), CALTECH, Jet Prop Lab, MS 183-301, Pasadena, CA 91109 USA. EM alexey.a.pankine@jpl.nasa.gov RI Smith, Michael/C-8875-2012 FU National Aeronautics and Space Administration FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded through the Research and Technology Development Fund program. We would like to thank Dr. Riccardo Melchiorri and Dr. Martin Tschimmel for reviewing the manuscript and providing useful suggestions. NR 57 TC 12 Z9 12 U1 0 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD NOV PY 2010 VL 210 IS 1 BP 58 EP 71 DI 10.1016/j.icarus.2010.06.043 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665LH UT WOS:000283036100006 ER PT J AU Chesley, SR Baer, J Monet, DG AF Chesley, Steven R. Baer, James Monet, David G. TI Treatment of star catalog biases in asteroid astrometric observations SO ICARUS LA English DT Article DE Asteroids; Comets ID PHOTOMETRIC DATA; 99942 APOPHIS; UCAC2; 2MASS; SHAPE AB In this paper, we discuss the detection of systematic biases in star positions of the USNO A1.0, A2.0, and B1.0 catalogs, as deduced from the residuals of numbered asteroid observations. We present a technique for the removal of these biases, and validate this technique by illustrating the resulting improvements in numbered asteroid residuals, and by establishing that debiased orbits predict omitted observations more accurately than do orbits derived from non-debiased observations. We also illustrate the benefits of debiasing to high-precision astrometric applications such as asteroid mass determination and collision analysis, including a refined prediction of the impact probability of 99942 Apophis. Specifically, we find the IP of Apophis to be lowered by nearly an order of magnitude to 4.5 x 10(-6) for the 2036 close approach. (C) 2010 Elsevier Inc. All rights reserved. C1 [Baer, James] James Cook Univ, Sch Engn & Phys Sci, Townsville, Qld 4811, Australia. [Chesley, Steven R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Monet, David G.] USN Observ, Flagstaff, AZ 86001 USA. RP Baer, J (reprint author), James Cook Univ, Sch Engn & Phys Sci, Townsville, Qld 4811, Australia. EM steve.chesley@jpl.nasa.gov; jimbaer1@earthlink.net FU National Aeronautics and Space Administration; National Science Foundation FX We are grateful to Tim Spahr and Gareth Williams of the Minor Planet Center at Harvard Univ., who provided the astrometric catalog information, which was vital for this effort to proceed. Numerous observers and observing programs provided valuable information beyond what is available from the MPC data files. In particular, we thank Bob McMillan (Spacewatch), Ed Beshore (Catalina Sky Survey), Scott Stuart (LINEAR), Bruce Koehn (LONEOS) and Ken Lawrence (NEAT) for their cooperation. Finally, we are sincerely grateful to Andrea Milani, for his expertise and help at each step of this effort. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. Some of the results in this paper have been derived using the HEALPix package (Gorski et al., 2005). This research was conducted in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 33 TC 47 Z9 47 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV PY 2010 VL 210 IS 1 BP 158 EP 181 DI 10.1016/j.icarus.2010.06.003 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665LH UT WOS:000283036100014 ER PT J AU Sussman, MG Chanover, NJ Simon-Miller, AA Vasavada, AR Beebe, RF AF Sussman, Michael G. Chanover, Nancy J. Simon-Miller, Amy A. Vasavada, Ashwin R. Beebe, Reta F. TI Analysis of Jupiter's Oval BA: A streamlined approach SO ICARUS LA English DT Article DE Atmospheres, Dynamics; Jupiter, Atmosphere; Data reduction techniques ID GREAT RED SPOT; WHITE OVALS; ATMOSPHERE; TRACKING; VELOCITY; FLOW; BC AB We present a novel method of constructing streamlines to derive wind speeds within jovian vortices and demonstrate its application to Oval BA for 2001 pre-reddened Cassini flyby data, 2007 post-reddened New Horizons flyby data, and 1998 Galileo data of precursor Oval DE. Our method, while automated, attempts to combine the advantages of both automated and manual cloud tracking methods. The southern maximum wind speed of Oval BA does not show significant changes between these data sets to within our measurement uncertainty. The northern maximum does appear to have increased in strength during this time interval, which likely correlates with the oval's return to a symmetric shape. We demonstrate how the use of closed streamlines can provide measurements of vorticity averaged over the encircled area with no a priori assumptions concerning oval shape. We find increased averaged interior vorticity between pre- and post-reddened Oval BA, with the precursor Oval DE occupying a middle value of vorticity between these two. (C) 2010 Elsevier Inc. All rights reserved. C1 [Sussman, Michael G.; Chanover, Nancy J.; Beebe, Reta F.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Simon-Miller, Amy A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Vasavada, Ashwin R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Sussman, MG (reprint author), New Mexico State Univ, Dept Astron, POB 30001,MSC 4500, Las Cruces, NM 88003 USA. EM msussman@nmsu.edu RI Simon, Amy/C-8020-2012 OI Simon, Amy/0000-0003-4641-6186 NR 18 TC 3 Z9 3 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV PY 2010 VL 210 IS 1 BP 202 EP 210 DI 10.1016/j.icarus.2010.06.044 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665LH UT WOS:000283036100016 ER PT J AU Simon-Miller, AA Gierasch, PJ AF Simon-Miller, Amy A. Gierasch, Peter J. TI On the long-term variability of Jupiter's winds and brightness as observed from Hubble SO ICARUS LA English DT Article DE Jupiter, Atmosphere; Atmospheres, Evolution; Atmospheres, Dynamics ID CLOUD STRUCTURE; GALILEO PROBE; SPATIAL-ORGANIZATION; VERTICAL STRUCTURE; TIME-DEPENDENCE; ZONAL WINDS; ATMOSPHERE; STRATOSPHERE; TEMPERATURES; IMAGES AB Hubble Space Telescope Wide Field Planetary Camera 2 imaging data of Jupiter were combined with wind profiles from Voyager and Cassini data to study long-term variability in Jupiter's winds and cloud brightness. Searches for evidence of wind velocity periodicity yielded a few latitudes with potential variability; the most significant periods were found nearly symmetrically about the equator at 0 degrees, 10-12 degrees N, and 14-18 degrees S planetographic latitude. The low to mid-latitude signals have components consistent with the measured stratospheric temperature Quasi-Quadrennial Oscillation (QQO) period of 4-5 years, while the equatorial signal is approximately seasonal and could be tied to mesoscale wave formation. Robustness tests indicate that a constant or continuously varying periodic signal near 4.5 years would appear with high significance in the data periodograms as long as uncertainties or noise in the data are not of greater magnitude. However, the lack of a consistent signal over many latitudes makes it difficult to interpret as a QQO-related change. In addition, further analyses of calibrated 410-nm and 953-nm brightness scans found few corresponding changes in troposphere haze and cloud structure on QQO timescales. However, stratospheric haze reflectance at 255-nm did appear to vary on seasonal timescales, though the data do not have enough temporal coverage or photometric accuracy to be conclusive. Sufficient temporal coverage and spacing, as well as data quality, are critical to this type of search. (C) 2010 Elsevier Inc. All rights reserved. C1 [Simon-Miller, Amy A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gierasch, Peter J.] Cornell Univ, Space Sci Dept 318, Ithaca, NY 14853 USA. RP Simon-Miller, AA (reprint author), NASA, Goddard Space Flight Ctr, Code 693, Greenbelt, MD 20771 USA. EM Amy.Simon@nasa.gov RI Simon, Amy/C-8020-2012 OI Simon, Amy/0000-0003-4641-6186 FU NASA [NAS 5-26555] FX The authors thank Nicholas Stone, Brad Poston and Irene Tsavaris for wind measurements over the years. A.S.M also thanks Shireen Gonzaga, John Biretta and Erich Karkoschka for many helpful discussions about WFPC2 filter calibrations. This work was based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA Contract NAS 5-26555. These observations are associated with programs GO/DD 5313, 5642, 6009, 6452, 7616, 8148, 8405, 10782, 11096, 11102, 11310, and 11498. Funding for portions of this project was provided by a grant from the NASA Planetary Atmospheres program. NR 39 TC 10 Z9 10 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD NOV PY 2010 VL 210 IS 1 BP 258 EP 269 DI 10.1016/j.icarus.2010.06.020 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665LH UT WOS:000283036100019 ER PT J AU Morishima, R Spilker, L Salo, H Ohtsuki, K Altobelli, N Pilortz, S AF Morishima, Ryuji Spilker, Linda Salo, Heikki Ohtsuki, Keiji Altobelli, Nicolas Pilortz, Stuart TI A multilayer model for thermal infrared emission of Saturn's rings II: Albedo, spins, and vertical mixing of ring particles inferred from Cassini CIRS SO ICARUS LA English DT Article DE Collisional physics; Saturn, Rings; Infrared observations; Radiative transfer ID DENSE PLANETARY RINGS; SELF-GRAVITY WAKES; NUMERICAL SIMULATIONS; STELLAR OCCULTATION; VELOCITY DISPERSION; AZIMUTHAL ASYMMETRY; SIZE DISTRIBUTION; SOLAR ELEVATION; MAIN RINGS; B-RING AB Since the Saturn orbit insertion of the Cassini spacecraft in mid-2004, the Cassini composite infrared spectrometer (CIRS) measured temperatures of Saturn's main rings at various observational geometries. In the present study, we apply our new thermal model (Morishima, R., Salo, H., Ohtsuki, K. [2009]. Icarus 201, 634-654) for fitting to the early phase Cassini data (Spilker, L.J., and 11 colleagues [2006]. Planet. Space Sci. 54, 1167-1176). Our model is based on classical radiative transfer and takes into account the heat transport due to particle motion in the azimuthal and vertical directions. The model assumes a bimodal size distribution consisting of small fast rotators and large slow rotators. We estimated the bolometric Bond albedo, A(V), the fraction of fast rotators in cross section, f(fast). and the thermal inertia, Gamma, by the data fitting at every radius from the inner C ring to the outer A ring. The albedo A(V) is 0.1-0.4, 0.5-0.7, 0.4, 0.5 for the C ring, the B ring, the Cassini division, and the A ring, respectively. The fraction f(fast) depends on the ratio of scale height of fast rotators to that of slow rotators, h(r). When h(r) = 1, f(fast) is roughly half for the entire rings, except for the A ring, where f(fast) increases from 0.5 to 0.9 with increasing saturnocentric radius. When h(r) increases from 1 to 3, f(fast), decreases by 0.2-0.4 for the B and A rings while no change i f(fast) is seen for the optically thin C ring and Cassini division. The large f(fast), seen in the outer A ring probably indicates that a large number of small particles detach from large particles in high velocity collisions due to satellite perturbations or self-gravity wakes. The thermal inertia, Gamma, is constrained from the efficiency of the vertical heat transport due to particle motion between the lit and unlit faces, and is coupled with the type of vertical motion. We found that in most regions, except for the mid B ring, sinusoidal vertical motion without bouncing is more reasonable than cycloidal motion assuming bouncing at the midplane, because the latter motion gives too large Gamma as compared with previous estimations. For the mid B ring, where the optical depth is highest in Saturn's rings, cycloidal vertical motion is more reasonable than sinusoidal vertical motion which gives too small Gamma. (C) 2010 Elsevier Inc. All rights reserved. C1 [Morishima, Ryuji; Ohtsuki, Keiji] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. [Morishima, Ryuji; Spilker, Linda] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Salo, Heikki] Univ Oulu, Dept Phys Sci, Div Astron, Oulu 90014, Finland. [Ohtsuki, Keiji] Kobe Univ, Dept Earth & Planetary Sci, Kobe 6578501, Hyogo, Japan. [Ohtsuki, Keiji] Kobe Univ, Ctr Planetary Sci, Kobe 6578501, Hyogo, Japan. [Altobelli, Nicolas] European Space Agcy, European Space & Astron Ctr, Madrid 28692, Spain. [Pilortz, Stuart] SETI Inst, Mountain View, CA 94043 USA. RP Morishima, R (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. EM Ryuji.Morishima@lasp.colorado.edu FU NASA; Cassini project; Academy of Finlan FX We are deeply grateful to anonymous reviewers for their helpful comments, which greatly improved our manuscript. This research was partly carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Government sponsorship acknowledged. We are grateful for the support by the Cassini project and the NASA's OPR and PGG Programs. We thank Scott Edington and Shawn Brooks for designing the CIRS ring observations, E. Deau for useful discussion for albedo, and A. Flandes for continuous encouragement. We thank Josh Colwell and the Cassini UVIS ring team for providing the unpublished optical depth data. H.S. is grateful for the support by the Academy of Finland. Numerical simulations were carried out with the supercomputer, Nebula, at JPL. NR 58 TC 11 Z9 11 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV PY 2010 VL 210 IS 1 BP 330 EP 345 DI 10.1016/j.icarus.2010.06.032 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665LH UT WOS:000283036100024 ER PT J AU Shirley, JH Dalton, JB Prockter, LM Kamp, LW AF Shirley, James H. Dalton, James B., III Prockter, Louise M. Kamp, Lucas W. TI Europa's ridged plains and smooth low albedo plains: Distinctive compositions and compositional gradients at the leading side-trailing side boundary SO ICARUS LA English DT Article DE Europa; Satellites, Composition; Spectroscopy; Jupiter, Satellites ID INFRARED MAPPING SPECTROMETER; ICY GALILEAN SATELLITES; HYDRATED SALT MINERALS; WATER-ICE; SUBSURFACE OCEAN; OPTICAL-CONSTANTS; SULFURIC-ACID; REFLECTANCE SPECTROSCOPY; CRYSTALLINE H2O-ICE; GEOLOGICAL HISTORY AB This investigation uses linear mixture modeling employing cryogenic laboratory reference spectra to estimate surface compositions and water ice grain sizes of Europa's ridged plains and smooth low albedo plains. Near-infrared spectra for 23 exposures of ridged plains materials are analyzed along with 11 spectra representing low albedo plains. Modeling indicates that these geologic units differ both in the relative abundance of non-ice hydrated species and in the abundance and grain sizes of water ice. The background ridged plains in our study area appear to consist predominantly of water ice (similar to 46%) with approximately equal amounts (on average) of hydrated sulfuric acid (similar to 27%) and hydrated salts (similar to 27%). The solutions for the smooth low albedo plains are dominated by hydrated salts (similar to 62%), with a relatively low mean abundance of water ice (similar to 10%), and an abundance of hydrated sulfuric acid similar to that found in ridged plains (similar to 27%). The model yields larger water ice grain sizes (100 mu m versus 50-75 mu m) in the ridged plains. The 1.5-mu m water ice absorption band minimum is found at shorter wavelengths in the low albedo plains deposits than in the ridged plains (1.498 +/- .003 mu m versus 1.504 +/- .001 mu m). The 2.0-mu m band minimum in the low albedo plains exhibits a somewhat larger blueshift (1.964 +/- .006 mu m versus 1.983 +/- .006 mu m for the ridged plains). The study area spans longitudes from 168 degrees to 185 degrees W, which includes Europa's leading side-trailing side boundary. A well-defined spatial gradient of sulfuric acid hydrate abundance is found for both geologic units, with concentrations increasing in the direction of the trailing side apex. We associate this distribution with the exogenic effects of magnetospheric charged particle bombardment and associated chemical processing of surface materials (the radiolytic sulfur cycle). However, one family of low albedo plains exposures exhibits sulfuric acid hydrate abundances up to 33% lower than found for adjacent exposures, suggesting that these materials have undergone less processing, thus implying that these deposits may have been emplaced more recently. Modeling identifies high abundances (to 30%) of magnesium sulfate brines in the low albedo plains exposures. Our investigation marks the first spectroscopic identification of MgSO4 brine on Europa. We also find significantly higher abundances of sodium-bearing species (bloedite and mirabilite) in the low albedo plains. The results illuminate the role of radiolytic processes in modifying the surface composition of Europa, and may provide new constraints for models of the composition of Europa's putative subsurface ocean. (C) 2010 Elsevier Inc. All rights reserved. C1 [Shirley, James H.; Dalton, James B., III; Kamp, Lucas W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Prockter, Louise M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Shirley, JH (reprint author), CALTECH, Jet Prop Lab, Ms 183-601,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM James.H.Shirley@jpl.nasa.gov NR 98 TC 26 Z9 26 U1 1 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV PY 2010 VL 210 IS 1 BP 358 EP 384 DI 10.1016/j.icarus.2010.06.018 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665LH UT WOS:000283036100026 ER PT J AU Dobrovolskis, AR Alvarellos, JL Zahnle, KJ Lissauer, JJ AF Dobrovolskis, Anthony R. Alvarellos, Jose Luis Zahnle, Kevin J. Lissauer, Jack J. TI Exchange of ejecta between Telesto and Calypso: Tadpoles, horseshoes, and passing orbits SO ICARUS LA English DT Article DE Cratering; Satellites, Dynamics; Saturn, Satellites ID SMALL INNER SATELLITES; CRATERING RATES; SATURN SYSTEM; VOYAGER-2; BEHAVIOR; EUROPA; COMETS; BODIES; RING AB We have numerically integrated the orbits of ejecta from Telesto and Calypso, the two small Trojan companions of Saturn's major satellite Tethys. Ejecta were launched with speeds comparable to or exceeding their parent's escape velocity, consistent with impacts into regolith surfaces. We find that the fates of ejecta fall into several distinct categories, depending on both the speed and direction of launch. The slowest ejecta follow suborbital trajectories and re-impact their source moon in less than one day. Slightly faster debris barely escape their parent's Hill sphere and are confined to tadpole orbits, librating about Tethys' triangular Lagrange points L(4) (leading, near Telesto) or L(5) (trailing, near Calypso) with nearly the same orbital semi-major axis as Tethys, Telesto, and Calypso. These ejecta too eventually re-impact their source moon, but with a median lifetime of a few dozen years. Those which re-impact within the first 10 years or so have lifetimes near integer multiples of 348.6 days (half the tadpole period). Still faster debris with azimuthal velocity components greater than or similar to 10 m/s enter horseshoe orbits which enclose both L(4) and L(5) as well as L(3), but which avoid Tethys and its Hill sphere. These ejecta impact either Telesto or Calypso at comparable rates, with median lifetimes of several thousand years. However, they cannot reach Tethys itself; only the fastest ejecta, with azimuthal velocities greater than or similar to 40 m/s, achieve "passing orbits" which are able to encounter Tethys. Tethys accretes most of these ejecta within several years, but some 1% of them are scattered either inward to hit Enceladus or outward to strike Dione, over timescales on the order of a few hundred years. (C) 2010 Elsevier Inc. All rights reserved. C1 [Dobrovolskis, Anthony R.; Zahnle, Kevin J.; Lissauer, Jack J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. [Dobrovolskis, Anthony R.] Univ Calif Santa Cruz, Univ Calif Observ, Lick Observ, Santa Cruz, CA 95064 USA. [Alvarellos, Jose Luis] Space Syst Loral, Palo Alto, CA 94303 USA. RP Dobrovolskis, AR (reprint author), NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-3, Moffett Field, CA 94035 USA. EM anthony.r.dobrovolskis@nasa.gov FU NASA [WBS 811073.02.01.03.89] FX We would like to acknowledge Patrick Hamill for his contributions, and for previewing the manuscript, and to thank R.A. Jacobson for providing the initial conditions for the Saturn system. J.L.A. also would like to acknowledge the patience and encouragement of Alejandra, Joselito, Isabella and Danielito. This work has made use of NASA's Astrophysics Data System (ADS located at http://adswww.harvard.edu), and was supported by NASA's Planetary Geology & Geophysics Program through WBS 811073.02.01.03.89. NR 37 TC 2 Z9 2 U1 1 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD NOV PY 2010 VL 210 IS 1 BP 436 EP 445 DI 10.1016/j.icarus.2010.06.023 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665LH UT WOS:000283036100031 ER PT J AU Helled, R Anderson, JD Schubert, G AF Helled, Ravit Anderson, John D. Schubert, Gerald TI Uranus and Neptune: Shape and rotation SO ICARUS LA English DT Article DE Uranus, Atmosphere; Uranus; Neptune; Neptune, Atmosphere; Atmospheres, Dynamics ID RADIO OCCULTATION MEASUREMENTS; 1982 STELLAR OCCULTATION; INTERIOR STRUCTURE; MAGNETIC-FIELDS; VOYAGER-2; ATMOSPHERE; PERIOD; SATURN; SYSTEM; WINDS AB Both Uranus and Neptune are thought to have strong zonal winds with velocities of several 100 m These wind velocities, however, assume solid-body rotation periods based on Voyager 2 measurements of periodic variations in the planets' radio signals and of fits to the planets' magnetic fields; 17.24 h and 16.11 h for Uranus and Neptune, respectively. The realization that the radio period of Saturn does not represent the planet's deep interior rotation and the complexity of the magnetic fields of Uranus and Neptune raise the possibility that the Voyager 2 radio and magnetic periods might not represent the deep interior rotation periods of the ice giants. Moreover, if there is deep differential rotation within Uranus and Neptune no single solid-body rotation period could characterize the bulk rotation of the planets. We use wind and shape data to investigate the rotation of Uranus and Neptune. The shapes (flattening) of the ice giants are not measured, but only inferred from atmospheric wind speeds and radio occultation measurements at a single latitude. The inferred oblateness values of Uranus and Neptune do not correspond to bodies rotating with the Voyager rotation periods. Minimization of wind velocities or dynamic heights of the 1 bar isosurfaces, constrained by the single occultation radii and gravitational coefficients of the planets, leads to solid-body rotation periods of similar to 16.58 h for Uranus and similar to 17.46 h for Neptune. Uranus might be rotating faster and Neptune slower than Voyager rotation speeds. We derive shapes for the planets based on these rotation rates. Wind velocities with respect to these rotation periods are essentially identical on Uranus and Neptune and wind speeds are slower than previously thought. Alternatively, if we interpret wind measurements in terms of differential rotation on cylinders there are essentially no residual atmospheric winds. (C) 2010 Elsevier Inc. All rights reserved. C1 [Helled, Ravit; Schubert, Gerald] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Helled, Ravit; Schubert, Gerald] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Anderson, John D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Helled, R (reprint author), Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. EM rhelled@ucla.edu; jdandy@earthlink.net; schubert@ucla.edu FU NASA through the Southwest Research Institute FX We thank F.M. Flasar and an anonymous referee for constructive comments. R.H. and J.D.A acknowledge support from NASA through the Southwest Research Institute. G.S. acknowledges support from the NASA PGG and PA programs. NR 30 TC 12 Z9 12 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD NOV PY 2010 VL 210 IS 1 BP 446 EP 454 DI 10.1016/j.icarus.2010.06.037 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665LH UT WOS:000283036100032 ER PT J AU Davidsson, BJR Gulkis, S Alexander, C von Allmen, P Kamp, L Lee, S Warell, J AF Davidsson, Bjorn J. R. Gulkis, Samuel Alexander, Claudia von Allmen, Paul Kamp, Lucas Lee, Seungwon Warell, Johan TI Gas kinetics and dust dynamics in low-density comet comae SO ICARUS LA English DT Article DE Comets, Coma; Comets, Dust; Spectroscopy ID MONTE-CARLO SIMULATIONS; OH LINE-SHAPES; NAVIER-STOKES; EXPANSION VELOCITY; CIRCUMNUCLEAR COMA; 67P/CHURYUMOV-GERASIMENKO; MODEL; NUCLEUS; MISSION; SURFACE AB Extensive regions of low-density cometary comae are characterized by important deviations from the Maxwell-Boltzmann velocity distribution, i.e. breakdown of thermodynamic equilibrium. The consequences of this on the shapes of emission and absorption lines, and for the acceleration of solid bodies due to gas drag, have rarely been investigated. These problems are studied here to aid in the development of future coma models, and in preparation for observations of Comet 67P/Churyumov-Gerasimenko from the ESA Rosetta spacecraft. Two topics in particular, related to Rosetta, are preparation for in situ observations of water, carbon monoxide, ammonia, and methanol emission lines by the mm/sub-mm spectrometer MIRO, as well as gas drag forces on dust grains and on the Rosetta spacecraft itself. Direct Simulation Monte Carlo (DSMC) modeling of H(2)O/CO mixtures in spherically symmetric geometries at various heliocentric distances are used to study the evolution of the (generally non-Maxwellian) velocity distribution function throughout the coma. Such distribution functions are then used to calculate Doppler broadening profiles and drag forces. It is found that deviation from thermodynamic equilibrium indeed is commonplace, and already at 2.5 AU from the Sun the entire comet coma displays manifestations of such breakdown, e.g., non-equal partitioning of energy between kinetic and rotational modes, causing substantial differences between translational and rotational temperatures. We exemplify how deviations from thermodynamic equilibrium affect the properties of Doppler broadened line profiles. Upper limits on the size of liftable dust grains as well as terminal grain velocities are presented. Furthermore, it is demonstrated that the drag-to-gravity force ratio is likely to decrease with decreasing cometocentric distance, which may be of relevance both for Rosetta and for the lander probe Philae. (C) 2010 Elsevier Inc. All rights reserved. C1 [Davidsson, Bjorn J. R.; Warell, Johan] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Gulkis, Samuel; Alexander, Claudia; von Allmen, Paul; Kamp, Lucas; Lee, Seungwon] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Davidsson, BJR (reprint author), Uppsala Univ, Dept Phys & Astron, Box 516, SE-75120 Uppsala, Sweden. EM bjorn.davidsson@fysast.uu.se; samuel.gulkis@jpl.nasa.gov; claudia.j.alexander@jpi.nasa.gov; paul.a.vonallmen@jpl.nasa.gov; lucas.kamp@jpl.nasa.gov; seungwon.lee@jpl.nasa.gov; johan.warell@fysast.uu.se FU NASA; National Aeronautics and Space Administration FX Davidsson most gratefully thanks the US Rosetta Project Manager Dr. Claudia Alexander and the Rosetta/MIRO Principal Investigator Dr. Samuel Gulkis for the invitation to work at the Jet Propulsion Laboratory in Pasadena (CA) for six months as a visiting scientist. A part of this research was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This work was funded by the NASA-Rosetta project. NR 38 TC 9 Z9 9 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD NOV PY 2010 VL 210 IS 1 BP 455 EP 471 DI 10.1016/j.icarus.2010.06.022 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665LH UT WOS:000283036100033 ER PT J AU Peetersa, Z Hudson, RL Moore, MH Lewis, A AF Peetersa, Z. Hudson, R. L. Moore, M. H. Lewis, Ariel TI The formation and stability of carbonic acid on outer Solar System bodies SO ICARUS LA English DT Article DE Ices, IR spectroscopy; Satellites, Surfaces; Cosmic rays ID PROTON IRRADIATED H2O+CO2; ICE MIXTURES; VAPOR-PRESSURE; CASSINI-VIMS; WATER-ICE; CO2 ICES; SATELLITES; ION; RELEVANT; DIOXIDE AB The radiation chemistry, thermal stability, and vapor pressure of solid-phase carbonic acid (H(2)CO(3)) have been studied with mid-infrared spectroscopy. A new procedure for measuring this molecule's radiation stability has been used to obtain intrinsic IR band strengths and half-lives for radiolytic destruction. We report, for the first time, measurements of carbonic acid's vapor pressure (0.290-2.33 x 10(-11) bar for 240-255 K) and its enthalpy of sublimation (71 +/- 9 kJ mol(-1)). We also report the first observation of a chemical reaction involving solid-phase carbonic acid. Possible applications of these findings are discussed, with an emphasis on the outer Solar System icy surfaces. Published by Elsevier Inc. C1 [Peetersa, Z.; Hudson, R. L.; Moore, M. H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Peetersa, Z.] Catholic Univ Amer, Dept Chem, Washington, DC 20064 USA. [Hudson, R. L.; Lewis, Ariel] Eckerd Coll, Dept Chem, St Petersburg, FL 33711 USA. RP Hudson, RL (reprint author), NASA, Goddard Space Flight Ctr, Code 691, Greenbelt, MD 20771 USA. EM Reggie.Hudson@NASA.gov RI Hudson, Reggie/E-2335-2012 FU NASA [NNG05GL46G]; Goddard Center for Astrobiology; Outer Planets; Planetary Geology and Geophysics FX The authors acknowledge support through the Goddard Center for Astrobiology, and NASA's Planetary Atmospheres, Outer Planets, and Planetary Geology and Geophysics programs. Zan Peeters also was supported through NASA Grant NNG05GL46G to Catholic University of America. Ariel Lewis worked as a summer researcher at the Goddard Center for Astrobiology. Steve Brown, Tom Ward, and Eugene Gerashchenko, members of the Radiation Laboratory at NASA Goddard, are thanked for operation of the Van de Graaff accelerator. Paul Cooper (George Mason University) is acknowledged for construction of equipment and preliminary vapor NR 36 TC 18 Z9 18 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD NOV PY 2010 VL 210 IS 1 BP 480 EP 487 DI 10.1016/j.icarus.2010.06.002 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 665LH UT WOS:000283036100035 ER PT J AU Chattopadhyay, G Ward, JS Llombert, N Cooper, KB AF Chattopadhyay, Goutam Ward, John S. Llombert, Nuria Cooper, Ken B. TI Submillimeter-Wave 90 degrees Polarization Twists for Integrated Waveguide Circuits SO IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS LA English DT Article DE Polarization; submillimeter-wave waveguides; waveguide transitions; waveguide twists AB We present a novel full-waveguide-band 90 polarization twist implemented in full-height rectangular waveguide suitable for use in submillimeter-wave and terahertz-integrated waveguide circuits. Combined benefits of simplified fabrication, suitability for silicon micromachining, suitability for integration with other components into integrated waveguide circuits without interconnecting flanges, and alleviation of waveguide associated losses and mismatches, make this component well-suited for submillimeter-wave applications. A polarization twist fabricated for WR-3 waveguide with UG-387/UM flanges was tested to confirm insertion loss better than 0.5 dB and return loss better than 20 dB from 220 to 320 GHz. We also fabricated and tested a polarization twist scaled to the 500-700 GHz band. By using only a single constant-depth channel in addition to the E-plane and H-plane split waveguide channels, this component is well optimized for fabrication with silicon micromachining, making it scalable to at least 5 THz. C1 [Chattopadhyay, Goutam; Ward, John S.; Llombert, Nuria; Cooper, Ken B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Chattopadhyay, G (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM goutam@jpl.nasa.gov FU Jet Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration FX Manuscript received March 01, 2010; revised July 09, 2010; accepted August 02, 2010. Date of publication September 20, 2010; date of current version November 05, 2010. This work was supported by the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. NR 10 TC 3 Z9 3 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1531-1309 J9 IEEE MICROW WIREL CO JI IEEE Microw. Wirel. Compon. Lett. PD NOV PY 2010 VL 20 IS 11 BP 592 EP 594 DI 10.1109/LMWC.2010.2068541 PG 3 WC Engineering, Electrical & Electronic SC Engineering GA 677IO UT WOS:000283983000002 ER PT J AU Thompson, DR Mandrake, L Gilmore, MS Castano, R AF Thompson, David R. Mandrake, Lukas Gilmore, Martha S. Castano, Rebecca TI Superpixel Endmember Detection SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Airborne Visible/Infrared Imaging Spectrometer (AVIRIS); Compact Reconnaissance Imaging Spectrometer (CRISM); endmember detection; hyperspectral images; planetary geology; segmentation; superpixels ID HYPERSPECTRAL DATA; EXTRACTION; MARS; SEGMENTATION; DIFFUSION; ALGORITHM; IMAGERY; ROCKS AB Superpixels are homogeneous image regions comprised of multiple contiguous pixels. Superpixel representations can reduce noise in hyperspectral images by exploiting the spatial contiguity of scene features. This paper combines superpixels with endmember extraction to produce concise mineralogical summaries that assist in browsing large image catalogs. First, a graph-based agglomerative algorithm oversegments the image. We then use segments' mean spectra as input to existing statistical endmember detection algorithms such as sequential maximum angle convex cone (SMACC) and N-FINDR. Experiments compare automatically detected endmembers to target minerals in an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene of Cuprite, Nevada. We also consider a planetary science data set from the Compact Reconnaissance Imaging Spectrometer (CRISM) instrument that benefits from spatial averaging due to higher noise. In both cases, superpixel representations significantly reduce the computational complexity of later processing while improving endmembers' match to the target spectra. C1 [Thompson, David R.; Mandrake, Lukas; Castano, Rebecca] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gilmore, Martha S.] Wesleyan Univ, Middletown, CT 06459 USA. RP Thompson, DR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM david.r.thompson@jpl.nasa.gov RI Gilmore, Martha/G-5856-2011 FU NASA AMMOS Multimission Ground Systems and Services office FX The authors would like to thank the CRISM team and Brown University for the use of the CRISM Analysis Tool (CAT) and their software contributions to the community. The work described in this paper was carried out at the Jet Propulsion Laboratory with support from the NASA AMMOS Multimission Ground Systems and Services office. NR 32 TC 38 Z9 39 U1 2 U2 20 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD NOV PY 2010 VL 48 IS 11 BP 4023 EP 4033 DI 10.1109/TGRS.2010.2070802 PG 11 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 670SS UT WOS:000283448200015 ER PT J AU Tarabalka, Y Benediktsson, JA Chanussot, J Tilton, JC AF Tarabalka, Yuliya Benediktsson, Jon Atli Chanussot, Jocelyn Tilton, James C. TI Multiple Spectral-Spatial Classification Approach for Hyperspectral Data SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Classification; hyperspectral images; minimum spanning forest (MSF); multiple classifiers (MCs); segmentation ID IMAGE DATA; SEGMENTATION; CLASSIFIERS; EXTRACTION; ALGORITHM; NETWORKS AB A new multiple-classifier approach for spectralspatial classification of hyperspectral images is proposed. Several classifiers are used independently to classify an image. For every pixel, if all the classifiers have assigned this pixel to the same class, the pixel is kept as a marker, i.e., a seed of the spatial region with a corresponding class label. We propose to use spectral-spatial classifiers at the preliminary step of the marker-selection procedure, each of them combining the results of a pixelwise classification and a segmentation map. Different segmentation methods based on dissimilar principles lead to different classification results. Furthermore, a minimum spanning forest is built, where each tree is rooted on a classification-driven marker and forms a region in the spectral-spatial classification map. Experimental results are presented for two hyperspectral airborne images. The proposed method significantly improves classification accuracies when compared with previously proposed classification techniques. C1 [Tarabalka, Yuliya; Benediktsson, Jon Atli] Univ Iceland, Fac Elect & Comp Engn, IS-107 Reykjavik, Iceland. [Tarabalka, Yuliya; Chanussot, Jocelyn] Grenoble Inst Technol INPG, Grenoble Images Speech Signals & Automat Lab GIPS, F-38402 St Martin Dheres, France. [Tilton, James C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Tarabalka, Y (reprint author), Univ Iceland, Fac Elect & Comp Engn, IS-107 Reykjavik, Iceland. EM yuliya.tarabalka@hyperinet.eu; benedikt@hi.is; jocelyn.chanussot@gipsa-lab.grenoble-inp.fr; james.c.tilton@nasa.gov RI Benediktsson, Jon/F-2861-2010; anzhi, yue/A-8609-2012 OI Benediktsson, Jon/0000-0003-0621-9647; FU Marie Curie Research Training Network FX Manuscript received December 30, 2009; revised May 11, 2010. Date of publication September 13, 2010; date of current version October 27, 2010. This work was supported in part by the Marie Curie Research Training Network "HYPER-I-NET." NR 45 TC 119 Z9 124 U1 3 U2 22 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD NOV PY 2010 VL 48 IS 11 BP 4122 EP 4132 DI 10.1109/TGRS.2010.2062526 PG 11 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 670SS UT WOS:000283448200023 ER PT J AU Barton, RJ Zheng, R AF Barton, Richard J. Zheng, Rong TI Order-Optimal Data Aggregation in Regular Wireless Sensor Networks SO IEEE TRANSACTIONS ON INFORMATION THEORY LA English DT Article DE Cooperative communication; data aggregation; sensor networks; time reversal ID TIME; DIVERSITY; CAPACITY AB The predominate traffic patterns in a wireless sensor network are many-to-one and one-to-many communication. Hence, the performance of wireless sensor networks is characterized by the rate at which data can be disseminated from or aggregated to a data sink. In this paper, the problem of data aggregation at a single sink is considered. It is shown that a data aggregation rate of Theta(log n/n) per node is optimal and that this rate can be achieved in regular wireless sensor networks using a generalization of cooperative beamforming called cooperative time-reversal communication. C1 [Barton, Richard J.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Zheng, Rong] Univ Houston, Dept Comp Sci, Houston, TX 77204 USA. RP Barton, RJ (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. EM richard.j.barton@nasa.gov; rzheng@cs.uh.edu FU University of Houston [I089367]; NSF [CNS-0546391] FX The work of R. J. Barton was supported in part by the University of Houston under GEAR Grant I089367. The work of R. Zheng was supported in part by the NSF under CAREER award CNS-0546391. The material in this paper was presented in part at the 40th Annual Conference on Information Sciences and Systems (CISS), Princeton, NJ, March 2006 and the Information Theory and Applications Workshop, San Diego, CA, February 2006. NR 25 TC 1 Z9 1 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9448 J9 IEEE T INFORM THEORY JI IEEE Trans. Inf. Theory PD NOV PY 2010 VL 56 IS 11 BP 5811 EP 5821 DI 10.1109/TIT.2010.2070110 PG 11 WC Computer Science, Information Systems; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 670TA UT WOS:000283449000033 ER PT J AU Ehsan, N Vanhille, KJ Rondineau, S Popovic, Z AF Ehsan, Negar Vanhille, Kenneth J. Rondineau, Sebastien Popovic, Zoya TI Micro-Coaxial Impedance Transformers SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES LA English DT Article DE Coaxial components; coaxial transmission lines; impedance matching; transformers ID LINES; RESONATORS AB This paper demonstrates two broadband air-filled micro-coaxial 4: 1 (2-24 GHz) and 2.25: 1 (2-22 GHz) impedance transformers. The 4: 1 transformer converts 50 to 12.5 Omega and the 2.25: 1 device transforms 50 to 22.22 Omega. The circuits are fabricated on silicon with PolyStrata technology, and are implemented with 650 mu m x 400 mu m air-filled micro-coaxial lines. Back-to-back circuits and single structures with geometrical tapers are designed for systematic characterization. Simulation and measurement results are in excellent agreement. The return loss for both transformers is better than 15 dB over the design bandwidth. C1 [Ehsan, Negar; Popovic, Zoya] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA. [Vanhille, Kenneth J.] Nuvotronics LLC, Radford, VA 24141 USA. [Rondineau, Sebastien] Solentech, BR-90020080 Rio Grande Do Sul, Brazil. RP Ehsan, N (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM negar.ehsan@nasa.gov; kvanhille@nuvotronics.com; sebastien.rondineau@gmail.com; zoya@colorado.edu FU Defense Advanced Research Projects Agency (DARPA), U.S. Army [W15P7T-07-C-P437] FX This work is funded by the Defense Advanced Research Projects Agency (DARPA) DMT program, U.S. Army contract W15P7T-07-C-P437. NR 15 TC 9 Z9 9 U1 3 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9480 J9 IEEE T MICROW THEORY JI IEEE Trans. Microw. Theory Tech. PD NOV PY 2010 VL 58 IS 11 BP 2908 EP 2914 DI 10.1109/TMTT.2010.2078410 PN 1 PG 7 WC Engineering, Electrical & Electronic SC Engineering GA 680FT UT WOS:000284218500020 ER PT J AU Gliese, U Colladay, K Hastings, AS Tulchinsky, DA Urick, VJ Williams, KJ AF Gliese, Ulrik Colladay, Kristina Hastings, Alexander S. Tulchinsky, David A. Urick, Vincent J. Williams, Keith J. TI RF Power Conversion Efficiency of Photodiodes Driven by Mach-Zehnder Modulators SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES LA English DT Article DE Analog photonics; microwave photonics; optoelectronics; photodiodes; power conversion efficiency (PCE) ID HIGH-CURRENT PHOTODETECTORS; SATURATION; PERFORMANCE; COMPRESSION; DESIGN; LINKS AB A comprehensive analysis supported by experimental results is provided for RF and microwave power conversion efficiency (PCE) of photodiodes driven by optical signals with either shaped or pure sinusoidal intensity-envelopes where the shaping is performed with a Mach-Zehnder modulator (MZM). It is shown that optical envelope-shaping provides a significantly improved maximum theoretical PCE of 67% as compared to 50% for sinusoidal intensity-envelopes. Practical PCEs of 40.5%-53.5% have been achieved as compared to previously published efficiencies in the 32%-41% range. The results demonstrate that high-current photodiodes can be used as efficient wideband high-power output stages in microwave photonic distribution systems leading to less complex and more efficient antenna array backplanes. C1 [Gliese, Ulrik; Colladay, Kristina] NRL, Global Strategies Grp, Crofton, MD 21114 USA. [Hastings, Alexander S.; Tulchinsky, David A.; Urick, Vincent J.; Williams, Keith J.] USN, Res Lab, Washington, DC 20375 USA. RP Gliese, U (reprint author), NASA, Goddard Space Flight Ctr, SGT, Greenbelt, MD 20771 USA. EM ulrik.gliese@nasa.gov; kristina.colladay@nrl.navy.mil; hastings@ccs.nrl.navy.mil; david.tulchinsky@nrl.navy.mil; vin-cent.urick@nrl.navy.mil; keith.williams@nrl.navy.mil FU Office of Naval Research FX This work was supported by the Office of Naval Research. NR 19 TC 5 Z9 5 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9480 J9 IEEE T MICROW THEORY JI IEEE Trans. Microw. Theory Tech. PD NOV PY 2010 VL 58 IS 11 SI SI BP 3359 EP 3371 DI 10.1109/TMTT.2010.2075530 PN 2 PG 13 WC Engineering, Electrical & Electronic SC Engineering GA 680GE UT WOS:000284219600042 ER PT J AU Farhoomand, J Sisson, DL AF Farhoomand, Jam Sisson, David L. TI A 1k-pixel CTIA readout multiplexer for far-IR photodetector arrays SO INFRARED PHYSICS & TECHNOLOGY LA English DT Article DE ROIC; Readout; Cryo-CMOS; CTIA; Far infrared; Photoconductor ID DETECTORS; SIRTF AB SB349 is the first 32 x 32 CTIA readout multiplexer specifically designed for far-IR photodetectors and is operable at cryogenic temperatures at least as low as 1.7 K. Four of these readouts can be butted together to form a 64 x 64 mosaic array. The array is multiplexed into eight parallel outputs and features eight selectable gain settings to accommodate various background levels, auto-zero for better input uniformity, and sample-and-hold circuitry. A special, 2-micron cryo-CMOS process was adopted to prevent freeze out and ensure low noise and proper operation at deep cryogenic temperatures. The read noise of the bare device at 4.2 K and under nominal sampling conditions was measured to be about 250e(-) for the 106fF signal capacitor with the well capacity of 400ke(-). Hybridized to a typical germanium detector, the array should achieve NEP levels in the low 10(-18) W/root Hz. An overview of the design and the latest results of the test and characterization of this device are reported in this paper. (C) 2010 Elsevier B.V. All rights reserved. C1 [Farhoomand, Jam] TechnoScience Corp, Palo Alto, CA USA. NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Farhoomand, J (reprint author), TechnoScience Corp, Palo Alto, CA USA. EM jam.farhoomand@nasa.gov FU NASA-Ames Research Center; JPL FX The authors wish to thank Jeff Beeman (LBNL/TechnoScience) for his assistance in packaging the readouts, Alan Hoffman (Acumen Scientific) and Eric Beuville (Raytheon) for their assistance in optimizing the clocking parameters of the readout, and Mike Ressler (JPL) and Robert McMurray, Jr. (NASA-Ames Research Center) for sponsoring this research. This research was conducted by TechnoScience Corporation in part under a contract with NASA-Ames Research Center and in part under a NASA SBIR contract sponsored by JPL. NR 13 TC 3 Z9 3 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1350-4495 J9 INFRARED PHYS TECHN JI Infrared Phys. Technol. PD NOV PY 2010 VL 53 IS 6 BP 450 EP 456 DI 10.1016/j.infrared.2010.09.005 PG 7 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 692QE UT WOS:000285169400006 ER PT J AU Yang, P Feng, QA Hong, G Kattawar, GW Wiscombe, WJ Mishchenko, MI Dubovik, O Laszlo, I Sokolik, IN AF Yang, Ping Feng, Qian Hong, Gang Kattawar, George W. Wiscombe, Warren J. Mishchenko, Michael I. Dubovik, Oleg Laszlo, Istvan Sokolik, Irina N. TI Modeling of the scattering and radiative properties of nonspherical dust-like aerosols (vol 38, pg 995, 2007) SO JOURNAL OF AEROSOL SCIENCE LA English DT Correction C1 [Yang, Ping; Feng, Qian; Hong, Gang] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Kattawar, George W.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Wiscombe, Warren J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mishchenko, Michael I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Dubovik, Oleg] Univ Lille 1, Opt Atmospher Lab, CNRS, F-59655 Villeneuve Daascq, France. [Laszlo, Istvan] NOAA, NESDIS, Off Res & Applicat, Camp Springs, MD 20746 USA. [Sokolik, Irina N.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. RP Yang, P (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. EM pyang@csrp.tamu.edu RI Yang, Ping/B-4590-2011; Hong, Gang/A-2323-2012; Wiscombe, Warren/D-4665-2012; Laszlo, Istvan/F-5603-2010; Dubovik, Oleg/A-8235-2009; Mishchenko, Michael/D-4426-2012 OI Wiscombe, Warren/0000-0001-6844-9849; Laszlo, Istvan/0000-0002-5747-9708; Dubovik, Oleg/0000-0003-3482-6460; NR 1 TC 0 Z9 0 U1 0 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-8502 J9 J AEROSOL SCI JI J. Aerosol. Sci. PD NOV PY 2010 VL 41 IS 11 BP 1052 EP 1053 DI 10.1016/j.jaerosci.2010.07.006 PG 2 WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 676HO UT WOS:000283901800008 ER PT J AU Johnson, TH Parker, PA Landman, D AF Johnson, Thomas H. Parker, Peter A. Landman, Drew TI Calibration Modeling of Nonmonolithic Wind-Tunnel Force Balances SO JOURNAL OF AIRCRAFT LA English DT Article ID DESIGNS AB Experimental designs and regression models for calibrating nonmonolithic (multiple piece) internal wind-tunnel force balances were investigated through a case study that demonstrated fundamental deficiencies with a typical test schedule. It was found that the current calibration point selection method, which swept the design space two factors at a time, introduced a degree of correlation among model terms, depending on the model form. While using the statistical design of experiment performance metrics to analyze the deficiencies in the experimental design, it was also found that there were problems inherent to the model form itself that were independent of the design. An analysis of the calibration model, endorsed by the AIAA recommended practices document for nonmonolithic balances, lead to correlated response model terms due to overparameterization. Four new modeling strategies are proposed to overcome these challenges for nonmonolithic force balances. C1 [Johnson, Thomas H.; Landman, Drew] Old Dominion Univ, Dept Aerosp Engn, Norfolk, VA 23529 USA. [Parker, Peter A.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Johnson, TH (reprint author), Old Dominion Univ, Dept Aerosp Engn, Norfolk, VA 23529 USA. NR 8 TC 3 Z9 4 U1 0 U2 5 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 J9 J AIRCRAFT JI J. Aircr. PD NOV-DEC PY 2010 VL 47 IS 6 BP 1860 EP 1866 DI 10.2514/1.46356 PG 7 WC Engineering, Aerospace SC Engineering GA 695WV UT WOS:000285404200004 ER PT J AU Jain, R Yeo, H Chopra, I AF Jain, Robit Yeo, Hyeonsoo Chopra, Inderjit TI Examination of Rotor Loads due to On-Blade Active Controls for Performance Enhancement SO JOURNAL OF AIRCRAFT LA English DT Article ID AIRLOADS; HELICOPTER AB On-blade active controls with trailing-edge deflection, leading-edge deflection, and active-twist are studied for improvements in rotor aerodynamic efficiency and their influence on structural loads. A full-scale UH-60A Blackhawk rotor at two key flight conditions (high-speed forward flight and high-thrust forward flight) is studied using coupled computational fluid dynamics and computational structural dynamics simulations. A simulation-based trade study is carried out comprising parametric variations of geometric sizing and deployment schedules of the blade morphing. The study shows that active controls improve rotor performance and reduce rotor loads at the same time with careful selection of deployment schedule and design. In high-speed forward flight, using trailing-edge deflection, an improvement of 7.3% in performance and a reduction in the hub vibratory loads of up to 54% is achieved, and using active-twist an improvement of 7.0% in performance and up to 22% reduction in hub vibratory loads is achieved. In high-thrust forward flight, a 15.0% improvement in performance and up to 40% reduction in hub vibratory loads is achieved using leading-edge deflection. C1 [Jain, Robit] HyPerComp Inc, Westlake Village, CA 91361 USA. [Yeo, Hyeonsoo] NASA, Ames Res Ctr, Aeroflightdynam Directorate, US Army Res Dev & Engn Command, Moffett Field, CA 94035 USA. [Chopra, Inderjit] Univ Maryland, Dept Aerosp Engn, College Pk, MD 20742 USA. RP Jain, R (reprint author), HyPerComp Inc, Westlake Village, CA 91361 USA. EM rkj@hypercomp.net FU U.S. Army Research, Development, and Engineering Command under SBIR [W911W6-08-C-0061] FX This work is sponsored by U.S. Army Research, Development, and Engineering Command under SBIR Contract No. W911W6-08-C-0061. Technical monitors were Hyeonsoo Yeo and Mark Fulton at the U.S. Army Aeroflightdynamics Directorate. NR 29 TC 7 Z9 8 U1 0 U2 3 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 J9 J AIRCRAFT JI J. Aircr. PD NOV-DEC PY 2010 VL 47 IS 6 BP 2049 EP 2066 DI 10.2514/1.C000306 PG 18 WC Engineering, Aerospace SC Engineering GA 695WV UT WOS:000285404200022 ER PT J AU Shi, JJ Tao, WK Matsui, T Cifelli, R Hou, A Lang, S Tokay, A Wang, NY Peters-Lidard, C Skofronick-Jackson, G Rutledge, S Petersen, W AF Shi, J. J. Tao, W. -K. Matsui, T. Cifelli, R. Hou, A. Lang, S. Tokay, A. Wang, N. -Y. Peters-Lidard, C. Skofronick-Jackson, G. Rutledge, S. Petersen, W. TI WRF Simulations of the 20-22 January 2007 Snow Events over Eastern Canada: Comparison with In Situ and Satellite Observations SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID LARGE-EDDY-SIMULATION; HORIZONTAL CONVECTIVE ROLLS; LAKE-EFFECT SNOWSTORM; BOUNDARY-LAYER; MESOSCALE MODEL; MICROPHYSICAL EVOLUTION; NUMERICAL-SIMULATION; MICROSCALE STRUCTURE; FRONTAL RAINBANDS; PRECIPITATION AB One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve cold-season precipitation measurements in mid-and high latitudes through the use of high-frequency passive microwave radiometry. For this purpose, the Weather Research and Forecasting model (WRF) with the Goddard microphysics scheme is coupled with a Satellite Data Simulation Unit (WRF-SDSU) to facilitate snowfall retrieval algorithms over land by providing a virtual cloud library and corresponding microwave brightness temperature measurements consistent with the GPM Microwave Imager (GMI). When this study was initiated, there were no prior published results using WRF at cloud-resolving resolution (1 km or finer) for high-latitude snow events. This study tested the Goddard cloud microphysics scheme in WRF for two different snowstorm events (a lake-effect event and a synoptic event between 20 and 22 January 2007) that took place over the Canadian CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Validation Project (C3VP) site in Ontario, Canada. The 24-h-accumulated snowfall predicted by WRF with the Goddard microphysics was comparable to that observed by the ground-based radar for both events. The model correctly predicted the onset and termination of both snow events at the Centre for Atmospheric Research Experiments site. The WRF simulations captured the basic cloud patterns as seen by the ground-based radar and satellite [i.e., CloudSat and Advanced Microwave Sounding Unit B (AMSU-B)] observations, including the snowband featured in the lake event. The results reveal that WRF was able to capture the cloud macrostructure reasonably well. Sensitivity tests utilizing both the "2ICE'' (ice and snow) and "3ICE" (ice, snow, and graupel) options in the Goddard microphysical scheme were also conducted. The domain-and time-averaged cloud species profiles from the WRF simulations with both microphysical options show identical results (due to weak vertical velocities and therefore the absence of large precipitating liquid or high-density ice particles like graupel). Both microphysics options produced an appreciable amount of liquid water, and the model cloud liquid water profiles compared well to the in situ C3VP aircraft measurements when only grid points in the vicinity of the flight paths were considered. However, statistical comparisons between observed and simulated radar echoes show that the model tended to have a high bias of several reflectivity decibels (dBZ), which shows that additional research is needed to improve the current cloud microphysics scheme for the extremely cold environment in high latitudes, despite the fact that the simulated ice/liquid water contents may have been reasonable for both events. Future aircraft observations are also needed to verify the existence of graupel in high-latitude continental snow events. C1 [Shi, J. J.; Matsui, T.] Univ Maryland Baltimore Cty, Dept Atmospher Sci, Baltimore, MD 21228 USA. [Cifelli, R.; Rutledge, S.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Hou, A.] NASA, Goddard Space Flight Ctr, Goddard Modeling Assimilat Off, Greenbelt, MD 20771 USA. [Hou, A.] Sci Syst & Applicat Inc, Greenbelt, MD USA. [Tokay, A.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Wang, N. -Y.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Peters-Lidard, C.] NASA, Goddard Space Flight Ctr, Lab Hydrospher Proc, Greenbelt, MD 20771 USA. [Petersen, W.] NASA, George C Marshall Space Flight Ctr, Earth Sci Off, Huntsville, AL 35812 USA. [Shi, J. J.; Tao, W. -K.; Matsui, T.; Lang, S.; Tokay, A.; Skofronick-Jackson, G.] NASA GSFC, Code 613 1, Atmospheres Lab, Greenbelt, MD 20771 USA. RP Shi, JJ (reprint author), NASA GSFC, Code 613 1, Atmospheres Lab, Greenbelt, MD 20771 USA. EM jainn.j.shi@nasa.gov RI Skofronick-Jackson, Gail/D-5354-2012; Hou, Arthur/D-8578-2012; Peters-Lidard, Christa/E-1429-2012; Wang, Nai-Yu/E-5303-2016; Ferraro, Ralph/F-5587-2010; Measurement, Global/C-4698-2015 OI Peters-Lidard, Christa/0000-0003-1255-2876; Ferraro, Ralph/0000-0002-8393-7135; FU NASA; NASA Tropical Rainfall Measuring Mission (TRMM) FX The WRF-Goddard cloud microphysics coupling is supported by the NASA Headquarters Atmospheric Dynamics and Thermodynamics Program and the NASA Tropical Rainfall Measuring Mission (TRMM). The authors are grateful to Dr. R. Kakar at NASA Headquarters for his support of this research. The authors also appreciate their useful discussion with Dr. Andy Heymsfield of NCAR. NR 59 TC 41 Z9 43 U1 1 U2 21 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD NOV PY 2010 VL 49 IS 11 BP 2246 EP 2266 DI 10.1175/2010JAMC2282.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 675NT UT WOS:000283838100005 ER PT J AU Wind, G Platnick, S King, MD Hubanks, PA Pavolonis, MJ Heidinger, AK Yang, P Baum, BA AF Wind, Galina Platnick, Steven King, Michael D. Hubanks, Paul A. Pavolonis, Michael J. Heidinger, Andrew K. Yang, Ping Baum, Bryan A. TI Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID BULK SCATTERING PROPERTIES; MULTIPLE-SCATTERING; OPTICAL-PROPERTIES; LAND PRODUCTS; TOP PRESSURE; CIRRUS CLOUD; ICE CLOUDS; PART I; ALGORITHM; PHASE AB Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the NASA Earth Observing System (EOS) Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that present difficulties for retrieving cloud effective radius using single-layer plane-parallel cloud models. The algorithm uses the MODIS 0.94-mu m water vapor band along with CO(2) bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO(2) and the 0.94-mu m methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases. C1 [Wind, Galina] NASA, Goddard Space Flight Ctr, Code 613 2, Greenbelt, MD 20771 USA. [Wind, Galina] SSAI Inc, Lanham, MD USA. [King, Michael D.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Hubanks, Paul A.] Wyle Inc, Silver Spring, MD USA. [Hubanks, Paul A.] NOAA, NESDIS, Ctr Satellite Applicat & Res, Madison, WI USA. [Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX USA. [Baum, Bryan A.] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. RP Wind, G (reprint author), NASA, Goddard Space Flight Ctr, Code 613 2, Greenbelt, MD 20771 USA. EM gala.wind@nasa.gov RI Yang, Ping/B-4590-2011; King, Michael/C-7153-2011; Pavolonis, Mike/F-5618-2010; Baum, Bryan/B-7670-2011; Platnick, Steven/J-9982-2014; Heidinger, Andrew/F-5591-2010 OI King, Michael/0000-0003-2645-7298; Pavolonis, Mike/0000-0001-5822-219X; Baum, Bryan/0000-0002-7193-2767; Platnick, Steven/0000-0003-3964-3567; Heidinger, Andrew/0000-0001-7631-109X FU MODIS Science Team; NASA FX The authors thank Brad Wind for developing the groundwork for simplifying the modifications to the operational MODIS code that made most of these studies possible. This work was funded by the MODIS Science Team and NASA's Radiation Sciences Program. NR 32 TC 27 Z9 27 U1 0 U2 11 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD NOV PY 2010 VL 49 IS 11 BP 2315 EP 2333 DI 10.1175/2010JAMC2364.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 675NT UT WOS:000283838100009 ER PT J AU Tokay, A Bashor, PG AF Tokay, Ali Bashor, Paul G. TI An Experimental Study of Small-Scale Variability of Raindrop Size Distribution SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID DIFFERENT CLIMATIC REGIMES; RADAR-RAINFALL PRODUCTS; SPATIAL VARIABILITY; GROUND-VALIDATION; GAUGE MEASUREMENTS; FIELD CAMPAIGN; TRMM; DISDROMETER; REFLECTIVITY; SPECTRA AB An experimental study of small-scale variability of raindrop size distributions (DSDs) has been carried out at Wallops Island, Virginia. Three Joss-Waldvogel disdrometers were operated at a distance of 0.65, 1.05, and 1.70 km in a nearly straight line. The main purpose of the study was to examine the variability of DSDs and its integral parameters of liquid water content, rainfall, and reflectivity within a 2-km array: a typical size of Cartesian radar pixel. The composite DSD of rain events showed very good agreement among the disdrometers except where there were noticeable differences in midsize and large drops in a few events. For consideration of partial beam filling where the radar pixel was not completely covered by rain, a single disdrometer reported just over 10% more rainy minutes than the rainy minutes when all three disdrometers reported rainfall. Similarly two out of three disdrometers reported 5% more rainy minutes than when all three were reporting rainfall. These percentages were based on a 1-min average, and were less for longer averaging periods. Considering only the minutes when all three disdrometers were reporting rainfall, just over one quarter of the observations showed an increase in the difference in rainfall with distance. This finding was based on a 15-min average and was even less for shorter averaging periods. The probability and cumulative distributions of a gamma-fitted DSD and integral rain parameters between the three disdrometers had a very good agreement and no major variability. This was mainly due to the high percentage of light stratiform rain and to the number of storms that traveled along the track of the disdrometers. At a fixed time step, however, both DSDs and integral rain parameters showed substantial variability. The standard deviation (SD) of rain rate was near 3 mm h 21, while the SD of reflectivity exceeded 3 dBZ at the longest separation distance. These standard deviations were at 6-min average and were higher at shorter averaging periods. The correlations decreased with increasing separation distance. For rain rate, the correlations were higher than previous gauge-based studies. This was attributed to the differences in data processing and the difference in rainfall characteristics in different climate regions. It was also considered that the gauge sampling errors could be a factor. In this regard, gauge measurements were simulated employing existing disdrometer dataset. While a difference was noticed in cumulative distribution of rain occurrence between the simulated gauge and disdrometer observations, the correlations in simulated gauge measurements did not differ from the disdrometer measurements. C1 [Tokay, Ali] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Tokay, Ali] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Bashor, Paul G.] Comp Sci Corp, Wallops Isl, VA USA. [Bashor, Paul G.] NASA, Wallops Flight Facil, Wallops Isl, VA USA. RP Tokay, A (reprint author), NASA, Goddard Space Flight Ctr, Code 613-1, Greenbelt, MD 20771 USA. EM tokay@radar.gsfc.nasa.gov FU NASA [NNX07AF45G] FX We thank Donat Hogl of Distromet, Ltd., and his colleagues for their continuous support in calibrating the Joss-Waldvogel disdrometers and providing excellent feedback. Thanks also are given to Richard Lawrence of NASA Goddard Space Flight Center and John Gerlach of NASA Wallops Flight Facility for their leadership in ground validation efforts of the TRMM program. We also acknowledge Rafael Rincon for providing his JW disdrometer that was used in this study. Many thanks are given to Jianxin (Jerry) Wang of Science Systems Application, Inc., for running a gauge interpolation algorithm with simulated gauge measurements. Discussions with Robert Meneghini of NASA Goddard Space Flight Center, Emad Habib of the University of Louisiana-Lafayette, Mirceu Grecu of the University of Maryland, Baltimore County, and David A. Marks of Science Systems and Application, Inc., were very helpful. This study was supported by NASA's TRMM program through NNX07AF45G under Ramesh Kakar, Program Scientist. NR 32 TC 26 Z9 28 U1 0 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD NOV PY 2010 VL 49 IS 11 BP 2348 EP 2365 DI 10.1175/2010JAMC2269.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 675NT UT WOS:000283838100011 ER PT J AU Zhao, YG Cheng, QA Qian, ML Cantrell, JH AF Zhao, Yagun Cheng, Qian Qian, Menglu Cantrell, John H. TI Phase image contrast mechanism in intermittent contact atomic force microscopy SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ENERGY-DISSIPATION AB A model is presented showing that phase variations in intermittent contact atomic force microscopy (IC-AFM) (tapping mode) result from variations in both conservative and dissipative forces. It is shown that when operating with constant cantilever oscillation amplitude, however, conservative forces drive the phase contrast. The equations of cantilever tip-sample surface contact are solved analytically for constant amplitude IC-AFM operation. Solutions are obtained for the tip-sample contact time, maximum sample indentation depth, and phase shift in the cantilever oscillations. The model equations are applied to the calculation of the phase contrast, defined as the difference in phase shift between two points in the image, for a diamond-graphite nanocomposite sample having a heterogeneous variation in graphite porosity ranging from approximately 30 vol % to roughly 60 vol %. The phase contrast predicted from the model equations, using only conservative forces in the model, is calculated to be approximately 69 degrees for 30 vol % porosity and roughly 79 degrees for 60% porosity. The model predictions are in very good agreement with the measured range of values from 69.4 degrees to 78.5 degrees obtained from a IC-AFM phase image of the sample. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3503478] C1 [Zhao, Yagun; Cheng, Qian; Qian, Menglu] Tongji Univ, Inst Acoust, Shanghai 200092, Peoples R China. [Cantrell, John H.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Zhao, YG (reprint author), Tongji Univ, Inst Acoust, Shanghai 200092, Peoples R China. EM mlqian@tongji.edu.cn; john.h.cantrell@nasa.gov RI Cheng, Qian/I-3864-2012 FU National Natural Science Foundation of China [10774113, 10834009] FX This work was supported by the Major Program of the National Natural Science Foundation of China (Grant Nos. 10774113 and 10834009). NR 18 TC 11 Z9 12 U1 3 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2010 VL 108 IS 9 AR 094311 DI 10.1063/1.3503478 PG 7 WC Physics, Applied SC Physics GA 680XN UT WOS:000284270900126 ER PT J AU Whiteman, DN Rush, K Rabenhorst, S Welch, W Cadirola, M McIntire, G Russo, F Adam, M Venable, D Connell, R Veselovskii, I Forno, R Mielke, B Stein, B Leblanc, T McDermid, S Vomel, H AF Whiteman, David N. Rush, Kurt Rabenhorst, Scott Welch, Wayne Cadirola, Martin McIntire, Gerry Russo, Felicita Adam, Mariana Venable, Demetrius Connell, Rasheen Veselovskii, Igor Forno, Ricardo Mielke, Bernd Stein, Bernhard Leblanc, Thierry McDermid, Stuart Voemel, Holger TI Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID STRATOSPHERIC WATER-VAPOR; SPECTRAL-RESOLUTION LIDAR; CLOUD LIQUID WATER; CIRRUS CLOUDS; TEMPERATURE-MEASUREMENTS; AEROSOL EXTINCTION; IHOP-2002; CALIBRATION; VALIDATION; ATMOSPHERE AB A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire. for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system Was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July-August 20117 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescc pc, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment-Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for ground-based use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Prepulsion Laboratory's Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atntospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During the MOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE-II measurements, along with numerical simulation, were used to determine that the likely reason for the suboptimal airborne aerosol extinction performance during the WAVES_2007 campaign was a misaligned interference filter. With full laser power and a properly tuned inter ference filter. RASL is shown to be capable of measuring the main water vapor and aerosol parameters with temporal resolutions of between 2 and 45 s and spatial resolutions ranging from 30 to 330 m from a flight altitude of 8 km with precision of generally less than 10%, providing performance that is competitive with some airborne Differential Absorption Lidar (DIAL) water vapor and High Spectral Resolution Lidar (HSRL) aerosol instruments. The use of diode-pumped laser technology would improve the performance of an airborne Raman lidar and permit additional instrumentation to be carried on board a small research aircraft. The combined airborne and ground-bated measurements presented here demonstrate a level of versatility in Raman lidar that may be impossible to duplicate with any other single lidar technique. C1 [Whiteman, David N.; Rush, Kurt] NASA, GSFC, Greenbelt, MD 20771 USA. [Rabenhorst, Scott] Univ Maryland, College Pk, MD 20742 USA. [Welch, Wayne] Welch Mech Designs, Belcamp, MD USA. [Cadirola, Martin] Ecotronics LLC, Clarksburg, MD USA. [McIntire, Gerry] SGT, Lanham, MD USA. [Russo, Felicita] CNR, Potenza, Italy. [Adam, Mariana] European Commiss JRC, Ispra, Italy. [Venable, Demetrius; Connell, Rasheen] Howard Univ, Washington, DC 20059 USA. [Veselovskii, Igor] Univ Maryland, Baltimore, MD 21201 USA. [Forno, Ricardo] Univ Mayor San Andres, La Paz, Bolivia. [Mielke, Bernd; Stein, Bernhard] Licel, Berlin, Germany. [Leblanc, Thierry; McDermid, Stuart] CALTECH, Jet Prop Lab, Table Mt Facil, Table Mt, CA USA. [Voemel, Holger] Lindenberg Observ, Lindenberg, Germany. RP Whiteman, DN (reprint author), NASA, GSFC, Code 613-1,Bldg 33,Rm D404, Greenbelt, MD 20771 USA. EM david.n.whiteman@nasa.gov RI Adam, Mariana/C-5661-2013 FU NASA; Advanced Component Technology (ACT) program; Instrument Incubator Program (IIP); Upper Air Research Program (UARP); Maryland Department of the Environment FX The authors wish to acknowledge the support of the NASA Atmospheric Composition Program, the Advanced Component Technology (ACT) program, the Instrument Incubator Program (IIP), and the Upper Air Research Program (UARP) for support of these efforts. The radiosonde data were obtained from the Howard University Beltsville Research Campus under a program supported by the Maryland Department of the Environment. Several individuals have helped in the development of RASL over the years. We wish to thank Geary Schwemmer, Henry Plotkin, Luis Ramos-Izquierdo, Timothy Berkoff, Glenn Staley, and S. Harvey Melfi. We wish to thank Everette Joseph, Belay Demoz, and the entire Howard University Beltsville Campus staff for hosting the WAVES_2007 campaign. The contributions of T. Leblanc and S. McDermid were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The authors also wish to acknowledge the efforts of Tom McGee, Larry Twigg, and Grant Sumnick during the MOHAVE-II field campaign. The mention of a particular vendor does not constitute an endorsement by NASA. NR 52 TC 25 Z9 25 U1 3 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD NOV PY 2010 VL 27 IS 11 BP 1781 EP 1801 DI 10.1175/2010JTECHA1391.1 PG 21 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 680PX UT WOS:000284248000001 ER PT J AU Koshak, WJ AF Koshak, W. J. TI Optical Characteristics of OTD Flashes and the Implications for Flash-Type Discrimination SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID CONTINENTAL UNITED-STATES; FORTE PHOTODIODE DETECTOR; TRANSIENT DETECTOR; SATELLITE; EMISSIONS; CLOUDS; SPACE; THUNDERSTORMS; INTRACLOUD; MODEL AB Flashes detected by the Optical Transient Detector (OTD) that occur over the continental United States (CONUS) are intercompared with data from the National Lightning Detection Network (NLDN) in order to partition the OTD flashes into ground and cloud flashes. The entire 5-yr OTD dataset for CONUS is analyzed. The statistical distributions of a variety of optical characteristics are examined, including five flash-level attributes (radiance, area, duration, number of optical groups, and number of optical events), and two group-level attributes [the maximum number of events in a group (MNEG), and a closely related parameter, the maximum group area (MGA)]. On average, there were 5.6 optical groups per return stroke in a ground flash, which is in part due to the likelihood that OTD detects interstroke K changes. It was found that return strokes within ground flashes typically produce large optical groups: hence, the MNEG and MGA parameters serve as useful "return-stroke detectors." The results of this study provide insight on how to construct an algorithm for retrieving the fraction of ground flashes in a set of flashes observed from a satellite lightning imager. Specifically, even though it is shown that the statistical distributions of the optical characteristics for ground and cloud flashes overlap substantially, the mean values of these distributions differ. Hence, a retrieval method that is based on an analysis of the distribution of the means, and that employs the central limit theorem of statistics, is recommended. As the sample size used to compute the means is increased, the overlap in the distributions of the means for ground and cloud flashes is diminished, making ground flash fraction retrieval feasible. Of the seven optical characteristics examined here, the mean MNEG and mean MGA parameters are suggested as being the most useful for discriminating between ground and cloud flashes in the context of this "central limit theorem" approach. C1 NASA, Earth Sci Off, George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. RP Koshak, WJ (reprint author), NASA, Earth Sci Off, George C Marshall Space Flight Ctr, VP61,320 Sparkman Dr,Robert Cramer Res Hall, Huntsville, AL 35805 USA. EM william.koshak@nasa.gov FU NOAA/NESDIS/STAR GOES-R [NA07AANEG0284]; LIS; NASA Earth Science Enterprise (ESE) FX This research has been supported by the NOAA/NESDIS/STAR GOES-R Risk Reduction Program under Memorandum of Agreement NA07AANEG0284 [Ms. Ingrid Guch, Chief, NOAA/NESDIS/STAR Cooperative Research Programs Division; Dr. Mark DeMaria Chief, NOAA/NESDIS Regional and Mesoscale Meteorology Branch; and Dr. Steven J. Goodman, Senior (Chief) Scientist, GOES-R System Program], and by the LIS project (Program Manager, Ramesh Kakar, NASA Headquarters) as part of the NASA Earth Science Enterprise (ESE) Earth Observing system (EOS) project. The author would also like to thank Dr. Richard Solakiewicz of Chicago State University for helping to identify a more conservative flash partitioning strategy than that employed in Koshak (2007), and for his comments on improving the final draft manuscript. Thanks are also given to Dr. Dennis Boccippio (NASA/MSFC) for providing a convenient form of the 5-yr OTD dataset. Finally, thanks are given to Mr. Dennis Buechler of the University of Alabama-Huntsville for his suggestions on how best to implement the spatial mask lightning filter. NR 33 TC 16 Z9 16 U1 1 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD NOV PY 2010 VL 27 IS 11 BP 1822 EP 1838 DI 10.1175/2010JTECHA1405.1 PG 17 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 680PX UT WOS:000284248000003 ER PT J AU Rawlins, MA Steele, M Holland, MM Adam, JC Cherry, JE Francis, JA Groisman, PY Hinzman, LD Huntington, TG Kane, DL Kimball, JS Kwok, R Lammers, RB Lee, CM Lettenmaier, DP McDonald, KC Podest, E Pundsack, JW Rudels, B Serreze, MC Shiklomanov, A Skagseth, O Troy, TJ Vorosmarty, CJ Wensnahan, M Wood, EF Woodgate, R Yang, DQ Zhang, K Zhang, TJ AF Rawlins, Michael A. Steele, Michael Holland, Marika M. Adam, Jennifer C. Cherry, Jessica E. Francis, Jennifer A. Groisman, Pavel Ya. Hinzman, Larry D. Huntington, Thomas G. Kane, Douglas L. Kimball, John S. Kwok, Ron Lammers, Richard B. Lee, Craig M. Lettenmaier, Dennis P. McDonald, Kyle C. Podest, Erika Pundsack, Jonathan W. Rudels, Bert Serreze, Mark C. Shiklomanov, Alexander Skagseth, Oystein Troy, Tara J. Voeroesmarty, Charles J. Wensnahan, Mark Wood, Eric F. Woodgate, Rebecca Yang, Daqing Zhang, Ke Zhang, Tingjun TI Analysis of the Arctic System for Freshwater Cycle Intensification: Observations and Expectations SO JOURNAL OF CLIMATE LA English DT Article ID MACKENZIE RIVER-BASIN; MOORED CURRENT METERS; PAST 4 DECADES; NORTHERN-HEMISPHERE; HYDROLOGIC-CYCLE; CLIMATE-CHANGE; SEA-ICE; ATLANTIC INFLOW; BEAUFORT GYRE; HEAT FLUXES AB Hydrologic cycle intensification is an expected manifestation of a warming climate. Although positive trends in several global average quantities have been reported, no previous studies have documented broad intensification across elements of the Arctic freshwater cycle (FWC). In this study, the authors examine the character and quantitative significance of changes in annual precipitation, evapotranspiration, and river discharge across the terrestrial pan-Arctic over the past several decades from observations and a suite of coupled general circulation models (GCMs). Trends in freshwater flux and storage derived from observations across the Arctic Ocean and surrounding seas are also described. With few exceptions, precipitation, evapotranspiration, and river discharge fluxes from observations and the GCMs exhibit positive trends. Significant positive trends above the 90% confidence level, however, are not present for all of the observations. Greater confidence in the GCM trends arises through lower interannual variability relative to trend magnitude. Put another way, intrinsic variability in the observations tends to limit confidence in trend robustness. Ocean fluxes are less certain, primarily because of the lack of long-term observations. Where available, salinity and volume flux data suggest some decrease in saltwater inflow to the Barents Sea (i.e., a decrease in freshwater outflow) in recent decades. A decline in freshwater storage across the central Arctic Ocean and suggestions that large-scale circulation plays a dominant role in freshwater trends raise questions as to whether Arctic Ocean freshwater flows are intensifying. Although oceanic fluxes of freshwater are highly variable and consistent trends are difficult to verify, the other components of the Arctic FWC do show consistent positive trends over recent decades. The broad-scale increases provide evidence that the Arctic FWCis experiencing intensification. Efforts that aim to develop an adequate observation system are needed to reduce uncertainties and to detect and document ongoing changes in all system components for further evidence of Arctic FWC intensification. C1 [Rawlins, Michael A.] Dartmouth Coll, Dept Earth Sci, Hanover, NH 03755 USA. [Steele, Michael; Wensnahan, Mark; Woodgate, Rebecca] Univ Washington, Appl Phys Lab, Polar Sci Ctr, Seattle, WA 98105 USA. [Holland, Marika M.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Adam, Jennifer C.] Washington State Univ, Dept Civil & Environm Engn, Pullman, WA 99164 USA. [Cherry, Jessica E.; Hinzman, Larry D.] Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK USA. [Francis, Jennifer A.] Rutgers State Univ, Inst Marine & Coastal Sci, Highlands, NJ USA. [Groisman, Pavel Ya.] UCAR, Natl Climat Data Ctr, Asheville, NC USA. [Huntington, Thomas G.] US Geol Survey, Augusta, ME USA. [Kane, Douglas L.; Yang, Daqing] Univ Alaska Fairbanks, Inst No Engn, Water & Environm Res Ctr, Fairbanks, AK USA. [Kimball, John S.; Zhang, Ke] Univ Montana, Numer Terradynam Simulat Grp, Missoula, MT 59812 USA. [Kwok, Ron; McDonald, Kyle C.; Podest, Erika] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Lammers, Richard B.; Pundsack, Jonathan W.; Shiklomanov, Alexander] Univ New Hampshire, Inst Study Earth Oceans & Space, Water Syst Anal Grp, Durham, NH 03824 USA. [Lee, Craig M.] Univ Washington, Appl Phys Lab, Ocean Phys Dept, Seattle, WA 98105 USA. [Lettenmaier, Dennis P.] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98105 USA. [Rudels, Bert] Univ Helsinki, Dept Phys Sci, Helsinki, Finland. [Rudels, Bert] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland. [Serreze, Mark C.; Zhang, Tingjun] Univ Colorado, Cooperat Inst Res Environm Sci, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA. [Skagseth, Oystein] Inst Marine Res, N-5024 Bergen, Norway. [Skagseth, Oystein] Bjerknes Ctr Climate Res, Bergen, Norway. [Troy, Tara J.; Wood, Eric F.] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. [Voeroesmarty, Charles J.] CUNY, Dept Civil Engn, New York, NY 10021 USA. RP Rawlins, MA (reprint author), Univ Massachusetts, Dept Geosci, Amherst, MA 01003 USA. EM rawlins@geo.umass.edu RI Kwok, Ron/A-9762-2008; Zhang, Ke/B-3227-2012; Hinzman, Larry/B-3309-2013; lettenmaier, dennis/F-8780-2011; Shiklomanov, Alexander/C-5521-2014; OI Huntington, Thomas/0000-0002-9427-3530; Kwok, Ron/0000-0003-4051-5896; Zhang, Ke/0000-0001-5288-9372; Hinzman, Larry/0000-0002-5878-6814; lettenmaier, dennis/0000-0003-3317-1327; Troy, Tara/0000-0001-5366-0633 FU National Science Foundation's Office of Polar Programs; NASA [NNG06GE43G, NNH04AA66I, NNH08AI57I, NNX08AN58G]; NSF [ARC-0531040, ARC-0531302, ARC-0612062, ARC-0629471, ARC-0632154, ARC-0632231, ARC-0633885, ARC-0652838, ARC-0805789, OPP-0229705, OPP-0230083, OPP-0230211, OPP-0230381, OPP-0328686, OPP-0335941, OPP-0352754]; New Hampshire Space Grant Consortium FX We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP's Working Group on Coupled Modeling (WGCM) for their roles in making available the WCRP CMIP3 multimodel dataset. Support of this dataset is provided by the Office of Science, U.S. Department of Energy. We gratefully acknowledge funding from the National Science Foundation's Office of Polar Programs through the Freshwater Integration Project and from NASA's Cryosphere Program. Funding was provided through NSF Grants ARC-0531040, ARC-0531302, ARC-0612062, ARC-0629471, ARC-0632154, ARC-0632231, ARC-0633885, ARC-0652838, ARC-0805789, OPP-0229705, OPP-0230083, OPP-0230211, OPP-0230381, OPP-0328686, OPP-0335941, and OPP-0352754 and NASA Grants NNG06GE43G, NNH04AA66I, NNH08AI57I, and NNX08AN58G. The lead author was supported by fellowships from the NASA Postdoctoral Program and the New Hampshire Space Grant Consortium. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 154 TC 99 Z9 99 U1 5 U2 50 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD NOV PY 2010 VL 23 IS 21 BP 5715 EP 5737 DI 10.1175/2010JCLI3421.1 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 683HG UT WOS:000284463700010 ER PT J AU Templeton, BA Cox, DE Kenny, SP Ahmadian, M Southward, SC AF Templeton, Brian A. Cox, David E. Kenny, Sean P. Ahmadian, Mehdi Southward, Steve C. TI On Controlling an Uncertain System With Polynomial Chaos and H-2 Control Design SO JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME LA English DT Article DE polynomial chaos; orthogonal polynomials; parametric uncertainty; optimal control; H-2 control; LQR ID STABILITY AB This paper applies the H-2 norm along time and parameter domains. The norm is related to the probabilistic H-2 problem. It is calculated using polynomial chaos to handle uncertainty in the plant model. The structure of expanded states resulting from Galerkin projections of a state space model with uncertain parameters is used to formulate cost functions in terms of mean performances of the states, as well as covariances. Also, bounds on the norm are described in terms of linear matrix inequalitys. The form of the gradient of the norm, which can be used in optimization, is given as a Lyapunov equation. Additionally, this approach can be used to solve the related probabilistic LQR problem. The legitimacy of the concept is demonstrated through two mechanical oscillator examples. These controllers could be easily implemented on physical systems without observing uncertain parameters. [DOI: 10.1115/1.4002474] C1 [Templeton, Brian A.; Ahmadian, Mehdi] Virginia Tech, Ctr Vehicle Syst & Safety, Blacksburg, VA 24061 USA. [Cox, David E.; Kenny, Sean P.] NASA, Langley Res Ctr, Dynam Syst & Control Branch, Hampton, VA 23681 USA. [Southward, Steve C.] Virginia Tech, Ctr Vehicle Syst & Safety, Danville, VA 24540 USA. RP Templeton, BA (reprint author), Virginia Tech, Ctr Vehicle Syst & Safety, Blacksburg, VA 24061 USA. EM batemple@vt.edu; david.e.cox@nasa.gov; sean.p.kenny@nasa.gov; ahmadian@vt.edu; scsouth@vt.edu RI Southward, Steve/F-2457-2014 FU NASA [NNL05AA18A] FX This research was partially supported through NASA Grant No. NNL05AA18A. NR 27 TC 2 Z9 2 U1 0 U2 5 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-0434 J9 J DYN SYST-T ASME JI J. Dyn. Syst. Meas. Control-Trans. ASME PD NOV PY 2010 VL 132 IS 6 AR 061304 DI 10.1115/1.4002474 PG 9 WC Automation & Control Systems; Instruments & Instrumentation SC Automation & Control Systems; Instruments & Instrumentation GA 681LV UT WOS:000284317800008 ER PT J AU Potter, SLP Holmqvist, F Platonov, PG Steding, K Arheden, H Pahlm, O Starc, V McKenna, WJ Schlegel, TT AF Potter, Samara L. Poplack Holmqvist, Fredrik Platonov, Pyotr G. Steding, Katarina Arheden, Hakan Pahlm, Olle Starc, Vito McKenna, William J. Schlegel, Todd T. TI Detection of hypertrophic cardiomyopathy is improved when using advanced rather than strictly conventional 12-lead electrocardiogram SO JOURNAL OF ELECTROCARDIOLOGY LA English DT Article DE QRS-T angle; QT variability; Sudden cardiac death; Athletes' heart; Screening ID QT-INTERVAL VARIABILITY; T-WAVE MORPHOLOGY; REPOLARIZATION LABILITY; MYOCARDIAL-ISCHEMIA; HEART-FAILURE; DISEASE; DEATH; VECTORCARDIOGRAM; COMMUNITIES; POPULATION AB Introduction: Twelve-lead electrocardiogram (ECG) is used to screen for hypertrophic cardiomyopathy (HCM), but up to 25% of HCM patients do not have distinctly abnormal ECGs, whereas up to 5% to 15% of healthy athletes do. We hypothesized that an approximately 5-minute resting advanced 12-lead ECG test ("A-ECG score") could detect HCM with greater sensitivity than pooled conventional ECG criteria and distinguish healthy athletes from HCM with greater specificity. Materials and methods: Five-minute 12-lead ECGs were obtained from 56 HCM patients, 56 age/sex-matched healthy controls, and 69 younger endurance-trained athletes. Electrocardiograms were analyzed using recently suggested pooled conventional ECG criteria and also A-ECG scoring techniques that considered results from multiple advanced and conventional ECG parameters. Results: Compared with pooled criteria from the strictly conventional ECG, an A-ECG logistic score incorporating results from just 3 advanced ECG parameters (spatial QRS-T angle, unexplained portion of QT variability, and T-wave principal component analysis ratio) increased the sensitivity of ECG for identifying HCM from 89% (78%-96%) to 98% (89%-100%; P = .025), while increasing specificity from 90% (83%-94%) to 95% (92%-99%; P = .020). Conclusions: Resting 12-lead A-ECG scores that are simultaneously more sensitive than pooled conventional ECG criteria for detecting HCM and more specific for distinguishing healthy athletes and other healthy controls from HCM can be constructed. Pending further prospective validation, such scores may lead to improved ECG-based screening for HCM. Published by Elsevier Inc. C1 [Schlegel, Todd T.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Potter, Samara L. Poplack] Natl Space Biomed Res Inst, Houston, TX USA. [Potter, Samara L. Poplack] Baylor Coll Med, Houston, TX 77030 USA. [Holmqvist, Fredrik; Platonov, Pyotr G.] Univ Lund Hosp, Dept Cardiol, S-22185 Lund, Sweden. [Steding, Katarina; Arheden, Hakan; Pahlm, Olle] Univ Lund Hosp, Dept Clin Physiol, S-22185 Lund, Sweden. [Starc, Vito] Univ Ljubljana, Inst Physiol, Ljubljana, Slovenia. [McKenna, William J.] UCL, Heart Hosp, London, England. RP Schlegel, TT (reprint author), NASA, Lyndon B Johnson Space Ctr, Mail Code SK3, Houston, TX 77058 USA. EM todd.t.schlegel@nasa.gov RI McKenna, William/C-3243-2008 OI McKenna, William/0000-0001-7994-2460 FU National Space Biomedical Research Institute, Houston, TX; Johnson Space Center Technology; Swedish National Health Service; Swedish Research Council; Swedish Heart Lung Foundation; Lund University FX The authors thank Drs Walter Kulecz, Jonas Carlson, E. Carl Greco, and Jude DePalma for programming assistance; Dr Alan Feiveson for statistical assistance; and Dr Elin Tragardh-Johansson, Linda Byrd, and Rori Yager for data collection assistance. This work was supported by the National Space Biomedical Research Institute, Houston, TX (Summer Student Internship Program); Johnson Space Center Technology Investment funds; the Swedish National Health Service; the Swedish Research Council; the Swedish Heart Lung Foundation; and the Lund University Medical Faculty. NR 41 TC 16 Z9 16 U1 0 U2 2 PU CHURCHILL LIVINGSTONE INC MEDICAL PUBLISHERS PI PHILADELPHIA PA CURTIS CENTER, INDEPENDENCE SQUARE WEST, PHILADELPHIA, PA 19106-3399 USA SN 0022-0736 J9 J ELECTROCARDIOL JI J. Electrocardiol. PD NOV-DEC PY 2010 VL 43 IS 6 BP 713 EP 718 DI 10.1016/j.jelectrocard.2010.08.010 PG 6 WC Cardiac & Cardiovascular Systems SC Cardiovascular System & Cardiology GA 683YR UT WOS:000284514700042 PM 21040828 ER PT J AU Wolf, MT Assad, C Kuwata, Y Howard, A Aghazarian, H Zhu, D Lu, T Trebi-Ollennu, A Huntsberger, T AF Wolf, Michael T. Assad, Christopher Kuwata, Yoshiaki Howard, Andrew Aghazarian, Hrand Zhu, David Lu, Thomas Trebi-Ollennu, Ashitey Huntsberger, Terry TI 360-Degree Visual Detection and Target Tracking on an Autonomous Surface Vehicle SO JOURNAL OF FIELD ROBOTICS LA English DT Article ID MULTIROBOT SYSTEMS AB This paper describes perception and planning systems of an autonomous sea surface vehicle (ASV) whose goal is to detect and track other vessels at medium to long ranges and execute responses to determine whether the vessel is adversarial. The jet Propulsion Laboratory (JPL) has developed a tightly integrated system called CARACaS (Control Architecture for Robotic Agent Command and Sensing) that blends the sensing, planning, and behavior autonomy necessary for such missions. Two patrol scenarios are addressed here: one in which the ASV patrols a large harbor region and checks for vessels near a fixed asset on each pass and one in which the ASV circles a fixed asset and intercepts approaching vessels. This paper focuses on the ASV's central perception and situation awareness system, dubbed Surface Autonomous Visual Analysis and Tracking (SAVAnT), which receives images from an omnidirectional camera head, identifies objects of interest in these images, and probabilistically tracks the objects' presence over time, even as they may exist outside of the vehicle's sensor range. The integrated CARACaS/SAVAnT system has been implemented on U.S. Navy experimental ASVs and tested in on-water field demonstrations. (c) 2010 Wiley Periodicals, Inc. C1 [Wolf, Michael T.; Assad, Christopher; Kuwata, Yoshiaki; Howard, Andrew; Aghazarian, Hrand; Zhu, David; Lu, Thomas; Trebi-Ollennu, Ashitey; Huntsberger, Terry] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Wolf, MT (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM wolf@jpl.nasa.gov FU Office of Naval Research [33, N00014-09-IP-2-0008]; Spatial Integrated Systems, Inc. (NASA) [NMO716027] FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Funding for this work was provided by the Office of Naval Research, Code 33 (Contract #N00014-09-IP-2-0008), and Spatial Integrated Systems, Inc. (NASA Space Act Agreement Contract #NMO716027). Finally, we wish to thank David Trotz, Robert Steele, Harry Balian, Lucas Scharenbroich, Mike Garrett, Lee Magnone, Tien-Hsin Chao, the NAVSEA boat drivers, SIS, and Seaward Systems for their valuable contributions to this project. NR 19 TC 13 Z9 13 U1 0 U2 9 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1556-4959 J9 J FIELD ROBOT JI J. Field Robot. PD NOV-DEC PY 2010 VL 27 IS 6 SI SI BP 819 EP 833 DI 10.1002/rob.20371 PG 15 WC Robotics SC Robotics GA 670BJ UT WOS:000283394900008 ER PT J AU Chen, NY Sridhar, B AF Chen, Neil Y. Sridhar, Banavar TI Management-Action-Embedded Sector-Demand Prediction Models SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article; Proceedings Paper CT AIAA Guidance, Navigation and Control Conference CY AUG 10-13, 2009 CL Chicago, IL SP Amer Inst Aeronaut & Astronaut AB This paper describes a class of traffic flow management action embedded sector demand prediction models The models consist of the open loop prediction, which is the prediction without management action, and the management action model The use of periodic autoregressive modeling approach enables the model to capture both the midterm (30 min to 2 h) trend based on the historical data and the short term (less than 30 min) transient response based on recent observations For severe weather days, both storm precipitation and echo tops were used to form a weather Index to approximate the management actions due to reduced capacity In addition to traditional trajectory based sector demand prediction methods, which predict only the open loop behavior of the National Airspace System adequately for short durations of up to 20 min and are vulnerable to uncertainties, this class of models provides a reliable short to midterm (both open and closed loop) sector demand prediction that accounts for various traffic flow management actions A combination of closed loop and open loop models provide decision makers the full range of traffic behavior C1 [Chen, Neil Y.] NASA, Ames Res Ctr, Syst Modeling & Optimizat Branch, Moffett Field, CA 94035 USA. [Sridhar, Banavar] NASA, Ames Res Ctr, Aviat Syst Div, Moffett Field, CA 94035 USA. RP Chen, NY (reprint author), NASA, Ames Res Ctr, Syst Modeling & Optimizat Branch, Mail Stop 210 10, Moffett Field, CA 94035 USA. NR 0 TC 3 Z9 3 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD NOV-DEC PY 2010 VL 33 IS 6 BP 1892 EP 1898 DI 10.2514/1.46903 PG 7 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 684QE UT WOS:000284563600019 ER PT J AU Anderson, RL Lo, MW AF Anderson, Rodney L. Lo, Martin W. TI Dynamical Systems Analysis of Planetary Flybys and Approach: Planar Europa Orbiter SO JOURNAL OF GUIDANCE CONTROL AND DYNAMICS LA English DT Article; Proceedings Paper CT AIAA/AAS Astrodynamics Specialist Conference CY AUG 15-29, 2004 CL Providence, RI SP Amer Inst Aeronaut & Astronaut, AAS AB In this analysis, the relationship between a planar Europa Orbiter trajectory and the invariant manifolds of resonant periodic orbits is studied An Understanding of this trajectory with its large impulsive maneuvers should provide basic tools that can be extended to cases that approximate low thrust with many small maneuvers This study therefore represents a step in understanding low thrust trajectories Unstable resonant orbits are computed along with their invariant manifolds in order to examine the resonance transitions that the planar Europa Orbiter trajectory travels through The stable manifold of a Lyapunov orbit at the L(2) libration point is used to show why a 5 6 resonance is necessary at this energy for capture around Europa C1 [Anderson, Rodney L.] Univ Colorado, Colorado Ctr Astrodynam Res Aerosp Engn Sci, Boulder, CO 80309 USA. [Lo, Martin W.] CALTECH, Jet Prop Lab, High Capabil Comp & Modeling Grp, Pasadena, CA 91109 USA. RP Anderson, RL (reprint author), Univ Colorado, Colorado Ctr Astrodynam Res Aerosp Engn Sci, Campus Box 431 UCB, Boulder, CO 80309 USA. OI Anderson, Rodney/0000-0001-5336-2775 NR 0 TC 13 Z9 13 U1 1 U2 4 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0731-5090 J9 J GUID CONTROL DYNAM JI J. Guid. Control Dyn. PD NOV-DEC PY 2010 VL 33 IS 6 BP 1899 EP 1912 DI 10.2514/1.45060 PG 14 WC Engineering, Aerospace; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 684QE UT WOS:000284563600020 ER PT J AU Pan, FF Peters-Lidard, CD King, AW AF Pan, Feifei Peters-Lidard, Christa D. King, Anthony W. TI Inverse Method for Estimating the Spatial Variability of Soil Particle Size Distribution from Observed Soil Moisture SO JOURNAL OF HYDROLOGIC ENGINEERING LA English DT Article DE Soil particle size distribution (PSD); Soil moisture; Inverse method ID MAP UNITS; HETEROGENEOUS SOILS; WATER-BALANCE; VARIANCE; INFILTRATION; OPTIMIZATION; PARAMETERS; TEXTURE AB Soil particle size distribution (PSD) (i.e., clay, silt, sand, and rock contents) information is one of critical factors for understanding water cycle since it affects almost all of water cycle processes, e. g., drainage, runoff, soil moisture, evaporation, and evapotranspiration. With information about soil PSD, we can estimate almost all soil hydraulic properties (e.g., saturated soil moisture, field capacity, wilting point, residual soil moisture, saturated hydraulic conductivity, pore-size distribution index, and bubbling capillary pressure) based on published empirical relationships. Therefore, a regional or global soil PSD database is essential for studying water cycle regionally or globally. At the present stage, three soil geographic databases are commonly used, i.e., the Soil Survey Geographic database, the State Soil Geographic database, and the National Soil Geographic database. Those soil data are map unit based and associated with great uncertainty. Ground soil surveys are a way to reduce this uncertainty. However, ground surveys are time consuming and labor intensive. In this study, an inverse method for estimating mean and standard deviation of soil PSD from observed soil moisture is proposed and applied to Throughfall Displacement Experiment sites in Walker Branch Watershed in eastern Tennessee. This method is based on the relationship between spatial mean and standard deviation of soil moisture. The results indicate that the suggested method is feasible and has potential for retrieving soil PSD information globally from remotely sensed soil moisture data. C1 [Pan, Feifei] Univ N Texas, Dept Geog, Denton, TX 76203 USA. [Peters-Lidard, Christa D.] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA. [King, Anthony W.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Pan, FF (reprint author), Univ N Texas, Dept Geog, Denton, TX 76203 USA. EM feifei.pan@unt.edu RI Pan, Feifei/D-3370-2015; Peters-Lidard, Christa/E-1429-2012 OI Pan, Feifei/0000-0003-4373-7566; Peters-Lidard, Christa/0000-0003-1255-2876 FU Oak Ridge Associated Universities (ORAU) FX The writers would like to thank P. J. Hanson for providing soil moisture and soil texture data used in this study, and four anonymous referees for their useful comments and suggestions. This research was partially supported by the Oak Ridge Associated Universities (ORAU) Ralph E. Powe Junior Faculty Enhancement Award (Pan). NR 35 TC 1 Z9 1 U1 3 U2 15 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 1084-0699 J9 J HYDROL ENG JI J. Hydrol. Eng. PD NOV PY 2010 VL 15 IS 11 BP 931 EP 938 DI 10.1061/(ASCE)HE.1943-5584.0000274 PG 8 WC Engineering, Civil; Environmental Sciences; Water Resources SC Engineering; Environmental Sciences & Ecology; Water Resources GA 667ND UT WOS:000283199300010 ER PT J AU Devi, VM Benner, DC Miller, CE Predoi-Cross, A AF Devi, V. Malathy Benner, D. Chris Miller, C. E. Predoi-Cross, A. TI Lorentz half-width, pressure-induced shift and speed-dependent coefficients in oxygen-broadened CO2 bands at 6227 and 6348 cm(-1) using a constrained multispectrum analysis SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE CO2; O-2 broadening; Fourier transform infrared (FTIR); spectroscopy; Spectral lineshapes; Pressure-induced shifts; Speed dependence; Near infrared ID MOLECULAR SPECTROSCOPIC DATABASE; LASER SPECTROSCOPY; LINE PARAMETERS; MU-M; INTENSITIES; TRANSITIONS; REGION; AIR; AR AB The McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory (NSO) on Kitt Peak, Arizona, was used to record infrared high resolution absorption spectra of CO2 spectra broadened by O-2. These spectra were analyzed to measure O-2-broadened half-width coefficients, O-2-induced pressure-shift coefficients and speed dependent parameters for transitions in the 30013 <- 00001 and 30012 <- 00001 bands of (OCO)-O-16-C-12-O-6 located near 6227 and 6348 cm(-1), respectively. All spectra were obtained at room temperature using the long path, 6 m base path White cell available at NSO. A multispectrum nonlinear least-squares fitting algorithm employing Voigt line shapes modified to include line mixing and speed dependence was used to fit simultaneously a total of 19 spectra in the 6120-6280 cm(-1) (30013 <- 00001) and 6280-6395 cm(-1) (30012 <- 00001) spectral regions. 16 of the 19 spectra analyzed in this work were self broadened and three spectra were lean mixtures of CO2 in O-2. The volume mixing ratios of CO2 in the three spectra varied between 0.06 and 0.1. Lorentz half-width and pressure-induced shift coefficients were measured for all transitions in the P(50)-R(50) range in both vibrational bands. The results obtained from present analysis have been compared with measurements available in the literature for self-, air-, oxygen- and argon-broadening. No significant differences were observed between the broadening and shift coefficients of the two bands. The N-2-broadened half-width and pressure-shift coefficients were computed from measured air- and O-2-broadened width and shift coefficients. (C) 2010 Published by Elsevier Ltd. C1 [Devi, V. Malathy; Benner, D. Chris] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Miller, C. E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Predoi-Cross, A.] Univ Lethbridge, Dept Phys & Astron, Lethbridge, AB T1K 3M4, Canada. RP Devi, VM (reprint author), Coll William & Mary, Dept Phys, Box 8795, Williamsburg, VA 23187 USA. EM m.d.venkataraman@larc.nasa.gov FU National Science Foundation [ATM-0338475]; National Aeronautics and Space Administration; Natural Sciences and Engineering Research Council of Canada FX The material presented in this investigation is based upon work supported by the National Science Foundation under Grant no. ATM-0338475 to the College of William and Mary. The research at the Jet Propulsion Laboratory (JPL), California Institute of Technology, was performed under contract with National Aeronautics and Space Administration. The authors express sincere appreciation to M. Dulick of the National Optical Astronomy Observatory for assistance in obtaining the data. We thank NASA's Upper Atmosphere Research Program for support of the McMath-Pierce laboratory facility. CEM thanks NASA's Tropospheric Chemistry and Atmospheric Composition programs for support. A. Predoi-Cross is grateful for the support for this project provided by the Natural Sciences and Engineering Research Council of Canada. NR 23 TC 13 Z9 12 U1 0 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD NOV PY 2010 VL 111 IS 16 BP 2355 EP 2369 DI 10.1016/j.jqsrt.2010.06.003 PG 15 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 655LW UT WOS:000282252500001 ER PT J AU Devi, VM Benner, DC Rinsland, CP Smith, MAH Sams, RL Blake, TA Flaud, JM Sung, K Brown, LR Mantz, AW AF Devi, V. Malathy Benner, D. Chris Rinsland, C. P. Smith, M. A. H. Sams, R. L. Blake, T. A. Flaud, Jean-Marie Sung, Keeyoon Brown, L. R. Mantz, A. W. TI Multispectrum measurements of spectral line parameters including temperature dependences of N-2- and self-broadened half-width coefficients in the region of the v(9) band of (C2H6)-C-12 SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Ethane; Positions; Intensities; Line shapes; Fourier transform spectra; Pressure-broadened widths; Self broadening; Nitrogen broadening; Temperature dependence ID MOLECULAR SPECTROSCOPIC DATABASE; INTERNAL-ROTATION; ETHANE; ATMOSPHERE; SPLITTINGS; GAS AB Ethane is a prominent contributor to the spectrum of Titan, particularly in the V-9 region centered near 822 cm(-1) To improve the spectroscopic line parameters at 12 mu m, 41 high-resolution (0 0016-0 005 cm(-1)) absorption spectra of C2H6 were obtained at sample temperatures between 211 and 298 K with the Bruker IFS 120HR at the Pacific Northwest National Laboratory (PNNL) in Richland. Washington Two additional spectra were later recorded at similar to 150 K using a new temperature-stabilized cryogenic cell designed for the sample compartment of the Brukei IFS 125HR at the Jet Propulsion Laboratory (JPL) in Pasadena, California A multispectrum nonlinear least-squares fitting program was applied simultaneously to all 43 spectra to measure the line positions, intensities. N-2- and self-broadened half-width coefficients and their temperature dependences. Reliable pressure-induced shift coefficients could not be obtained, however, because of the high congestion of spectral lines (due to torsional-split components. hot-band transitions as well as blends). Existing theoretical modeling of this very complicated v(9) region permitted effective control of the multispectrum fitting technique. some constraints were applied using predicted intensity ratios, doublet separations, half-width coefficients and their temperature dependence exponents in order to determine reliable parameters for each of the two torsional-split components For (C2H6)-C-12, the resulting retrievals included 17 (P)Q and (r)Q sub-bands of v9 (as well as some P-p, R-r sub-bands). Positions and intensities were measured for 3771 transitions, and a puzzling difference between previously measured v9 intensities was clarified. In addition, line positions and intensities were obtained for two (C2H6)-C-12 hot bands (v(9) + v(4) - v(4,) v(9) + 2v(4)-2v(4)) and the v(9) band of (CCH6)-C-13-C-12, as well as several hundred presently unidentified transitions N2- and self-broadened half-width coefficients were determined for over 1700 transitions, along with 1350 corresponding temperature dependence exponents Similar to N2- and self-broadened half-width coefficients, their temperature dependence exponents were also found to follow distinctively different patterns However, while the self- and N-2-broaded widths differed by 40%. the temperature dependence exponents of the two broadening gases were similar The variations of the observed half-width coefficients and their temperature dependences with respect to J, K quantum numbers were modeled with a set of linear equations for each K. The present broadening coefficients compared well with some of the prior measurements. (C) 2010 Elsevier Ltd All rights reserved C1 [Devi, V. Malathy; Benner, D. Chris] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Rinsland, C. P.; Smith, M. A. H.] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. [Sams, R. L.; Blake, T. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Flaud, Jean-Marie] Univ Paris Est, CNRS, UMR 7583, Lab Interuniv Syst Atmospher, F-94010 Creteil, France. [Flaud, Jean-Marie] Univ Paris 07, CNRS, UMR 7583, Lab Interuniv Syst Atmospher, F-94010 Creteil, France. [Sung, Keeyoon; Brown, L. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Mantz, A. W.] Connecticut Coll, Dept Phys Astron & Geophys, New London, CT 06320 USA. RP Devi, VM (reprint author), Coll William & Mary, Dept Phys, Box 8795, Williamsburg, VA 23187 USA. RI Sung, Keeyoon/I-6533-2015 FU Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory (PNNL); Department of Energy [DE-AC05-76RL01830]; Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration; NASA Langley Research Center; College of William and Mary; NASA FX Most of the experimental spectra for the present study were recorded at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the United States Department of Energy by the Battelle Memorial Institute under Contract DE-AC05-76RL01830. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NASA's Planetary Atmospheres program supported the work performed at NASA Langley Research Center and the College of William and Mary. The research at the Connecticut College was performed under contracts and grants with NASA NR 25 TC 14 Z9 14 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD NOV PY 2010 VL 111 IS 17-18 BP 2481 EP 2504 DI 10.1016/j.jqsrt.2010.07.010 PG 24 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 670FA UT WOS:000283405400001 ER PT J AU Baum, BA Yang, P Hu, YX Feng, QA AF Baum, Bryan A. Yang, Ping Hu, Yong-Xiang Feng, Qian TI The impact of ice particle roughness on the scattering phase matrix SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Ice crystals; Polarized reflectance; Scattering; Radiative transfer; Clouds ID CIRRUS CLOUDS; OPTICAL-PROPERTIES; SURFACE-ROUGHNESS; LIGHT-SCATTERING; POLARIZED-LIGHT; MUELLER MATRIX; CRYSTALS; RETRIEVAL; PRODUCTS; MODELS AB The goal of this study is to explore the influence of ice particle habit (or shape) and surface roughness on the scattering phase matrix As an example, reported here are the results for two wavelengths: 067 and 1.61 mu m For this effort, a database of single-scattering properties has been computed for a set of habits including hexagonal plates, hollow and solid columns, hollow and solid 3D bullet rosettes, droxtals, aggregates of solid columns, and aggregates of plates. The database provides properties for each of the habits at 101 wavelengths between 045 and 224 pm for smooth, moderately roughened, and severely roughened particles. At each wavelength, the scattering properties are provided at 233 discrete particle diameters ranging from 2 to 10,000 pm. A single particle size distribution from a very cold ice cloud sampled during the CRYSTAL-FACE field campaign (T-ctd=-76 degrees C) is used to illustrate the influence of habit and roughness on the phase matrix In all, four different habit mixtures are evaluated The nonzero elements of the phase matrix are shown to be quite sensitive to the assumed habit, particularly in the case of -P-12/P-11 that is associated with the degree of linear polarization of scattered radiation Surface roughness is shown to smooth out maxima in the scattering phase function and in the other elements of the, phase matrix, consistent with other studies. To compare with the theoretical simulations of the phase matrix for smooth and roughened particles, a full year of cloud-aerosol lidar with orthogonal polarization (CALIOP) data from 2008 is analyzed to provide global statistics on the values of P-11 and P-22/P-11 in the backscattering direction In a comparison of two of the habit mixtures (one used for MODIS Collection 5 and another that incorporates new habits including hollow bullet rosettes and aggregates of plates) with the CALIOP data, the values for P-11 are higher regardless of the degree of particle surface roughness, and the values for P-22/P-11 are lower than those for CALIOP. Further investigation is warranted to better understand this discrepancy. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Baum, Bryan A.] Univ Wisconsin Madison, Ctr Space Sci & Engn, Madison, WI 53706 USA. [Yang, Ping; Feng, Qian] Texas A&M Univ, College Stn, TX USA. [Hu, Yong-Xiang] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Baum, BA (reprint author), Univ Wisconsin Madison, Ctr Space Sci & Engn, 1225 W Dayton St, Madison, WI 53706 USA. RI Yang, Ping/B-4590-2011; Hu, Yongxiang/K-4426-2012; Baum, Bryan/B-7670-2011 OI Baum, Bryan/0000-0002-7193-2767 FU NASA [NNX08A181G, NNX08AI94G] FX Drs Baum and Yang gratefully acknowledge the funding of this work through a NASA grant (NNX08A181G), and note the support and encouragement of Dr. Hal Maring at NASA headquarters Dr. Yang's research is also partly supported by another NASA grant (NNX08AI94G) supervised by Dr. Charles Trepte as the technical officer NR 35 TC 31 Z9 31 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD NOV PY 2010 VL 111 IS 17-18 BP 2534 EP 2549 DI 10.1016/j.jqsrt.2010.07.008 PG 16 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 670FA UT WOS:000283405400006 ER PT J AU Neuman, M Tissot, B Vanblaricom, G AF Neuman, Melissa Tissot, Brian Vanblaricom, Glenn TI OVERALL STATUS AND THREATS ASSESSMENT OF BLACK ABALONE (HALIOTIS CRACHERODII LEACH, 1814) POPULATIONS IN CALIFORNIA SO JOURNAL OF SHELLFISH RESEARCH LA English DT Article; Proceedings Paper CT 7th International Symposium on Abalone Biology, Fisheries and Culture CY JUL 19-24, 2009 CL Pattaya, THAILAND SP Int Abalone Soc, Marine Sci Assoc Thailand, Aquat Resources Res Inst, Fac Sci Chulalongkorn Univ DE Allee effect; black abalone; depensation; Haliotis cracherodii; endangered species; long-term trends in abundance; threats assessment; withering syndrome ID WITHERING SYNDROME; GENETIC-STRUCTURE; MASS MORTALITY; COAST; RECRUITMENT; DECLINES; RECOVERY; ISLANDS; CO2 AB The black abalone (Haliolitis cracherodii Leach, 1814) is a relatively large prosobranch gastropod mollusc ranging from approximately Point Arena in northern California to Bahia Tortugas and Isla Guadalupe, Mexico. In the United States, populations of black abalone on offshore islands, especially those of southern California, were particularly large prior to the mid 1980s. Analysis of long-term fishery-dependent and -independent data revealed that fishing pressure in combination with a lethal disease, withering syndrome, has resulted in mass mortalities of 95% or greater in black abalone populations south of Monterey County, CA. Reduction in local densities below the threshold necessary for successful fertilization (0.34/m(2)) has been a widespread and pervasive consequence of population reductions by withering syndrome and other factors. The most significant current and future threat that the black abalone faces is that imposed by the spread of withering syndrome, known to be enhanced by periods of ocean warming. Other factors, such as illegal take, ocean pollution, and natural predation, also pose risks to remaining populations and those that may be restored via active management in the future. Without identification, development, and implementation of effective measures to counter the population-level effects of withering syndrome, remaining black abalone populations may experience further declines. C1 [Neuman, Melissa] NOAA, Natl Marine Fisheries Serv, Long Beach, CA 90802 USA. [Tissot, Brian] Washington State Univ, Sch Earth & Environm Sci, Vancouver, WA 98686 USA. [Vanblaricom, Glenn] Univ Washington, Sch Aquat & Fishery Sci, Washington Cooperat Fish & Wildlife Res Unit, Seattle, WA 98195 USA. RP Neuman, M (reprint author), NOAA, Natl Marine Fisheries Serv, 501 W Ocean Blvd,Suite 4200, Long Beach, CA 90802 USA. EM Melissa.Neuman@noaa.gov NR 48 TC 15 Z9 15 U1 2 U2 37 PU NATL SHELLFISHERIES ASSOC PI GROTON PA C/O DR. SANDRA E. SHUMWAY, UNIV CONNECTICUT, 1080 SHENNECOSSETT RD, GROTON, CT 06340 USA SN 0730-8000 J9 J SHELLFISH RES JI J. Shellfish Res. PD NOV PY 2010 VL 29 IS 3 BP 577 EP 586 DI 10.2983/035.029.0305 PG 10 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA 679BU UT WOS:000284135200004 ER PT J AU Zhang, CD Ling, JA Hagos, S Tao, WK Lang, S Takayabu, YN Shige, S Katsumata, M Olson, WS L'Ecuyer, T AF Zhang, Chidong Ling, Jian Hagos, Samson Tao, Wei-Kuo Lang, Steve Takayabu, Yukari N. Shige, Shoichi Katsumata, Masaki Olson, William S. L'Ecuyer, Tristan TI MJO Signals in Latent Heating: Results from TRMM Retrievals SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID MADDEN-JULIAN OSCILLATION; CLOUD-RESOLVING MODEL; STATIC ENERGY BUDGET; SPECTRAL RETRIEVAL; PART I; TROPICAL CONVECTION; TOGA COARE; PR DATA; INTRASEASONAL OSCILLATION; STRATIFORM PRECIPITATION AB Four Tropical Rainfall Measuring Mission (TRMM) datasets of latent heating were diagnosed for signals in the Madden-Julian oscillation (MJO) In all four datasets vertical structures of latent heating are dominated by two components one deep with its peak above the melting level and one shallow with its peak below Profiles of the two components are nearly ubiquitous in longitude allowing a separation of the vertical and zonal/temporal variations when the latitudinal dependence is not considered All four datasets exhibit robust MJO spectral signals in the deep component as eastward propagating spectral peaks centered at a period of 50 days and zonal wavenumber 1 well distinguished from lower and higher frequency power and much stronger than the corresponding westward power The shallow component shows similar but slightly less robust MJO spectral peaks MJO signals were further extracted front a combination of bandpass (30-90 day) filtered deep and shallow components Largest amplitudes of both deep and shallow components of the MJO are confined to the Indian and western Pacific Oceans There is a local minimum in the deep components over the Maritime Continent The shallow components of the MJO differ substantially) among the four TRMM datasets in their detailed zonal distributions in the Eastern Hemisphere In composites of the heating evolution through the life cycle of the MJO the shallow components lead the deep ones in some datasets and at certain longitudes In many respects the four TRMM datasets agree well in their deep components but not in their shallow components and in the phase relations between the deep and shallow components These results indicate that caution must be exercised in applications of these latent heating data C1 [Zhang, Chidong] Univ Miami, RSMAS, MPO, Miami, FL 33149 USA. [Tao, Wei-Kuo; Lang, Steve] NASA, GSFC, Greenbelt, MD USA. [Takayabu, Yukari N.] Univ Tokyo, Ctr Climate Syst Res, Tokyo, Japan. [Shige, Shoichi] Kyoto Univ, Grad Sch Sci, Kyoto, Japan. [Katsumata, Masaki] Japan Agcy Marine Earth Sci & Technol, RIGC, Yokosuka, Kanagawa 2370061, Japan. [Olson, William S.] Univ Maryland Baltimore Cty, JCET, Baltimore, MD 21228 USA. [L'Ecuyer, Tristan] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Zhang, CD (reprint author), Univ Miami, RSMAS, MPO, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. RI Ling, Jian/I-3781-2012; hagos, samson /K-5556-2012; L'Ecuyer, Tristan/C-7040-2013; L'Ecuyer, Tristan/E-5607-2012; PMM, JAXA/K-8537-2016 OI L'Ecuyer, Tristan/0000-0002-7584-4836; FU NASA [NNX07AD41G] FX The authors thank David Raymond and two anonymous reviewers for their constructive comments, which helped improve the presentation of this study This study was supported by NASA Grant NNX07AD41G NR 70 TC 25 Z9 25 U1 0 U2 15 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD NOV PY 2010 VL 67 IS 11 BP 3488 EP 3508 DI 10.1175/2010JAS3398.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 686ZI UT WOS:000284740600004 ER PT J AU Varnai, T AF Varnai, Tamas TI Multiyear Statistics of 2D Shortwave Radiative Effects at Three ARM Sites SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID CLOUDS; MODEL; ATMOSPHERE; SCATTERING; FLUXES; IMPACT AB This study examines the importance of horizontal photon transport effects which are not considered in the 1D calculations of solar radiative heating used by most atmospheric dynamical model In pal ocular the paper analyzes the difference between 2D and 1D radiative calculations for 2D vertical cross sections of clouds that were observed at three sites over 2-3 yr periods The results show that 2D effects increase multi year 24 h average total solar absorption by about 4 1 1 2 and 0 3 W m(-2) at tropical midlatitude and arctic sites, respectively However 2D effects are often much larger than these average values especially for high sun and for convective clouds The results also reveal a somewhat unexpected behavior namely that horizontal photon transport often enhances solar heating even for oblique sun These findings underscore the need for fast radiation calculation methods that can allow atmospheric dynamical simulations to consider the inherently) multidimensional nature of shortwave radiative processes C1 [Varnai, Tamas] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. RP Varnai, T (reprint author), NASA, GSFC, Code 613 2, Greenbelt, MD 20771 USA. FU U S Department of Energy FX Financial support from the U S Department of Energy Atmospheric Radiation Measurement program is gratefully acknowledged Thank you to M Dunn for providing large sets of Microbase data, and to R F Cahalan, K F Evans, J Y Harrington, and A Marshak for encouragement and fruitful discussions NR 20 TC 1 Z9 1 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD NOV PY 2010 VL 67 IS 11 BP 3757 EP 3762 DI 10.1175/2010JAS3506.1 PG 6 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 686ZI UT WOS:000284740600019 ER PT J AU Wingard, D AF Wingard, Doug TI Use of DSC and DMA to study crystallization as a possible cause for a glove tear SO JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY LA English DT Article; Proceedings Paper CT 37th Annual Conference of the North-American-Thermal-Analysis-Society CY SEP 20-23, 2009 CL Lubbock, TX SP N Amer Thermal Anal Soc DE Pinky/ring finger crotch; Strain-induced crystallization; Freezer conditioning AB The Advanced Crew Escape Suit (ACES) is a pressurized suit worn by astronauts during launch and landing phases of Space Shuttle operations. In 2008, a large tear (12.7-25.4 mm long, between the pinky and ring finger) in the ACES left-hand glove made of neoprene latex rubber was found during training for Shuttle flight STS-124. An investigation to help determine the cause(s) of the glove tear was headed by the NASA Johnson Space Center (JSC) in Houston, Texas. Efforts at JSC to reproduce the actual glove tear pattern by cutting/tearing or rupturing were unsuccessful. Chemical and material property data from JSC such as GC-MS, FTIR, DSC, and TGA mostly showed little differences between samples from the torn and control gloves. One possible cause for the glove tear could be a wedding ring/band worn by an astronaut. Even with a smooth edge, such a ring could scratch the material and initiate the tear observed in the left-hand glove. A decision was later made by JSC to not allow the wearing of such a ring during training or actual flight. Another possible cause for the ACES glove tear is crystallinity induced by strain in the neoprene rubber over a long period of time and use. Neoprene is one among several elastomers known to be susceptible to crystallization, and such a process is accelerated with exposure of the material to cold temperatures plus strain. When the temperature is lowered below room temperature, researchers have shown that neoprene crystallization may be maintained at temperatures as high as 7.2-10 A degrees C, with a maximum crystallization rate near -6.7 to -3.9 A degrees C (Kell et al. J Appl Polym Sci 2(4):8-13, 1959 [1]). A convenient conditioning temperature for inducing neoprene crystallization is a typical freezer that is held near -17.8 A degrees C. For work at the NASA Marshall Space Flight Center (MSFC), samples were cut from several areas/locations (pinky/ring finger crotch, index finger and palm) on each of two pairs of unstrained ACES gloves for DSC and DMA thermal analysis testing. The samples were conditioned in a freezer for various times up to about 14 days. Some rectangular conditioned samples were unstrained, while most were subjected to strains up to 250% with the aid of two slotted aluminum blocks and two aluminum clamps per sample. Trends were observed to correlate DSC data (heat of fusion) and DMA data (linear CTE and stress for iso-strain testing) with (a) sample location on each glove; and (b) percent strain during conditioning. Control samples cut "as is" from each glove location were also tested by DSC and DMA. C1 NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Wingard, D (reprint author), NASA, George C Marshall Space Flight Ctr, NASA MSFC Mail Code EM10, Huntsville, AL 35812 USA. EM doug.wingard@nasa.gov NR 9 TC 2 Z9 2 U1 2 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-6150 J9 J THERM ANAL CALORIM JI J. Therm. Anal. Calorim. PD NOV PY 2010 VL 102 IS 2 BP 469 EP 476 DI 10.1007/s10973-010-0991-6 PG 8 WC Thermodynamics; Chemistry, Analytical; Chemistry, Physical SC Thermodynamics; Chemistry GA 666DB UT WOS:000283090400009 ER PT J AU Salinas, K Hemmer, MJ Serrano, J Higgins, L Anderson, LB Benninghoff, AD Williams, DE Walker, C AF Salinas, K. Hemmer, M. J. Serrano, J. Higgins, L. Anderson, L. B. Benninghoff, A. D. Williams, D. E. Walker, C. TI Identification of Estrogen-Responsive Vitelline Envelope Protein Fragments From Rainbow Trout (Oncorhynchus mykiss) Plasma Using Mass Spectrometry SO MOLECULAR REPRODUCTION AND DEVELOPMENT LA English DT Article ID MOLECULAR-CLONING; GENE-EXPRESSION; MESSENGER-RNA; EGG; FISH; LIVER; 17-BETA-ESTRADIOL; BIOMARKERS; PROTEOMICS; ORGANISMS AB Plasma peptides previously associated with exposure of juvenile male rainbow trout (Oncorhynchus rnykiss) to the hormone 17 beta-estradiol (E2) were identified using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). Specifically, plasma peptides of interest were fractionated and subsequently identified via spectra obtained by MALDI QqTOF MS/MS and LC-MALDI TOFTOF MS/MS analysis, de novo sequencing and database matching. The two peptide masses were identified as significant matches for fragments of the C-terminal propeptides from rainbow trout vitelline envelope protein (VEP)alpha and VEP gamma isoforms. Our findings document the presence of the C-terminal propeptides from rainbow trout VEP alpha and VEP gamma proteins in the bloodstream of juvenile male rainbow trout exposed to E2 via MALDI-TOF-MS detection. We provide three possible explanations for the presence of C-terminal propeptides in the bloodstream, as well as compare previously obtained hepatic transcriptomic results with the plasma proteomic results obtained in the present study. C1 [Salinas, K.; Hemmer, M. J.] US EPA, Natl Hlth & Environm Effects Res Lab, Gulf Ecol Div, Gulf Breeze, FL USA. [Serrano, J.] US EPA, Natl Hlth & Environm Effects Res Lab, Midcontinent Ecol Div, Duluth, MN USA. [Higgins, L.; Anderson, L. B.] Univ Minnesota, Dept Biochem Mol Biol & Biophys, Minneapolis, MN USA. [Benninghoff, A. D.] Utah State Univ, Grad Program Toxicol, Logan, UT 84322 USA. [Williams, D. E.] Oregon State Univ, Dept Environm & Mol Toxicol, Corvallis, OR 97331 USA. [Williams, D. E.] Oregon State Univ, Linus Pauling Inst, Corvallis, OR 97331 USA. [Walker, C.] Natl Marine Fisheries Serv, NOAA, Natl Seafood Inspect Lab, Pascagoula, MS USA. RP Salinas, K (reprint author), 1 Sabine Isl Dr, Gulf Breeze, FL 32514 USA. EM salinas.kimberly@epa.gov FU Marine and Freshwater Biomedical Sciences Center at Oregon State University; Environmental Health Sciences Center at Oregon State University; U. S. Environmental Protection Agency; NIH [ES013534, ES00210, ES003850]; Gulf Ecology Division Marine and Freshwater Biomedical Sciences Center at Oregon State University FX The information in this document has been subjected to review by the U. S. Environmental Protection Agency National Health and Environmental Effects Research Laboratory and approved for publication. Approval does not signify that the contents reflect the views of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. This is contribution number 1360 from the Gulf Ecology Division. Dr. Benninghoff and Dr. Williams wish to acknowledge support of the Marine and Freshwater Biomedical Sciences Center and the Environmental Health Sciences Center at Oregon State University. The information in this document has been funded wholly (or in part) by the U. S. Environmental Protection Agency. Dr. Benninghoff and Dr. Williams wish to acknowledge financial support from NIH grants ES013534, ES00210, and ES003850.; Supported by the Gulf Ecology Division Marine and Freshwater Biomedical Sciences Center, the Environmental Health Sciences Center at Oregon State University and the NIH (grants ES013534, ES00210, ES003850). NR 38 TC 0 Z9 0 U1 1 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1040-452X J9 MOL REPROD DEV JI Mol. Reprod. Dev. PD NOV PY 2010 VL 77 IS 11 BP 963 EP 970 DI 10.1002/mrd.21244 PG 8 WC Biochemistry & Molecular Biology; Cell Biology; Developmental Biology; Reproductive Biology SC Biochemistry & Molecular Biology; Cell Biology; Developmental Biology; Reproductive Biology GA 692PQ UT WOS:000285165400005 PM 20939045 ER PT J AU Rowan-Robinson, M Roseboom, IG Vaccari, M Amblard, A Arumugam, V Auld, R Aussel, H Babbedge, T Blain, A Bock, J Boselli, A Brisbin, D Buat, V Burgarella, D Castro-Rodriguez, N Cava, A Chanial, P Clements, DL Conley, A Conversi, L Cooray, A Dowell, CD Dwek, E Dye, S Eales, S Elbaz, D Farrah, D Fox, M Franceschini, A Gear, W Glenn, J Solares, EAG Griffin, M Halpern, M Hatziminaoglou, E Huang, J Ibar, E Isaak, K Ivison, RJ Lagache, G Levenson, L Lu, N Madden, S Maffei, B Mainetti, G Marchetti, L Mortier, AMJ Nguyen, HT O'Halloran, B Oliver, SJ Omont, A Page, MJ Panuzzo, P Papageorgiou, A Patel, H Pearson, CP Fournon, IP Pohlen, M Rawlings, JI Raymond, G Rigopoulou, D Rizzo, D Schulz, B Scott, D Seymour, N Shupe, DL Smith, AJ Stevens, JA Symeonidis, M Trichas, M Tugwell, KE Valtchanov, I Vigroux, L Wang, L Ward, R Wright, G Xu, CK Zemcov, M AF Rowan-Robinson, M. Roseboom, I. G. Vaccari, M. Amblard, A. Arumugam, V. Auld, R. Aussel, H. Babbedge, T. Blain, A. Bock, J. Boselli, A. Brisbin, D. Buat, V. Burgarella, D. Castro-Rodriguez, N. Cava, A. Chanial, P. Clements, D. L. Conley, A. Conversi, L. Cooray, A. Dowell, C. D. Dwek, E. Dye, S. Eales, S. Elbaz, D. Farrah, D. Fox, M. Franceschini, A. Gear, W. Glenn, J. Solares, E. A. Gonzalez Griffin, M. Halpern, M. Hatziminaoglou, E. Huang, J. Ibar, E. Isaak, K. Ivison, R. J. Lagache, G. Levenson, L. Lu, N. Madden, S. Maffei, B. Mainetti, G. Marchetti, L. Mortier, A. M. J. Nguyen, H. T. O'Halloran, B. Oliver, S. J. Omont, A. Page, M. J. Panuzzo, P. Papageorgiou, A. Patel, H. Pearson, C. P. Perez Fournon, I. Pohlen, M. Rawlings, J. I. Raymond, G. Rigopoulou, D. Rizzo, D. Schulz, B. Scott, Douglas Seymour, N. Shupe, D. L. Smith, A. J. Stevens, J. A. Symeonidis, M. Trichas, M. Tugwell, K. E. Valtchanov, I. Vigroux, L. Wang, L. Ward, R. Wright, G. Xu, C. K. Zemcov, M. TI Cold dust and young starbursts: spectral energy distributions of Herschel SPIRE sources from the HerMES survey SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: starburst; galaxies: star formation; cosmology: observations; infrared: galaxies ID ACTIVE GALACTIC NUCLEI; RADIATIVE-TRANSFER MODELS; INFRARED-EMISSION; INTERSTELLAR DUST; STAR-FORMATION; SUBMILLIMETER GALAXIES; SEYFERT-GALAXIES; CIRRUS MODELS; CLUMPY TORI; SWIRE AB We present spectral energy distributions (SEDs) for 68 Herschel sources detected at 5 sigma at 250, 350 and 500 mu m in the HerMES SWIRE-Lockman field. We explore whether existing models for starbursts, quiescent star-forming galaxies and active galactic nucleus dust tori are able to model the full range of SEDs measured with Herschel. We find that while many galaxies (similar to 56 per cent) are well fitted with the templates used to fit IRAS, Infrared Space Observatory (ISO) and Spitzer sources, for about half the galaxies two new templates are required: quiescent ('cirrus') models with colder (10-20 K) dust and a young starburst model with higher optical depth than Arp 220. Predictions of submillimetre fluxes based on model fits to 4.5-24 mu m data agree rather poorly with the observed fluxes, but the agreement is better for fits to 4.5-70 mu m data. Herschel galaxies detected at 500 mu m tend to be those with the highest dust masses. C1 [Rowan-Robinson, M.; Babbedge, T.; Chanial, P.; Clements, D. L.; Fox, M.; Mortier, A. M. J.; O'Halloran, B.; Patel, H.; Rizzo, D.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Roseboom, I. G.; Farrah, D.; Oliver, S. J.; Smith, A. J.; Wang, L.; Ward, R.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Vaccari, M.; Franceschini, A.; Mainetti, G.; Marchetti, L.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Amblard, A.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Arumugam, V.; Ivison, R. J.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Auld, R.; Dye, S.; Eales, S.; Gear, W.; Griffin, M.; Isaak, K.; Papageorgiou, A.; Pohlen, M.; Raymond, G.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Aussel, H.; Elbaz, D.; Madden, S.; Panuzzo, P.] Univ Paris Diderot, CNRS, CEA DSM Irfu, Lab AIM Paris Saclay,CE Saclay, F-91191 Gif Sur Yvette, France. [Blain, A.; Bock, J.; Cooray, A.; Dowell, C. D.; Levenson, L.; Lu, N.; Nguyen, H. T.; Schulz, B.; Shupe, D. L.; Xu, C. K.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boselli, A.; Buat, V.; Burgarella, D.] Univ Aix Marseille, CNRS, OAMP, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Brisbin, D.] Cornell Univ, Ithaca, NY 14853 USA. [Castro-Rodriguez, N.; Cava, A.; Perez Fournon, I.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Tenerife, Spain. [Castro-Rodriguez, N.; Cava, A.; Perez Fournon, I.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Conley, A.; Glenn, J.] Univ Colorado, CASA UCB 389, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Conversi, L.; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Solares, E. A. Gonzalez] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Halpern, M.; Scott, Douglas] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hatziminaoglou, E.] ESO, D-85748 Garching, Germany. [Huang, J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ibar, E.; Ivison, R. J.; Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Lagache, G.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France. [Lu, N.; Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, Ctr Infrared Proc & Anal, JPL, Pasadena, CA 91125 USA. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Omont, A.; Vigroux, L.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Page, M. J.; Seymour, N.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Rigopoulou, D.] Univ Oxford, Oxford OX1 3RH, England. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. RP Rowan-Robinson, M (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. EM m.rrobinson@imperial.ac.uk RI Dwek, Eli/C-3995-2012; amblard, alexandre/L-7694-2014; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI amblard, alexandre/0000-0002-2212-5395; Dye, Simon/0000-0002-1318-8343; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Scott, Douglas/0000-0002-6878-9840; Marchetti, Lucia/0000-0003-3948-7621; Seymour, Nicholas/0000-0003-3506-5536 FU CSA (Canada); NAOC (China); CEA (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA); CNES (France); CNRS (France) FX SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including University of Lethbridge (Canada); NAOC (China); CEA, LAM(France); IFSI, University of Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, University of Sussex (UK); Caltech, JPL, NHSC, University of Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK) and NASA (USA). NR 43 TC 37 Z9 37 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2010 VL 409 IS 1 BP 2 EP 11 DI 10.1111/j.1365-2966.2010.17041.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 681CP UT WOS:000284285500001 ER PT J AU Magdis, GE Elbaz, D Hwang, HS Amblard, A Arumugam, V Aussel, H Blain, A Bock, J Boselli, A Buat, V Castro-Rodriguez, N Cava, A Chanial, P Clements, DL Conley, A Conversi, L Cooray, A Dowell, CD Dwek, E Eales, S Farrah, D Franceschini, A Glenn, J Griffin, M Halpern, M Hatziminaoglou, E Huang, J Ibar, E Isaak, K Le Floc'h, E Lagache, G Levenson, L Lonsdale, CJ Lu, N Madden, S Maffei, B Mainetti, G Marchetti, L Morrison, GE Nguyen, HT O'Halloran, B Oliver, SJ Omont, A Owen, FN Page, MJ Pannella, M Panuzzo, P Papageorgiou, A Pearson, CP Perez-Fournon, I Pohlen, M Rigopoulou, D Rizzo, D Roseboom, IG Rowan-Robinson, M Schulz, B Scott, D Seymour, N Shupe, DL Smith, AJ Stevens, JA Strazzullo, V Symeonidis, M Trichas, M Tugwell, KE Vaccari, M Valtchanov, I Vigroux, L Wang, L Wright, G Xu, CK Zemcov, M AF Magdis, G. E. Elbaz, D. Hwang, H. S. Amblard, A. Arumugam, V. Aussel, H. Blain, A. Bock, J. Boselli, A. Buat, V. Castro-Rodriguez, N. Cava, A. Chanial, P. Clements, D. L. Conley, A. Conversi, L. Cooray, A. Dowell, C. D. Dwek, E. Eales, S. Farrah, D. Franceschini, A. Glenn, J. Griffin, M. Halpern, M. Hatziminaoglou, E. Huang, J. Ibar, E. Isaak, K. Le Floc'h, E. Lagache, G. Levenson, L. Lonsdale, C. J. Lu, N. Madden, S. Maffei, B. Mainetti, G. Marchetti, L. Morrison, G. E. Nguyen, H. T. O'Halloran, B. Oliver, S. J. Omont, A. Owen, F. N. Page, M. J. Pannella, M. Panuzzo, P. Papageorgiou, A. Pearson, C. P. Perez-Fournon, I. Pohlen, M. Rigopoulou, D. Rizzo, D. Roseboom, I. G. Rowan-Robinson, M. Schulz, B. Scott, Douglas Seymour, N. Shupe, D. L. Smith, A. J. Stevens, J. A. Strazzullo, V. Symeonidis, M. Trichas, M. Tugwell, K. E. Vaccari, M. Valtchanov, I. Vigroux, L. Wang, L. Wright, G. Xu, C. K. Zemcov, M. TI Herschel reveals a T-dust-unbiased selection of z similar to 2 ultraluminous infrared galaxies SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: high-redshift; galaxies: starburst; cosmology: observations; infrared: galaxies; submillimetre: galaxies ID STAR-FORMING GALAXIES; SPECTRAL ENERGY-DISTRIBUTION; SUBMILLIMETER GALAXIES; HIGH-REDSHIFT; LUMINOUS STARBURSTS; DISTANT GALAXIES; AGN ACTIVITY; POPULATION; COUNTS; CONSTRAINTS AB Using Herschel Photodetector Array Camera (PACS) and Spectral and Photometric Imaging Receiver (SPIRE) observations of Lockman Hole-North and Great Observatories Origins Deep Survey-North (GOODS-N) as part of the Herschel Multi-tiered Extragalactic Survey (HerMES) project, we explore the far-infrared (IR) properties of a sample of mid-IR-selected starburst-dominated ultraluminous infrared galaxies (ULIRGs) at z similar to 2. The selection of the sample is based on the detection of the stellar bump that appears in the spectral energy distribution of star-forming galaxies at 1.6 mu m. We derive robust estimates of infrared luminosities (L-IR) and dust temperatures (T-d) of the population and find that while the luminosities in our sample span less than an order of magnitude (12.24 <= log(L-IR/L-circle dot) <= 12.94), they cover a wide range of dust temperatures (25 <= T-d <= 62 K). Galaxies in our sample range from those that are as cold as high-z submillimetre galaxies (SMGs) to those that are as warm as optically faint radio galaxies (OFRGs) and local ULIRGs. Nevertheless, our sample has median T-d = 42.3 K, filling the gap between SMGs and OFRGs, bridging the two populations. We demonstrate that a significant fraction of our sample would be missed from ground-based (sub) mm surveys (850-1200 mu m), showing that the latter introduce a bias towards the detection of colder sources. We conclude that Herschel observations confirm the existence of high-z ULIRGs warmer than SMGs, show that the mid-IR selection of high-z ULIRGs is not T-d dependent, reveal a large dispersion in T-d of high-z ULIRGs and provide the means to characterize the bulk of the ULIRG population, free from selection biases introduced by ground-based (sub) mm surveys. C1 [Magdis, G. E.; Elbaz, D.; Hwang, H. S.; Aussel, H.; Le Floc'h, E.; Madden, S.; Panuzzo, P.] Univ Paris Diderot, CNRS, CEA DSM Irfu, Lab AIM Paris Saclay,CE Saclay, F-91191 Gif Sur Yvette, France. [Amblard, A.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Arumugam, V.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Blain, A.; Bock, J.; Cooray, A.; Dowell, C. D.; Levenson, L.; Lu, N.; Nguyen, H. T.; Schulz, B.; Shupe, D. L.; Xu, C. K.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boselli, A.; Buat, V.] Univ Aix Marseille, OAMP, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Castro-Rodriguez, N.; Cava, A.; Perez-Fournon, I.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Tenerife, Spain. [Castro-Rodriguez, N.; Cava, A.; Perez-Fournon, I.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Chanial, P.; Clements, D. L.; O'Halloran, B.; Rizzo, D.; Rowan-Robinson, M.; Trichas, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Conley, A.; Glenn, J.] Univ Colorado, CASA UCB 389, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Conversi, L.; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Eales, S.; Griffin, M.; Isaak, K.; Papageorgiou, A.; Pohlen, M.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Farrah, D.; Oliver, S. J.; Roseboom, I. G.; Wang, L.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Franceschini, A.; Mainetti, G.; Marchetti, L.; Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Halpern, M.; Scott, Douglas] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hatziminaoglou, E.] ESO, D-85748 Garching, Germany. [Huang, J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ibar, E.; Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Lagache, G.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France. [Lonsdale, C. J.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Lu, N.; Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, Ctr Infrared Proc & Anal, JPL, Pasadena, CA 91125 USA. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Morrison, G. E.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Morrison, G. E.] Canada France Hawaii Telescope Corp, Kamuela, HI 96743 USA. [Omont, A.; Vigroux, L.] Univ Paris 06, CNRS, UMr 7095, Inst Astrophys Paris, F-75014 Paris, France. [Owen, F. N.; Pannella, M.; Strazzullo, V.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Page, M. J.; Seymour, N.; Symeonidis, M.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Rigopoulou, D.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. RP Magdis, GE (reprint author), Univ Paris Diderot, CNRS, CEA DSM Irfu, Lab AIM Paris Saclay,CE Saclay, Pt Courrier 131, F-91191 Gif Sur Yvette, France. EM georgios.magdis@cea.fr RI Dwek, Eli/C-3995-2012; Magdis, Georgios/C-7295-2014; amblard, alexandre/L-7694-2014; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI Magdis, Georgios/0000-0002-4872-2294; amblard, alexandre/0000-0002-2212-5395; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Marchetti, Lucia/0000-0003-3948-7621; Seymour, Nicholas/0000-0003-3506-5536 FU CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA) FX SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK) and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK) and NASA (USA). HIPE is a joint development by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center and the HIFI, PACS and SPIRE consortia. The data presented in this paper will be released through the Herschel Data base in Marseille, HeDaM (hedam.oamp.fr/HerMES). NR 44 TC 48 Z9 48 U1 1 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2010 VL 409 IS 1 BP 22 EP 28 DI 10.1111/j.1365-2966.2010.17551.x PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 681CP UT WOS:000284285500003 ER PT J AU Ibar, E Ivison, RJ Cava, A Rodighiero, G Buttiglione, S Temi, P Frayer, D Fritz, J Leeuw, L Baes, M Rigby, E Verma, A Serjeant, S Muller, T Auld, R Dariush, A Dunne, L Eales, S Maddox, S Panuzzo, P Pascale, E Pohlen, M Smith, D de Zotti, G Vaccari, M Hopwood, R Cooray, A Burgarella, D Jarvis, M AF Ibar, Edo Ivison, R. J. Cava, A. Rodighiero, G. Buttiglione, S. Temi, P. Frayer, D. Fritz, J. Leeuw, L. Baes, M. Rigby, E. Verma, A. Serjeant, S. Mueller, T. Auld, R. Dariush, A. Dunne, L. Eales, S. Maddox, S. Panuzzo, P. Pascale, E. Pohlen, M. Smith, D. de Zotti, G. Vaccari, M. Hopwood, R. Cooray, A. Burgarella, D. Jarvis, M. TI H-ATLAS: PACS imaging for the Science Demonstration Phase SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; techniques: image processing; surveys ID HERSCHEL-ATLAS; SPIRE; ARRAYS; IMAGES; FIELD AB We describe the reduction of data taken with the PACS instrument on board the Herschel Space Observatory in the Science Demonstration Phase of the Herschel-ATLAS (H-ATLAS) survey, specifically data obtained for a 4 x 4 deg(2) region using Herschel's fast-scan (60 arcsec s(-1)) parallel mode. We describe in detail a pipeline for data reduction using customized procedures within HIPE from data retrieval to the production of science-quality images. We found that the standard procedure for removing cosmic ray glitches also removed parts of bright sources and so implemented an effective two-stage process to minimize these problems. The pronounced 1/f noise is removed from the timelines using 3.4- and 2.5-arcmin boxcar high-pass filters at 100 and 160 mu m. Empirical measurements of the point spread function (PSF) are used to determine the encircled energy fraction as a function of aperture size. For the 100- and 160-mu m bands, the effective PSFs are similar to 9 and similar to 13 arcsec (FWHM), and the 90-per cent encircled energy radii are 13 and 18 arcsec. Astrometric accuracy is good to less than or similar to 2 arcsec. The noise in the final maps is correlated between neighbouring pixels and rather higher than advertised prior to launch. For a pair of cross-scans, the 5 sigma point-source sensitivities are 125-165 mJy for 9-13 arcsec radius apertures at 100 mu m and 150-240 mJy for 13-18 arcsec radius apertures at 160 mu m. C1 [Ibar, Edo; Ivison, R. J.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ivison, R. J.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Cava, A.] Univ La Laguna, Inst Astrofis Canarias, Tenerife, Spain. [Cava, A.] Univ La Laguna, Dept Astrofis, Tenerife, Spain. [Rodighiero, G.; Vaccari, M.] Univ Padua, I-35122 Padua, Italy. [Buttiglione, S.; de Zotti, G.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Temi, P.; Leeuw, L.] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. [Frayer, D.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Fritz, J.; Baes, M.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Rigby, E.; Dunne, L.; Maddox, S.; Smith, D.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Verma, A.] Univ Oxford, Oxford OX1 3RH, England. [Serjeant, S.; Hopwood, R.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Mueller, T.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Auld, R.; Dariush, A.; Eales, S.; Pascale, E.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Panuzzo, P.] CEA, Lab AIM, Irfu SAp, F-91191 Gif Sur Yvette, France. [de Zotti, G.] SISSA, I-34136 Trieste, Italy. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Burgarella, D.] Aix Marseille Univ, CNRS, Observ Astron Marseille Provence, Lab Astrophys Marseille, Marseille, France. [Jarvis, M.] Univ Hertfordshire, STRI, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. RP Ibar, E (reprint author), Royal Observ, UK Astron Technol Ctr, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. EM ibar@roe.ac.uk RI Baes, Maarten/I-6985-2013; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI Baes, Maarten/0000-0002-3930-2757; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Maddox, Stephen/0000-0001-5549-195X; Smith, Daniel/0000-0001-9708-253X; Rodighiero, Giulia/0000-0002-9415-2296 FU BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany); ASI/INAF (Italy); CICYT/MCYT (Spain) FX PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAFIFSI/OAA/OAP/OAT, LENS, SISSA (Italy) and IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy) and CICYT/MCYT (Spain). We would like to thank the PACS-ICC team for providing excellent support to the H-ATLAS project and for the various HIPE developments that comprise the current pipeline. Finally, we thank the referee for comments that significantly improved this paper. NR 21 TC 76 Z9 76 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2010 VL 409 IS 1 BP 38 EP 47 DI 10.1111/j.1365-2966.2010.17620.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 681CP UT WOS:000284285500005 ER PT J AU Roseboom, IG Oliver, SJ Kunz, M Altieri, B Amblard, A Arumugam, V Auld, R Aussel, H Babbedge, T Bethermin, M Blain, A Bock, J Boselli, A Brisbin, D Buat, V Burgarella, D Castro-Rodriguez, N Cava, A Chanial, P Chapin, E Clements, DL Conley, A Conversi, L Cooray, A Dowell, CD Dwek, E Dye, S Eales, S Elbaz, D Farrah, D Fox, M Franceschini, A Gear, W Glenn, J Solares, EAG Griffin, M Halpern, M Harwit, M Hatziminaoglou, E Huang, J Ibar, E Isaak, K Ivison, RJ Lagache, G Levenson, L Lu, N Madden, S Maffei, B Mainetti, G Marchetti, L Marsden, G Mortier, AMJ Nguyen, HT O'Halloran, B Omont, A Page, MJ Panuzzo, P Papageorgiou, A Patel, H Pearson, CP Perez-Fournon, I Pohlen, M Rawlings, JI Raymond, G Rigopoulou, D Rizzo, D Rowan-Robinson, M Portal, MS Schulz, B Scott, D Seymour, N Shupe, DL Smith, AJ Stevens, JA Symeonidis, M Trichas, M Tugwell, KE Vaccari, M Valtchanov, I Vieira, JD Vigroux, L Wang, L Ward, R Wright, G Xu, CK Zemcov, M AF Roseboom, I. G. Oliver, S. J. Kunz, M. Altieri, B. Amblard, A. Arumugam, V. Auld, R. Aussel, H. Babbedge, T. Bethermin, M. Blain, A. Bock, J. Boselli, A. Brisbin, D. Buat, V. Burgarella, D. Castro-Rodriguez, N. Cava, A. Chanial, P. Chapin, E. Clements, D. L. Conley, A. Conversi, L. Cooray, A. Dowell, C. D. Dwek, E. Dye, S. Eales, S. Elbaz, D. Farrah, D. Fox, M. Franceschini, A. Gear, W. Glenn, J. Solares, E. A. Gonzalez Griffin, M. Halpern, M. Harwit, M. Hatziminaoglou, E. Huang, J. Ibar, E. Isaak, K. Ivison, R. J. Lagache, G. Levenson, L. Lu, N. Madden, S. Maffei, B. Mainetti, G. Marchetti, L. Marsden, G. Mortier, A. M. J. Nguyen, H. T. O'Halloran, B. Omont, A. Page, M. J. Panuzzo, P. Papageorgiou, A. Patel, H. Pearson, C. P. Perez-Fournon, I. Pohlen, M. Rawlings, J. I. Raymond, G. Rigopoulou, D. Rizzo, D. Rowan-Robinson, M. Sanchez Portal, M. Schulz, B. Scott, Douglas Seymour, N. Shupe, D. L. Smith, A. J. Stevens, J. A. Symeonidis, M. Trichas, M. Tugwell, K. E. Vaccari, M. Valtchanov, I. Vieira, J. D. Vigroux, L. Wang, L. Ward, R. Wright, G. Xu, C. K. Zemcov, M. TI The Herschel Multi-Tiered Extragalactic Survey: source extraction and cross-identifications in confusion-dominated SPIRE images SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: statistical; galaxies: statistics; infrared: galaxies ID STAR-FORMATION HISTORY; SCUBA SUPER-MAP; SUBMILLIMETER GALAXIES; NUMBER COUNTS; SPITZER; BLAST; HALF; 1ST; REDSHIFTS; RADIO AB We present the cross-identification and source photometry techniques used to process Herschel SPIRE imaging taken as part of the Herschel Multi-Tiered Extragalactic Survey (HerMES). Cross-identifications are performed in map-space so as to minimize source-blending effects. We make use of a combination of linear inversion and model selection techniques to produce reliable cross-identification catalogues based on Spitzer MIPS 24-mu m source positions. Testing on simulations and real Herschel observations shows that this approach gives robust results for even the faintest sources (S-250 similar to 10 mJy). We apply our new technique to HerMES SPIRE observations taken as part of the science demonstration phase of Herschel. For our real SPIRE observations, we show that, for bright unconfused sources, our flux density estimates are in good agreement with those produced via more traditional point source detection methods (SUSSEXtractor) by Smith et al. When compared to the measured number density of sources in the SPIRE bands, we show that our method allows the recovery of a larger fraction of faint sources than these traditional methods. However, this completeness is heavily dependent on the relative depth of the existing 24-mu m catalogues and SPIRE imaging. Using our deepest multiwavelength data set in the GOODS-N, we estimate that the use of shallow 24-mu m catalogues in our other fields introduces an incompleteness at faint levels of between 20-40 per cent at 250 mu m. C1 [Roseboom, I. G.; Oliver, S. J.; Farrah, D.; Smith, A. J.; Wang, L.; Ward, R.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Altieri, B.; Conversi, L.; Sanchez Portal, M.; Valtchanov, I.] European Space Astron Ctr, Herschel Sci Ctr, Madrid 28691, Spain. [Amblard, A.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Arumugam, V.; Ivison, R. J.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Auld, R.; Dye, S.; Eales, S.; Gear, W.; Griffin, M.; Isaak, K.; Papageorgiou, A.; Pohlen, M.; Raymond, G.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Aussel, H.; Elbaz, D.; Madden, S.; Panuzzo, P.] Univ Paris Diderot, CNRS, CEA DSM Irfu, Lab AIM Paris Saclay,CE Saclay, F-91191 Gif Sur Yvette, France. [Babbedge, T.; Chanial, P.; Clements, D. L.; Fox, M.; Mortier, A. M. J.; O'Halloran, B.; Patel, H.; Rizzo, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Bethermin, M.; Lagache, G.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Bethermin, M.; Lagache, G.] CNRS, UMR 8617, F-91405 Orsay, France. [Blain, A.; Bock, J.; Cooray, A.; Dowell, C. D.; Levenson, L.; Lu, N.; Nguyen, H. T.; Schulz, B.; Shupe, D. L.; Vieira, J. D.; Xu, C. K.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.; Dowell, C. D.; Levenson, L.; Nguyen, H. T.; Zemcov, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boselli, A.; Buat, V.; Burgarella, D.] Univ Aix Marseille, CNRS, OAMP, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Brisbin, D.] Cornell Univ, Ithaca, NY 14853 USA. [Castro-Rodriguez, N.; Cava, A.; Perez-Fournon, I.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Tenerife, Spain. [Castro-Rodriguez, N.; Cava, A.; Perez-Fournon, I.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Chapin, E.; Halpern, M.; Marsden, G.; Scott, Douglas] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Conley, A.; Glenn, J.] Univ Colorado, CASA UCB 389, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Dwek, E.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Franceschini, A.; Mainetti, G.; Marchetti, L.; Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Solares, E. A. Gonzalez] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Hatziminaoglou, E.] ESO, D-85748 Garching, Germany. [Huang, J.; Trichas, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ibar, E.; Ivison, R. J.; Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Lu, N.; Schulz, B.; Shupe, D. L.; Xu, C. K.] CALTECH, Ctr Infrared Proc & Anal, JPL, Pasadena, CA 91125 USA. [Maffei, B.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Omont, A.; Vigroux, L.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Page, M. J.; Rawlings, J. I.; Seymour, N.; Symeonidis, M.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pearson, C. P.; Rigopoulou, D.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Rigopoulou, D.] Univ Oxford, Oxford OX1 3RH, England. [Stevens, J. A.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. RP Roseboom, IG (reprint author), Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. EM i.g.roseboom@sussex.ac.uk RI Dwek, Eli/C-3995-2012; amblard, alexandre/L-7694-2014; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI Altieri, Bruno/0000-0003-3936-0284; Dye, Simon/0000-0002-1318-8343; Bethermin, Matthieu/0000-0002-3915-2015; amblard, alexandre/0000-0002-2212-5395; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Scott, Douglas/0000-0002-6878-9840; Marchetti, Lucia/0000-0003-3948-7621; Seymour, Nicholas/0000-0003-3506-5536 FU Science and Technology Facilities Council [ST/F002858/1]; Canadian Space Agency (CSA); NAOC in China; Centre National d'tudes Spatiales (CNES); Centre National de la Recherche Scientifique (CNRS); CEA in France; Agenzia Spaziale Italiana (ASI) in Italy; Ministerio de Educacin y Ciencia (MEC) in Spain; Stockholm Observatory in Sweden; Science and Technology Facilities Council (STFC) in the UK; NASA in the USA; ESA FX We thank the anonymous referee for many suggestions, which greatly enhanced the clarity of this paper. IGR and LW were supported by the Science and Technology Facilities Council (grant number ST/F002858/1).; The SPIRE Consortium includes participants from eight countries (Canada, China, France, Italy, Spain, Sweden, UK, USA). The following institutes have provided hardware and software elements to the instrument programme: Cardiff University, UK; Commissariat l'nergie Atomique (CEA), Saclay, France; CEA, Grenoble, France; Imperial College, London, UK; Instituto de Astrofisica de Canarias (IAC), Tenerife, Spain; Infrared Processing and Analysis Centre (IPAC), Pasadena, USA; Istituto di Fisica dello Spazio Interplanetario (IFSI), Rome, Italy; University College London's Mullard Space Science Laboratory (MSSL), Surrey, UK; NASA Goddard Space Flight Centre (GSFC), Maryland, USA; NASA Jet Propulsion Laboratory (JPL) and Caltech, Pasadena, USA; National Astronomical Observatories, Chinese Academy of Sciences (NAOC), Beijing, China; Observatoire Astronomique de Marseille Provence (OAMP), France; Rutherford Appleton Laboratory (RAL), Oxfordshire, UK; Stockholm Observatory, Sweden; UK Astronomy Technology Centre (UK ATC) Edinburgh; University of Colorado, USA; University of Lethbridge, Canada; University of Padua, Italy; and the University of Sussex, UK. Funding for SPIRE has been provided by the national agencies of the participating countries and by internal institute funding: the Canadian Space Agency (CSA); NAOC in China; Centre National d'tudes Spatiales (CNES), Centre National de la Recherche Scientifique (CNRS), and CEA in France; Agenzia Spaziale Italiana (ASI) in Italy; Ministerio de Educacin y Ciencia (MEC) in Spain, Stockholm Observatory in Sweden; the Science and Technology Facilities Council (STFC) in the UK; and NASA in the USA. Additional funding support for some instrument activities has been provided by ESA. NR 40 TC 94 Z9 94 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2010 VL 409 IS 1 BP 48 EP 65 DI 10.1111/j.1365-2966.2010.17634.x PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 681CP UT WOS:000284285500006 ER PT J AU Brisbin, D Harwit, M Altieri, B Amblard, A Arumugam, V Aussel, H Babbedge, T Blain, A Bock, J Boselli, A Buat, V Castro-Rodriguez, N Cava, A Chanial, P Clements, DL Conley, A Conversi, L Cooray, A Dowell, CD Dwek, E Eales, S Elbaz, D Fox, M Franceschini, A Gear, W Glenn, J Griffin, M Halpern, M Hatziminaoglou, E Ibar, E Isaak, K Ivison, RJ Lagache, G Levenson, L Lonsdale, CJ Lu, N Madden, S Maffei, B Mainetti, G Marchetti, L Morrison, GE Nguyen, HT O'Halloran, B Oliver, SJ Omont, A Owen, FN Pannella, M Panuzzo, P Papageorgiou, A Pearson, CP Perez-Fournon, I Pohlen, M Rizzo, D Roseboom, IG Rowan-Robinson, M Portal, MS Schulz, B Seymour, N Shupe, DL Smith, AJ Stevens, JA Strazzullo, V Symeonidis, M Trichas, M Tugwell, KE Vaccari, M Valtchanov, I Vigroux, L Wang, L Ward, R Wright, G Xu, CK Zemcov, M AF Brisbin, D. Harwit, M. Altieri, B. Amblard, A. Arumugam, V. Aussel, H. Babbedge, T. Blain, A. Bock, J. Boselli, A. Buat, V. Castro-Rodriguez, N. Cava, A. Chanial, P. Clements, D. L. Conley, A. Conversi, L. Cooray, A. Dowell, C. D. Dwek, E. Eales, S. Elbaz, D. Fox, M. Franceschini, A. Gear, W. Glenn, J. Griffin, M. Halpern, M. Hatziminaoglou, E. Ibar, E. Isaak, K. Ivison, R. J. Lagache, G. Levenson, L. Lonsdale, Carol J. Lu, N. Madden, S. Maffei, B. Mainetti, G. Marchetti, L. Morrison, G. E. Nguyen, H. T. O'Halloran, B. Oliver, S. J. Omont, A. Owen, F. N. Pannella, M. Panuzzo, P. Papageorgiou, A. Pearson, C. P. Perez-Fournon, I. Pohlen, M. Rizzo, D. Roseboom, I. G. Rowan-Robinson, M. Sanchez Portal, M. Schulz, B. Seymour, N. Shupe, D. L. Smith, A. J. Stevens, J. A. Strazzullo, V. Symeonidis, M. Trichas, M. Tugwell, K. E. Vaccari, M. Valtchanov, I. Vigroux, L. Wang, L. Ward, R. Wright, G. Xu, C. K. Zemcov, M. TI The Deep SPIRE HerMES Survey: spectral energy distributions and their astrophysical indications at high redshift SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: high-redshift; galaxies: