FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Haines, BJ Armatys, MJ Bar-Sever, YE Bertiger, WI Desai, SD Dorsey, AR Lane, CM Weiss, JP AF Haines, Bruce J. Armatys, Michael J. Bar-Sever, Yoaz E. Bertiger, Willy I. Desai, Shailen D. Dorsey, Angela R. Lane, Christopher M. Weiss, Jan P. TI One-Centimeter Orbits in Near-Real Time: The GPS Experience on OSTM/Jason-2 SO JOURNAL OF THE ASTRONAUTICAL SCIENCES LA English DT Article; Proceedings Paper CT AAS George H. Born Symposium CY MAY 13-14, 2010 CL Univ Colorado, Boulder, CO SP AAS HO Univ Colorado ID OPERATIONAL ALTIMETRY; PRECISE ORBITS; TOPEX/POSEIDON; JASON-1; MISSION; SEASAT; DORIS; STRATEGIES; SATELLITE; TRACKING AB The advances in Precise Orbit Determination (POD) over the past three decades have been driven in large measure by the increasing demands of satellite altimetry missions. Since the launch of Seasat in 1978, both tracking-system technologies and orbit modeling capabilities have evolved considerably. The latest in a series of precise (TOPEX-class) altimeter missions is the Ocean Surface Topography Mission (OSTM, also Jason-2). GPS-based orbit solutions for this mission are accurate to 1-cm (radial RMS) within three to five hours of real time. These GPS-based orbit products provide the basis for a near-real time sea-surface height product that supports increasingly diverse applications of operational oceanography and climate forecasting. C1 [Haines, Bruce J.; Armatys, Michael J.; Bar-Sever, Yoaz E.; Bertiger, Willy I.; Desai, Shailen D.; Dorsey, Angela R.; Lane, Christopher M.; Weiss, Jan P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Haines, BJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 238-600, Pasadena, CA 91109 USA. NR 46 TC 0 Z9 0 U1 0 U2 7 PU AMER ASTRONAUTICAL SOC PI SPRINGFIELD PA 6352 ROLLING MILL PLACE SUITE 102, SPRINGFIELD, VA 22152 USA SN 0021-9142 EI 2195-0571 J9 J ASTRONAUT SCI JI J. Astronaut. Sci. PD JUL-SEP PY 2011 VL 58 IS 3 SI SI BP 445 EP 459 PN 2 PG 15 WC Engineering, Aerospace SC Engineering GA 994BU UT WOS:000307906700002 ER PT J AU Leben, RR Hamlington, BD Haines, BJ AF Leben, R. R. Hamlington, B. D. Haines, B. J. TI Seasat and Geosat Revisited: Using Sea Level Measurements to Improve Satellite Altimeter Orbits SO JOURNAL OF THE ASTRONAUTICAL SCIENCES LA English DT Article ID SURFACE TEMPERATURES; ANNUAL CYCLE; RISE; TOPEX/POSEIDON; PERIOD; MODEL AB Global maps of sea surface height can be reconstructed by fitting patterns of satellite altimeter-derived sea level variability to historical tide gauge measurements. The accuracy of these maps is uncertain because of the limited sampling available in the historical record. Reconstructed maps from August 9, 1978 and August 9, 1987 are composed with maps derived from 17-day repeat orbit sampling provided by Seasat and GEOSAT altimetry, respectively, to evaluate the fidelity of the sea level reconstructions. Given sufficiently accurate reconstructed time series, it is shown that it is possible to improve orbit error filtering procedures to better account for oceanographic signals. This could improve the accuracy of the Seasat and GEOSAT orbits and the utility of the altimeter measurements for ocean and ice studies relying on these unique historical altimetric records. C1 [Leben, R. R.; Hamlington, B. D.] Univ Colorado, Colorado Ctr Astrodynam Res, Boulder, CO 80309 USA. [Haines, B. J.] CALTECH, Jet Prop Lab, Orbiter & Radiometr Syst Grp, Pasadena, CA 91109 USA. RP Leben, RR (reprint author), Univ Colorado, Colorado Ctr Astrodynam Res, Boulder, CO 80309 USA. RI Leben, Robert/F-3792-2010 OI Leben, Robert/0000-0003-1067-9515 FU NASA Ocean Surface Topography Mission Science Team [NNX08AR6OG, NADCO8AR48G] FX This paper is dedicated to George H. Born in honor of his 25 years of service as Director of CCAR. We thank him for his dedicated effort to advance satellite altimetry from the pioneering Seasat, GEOSAT, and TOPEX/Poseidon programs through the present, ongoing, and planned operational satellite altimeter missions that are essential for monitoring the Earth's climate system. Not too bad for a farm boy from Edna, Texas. This work was supported by NASA Ocean Surface Topography Mission Science Team grants NNX08AR6OG and NADCO8AR48G. BDH and RRL are deeply indebted to K.-Y. Kim for the tremendous assistance he has provided in the development of the CSEOF sea level reconstruction algorithms. A portion of the work described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We also gratefully acknowledge use of Seasat and GEOSAT data provided by the Ocean Altimeter Pathfinder Program. NR 25 TC 0 Z9 0 U1 0 U2 3 PU AMER ASTRONAUTICAL SOC PI SPRINGFIELD PA 6352 ROLLING MILL PLACE SUITE 102, SPRINGFIELD, VA 22152 USA SN 0021-9142 J9 J ASTRONAUT SCI JI J. Astronaut. Sci. PD JUL-SEP PY 2011 VL 58 IS 3 SI SI BP 479 EP 493 PN 2 PG 15 WC Engineering, Aerospace SC Engineering GA 994BU UT WOS:000307906700004 ER PT J AU Koster, RD AF Koster, Randal D. TI CLIMATE SCIENCE Storm instigation from below SO NATURE GEOSCIENCE LA English DT News Item ID SOIL-MOISTURE C1 NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. RP Koster, RD (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. EM randal.d.koster@nasa.gov RI Koster, Randal/F-5881-2012 OI Koster, Randal/0000-0001-6418-6383 NR 7 TC 1 Z9 1 U1 0 U2 6 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD JUL PY 2011 VL 4 IS 7 BP 427 EP 428 DI 10.1038/ngeo1192 PG 3 WC Geosciences, Multidisciplinary SC Geology GA 785PV UT WOS:000292241900010 ER PT J AU Adamczyk, AM Norbury, JW AF Adamczyk, Anne M. Norbury, John W. TI ELECTROMAGNETIC DISSOCIATION CROSS SECTIONS USING WEISSKOPF-EWING THEORY SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th Biennial Topical Meeting of the American-Nuclear-Society-(ANS)-and-Radiation-Protection-and-Shielding-Di vision-(RPSD) CY APR, 2010 CL Univ Nevada, Las Vegas, NV SP Amer Nucl Soc, Radiation Protection Shielding Div HO Univ Nevada DE electromagnetic dissociation; heavy-ion collisions; Weisskopf-Ewing ID HEAVY-ION COLLISIONS; NUCLEON EMISSION; SPACE RADIATION; REMOVAL; FISSION; SI-28 AB It is important that accurate estimates of crew exposure to radiation are obtained for future long-term space missions. Presently, several space radiation transport codes, all of which take as input particle interaction cross sections that describe the nuclear interactions between the particles and the shielding material, exist to predict the radiation environment. The space radiation transport code HZETRN uses the nuclear fragmentation model NUCFRG2 to calculate electromagnetic dissociation (EMD) cross sections. Currently, NUCFRG2 employs energy-independent branching ratios to calculate these cross sections. Using Weisskopf-Ewing (WE) theory to calculate branching ratios for compound nucleus reactions, however, is more advantageous than the method currently employed in NUCFRG2. The WE theory can calculate not only neutron and proton emission, as in the energy-independent branching ratio formalism used in NUCFRG2, but also deuteron, triton, helion, and alpha-particle emission. These particles can contribute significantly to total exposure estimates. In this work, photonuclear cross sections are calculated using WE theory and the energy-independent branching ratios used in NUCFRG2 and then compared to experimental data. It is found that the WE theory gives comparable but mainly better agreement with data than the energy-independent branching ratio. Furthermore, EMD cross sections for single neutron removal are calculated using WE theory and an energy-independent branching ratio used in NUCFRG2 and compared to experimental data. C1 [Adamczyk, Anne M.] Univ Tennessee, Knoxville, TN 37996 USA. [Norbury, John W.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Adamczyk, AM (reprint author), Univ Tennessee, 315 Pasqua Engn Bldg, Knoxville, TN 37996 USA. EM aadamczy@utk.edu NR 31 TC 3 Z9 3 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2011 VL 175 IS 1 SI SI BP 216 EP 227 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 784PS UT WOS:000292169900035 ER PT J AU Barton, JS Jasinski, MF AF Barton, Jonathan S. Jasinski, Michael F. TI Sensitivity of Depth-Integrated Satellite Lidar to Subaqueous Scattering SO REMOTE SENSING LA English DT Article DE lidar; CALIOP; CALIPSO; backscattering; turbidity; water quality; Tampa Bay ID SUSPENDED SEDIMENT CONCENTRATIONS; TAMPA-BAY; SPECTRAL REFLECTANCE; OPTICAL-PROPERTIES; OCEAN; SEA; TURBIDITY; COEFFICIENT; RADIANCE; IMAGERY AB A method is presented for estimating subaqueous integrated backscatter using near-nadir viewing satellite lidar. The algorithm takes into account specular reflection of laser light, laser scattering by wind-generated foam as well as sun glint and solar scattering from foam. The formulation is insensitive to the estimate of wind speed but sensitive to the estimate of transmittance used in the atmospheric correction. As a case study, CALIOP data over Tampa Bay were compared to MODIS 645 nm remote sensing reflectance, which previously has been shown to be nearly linearly related to turbidity. The results indicate good correlation on nearly all CALIOP cloud-free dates during the period 2006 through 2007, particularly those with relatively high atmospheric transmittance. The correlation decreases when data are composited over all dates but is still statistically significant, a possible indication of variability in the biogeochemical composition in the water. Overall, the favorable results show promise for the application of satellite lidar integrated backscatter in providing information about subsurface backscatter properties, which can be extracted using appropriate models. C1 [Jasinski, Michael F.] NASA, Hydrol Sci Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Barton, Jonathan S.] Univ Space Res Assoc, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Jasinski, MF (reprint author), NASA, Hydrol Sci Branch, Goddard Space Flight Ctr, Code 614-3, Greenbelt, MD 20771 USA. EM jonathan.barton@nasa.gov; michael.f.jasinski@nasa.gov FU NASA FX This research was supported by the NASA Terrestrial Hydrology Program and also the NASA Postdoctoral Program administered by Oak Ridge Associated Universities. CALIOP data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. MODIS data were obtained from the USGS Land Process Distributed Active Archive Center. NR 42 TC 6 Z9 7 U1 0 U2 5 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD JUL PY 2011 VL 3 IS 7 BP 1492 EP 1515 DI 10.3390/rs3071492 PG 24 WC Remote Sensing SC Remote Sensing GA 978NP UT WOS:000306750300011 ER PT J AU Heymsfield, AJ Thompson, G Morrison, H Bansemer, A Rasmussen, RM Minnis, P Wang, ZE Zhang, DM AF Heymsfield, Andrew J. Thompson, Gregory Morrison, Hugh Bansemer, Aaron Rasmussen, Roy M. Minnis, Patrick Wang, Zhien Zhang, Damao TI Formation and Spread of Aircraft-Induced Holes in Clouds SO SCIENCE LA English DT Article ID ICE PARTICLES AB Hole-punch and canal clouds have been observed for more than 50 years, but the mechanisms of formation, development, duration, and thus the extent of their effect have largely been ignored. The holes have been associated with inadvertent seeding of clouds with ice particles generated by aircraft, produced through spontaneous freezing of cloud droplets in air cooled as it flows around aircraft propeller tips or over jet aircraft wings. Model simulations indicate that the growth of the ice particles can induce vertical motions with a duration of 1 hour or more, a process that expands the holes and canals in clouds. Global effects are minimal, but regionally near major airports, additional precipitation can be induced. C1 [Heymsfield, Andrew J.; Thompson, Gregory; Morrison, Hugh; Bansemer, Aaron; Rasmussen, Roy M.] NCAR, Boulder, CO 80301 USA. [Minnis, Patrick] NASA Langley Res Ctr, Hampton, VA 23681 USA. [Wang, Zhien; Zhang, Damao] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. RP Heymsfield, AJ (reprint author), NCAR, Boulder, CO 80301 USA. EM heyms1@ncar.ucar.edu RI Heymsfield, Andrew/E-7340-2011; Wang, Zhien/F-4857-2011; zhang, damao/A-2900-2016; Minnis, Patrick/G-1902-2010 OI zhang, damao/0000-0002-3518-292X; Minnis, Patrick/0000-0002-4733-6148 FU National Center for Atmospheric Research through NSF; National Center for Atmospheric Research through NASA [NNX07AQ85G, NNX10AN18G]; National Center for Atmospheric Research through FAA Aviation Climate Change Research Initiative FX The authors wish to thank contributors to the data used in this study: N. Mirsky, N. Downs, E. Zrubek, M. Carmody, B. Skamarock, J. Tuttle, P. Kennedy, C. Velden, D. Spangenberg, and J. Robaidek. Editing by M. Miller and graphics with particular help from A. Norton, co-developer of VAPOR software, are greatly appreciated. This research was supported by the National Center for Atmospheric Research through NSF, through NASA from grants NNX07AQ85G and NNX10AN18G, and through the FAA Aviation Climate Change Research Initiative. NR 13 TC 19 Z9 19 U1 3 U2 12 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUL 1 PY 2011 VL 333 IS 6038 BP 77 EP 81 DI 10.1126/science.1202851 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 785UF UT WOS:000292255400052 PM 21719676 ER PT J AU Golimowski, DA Krist, JE Stapelfeldt, KR Chen, CH Ardila, DR Bryden, G Clampin, M Ford, HC Illingworth, GD Plavchan, P Rieke, GH Su, KYL AF Golimowski, D. A. Krist, J. E. Stapelfeldt, K. R. Chen, C. H. Ardila, D. R. Bryden, G. Clampin, M. Ford, H. C. Illingworth, G. D. Plavchan, P. Rieke, G. H. Su, K. Y. L. TI HUBBLE AND SPITZER SPACE TELESCOPE OBSERVATIONS OF THE DEBRIS DISK AROUND THE NEARBY K DWARF HD 92945 SO ASTRONOMICAL JOURNAL LA English DT Article DE circumstellar matter; infrared: planetary systems; planet-disk interactions; planetary systems; protoplanetary disks; stars: individual (HD 92945) ID MULTIBAND IMAGING PHOTOMETER; BETA-PICTORIS; AU-MICROSCOPII; CIRCUMSTELLAR DISK; RADIATION PRESSURE; ADVANCED CAMERA; INFRARED-EMISSION; PLANET FORMATION; INTERSTELLAR GRAINS; OPTICAL-PROPERTIES AB We present the first resolved images of the debris disk around the nearby K dwarf HD 92945, obtained with the Hubble Space Telescope's (HST's) Advanced Camera for Surveys. Our F606W (Broad V) and F814W (Broad I) coronagraphic images reveal an inclined, axisymmetric disk consisting of an inner ring about 2 ''.0-3.'' 0 (43-65 AU) from the star and an extended outer disk whose surface brightness declines slowly with increasing radius approximately 3.'' 0-5.'' 1 (65-110 AU) from the star. A precipitous drop in the surface brightness beyond 110 AU suggests that the outer disk is truncated at that distance. The radial surface-density profile is peaked at both the inner ring and the outer edge of the disk. The dust in the outer disk scatters neutrally but isotropically, and it has a low V-band albedo of 0.1. This combination of axisymmetry, ringed and extended morphology, and isotropic neutral scattering is unique among the 16 debris disks currently resolved in scattered light. We also present new infrared photometry and spectra of HD 92945 obtained with the Spitzer Space Telescope's Multiband Imaging Photometer and InfraRed Spectrograph. These data reveal no infrared excess from the disk shortward of 30 mu m and constrain the width of the 70 mu m source to less than or similar to 180 AU. Assuming that the dust comprises compact grains of astronomical silicate with a surface-density profile described by our scattered-light model of the disk, we successfully model the 24-350 mu m emission with a minimum grain size of a(min) = 4.5 mu m and a size distribution proportional to a-(3.7) throughout the disk, but with maximum grain sizes of 900 mu m in the inner ring and 50 mu m in the outer disk. Together, our HST and Spitzer observations indicate a total dust mass of similar to 0.001M circle plus. However, our observations provide contradictory evidence of the dust's physical characteristics: its neutral V-I color and lack of 24 mu m emission imply grains larger than a few microns, but its isotropic scattering and low albedo suggest a large population of submicron-sized grains. If grains smaller than a few microns are absent, then stellar radiation pressure may be the cause only if the dust is composed of highly absorptive materials like graphite. The dynamical causes of the sharply edged inner ring and outer disk are unclear, but recent models of dust creation and transport in the presence of migrating planets support the notion that the disk indicates an advanced state of planet formation around HD 92945. C1 [Golimowski, D. A.; Chen, C. H.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Krist, J. E.; Stapelfeldt, K. R.; Bryden, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ardila, D. R.] CALTECH, NASA Herschel Sci Ctr, Pasadena, CA 91125 USA. [Clampin, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ford, H. C.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Illingworth, G. D.] Univ Calif Santa Cruz, Lick Observ, Santa Cruz, CA 95064 USA. [Plavchan, P.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91106 USA. [Rieke, G. H.; Su, K. Y. L.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. RP Golimowski, DA (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. RI Clampin, mark/D-2738-2012; OI Su, Kate/0000-0002-3532-5580 FU National Aeronautics and Space Administration (NASA) [NAG5-7697, HST-GO-10539, HST-GO-10854]; NASA through JPL/Caltech [1255094] FX Based in part on guaranteed observing time awarded by the National Aeronautics and Space Administration (NASA) to the Advanced Camera for Surveys Investigation Definition Team and the Multiband Imaging Photometer for Spitzer Instrument Team.; We gratefully acknowledge Paul Smith from the University of Arizona for his assistance with MIPS SED data processing. We also thank Glenn Schneider and collaborators for sharing the results of their NICMOS observations of HD 92945 prior to publication. ACS was developed under NASA contract NAS 5-32865, and this research has been supported by NASA grant NAG5-7697 to the ACS Investigation Definition Team. Additional support for John Krist and Karl Stapelfeldt was provided by NASA through grants HST-GO-10539 and HST-GO-10854. This research was partially supported by NASA through JPL/Caltech contract 1255094 to the University of Arizona. It made use of Tiny Tim/Spitzer, developed by John Krist for the Spitzer Science Center, which is managed by Caltech under a contract with NASA. The Space Telescope Science Institute is operated by AURA Inc., under NASA contract NAS5-26555. NR 93 TC 28 Z9 29 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUL PY 2011 VL 142 IS 1 AR 30 DI 10.1088/0004-6256/142/1/30 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 777AE UT WOS:000291584200030 ER PT J AU Howell, SB Everett, ME Sherry, W Horch, E Ciardi, DR AF Howell, Steve B. Everett, Mark E. Sherry, William Horch, Elliott Ciardi, David R. TI SPECKLE CAMERA OBSERVATIONS FOR THE NASA KEPLER MISSION FOLLOW-UP PROGRAM SO ASTRONOMICAL JOURNAL LA English DT Article DE instrumentation: high angular resolution; planets and satellites: general; techniques: photometric ID BINARY STARS; PLANET; CCD; INTERFEROMETRY; TELESCOPE AB We present the first results from a speckle imaging survey of stars classified as candidate exoplanet host stars discovered by the Kepler mission. We use speckle imaging to search for faint companions or closely aligned background stars that could contribute flux to the Kepler light curves of their brighter neighbors. Background stars are expected to contribute significantly to the pool of false positive candidate transiting exoplanets discovered by the Kepler mission, especially in the case that the faint neighbors are eclipsing binary stars. Here, we describe our Kepler follow-up observing program, the speckle imaging camera used, our data reduction, and astrometric and photometric performance. Kepler stars range from R = 8 to 16 and our observations attempt to provide background non-detection limits 5-6 mag fainter and binary separations of similar to 0.05-2.0 arcsec. We present data describing the relative brightness, separation, and position angles for secondary sources, as well as relative plate limits for non-detection of faint nearby stars around each of 156 target stars. Faint neighbors were found near 10 of the stars. C1 [Howell, Steve B.; Everett, Mark E.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Howell, Steve B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Sherry, William] Natl Solar Observ, Tucson, AZ 85719 USA. [Horch, Elliott] So Connecticut State Univ, Dept Phys, New Haven, CT 06515 USA. [Ciardi, David R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. RP Howell, SB (reprint author), Natl Opt Astron Observ, Tucson, AZ 85719 USA. OI Ciardi, David/0000-0002-5741-3047 FU Kepler Science Office at NASA/Ames; NASA. FX The authors thank the Kepler Science Office at NASA/Ames for their continued support of the speckle observation program and their financial help with our EMCCD camera upgrade. We thank the anonymous referee for comments which led to an improved presentation. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA. NR 14 TC 60 Z9 60 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUL PY 2011 VL 142 IS 1 AR 19 DI 10.1088/0004-6256/142/1/19 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 777AE UT WOS:000291584200019 ER PT J AU Lewis, KT Sambruna, RM Angelakis, E Eracleous, M Cheung, CC Kadler, M AF Lewis, Karen T. Sambruna, Rita M. Angelakis, Emmanouil Eracleous, Michael Cheung, Chi C. Kadler, Matthias TI MULTI-WAVELENGTH OBSERVATIONS OF A SAMPLE OF INTERMEDIATE-LUMINOSITY RADIO-LOUD ACTIVE GALAXIES SO ASTRONOMICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: nuclei; radio continuum: galaxies; X-rays: galaxies ID DIGITAL-SKY-SURVEY; GALACTIC NUCLEI; X-RAY; SEYFERT-GALAXIES; DUST; VARIABILITY; REFLECTION; RADIATION; EMISSION; SPECTRUM AB We present the results from exploratory (12-23 ks) XMM-Newton observations of six optically selected, radio-loud active galactic nuclei (AGNs), together with new radio data and a reanalysis of their archival SDSS spectra. The sources were selected in an effort to expand the current sample of radio-loud AGNs suitable for detailed X-ray spectroscopy studies. The sample includes three broad-line and three narrow-line sources, with X-ray luminosities of the order of L2-10 keV similar to 10(43) erg s(-1). The EPIC spectra of the broad-lined sources can be described by single power laws with photon indices Gamma similar to 1.6 and little to negligible absorption (N-H less than or similar to 10(21) cm(-2)); on the contrary, significant absorption is detected in the narrow-lined objects, N-H similar to 10(23) cm(-2), one of which displays a prominent (equivalent width similar to 2 keV) Fe K alpha emission line. Studying their location in several luminosity-luminosity diagrams for radio-loud AGNs, we find that the sources fall at the lower end of the distribution for bright, classical radio-loud AGNs and close to LINER-like sources. As such, and as indicated by the ratios of their optical emission lines, we conclude that the sources of our sample fall on the border between radiatively efficient and inefficient accretion flows. Future deeper studies of these targets at X-rays and longer wavelengths will expand our understanding of the central engines of radio-loud AGNs at a critical transition region. C1 [Lewis, Karen T.] Coll Wooster, Dept Phys, Wooster, OH 44691 USA. [Lewis, Karen T.; Sambruna, Rita M.; Cheung, Chi C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Angelakis, Emmanouil] Max Planck Inst Radioastron, DE-53121 Bonn, Germany. [Eracleous, Michael] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Eracleous, Michael] Penn State Univ, Ctr Gravitat Wave Phys, Davey Lab 104, University Pk, PA 16802 USA. [Cheung, Chi C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Cheung, Chi C.] USN, Res Lab, Washington, DC 20375 USA. [Kadler, Matthias] Univ Erlangen Nurnberg, Dr Remeis Sternwarte Bamberg, D-96049 Bamberg, Germany. [Kadler, Matthias] Univ Erlangen Nurnberg, ECAP, D-96049 Bamberg, Germany. [Kadler, Matthias] CRESST NASA, Greenbelt, MD 20771 USA. [Kadler, Matthias] Univ Space Res Assoc, Columbia, MD 21044 USA. RP Lewis, KT (reprint author), Coll Wooster, Dept Phys, 109 Taylor Hall, Wooster, OH 44691 USA. EM klewis@wooster.edu OI Angelakis, Emmanouil/0000-0001-7327-5441; Kadler, Matthias/0000-0001-5606-6154 FU National Aeronautics and Space Administration [NNX06AF01G, NNH 06CC03B]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX We thank V. Braito for advice on the EPIC data reduction. This work was supported by the National Aeronautics and Space Administration through grant number NNX06AF01G. K. T. L. acknowledges support from the NASA Postdoctoral Program Fellowship (NNH 06CC03B). This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The results of this paper are based on observations with the 100 m telescope of the MPIfR (Max-Planck-Institut fur Radioastronomie) at Effelsberg.; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/. NR 53 TC 2 Z9 2 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUL PY 2011 VL 142 IS 1 AR 9 DI 10.1088/0004-6256/142/1/9 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 777AE UT WOS:000291584200009 ER PT J AU Pannuti, TG Schlegel, EM Filipovic, MD Payne, JL Petre, R Harrus, IM Staggs, WD Lacey, CK AF Pannuti, Thomas G. Schlegel, Eric M. Filipovic, Miroslav D. Payne, Jeffrey L. Petre, Robert Harrus, Ilana M. Staggs, Wayne D. Lacey, Christina K. TI A CHANDRA OBSERVATION OF THE NEARBY SCULPTOR GROUP Sd GALAXY NGC 7793 SO ASTRONOMICAL JOURNAL LA English DT Article DE galaxies: individual (NGC 7793); galaxies: spiral; ISM: supernova remnants; X-rays: binaries; X-rays: galaxies ID X-RAY SOURCES; DWARF IRREGULAR GALAXY; CCD IMAGING SPECTROMETER; HUBBLE-SPACE-TELESCOPE; MASSIVE STAR-CLUSTERS; SUPERNOVA-REMNANTS; SPIRAL GALAXIES; SOURCE POPULATION; ENERGY-SPECTRA; RADIO SEARCH AB We conducted a Chandra ACIS observation of the nearby Sculptor Group Sd galaxy NGC 7793 as part of a multiwavelength study of supernova remnants (SNRs) in nearby galaxies. At the assumed distance to NGC 7793 of 3.91 Mpc, the limiting unabsorbed luminosity of the detected discrete X-ray sources is L-X (0.2-10.0 keV) approximate to 3 x 10(36) erg s(-1). A total of 22 discrete sources were detected at the similar to 3 sigma level or greater including one ultraluminous X-ray source (ULX). Based on multiwavelength comparisons, we identify X-ray sources coincident with one SNR, the candidate microquasar N7793-S26, one HII region, and two foreground Galactic stars. We also find that the X-ray counterpart to the candidate radio SNR R3 is time variable in its X-ray emission: we therefore rule out the possibility that this source is a single SNR. A marked asymmetry is seen in the distribution of the discrete sources with the majority lying in the eastern half of this galaxy. All of the sources were analyzed using quantiles to estimate spectral properties and spectra of the four brightest sources (including the ULX) were extracted and analyzed. We searched for time variability in the X-ray emission of the detected discrete sources using our measured fluxes along with fluxes measured from prior Einstein and Rontgensatellit observations. From this study, three discrete X-ray sources are established to be significantly variable. A spectral analysis of the galaxy's diffuse emission is characterized by a temperature of kT = 0.19-0.25 keV. The luminosity function of the discrete sources shows a slope with an absolute value of Gamma = -0.65 +/- 0.11 if we exclude the ULX. If the ULX is included, the luminosity function has a long tail to high L-X with a poor-fitting slope of Gamma = -0.62 +/- 0.2. The ULX-less slope is comparable to the slopes measured for the distributions of NGC 6946 and NGC 2403 but much shallower than the slopes measured for the distributions of IC 5332 and M83. Lastly, we comment on the multiwavelength properties of the SNR population of NGC 7793. C1 [Pannuti, Thomas G.; Staggs, Wayne D.] Morehead State Univ, Dept Earth & Space Sci, Ctr Space Sci, Morehead, KY 40351 USA. [Schlegel, Eric M.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA. [Filipovic, Miroslav D.; Payne, Jeffrey L.] Univ Western Sydney, Sch Comp & Math, Penrith, NSW 1797, Australia. [Petre, Robert] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Harrus, Ilana M.] NASA HQ, Div Astrophys, Washington, DC 20546 USA. [Lacey, Christina K.] Hofstra Univ, Dept Phys & Astron, Hempstead, NY 11549 USA. RP Pannuti, TG (reprint author), Morehead State Univ, Dept Earth & Space Sci, Ctr Space Sci, 235 Martindale Dr, Morehead, KY 40351 USA. EM t.pannuti@moreheadstate.edu; eric.schlegel@utsa.edu; m.filipovic@uws.edu.au; astronomer@me.com; robert.petre-1@nasa.gov; Ilana.M.Harrus@nasa.gov; wdstag01@moreheadstate.edu; Christina.Lacey@hofstra.edu FU National Aeronautics and Space Administration; Chandra Grant [GO3-4104Z] FX We thank the referee for many helpful comments that have significantly improved the quality of this paper. We thank A. M. N. Ferguson for kindly sharing her H alpha and R-band images of NGC 7793 for the purposes of this research. T. G. P. acknowledges useful discussions with Nebojsa Duric about properties of SNRs and Phil N. Appleton about the peculiar distribution of the discrete X-ray sources in NGC 7793. T. G. P. also thanks Lauren Jones for reviewing this manuscript and commenting on the phenomenon of star formation in galaxies. This research has made use of NASA's Astrophysics Data System as well as the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has also made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA's Goddard Space Flight Center. This work is supported by Chandra Grant GO3-4104Z and this research has made use of software provided by the Chandra X-ray Center (CXC) in the application package CIAO. NR 74 TC 9 Z9 9 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUL PY 2011 VL 142 IS 1 AR 20 DI 10.1088/0004-6256/142/1/20 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 777AE UT WOS:000291584200020 ER PT J AU ten Brummelaar, TA O'Brien, DP Mason, BD Farrington, CD Fullerton, AW Gies, DR Grundstrom, ED Harkopf, WI Matson, RA McAlister, HA McSwain, MV Roberts, LC Schaefer, GH Simon-Diaz, S Sturmann, J Sturmann, L Turner, NH Williams, SJ AF ten Brummelaar, Theo A. O'Brien, David P. Mason, Brian D. Farrington, Christopher D. Fullerton, Alexander W. Gies, Douglas R. Grundstrom, Erika D. Harkopf, William I. Matson, Rachel A. McAlister, Harold A. McSwain, M. Virginia Roberts, Lewis C., Jr. Schaefer, Gail H. Simon-Diaz, Sergio Sturmann, Judit Sturmann, Laszlo Turner, Nils H. Williams, Stephen J. TI AN INTERFEROMETRIC AND SPECTROSCOPIC ANALYSIS OF THE MULTIPLE STAR SYSTEM HD 193322 SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: spectroscopic; binaries: visual; stars: early-type; stars: evolution; stars: individual (HD 193322) ID ICCD SPECKLE OBSERVATIONS; O-TYPE STARS; BLANKETED MODEL ATMOSPHERES; BINARY STARS; MASSIVE STARS; BRIGHT STARS; VISUAL ORBIT; CHARA ARRAY; SPECTRA; CALIBRATION AB The star HD 193322 is a remarkable multiple system of massive stars that lies at the heart of the cluster Collinder 419. Here we report on new spectroscopic observations and radial velocities of the narrow-lined component Ab1 which we use to determine its orbital motion around a close companion Ab2 (P = 312 days) and around a distant third star Aa (P = 35 years). We have also obtained long baseline interferometry of the target in the K' band with the CHARA Array which we use in two ways. First, we combine published speckle interferometric measurements with CHARA separated fringe packet measurements to improve the visual orbit for the wide Aa, Ab binary. Second, we use measurements of the fringe packet from Aa to calibrate the visibility of the fringes of the Ab1, Ab2 binary, and we analyze these fringe visibilities to determine the visual orbit of the close system. The two most massive stars, Aa and Ab1, have masses of approximately 21 and 23 M-circle dot, respectively, and their spectral line broadening indicates that they represent extremes of fast and slow projected rotational velocity, respectively. C1 [ten Brummelaar, Theo A.; Farrington, Christopher D.; Schaefer, Gail H.; Sturmann, Judit; Sturmann, Laszlo; Turner, Nils H.] Georgia State Univ, Ctr High Angular Resolut Astron, Mt Wilson, CA 91023 USA. [O'Brien, David P.; Gies, Douglas R.; Matson, Rachel A.; McAlister, Harold A.; Williams, Stephen J.] Georgia State Univ, Dept Phys & Astron, Ctr High Angular Resolut Astron, Atlanta, GA 30302 USA. [Mason, Brian D.; Harkopf, William I.] USN Observ, Washington, DC 20392 USA. [Fullerton, Alexander W.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Grundstrom, Erika D.] Vanderbilt Univ, Dept Phys & Astron, Stevenson Ctr 6301, Nashville, TN 37235 USA. [McSwain, M. Virginia] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA. [Roberts, Lewis C., Jr.] CALTECH, Jet Prop Lab, Adapt Opt & Astron Instrumentat Grp, Pasadena, CA 91109 USA. [Simon-Diaz, Sergio] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Tenerife, Spain. [Simon-Diaz, Sergio] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. RP ten Brummelaar, TA (reprint author), Georgia State Univ, Ctr High Angular Resolut Astron, Mt Wilson, CA 91023 USA. EM theo@chara-array.org; obrien@chara.gsu.edu; bdm@usno.navy.mil; farrington@chara-array.org; fullerton@stsci.edu; gies@chara.gsu.edu; erika.grundstrom@vanderbilt.edu; wih@usno.navy.mil; rmatson@chara.gsu.edu; hal@chara.gsu.edu; mcswain@lehigh.edu; lewis.c.roberts@jpl.nasa.gov; schaefer@chara-array.org; ssimon@iac.es; nils@chara-array.org; swilliams@chara.gsu.edu OI Grundstrom, Erika/0000-0002-5130-0260 FU National Science Foundation, Georgia State University; W. M. Keck Foundation; David and Lucile Packard Foundation; National Science Foundation [AST-0606861, AST-0606958, AST-0908253, AST-1009080, AST-0440784]; Board of Regents of the University System of Georgia; National Aeronautics and Space Administration through Terrestrial Planet Finder Foundation [NNH06AD70I]; Lehigh University FX The CHARA Array, operated by Georgia State University, was built with funding provided by the National Science Foundation, Georgia State University, the W. M. Keck Foundation, and the David and Lucile Packard Foundation. This material is based upon work supported by the National Science Foundation under grants AST-0606861, AST-0606958, AST-0908253, and AST-1009080. Institutional support has been provided from the GSU College of Arts and Sciences and from the Research Program Enhancement fund of the Board of Regents of the University System of Georgia, administered through the GSU Office of the Vice President for Research. B. D. M. and W. I. H. have been supported by the National Aeronautics and Space Administration under reimbursable no. NNH06AD70I, issued through the Terrestrial Planet Finder Foundation Science program. Thanks are also extended to Ken Johnston and the U. S. Naval Observatory for their continued support of the Double Star Program. M. V. M. thanks Lehigh University for an institutional grant. A portion of the research in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We are grateful to Dr. Gregg Wade and the MiMeS consortium for sharing with us their spectral data on HD 193322 in advance of publication. This work is partially based on spectral data retrieved from the ELODIE archive at Observatoire de Haute-Provence (OHP). Additional spectroscopic data were retrieved from Ritter Observatory's public archive, which was supported by the National Science Foundation Program for Research and Education with Small Telescopes (NSF-PREST) under grant AST-0440784. NR 38 TC 8 Z9 8 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUL PY 2011 VL 142 IS 1 AR 21 DI 10.1088/0004-6256/142/1/21 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 777AE UT WOS:000291584200021 ER PT J AU Lin, IK Zhang, X Zhang, YH AF Lin, I. -Kuan Zhang, Xin Zhang, Yanhang TI Inelastic deformation of bilayer microcantilevers with nanoscale coating SO SENSORS AND ACTUATORS A-PHYSICAL LA English DT Article DE Inelastic deformation; Bilayer microcantilever; Nanocoating; Themomechanical deformation; Isothermal holding; Finite element analysis ID MULTILAYER THIN-FILMS; MECHANICAL-PROPERTIES; THERMOMECHANICAL EVOLUTION; MICROSTRUCTURE EVOLUTION; COPPER-FILMS; STRESS; CREEP; BEHAVIOR; AL; TEMPERATURE AB The application and commercialization of microelectromechanical system (MEMS) devices suffer from reliability problems due to the structural inelastic deformation during device operation. Nanocoatings have been demonstrated to be promising solutions for suppressing creep and stress relaxation in bilayer MEMS devices. However, the micro/nano-mechanics within and/or between microcantilevers and coatings are not fully understood, especially when temperature, time, and geometric and material nonlinearities play significant roles in the thermomechanical responses. In this study, the thermomechanical behavior of alumina-coated/uncoated Au/SiN(x) bilayer microcantilevers was characterized by using thermal cycling and isothermal holding tests. Finite element analysis with power-law creep was used to simulate the mechanical behavior of microcantilevers during isothermal holding. To better understand the stress evolution and the mechanism of inelastic deformation, scanning electron microscopy and atomic force microscopy was employed to explore the grain growth and grain boundary grooving after isothermal holding at various temperatures of 100 degrees C, 150 degrees C and 200 degrees C. The methods and results presented in this paper are useful for the fundamental understanding of many similar bilayer microcantilever-based MEMS devices. (C) 2011 Elsevier B.V. All rights reserved. C1 [Zhang, Xin; Zhang, Yanhang] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA. [Zhang, Yanhang] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA. [Lin, I. -Kuan] Global Sci & Technol, Greenbelt, MD 20770 USA. [Lin, I. -Kuan] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Zhang, X (reprint author), Boston Univ, Dept Mech Engn, 110 Cummington St, Boston, MA 02215 USA. EM xinz@bu.edu; yanhang@bu.edu RI Zhang, Xin/B-9244-2009 OI Zhang, Xin/0000-0002-4413-5084 FU DARPA/MTO [W911NF-07-1-0181]; National Science Foundation [CMMI 0700688]; Air Force Office of Scientific Research [FA 9550-06-1-0145] FX This project has been supported in part by the Young Faculty Award from DARPA/MTO to Dr. Y. Zhang (W911NF-07-1-0181), and the National Science Foundation through grant CMMI 0700688 and the Air Force Office of Scientific Research through grant FA 9550-06-1-0145 to Dr. X. Zhang. The authors would like to thank the Photonics Center at Boston University for all of the technical support throughout the course of this research. The authors also would like to thank the suggestions and comments provided by Dr. K.-S. Chen and Dr. K.-S. Ou from National Cheng Kung University. NR 40 TC 4 Z9 4 U1 0 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0924-4247 J9 SENSOR ACTUAT A-PHYS JI Sens. Actuator A-Phys. PD JUL PY 2011 VL 168 IS 1 BP 1 EP 9 DI 10.1016/j.sna.2011.03.016 PG 9 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 774HG UT WOS:000291375700001 ER PT J AU Wu, PH Lin, IK Yan, HY Ou, KS Chen, KS Zhang, X AF Wu, P. -H. Lin, I-K Yan, H. -Y. Ou, K. -S. Chen, K. -S. Zhang, X. TI Mechanical property characterization of sputtered and plasma enhanced chemical deposition (PECVD) silicon nitride films after rapid thermal annealing SO SENSORS AND ACTUATORS A-PHYSICAL LA English DT Article DE Silicon nitride; Rapid thermal annealing; PECVD; Sputtering; Fracture toughness; Nano-indentation ID THIN-FILMS; RESIDUAL-STRESSES; NANOINDENTATION; INDENTATION; PRESSURE; FRACTURE; MODULUS; OXIDE AB In this paper, the mechanical and fracture properties of silicon nitride films subjected to rapid thermal annealing (RTA) have been systemically tested. The residual stress, Young's modulus, hardness, fracture toughness, and interfacial strength of both sputtered and plasma-enhanced chemical vapor deposition (PECVD) silicon nitride films deposited on silicon wafers were measured and compared. The results indicated that the Young's modulus and hardness of both types of silicon nitride films significantly increased when the RTA temperature increased. Furthermore, RTA processes could also alter the state of residual stress. The initial residual compressive stress of sputtered silicon nitride film was gradually relieved, and the film became tensile after the RTA process. For PECVD silicon nitride, the tensile residual stress reached its peak after a 600 C RTA, then dropped after further increases in RTA temperature, due to stress relaxation. The tendency of the equivalent fracture toughness was to exhibit a strong correlation with that shown in the residual stress of silicon nitride. By considering the effect of residual stress, the real fracture toughness of both types of silicon nitride films were slightly enhanced by using RTA processes. Finally, experimental results indicated that the interfacial strength of PECVD silicon nitride could also be significantly improved by RTA processes at 600-800 degrees C. On the other hand, the initial interfacial strength of the sputtered silicon nitride was sufficiently strong, and the RTA processes only resulted in minor improvements. The characterization flow could be applied to other brittle films, and these specific test results should be useful for improving the structural integrity and process optimization of related MEMS and IC applications. (C) 2011 Elsevier B.V. All rights reserved. C1 [Wu, P. -H.; Yan, H. -Y.; Ou, K. -S.; Chen, K. -S.] Natl Cheng Kung Univ, Dept Mech Engn, Tainan 70101, Taiwan. [Chen, K. -S.] Natl Cheng Kung Univ, Ctr Micro Nano Sci & Technol, Tainan 70101, Taiwan. [Lin, I-K] Global Sci & Technol, Greenbelt, MD 20770 USA. [Lin, I-K] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Zhang, X.] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA. RP Chen, KS (reprint author), Natl Cheng Kung Univ, Dept Mech Engn, 1 Univ Rd, Tainan 70101, Taiwan. EM kschen@mail.ncku.edu.tw RI Zhang, Xin/B-9244-2009 OI Zhang, Xin/0000-0002-4413-5084 FU National Science Council of Taiwan [NSC96-2628-E-006-006-MY3]; National Science Foundation of USA [CMMI-0700688] FX This work was supported by the National Science Council of Taiwan under contract number NSC96-2628-E-006-006-MY3 and National Science Foundation of USA under grant number CMMI-0700688. NR 36 TC 11 Z9 11 U1 0 U2 40 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0924-4247 J9 SENSOR ACTUAT A-PHYS JI Sens. Actuator A-Phys. PD JUL PY 2011 VL 168 IS 1 BP 117 EP 126 DI 10.1016/j.sna.2011.03.043 PG 10 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 774HG UT WOS:000291375700018 ER PT J AU Mohanty, S Chattopadhyay, A Peralta, P Das, S AF Mohanty, S. Chattopadhyay, A. Peralta, P. Das, S. TI Bayesian Statistic Based Multivariate Gaussian Process Approach for Offline/Online Fatigue Crack Growth Prediction SO EXPERIMENTAL MECHANICS LA English DT Article DE Fatigue life prediction; Statistical method; Structural health monitoring; Probabilistic approach; Variable loading; Gaussian process ID MODEL AB Offline and online fatigue crack growth prediction of Aluminum 2024 compact-tension (CT) specimens under variable loading has been modeled, using multivariate Gaussian Process (GP) technique. The GP model is a Bayesian statistic stochastic model that projects the input space to an output space by probabilistically inferring the underlying nonlinear function. For the offline prediction, the input space of the model is trained with parameters that affect fatigue crack growth, such as the number of fatigue cycles, minimum load, maximum load, and load ratio. For the online prediction, the model input space is trained using piezoelectric sensor signal features rather than training the input space with loading parameters, which are difficult to measure in a real time scenario. Principal Component Analysis (PCA) is used to extract the principal features from sensor signals. In both the offline and online case, the output space is trained with known associated crack lengths or crack growth rates. Once the GP model is trained, a new output space for which the corresponding crack length or crack growth rate is not known, is predicted using the trained GP model. The models are validated through several numerical examples. C1 [Mohanty, S.; Chattopadhyay, A.; Peralta, P.] Arizona State Univ, Tempe, AZ 85287 USA. [Das, S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Mohanty, S (reprint author), Arizona State Univ, Tempe, AZ 85287 USA. EM subhasish.mohanty@asu.edu; aditi@asu.edu; pperalta@asu.edu; Santanu.Das-1@nasa.gov FU MURI; Air Force Office of Scientific Research [FA9550-06-1-0309] FX This research was supported by the MURI Program, Air Force Office of Scientific Research, grant number: FA9550-06-1-0309; Technical Monitor, Dr. David S Stargel. NR 22 TC 12 Z9 12 U1 0 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 J9 EXP MECH JI Exp. Mech. PD JUL PY 2011 VL 51 IS 6 BP 833 EP 843 DI 10.1007/s11340-010-9394-7 PG 11 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 772SF UT WOS:000291255000003 ER PT J AU Yu, N Tinto, M AF Yu, Nan Tinto, Massimo TI Gravitational wave detection with single-laser atom interferometers SO GENERAL RELATIVITY AND GRAVITATION LA English DT Article DE Gravitational waves; Atom interferometry; Time-delay interferometry ID FREQUENCY STANDARD; MATTER-WAVE; TRANSITION AB We present a new general design approach of a broad-band detector of gravitational radiation that relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser will be used for operating the two atom interferometers. We consider atoms in the atom interferometers not only as perfect inertial reference sensors, but also as highly stable clocks. Atomic coherence is intrinsically stable and can be many orders of magnitude more stable than a laser. The unique one-laser configuration allows us to then apply time-delay interferometry to the responses of the two atom interferometers, thereby canceling the laser phase fluctuations while preserving the gravitational wave signal in the resulting data set. Our approach appears very promising. We plan to investigate further its practicality and detailed sensitivity analysis. C1 [Yu, Nan; Tinto, Massimo] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Yu, N (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Nan.Yu@jpl.nasa.gov; Massimo.Tinto@jpl.nasa.gov FU National Aeronautics and Space Administration FX The authors thank Professor H. Mueller for valuable discussions on atom interferometers and especially on the subject of LMT and multi-photon transitions. This research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.(c) 2008 California Institute of Technology. Government sponsorship acknowledged. NR 29 TC 15 Z9 16 U1 1 U2 15 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0001-7701 J9 GEN RELAT GRAVIT JI Gen. Relativ. Gravit. PD JUL PY 2011 VL 43 IS 7 SI SI BP 1943 EP 1952 DI 10.1007/s10714-010-1055-8 PG 10 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 770AM UT WOS:000291059400004 ER PT J AU Hogan, JM Johnson, DMS Dickerson, S Kovachy, T Sugarbaker, A Chiow, SW Graham, PW Kasevich, MA Saif, B Rajendran, S Bouyer, P Seery, BD Feinberg, L Keski-Kuha, R AF Hogan, Jason M. Johnson, David M. S. Dickerson, Susannah Kovachy, Tim Sugarbaker, Alex Chiow, Sheng-wey Graham, Peter W. Kasevich, Mark A. Saif, Babak Rajendran, Surjeet Bouyer, Philippe Seery, Bernard D. Feinberg, Lee Keski-Kuha, Ritva TI An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO) SO GENERAL RELATIVITY AND GRAVITATION LA English DT Article DE Atom interferometry; Gravitational wave detection ID STIMULATED RAMAN TRANSITIONS; GRAVITY MEASUREMENTS; PHASE-TRANSITIONS; THERMAL-NOISE; COMPACT; SPACE; LIGHT; RADIATION; MODEL AB We propose an atom interferometer gravitational wave detector in low Earth orbit (AGIS-LEO). Gravitational waves can be observed by comparing a pair of atom interferometers separated by a 30 km baseline. In the proposed configuration, one or three of these interferometer pairs are simultaneously operated through the use of two or three satellites in formation flight. The three satellite configuration allows for the increased suppression of multiple noise sources and for the in the 50mHz-10Hz frequency range, providing access to a rich scientific region with substantial discovery potential. This band is not currently addressed with the LIGO, VIRGO, or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Finally, we present a brief conceptual overview of shorter-baseline(less than or similar to 100m) atom interferometer configurations that could be deployed as proof-of-principle instruments on the International Space Station (AGIS-ISS) or an independent satellite. C1 [Hogan, Jason M.; Johnson, David M. S.; Dickerson, Susannah; Kovachy, Tim; Sugarbaker, Alex; Chiow, Sheng-wey; Graham, Peter W.; Kasevich, Mark A.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Saif, Babak] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Rajendran, Surjeet] MIT, Ctr Theoret Phys, Nucl Sci Lab, Cambridge, MA 02139 USA. [Rajendran, Surjeet] MIT, Dept Phys, Cambridge, MA 02139 USA. [Rajendran, Surjeet] Johns Hopkins Univ, Dept Phys, Baltimore, MD 21218 USA. [Bouyer, Philippe] Univ Paris 11, Lab Charles Fabry, Inst Opt, CNRS,Grad Sch, Palaiseau, France. [Seery, Bernard D.; Feinberg, Lee; Keski-Kuha, Ritva] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hogan, JM (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM hogan@stanford.edu; kasevich@stanford.edu RI BOUYER, Philippe/A-9823-2009; OI BOUYER, Philippe/0000-0003-4458-0089; Graham, Peter/0000-0002-1600-1601 NR 95 TC 46 Z9 47 U1 4 U2 19 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0001-7701 J9 GEN RELAT GRAVIT JI Gen. Relativ. Gravit. PD JUL PY 2011 VL 43 IS 7 SI SI BP 1953 EP 2009 DI 10.1007/s10714-011-1182-x PG 57 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 770AM UT WOS:000291059400005 ER PT J AU Jeong, SJ Ho, CH Gim, HJ Brown, ME AF Jeong, Su-Jong Ho, Chang-Hoi Gim, Hyeon-Ju Brown, Molly E. TI Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008 SO GLOBAL CHANGE BIOLOGY LA English DT Article DE climate change; growing season; NDVI (normalized difference vegetation index); Northern Hemisphere; phenology; temperate vegetation ID LAND-SURFACE PHENOLOGY; SPRING PHENOLOGY; CLIMATE-CHANGE; CARBON-CYCLE; TRENDS; VARIABILITY; EARLIER; EUROPE; NDVI; FEEDBACKS AB Changes in vegetative growing seasons are dominant indicators of the dynamic response of ecosystems to climate change. Therefore, knowledge of growing seasons over the past decades is essential to predict ecosystem changes. In this study, the long-term changes in the growing seasons of temperate vegetation over the Northern Hemisphere were examined by analyzing satellite-measured normalized difference vegetation index and reanalysis temperature during 1982-2008. Results showed that the length of the growing season (LOS) increased over the analysis period; however, the role of changes at the start of the growing season (SOS) and at the end of the growing season (EOS) differed depending on the time period. On a hemispheric scale, SOS advanced by 5.2 days in the early period (1982-1999) but advanced by only 0.2 days in the later period (2000-2008). EOS was delayed by 4.3 days in the early period, and it was further delayed by another 2.3 days in the later period. The difference between SOS and EOS in the later period was due to less warming during the preseason (January-April) before SOS compared with the magnitude of warming in the preseason (June-September) before EOS. At a regional scale, delayed EOS in later periods was shown. In North America, EOS was delayed by 8.1 days in the early period and delayed by another 1.3 days in the later period. In Europe, the delayed EOS by 8.2 days was more significant than the advanced SOS by 3.2 days in the later period. However, in East Asia, the overall increase in LOS during the early period was weakened in the later period. Admitting regional heterogeneity, changes in hemispheric features suggest that the longer-lasting vegetation growth in recent decades can be attributed to extended leaf senescence in autumn rather than earlier spring leaf-out. C1 [Jeong, Su-Jong; Ho, Chang-Hoi; Gim, Hyeon-Ju] Seoul Natl Univ, Sch Earth & Environm Sci, Climate Phys Lab, Seoul, South Korea. [Brown, Molly E.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. RP Ho, CH (reprint author), Seoul Natl Univ, Sch Earth & Environm Sci, Climate Phys Lab, Seoul, South Korea. EM hoch@cpl.snu.ac.kr RI Brown, Molly/M-5146-2013; Jeong, Su-Jong/J-4110-2014; Ho, Chang-Hoi/H-8354-2015; Brown, Molly/E-2724-2010 OI Brown, Molly/0000-0001-7384-3314; Brown, Molly/0000-0001-7384-3314 FU Korea Meteorological Administration [CATER 2006-4204] FX This research was funded by the Korea Meteorological Administration Research and Development Program under grant CATER 2006-4204. NR 58 TC 188 Z9 202 U1 15 U2 179 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD JUL PY 2011 VL 17 IS 7 BP 2385 EP 2399 DI 10.1111/j.1365-2486.2011.02397.x PG 15 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 772FZ UT WOS:000291221000010 ER PT J AU Monroe, JA Karaman, I Lagoudas, DC Bigelow, G Noebe, RD Padula, S AF Monroe, J. A. Karaman, I. Lagoudas, D. C. Bigelow, G. Noebe, R. D. Padula, S., II TI Determining recoverable and irrecoverable contributions to accumulated strain in a NiTiPd high-temperature shape memory alloy during thermomechanical cycling SO SCRIPTA MATERIALIA LA English DT Article DE Shape memory alloys; Coefficient of thermal expansion; High-temperature recovery; Transformation induced plasticity; Creep ID LOAD AB When Ni(29.5)Ti(50.5)Pd(30) shape memory alloy is thermally cycled under stress, significant strain can accumulate due to elasticity, remnant oriented martensite and plasticity. The strain due to remnant martensite can be recovered by further thermal cycling under 0 MPa until the original transformation-induced volume change and martensite coefficient of thermal expansion are obtained. Using this technique, it was determined that the 8.15% total accumulated strain after cycling under 200 MPa consisted of 0.38%, 3.97% and 3.87% for elasticity, remnant oriented martensite and creep/plasticity, respectively. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Monroe, J. A.; Karaman, I.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Karaman, I.; Lagoudas, D. C.] Texas A&M Univ, Mat Sci & Engn Grad Program, College Stn, TX 77843 USA. [Lagoudas, D. C.] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA. [Bigelow, G.; Noebe, R. D.; Padula, S., II] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Karaman, I (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. EM ikaraman@tamu.edu RI Karaman, Ibrahim/E-7450-2010; OI Karaman, Ibrahim/0000-0001-6461-4958; Lagoudas, Dimitris/0000-0002-0194-5933 FU NASA [NNX07AB56A] FX This work was supported by the NASA Fundamental Aeronautics Program, Subsonic Fixed Wing Project, including Cooperative Agreement No. NNX07AB56A, Janet Hurst, API. NR 13 TC 17 Z9 17 U1 1 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2011 VL 65 IS 2 BP 123 EP 126 DI 10.1016/j.scriptamat.2011.03.019 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 771CC UT WOS:000291133800012 ER PT J AU Fereres, S Lautenberger, C Fernandez-Pello, C Urban, D Ruff, G AF Fereres, Sonia Lautenberger, Chris Fernandez-Pello, Carlos Urban, David Ruff, Gary TI Mass flux at ignition in reduced pressure environments SO COMBUSTION AND FLAME LA English DT Article DE Mass loss; Mass flux at ignition; Ignition delay time; Low pressure ID PILOTED IGNITION AB Ignition of solid combustible materials can occur at atmospheric pressures lower than standard either in high altitude environments or inside pressurized vehicles such as aircraft and spacecraft. NASA's latest space exploration vehicles have a cabin atmosphere of reduced pressure and increased oxygen concentration. Recent piloted ignition experiments indicate that ignition times are reduced under these environmental conditions compared to normal atmospheric conditions, suggesting that the critical mass flux at ignition may also be reduced. Both effects may result in an increased fire risk of combustible solid materials in reduced pressure environments that warrant further investigation. As a result, a series of experiments are conducted to explicitly measure fuel mass flux at ignition and ignition delay time as a function of ambient pressure for the piloted ignition of PMMA under external radiant heating. Experimental findings reveal that ignition time and the fuel mass flux at ignition decrease when ambient pressure is lowered, proving with the latter what earlier authors had inferred. It is concluded that the reduced pressure environment results in smaller convective heat losses from the heated material to the surroundings, allowing for the material to heat more rapidly and pyrolyze faster. It is also proposed that a lower mass flux of volatiles is required to reach the lean flammability limit of the gases near the pilot at reduced pressures, due mainly to a reduced oxygen concentration, an enlarged boundary layer, and a thicker fuel species profile. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Fereres, Sonia; Lautenberger, Chris; Fernandez-Pello, Carlos] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Urban, David; Ruff, Gary] NASA, John H Glenn Res Ctr, Cleveland, OH 44135 USA. RP Fereres, S (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM sfereres@berkeley.edu FU NASA [NNX08BA77A] FX This work was supported by NASA Grant NNX08BA77A. The authors would like to thank Sara McAllister and David Rich for sharing their valuable experience in the FIST program and their key assistance in setting up the experiments and Chris Ategeka and Danielle Kirchmeyer for their help running the experiments. NR 17 TC 17 Z9 17 U1 1 U2 21 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD JUL PY 2011 VL 158 IS 7 BP 1301 EP 1306 DI 10.1016/j.combustflame.2010.11.013 PG 6 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 768KF UT WOS:000290932600008 ER PT J AU Hu, SW Cucinotta, FA AF Hu, Shaowen Cucinotta, Francis A. TI CHARACTERIZATION OF THE RADIATION-DAMAGED PRECURSOR CELLS IN BONE MARROW BASED ON MODELING OF THE PERIPHERAL BLOOD GRANULOCYTES RESPONSE SO HEALTH PHYSICS LA English DT Article DE blood; bone marrow; computer calculations; radiation effects ID SOLAR PARTICLE EVENTS; BODY IRRADIATION; EXPOSURE; HEMATOPOIESIS; LEVEL; SPACE; PREDICTION; DYNAMICS; KINETICS; MAMMALS AB Bone marrow failure is the major cause of radiation lethality in mammals. Since bone marrow is distributed heterogeneously within trabecular spongiosa encased in a cortex of cortical bone, it is very difficult to measure the extent of the radiation damage directly. However, indirect consequences of damage to marrow, such as reductions in peripheral blood cell counts, are easily measured. In this paper, the authors investgate a mathematical model of the granulopoiesis system that provides quantitative relationships between reductions in peripheral blood cells and the bone marrow precursor cells following radiation exposure. A coarse-grained architecture of cellular replication and production as well as a mechanism for implicit regulation used in this model are discussed. The model is based on previous investigations of rodents. The authors test how well the model matches, in the principal dynamic regime of hematopoiesis, experimental data on large animals as well as empirical data on humans following radiation exposure. Due to its ability to infer, albeit indirectly, radiation damage to bone marrow, this model will provide a useful computational tool in radiation accident management, military operations involving nuclear warfare, radiation therapy, and space radiation risk assessment. Health Phys. 101(1):67-78; 2011 C1 [Cucinotta, Francis A.] NASA, Johnson Space Ctr, Houston, TX 77058 USA. [Hu, Shaowen] Univ Space Res Assoc, Div Space Life Sci, Houston, TX 77058 USA. RP Cucinotta, FA (reprint author), NASA, Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. EM Shaowen.Hu-1@nasa.gov; Francis.A.Cucinotta@NASA.gov FU NASA FX This study was supported by the NASA Space Radiation Risk Assessment Project. We are grateful for useful discussions with Olga Smirnova and Theodor M. Fliedner. NR 46 TC 10 Z9 11 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD JUL PY 2011 VL 101 IS 1 BP 67 EP 78 DI 10.1097/HP.0b013e31820dba65 PG 12 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 769NF UT WOS:000291021500007 PM 21617393 ER PT J AU Yang, B Shao, X Goldsman, N Ramahi, OM Guzdar, PN AF Yang, Bo Shao, Xi Goldsman, Neil Ramahi, Omar M. Guzdar, Parvez N. TI INVESTIGATION OF THE ON-CHIP MISM INTERCONNECTS WITH THE ALTERNATING-DIRECTION-IMPLICIT FINITE-DIFFERENCE TIME-DOMAIN METHOD SO MICROWAVE AND OPTICAL TECHNOLOGY LETTERS LA English DT Article DE ADI-FDTD; MISM interconnects; substrate losses; skin-effect mode; doping concentration AB The alternating-direction-implicit finite-difference time-domain method is used to analyze the Metal-Insulator-Semiconductor-Metal interconnects by solving Maxwell's equations in the time domain. The dielectric quasi-TEM mode, the slow wave mode, and the skin-effect mode are all analyzed. This analysis shows that the silicon substrate losses and the metal line losses can be modeled with high resolution. The analysis provides attenuation and phase constant values versus semiconductor doping and frequency. We find that semiconductors readily operate in the slow wave mode and skin effect mode for selected doping densities. Accurate prediction of interconnect losses is critical to high-frequency design with highly constrained timing requirements. (C) 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53: 1582-1585, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26085 C1 [Yang, Bo; Goldsman, Neil; Ramahi, Omar M.] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA. [Shao, Xi] NASA, Space Phys Data Facil, Goddard Space Flight Ctr, Greenbelt, MD 20171 USA. [Ramahi, Omar M.] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA. [Guzdar, Parvez N.] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. RP Ramahi, OM (reprint author), Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA. EM oramahi@ece.uwaterloo.ca NR 5 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0895-2477 J9 MICROW OPT TECHN LET JI Microw. Opt. Technol. Lett. PD JUL PY 2011 VL 53 IS 7 BP 1582 EP 1585 DI 10.1002/mop.26085 PG 5 WC Engineering, Electrical & Electronic; Optics SC Engineering; Optics GA 762QJ UT WOS:000290494200037 ER PT J AU van Leeuwen, W Hutchinson, C Drake, S Doorn, B Kaupp, V Haithcoat, T Likholetov, V Sheffner, E Tralli, D AF van Leeuwen, Wim Hutchinson, Chuck Drake, Sam Doorn, Brad Kaupp, Verne Haithcoat, Tim Likholetov, Vladislav Sheffner, Ed Tralli, Dave TI Benchmarking enhancements to a decision support system for global crop production assessments SO EXPERT SYSTEMS WITH APPLICATIONS LA English DT Article DE Agricultural production; Risk assessment; Project management; Cross agency investments; World food security ID SATELLITE DATA AB The Office of Global Analysis/International Production Assessment Division (OGA/IPAD) of the United States Department of Agriculture Foreign Agricultural Service (USDA-FAS) has been assimilating new data and information products from agencies such as the National Aeronautics and Space Administration (NASA) into its operational decision support system (DSS). The FAS mission is to improve monthly estimates of global production of major agricultural commodities and provide US Government senior decision makers and the public the most accurate, timely, and objective assessment of the global food supply situation possible. These estimates are ultimately captured as the US governments' official assessments of world food supply for the commodity markets and policy makers. The goal of this research was to measure changes in the quality and accuracy of decision support information resulting from the assimilation of new NASA products in the DSS. We gathered both qualitative and quantitative information through questionnaires and interviews to benchmark these changes. We used an interactive project life-cycle risk management tool developed for NASA mission spaceflight design and quality assurance (DDP - Defect Detection and Prevention) to do this. In this case, we used it to (1) quantify the change in DSS Objectives attained after assimilation of new products, and (2) evaluate the effectiveness of various Mitigation options against potential Risks. The change in Objectives attainment was considered the most important benchmarking indicator for examining the effectiveness of the assimilation of NASA products into OGA/IPAD's DSS. From this research emerged a novel model for benchmarking DSSs that (1) promotes continuity and synergy within and between government agencies, (2) accommodates scientific, operational and architectural dynamics, and (3) facilitates transfer of knowledge among research, management, and decision-making agencies. (C) 2010 Elsevier Ltd. All rights reserved. C1 [van Leeuwen, Wim; Hutchinson, Chuck; Drake, Sam] Univ Arizona, Off Arid Lands Studies, Sch Nat Resources & Environm, Tucson, AZ 85721 USA. [van Leeuwen, Wim] Univ Arizona, Sch Geog & Dev, Tucson, AZ 85721 USA. [Doorn, Brad] USDA FAS OGU IPAD, Washington, DC 20250 USA. [Kaupp, Verne; Haithcoat, Tim; Likholetov, Vladislav] Univ Missouri, Columbia, MO 65211 USA. [Sheffner, Ed] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Tralli, Dave] Jet Prop Lab, Natl Space Technol Applicat Earth Sci & Technol D, Pasadena, CA USA. RP van Leeuwen, W (reprint author), Univ Arizona, Off Arid Lands Studies, Sch Nat Resources & Environm, 1955E 6th St, Tucson, AZ 85721 USA. EM leeuw@email.arizona.edu RI Caposaldo, Marica/I-8659-2014 FU USDA Foreign Agricultural Service; NASA [NAG5-12484, NNG06GF1G, NAG5-12482, NNG06GF16G] FX Benchmarking the performance characteristics of the IPAD decision support system was a collaborative effort among the USDA Foreign Agricultural Service, the Universities of Missouri and Arizona, the NASA Jet Propulsion Laboratory at Pasadena, California, and the Applied Sciences Directorate at NASA's John C. Stennis Space Center, Mississippi. The University of Arizona participated in this effort under NASA Grants NAG5-12484 and NNG06GF1G. The University of Missouri participated in this effort under NASA Grants NAG5-12482 and NNG06GF16G. The DDP development team that contributed to the benchmarking was led by David Tralli at the NASA Jet Propulsion Laboratory and is conducted under Research and Technology Operating Plans 613-08-02-05 and 613-25-52-40. Consultation with the DDP development team led by S.L. Cornford, M.S. Feather and S.L. Prusha in the Strategic Systems Technology Program at JPL was invaluable. Without their help, the success and insight gained herein for the benefit of USDA/FAS/IPAD and the NASA Applied Sciences Directorate would not have been possible. Special thanks are extended to Drs. Curt Reynolds and Bob Tetrault for sharing their perspectives and insights during the benchmarking process. NR 23 TC 3 Z9 3 U1 1 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0957-4174 J9 EXPERT SYST APPL JI Expert Syst. Appl. PD JUL PY 2011 VL 38 IS 7 BP 8054 EP 8065 DI 10.1016/j.eswa.2010.12.145 PG 12 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic; Operations Research & Management Science SC Computer Science; Engineering; Operations Research & Management Science GA 743VV UT WOS:000289047700018 ER PT J AU Simon, DL Litt, JS AF Simon, Donald L. Litt, Jonathan S. TI A Data Filter for Identifying Steady-State Operating Points in Engine Flight Data for Condition Monitoring Applications SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article AB This paper presents an algorithm that automatically identifies and extracts steady-state engine operating points from engine flight data. It calculates the mean and standard deviation of select parameters contained in the incoming flight data stream. If the standard deviation of the data falls below defined constraints, the engine is assumed to be at a steady-state operating point and the mean measurement data at that point are archived for subsequent condition monitoring purposes. The fundamental design of the steady-state data filter is completely generic and applicable for any dynamic system. Additional domain-specific logic constraints are applied to reduce data outliers and variance within the collected steady-state data. The filter is designed for on-line real-time processing of streaming data as opposed to post-processing of the data in batch mode. Results of applying the steady-state data filter to recorded helicopter engine flight data are shown, demonstrating its utility for engine condition monitoring applications. [DOI: 10.1115/1.4002318] C1 [Simon, Donald L.; Litt, Jonathan S.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Simon, DL (reprint author), NASA, Glenn Res Ctr, 21000 Brookpk Rd,MS 77-1, Cleveland, OH 44135 USA. NR 12 TC 0 Z9 0 U1 1 U2 3 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD JUL PY 2011 VL 133 IS 7 AR 071603 DI 10.1115/1.4002318 PG 8 WC Engineering, Mechanical SC Engineering GA 740PW UT WOS:000288807900005 ER PT J AU Shyam, V Ameri, A Luk, DF Chen, JP AF Shyam, Vikram Ameri, Ali Luk, Daniel F. Chen, Jen-Ping TI 3D Unsteady Simulation of a Modern High Pressure Turbine Stage Using Phase Lag Periodicity: Analysis of Flow and Heat Transfer SO JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME LA English DT Article AB Unsteady 3D Reynolds-averaged Navier-Stokes (RANS) simulations have been performed on a highly loaded transonic turbine stage, and results are compared with steady calculations and experiments. A low Reynolds number k-epsilon turbulence model is employed to provide closure for the RANS system. A phase lag boundary condition is used in the tangential direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this paper is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agree favorably with the experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere, except at the leading edge. The shock structure formed, due to stator-rotor interaction, is analyzed. Heat transfer and pressure at the hub and casing are also studied. Thermal segregation is observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different. [DOI: 10.1115/1.4001235] C1 [Shyam, Vikram; Ameri, Ali] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Ameri, Ali; Luk, Daniel F.; Chen, Jen-Ping] Ohio State Univ, Columbus, OH 43210 USA. RP Shyam, V (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. FU AVETEC FX We are grateful to Dr. James Heidmann of NASA Glenn Research Center, Dr. Meyer Benzakein of The Ohio State University and to AVETEC for funding various segments of this research effort. We would like to acknowledge Mr. Robert Boyle of NASA Glenn Research Center and Dr. Wai-Ming To of the University of Toledo for their numerous useful insights and discussions, the Ohio Super Computing Center for computing resources, and NASA Glenn Research Center. NR 21 TC 3 Z9 3 U1 1 U2 4 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0889-504X J9 J TURBOMACH JI J. Turbomach.-Trans. ASME PD JUL PY 2011 VL 133 IS 3 AR 031015 DI 10.1115/1.4001235 PG 8 WC Engineering, Mechanical SC Engineering GA 692MW UT WOS:000285157900015 ER PT J AU Liu, JJ Fung, I Kalnay, E Kang, JS AF Liu, Junjie Fung, Inez Kalnay, Eugenia Kang, Ji-Sun TI CO2 transport uncertainties from the uncertainties in meteorological fields SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID TRANSFORM KALMAN FILTER; ATMOSPHERIC CO2; DATA ASSIMILATION; MODEL; REANALYSIS; SURFACE; CYCLE AB Inference of surface CO2 fluxes from atmospheric CO2 observations requires information about large-scale transport and turbulent mixing in the atmosphere, so transport errors and the statistics of the transport errors have significant impact on surface CO2 flux estimation. In this paper, we assimilate raw meteorological observations every 6 hours into a general circulation model with a prognostic carbon cycle (CAM3.5) using the Local Ensemble Transform Kalman Filter (LETKF) to produce an ensemble of meteorological analyses that represent the best approximation to the atmospheric circulation and its uncertainty. We quantify CO2 transport uncertainties resulting from the uncertainties in meteorological fields by running CO2 ensemble forecasts within the LETKF-CAM3.5 system forced by prescribed surface fluxes. We show that CO2 transport uncertainties are largest over the tropical land and the areas with large fossil fuel emissions, and are between 1.2 and 3.5 ppm at the surface and between 0.8 and 1.8 ppm in the column-integrated CO2 (with OCO-2-like averaging kernel) over these regions. We further show that the current practice of using a single meteorological field to transport CO2 has weaker vertical mixing and stronger CO2 vertical gradient when compared to the mean of the ensemble CO2 forecasts initialized by the ensemble meteorological fields, especially over land areas. The magnitude of the difference at the surface can be up to 1.5 ppm. Citation: Liu, J., I. Fung, E. Kalnay, and J.-S. Kang (2011), CO2 transport uncertainties from the uncertainties in meteorological fields, Geophys. Res. Lett., 38, L12808, doi:10.1029/2011GL047213. C1 [Liu, Junjie; Fung, Inez] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Kalnay, Eugenia; Kang, Ji-Sun] Univ Maryland, College Pk, MD 20742 USA. RP Liu, JJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM junjie.liu@jpl.nasa.gov RI KANG, JI-SUN/F-4395-2010; OI Kalnay, Eugenia/0000-0002-9984-9906 FU DOE [DEFG0207ER64337, ER64437]; NASA [NNH09ZDA001N-TERRAQUA] FX This project is supported by DOE grants DEFG0207ER64337 and ER64437, and NASA grant NNH09ZDA001N-TERRAQUA. We want to thank Kana Kanamitsu and Kei Yoshimura from Scripps Institute of Oceanography, UC San Diego; Jack Woolen from NCEP; and Michael Wehner from DOE Lawrence Berkeley National Lab for the help with running the DOE/NCEP Reanalysis 2 system and the usage of the supercomputers in National Energy Research Scientific Computing Center (NERSC). We also want to thank Yu-Heng Tseng for initially porting the CAM3.5 onto the NERSC machines. All the calculations were carried out at the supercomputers in NERSC. NR 25 TC 13 Z9 13 U1 0 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 30 PY 2011 VL 38 AR L12808 DI 10.1029/2011GL047213 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 787MS UT WOS:000292381400001 ER PT J AU Vernier, JP Thomason, LW Pommereau, JP Bourassa, A Pelon, J Garnier, A Hauchecorne, A Blanot, L Trepte, C Degenstein, D Vargas, F AF Vernier, J. -P. Thomason, L. W. Pommereau, J. -P. Bourassa, A. Pelon, J. Garnier, A. Hauchecorne, A. Blanot, L. Trepte, C. Degenstein, Doug Vargas, F. TI Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID EL-CHICHON; TRANSPORT; PINATUBO; CIRCULATION; CLOUDS; LIDAR AB The variability of stratospheric aerosol loading between 1985 and 2010 is explored with measurements from SAGE II, CALIPSO, GOMOS/ENVISAT, and OSIRIS/Odin space-based instruments. We find that, following the 1991 eruption of Mount Pinatubo, stratospheric aerosol levels increased by as much as two orders of magnitude and only reached "background levels" between 1998 and 2002. From 2002 onwards, a systematic increase has been reported by a number of investigators. Recently, the trend, based on ground-based lidar measurements, has been tentatively attributed to an increase of SO(2) entering the stratosphere associated with coal burning in Southeast Asia. However, we demonstrate with these satellite measurements that the observed trend is mainly driven by a series of moderate but increasingly intense volcanic eruptions primarily at tropical latitudes. These events injected sulfur directly to altitudes between 18 and 20 km. The resulting aerosol particles are slowly lofted into the middle stratosphere by the Brewer-Dobson circulation and are eventually transported to higher latitudes. Citation: Vernier, J.-P., et al. (2011), Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade, Geophys. Res. Lett., 38, L12807, doi:10.1029/2011GL047563. C1 [Vernier, J. -P.; Thomason, L. W.; Trepte, C.] NASA Langley Res Ctr, Hampton, VA 23666 USA. [Vernier, J. -P.; Pommereau, J. -P.; Pelon, J.; Garnier, A.; Hauchecorne, A.; Blanot, L.] Univ Paris 06, Univ Versailles St Quentin, LATMOS, CNRS,INSU, F-78280 Guyancourt, France. [Bourassa, A.; Degenstein, Doug] Univ Saskatchewan, Inst Space & Atmospher Studies, Saskatoon, SK S7N 5E, Canada. [Blanot, L.] ACRI ST, F-06904 Sophia Antipolis, France. [Vargas, F.] Paraiba Valley Univ, Inst Res & Dev, BR-12244000 Sao Jose Dos Campos, SP, Brazil. RP Vernier, JP (reprint author), NASA Langley Res Ctr, 23A Langley Blvd, Hampton, VA 23666 USA. EM jeanpaul.vernier@nasa.gov RI Hauchecorne, Alain/A-8489-2013; OI Hauchecorne, Alain/0000-0001-9888-6994 FU NASA; Oak Ridge Associated Universities; Centre National la Recherche Scientifique at LATMOS/UVSQ; Canadian Space Agency FX This work was support by the NASA Post-doctoral Program at Langley Research Center, administrated by Oak Ridge Associated Universities. It is also a part of the PhD thesis of JPV financed by the Centre National la Recherche Scientifique at LATMOS/UVSQ. CALIOP and ECMWF data were made available at the ICARE data center (http://www-icare.univ-lille1.fr/) and processed at NASA LaRC. The authors want to thank the Meteorological Institute at Free University of Berlin for providing the zonal wind at Singapore used to study the QBO (http://www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo/index.html). The authors want also to thank people in charge of the ground-based lidars for their discussion, including, C. David, J. Jumelet and P. Keckhut for OHP (France), J.E Barnes for Boulder and Mauna Loa (US), T. Nagai for Lauder (New Zeland) and H. Gadhavi for Gadanki (India). The authors also want to acknowledge J. C Lebrun for the processing of the GOMOS stratospheric aerosol dataset and P. Lucker for her help in the processing of the CALIPSO data. Work on OSIRIS is funded in part by the Canadian Space Agency. NR 33 TC 137 Z9 139 U1 5 U2 41 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 30 PY 2011 VL 38 AR L12807 DI 10.1029/2011GL047563 PG 8 WC Geosciences, Multidisciplinary SC Geology GA 787MS UT WOS:000292381400002 ER PT J AU Metzger, PT Smith, J Lane, JE AF Metzger, Philip T. Smith, Jacob Lane, John E. TI Phenomenology of soil erosion due to rocket exhaust on the Moon and the Mauna Kea lunar test site SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID SURFACE; SPACECRAFT; ENGINE; GAS AB The soil-blowing phenomena observed in the Apollo lunar missions have not previously been described in the literature in sufficient detail to elucidate the physical processes and to support the development of physics-based modeling of the plume effects. In part, this is because previous laboratory experiments have used overly simplistic model soils that fail to produce many of the phenomena seen in lunar landings, some of which therefore went unrecognized. Here, the Apollo descent videos, terrain photography, and ascent videos are interpreted with the assistance of field experiments using a more complex regolith. Rocket thruster firings were performed upon the tephra of a lunar test site on Mauna Kea in Hawaii. This tephra possesses embedded rocks, large fractions of gravel and dust, some cohesion, and natural geological lamination. This produced more realistic plume phenomenology. The relevant phenomena include the relationship of dust liberation with overall soil erosion rate, terrain bed forms created by the plume, dust tails associated with the exhumation and blowing of rocks, bed load transport, the removal of discrete layers of soil hypothesized to be the stratigraphic units corresponding to impact events, the total mass of ejected soil during a landing, and the brightening of the regolith around the landing site. This analysis provides insight into the erosion processes and nature of the regolith. This paper also synthesizes theory, experiment, simulation, and observational data to produce a clearer picture of the physical processes of lunar soil erosion. C1 [Metzger, Philip T.] NASA, Granular Mech & Regolith Operat Lab, Kennedy Space Ctr, FL 32899 USA. [Lane, John E.] ASRC Aerosp, Kennedy Space Ctr, FL 32899 USA. [Smith, Jacob] Univ Hawaii, Pacific Int Space Ctr Explorat Syst, Hilo, HI 96720 USA. RP Metzger, PT (reprint author), NASA, Granular Mech & Regolith Operat Lab, NE S-1, Kennedy Space Ctr, FL 32899 USA. EM Philip.T.Metzger@nasa.gov; John.E.Lane@nasa.gov RI Metzger, Philip/R-3136-2016 OI Metzger, Philip/0000-0002-6871-5358 NR 66 TC 7 Z9 7 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUN 30 PY 2011 VL 116 AR E06005 DI 10.1029/2010JE003745 PG 22 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 787NI UT WOS:000292383300001 ER PT J AU Jensen, EJ Pfister, L Toon, OB AF Jensen, E. J. Pfister, L. Toon, O. B. TI Impact of radiative heating, wind shear, temperature variability, and microphysical processes on the structure and evolution of thin cirrus in the tropical tropopause layer SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID GRAVITY-WAVES; STRATOSPHERE; TRANSPORT; AIRCRAFT; DYNAMICS; CLOUDS; MODEL AB Thin cirrus that frequently form in the tropical tropopause layer (TTL) are important for vertical transport through the TTL, regulation of stratospheric humidity, and the Earth's radiation budget. Here, we use a three-dimensional cloud-resolving model to investigate the impact of circulations driven by TTL cirrus radiative heating on the cloud evolution. We use observations of TTL environmental conditions (thermal stability and wind shear) and TTL cirrus microphysical properties (ice crystal sizes and concentrations) to constrain the simulations. We show that with ice crystal sizes consistent with available observations (effective radii >= 12 mu m), typical thermal stability, and moderate wind shear, the ice cloud sediments to lower levels before radiative heating can drive a circulation to maintain the cloud and before small-scale convection builds up. In this case, the cloud lifetime is controlled by sedimentation of ice crystals into subsaturated air below the initial cloud level, followed by sublimation. Strong wind shear (>10 m s(-1) km(-1)) tends to hasten the cloud dissipation. With relatively weak thermal stability, small-scale convection builds up rapidly, resulting in mixing at cloud top and extension of the cloud lifetime. We also consider the impact of synoptic-scale and mesoscale temperature variability on cloud lifetime. Using TTL trajectories with small-scale wave temperature perturbations superimposed, we show that TTL cirrus will often dissipate within 12-24 h simply as a result of background temperature variability. C1 [Jensen, E. J.; Pfister, L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Toon, O. B.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80302 USA. [Toon, O. B.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80302 USA. RP Jensen, EJ (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM eric.j.jensen@nasa.gov FU NASA FX This work was supported by NASA's Radiation Science Program. NR 28 TC 21 Z9 21 U1 0 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 29 PY 2011 VL 116 AR D12209 DI 10.1029/2010JD015417 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 787MK UT WOS:000292380500002 ER PT J AU Townsend, LW PourArsalan, M Cucinotta, FA Kim, MY Schwadron, NA AF Townsend, L. W. PourArsalan, M. Cucinotta, F. A. Kim, M. Y. Schwadron, N. A. TI Transmission of galactic cosmic rays through Mars atmosphere SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID SOLAR PARTICLE EVENTS; INTERPLANETARY MISSIONS; SPACE EXPLORATION; DOSE EQUIVALENTS; BONE-MARROW; AUGUST 1972; RADIATION; EXPOSURE; SURFACE; CREWS AB For human operations on the surface of Mars, methods of estimating radiation exposures from galactic cosmic rays (GCRs) are needed. To facilitate making estimates of human radiation exposures for crew operations in the Martian atmosphere, lookup tables have been generated that provide doses for critical body organs and effective doses for exposures from galactic cosmic rays anywhere on the surface of Mars. The organ doses and effective doses are tabulated for carbon dioxide atmospheric shielding areal densities ranging from 0 to 300 g cm(-2) followed by aluminum spacecraft or habitat shield areal densities ranging from 0 to 100 g cm(-2). The Badhwar-O'Neill GCR model for interplanetary magnetic field potentials, ranging from the most probable solar minimum (currently 417 MV) to solar maximum conditions (1800 MV) in the solar cycle, is used as input into the calculations. This model is the standard one used for space operations at the Space Radiation Analysis Group at NASA Johnson Space Center. Use of the tables is illustrated for an environment consisting of the current galactic cosmic radiation spectrum impinging on an aluminum habitat on the surface of Mars. C1 [Townsend, L. W.; PourArsalan, M.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Cucinotta, F. A.; Kim, M. Y.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Schwadron, N. A.] Boston Univ, Dept Astron, Boston, MA 02215 USA. RP Townsend, LW (reprint author), Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. EM ltownsen@utk.edu OI Kim, Myung-Hee/0000-0001-5575-6858 FU National Aeronautics and Space Administration [NNX07AC14G] FX Research support from the National Aeronautics and Space Administration, Living With a Star program, through grant NNX07AC14G is gratefully acknowledged. NR 28 TC 9 Z9 9 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD JUN 29 PY 2011 VL 9 AR S00E11 DI 10.1029/2009SW000564 PG 8 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 787RD UT WOS:000292393500001 ER PT J AU Driggers, WB Hoffmayer, ER Hickerson, EL Martin, TL Gledhill, CT AF Driggers, William B., III Hoffmayer, Eric R. Hickerson, Emma L. Martin, Timothy L. Gledhill, Christopher T. TI Validating the occurrence of Caribbean reef sharks, Carcharhinus perezi (Poey), (Chondrichthyes: Carcharhiniformes) in the northern Gulf of Mexico, with a key for sharks of the family Carcharhinidae inhabiting the region SO ZOOTAXA LA English DT Letter C1 [Driggers, William B., III; Hoffmayer, Eric R.; Gledhill, Christopher T.] Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, SE Fisheries Sci Ctr, Mississippi Labs, Pascagoula, MS 39567 USA. [Hickerson, Emma L.] Natl Ocean & Atmospher Adm, Flower Gardens Banks Natl Marine Sanctuary, Galveston, TX 77551 USA. [Martin, Timothy L.] Natl Ocean & Atmospher Adm, Off Marine & Aviat Operat, NOAA Ship OREGON 2, Pascagoula, MS 39567 USA. RP Driggers, WB (reprint author), Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, SE Fisheries Sci Ctr, Mississippi Labs, PO Drawer 1207, Pascagoula, MS 39567 USA. EM William.Driggers@noaa.gov NR 10 TC 1 Z9 2 U1 1 U2 3 PU MAGNOLIA PRESS PI AUCKLAND PA PO BOX 41383, AUCKLAND, ST LUKES 1030, NEW ZEALAND SN 1175-5326 EI 1175-5334 J9 ZOOTAXA JI Zootaxa PD JUN 29 PY 2011 IS 2933 BP 65 EP 68 PG 4 WC Zoology SC Zoology GA 786RX UT WOS:000292326700006 ER PT J AU Zhang, GQ Xie, HJ Duan, SQ Tian, MZ Yi, DH AF Zhang, Guoqing Xie, Hongjie Duan, Shuiqiang Tian, Mingzhong Yi, Donghui TI Water level variation of Lake Qinghai from satellite and in situ measurements under climate change SO JOURNAL OF APPLIED REMOTE SENSING LA English DT Article DE ICESat; Lake Qinghai; lake level; in situ measurements; climate change ID RADAR ALTIMETER RA-2; IZABAL GUATEMALA; TIBETAN PLATEAU; DATA PRODUCTS; ICESAT; TOPEX/POSEIDON; FLUCTUATIONS; OCEAN; VALIDATION; ATMOSPHERE AB Lake level elevation and variation are important indicators of regional and global climate and environmental change. Lake Qinghai, the largest saline lake in China, located in the joint area of the East Asian monsoon, Indian summer monsoon, and Westerly jet stream, is particularly sensitive to climate change. This study examines the lake's water level and temporal change using the ice, cloud, and land elevation satellite (ICESat) altimetry data and gauge measurements. Results show that the mean water level from ICESat rose 0.67 m from 2003 to 2009 with an increase rate of 0.11 m/yr and that the ICESat data correlates well (r(2) = 0.90, root mean square difference 0.08 m) with gauge measurements. Envisat altimetry data show a similar change rate of 0.10 m/yr, but with similar to 0.52 m higher, primarily due to different referencing systems. Detailed examination of three sets of crossover ICESat tracks reveals that the lake level increase from 2004 to 2006 was 3 times that from 2006 to 2008, with the largest water level increase of 0.58 m from Feb. 2005 to Feb. 2006. Combined analyses with in situ precipitation, evaporation, and runoff measurements from 1956 to 2009 show that an overall decreasing trend of lake level (-0.07 m/yr) correlated with an overall increasing trend (+ 0.03 degrees C/yr) of temperature, with three major interannual peaks of lake level increases. The longest period of lake level increase from 2004 to 2009 could partly be due to accelerated glacier/perennial snow cover melt in the region during recent decades. Future missions of ICESat type, with possible increased repeatability, would be an invaluable asset for continuously monitoring lake level and change worldwide, besides its primary applications to polar regions. C (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI:10.1117/1.3601363] C1 [Zhang, Guoqing; Tian, Mingzhong] China Univ Geosci, Sch Earth Sci & Resources, Beijing 100083, Peoples R China. [Zhang, Guoqing; Xie, Hongjie] Univ Texas San Antonio, Lab Remote Sensing & Geoinformat, San Antonio, TX 78249 USA. [Zhang, Guoqing] E China Inst Technol, State Key Lab Breeding Base Nucl Resources & Envi, Nanchang 330013, Jiangxi, Peoples R China. [Duan, Shuiqiang] Bur Hydrol & Water Resources Qinghai Prov, Xining 810001, Qinghai, Peoples R China. [Yi, Donghui] NASA, Goddard Space Flight Ctr, SGT Inc, Cryospher Sci Branch, Greenbelt, MD 20771 USA. RP Zhang, GQ (reprint author), China Univ Geosci, Sch Earth Sci & Resources, Beijing 100083, Peoples R China. EM Hongjie.Xie@utsa.edu RI Xie, Hongjie/B-5845-2009; OI Xie, Hongjie/0000-0003-3516-1210; Zhang, Guoqing/0000-0003-2090-2813 FU U.S. NASA [NNX08AQ87G]; State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China Institute of Technology [101110]; China Scholarship Council at the University of Texas at San Antonio FX This work was in part supported by the U.S. NASA Grant No. NNX08AQ87G, and jointly sponsored by State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China Institute of Technology (No. 101110). G. Zhang wants to thank the China Scholarship Council for funding his study for two years (2009 to 2011) at the University of Texas at San Antonio. Provision of ICESat data through NSIDC is sincerely appreciated. The authors want to thank two anonymous reviewers and the editor for constructive comments, which greatly improved the paper. NR 43 TC 37 Z9 42 U1 5 U2 41 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1931-3195 J9 J APPL REMOTE SENS JI J. Appl. Remote Sens. PD JUN 28 PY 2011 VL 5 AR 053532 DI 10.1117/1.3601363 PG 15 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 792SZ UT WOS:000292771100001 ER PT J AU van Angelen, JH van den Broeke, MR Kwok, R AF van Angelen, J. H. van den Broeke, M. R. Kwok, R. TI The Greenland Sea Jet: A mechanism for wind-driven sea ice export through Fram Strait SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ATMOSPHERIC BOUNDARY-LAYER; CLIMATE MODEL; VARIABILITY; OSCILLATION; BUDGET; IMPACT AB We present a mechanism for wind-driven sea ice export from the Arctic Ocean through Fram Strait for the period 1979-2007, using the output of a high-resolution regional atmospheric climate model. By explicitly calculating the components of the atmospheric momentum budget, we show that not large scale synoptic forcing (LSC), but mainly thermal wind forcing (THW) causes the persistent northerly jet (the Greenland Sea Jet) over Fram Strait. The jet results from horizontal temperature gradients in the atmospheric boundary layer (ABL), set up between cold ABL-air over the sea ice covered western Greenland Sea and the relatively warmer ABL over the ice-free eastern Greenland Sea. From 1993 onwards we find a negative trend in THW, due to a stronger response to climate warming of the ABL over the sea ice covered ocean, compared to that over the ice free ocean. Although on average LSC is smaller than THW, year to year variations in LSC explain most of the interannual variability in the sea ice area flux through Fram Strait (R = 0.81). A small positive trend is found for LSC, partly compensating the decrease in THW in recent years. Citation: van Angelen, J. H., M. R. van den Broeke, and R. Kwok (2011), The Greenland Sea Jet: A mechanism for wind-driven sea ice export through Fram Strait, Geophys. Res. Lett., 38, L12805, doi:10.1029/2011GL047837. C1 [van Angelen, J. H.; van den Broeke, M. R.] Univ Utrecht, Inst Marine & Atmospher Res Utrecht, NL-3584 CC Utrecht, Netherlands. [Kwok, R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP van Angelen, JH (reprint author), Univ Utrecht, Inst Marine & Atmospher Res Utrecht, Princetonplein 5, NL-3584 CC Utrecht, Netherlands. EM j.h.vanangelen@uu.nl RI Van den Broeke, Michiel/F-7867-2011; Kwok, Ron/A-9762-2008 OI Van den Broeke, Michiel/0000-0003-4662-7565; Kwok, Ron/0000-0003-4051-5896 NR 26 TC 7 Z9 7 U1 2 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 28 PY 2011 VL 38 AR L12805 DI 10.1029/2011GL047837 PG 7 WC Geosciences, Multidisciplinary SC Geology GA 787MI UT WOS:000292380300004 ER PT J AU Falkenberg, TV Vennerstrom, S Brain, DA Delory, G Taktakishvili, A AF Falkenberg, T. V. Vennerstrom, S. Brain, D. A. Delory, G. Taktakishvili, A. TI Multipoint observations of coronal mass ejection and solar energetic particle events on Mars and Earth during November 2001 SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID 1 AU; MAGNETIC-FIELD; INTERPLANETARY SHOCKS; CONE MODEL; WIND; HELIOSPHERE; PROPAGATION; DEFLECTION; CME; SIGNATURES AB Multipoint spacecraft observations provide unique opportunities to constrain the propagation and evolution of interplanetary coronal mass ejections (ICMEs) throughout the heliosphere. Using Mars Global Surveyor (MGS) data to study both ICME and solar energetic particle (SEP) events at Mars and OMNI and Geostationary Operational Environmental Satellite (GOES) data to study ICMEs and SEPs at Earth, we present a detailed study of three CMEs and flares in late November 2001. In this period, Mars trailed Earth by 56 degrees solar longitude so that the two planets occupied interplanetary magnetic field lines separated by only similar to 25 degrees. We model the interplanetary propagation of CME events using the ENLIL version 2.6 3-D MHD code coupled with the Wang-Sheeley-Arge version 1.6 potential source surface model, using Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph (LASCO) images to determine CME input parameters. We find that multipoint observations are essential to constrain the simulations of ICME propagation, as two very different ICMEs may look very similar in only one observational location. The direction and width of the CME as parameters essential to a correct estimation of arrival time and amplitude of the ICME signal. We find that these are problematic to extract from the analysis of SOHO/LASCO images commonly used for input to ICME propagation models. We further confirm that MGS magnetometer and electron reflectometer data can be used to study not only ICME events but also SEP events at Mars, with good results providing a consistent picture of the events when combined with near-Earth data. C1 [Falkenberg, T. V.; Vennerstrom, S.] Danish Tech Univ, Natl Space Inst, DK-2100 Copenhagen, Denmark. [Brain, D. A.; Delory, G.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Taktakishvili, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Falkenberg, TV (reprint author), Danish Tech Univ, Natl Space Inst, DK-2100 Copenhagen, Denmark. EM tvf@space.dtu.dk; sv@space.dtu.dk; brain@ssl.berkeley.edu; gdelory@ssl.berkeley.edu; aleksandre.taktakishvili-1@nasa.gov FU European Community [FP7/2007-2013, 218816]; ESA PRODEX [90322] FX All simulations carried out for this work were graciously performed at the Community Coordinated Modeling Center at the NASA Goddard Space Flight Center whose efforts have been invaluable; special thanks to Antti A. Pulkkinen, Anna Chulaki, Larisa Moiseev, and Peter Macneice, and of course to Dusan Odstrcil, also at NASA Goddard Space Flight Center, for developing ENLIL and for letting us use his model in this study. The OMNI database is generously provided and maintained by Goddard Space Flight Centers National Space Science Data Center, thanks to the cooperation and assistance of the many contributing NASA mission investigators. The SOHO/LASCO CME catalog is generated and maintained at the CDAW Data Center by NASA and the Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. The GOES X-ray catalogue and the GOES data are generated and maintained by the National Geophysical Data Center (NGDC), located in Boulder, Colorado, part of the U.S. Department of Commerce (USDOC), National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data and Information Service (NESDIS), one of three NOAA National Data Centers. The research leading to the results presented in this paper has received funding from European Communitys Seventh Framework Programme (FP7/2007-2013) under grant agreement 218816. This study was partially funded by the ESA PRODEX Experiment Arrangement 90322. NR 59 TC 9 Z9 9 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN 28 PY 2011 VL 116 AR A06104 DI 10.1029/2010JA016279 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 787RM UT WOS:000292394400001 ER PT J AU Sinha, C Bhatia, AK AF Sinha, C. Bhatia, A. K. TI Laser-assisted free-free transition in electron-atom collisions SO PHYSICAL REVIEW A LA English DT Article ID SCATTERING AB The free-free transition is studied for an electron-hydrogen atom system in the ground state at very low incident energies in the presence of an external homogeneous, monochromatic, and linearly polarized laser field. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the effect of electron-exchange interactions, short-range interactions, as well as of long-range interactions. The laser-assisted differential as well as total elastic cross sections are calculated for single-photon absorption or emission in the soft photon limit, the laser intensity being much less than the atomic field intensity. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situations. A significant difference is noted in the singlet and the triplet cross sections. C1 [Sinha, C.] Indian Assoc Cultivat Sci, Dept Theoret Phys, Kolkata 700032, W Bengal, India. [Bhatia, A. K.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD 20771 USA. RP Sinha, C (reprint author), Indian Assoc Cultivat Sci, Dept Theoret Phys, Kolkata 700032, W Bengal, India. NR 14 TC 5 Z9 5 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD JUN 27 PY 2011 VL 83 IS 6 AR 063417 DI 10.1103/PhysRevA.83.063417 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 783WG UT WOS:000292114200008 ER PT J AU Alves, MED Tinto, M AF da Silva Alves, Marcio Eduardo Tinto, Massimo TI Pulsar timing sensitivities to gravitational waves from relativistic metric theories of gravity SO PHYSICAL REVIEW D LA English DT Article ID POLARIZATIONS AB Pulsar timing experiments aimed at the detection of gravitational radiation have been performed for decades now. With the forthcoming construction of large arrays capable of tracking multiple millisecond pulsars, it is very likely we will be able to make the first detection of gravitational radiation in the nano-Hertz band, and test Einstein's theory of relativity by measuring the polarization components of the detected signals. Since a gravitational wave predicted by the most general relativistic metric theory of gravity accounts for six polarization modes (the usual two Einstein's tensor polarizations as well as two vector and two scalar wave components), we have estimated the single-antenna sensitivities to these six polarizations. We find pulsar timing experiments to be significantly more sensitive, over their entire observational frequency band (approximate to 10(-9)-10(-6) Hz), to scalar-longitudinal and vector waves than to scalar-transverse and tensor waves. At 10(-7) Hz and with pulsars at a distance of 1 kpc, for instance, we estimate an average sensitivity to scalar-longitudinal waves that is more than two orders of magnitude better than the sensitivity to tensor waves. Our results imply that a direct detection of gravitational radiation by pulsar timing will result into a test of the theory of general relativity that is more stringent than that based on monitoring the decay of the orbital period of a binary system. C1 [da Silva Alves, Marcio Eduardo] Univ Fed Itajuba, Inst Ciencias Exatas, BR-37500903 Itajuba, MG, Brazil. [Tinto, Massimo] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Alves, MED (reprint author), Univ Fed Itajuba, Inst Ciencias Exatas, BR-37500903 Itajuba, MG, Brazil. EM alvesmes@unifei.edu.br; Massimo.Tinto@jpl.nasa.gov FU FAPESP foundation [2006/56041-3]; National Aeronautics and Space Administration FX The authors thank Dr. John W. Armstrong for his encouragement during the development of this work, and Professor Odylio D. de Aguiar for his hospitality and financial support through the FAPESP foundation, Grant No. 2006/56041-3. This research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 13 TC 10 Z9 10 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 27 PY 2011 VL 83 IS 12 AR 123529 DI 10.1103/PhysRevD.83.123529 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 784BV UT WOS:000292129500001 ER PT J AU Galvan, DA Komjathy, A Hickey, MP Mannucci, AJ AF Galvan, David A. Komjathy, Attila Hickey, Michael P. Mannucci, Anthony J. TI The 2009 Samoa and 2010 Chile tsunamis as observed in the ionosphere using GPS total electron content SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID INTERNAL GRAVITY-WAVES; OSCILLATIONS; ATMOSPHERE; EARTHQUAKE AB Ground-based Global Positioning System (GPS) measurements of ionospheric total electron content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following two recent seismic events: the Samoa earthquake of 29 September 2009 and the Chile earthquake of 27 February 2010. Both earthquakes produced ocean tsunamis that were destructive to coastal communities near the epicenters, and both were observed in tidal gauge and buoy measurements throughout the Pacific Ocean. We observe fluctuations in TEC correlated in time, space, and wave properties with these tsunamis using the Jet Propulsion Laboratory's Global Ionospheric Mapping software. These TEC measurements were band-pass filtered to remove ionospheric TEC variations with wavelengths and periods outside the typical range for tsunamis. Observable variations in TEC appear correlated with the tsunamis in some locations (Hawaii and Japan), but not in others (Southern California or near the epicenters). Where variations are observed, the typical amplitude tends to be similar to 0.1-0.2 TEC units for these events, on the order of similar to 1% of the background TEC value. These observations are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupled model, and are found to be in good agreement. Significant TEC variations are not always seen when a tsunami is present, but in these two events the regions where a strong ocean tsunami was observed coincided with clear TEC observations, while a lack of clear TEC observations coincided with smaller sea surface height amplitudes. There exists the potential to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for early warning systems. C1 [Galvan, David A.; Komjathy, Attila; Mannucci, Anthony J.] CALTECH, Jet Prop Lab, Ionospher & Atmospher Remote Sensing Grp, Pasadena, CA 91109 USA. [Hickey, Michael P.] Embry Riddle Aeronaut Univ, Dept Phys Sci, Daytona Beach, FL 32114 USA. RP Galvan, DA (reprint author), CALTECH, Jet Prop Lab, Ionospher & Atmospher Remote Sensing Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM david.galvan@jpl.nasa.gov FU NASA [NNH07ZDA001N-ESI] FX The authors would like to thank John LaBrecque of NASA Headquarters and the Earth Science and Interior NASA ROSES grant (NNH07ZDA001N-ESI), which made this research possible. James Foster of the University of Hawaii provided access to RINEX files from additional GPS receivers on the Big Island of Hawaii. RINEX files from over 1200 GPS receivers in the Japanese GPS Earth Observation (GEONET) network were provided by the Geospatial Information Authority (GSI), a part of the Japanese Ministry of Land, Infrastructure, Transport and Tourism. Edison Gica, Yong Wei, and Vasily Titov of the NOAA Center for Tsunami Research provided access to the MOST model results for the Samoa (2009) and Chile (2010) tsunami events. Their excellent overview results from these and other tsunami events are available at http://nctr.pmel.noaa.gov/database_devel.html. Phillip Stephens in the Ionospheric and Atmospheric Remote Sensing group at JPL also provided useful suggestions and commentary during this research analysis. Data analysis was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration. Modeling work was performed at Embry Riddle Aeronautical University. NR 40 TC 41 Z9 42 U1 2 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN 25 PY 2011 VL 116 AR A06318 DI 10.1029/2010JA016204 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 784JL UT WOS:000292153200002 ER PT J AU Niu, GY Yang, ZL Mitchell, KE Chen, F Ek, MB Barlage, M Kumar, A Manning, K Niyogi, D Rosero, E Tewari, M Xia, YL AF Niu, Guo-Yue Yang, Zong-Liang Mitchell, Kenneth E. Chen, Fei Ek, Michael B. Barlage, Michael Kumar, Anil Manning, Kevin Niyogi, Dev Rosero, Enrique Tewari, Mukul Xia, Youlong TI The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID DATA ASSIMILATION SYSTEM; ATMOSPHERE COUPLING EXPERIMENT; MESOSCALE ETA-MODEL; ENERGY-BALANCE; CLIMATE MODELS; SOIL-MOISTURE; SNOW-COVER; STOMATAL CONDUCTANCE; GLOBAL CLIMATE; PILPS PHASE-2(E) AB This first paper of the two-part series describes the objectives of the community efforts in improving the Noah land surface model (LSM), documents, through mathematical formulations, the augmented conceptual realism in biophysical and hydrological processes, and introduces a framework for multiple options to parameterize selected processes (Noah-MP). The Noah-MP's performance is evaluated at various local sites using high temporal frequency data sets, and results show the advantages of using multiple optional schemes to interpret the differences in modeling simulations. The second paper focuses on ensemble evaluations with long-term regional (basin) and global scale data sets. The enhanced conceptual realism includes (1) the vegetation canopy energy balance, (2) the layered snowpack, (3) frozen soil and infiltration, (4) soil moisture-groundwater interaction and related runoff production, and (5) vegetation phenology. Sample local-scale validations are conducted over the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) site, the W3 catchment of Sleepers River, Vermont, and a French snow observation site. Noah-MP shows apparent improvements in reproducing surface fluxes, skin temperature over dry periods, snow water equivalent (SWE), snow depth, and runoff over Noah LSM version 3.0. Noah-MP improves the SWE simulations due to more accurate simulations of the diurnal variations of the snow skin temperature, which is critical for computing available energy for melting. Noah-MP also improves the simulation of runoff peaks and timing by introducing a more permeable frozen soil and more accurate simulation of snowmelt. We also demonstrate that Noah-MP is an effective research tool by which modeling results for a given process can be interpreted through multiple optional parameterization schemes in the same model framework. C1 [Niu, Guo-Yue; Yang, Zong-Liang; Rosero, Enrique] Univ Texas Austin, Dept Geol Sci, John A & Katherine G Jackson Sch Geosci, Austin, TX 78712 USA. [Niu, Guo-Yue] Univ Arizona, Tucson, AZ 85738 USA. [Mitchell, Kenneth E.; Ek, Michael B.; Xia, Youlong] Natl Ocean & Atmospher Adm Natl Weather Serv, Environm Modeling Ctr, Natl Ctr Environm Predict, Camp Springs, MD 20746 USA. [Chen, Fei; Barlage, Michael; Manning, Kevin; Tewari, Mukul] Natl Ctr Atmospher Res, Res Applicat Lab, Boulder, CO 80307 USA. [Kumar, Anil] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA. [Niyogi, Dev] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA. [Niyogi, Dev] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. RP Niu, GY (reprint author), Univ Texas Austin, Dept Geol Sci, John A & Katherine G Jackson Sch Geosci, 1 Univ Stn C1100, Austin, TX 78712 USA. EM liang@jsg.utexas.edu RI Yang, Zong-Liang/B-4916-2011; Chen, Fei/B-1747-2009; Niu, Guo-Yue/B-8317-2011 FU NASA [NAG5-10209, NAG5-12577, NNX07A79G, NNX 08AJ84G, NNX09AJ48G]; NOAA [NA07OAR4310076]; KAUST; National Natural Science Foundation of China [40828004] FX This work was funded by NASA grants NAG5-10209, NAG5-12577, NNX07A79G, NNX 08AJ84G, NNX09AJ48G, NOAA grant NA07OAR4310076, a KAUST grant, and National Natural Science Foundation of China Project 40828004. We thank Robert E. Dickinson for reading the manuscript. NR 92 TC 205 Z9 212 U1 10 U2 109 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 24 PY 2011 VL 116 AR D12109 DI 10.1029/2010JD015139 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 783VG UT WOS:000292111500002 ER PT J AU Varble, A Fridlind, AM Zipser, EJ Ackerman, AS Chaboureau, JP Fan, JW Hill, A McFarlane, SA Pinty, JP Shipway, B AF Varble, Adam Fridlind, Ann M. Zipser, Edward J. Ackerman, Andrew S. Chaboureau, Jean-Pierre Fan, Jiwen Hill, Adrian McFarlane, Sally A. Pinty, Jean-Pierre Shipway, Ben TI Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud structure SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MIDLATITUDE SQUALL LINE; COMMUNITY CLIMATE MODEL; SINGLE-COLUMN MODEL; PART I; STRATIFORM PRECIPITATION; CONTINENTAL CONVECTION; SIZE DISTRIBUTIONS; RADIATIVE-TRANSFER; RADAR OBSERVATIONS; ACTIVE CONVECTION AB The Tropical Warm Pool-International Cloud Experiment (TWP-ICE) provided extensive observational data sets designed to initialize, force, and constrain atmospheric model simulations. In this first of a two-part study, precipitation and cloud structures within nine cloud-resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Seven of nine simulations overestimate convective area by 20% or more leading to general overestimation of convective rainfall. This is balanced by underestimation of stratiform rainfall by 5% to 50% despite overestimation of stratiform area by up to 65% because of a preponderance of very low stratiform rain rates in all simulations. All simulations fail to reproduce observed radar reflectivity distributions above the melting level in convective regions and throughout the troposphere in stratiform regions. Observed precipitation-sized ice reaches higher altitudes than simulated precipitation-sized ice despite some simulations that predict lower than observed top-of-atmosphere infrared brightness temperatures. For the simulations that overestimate radar reflectivity aloft, graupel is the cause with one-moment microphysics schemes whereas snow is the cause with two-moment microphysics schemes. Differences in simulated radar reflectivity are more highly correlated with differences in mass mean melted diameter (D-m) than differences in ice water content. D-m is largely dependent on the mass-dimension relationship and gamma size distribution parameters such as size intercept (N-0) and shape parameter (mu). Having variable density, variable N-0, or mu greater than zero produces radar reflectivities closest to those observed. C1 [Varble, Adam; Zipser, Edward J.] Univ Utah, Dept Atmospher Sci, Salt Lake City, UT 84112 USA. [Fridlind, Ann M.; Ackerman, Andrew S.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Chaboureau, Jean-Pierre; Pinty, Jean-Pierre] Univ Toulouse, CNRS, Lab Aerol, Toulouse, France. [Fan, Jiwen; McFarlane, Sally A.] Pacific NW Natl Lab, Dept Climate Phys, Richland, WA 99352 USA. [Hill, Adrian; Shipway, Ben] Met Off, Exeter EX1 3PB, Devon, England. RP Varble, A (reprint author), Univ Utah, Dept Atmospher Sci, 135S 1460E,Rm 806C, Salt Lake City, UT 84112 USA. EM a.varble@utah.edu RI Shipway, Ben/E-1375-2011; Fan, Jiwen/E-9138-2011; Ackerman, Andrew/D-4433-2012; Fridlind, Ann/E-1495-2012 OI Shipway, Ben/0000-0002-7419-0789; Ackerman, Andrew/0000-0003-0254-6253; FU Department of Energy [DEFG0208ER64557]; DOE Office of Science, Office of Biological and Environmental Research [DE-AI02-06ER64173, DE-FG03-02ER63337]; NASA; DOE National Energy Research Scientific Computing Center; NASA Advanced Supercomputing Division FX This research was supported by the Department of Energy's Atmospheric Research Program, award DEFG0208ER64557, program manager Kiran Alapaty. Special thanks are given to Peter May at the Centre for Australian Weather and Climate Research and the Australian Bureau of Meteorology for providing the CPOL radar data, Pat Minnis and his group at NASA Langley Research Center for archiving the MTSAT data, and the JCSDA and model developers for providing the CRTM. DHARMA simulations were supported by DOE Office of Science, Office of Biological and Environmental Research, through interagency agreement DE-AI02-06ER64173 and contract DE-FG03-02ER63337, the NASA Radiation Sciences Program, the DOE National Energy Research Scientific Computing Center, and the NASA Advanced Supercomputing Division. NR 80 TC 51 Z9 53 U1 1 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 24 PY 2011 VL 116 AR D12206 DI 10.1029/2010JD015180 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 783VG UT WOS:000292111500004 ER PT J AU Clark, RN Pieters, CM Green, RO Boardman, JW Petro, NE AF Clark, Roger N. Pieters, Carle M. Green, Robert O. Boardman, J. W. Petro, Noah E. TI Thermal removal from near-infrared imaging spectroscopy data of the Moon SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID SURFACE AB In the near-infrared from about 2 mm to beyond 3 mm, the light from the Moon is a combination of reflected sunlight and emitted thermal emission. There are multiple complexities in separating the two signals, including knowledge of the local solar incidence angle due to topography, phase angle dependencies, emissivity, and instrument calibration. Thermal emission adds to apparent reflectance, and because the emission's contribution increases over the reflected sunlight with increasing wavelength, absorption bands in the lunar reflectance spectra can be modified. In particular, the shape of the 2 mu m pyroxene band can be distorted by thermal emission, changing spectrally determined pyroxene composition and abundance. Because of the thermal emission contribution, water and hydroxyl absorptions are reduced in strength, lowering apparent abundances. It is important to quantify and remove the thermal emission for these reasons. We developed a method for deriving the temperature and emissivity from spectra of the lunar surface and removing the thermal emission in the near infrared. The method is fast enough that it can be applied to imaging spectroscopy data on the Moon. C1 [Clark, Roger N.] US Geol Survey, Fed Ctr, Denver, CO 80225 USA. [Boardman, J. W.] Analyt Imaging & Geophys LLC, Boulder, CO 80305 USA. [Green, Robert O.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Petro, Noah E.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. [Pieters, Carle M.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. RP Clark, RN (reprint author), US Geol Survey, Fed Ctr, MS964,Box 25046, Denver, CO 80225 USA. EM rclark@usgs.gov; carle_pieters@brown.edu; robert.o.green@jpl.nasa.gov; boardman@aigllc.com; noah.e.petro@mail.nasa.gov RI Petro, Noah/F-5340-2013 FU NASA Chandrayaan-1 Moon Mineralogy Mapper (M3) team; NASA Cassini VIMS team FX This research was funded by the NASA Chandrayaan-1 Moon Mineralogy Mapper (M3) team (C. Pieters, PI, other authors Co-Is), and the NASA Cassini VIMS team (B. Brown, Team Leader; R. Clark, Team Member). NR 12 TC 41 Z9 41 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUN 24 PY 2011 VL 116 AR E00G16 DI 10.1029/2010JE003751 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 783WF UT WOS:000292114100001 ER PT J AU Larsson, J Fransson, C Ostlin, G Groningsson, P Jerkstrand, A Kozma, C Sollerman, J Challis, P Kirshner, RP Chevalier, RA Heng, K McCray, R Suntzeff, NB Bouchet, P Crotts, A Danziger, J Dwek, E France, K Garnavich, PM Lawrence, SS Leibundgut, B Lundqvist, P Panagia, N Pun, CSJ Smith, N Sonneborn, G Wang, L Wheeler, JC AF Larsson, J. Fransson, C. Ostlin, G. Groningsson, P. Jerkstrand, A. Kozma, C. Sollerman, J. Challis, P. Kirshner, R. P. Chevalier, R. A. Heng, K. McCray, R. Suntzeff, N. B. Bouchet, P. Crotts, A. Danziger, J. Dwek, E. France, K. Garnavich, P. M. Lawrence, S. S. Leibundgut, B. Lundqvist, P. Panagia, N. Pun, C. S. J. Smith, N. Sonneborn, G. Wang, L. Wheeler, J. C. TI X-ray illumination of the ejecta of supernova 1987A SO NATURE LA English DT Article ID HUBBLE-SPACE-TELESCOPE; SN 1987A; REVERSE SHOCK; LINE EMISSION; LIGHT-CURVE; EVOLUTION; RING; SN-1987A; REMNANT; STARS AB When a massive star explodes as a supernova, substantial amounts of radioactive elements-primarily (56)Ni, (57)Ni and (44)Ti-are produced(1). After the initial flash of light from shock heating, the fading light emitted by the supernova is due to the decay of these elements(2). However, after decades, the energy powering a supernova remnant comes from the shock interaction between the ejecta and the surrounding medium(3). The transition to this phase has hitherto not been observed: supernovae occur too infrequently in the Milky Way to provide a young example, and extragalactic supernovae are generally too faint and too small. Here we report observations that show this transition in the supernova SN 1987A in the Large Magellanic Cloud. From 1994 to 2001, the ejecta faded owing to radioactive decay of (44)Ti as predicted. Then the flux started to increase, more than doubling by the end of 2009. We show that this increase is the result of heat deposited by X-rays produced as the ejecta interacts with the surrounding material. In time, the X-rays will penetrate farther into the ejecta, enabling us to analyse the structure and chemistry of the vanished star. C1 [Larsson, J.; Fransson, C.; Ostlin, G.; Groningsson, P.; Jerkstrand, A.; Kozma, C.; Sollerman, J.; Lundqvist, P.] Stockholm Univ, Dept Astron, Oskar Klein Ctr, S-10691 Stockholm, Sweden. [Challis, P.; Kirshner, R. P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Chevalier, R. A.] Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. [Heng, K.] Eidgenossische Tech Hsch, Inst Astron, CH-8093 Zurich, Switzerland. [McCray, R.] Univ Colorado, JILA, Boulder, CO USA. [Suntzeff, N. B.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, Dept Phys & Astron, College Stn, TX 77843 USA. [Bouchet, P.] DSM IRFU Serv Astrophys Commissariat Energie Alte, FR-91191 Gif Sur Yvette, France. [Crotts, A.] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Dwek, E.; Sonneborn, G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Danziger, J.] Osserv Astron Trieste, I-34131 Trieste, Italy. [France, K.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Garnavich, P. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Lawrence, S. S.] Hofstra Univ, Dept Phys & Astron, Hempstead, NY 11549 USA. [Leibundgut, B.] ESO, D-85748 Garching, Germany. [Panagia, N.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Panagia, N.] Osserv Astrofis Catania, INAF CT, I-95123 Catania, Italy. [Pun, C. S. J.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Smith, N.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Wheeler, J. C.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. RP Larsson, J (reprint author), Stockholm Univ, Dept Astron, Oskar Klein Ctr, S-10691 Stockholm, Sweden. EM josefin.larsson@astro.su.se; claes@astro.su.se RI Dwek, Eli/C-3995-2012; Sonneborn, George/D-5255-2012; Jerkstrand, Anders/K-9648-2015; OI Jerkstrand, Anders/0000-0001-8005-4030; Sollerman, Jesper/0000-0003-1546-6615; /0000-0003-0065-2933 FU Swedish Research Council; Swedish National Space Board; Space Telescope Science Institute FX This work was supported by the Swedish Research Council and the Swedish National Space Board. Support for the HST observing programme was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. NR 24 TC 35 Z9 35 U1 0 U2 9 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUN 23 PY 2011 VL 474 IS 7352 BP 484 EP 486 DI 10.1038/nature10090 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 781NJ UT WOS:000291939700042 PM 21654749 ER PT J AU Li, T Leblanc, T McDermid, IS Keckhut, P Hauchecorne, A Dou, XK AF Li, Tao Leblanc, Thierry McDermid, I. Stuart Keckhut, Philippe Hauchecorne, Alain Dou, Xiankang TI Middle atmosphere temperature trend and solar cycle revealed by long-term Rayleigh lidar observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID QUASI-BIENNIAL OSCILLATION; WATER-VAPOR; UPPER-STRATOSPHERE; UV VARIABILITY; COOLING TREND; QBO; OZONE; MODEL; MESOSPHERE; SIMULATIONS AB The long-term temperature profile data sets obtained by Rayleigh lidars at three different northern latitudes within the Network for the Detection of Atmospheric Composition Change were used to derive the middle atmosphere temperature trend and response to the 11 year solar cycle. The lidars were located at the Mauna Loa Observatory, Hawaii (MLO, 19.5 degrees N); the Table Mountain Facility, California (TMF, 34.4 degrees N); and the Observatoire de Haute Provence, France (OHP, 43.9 degrees N). A stratospheric cooling trend of 2-3 K/decade was found for both TMF and OHP, and a trend of <= 0.5 +/- 0.5 K/decade was found at MLO. In the mesosphere, the trend at TMF (3-4 K/decade) was much larger than that at both OHP and MLO (<1 K/decade). The lidar trends agree well with earlier satellite and rocketsonde trends in the stratosphere, but a substantial discrepancy was found in the mesosphere. The cooling trend in the upper stratosphere at OHP during 1981-1994 (similar to 2-3 K/decade) was much larger than that during 1995-2009 (<= 0.8 K/decade), coincident with the slightly increasing upper stratospheric ozone density after 1995. Significant temperature response to the 11 year solar cycle was found. The correlation was positive in both the stratosphere and mesosphere at MLO and TMF. At OHP a wintertime negative response in the upper stratosphere and a positive response in the middle mesosphere were observed during 1981-1994, but the opposite behavior was found during 1995-2009. This behavior may not be a direct solar cycle response at all but is likely related to an apparent response to decadal variability (e.g., volcanoes, modulated random occurrence of sudden stratospheric warmings) that is more complex. C1 [Li, Tao; Dou, Xiankang] Univ Sci & Technol China, Sch Earth & Space Sci, Hefei 230026, Anhui, Peoples R China. [Keckhut, Philippe; Hauchecorne, Alain] Inst Pierre Simon Laplace, Atmospheres Lab, F-78280 Guyancourt, France. [Leblanc, Thierry; McDermid, I. Stuart] CALTECH, JPL Table Mt Facil, Jet Prop Lab, Wrightwood, CA 92397 USA. [Li, Tao] Chinese Acad Sci, State Key Lab Space Weather, Beijing, Peoples R China. RP Li, T (reprint author), Univ Sci & Technol China, Sch Earth & Space Sci, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China. EM litao@ustc.edu.cn RI Hauchecorne, Alain/A-8489-2013; Dou, xiankang/M-9106-2013; Li, Tao/J-8950-2014; OI Li, Tao/0000-0002-5100-4429; Hauchecorne, Alain/0000-0001-9888-6994 FU National Natural Science Foundation of China [40974084, 41074108, 41025016]; specialized research fund for State Key Laboratories; Chinese Academy of Sciences; California Institute of Technology; National Aeronautics and Space Administration; Institute National des Sciences de l'Univers; Centre National Etudes Spatiales; European Space Agency (ESA); European Integrated Project Geomon [FOP6-2005-Global-4-036677] FX The research described in this paper was carried out at the University of Science and Technology of China, with support from the National Natural Science Foundation of China grants 40974084, 41074108, and 41025016, the specialized research fund for State Key Laboratories, and the Chinese Academy of Sciences Hundred Talent program, and at the California Institute of Technology under an agreement with the National Aeronautics and Space Administration. The Rayleigh lidar long-term operations are performed within the NDACC network, and the temperature data sets are available on the NDACC website: http://www.ndsc.ncep.noaa.gov/. Observatory of Haute Provence NDACC activities are supported by the Institute National des Sciences de l'Univers, the Centre National Etudes Spatiales, and the European Space Agency (ESA) through the Envisat Quality Assessment with Lidar ESA project (EQUAL), and long-term investigations are funded by the European Integrated Project Geomon (contract FOP6-2005-Global-4-036677). NR 45 TC 8 Z9 10 U1 1 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 23 PY 2011 VL 116 AR D00P05 DI 10.1029/2010JD015275 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 783VF UT WOS:000292111400001 ER PT J AU Abadie, J Abbott, BP Abbott, R Abernathy, M Accadia, T Acernese, F Adams, C Adhikari, R Affeldt, C Allen, B Allen, GS Ceron, EA Amariutei, D Amin, RS Anderson, SB Anderson, WG Antonucci, F Arai, K Arain, MA Araya, MC Aston, SM Astone, P Atkinson, D Aufmuth, P Aulbert, C Aylott, BE Babak, S Baker, P Ballardin, G Ballmer, S Barker, D Barnum, S Barone, F Barr, B Barriga, P Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Basti, A Bauchrowitz, J Bauer, TS Behnke, B Beker, MG Bell, AS Belletoile, A Belopolski, I Benacquista, M Bertolini, A Betzwieser, J Beveridge, N Beyersdorf, PT Bilenko, IA Billingsley, G Birch, J Birindelli, S Biswas, R Bitossi, M Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Blom, M Bock, O Bodiya, TP Bogan, C Bondarescu, R Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Boschi, V Bose, S Bosi, L Bouhou, B Boyle, M Braccini, S Bradaschia, C Brady, PR Braginsky, VB Brau, JE Breyer, J Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Brummit, A Budzynski, R Bulik, T Bulten, HJ Buonanno, A Burguet-Castell, J Burmeister, O Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cain, J Calloni, E Camp, JB Campagna, E Campsie, P Cannizzo, J Cannon, K Canuel, B Cao, J Capano, C Carbognani, F Caride, S Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chaibi, O Chalermsongsak, T Chalkley, E Charlton, P Chassande-Mottin, E Chelkowski, S Chen, Y Chincarini, A Christensen, N Chua, SSY Chung, CTY Chung, S Clara, F Clark, D Clark, J Clayton, JH Cleva, F Coccia, E Colacino, CN Colas, J Colla, A Colombini, M Conte, R Cook, D Corbitt, TR Cornish, N Corsi, A Costa, CA Coughlin, M Coulon, JP Coward, DM Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Culter, RM Cumming, A Cunningham, L Cuoco, E Dahl, K Danilishin, SL Dannenberg, R D'Antonio, S Danzmann, K Das, K Dattilo, V Daudert, B Daveloza, H Davier, M Davies, G Daw, EJ Day, R Dayanga, T De Rosa, R DeBra, D Debreczeni, G Degallaix, J del Prete, M Dent, T Dergachev, V DeRosa, R DeSalvo, R Dhurandhar, S Di Fiore, L Di Lieto, A Di Palma, I Emilio, MDP Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Dorsher, S Douglas, ESD Drago, M Drever, RWP Driggers, JC Dumas, JC Dwyer, S Eberle, T Edgar, M Edwards, M Effler, A Ehrens, P Engel, R Etzel, T Evans, M Evans, T Factourovich, M Fafone, V Fairhurst, S Fan, Y Farr, BF Fazi, D Fehrmann, H Feldbaum, D Ferrante, I Fidecaro, F Finn, LS Fiori, I Flaminio, R Flanigan, M Foley, S Forsi, E Forte, LA Fotopoulos, N Fournier, JD Franc, J Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fulda, P Fyffe, M Galimberti, M Gammaitoni, L Garcia, J Garofoli, JA Garufi, F Gaspar, ME Gemme, G Genin, E Gennai, A Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Gill, C Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Graef, C Granata, M Grant, A Gras, S Gray, C Greenhalgh, RJS Gretarsson, AM Greverie, C Grosso, R Grote, H Grunewald, S Guidi, GM Guido, C Gupta, R Gustafson, EK Gustafson, R Hage, B Hallam, JM Hammer, D Hammond, G Hanks, J Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Hartman, MT Haughian, K Hayama, K Hayau, JF Hayler, T Heefner, J Heitmann, H Hello, P Hendry, MA Heng, IS Heptonstall, AW Herrera, V Hewitson, M Hild, S Hoak, D Hodge, KA Holt, K Hong, T Hooper, S Hosken, DJ Hough, J Howell, EJ Huet, D Hughey, B Husa, S Huttner, SH Ingram, DR Inta, R Isogai, T Ivanov, A Jaranowski, P Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kanner, JB Katsavounidis, E Katzman, W Kawabe, K Kawamura, S Kawazoe, F Kells, W Kelner, M Keppel, DG Khalaidovski, A Khalili, FY Khazanov, EA Kim, H Kim, N King, PJ Kinzel, DL Kissel, JS Klimenko, S Kondrashov, V Kopparapu, R Koranda, S Korth, WZ Kowalska, I Kozak, D Kringel, V Krishnamurthy, S Krishnan, B Krolak, A Kuehn, G Kumar, R Kwee, P Landry, M Lantz, B Lastzka, N Lazzarini, A Leaci, P Leong, J Leonor, I Leroy, N Letendre, N Li, J Li, TGF Liguori, N Lindquist, PE Lockerbie, NA Lodhia, D Lorenzini, M Loriette, V Lormand, M Losurdo, G Lu, P Luan, J Lubinski, M Luck, H Lundgren, AP Macdonald, E Machenschalk, B MacInnis, M Mageswaran, M Mailand, K Majorana, E Maksimovic, I Man, N Mandel, I Mandic, V Mantovani, M Marandi, A Marchesoni, F Marion, F Marka, S Marka, Z Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McIntyre, G McKechan, DJA Meadors, G Mehmet, M Meier, T Melatos, A Melissinos, AC Mendell, G Mercer, RA Merill, L Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mino, Y Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Moesta, P Mohan, M Mohanty, SD Mohapatra, SRP Moraru, D Moreno, G Morgado, N Morgia, A Mosca, S Moscatelli, V Mossavi, K Mours, B Mow-Lowry, CM Mueller, G Mukherjee, S Mullavey, A Muller-Ebhardt, H Munch, J Murray, PG Nash, T Nawrodt, R Nelson, J Neri, I Newton, G Nishida, E Nishizawa, A Nocera, F Nolting, D Ochsner, E O'Dell, J Ogin, GH Oldenburg, RG O'Reilly, B O'Shaughnessy, R Osthelder, C Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pagliaroli, G Palladino, L Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Parameswaran, A Pardi, S Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pathak, D Pedraza, M Pekowsky, L Penn, S Peralta, C Perreca, A Persichetti, G Phelps, M Pichot, M Pickenpack, M Piergiovanni, F Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Podkaminer, J Poggiani, R Poeld, J Postiglione, F Prato, M Predoi, V Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Quetschke, V Raab, FJ Rabeling, DS Racz, I Radkins, H Raffai, P Rakhmanov, M Ramet, CR Rankins, B Rapagnani, P Raymond, V Re, V Redwine, K Reed, CM Reed, T Regimbau, T Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Roberts, P Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rolland, L Rollins, J Romano, JD Romano, R Romie, JH Rosinska, D Rover, C Rowan, S Udiger, AR Ruggi, P Ryan, K Sakata, S Sakosky, M Salemi, F Salit, M Sammut, L de la Jordana, LS Sandberg, V Sannibale, V Santamaria, L Santiago-Prieto, I Santostasi, G Saraf, S Sassolas, B Sathyaprakash, BS Sato, S Satterthwaite, M Saulson, PR Savage, R Schilling, R Schlamminger, S Schnabel, R Schofield, RMS Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Seifert, F Sellers, D Sengupta, AS Sentenac, D Sergeev, A Shaddock, DA Shaltev, M Shapiro, B Shawhan, P Weerathunga, TS Shoemaker, DH Sibley, A Siemens, X Sigg, D Singer, A Singer, L Sintes, AM Skelton, G Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Smith, R Somiya, K Sorazu, B Soto, J Speirits, FC Sperandio, L Stefszky, M Stein, AJ Steinlechner, J Steinlechner, S Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, AS Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Szokoly, GP Tacca, M Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thomas, P Thorne, KA Thorne, KS Thrane, E Thuring, A Titsler, C Tokmakov, KV Toncelli, A Tonelli, M Torre, O Torres, C Torrie, CI Tournefier, E Travasso, F Traylor, G Trias, M Tseng, K Turner, L Ugolini, D Urbanek, K Vahlbruch, H Vaishnav, B Vajente, G Vallisneri, M van den Brand, JFJ Van Den Broeck, C van der Putten, S van der Sluys, MV van Veggel, AA Vass, S Vasuth, M Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G Veitch, J Veitch, PJ Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, AE Vinet, JY Vocca, H Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Wanner, A Ward, RL Was, M Wei, P Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wessels, P West, M Westphal, T Wette, K Whelan, JT Whitcomb, SE White, D Whiting, BF Wilkinson, C Willems, PA Williams, HR Williams, L Willke, B Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Yablon, J Yakushin, I Yamamoto, H Yamamoto, K Yang, H Yeaton-Massey, D Yoshida, S Yu, P Yvert, M Zanolin, M Zhang, L Zhang, Z Zhao, C Zotov, N Zucker, ME Zweizig, J Aptekar, RL Boynton, WV Briggs, MS Cline, TL Connaughton, V Frederiks, DD Gehrels, N Goldsten, JO Golovin, D van der Horst, AJ Hurley, KC Kaneko, Y von Kienlin, A Kouveliotou, C Krimm, HA Lin, L Mitrofanov, I Ohno, M Pal'shin, VD Rau, A Sanin, A Tashiro, MS Terada, Y Yamaoka, K AF Abadie, J. Abbott, B. P. Abbott, R. Abernathy, M. Accadia, T. Acernese, F. Adams, C. Adhikari, R. Affeldt, C. Allen, B. Allen, G. S. Ceron, E. Amador Amariutei, D. Amin, R. S. Anderson, S. B. Anderson, W. G. Antonucci, F. Arai, K. Arain, M. A. Araya, M. C. Aston, S. M. Astone, P. Atkinson, D. Aufmuth, P. Aulbert, C. Aylott, B. E. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barker, D. Barnum, S. Barone, F. Barr, B. Barriga, P. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Basti, A. Bauchrowitz, J. Bauer, Th S. Behnke, B. Beker, M. G. Bell, A. S. Belletoile, A. Belopolski, I. Benacquista, M. Bertolini, A. Betzwieser, J. Beveridge, N. Beyersdorf, P. T. Bilenko, I. A. Billingsley, G. Birch, J. Birindelli, S. Biswas, R. Bitossi, M. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Blom, M. Bock, O. Bodiya, T. P. Bogan, C. Bondarescu, R. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Boschi, V. Bose, S. Bosi, L. Bouhou, B. Boyle, M. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Brau, J. E. Breyer, J. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Brummit, A. Budzynski, R. Bulik, T. Bulten, H. J. Buonanno, A. Burguet-Castell, J. Burmeister, O. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cain, J. Calloni, E. Camp, J. B. Campagna, E. Campsie, P. Cannizzo, J. Cannon, K. Canuel, B. Cao, J. Capano, C. Carbognani, F. Caride, S. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chaibi, O. Chalermsongsak, T. Chalkley, E. Charlton, P. Chassande-Mottin, E. Chelkowski, S. Chen, Y. Chincarini, A. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Chung, S. Clara, F. Clark, D. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, R. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Costa, C. A. Coughlin, M. Coulon, J. -P. Coward, D. M. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Culter, R. M. Cumming, A. Cunningham, L. Cuoco, E. Dahl, K. Danilishin, S. L. Dannenberg, R. D'Antonio, S. Danzmann, K. Das, K. Dattilo, V. Daudert, B. Daveloza, H. Davier, M. Davies, G. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. DeBra, D. Debreczeni, G. Degallaix, J. del Prete, M. Dent, T. Dergachev, V. DeRosa, R. DeSalvo, R. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Di Palma, I. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Dorsher, S. Douglas, E. S. D. Drago, M. Drever, R. W. P. Driggers, J. C. Dumas, J. -C. Dwyer, S. Eberle, T. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Engel, R. Etzel, T. Evans, M. Evans, T. Factourovich, M. Fafone, V. Fairhurst, S. Fan, Y. Farr, B. F. Fazi, D. Fehrmann, H. Feldbaum, D. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Flaminio, R. Flanigan, M. Foley, S. Forsi, E. Forte, L. A. Fotopoulos, N. Fournier, J. -D. Franc, J. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Galimberti, M. Gammaitoni, L. Garcia, J. Garofoli, J. A. Garufi, F. Gaspar, M. E. Gemme, G. Genin, E. Gennai, A. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Gill, C. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Graef, C. Granata, M. Grant, A. Gras, S. Gray, C. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grosso, R. Grote, H. Grunewald, S. Guidi, G. M. Guido, C. Gupta, R. Gustafson, E. K. Gustafson, R. Hage, B. Hallam, J. M. Hammer, D. Hammond, G. Hanks, J. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Hartman, M. T. Haughian, K. Hayama, K. Hayau, J. -F. Hayler, T. Heefner, J. Heitmann, H. Hello, P. Hendry, M. A. Heng, I. S. Heptonstall, A. W. Herrera, V. Hewitson, M. Hild, S. Hoak, D. Hodge, K. A. Holt, K. Hong, T. Hooper, S. Hosken, D. J. Hough, J. Howell, E. J. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Ingram, D. R. Inta, R. Isogai, T. Ivanov, A. Jaranowski, P. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kanner, J. B. Katsavounidis, E. Katzman, W. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Kelner, M. Keppel, D. G. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, H. Kim, N. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kondrashov, V. Kopparapu, R. Koranda, S. Korth, W. Z. Kowalska, I. Kozak, D. Kringel, V. Krishnamurthy, S. Krishnan, B. Krolak, A. Kuehn, G. Kumar, R. Kwee, P. Landry, M. Lantz, B. Lastzka, N. Lazzarini, A. Leaci, P. Leong, J. Leonor, I. Leroy, N. Letendre, N. Li, J. Li, T. G. F. Liguori, N. Lindquist, P. E. Lockerbie, N. A. Lodhia, D. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lu, P. Luan, J. Lubinski, M. Lueck, H. Lundgren, A. P. Macdonald, E. Machenschalk, B. MacInnis, M. Mageswaran, M. Mailand, K. Majorana, E. Maksimovic, I. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marandi, A. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McKechan, D. J. A. Meadors, G. Mehmet, M. Meier, T. Melatos, A. Melissinos, A. C. Mendell, G. Mercer, R. A. Merill, L. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mino, Y. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Moesta, P. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moraru, D. Moreno, G. Morgado, N. Morgia, A. Mosca, S. Moscatelli, V. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, G. Mukherjee, S. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murray, P. G. Nash, T. Nawrodt, R. Nelson, J. Neri, I. Newton, G. Nishida, E. Nishizawa, A. Nocera, F. Nolting, D. Ochsner, E. O'Dell, J. Ogin, G. H. Oldenburg, R. G. O'Reilly, B. O'Shaughnessy, R. Osthelder, C. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pagliaroli, G. Palladino, L. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Parameswaran, A. Pardi, S. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pathak, D. Pedraza, M. Pekowsky, L. Penn, S. Peralta, C. Perreca, A. Persichetti, G. Phelps, M. Pichot, M. Pickenpack, M. Piergiovanni, F. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Podkaminer, J. Poggiani, R. Poeld, J. Postiglione, F. Prato, M. Predoi, V. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Raab, F. J. Rabeling, D. S. Racz, I. Radkins, H. Raffai, P. Rakhmanov, M. Ramet, C. R. Rankins, B. Rapagnani, P. Raymond, V. Re, V. Redwine, K. Reed, C. M. Reed, T. Regimbau, T. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Roberts, P. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Rolland, L. Rollins, J. Romano, J. D. Romano, R. Romie, J. H. Rosinska, D. Roever, C. Rowan, S. Udiger, A. R. Ruggi, P. Ryan, K. Sakata, S. Sakosky, M. Salemi, F. Salit, M. Sammut, L. Sancho de la Jordana, L. Sandberg, V. Sannibale, V. Santamaria, L. Santiago-Prieto, I. Santostasi, G. Saraf, S. Sassolas, B. Sathyaprakash, B. S. Sato, S. Satterthwaite, M. Saulson, P. R. Savage, R. Schilling, R. Schlamminger, S. Schnabel, R. Schofield, R. M. S. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Seifert, F. Sellers, D. Sengupta, A. S. Sentenac, D. Sergeev, A. Shaddock, D. A. Shaltev, M. Shapiro, B. Shawhan, P. Weerathunga, T. Shihan Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Singer, A. Singer, L. Sintes, A. M. Skelton, G. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Smith, R. Somiya, K. Sorazu, B. Soto, J. Speirits, F. C. Sperandio, L. Stefszky, M. Stein, A. J. Steinlechner, J. Steinlechner, S. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Szokoly, G. P. Tacca, M. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Thuering, A. Titsler, C. Tokmakov, K. V. Toncelli, A. Tonelli, M. Torre, O. Torres, C. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Trias, M. Tseng, K. Turner, L. Ugolini, D. Urbanek, K. Vahlbruch, H. Vaishnav, B. Vajente, G. Vallisneri, M. van den Brand, J. F. J. Van Den Broeck, C. van der Putten, S. van der Sluys, M. V. van Veggel, A. A. Vass, S. Vasuth, M. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. E. Vinet, J. -Y. Vocca, H. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Wanner, A. Ward, R. L. Was, M. Wei, P. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, H. R. Williams, L. Willke, B. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Yablon, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yang, H. Yeaton-Massey, D. Yoshida, S. Yu, P. Yvert, M. Zanolin, M. Zhang, L. Zhang, Z. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. Aptekar, R. L. Boynton, W. V. Briggs, M. S. Cline, T. L. Connaughton, V. Frederiks, D. D. Gehrels, N. Goldsten, J. O. Golovin, D. van der Horst, A. J. Hurley, K. C. Kaneko, Y. von Kienlin, A. Kouveliotou, C. Krimm, H. A. Lin, L. Mitrofanov, I. Ohno, M. Pal'shin, V. D. Rau, A. Sanin, A. Tashiro, M. S. Terada, Y. Yamaoka, K. CA LIGO Sci Collaboration Virgo Collaboration TI SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gravitational waves; stars: magnetars ID SOFT-GAMMA-REPEATER; X-RAY PULSAR; MAGNETIZED NEUTRON-STARS; GIANT FLARE; SGR 1900+14; 1E 1547.0-5408; DISCOVERY; OSCILLATIONS; DISTANCE; LOCALIZATION AB Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely similar to 1 kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >10(44) erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between 2006 November and 2009 June, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band-and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090 Hz), are 3.0 x 10(44)d(1)(2) erg and 1.4 x 10(47)d(1)(2) erg, respectively, where d(1) = d(0501)/1 kpc and d(0501) is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time. C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Anderson, S. B.; Arai, K.; Araya, M. C.; Ballmer, S.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cannon, K.; Cepeda, C.; Chalermsongsak, T.; Coyne, D. C.; Dannenberg, R.; Daudert, B.; Dergachev, V.; DeSalvo, R.; Driggers, J. C.; Ehrens, P.; Engel, R.; Etzel, T.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A. W.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Korth, W. Z.; Kozak, D.; Lazzarini, A.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Nash, T.; Ogin, G. H.; Osthelder, C.; Parameswaran, A.; Patel, P.; Pedraza, M.; Phelps, M.; Privitera, S.; Robertson, N. A.; Sannibale, V.; Searle, A. C.; Seifert, F.; Sengupta, A. S.; Singer, A.; Singer, L.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Turner, L.; Vass, S.; Villar, A. E.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Basti, A.; Bell, A. S.; Belletoile, A.; Beveridge, N.; Campsie, P.; Cumming, A.; Cunningham, L.; Edgar, M.; Gill, C.; Grant, A.; Hammond, G.; Haughian, K.; Hendry, M. A.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Macdonald, E.; Martin, I. W.; Miller, J.; Murray, P. G.; Nawrodt, R.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Santiago-Prieto, I.; Scott, J.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Accadia, T.; Belletoile, A.; Buskulic, D.; Dietz, A.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Verkindt, D.; Yvert, M.; Briggs, M. S.; Connaughton, V.; Lin, L.] Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Acernese, F.; Barone, F.; Calloni, E.; De Rosa, R.; Di Fiore, L.; Forte, L. A.; Garufi, F.; Milano, L.; Mosca, S.; Pardi, S.; Parisi, M.; Persichetti, G.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Acernese, F.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Adams, C.; Birch, J.; Bridges, D. O.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C.; Hanson, J.; Holt, K.; Katzman, W.; Kinzel, D. L.; Lormand, M.; Meyer, M. S.; Nolting, D.; O'Reilly, B.; Overmier, H.; Ramet, C. R.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torres, C.; Traylor, G.; Wen, S.; Wooley, R.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Burmeister, O.; Dahl, K.; Danzmann, K.; Degallaix, J.; Di Palma, I.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Giampanis, S.; Gossler, S.; Graef, C.; Grote, H.; Hage, B.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J.; Lueck, H.; Machenschalk, B.; Mehmet, M.; Meier, T.; Messenger, C.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Udiger, A. R.; Salemi, F.; Schilling, R.; Schnabel, R.; Schulz, B.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Burmeister, O.; Byer, R. L.; Clark, D.; Dahl, K.; Danzmann, K.; DeBra, D.; Degallaix, J.; Di Palma, I.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Giampanis, S.; Gossler, S.; Graef, C.; Grote, H.; Hage, B.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J.; Lu, P.; Lueck, H.; Machenschalk, B.; Mehmet, M.; Meier, T.; Messenger, C.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Udiger, A. R.; Salemi, F.; Schilling, R.; Schnabel, R.; Schulz, B.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allen, B.; Ceron, E. Amador; Anderson, W. G.; Biswas, R.; Brady, P. R.; Burguet-Castell, J.; Clayton, J. H.; Creighton, J. D. E.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Moe, B.; Oldenburg, R. G.; Papa, M. A.; Price, L. R.; Schlamminger, S.; Siemens, X.; Skelton, G.; Vaulin, R.; Wiseman, A. G.; Yu, P.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, G. S.; Herrera, V.; Kim, N.; Lantz, B.; Marandi, A.; Tseng, K.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Amariutei, D.; Arain, M. A.; Das, K.; Dooley, K. L.; Feldbaum, D.; Hartman, M. T.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Ottens, R. S.; Pankow, C.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Amin, R. S.; Caudill, S.; Costa, C. A.; DeRosa, R.; Effler, A.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Kissel, J. S.; Slutsky, J.; Sung, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Antonucci, F.; Astone, P.; Colla, A.; Corsi, A.; Frasca, S.; Majorana, E.; Moscatelli, V.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Aston, S. M.; Aylott, B. E.; Chalkley, E.; Chelkowski, S.; Cruise, A. M.; Culter, R. M.; Freise, A.; Fulda, P.; Hallam, J. M.; Lodhia, D.; Page, A.; Perreca, A.; Smith, R.; Vecchio, A.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Atkinson, D.; Barker, D.; Barton, M. A.; Bland, B.; Clara, F.; Cook, D.; Douglas, E. S. D.; Flanigan, M.; Garcia, J.; Gray, C.; Hanks, J.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sakosky, M.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Babak, S.; Behnke, B.; Grunewald, S.; Krishnan, B.; Leaci, P.; Moesta, P.; Papa, M. A.; Peralta, C.; Robinson, E. L.; Santamaria, L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Huet, D.; Marque, J.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.; Tacca, M.] EGO, I-56021 Cascina, PI, Italy. [Barnum, S.; Christensen, N.; Coughlin, M.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Barriga, P.; Blair, D.; Chung, S.; Coward, D. M.; Dumas, J. -C.; Fan, Y.; Gras, S.; Hooper, S.; Howell, E. J.; Ju, L.; Merill, L.; Miao, H.; Susmithan, S.; Wen, L.; Zhang, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Corbitt, T. R.; Donovan, F.; Dwyer, S.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Soto, J.; Stein, A. J.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Barsuglia, M.; Bouhou, B.; Buy, C.; Chassande-Mottin, E.; Granata, M.; Ward, R. L.] Univ Paris Diderot, Lab Astroparticule & Cosmol APC, CNRS, IN2P3,CEA,DSM,IRFU,Observ Paris, F-75013 Paris, France. [Bartos, I.; Belopolski, I.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Redwine, K.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Basti, A.; Bitossi, M.; Bonelli, L.; Boschi, V.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; del Prete, M.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Torre, O.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Basti, A.; Bonelli, L.; Colacino, C. N.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Bauer, Th S.; Beker, M. G.; Blom, M.; Bulten, H. J.; Li, T. G. F.; Rabeling, D. S.; van den Brand, J. F. J.; van der Putten, S.] Nikhef, Amsterdam, Netherlands. [Benacquista, M.; Creighton, T. D.; Daveloza, H.; Diaz, M.; Grosso, R.; Li, J.; Mohanty, S. D.; Mukherjee, S.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Weerathunga, T. Shihan; Stone, R.; Vaishnav, B.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Birindelli, S.; Brillet, A.; Chaibi, O.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J. -Y.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France. [Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91898 Orsay, France. [Bondarescu, R.; Finn, L. S.; Kopparapu, R.; O'Shaughnessy, R.; Owen, B. J.; Titsler, C.; Williams, H. R.] Penn State Univ, University Pk, PA 16802 USA. [Bondu, F.; Hayau, J. -F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bonnand, R.; Flaminio, R.; Franc, J.; Galimberti, M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] CNRS, IN2P3, LMA, F-69622 Lyon, France. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Gammaitoni, L.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Boyle, M.; Chen, Y.; Hong, T.; Luan, J.; Mino, Y.; Ott, C. D.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Yang, H.] Caltech CaRT, Pasadena, CA 91125 USA. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Schofield, R. M. S.] Univ Oregon, Eugene, OR 97403 USA. [Brown, D. A.; Capano, C.; Garofoli, J. A.; Lundgren, A. P.; Pekowsky, L.; Saulson, P. R.; Wei, P.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Brummit, A.; Greenhalgh, R. J. S.; Hayler, T.; O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Budzynski, R.; Bulik, T.; Kowalska, I.; Mueller, G.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bulik, T.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Kanner, J. B.; Ochsner, E.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Hoak, D.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Cagnoli, G.; Campagna, E.; Guidi, G. M.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Cain, J.; Cavaglia, M.; Rankins, B.] Univ Mississippi, University, MS 38677 USA. [Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Pardi, S.; Parisi, M.; Persichetti, G.] Univ Naples Federico II, I-80126 Naples, Italy. [Camp, J. B.; Cannizzo, J.; Stroeer, A. S.; Cline, T. L.; Gehrels, N.; Krimm, H. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Campagna, E.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Cao, J.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Goetz, E.; Gustafson, R.; Meadors, G.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Chua, S. S. Y.; Inta, R.; McClelland, D. E.; Mow-Lowry, C. M.; Mullavey, A.; Satterthwaite, M.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Stefszky, M.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Clark, J.; Davies, G.; Dent, T.; Edwards, M.; Fairhurst, S.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Pathak, D.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Van Den Broeck, C.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Minenkov, Y.; Morgia, A.; Pagliaroli, G.; Palladino, L.; Re, V.; Rocchi, A.; Sperandio, L.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Coccia, E.; Fafone, V.; Morgia, A.; Re, V.; Sperandio, L.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Colla, A.; Colombini, M.; Frasca, S.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Conte, R.; Postiglione, F.] Univ Salerno, I-84084 Fisciano, Salerno, Italy. [Conte, R.; Postiglione, F.] Ist Nazl Fis Nucl, Sez Napoli, Milan, Italy. [Daw, E. J.; White, D.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Debreczeni, G.; Gaspar, M. E.; Racz, I.; Vasuth, M.] RMKI, H-1121 Budapest, Hungary. [del Prete, M.; Heitmann, H.; Mantovani, M.; Torre, O.] Univ Siena, I-53100 Siena, Italy. [Dhurandhar, S.; Gupta, R.] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Emilio, M. Di Paolo; Pagliaroli, G.; Palladino, L.] Univ Aquila, I-67100 Laquila, Italy. [Dorsher, S.; Kandhasamy, S.; Mandic, V.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA. [Drago, M.; Vedovato, G.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Drago, M.] Univ Padua, I-35131 Padua, Italy. [Farr, B. F.; Fazi, D.; Kalogera, V.; Kelner, M.; Krishnamurthy, S.; Mandel, I.; Raymond, V.; Salit, M.; van der Sluys, M. V.; Yablon, J.] Northwestern Univ, Evanston, IL 60208 USA. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Frei, Z.; Raffai, P.; Szokoly, G. P.] Eotvos Lorand Univ, H-1117 Budapest, Hungary. [Gammaitoni, L.; Neri, I.; Travasso, F.] Univ Perugia, I-06123 Perugia, Italy. [Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Hayama, K.; Kawamura, S.; Miyakawa, O.; Nishida, E.; Nishizawa, A.; Sakata, S.; Sato, S.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Husa, S.; Sancho de la Jordana, L.; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma De Mallorca, Spain. [Jaranowski, P.; Pietka, M.] Bialystok Univ, PL-15424 Bialystok, Poland. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Khazanov, E. A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Krolak, A.] IPJ, PL-05400 Otwock, Poland. [Liguori, N.; Prodi, G. A.] Ist Nazl Fis Nucl, Grp Collegato Trento, I-38050 Povo, Trento, Italy. [Liguori, N.; Prodi, G. A.] Univ Trent, I-38050 Povo, Trento, Italy. [Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Penn, S.; Podkaminer, J.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Pinto, I. M.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, Milan, Italy. [Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [Aptekar, R. L.; Frederiks, D. D.; Pal'shin, V. D.] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia. [Boynton, W. V.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Briggs, M. S.; Connaughton, V.; Lin, L.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Goldsten, J. O.; Mitrofanov, I.; Sanin, A.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Golovin, D.] Inst Space Res, Moscow 117997, Russia. [van der Horst, A. J.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Hurley, K. C.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Kaneko, Y.] Sabanci Univ, TR-34956 Istanbul, Turkey. [van der Horst, A. J.; von Kienlin, A.; Rau, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Kouveliotou, C.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, VP62, Huntsville, AL 35812 USA. [Krimm, H. A.] CRESST, Greenbelt, MD 20771 USA. [Lin, L.] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Ohno, M.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, Kanagawa 2525120, Japan. [Tashiro, M. S.; Terada, Y.] Saitama Univ, Dept Phys, Saitama 3388570, Japan. [Yamaoka, K.] Aoyama Gakuin Univ, Dept Math & Phys, Chuo Ku, Kanagawa 2525258, Japan. RP Abadie, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Ward, Robert/I-8032-2014; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Shaddock, Daniel/A-7534-2011; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Gehring, Tobias/A-8596-2016; Howell, Eric/H-5072-2014; Ott, Christian/G-2651-2011; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Sigg, Daniel/I-4308-2015; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Ferrante, Isidoro/F-1017-2012; Salemi, Francesco/F-6988-2014; Losurdo, Giovanni/K-1241-2014; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Aptekar, Raphail/B-3456-2015; McClelland, David/E-6765-2010; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Finn, Lee Samuel/A-3452-2009; Tacca, Matteo/J-1599-2015; Graef, Christian/J-3167-2015; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Parisi, Maria/D-2817-2013; Steinlechner, Sebastian/D-5781-2013; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Pitkin, Matthew/I-3802-2013; Vyatchanin, Sergey/J-2238-2012; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Frederiks, Dmitry/C-7612-2014; Pal'shin, Valentin/F-3973-2014; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; Mitrofanov, Valery/D-8501-2012; Puppo, Paola/J-4250-2012; Tashiro, Makoto/J-4562-2012; Colla, Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Terada, Yukikatsu/A-5879-2013; Strain, Kenneth/D-5236-2011; Vocca, Helios/F-1444-2010; prodi, giovanni/B-4398-2010; Acernese, Fausto/E-4989-2010; Gammaitoni, Luca/B-5375-2009; Gehrels, Neil/D-2971-2012; Khalili, Farit/D-8113-2012; Prato, Mirko/D-8531-2012; Santamaria, Lucia/A-7269-2012; Costa, Cesar/G-7588-2012; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Punturo, Michele/I-3995-2012; Neri, Igor/F-1482-2010; Bell, Angus/E-7312-2011; Hild, Stefan/A-3864-2010; Martin, Iain/A-2445-2010; Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; Freise, Andreas/F-8892-2011; Abernathy, Matthew/G-1113-2011; Marchesoni, Fabio/A-1920-2008; Kawabe, Keita/G-9840-2011; Bondu, Francois/A-2071-2012; Toncelli, Alessandra/A-5352-2012; Hammond, Giles/A-8168-2012 OI Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Douglas, Ewan/0000-0002-0813-4308; Pathak, Devanka/0000-0002-1768-8353; Granata, Massimo/0000-0003-3275-1186; Aulbert, Carsten/0000-0002-1481-8319; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; calloni, enrico/0000-0003-4819-3297; Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Zweizig, John/0000-0002-1521-3397; O'Shaughnessy, Richard/0000-0001-5832-8517; Frederiks, Dmitry/0000-0002-1153-6340; Pinto, Innocenzo M./0000-0002-2679-4457; Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870; Santamaria, Lucia/0000-0002-5986-0449; Coccia, Eugenio/0000-0002-6669-5787; Vetrano, Flavio/0000-0002-7523-4296; Nishizawa, Atsushi/0000-0003-3562-0990; Ward, Robert/0000-0001-5503-5241; Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; Boschi, Valerio/0000-0001-8665-2293; Matichard, Fabrice/0000-0001-8982-8418; Husa, Sascha/0000-0002-0445-1971; Travasso, Flavio/0000-0002-4653-6156; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Fairhurst, Stephen/0000-0001-8480-1961; Milano, Leopoldo/0000-0001-9487-5876; Swinkels, Bas/0000-0002-3066-3601; Drago, Marco/0000-0002-3738-2431; Hallam, Jonathan Mark/0000-0002-7087-0461; Shaddock, Daniel/0000-0002-6885-3494; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Gehring, Tobias/0000-0002-4311-2593; Howell, Eric/0000-0001-7891-2817; Ott, Christian/0000-0003-4993-2055; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Sigg, Daniel/0000-0003-4606-6526; Ferrante, Isidoro/0000-0002-0083-7228; Losurdo, Giovanni/0000-0003-0452-746X; Danilishin, Stefan/0000-0001-7758-7493; McClelland, David/0000-0001-6210-5842; Vecchio, Alberto/0000-0002-6254-1617; Finn, Lee Samuel/0000-0002-3937-0688; Tacca, Matteo/0000-0003-1353-0441; Graef, Christian/0000-0002-4535-2603; Garufi, Fabio/0000-0003-1391-6168; Zhao, Chunnong/0000-0001-5825-2401; Steinlechner, Sebastian/0000-0003-4710-8548; Pitkin, Matthew/0000-0003-4548-526X; Miao, Haixing/0000-0003-4101-9958; Vicere, Andrea/0000-0003-0624-6231; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Terada, Yukikatsu/0000-0002-2359-1857; Strain, Kenneth/0000-0002-2066-5355; Vocca, Helios/0000-0002-1200-3917; prodi, giovanni/0000-0001-5256-915X; Acernese, Fausto/0000-0003-3103-3473; Gammaitoni, Luca/0000-0002-4972-7062; Prato, Mirko/0000-0002-2188-8059; Gorodetsky, Michael/0000-0002-5159-2742; Punturo, Michele/0000-0001-8722-4485; Neri, Igor/0000-0002-9047-9822; Bell, Angus/0000-0003-1523-0821; Lueck, Harald/0000-0001-9350-4846; Marchesoni, Fabio/0000-0001-9240-6793; Bondu, Francois/0000-0001-6487-5197; Toncelli, Alessandra/0000-0003-4400-8808; FU United States National Science Foundation; Science and Technology Facilities Council of the United Kingdom; Max-Planck-Society; State of Niedersachsen/Germany; Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique; Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration [NNH07ZDA001-GLAST]; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation; Russian Space Agency; RFBR [09-02-00166a]; IPN [JPL Y503559 (Odyssey), NASA NNG06GH00G, NASA NNX07AM42G, NASA NNX08AC89G (INTEGRAL), NASA NNG06GI896, NASA NNX07AJ65G, NASA NNX08AN23G (Swift), NASA NNX07AR71G (MESSENGER), NASA NNX06AI36G, NASA NNX08AB84G, NASA NNX08AZ85G (Suzaku), NASA NNX09AU03G (Fermi)] FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. The Konus-Wind experiment is supported by a Russian Space Agency contract and RFBR grant 09-02-00166a. A.J.v.d.H. is supported by the NASA Postdoctoral Program. K. H. acknowledges IPN support under the following grants: JPL Y503559 (Odyssey); NASA NNG06GH00G, NASA NNX07AM42G, and NASA NNX08AC89G (INTEGRAL); NASA NNG06GI896, NASA NNX07AJ65G, and NASA NNX08AN23G (Swift); NASA NNX07AR71G (MESSENGER); NASA NNX06AI36G, NASA NNX08AB84G, NASA NNX08AZ85G (Suzaku); and NASA NNX09AU03G (Fermi). Y.K. acknowledges EU FP6 Project MTKD-CT-2006-042722. C. K. acknowledges support from NASA grant NNH07ZDA001-GLAST. This Letter is LIGO-P0900192. NR 49 TC 45 Z9 45 U1 3 U2 35 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 20 PY 2011 VL 734 IS 2 AR L35 DI 10.1088/2041-8205/734/2/L35 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797NX UT WOS:000293135700010 ER PT J AU Abdo, AA Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bechtol, K Bellazzini, R Berenji, B Bhat, PN Bissaldi, E Blandford, RD Bonamente, E Bonnell, J Borgland, AW Bouvier, A Bregeon, J Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Charles, E Chekhtman, A Chiang, J Ciprini, S Claus, R Connaughton, V Conrad, J Cutini, S de Angelis, A de Palma, F Dermer, CD Silva, EDE Drell, PS Dubois, R Favuzzi, C Fukazawa, Y Fusco, P Gargano, F Gehrels, N Germani, S Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Granot, J Grenier, IA Guiriec, S Hadasch, D Hanabata, Y Hughes, RE Johannesson, G Johnson, AS Kamae, T Katagiri, H Kataoka, J Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Longo, F Loparco, F Lott, B Lubrano, P Mazziotta, MN McEnery, JE Meszaros, P Michelson, PF Mizuno, T Moiseev, AA Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Naumann-Godo, M Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Paciesas, WS Pelassa, V Pesce-Rollins, M Pierbattista, M Piron, F Porter, TA Racusin, JL Raino, S Razzano, M Razzaque, S Reimer, A Reimer, O Reyes, LC Roth, M Sadrozinski, HFW Sgro, C Siskind, EJ Smith, PD Sonbas, E Spandre, G Spinelli, P Stamatikos, M Strickman, MS Takahashi, H Tanaka, T Tanaka, Y Thayer, JG Thayer, JB Torres, DF Tosti, G Troja, E Uehara, T Usher, TL Vandenbroucke, J Vasileiou, V Vianello, G Vilchez, N Vitale, V von Kienlin, A Waite, AP Wang, P Winer, BL Wood, KS Yamazaki, R Yang, Z Ziegler, M Piro, L AF Abdo, A. A. Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Bhat, P. N. Bissaldi, E. Blandford, R. D. Bonamente, E. Bonnell, J. Borgland, A. W. Bouvier, A. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Charles, E. Chekhtman, A. Chiang, J. Ciprini, S. Claus, R. Connaughton, V. Conrad, J. Cutini, S. de Angelis, A. de Palma, F. Dermer, C. D. do Couto e Silva, E. Drell, P. S. Dubois, R. Favuzzi, C. Fukazawa, Y. Fusco, P. Gargano, F. Gehrels, N. Germani, S. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Granot, J. Grenier, I. A. Guiriec, S. Hadasch, D. Hanabata, Y. Hughes, R. E. Johannesson, G. Johnson, A. S. Kamae, T. Katagiri, H. Kataoka, J. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Longo, F. Loparco, F. Lott, B. Lubrano, P. Mazziotta, M. N. McEnery, J. E. Meszaros, P. Michelson, P. F. Mizuno, T. Moiseev, A. A. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Naumann-Godo, M. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Paciesas, W. S. Pelassa, V. Pesce-Rollins, M. Pierbattista, M. Piron, F. Porter, T. A. Racusin, J. L. Raino, S. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Reyes, L. C. Roth, M. Sadrozinski, H. F. -W. Sgro, C. Siskind, E. J. Smith, P. D. Sonbas, E. Spandre, G. Spinelli, P. Stamatikos, M. Strickman, M. S. Takahashi, H. Tanaka, T. Tanaka, Y. Thayer, J. G. Thayer, J. B. Torres, D. F. Tosti, G. Troja, E. Uehara, T. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vilchez, N. Vitale, V. von Kienlin, A. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yamazaki, R. Yang, Z. Ziegler, M. Piro, L. TI DETECTION OF HIGH-ENERGY GAMMA-RAY EMISSION DURING THE X-RAY FLARING ACTIVITY IN GRB 100728A SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma-ray burst: individual (GRB100728A); radiation mechanisms: non-thermal ID AFTERGLOW LIGHT CURVES; FERMI OBSERVATIONS; BURST; SWIFT; TELESCOPE; MISSION; FLARES; COMPONENTS; EVOLUTION; ONSET AB We present the simultaneous Swift and Fermi observations of the bright GRB 100728A and its afterglow. The early X-ray emission is dominated by a vigorous flaring activity continuing until 1 ks after the burst. In the same time interval, high-energy emission is significantly detected by the Fermi/Large Area Telescope. Marginal evidence of GeV emission is observed up to later times. We discuss the broadband properties of this burst within both the internal and external shock scenarios, with a particular emphasis on the relation between X-ray flares, the GeV emission, and a continued long-duration central engine activity as their power source. C1 [Abdo, A. A.; Razzaque, S.] George Mason Univ, Ctr Earth Observing & Space Res, Coll Sci, Fairfax, VA 22030 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Glanzman, T.; Godfrey, G.; Johnson, A. S.; Kamae, T.; Kerr, M.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Orlando, E.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chekhtman, A.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Glanzman, T.; Godfrey, G.; Johnson, A. S.; Kamae, T.; Kerr, M.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Orlando, E.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.; Pierbattista, M.] Univ Paris Diderot, Lab AIM, CEA, IRFU,CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Buson, S.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bhat, P. N.; Connaughton, V.; Guiriec, S.; Paciesas, W. S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Bissaldi, E.; Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Bissaldi, E.; Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Bouvier, A.; Cecchi, C.; Chekhtman, A.; Ciprini, S.; de Angelis, A.; Germani, S.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Bonnell, J.; Gehrels, N.; McEnery, J. E.; Moiseev, A. A.; Racusin, J. L.; Sonbas, E.; Stamatikos, M.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bonnell, J.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Bonnell, J.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bouvier, A.; Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Bouvier, A.; Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Bouvier, A.; Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Hadasch, D.; Torres, D. F.] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Chekhtman, A.] Artep Inc, Ellicott City, MD 21042 USA. [Conrad, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Yang, Z.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Cutini, S.; Giommi, P.] Agenzia Spaziale Italiana, Sci Data Ctr, I-00044 Rome, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Dermer, C. D.; Strickman, M. S.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.; Uehara, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Granot, J.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Hughes, R. E.; Smith, P. D.; Stamatikos, M.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Knoedlseder, J.; Vilchez, N.] IRAP, CNRS, F-31028 Toulouse 4, France. [Knoedlseder, J.; Vilchez, N.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Lott, B.] Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Meszaros, P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Moiseev, A. A.] CRESST, Greenbelt, MD 20771 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Nuss, E.; Pelassa, V.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, Lab Universe & Particules Montpellier, CNRS, IN2P3, Montpellier, France. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.; Tanaka, Y.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Kanagawa 2525210, Japan. [Orlando, E.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Sonbas, E.] Adiyaman Univ, Dept Phys, TR-02040 Adiyaman, Turkey. [Sonbas, E.] USRA, Columbia, MD 21044 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Vianello, G.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Yamazaki, R.] Aoyama Gakuin Univ, Dept Math & Phys, Kanagawa 2525258, Japan. [Piro, L.] INAF Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. RP Abdo, AA (reprint author), George Mason Univ, Ctr Earth Observing & Space Res, Coll Sci, Fairfax, VA 22030 USA. EM sarac@slac.stanford.edu; Julie.E.McEnery@nasa.gov; eleonora.troja@nasa.gov; vlasios.vasileiou@univ-montp2.fr; luigi.piro@iasf-roma.inaf.it RI Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Morselli, Aldo/G-6769-2011; Tosti, Gino/E-9976-2013; PIRO, LUIGI/E-4954-2013; Racusin, Judith/D-2935-2012; Gehrels, Neil/D-2971-2012; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013 OI Giroletti, Marcello/0000-0002-8657-8852; Cutini, Sara/0000-0002-1271-2924; Baldini, Luca/0000-0002-9785-7726; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Bissaldi, Elisabetta/0000-0001-9935-8106; Torres, Diego/0000-0002-1522-9065; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Morselli, Aldo/0000-0002-7704-9553; PIRO, LUIGI/0000-0003-4159-3984; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; lubrano, pasquale/0000-0003-0221-4806; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385 FU K. A. Wallenberg Foundation; NASA FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation.; E.T. was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 37 TC 25 Z9 25 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 20 PY 2011 VL 734 IS 2 AR L27 DI 10.1088/2041-8205/734/2/L27 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797NX UT WOS:000293135700002 ER PT J AU Ziskin, D Aubrecht, C Elvidge, C Tuttle, B Eakin, CM Strong, AE Guild, LS AF Ziskin, Daniel Aubrecht, Christoph Elvidge, Chris Tuttle, Ben Eakin, C. Mark Strong, Alan E. Guild, Liane S. TI Describing coral reef bleaching using very high spatial resolution satellite imagery: experimental methodology SO JOURNAL OF APPLIED REMOTE SENSING LA English DT Article DE coral reef bleaching; high resolution imagery; IKONOS; QuickBird ID GREAT-BARRIER-REEF; CLIMATE-CHANGE; SPECTRAL DISCRIMINATION; RECOVERY; FUTURE; LIMITS AB This paper proposes an experimental methodology toward describing and quantifying coral reef bleaching using very high spatial resolution optical satellite imagery. Sea surface temperature-based bleaching alerts issued by NOAA's Coral Reef Watch triggered image acquisition and served as an indication for high bleaching probability. Images of suspected coral reef bleaching events and reference images of the same reefs during previous unbleached conditions were coregistered and radiometrically normalized for change detection. An experimental methodology was developed to describe the severity and extent of the bleaching. The methodology hinges on the creation of the Coral Bleaching Index (CBI), constructed from change detected in the green, blue, and red wavelength bands. Results are provided in the form of colorized difference images showing areas of observed bleaching in gold, as well as CBI images, visualizing varying bleaching intensities. Comparison of the CBI with available field validation data yielded a correlation, however additional reference data would be needed for more detailed quality assessment. This technique is seen as a step toward the routine detection and long-term monitoring of coral reef bleaching from space and serves as a proposed tool for detecting bleaching in remote areas where observers cannot be deployed. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI:10.1117/1.3595300] C1 [Ziskin, Daniel; Tuttle, Ben] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Aubrecht, Christoph] AIT, A-1220 Vienna, Austria. [Elvidge, Chris] NOAA, Natl Geophys Data Ctr, US Dept Commerce, Boulder, CO 80305 USA. [Eakin, C. Mark; Strong, Alan E.] NOAA, Coral Reef Watch NOAA E RA31, SSMC1, Silver Spring, MD 20910 USA. [Guild, Liane S.] NASA, Ames Res Ctr, Div Earth Sci, Biospher Sci Branch, Moffett Field, CA 94035 USA. RP Ziskin, D (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, 216 UCB, Boulder, CO 80309 USA. EM Daniel.Ziskin@noaa.gov RI Elvidge, Christopher/C-3012-2009; Aubrecht, Christoph/K-1821-2012; Strong, Alan/E-7924-2011; Eakin, C. Mark/F-5585-2010 FU NOAA FX This project has been made possible through funding provided by the NOAA Coral Reef Conservation Program. The manuscript contents are solely the opinions of the authors and do not constitute a statement of policy, decision, or position on behalf of NOAA or the U.S. Government. Tide data was graciously provided by Kelly Stoker of the NOAA National Geophysical Data Center. NR 33 TC 1 Z9 1 U1 1 U2 19 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1931-3195 J9 J APPL REMOTE SENS JI J. Appl. Remote Sens. PD JUN 20 PY 2011 VL 5 AR 053531 DI 10.1117/1.3595300 PG 16 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 792SY UT WOS:000292771000001 ER PT J AU Thompson, WT AF Thompson, W. T. TI Strong rotation of an erupting quiescent polar crown prominence SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE STEREO; EUVI; Prominence eruption; Coronal mass ejection ID CORONAL MASS EJECTIONS; KINK INSTABILITY; FLUX ROPES; CONFINEMENT; DOWNFLOW; MODEL AB On 5-6 June 2007, a large quiescent polar crown prominence was observed to erupt by the two Solar Terrestrial Relations Observatory (STEREO) spacecraft. This eruption was particularly visible in the 304 angstrom channel of the Extreme Ultraviolet Imager (EUVI) telescopes. A detailed analysis of the fine structures in the images allows the three-dimensional structure of the erupting prominence to be derived. The prominence is seen to undergo substantial rotation of at least 90 degrees along the radial axis as it rises, with indications that additional rotation occurred before the prominence rose into the STEREO fields of view. Two temporary structures ("spurs") are seen to form at an angle to the main spine of the prominence, and are interpreted as signs of reconnection. These reconnection events contribute to the overall rotation of the prominence. A significant fraction of the prominence material is drained through new field lines caused by one of the reconnection events, resulting in only a weak coronal mass ejection event observed by the STEREO and SOHO coronagraphs. The eruption is interpreted as being initiated by the helical kink instability, with subsequent modification by the reconnection events. (C) 2010 Elsevier Ltd. All rights reserved. C1 NASA, Goddard Space Flight Ctr, Adnet Syst Inc, Washington, DC 20546 USA. RP Thompson, WT (reprint author), NASA, Goddard Space Flight Ctr, Adnet Syst Inc, Washington, DC 20546 USA. EM William.T.Thompson@nasa.gov RI Thompson, William/D-7376-2012 FU NASA [NNG06EB68C] FX The author would like to thank Therese Kucera, Bernhard Kliem, and Tibor Torok for useful comments on a preliminary version of the manuscript, and Holly Gilbert for useful references on prominence eruptions. The author would also like to thank the reviewers for their thoughtful comments. The STEREO/SECCHI data used here are produced by an international consortium of the Naval Research Laboratory (USA), Lockheed Martin Solar and Astrophysics Lab (USA), NASA Goddard Space Flight Center (USA) Rutherford Appleton Laboratory (UK), University of Birmingham (UK), Max-Planck-Institut fur Sonnensystemforschung (Germany), Centre Spatiale de Liege (Belgium), Institut d'Optique Theorique et Appliquee (France), Institut d'Astrophysique Spatiale (France). This work was supported by NASA Grant NNG06EB68C. NR 18 TC 14 Z9 14 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD JUN 20 PY 2011 VL 73 IS 10 SI SI BP 1138 EP 1147 DI 10.1016/j.jastp.2010.07.005 PG 10 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 788XJ UT WOS:000292477400006 ER PT J AU Liewer, PC Hall, JR Howard, RA De Jong, EM Thompson, WT Thernisien, A AF Liewer, P. C. Hall, J. R. Howard, R. A. De Jong, E. M. Thompson, W. T. Thernisien, A. TI Stereoscopic analysis of STEREO/SECCHI data for CME trajectory determination SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Coronal mass ejections; Stereoscopy; STEREO ID CORONAL MASS EJECTIONS; SOLAR; RECONSTRUCTION; IMAGES; SECCHI; SUN AB The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) coronagraphs on the twin Solar TErrestrial RElations Observatory (STEREO) spacecraft provide simultaneous views of the corona and coronal mass ejections from two view points. Here, we analyze simultaneous image pairs using the technique of tie-pointing and triangulation (T&T) to determine the three-dimensional trajectory of seven coronal mass ejections (CMEs). The bright leading edge of a CME seen in coronagraph images results from line-of-sight integration through the CME front; the two STEREO coronagraphs see different apparent leading edges, leading to a systematic error in its three-dimensional reconstruction. We analyze this systematic error using a simple geometric model of a CME front. We validate the technique and analysis by comparing T&T trajectory determinations for seven CMEs with trajectories determined by Thernisien et al. (2009) using a forward modeling technique not susceptible to this systematic effect. We find that, for the range of spacecraft separation studied ( <= 50), T&T gives reliable trajectories (uncertainty < 10 degrees in direction and < 15% velocity) for CME propagating within approximately +/- 40 degrees of perpendicular to Sun-Earth line. For CMEs close to the Sun-Earth or Sun-Spacecraft lines, T&T is subject to larger errors, especially in the velocity. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Liewer, P. C.; Hall, J. R.; De Jong, E. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Howard, R. A.] USN, Res Lab, Washington, DC 20375 USA. [Thompson, W. T.] Adnet Syst Inc, Lanham, MD 20706 USA. [Thernisien, A.] Univ Space Res Assoc, Columbia, MD 21044 USA. RP Liewer, PC (reprint author), CALTECH, Jet Prop Lab, MS 169-506, Pasadena, CA 91109 USA. EM paulett.liewer@jpl.nasa.gov RI Thompson, William/D-7376-2012 FU NASA; UK institutions by Particle Physics and Astronomy Research Council (PPARC); German institutions by Deutsches Zentrum fur Luft- und Raumfahrt e.V. (DLR); Belgian institutions by Belgian Science Policy Office; French institutions by Center National d'Etudes Spatiales (CNES); Center National de la Recherche Scientifique (CNRS); USAF; Office of Naval Research FX We thank A. Vourlidas and S. Plunkett for useful discussions. We thank N. Rich and S. Suzuki for their help with the SECCHI data. The STEREO/SECCHI data used here are produced by an international consortium of the Naval Research Laboratory (USA), Lockheed-Martin Solar and Astrophysics Lab (USA), NASA Goddard Space Flight Center (USA), Rutherford Appleton Laboratory (UK), University of Birmingham (UK), Max-Planck-Institut fur Sonnensystemforschung (Germany), Center Spatiale de Liege (Belgium), Institut d'Optique Theorique et Appliquee (France), Institut d'Astrophysique Spatiale (France). The USA institutions were funded by NASA; the UK institutions by Particle Physics and Astronomy Research Council (PPARC); the German institutions by Deutsches Zentrum fur Luft- und Raumfahrt e.V. (DLR); the Belgian institutions by Belgian Science Policy Office; the French institutions by Center National d'Etudes Spatiales (CNES) and the Center National de la Recherche Scientifique (CNRS). The NRL effort was also supported by the USAF Space Test Program and the Office of Naval Research. A portion of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. NR 28 TC 7 Z9 8 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD JUN 20 PY 2011 VL 73 IS 10 SI SI BP 1173 EP 1186 DI 10.1016/j.jastp.2010.09.004 PG 14 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 788XJ UT WOS:000292477400010 ER PT J AU Farrugia, CJ Berdichevsky, DB Mostl, C Galvin, AB Leitner, M Popecki, MA Simunac, KDC Opitz, A Lavraud, B Ogilvie, KW Veronig, AM Temmer, M Luhmann, JG Sauvaud, JA AF Farrugia, C. J. Berdichevsky, D. B. Moestl, C. Galvin, A. B. Leitner, M. Popecki, M. A. Simunac, K. D. C. Opitz, A. Lavraud, B. Ogilvie, K. W. Veronig, A. M. Temmer, M. Luhmann, J. G. Sauvaud, J. A. TI Multiple, distant (40 degrees) in situ observations of a magnetic cloud and a corotating interaction region complex SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE MC-CIR interaction; Double flux rope; Shock analysis ID CORONAL MASS EJECTIONS; SOLAR-WIND ELECTRONS; GEOMAGNETIC STORMS; 1 AU; SUBSTORM ACTIVITY; PLASMA; FLUX; EARTH; SPACECRAFT; STREAMS AB We report a comprehensive analysis of in situ observations made by Wind and the STEREO probes (STA, STB) of a complex interaction between a magnetic cloud (MC) and a corotating interaction region (CIR) occurring near the heliospheric current sheet (HCS) on November 19-21, 2007. The probes were separated by 0.7 AU (similar to 40 degrees) with a spread in heliographic latitudes (4.8,degrees 2.2,degrees and -0.4,degrees for STB, Wind and STA, respectively). We employ data from the MFI, SWE and 3DP instruments on Wind, and the PLASTIC and IMPACT suites on STEREO. STB, located east of Earth, observed a forward shock followed by signatures of a MC. The MC took the role of the HCS in that the polarity of the interplanetary magnetic field (IMF) on exit was the reverse of that on entry. A passage through a plasma sheet was observed. Along the Sun-Earth line Wind observed a stream interface (SI) between a forward and a reverse shock. A MC, compressed by the CIR, was entrained in this. STA, located 20 to the west of Earth, saw a MC which was not preceded by a shock. A SI trailed the transient. The shocks are examined using various methods and from this it is concluded that the forward shock at Wind-but not at STB-was driven by the MC. Examining the MC by Grad-Shafranov reconstruction, we find evidence of a double-flux rope structure at Wind and STA and possibly also at STB. The orientations are at variance with the notion of a large-scale flux tube being observed at the three spacecraft. We find consistency of this with the directional properties of the solar wind "strahl" electrons. We examine aspects of the geomagnetic response and find a double-dip storm corresponding to the two interplanetary triggers. The minimum Dst phase was prolonged and the geoeffects were intensified due to the interaction. We conclude that while the formation of compound streams is a common feature of interplanetary space, understanding their components when CIRs are involved is a complicated matter needing numerical simulations and/or more in situ observations for its complete elucidation. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Farrugia, C. J.; Galvin, A. B.; Popecki, M. A.; Simunac, K. D. C.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Moestl, C.; Temmer, M.] Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. [Leitner, M.] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria. [Opitz, A.; Lavraud, B.; Sauvaud, J. A.] CESR, Toulouse, France. [Ogilvie, K. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Veronig, A. M.] Graz Univ, Inst Phys, Graz, Austria. [Luhmann, J. G.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Farrugia, CJ (reprint author), Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. EM charlie.farrugia@unh.edu RI Galvin, Antoinette/A-6114-2013; Veronig, Astrid/B-8422-2009 FU NASA [NNX08AD11G, NNX10AQ29G]; STEREO [NAS5-03131] FX Our special thanks go to the referees for their many helpful comments. We thank Robert P. Lin and Ronald P. Lepping for the use of Wind 3DP and MFI data, taken from NASA's cdaweb site. We also thank the University of Kyoto website for the geomagnetic indices. This work is supported by NASA Grants NNX08AD11G, NNX10AQ29G, and STEREO Grant NAS5-03131. NR 74 TC 20 Z9 20 U1 1 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD JUN 20 PY 2011 VL 73 IS 10 SI SI BP 1254 EP 1269 DI 10.1016/j.jastp.2010.09.011 PG 16 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 788XJ UT WOS:000292477400016 ER PT J AU Lu, YJ Meyyappan, M Li, J AF Lu, Yijiang Meyyappan, M. Li, Jing TI Trace Detection of Hydrogen Peroxide Vapor Using a Carbon-Nanotube-Based Chemical Sensor SO SMALL LA English DT Article AB The sensitive detection of hydrogen peroxide in the vapor phase is achieved using a nanochemical sensor consisting of single-walled carbon nanotubes as the sensing material. The interdigitated electrode-based sensor is constructed using a simple and standard microfabrication approach. The test results indicate a sensing capability of 25 ppm and response and recovery times in seconds. The sensor array consisting of 32 sensor elements with variations in sensing materials is capable of discriminating hydrogen peroxide from water and methanol. C1 [Lu, Yijiang; Meyyappan, M.; Li, Jing] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Li, J (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM Jing.Li-1@nasa.gov FU University Affiliated Research Center at NASA Ames FX Y.L. is with Eloret Corporation and his work was supported through a subcontract from the University Affiliated Research Center at NASA Ames, managed by the University of California Santa Cruz. NR 32 TC 11 Z9 11 U1 2 U2 10 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1613-6810 J9 SMALL JI Small PD JUN 20 PY 2011 VL 7 IS 12 BP 1714 EP 1718 DI 10.1002/smll.201100406 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 777DP UT WOS:000291595800016 PM 21567945 ER PT J AU Abdo, AA Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Charles, E Chekhtman, A Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Cutini, S de Angelis, A de Palma, F Dermer, CD Digel, SW Silva, EDE Drell, PS Dubois, R Favuzzi, C Fegan, SJ Focke, WB Fortin, P Frailis, M Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grillo, L Guiriec, S Hadasch, D Hays, E Hughes, RE Iafrate, G Johannesson, G Johnson, AS Johnson, TJ Kamae, T Katagiri, H Kataoka, J Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Lionetto, AM Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN McEnery, JE Mehault, J Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Naumann-Godo, M Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Pelassa, V Pesce-Rollins, M Pierbattista, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reposeur, T Ritz, S Sadrozinski, HFW Schalk, TL Sgro, C Share, GH Siskind, EJ Smith, PD Spandre, G Spinelli, P Strickman, MS Strong, AW Takahashi, H Tanaka, T Thayer, JG Thayer, JB Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Troja, E Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vianello, G Vilchez, N Vitale, V Vladimirov, AE Waite, AP Wang, P Winer, BL Wood, KS Yang, Z Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Charles, E. Chekhtman, A. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Cutini, S. de Angelis, A. de Palma, F. Dermer, C. D. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Favuzzi, C. Fegan, S. J. Focke, W. B. Fortin, P. Frailis, M. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grillo, L. Guiriec, S. Hadasch, D. Hays, E. Hughes, R. E. Iafrate, G. Johannesson, G. Johnson, A. S. Johnson, T. J. Kamae, T. Katagiri, H. Kataoka, J. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Lionetto, A. M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. McEnery, J. E. Mehault, J. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Naumann-Godo, M. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Pelassa, V. Pesce-Rollins, M. Pierbattista, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Sadrozinski, H. F. -W. Schalk, T. L. Sgro, C. Share, G. H. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Strong, A. W. Takahashi, H. Tanaka, T. Thayer, J. G. Thayer, J. B. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Troja, E. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vilchez, N. Vitale, V. Vladimirov, A. E. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ziegler, M. TI FERMI LARGE AREA TELESCOPE OBSERVATIONS OF TWO GAMMA-RAY EMISSION COMPONENTS FROM THE QUIESCENT SUN SO ASTROPHYSICAL JOURNAL LA English DT Article DE astroparticle physics; cosmic rays; gamma rays: general; Sun: atmosphere; Sun: heliosphere; Sun: X-rays, gamma rays ID GALACTIC COSMIC-RAYS; INVERSE COMPTON-SCATTERING; HELIOSPHERIC MODULATION; EGRET DATA; SOLAR; PROPAGATION; SPECTRUM; GALAXY; PARTICLES; ASTRONOMY AB We report the detection of high-energy gamma-rays from the quiescent Sun with the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope (Fermi) during the first 18 months of the mission. These observations correspond to the recent period of low solar activity when the emission induced by cosmic rays (CRs) is brightest. For the first time, the high statistical significance of the observations allows clear separation of the two components: the point-like emission from the solar disk due to CR cascades in the solar atmosphere and extended emission from the inverse Compton (IC) scattering of CR electrons on solar photons in the heliosphere. The observed integral flux (>= 100 MeV) from the solar disk is (4.6 +/- 0.2inverted right perpendicularstatistical errorinverted left perpendicular(-0.08)(+1.0)inverted right perpendicularsystematic errorinverted left perpendicular) x 10(-7) cm(-2) s(-1), which is similar to 7 times higher than predicted by the "nominal" model of Seckel et al. In contrast, the observed integral flux (>= 100 MeV) of the extended emission from a region of 20 degrees radius centered on the Sun, but excluding the disk itself, (6.8 +/- 0.7[stat.](-0.4)(+0.5)[syst.]) x 10(-7) cm(-2) s(-1), along with the observed spectrum and the angular profile, is in good agreement with the theoretical predictions for the IC emission. C1 [Abdo, A. A.; Makeev, A.] George Mason Univ, Ctr Earth Observing & Space Res, Coll Sci, Fairfax, VA 22030 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Grillo, L.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Orlando, E.; Paneque, D.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Vladimirov, A. E.; Waite, A. P.; Wang, P.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Grillo, L.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Orlando, E.; Paneque, D.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Vladimirov, A. E.; Waite, A. P.; Wang, P.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, SLAC Natl Accelerator Lab, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Iafrate, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Bouvier, A.; Ritz, S.; Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Bouvier, A.; Ritz, S.; Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ & Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.] Ecole Polytech, Lab Leprince Ringuet, CNRS IN2P3, Palaiseau, France. [Caliandro, G. A.; Hadasch, D.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Chekhtman, A.] Artep Inc, Ellicott City, MD 21042 USA. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Pelassa, V.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, Lab Univers & Particules Montpellier, CNRS IN2P3, Montpellier, France. [Conrad, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Yang, Z.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Cutini, S.; Gasparrini, D.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Rome, Italy. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Abdo, A. A.; Dermer, C. D.; Lovellette, M. N.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Frailis, M.; Iafrate, G.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Gehrels, N.; Hays, E.; Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Hughes, R. E.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Johnson, T. J.; McEnery, J. E.; Moiseev, A. A.; Share, G. H.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS, IRAP, F-31028 Toulouse 4, France. [Knoedlseder, J.; Vilchez, N.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Lionetto, A. M.; Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Lionetto, A. M.; Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Lott, B.; Reposeur, T.] Univ Bordeaux 1, CNRS IN2p3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Moiseev, A. A.] NASA, CRESST, Greenbelt, MD 20771 USA. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.; Ozaki, M.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Kanagawa 2525210, Japan. [Orlando, E.; Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.; Vianello, G.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM brigida@ba.infn.it; nico.giglietto@ba.infn.it; imos@stanford.edu; eorlando@stanford.edu RI Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Morselli, Aldo/G-6769-2011; Thompson, David/D-2939-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Funk, Stefan/B-7629-2015; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Kuss, Michael/H-8959-2012 OI Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Sgro', Carmelo/0000-0001-5676-6214; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Cutini, Sara/0000-0002-1271-2924; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Iafrate, Giulia/0000-0002-6185-8292; Giordano, Francesco/0000-0002-8651-2394; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Morselli, Aldo/0000-0002-7704-9553; Thompson, David/0000-0001-5217-9135; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; lubrano, pasquale/0000-0003-0221-4806; FU NASA [NNX10AD12G] FX The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the Fermi-LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. I. V. M. and E.O. acknowledge support from NASA grant NNX10AD12G. NR 50 TC 34 Z9 34 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2011 VL 734 IS 2 AR 116 DI 10.1088/0004-637X/734/2/116 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 774LD UT WOS:000291386500044 ER PT J AU Currie, T Lisse, CM Sicilia-Aguilar, A Rieke, GH Su, KYL AF Currie, Thayne Lisse, Carey M. Sicilia-Aguilar, Aurora Rieke, George H. Su, Kate Y. L. TI SPITZER INFRARED SPECTROGRAPH SPECTROSCOPY OF THE 10 Myr OLD EF Cha DEBRIS DISK: EVIDENCE FOR PHYLLOSILICATE-RICH DUST IN THE TERRESTRIAL ZONE SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; infrared: stars; planets and satellites: formation; protoplanetary disks; stars: individual (EF Cha); techniques: spectroscopic ID POLLUTED WHITE-DWARFS; HERBIG AE/BE SYSTEMS; ICY PLANET FORMATION; MAIN-SEQUENCE STARS; PROTOPLANETARY DISKS; CIRCUMSTELLAR DISKS; ABSORPTION-SPECTRA; GRAIN-GROWTH; COMPOSITIONAL DEPENDENCE; MIPS OBSERVATIONS AB We describe Spitzer Infrared Spectrograph spectroscopic observations of the similar to 10 Myr old star, EF Cha. Compositional modeling of the spectra from 5 mu m to 35 mu m confirms that it is surrounded by a luminous debris disk with L-D/L-star similar to 10 (3), containing dust with temperatures between 225 K and 430 K, characteristic of the terrestrial zone. The EF Cha spectrum shows evidence for many solid-state features, unlike most cold, low-luminosity debris disks but like some other 10-20 Myr old luminous, warm debris disks (e. g., HD 113766A). The EF Cha debris disk is unusually rich in a species or combination of species whose emissivities resemble that of finely powdered, laboratory-measured phyllosilicate species (talc, saponite, and smectite), which are likely produced by aqueous alteration of primordial anhydrous rocky materials. The dust and, by inference, the parent bodies of the debris also contain abundant amorphous silicates and metal sulfides, and possibly water ice. The dust's total olivine to the pyroxene ratio of similar to 2 also provides evidence of aqueous alteration. The large mass volume of grains with sizes comparable to or below the radiation blow-out limit implies that planetesimals may be colliding at a rate high enough to yield the emitting dust but not so high as to devolatize the planetesimals via impact processing. Because phyllosilicates are produced by the interactions between anhydrous rock and warm, reactive water, EF Cha's disk is a likely signpost for water delivery to the terrestrial zone of a young planetary system. C1 [Currie, Thayne] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lisse, Carey M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Sicilia-Aguilar, Aurora] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Rieke, George H.; Su, Kate Y. L.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. RP Currie, T (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Lisse, Carey/B-7772-2016; OI Lisse, Carey/0000-0002-9548-1526; Su, Kate/0000-0002-3532-5580 FU NASA; JPL [1274485]; NSF [NNX09AU31G-1]; APL Janney Fellowship; Deutsche Forschungsgemeinschaft (DFG) [SI 1486/1-1]; Caltech/JPL [1255094] FX We thank Marc Kuchner, Aki Roberge, Scott Kenyon, Alycia Weinberger, John Debes, Steve Desch, Melissa Morris, and the anonymous referee for useful comments and discussions that improved the quality of this work. This paper was based on observations taken with the NASA Spitzer Space Telescope, operated by JPL/CalTech. T. C. is funded by a NASA Postdoctoral Fellowship; C. M. L. gratefully acknowledges support for performing the modeling described herein from JPL contract 1274485, NSF AAG grant NNX09AU31G-1, and the APL Janney Fellowship program. A. S.-A. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG) grant SI 1486/1-1. K.Y.L.S. and G. R. were partially supported by contract 1255094 from Caltech/JPL to the University of Arizona. NR 90 TC 15 Z9 15 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2011 VL 734 IS 2 AR 115 DI 10.1088/0004-637X/734/2/115 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 774LD UT WOS:000291386500043 ER PT J AU Habbal, SR Druckmuller, M Morgan, H Ding, A Johnson, J Druckmullerova, H Daw, A Arndt, MB Dietzel, M Saken, J AF Habbal, Shadia Rifai Druckmueller, Miloslav Morgan, Huw Ding, Adalbert Johnson, Judd Druckmuellerova, Hana Daw, Adrian Arndt, Martina B. Dietzel, Martin Saken, Jon TI THERMODYNAMICS OF THE SOLAR CORONA AND EVOLUTION OF THE SOLAR MAGNETIC FIELD AS INFERRED FROM THE TOTAL SOLAR ECLIPSE OBSERVATIONS OF 2010 JULY 11 SO ASTROPHYSICAL JOURNAL LA English DT Article DE eclipses; solar wind; Sun: corona ID ELECTRON-TEMPERATURE; ULTRAVIOLET; MAXIMUM; IMAGES; LINE AB We report on the first multi-wavelength coronal observations, taken simultaneously in white light, H alpha 656.3 nm, Fe IX 435.9 nm, Fe x 637.4 nm, Fe XI 789.2 nm, Fe XIII 1074.7 nm, Fe XIV 530.3 nm, and Ni XV 670.2 nm, during the total solar eclipse of 2010 July 11 from the atoll of Tatakoto in French Polynesia. The data enabled temperature differentiations as low as 0.2 x 10(6) K. The first-ever images of the corona in Fe IX and Ni XV showed that there was very little plasma below 5 x 10(5) K and above 2.5 x 10(6) K. The suite of multi-wavelength observations also showed that open field lines have an electron temperature near 1 x 10(6) K, while the hottest, 2 x 10(6) K, plasma resides in intricate loops forming the bulges of streamers, also known as cavities, as discovered in our previous eclipse observations. The eclipse images also revealed unusual coronal structures, in the form of ripples and streaks, produced by the passage of coronal mass ejections and eruptive prominences prior to totality, which could be identified with distinct temperatures for the first time. These trails were most prominent at 10(6) K. Simultaneous Fe x 17.4 nm observations from Proba2/SWAP provided the first opportunity to compare Fe x emission at 637.4 nm with its extreme-ultraviolet (EUV) counterpart. This comparison demonstrated the unique diagnostic capabilities of the coronal forbidden lines for exploring the evolution of the coronal magnetic field and the thermodynamics of the coronal plasma, in comparison with their EUV counterparts in the distance range of 1-3 R(circle dot). These diagnostics are currently missing from present space-borne and ground-based observatories. C1 [Habbal, Shadia Rifai; Morgan, Huw] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Druckmueller, Miloslav; Druckmuellerova, Hana] Brno Univ Technol, Fac Mech Engn, Brno 61669, Czech Republic. [Ding, Adalbert] Tech Univ Berlin, Inst Opt & Atom Phys, Berlin, Germany. [Ding, Adalbert] Inst Tech Phys, Berlin, Germany. [Johnson, Judd] Electricon, Boulder, CO 80204 USA. [Daw, Adrian] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Arndt, Martina B.] Bridgewater State Univ, Dept Phys, Bridgewater, MA 02325 USA. [Dietzel, Martin] ASTELCO, Munich, Germany. [Saken, Jon] Appalachian State Univ, Dept Phys & Astron, Boone, NC 28608 USA. RP Habbal, SR (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. EM shadia@ifa.hawaii.edu RI daw, adrian/D-2297-2012; OI Morgan, Huw/0000-0002-6547-5838 FU NASA [NNX08AQ29G, NNX07AH90G]; NSF [ATM 08-02520, NSF-AGS-0450096, ATM-0801633]; Czech Science Foundation [205/09/1469]; Belgian Federal Science Policy Office (BELSPO) FX The eclipse observations were made possible by funding from NASA Grants NNX08AQ29G and NNX07AH90G, and NSF grant ATM 08-02520, to the University of Hawaii, NSF grant NSF-AGS-0450096 to Bridgewater State University (M. A.), and NSF grant ATM-0801633 to Appalachian State University (J.S). Partial support for the work of M. Druckmuller was provided by grant 205/09/1469 of the Czech Science Foundation. This eclipse expedition to Tatakoto would not have been made possible without the creative resourcefulness and relentless support of the administrative team at the Institute for Astronomy (IfA), namely, Chris Kaukali, Faye Uyehara, and Lauren Anzai; and the fantastic response and support from John Bell (Air Tahiti), Francois Dantzer (atoll of HAO), Heifara Lanteres (headmaster of the school in the atoll of Tatakoto), and Michel Manheim (Papeete). We acknowledge the generosity of the Institute of Optics and Atomic Physics of the Technical University of Berlin for providing optical equipment, of Peter Aniol, ASTELCO, for lending us the mount for the white light observations, of Alan Lichty from Princeton Instruments for lending us a PIXIS 1024BR camera, of Steve Chambers from Atik cameras, and of Peter Onaka and Garry Nitta from the IfA. Our sincere thanks also go to Karen Teramura (IfA) for her artistic talents in preparing the final version of the figures. Data from the SWAP instrument on PROBA2 are a project of the Centre Spatial de Liege and the Royal Observatory of Belgium funded by the Belgian Federal Science Policy Office (BELSPO). The SOHO data used here are produced by a consortium of the Naval Research Laboratory (USA), Max-Planck-Institut fur Aeronomie (Germany), Laboratoire d'Astronomie (France), and the University of Birmingham (UK). SOHO is a project of international cooperation between ESA and NASA. NR 27 TC 27 Z9 27 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2011 VL 734 IS 2 AR 120 DI 10.1088/0004-637X/734/2/120 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 774LD UT WOS:000291386500048 ER PT J AU Jones, BM Bennett, CJ Kaiser, RI AF Jones, Brant M. Bennett, Christopher J. Kaiser, Ralf I. TI MECHANISTICAL STUDIES ON THE PRODUCTION OF FORMAMIDE (H2NCHO) WITHIN INTERSTELLAR ICE ANALOGS SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; cosmic rays; ISM: clouds ID PEPTIDE-BOND FORMATION; COSMIC DUST ANALOGS; INFRARED-SPECTROSCOPY; MATRIX-ISOLATION; SOLAR-SYSTEM; ABSORPTION FEATURES; BEARING MOLECULES; CARBON-MONOXIDE; UV PHOTOLYSIS; SOLID AMMONIA AB Formamide, H2NCHO, represents the simplest molecule containing the peptide bond. Consequently, the formamide molecule is of high interest as it is considered an important precursor in the abiotic synthesis of amino acids, and thus significant to further prebiotic chemistry, in more suitable environments. Previous experiments have demonstrated that formamide is formed under extreme conditions similar throughout the interstellar medium via photolysis and the energetic processing of ultracold interstellar and solar system ices with high-energy protons; however, no clear reaction mechanism has been identified. Utilizing a laboratory apparatus capable of simulating the effects of galactic cosmic radiation on ultralow temperature ice mixtures, we have examined the formation of formamide starting from a variety of carbon monoxide (CO) to ammonia (NH3) ices of varying composition. Our results suggest that the primary reaction step leading to the production of formamide in low-temperature ices involves the cleavage of the nitrogen-hydrogen bond of ammonia forming the amino radical (NH2) and atomic hydrogen (H), the latter of which containing excess kinetic energy. These suprathermal hydrogen atoms can then add to the carbon-oxygen triple bond of the carbon monoxide (CO) molecule, overcoming the entrance barrier, and ultimately producing the formyl radical (HCO). From here, the formyl radical may combine without an entrance barrier with the neighboring amino radical if the proper geometry for these two species exists within the matrix cage. C1 [Jones, Brant M.; Bennett, Christopher J.; Kaiser, Ralf I.] Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. [Jones, Brant M.; Bennett, Christopher J.; Kaiser, Ralf I.] Univ Hawaii Manoa, NASA Astrobiol Inst, Honolulu, HI 96822 USA. RP Kaiser, RI (reprint author), Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. EM ralfk@hawaii.edu OI Bennett, Christopher/0000-0002-4181-6976 FU NASA; NASA Astrobiology Institute; National Aeronautics and Space Administration through the NASA Astrobiology Institute; Office of Space Science [NNA09DA77A] FX B.M.J. thanks the NASA Postdoctoral Program at the NASA Astrobiology Institute, administered by Oak Ridge Associated Universities. C.J.B. and R. I. K. wish to acknowledge support from the National Aeronautics and Space Administration through the NASA Astrobiology Institute (Cooperative Agreement No. NNA09DA77A issued through the Office of Space Science). NR 84 TC 36 Z9 36 U1 5 U2 33 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2011 VL 734 IS 2 AR 78 DI 10.1088/0004-637X/734/2/78 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 774LD UT WOS:000291386500006 ER PT J AU Newton, ER Marshall, PJ Treu, T Auger, MW Gavazzi, R Bolton, AS Koopmans, LVE Moustakas, LA AF Newton, Elisabeth R. Marshall, Philip J. Treu, Tommaso Auger, Matthew W. Gavazzi, Raphaeel Bolton, Adam S. Koopmans, Leon V. E. Moustakas, Leonidas A. TI THE SLOAN LENS ACS SURVEY. XI. BEYOND HUBBLE RESOLUTION: SIZE, LUMINOSITY, AND STELLAR MASS OF COMPACT LENSED GALAXIES AT INTERMEDIATE REDSHIFT SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: fundamental parameters; gravitational lensing: strong ID EMISSION-LINE GALAXIES; ULTRA-DEEP-FIELD; DIGITAL SKY SURVEY; STAR-FORMING GALAXY; SURFACE-BRIGHTNESS; DISK GALAXIES; RED GALAXIES; EVOLUTION; GEMS; Z-APPROXIMATE-TO-1 AB We exploit the strong lensing effect to explore the properties of intrinsically faint and compact galaxies at intermediate redshift (z(s) similar or equal to 0.4-0.8) at the highest possible resolution at optical wavelengths. Our sample consists of 46 strongly lensed emission line galaxies (ELGs) discovered by the Sloan Lens ACS Survey (SLACS). The galaxies have been imaged at high resolution with the Hubble Space Telescope (HST) in three bands (V-HST, I-814, and H-160), allowing us to infer their size, luminosity, and stellar mass using stellar population synthesis models. Lens modeling is performed using a new fast and robust code, KLENS, which we test extensively on real and synthetic non-lensed galaxies, and also on simulated galaxies multiply imaged by SLACS-like galaxy-scale lenses. Our tests show that our measurements of galaxy size, flux, and Sersic index are robust and accurate, even for objects intrinsically smaller than the HST point-spread function. The median magnification is 8.8, with a long tail that extends to magnifications above 40. Modeling the SLACS sources reveals a population of galaxies with colors and Sersic indices (median n similar to 1) consistent with the galaxies detected with HST in the Galaxy Evolution from Morphology and SEDs (GEMS) and Hubble Ultra Deep Field (HUDF) surveys, but that are (typically) similar to 2 mag fainter and similar to 5 times smaller in apparent size than GEMS and similar to 4 mag brighter than but similar in size to HUDF. The size-stellar-mass and size-luminosity relations for the SLACS sources are offset to smaller sizes with respect to both comparison samples. The closest analog are ultracompact ELGs identified by HST grism surveys. The lowest mass galaxies in our sample are comparable to the brightest Milky Way satellites in stellar mass (10(7) M-circle dot) and have well-determined half-light radii of 0.'' 05 (approximate to 0.3 kpc). C1 [Newton, Elisabeth R.; Marshall, Philip J.; Treu, Tommaso; Auger, Matthew W.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Marshall, Philip J.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94309 USA. [Gavazzi, Raphaeel] Univ Paris 06, Inst Astrophys Paris, CNRS, UMR7095, F-75014 Paris, France. [Bolton, Adam S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Koopmans, Leon V. E.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Moustakas, Leonidas A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Newton, ER (reprint author), Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. EM enewton@cfa.harvard.edu OI Moustakas, Leonidas/0000-0003-3030-2360; Newton, Elisabeth/0000-0003-4150-841X NR 47 TC 31 Z9 31 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2011 VL 734 IS 2 AR 104 DI 10.1088/0004-637X/734/2/104 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 774LD UT WOS:000291386500032 ER PT J AU Pasachoff, JM Rusin, V Druckmullerova, H Saniga, M Lu, M Malamut, C Seaton, DB Golub, L Engell, AJ Hill, SW Lucas, R AF Pasachoff, J. M. Rusin, V. Druckmuellerova, H. Saniga, M. Lu, M. Malamut, C. Seaton, D. B. Golub, L. Engell, A. J. Hill, S. W. Lucas, R. TI STRUCTURE AND DYNAMICS OF THE 2010 JULY 11 ECLIPSE WHITE-LIGHT CORONA SO ASTROPHYSICAL JOURNAL LA English DT Article DE eclipses; Sun: chromosphere; Sun: corona; Sun: coronal mass ejections (CMEs); Sun: magnetic topology; Sun: UV radiation ID SOLAR CORONA; MASS EJECTIONS; PROMINENCE; CYCLE AB The white-light corona (WLC) during the total solar eclipse on 2010 July 11 was observed by several teams in the Moon's shadow stretching across the Pacific Ocean and a number of isolated islands. We present a comparison of the WLC as observed by eclipse teams located on the Tatakoto Atoll in French Polynesia and on Easter Island, 83 minutes later, combined with near-simultaneous space observations. The eclipse was observed at the beginning of the solar cycle, not long after solar minimum. Nevertheless, the solar corona shows a plethora of different features (coronal holes, helmet streamers, polar rays, very faint loops and radial-oriented thin streamers, a coronal mass ejection, and a puzzling "curtain-like" object above the north pole). Comparing the observations from the two sites enables us to detect some dynamic phenomena. The eclipse observations are further compared with a hairy-ball model of the magnetic field and near-simultaneous images from the Atmospheric Imaging Assembly on NASA's Solar Dynamics Observatory, the Extreme Ultraviolet Imager on NASA's Solar Terrestrial Relations Observatory, the Sun Watcher, using Active Pixel System Detector and Image Processing on ESA's PRoject for Onboard Autonomy, and the Naval Research Laboratory's Large Angle and Spectrometric Coronagraph on ESA's Solar and Heliospheric Observatory. The Ludendorff flattening coefficient is 0.156, matching the expected ellipticity of coronal isophotes at 2 R-circle dot, for this rising phase of the solar-activity cycle. C1 [Pasachoff, J. M.] Williams Coll, Hopkins Observ, Williamstown, MA 01267 USA. [Rusin, V.; Saniga, M.] Slovak Acad Sci, Astron Inst, Tatranska Lomnica 05960, Slovakia. [Druckmuellerova, H.] Brno Univ Technol, Brno 61669, Czech Republic. [Lu, M.; Malamut, C.] Williams Coll, Dept Astron, Williamstown, MA 01267 USA. [Malamut, C.] Wesleyan Univ, Dept Astron, Middletown, CT 06459 USA. [Seaton, D. B.] Royal Observ Belgium, SIDC, B-1180 Brussels, Belgium. [Golub, L.; Engell, A. J.] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. [Hill, S. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lucas, R.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. RP Pasachoff, JM (reprint author), Williams Coll, Hopkins Observ, Williamstown, MA 01267 USA. EM eclipse@williams.edu; vrusin@ta3.sk; hanadruck@seznam.cz; msaniga@ta3.sk; muzhou.lu@williams.edu; cmalamut@wesleyan.edu; dseaton@oma.be; golub@cfa.harvard.edu; aengell@cfa.harvard.edu; steele.w.hill@nasa.gov; lucas@physics.usyd.edu.au RI Saniga, Metod/F-6200-2012; OI Saniga, Metod/0000-0001-9642-5879; SEATON, DANIEL/0000-0002-0494-2025 FU VEGA (Slovak Academy of Sciences) [2/0098/10]; Czech Science Foundation [205/09/1469]; National Science Foundation [AGS-1047726, AST-1005024]; Williams College; NASA's Marshall Space Flight Center [NNX10AK47A]; U.S. Department of Defense; European Commission [218816]; Centre Spatial de Liege; BELSPO; Lockheed Martin FX The work of V. R. and M. S. was partially supported by the VEGA grant agency project 2/0098/10 (Slovak Academy of Sciences) and that of H. D. by grant 205/09/1469 of the Czech Science Foundation. V. R. also cordially thanks Shadia Habbal for partial financial support, the ASTELCO for providing the mount, and Heifara Lanteires for hospitality during his stay at Tatakoto. J.M.P.'s eclipse research is supported in part by the Solar Terrestrial Program of the National Science Foundation through grant AGS-1047726; the 2010 expedition received additional support from the Brandi Fund and Science Center funds from Williams College. J.M.P.'s solar research is also supported in part by grant NNX10AK47A from NASA's Marshall Space Flight Center. C. M. was a Keck Northeast Astronomy Consortium Summer Fellow, supported at Williams College by the Research Experiences for Undergraduates program of the National Science Foundation under grant AST-1005024. Partial support for this work was provided by the U.S. Department of Defense's Awards to Stimulate and Support Undergraduate Research Education (ASSURE) program in collaboration with the National Science Foundation's Research Experiences for Undergraduates program. For the Easter Island expedition, we thank Jonathan Kern of the Carnegie Observatories, Nikon Professional Services, Williams College's Equipment Loan Office/James Lillie, and the Photographic Department of the National Geographic Society for providing equipment. For the Tatakoto expedition, we thank ASTELCO Systems GmbH (Germany). J.M.P. thanks the Planetary Sciences Department of the California Institute of Technology for hospitality during the preparation of this paper. Support for D. B. S. and SWAP came from PRODEX grant C90345 managed by the European Space Agency in collaboration with the Belgian Federal Science Policy Office (BELSPO) in support of the PROBA2/SWAP mission, and from the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement no. 218816 (SOTERIA project, www.soteria-space.eu). SWAP is a project of the Centre Spatial de Liege and the Royal Observatory of Belgium funded by BELSPO. A. E. and L. G. were supported by a contract from Lockheed Martin. We thank the referee, Y.-M. Wang of NRL, for valuable comments and for providing the PFSS figure. NR 38 TC 13 Z9 13 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2011 VL 734 IS 2 AR 114 DI 10.1088/0004-637X/734/2/114 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 774LD UT WOS:000291386500042 ER PT J AU Sambruna, RM Tombesi, F Reeves, JN Braito, V Ballo, L Gliozzi, M Reynolds, CS AF Sambruna, R. M. Tombesi, F. Reeves, J. N. Braito, V. Ballo, L. Gliozzi, M. Reynolds, C. S. TI THE SUZAKU VIEW OF 3C 382 SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; galaxies: active; line: profiles; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; LINE RADIO GALAXY; X-RAY-SPECTRA; ULTRA-FAST OUTFLOWS; ACCRETION DISK; BLACK-HOLE; REFLECTED SPECTRA; SEYFERT-GALAXIES; EMISSION-LINES; 3C-382 AB We present a long (116 ks) Suzaku observation of the broad-line radio galaxy (BLRG) 3C 382 acquired in 2007 April. A Swift BAT spectrum in 15-200 keV from the 58 month survey is also analyzed, together with an archival XMM-Newton EPIC exposure of 20 ks obtained one year after Suzaku. Our main result is the finding with Suzaku of a broad Fe K line with a relativistic profile consistent with emission from an accretion disk at tens of gravitational radii from the central black hole. The XIS data indicate emission from highly ionized iron and allow us to set tight, albeit model-dependent, constraints on the inner and outer radii of the disk reflecting region, r(in) similar or equal to 10 r(g) and r(out) similar or equal to 20 r(g), respectively, and on the disk inclination, i similar or equal to 30 degrees. Two ionized reflection components are possibly observed, with similar contributions of similar to 10% to the total continuum-a highly ionized one, with log xi similar or equal to 3 erg s (1) cm, which successfully models the relativistic line, and a mildly ionized one, with log xi similar or equal to 1.5 erg s(-1) cm, which models the narrow Fe K alpha and high energy hump. When both these components are included, there is no further requirement for an additional blackbody soft excess below 2 keV. The Suzaku data confirm the presence of a warm absorber previously known from grating studies. After accounting for all the spectral features, the intrinsic photon index of the X-ray continuum is Gamma(x) similar or equal to 1.8 with a cutoff energy at similar to 200 keV, consistent with Comptonization models and excluding jet-related emission up to these energies. Comparison of the X-ray properties of 3C 382 and other BLRGs to Seyferts recently observed with Suzaku and BAT confirms the idea that the distinction between radio-loud and radio-quiet active galactic nucleus at X-rays is blurred. The two classes form a continuum distribution in terms of X-ray photon index, reflection strength, and Fe K line width (related to the disk emission radius), with BLRGs clustered at one end of the distribution. This points to a common structure of the central engine, with only a few fundamental parameter(s) responsible for the radio-loud/radio-quiet division. The black hole spin, and in particular its rotation compared to the disk's, may be a key one. C1 [Sambruna, R. M.; Gliozzi, M.] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA. [Tombesi, F.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Tombesi, F.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Tombesi, F.; Reynolds, C. S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Reeves, J. N.] Univ Keele, Astrophys Grp, Sch Phys & Geog Sci, Keele ST5 5BG, Staffs, England. [Braito, V.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Ballo, L.] Inst Fis Cantabria CSIC UC, Santander 39005, Spain. RP Sambruna, RM (reprint author), George Mason Univ, Dept Phys & Astron, MS 3F3,4400 Univ Dr, Fairfax, VA 22030 USA. RI XRAY, SUZAKU/A-1808-2009; OI Ballo, Lucia/0000-0002-5036-3497; Braito, Valentina/0000-0002-2629-4989 FU National Aeronautics and Space Administration; Spanish Ministry of Science and Innovation through a "Juan de la Cierva" [AYA2009-08059] FX This research has made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA's Goddard Space Flight Center, and of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. R. M. S. and F. T. acknowledge support from NASA through the Suzaku and ADAP/LTSA programs. F. T. thanks T. Dauser for help in using the relline model. F. T. thanks J. Garcia for help in using the xillver model. L. B. acknowledges financial support from the Spanish Ministry of Science and Innovation through a "Juan de la Cierva" fellowship, research grant AYA2009-08059. The authors thank the referee for suggestions that led to important improvements in the paper. NR 69 TC 16 Z9 16 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2011 VL 734 IS 2 AR 105 DI 10.1088/0004-637X/734/2/105 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 774LD UT WOS:000291386500033 ER PT J AU Warren, HP Brooks, DH Winebarger, AR AF Warren, Harry P. Brooks, David H. Winebarger, Amy R. TI CONSTRAINTS ON THE HEATING OF HIGH-TEMPERATURE ACTIVE REGION LOOPS: OBSERVATIONS FROM HINODE AND THE SOLAR DYNAMICS OBSERVATORY SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: corona ID ULTRAVIOLET IMAGING SPECTROMETER; X-RAY LOOPS; TRANSITION-REGION; CORONAL LOOPS; QUIET-SUN; PLASMA DIAGNOSTICS; EMISSION-LINES; MOSS; RESOLUTION; SPECTRA AB We present observations of high-temperature emission in the core of a solar active region using instruments on Hinode and the Solar Dynamics Observatory (SDO). These multi-instrument observations allow us to determine the distribution of plasma temperatures and follow the evolution of emission at different temperatures. We find that at the apex of the high-temperature loops the emission measure distribution is strongly peaked near 4MK and falls off sharply at both higher and lower temperatures. Perhaps most significantly, the emission measure at 0.5MK is reduced by more than two orders of magnitude from the peak at 4MK. We also find that the temporal evolution in broadband soft X-ray images is relatively constant over about 6 hr of observing. Observations in the cooler SDO/Atmospheric Imaging Assembly (AIA) bandpasses generally do not show cooling loops in the core of the active region, consistent with the steady emission observed at high temperatures. These observations suggest that the high-temperature loops observed in the core of an active region are close to equilibrium. We find that it is possible to reproduce the relative intensities of high-temperature emission lines with a simple, high-frequency heating scenario where heating events occur on timescales much less than a characteristic cooling time. In contrast, low-frequency heating scenarios, which are commonly invoked to describe nanoflare models of coronal heating, do not reproduce the relative intensities of high-temperature emission lines and predict low-temperature emission that is approximately an order of magnitude too large. We also present an initial look at images from the SDO/AIA 94 angstrom channel, which is sensitive to Fe XVIII. C1 [Warren, Harry P.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Brooks, David H.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Winebarger, Amy R.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Warren, HP (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. NR 52 TC 67 Z9 67 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2011 VL 734 IS 2 AR 90 DI 10.1088/0004-637X/734/2/90 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 774LD UT WOS:000291386500018 ER PT J AU Montes, MA Churnside, J Lee, Z Gould, R Arnone, R Weidemann, A AF Montes, Martin A. Churnside, James Lee, Zhongping Gould, Richard Arnone, Robert Weidemann, Alan TI Relationships between water attenuation coefficients derived from active and passive remote sensing: a case study from two coastal environments SO APPLIED OPTICS LA English DT Article ID OCEAN COLOR; OPTICAL-PROPERTIES; OCEANOGRAPHIC LIDAR; SCATTERING; UNCERTAINTIES; ALGORITHM; RADIATION; INHERENT; MODEL; FIELD AB Relationships between the satellite-derived diffuse attenuation coefficient of downwelling irradiance (K-d) and airborne-based vertical attenuation of lidar volume backscattering (alpha) were examined in two coastal environments. At 1.1 km resolution and a wavelength of 532 nm, we found a greater connection between alpha and K-d when alpha was computed below 2 m depth (Spearman rank correlation coefficient up to 0.96), and a larger contribution of K-d to alpha with respect to the beam attenuation coefficient as estimated from lidar measurements and K-d models. Our results suggest that concurrent passive and active optical measurements can be used to estimate total scattering coefficient and backscattering efficiency in waters without optical vertical structure. (C) 2011 Optical Society of America C1 [Montes, Martin A.; Lee, Zhongping] Mississippi State Univ, Geosyst Res Inst, Mississippi State, MS 39529 USA. [Gould, Richard; Arnone, Robert; Weidemann, Alan] USN, Res Lab, Stennis Space Ctr, NASA, Stennis Space Ctr, MS 39529 USA. [Churnside, James] Natl Ocean & Atmospher Adm, Earth Syst Res Lab, Boulder, CO 80305 USA. RP Montes, MA (reprint author), Mississippi State Univ, Geosyst Res Inst, Mississippi State, MS 39529 USA. EM mmontes@gri.msstate.edu RI Churnside, James/H-4873-2013; Manager, CSD Publications/B-2789-2015 FU Naval Research Laboratory (NRL) [PBE0601153N] FX This work was supported by the Naval Research Laboratory (NRL) internal project "3D Remote Sensing with a Multiple-Band Active and Passive System: Theoretical Basis," PBE0601153N. NR 32 TC 5 Z9 5 U1 0 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JUN 20 PY 2011 VL 50 IS 18 BP 2990 EP 2999 DI 10.1364/AO.50.002990 PG 10 WC Optics SC Optics GA 781WN UT WOS:000291968500024 PM 21691366 ER PT J AU Oreopoulos, L Rossow, WB AF Oreopoulos, Lazaros Rossow, William. B. TI The cloud radiative effects of International Satellite Cloud Climatology Project weather states SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TROPICAL WESTERN PACIFIC; ISCCP DATA SETS; CLUSTER-ANALYSIS; INPUT DATA; REGIMES; SURFACE; MODEL; MIDLATITUDE; FLUXES; TOP AB The salient features of the daytime cloud radiative effect (CRE, also known as cloud radiative forcing) corresponding to various cloud regimes or weather states are examined. The analysis is based on a 24 year long data set from the International Satellite Cloud Climatology Project (ISCCP) for three distinct geographical zones covering most of the Earth's surface area. Conditional sampling and averaging of the ISCCP cloud fraction and CRE in 2.5 degrees grid cells is performed for each weather state, and the state's radiative importance expressed as the relative contribution to the total CRE of its geographical zone is explained in terms of dominant cloud type, cloud fraction, and frequency of occurrence. Similarities and differences within and between geographical zones in the cloud fraction and CRE characteristics of the various weather states are identified and highlighted. By providing an exposition of the radiative energy characteristics of different cloud type mixtures, we facilitate the meteorological situation-dependent evaluation of radiation budget effects due to clouds in climate models. C1 [Oreopoulos, Lazaros] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Rossow, William. B.] CUNY City Coll, NOAA Cooperat Remote Sensing Sci & Technol Ctr, New York, NY 10031 USA. RP Oreopoulos, L (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Code 613-2, Greenbelt, MD 20771 USA. EM lazaros.oreopoulos@nasa.gov RI Oreopoulos, Lazaros/E-5868-2012; Rossow, William/F-3138-2015 OI Oreopoulos, Lazaros/0000-0001-6061-6905; FU NASA [NNXD7AN04G] FX Both authors acknowledge funding support under NASA's Modeling Analysis and Prediction (MAP) Program (grant NNXD7AN04G for W.B. Rossow) managed by David Considine. NR 37 TC 26 Z9 26 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 17 PY 2011 VL 116 AR D12202 DI 10.1029/2010JD015472 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 780AC UT WOS:000291822300005 ER PT J AU Wright, JS Fu, R Fueglistaler, S Liu, YS Zhang, Y AF Wright, J. S. Fu, R. Fueglistaler, S. Liu, Y. S. Zhang, Y. TI The influence of summertime convection over Southeast Asia on water vapor in the tropical stratosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MICROWAVE LIMB SOUNDER; TIBETAN PLATEAU; DIURNAL-VARIATION; DEUTERATED WATER; TROPOPAUSE LAYER; TAPE-RECORDER; DEHYDRATION; TRANSPORT; MONSOON; TEMPERATURES AB The relative contributions of Southeast Asian convective source regions during boreal summer to water vapor in the tropical stratosphere are examined using Lagrangian trajectories. Convective sources are identified using global observations of infrared brightness temperature at high space and time resolution, and water vapor transport is simulated using advection-condensation. Trajectory simulations are driven by three different reanalysis data sets, GMAO MERRA, ERA-Interim, and NCEP/NCAR, to establish points of consistency and evaluate the sensitivity of the results to differences in the underlying meteorological fields. All ensembles indicate that Southeast Asia is a prominent boreal summer source of tropospheric air to the tropical stratosphere. Three convective source domains are identified within Southeast Asia: the Bay of Bengal and South Asian subcontinent (MON), the South China and Philippine Seas (SCS), and the Tibetan Plateau and South Slope of the Himalayas (TIB). Water vapor transport into the stratosphere from these three domains exhibits systematic differences that are related to differences in the bulk characteristics of transport. We find air emanating from SCS to be driest, from MON slightly moister, and from TIB moistest. Analysis of pathways shows that air detrained from convection over TIB is most likely to bypass the region of minimum absolute saturation mixing ratio over the equatorial western Pacific; however, the impact of this bypass mechanism on mean water vapor in the tropical stratosphere at 68 hPa is small (< 0.1 ppmv). This result contrasts with previously published hypotheses, and it highlights the challenge of properly quantifying fluxes of atmospheric humidity. C1 [Wright, J. S.] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England. [Fu, R.] Univ Texas Austin, Dept Geol Sci, Austin, TX 78712 USA. [Fueglistaler, S.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Liu, Y. S.] Univ St Andrews, Sch Math & Stat, Haugh KY16 9SS, Fife, Scotland. [Zhang, Y.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. RP Wright, JS (reprint author), Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England. EM j.wright@damtp.cam.ac.uk; rongfu@jsg.utexas.edu RI Zhang, Yan/C-4792-2012; Fu, Rong/B-4922-2011; Fueglistaler, Stephan/I-5803-2013; OI Wright, Jonathon/0000-0001-6551-7017 FU EU; NASA Aura Science Team [NNX09AD85G, NNX09AE89G, NNG06GI44G]; NERC FX We thank Peter Haynes and Bernard Legras for helpful discussions and three anonymous reviewers for useful suggestions. Aura MLS observations and GMAO MERRA reanalysis data were provided by the NASA GES DISC (http://disc.sci.gsfc.nasa.gov). The NCEP reanalysis data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA (http://www.cdc.noaa.gov). The CLAUS project was coordinated by the NERC ESSC, and data access was provided by the NERC BADC (http://badc.nerc.ac.uk). Access to the ERA-Interim reanalysis data was also provided by the NERC BADC. J.S.W. was supported in part by the EU-funded SHIVA project; R.F. and Y.Z. were supported by NASA Aura Science Team grants NNX09AD85G, NNX09AE89G, and NNG06GI44G; S.F. was supported in part by a NERC Advanced Fellowship; and Y.S.L. was supported by a NERC PhD studentship as part of the ACTIVE consortium project. NR 50 TC 25 Z9 25 U1 0 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 17 PY 2011 VL 116 AR D12302 DI 10.1029/2010JD015416 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 780AC UT WOS:000291822300004 ER PT J AU A'Hearn, MF Belton, MJS Delamere, WA Feaga, LM Hampton, D Kissel, J Klaasen, KP McFadden, LA Meech, KJ Melosh, HJ Schultz, PH Sunshine, JM Thomas, PC Veverka, J Wellnitz, DD Yeomans, DK Besse, S Bodewits, D Bowling, TJ Carcich, BT Collins, SM Farnham, TL Groussin, O Hermalyn, B Kelley, MS Li, JY Lindler, DJ Lisse, CM McLaughlin, SA Merlin, F Protopapa, S Richardson, JE Williams, JL AF A'Hearn, Michael F. Belton, Michael J. S. Delamere, W. Alan Feaga, Lori M. Hampton, Donald Kissel, Jochen Klaasen, Kenneth P. McFadden, Lucy A. Meech, Karen J. Melosh, H. Jay Schultz, Peter H. Sunshine, Jessica M. Thomas, Peter C. Veverka, Joseph Wellnitz, Dennis D. Yeomans, Donald K. Besse, Sebastien Bodewits, Dennis Bowling, Timothy J. Carcich, Brian T. Collins, Steven M. Farnham, Tony L. Groussin, Olivier Hermalyn, Brendan Kelley, Michael S. Li, Jian-Yang Lindler, Don J. Lisse, Carey M. McLaughlin, Stephanie A. Merlin, Frederic Protopapa, Silvia Richardson, James E. Williams, Jade L. TI EPOXI at Comet Hartley 2 SO SCIENCE LA English DT Article ID DEEP IMPACT; SPACE-TELESCOPE; ICE; PARTICLES; COMET-TEMPEL-1; INSTRUMENT; TEMPEL-1; EUROPA AB Understanding how comets work-what drives their activity-is crucial to the use of comets in studying the early solar system. EPOXI (Extrasolar Planet Observation and Deep Impact Extended Investigation) flew past comet 103P/Hartley 2, one with an unusually small but very active nucleus, taking both images and spectra. Unlike large, relatively inactive nuclei, this nucleus is outgassing primarily because of CO2, which drags chunks of ice out of the nucleus. It also shows substantial differences in the relative abundance of volatiles from various parts of the nucleus. C1 [A'Hearn, Michael F.; Feaga, Lori M.; McFadden, Lucy A.; Sunshine, Jessica M.; Wellnitz, Dennis D.; Besse, Sebastien; Bodewits, Dennis; Farnham, Tony L.; Kelley, Michael S.; Li, Jian-Yang; McLaughlin, Stephanie A.; Merlin, Frederic; Protopapa, Silvia; Williams, Jade L.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Belton, Michael J. S.] Belton Space Explorat Initiat LLC, Tucson, AZ 85716 USA. [Delamere, W. Alan] Delamere Support Serv, Boulder, CO 80304 USA. [Hampton, Donald] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA. [Kissel, Jochen] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Klaasen, Kenneth P.; Yeomans, Donald K.; Collins, Steven M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [McFadden, Lucy A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Meech, Karen J.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Melosh, H. Jay] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Melosh, H. Jay; Bowling, Timothy J.; Richardson, James E.] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. [Schultz, Peter H.; Hermalyn, Brendan] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Thomas, Peter C.; Veverka, Joseph; Carcich, Brian T.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Groussin, Olivier] Univ Aix Marseille 1, Lab Astrophys Marseille, F-13013 Marseille, France. [Groussin, Olivier] CNRS, F-13013 Marseille, France. [Kelley, Michael S.] NASA Headquarters, Planetary Sci Div, Washington, DC 20546 USA. [Lindler, Don J.] Sigma Space Corp, Lanham, MD 20706 USA. [Lisse, Carey M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Merlin, Frederic] Univ Paris 07, Observ Paris, LESIA, F-92195 Meudon, France. RP A'Hearn, MF (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM ma@astro.umd.edu RI Wellnitz, Dennis/B-4080-2012; McFadden, Lucy-Ann/I-4902-2013; Lisse, Carey/B-7772-2016; OI Besse, Sebastien/0000-0002-1052-5439; McFadden, Lucy-Ann/0000-0002-0537-9975; Lisse, Carey/0000-0002-9548-1526; Kelley, Michael/0000-0002-6702-7676; Bodewits, Dennis/0000-0002-2668-7248 FU NASA [NNM07AA99C, NMO711002]; University of Maryland; Centre National d'Etudes Spatiales FX Data from EPOXI will be released through NASA's Planetary Data System in 2011. Image IDs in this paper are part of the final ID in the archive. This work was supported by NASA's Discovery Program contract NNM07AA99C to the University of Maryland and task order NMO711002 to the Jet Propulsion Laboratory. The work was supported by the home institutions of several of the scientists, particularly by the University of Maryland. The contributions of O. Groussin and F. Merlin to this project were funded in part by the Centre National d'Etudes Spatiales. NR 37 TC 181 Z9 181 U1 2 U2 15 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD JUN 17 PY 2011 VL 332 IS 6036 BP 1396 EP 1400 DI 10.1126/science.1204054 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 778FT UT WOS:000291689000032 PM 21680835 ER PT J AU Fletcher, LN Hesman, BE Irwin, PGJ Baines, KH Momary, TW Sanchez-Lavega, A Flasar, FM Read, PL Orton, GS Simon-Miller, A Hueso, R Bjoraker, GL Mamoutkine, A del Rio-Gaztelurrutia, T Gomez, JM Buratti, B Clark, RN Nicholson, PD Sotin, C AF Fletcher, Leigh N. Hesman, Brigette E. Irwin, Patrick G. J. Baines, Kevin H. Momary, Thomas W. Sanchez-Lavega, Agustin Flasar, F. Michael Read, Peter L. Orton, Glenn S. Simon-Miller, Amy Hueso, Ricardo Bjoraker, Gordon L. Mamoutkine, Andrei del Rio-Gaztelurrutia, Teresa Gomez, Jose M. Buratti, Bonnie Clark, Roger N. Nicholson, Philip D. Sotin, Christophe TI Thermal Structure and Dynamics of Saturn's Northern Springtime Disturbance SO SCIENCE LA English DT Article ID 1990 EQUATORIAL DISTURBANCE; SPACE TELESCOPE OBSERVATIONS; ZONAL WINDS; SPECTROMETER; ATMOSPHERE; CASSINI; ALBEDOS; STORM AB Saturn's slow seasonal evolution was disrupted in 2010-2011 by the eruption of a bright storm in its northern spring hemisphere. Thermal infrared spectroscopy showed that within a month, the resulting planetary-scale disturbance had generated intense perturbations of atmospheric temperatures, winds, and composition between 20 degrees and 50 degrees N over an entire hemisphere (140,000 kilometers). The tropospheric storm cell produced effects that penetrated hundreds of kilometers into Saturn's stratosphere (to the 1-millibar region). Stratospheric subsidence at the edges of the disturbance produced "beacons" of infrared emission and longitudinal temperature contrasts of 16 kelvin. The disturbance substantially altered atmospheric circulation, transporting material vertically over great distances, modifying stratospheric zonal jets, exciting wave activity and turbulence, and generating a new cold anticyclonic oval in the center of the disturbance at 41 degrees N. C1 [Fletcher, Leigh N.; Irwin, Patrick G. J.; Read, Peter L.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Hesman, Brigette E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Baines, Kevin H.] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. [Momary, Thomas W.; Orton, Glenn S.; Buratti, Bonnie; Sotin, Christophe] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Sanchez-Lavega, Agustin; Hueso, Ricardo; del Rio-Gaztelurrutia, Teresa] Univ Basque Country, Escuela Tecn Super Ingenieros, Dept Fis Aplicada 1, Bilbao 48013, Spain. [Flasar, F. Michael; Simon-Miller, Amy; Bjoraker, Gordon L.; Mamoutkine, Andrei] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gomez, Jose M.] Fdn Esteve Duran, Barcelona, Spain. [Clark, Roger N.] US Geol Survey, Fed Ctr, Denver, CO 80225 USA. [Nicholson, Philip D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Fletcher, LN (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. EM fletcher@atm.ox.ac.uk RI Fletcher, Leigh/D-6093-2011; Simon, Amy/C-8020-2012; Flasar, F Michael/C-8509-2012; Bjoraker, Gordon/D-5032-2012; del Rio Gaztelurrutia, Teresa/H-8831-2013; OI Hueso, Ricardo/0000-0003-0169-123X; Fletcher, Leigh/0000-0001-5834-9588; Simon, Amy/0000-0003-4641-6186; del Rio Gaztelurrutia, Teresa/0000-0001-8552-226X; Sanchez-Lavega, Agustin/0000-0001-7355-1522; Irwin, Patrick/0000-0002-6772-384X FU Science and Technology Facilities Council; Spanish MICIIN (Spanish Ministry of Science and Innovation) [AYA2009-10701, IT-464-07]; NASA FX L.N.F. is supported by a Glasstone Science Fellowship at the University of Oxford. We thank members of both the Cassini CIRS and VIMS teams for their support in the analysis of Cassini data, and the director and staff of the ESO VLT for their assistance with the execution of these observations. This investigation was partially based on observations acquired at the Paranal UT3/Melipal Observatory under ID 386.C-0096. We are extremely grateful to all those observers contributing to the International Outer Planets Watch Planetary Visual Observatory & Laboratory (IOPW-PVOL), including T. Barry (Australia) for his contribution to Fig. 1. The UK authors acknowledge the support of the Science and Technology Facilities Council. A.S.L., R.H., and T.d.R. are supported by the Spanish MICIIN (Spanish Ministry of Science and Innovation) project AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07. G.S.O. is supported by grants from NASA to the Jet Propulsion Laboratory, California Institute of Technology. L.N.F. performed the optimal estimation retrievals on both ground-based and space-based data sets and analyzed the results, and wrote the initial draft. B.E.H., G.L.B., and A.S.-M. designed the CIRS mapping observations; calibration assistance was provided by A.M. T.W.M. and K.H.B. provided the VIMS nightside spectra. G.S.O. supported ground-based VLT observations, and A.S.-L., R.H., and T.d.R.-G. provided IOPW-PVOL images. J.M.G. provided cylindrical mapping of IOPW-PVOL images. P.G.J.I. developed the optimal estimation retrieval codes used in this study. All authors discussed the results and commented on the manuscript. NR 22 TC 40 Z9 40 U1 0 U2 16 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD JUN 17 PY 2011 VL 332 IS 6036 BP 1413 EP 1417 DI 10.1126/science.1204774 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 778FT UT WOS:000291689000037 PM 21596955 ER PT J AU Simons, M Minson, SE Sladen, A Ortega, F Jiang, JL Owen, SE Meng, LS Ampuero, JP Wei, SJ Chu, RS Helmberger, DV Kanamori, H Hetland, E Moore, AW Webb, FH AF Simons, Mark Minson, Sarah E. Sladen, Anthony Ortega, Francisco Jiang, Junle Owen, Susan E. Meng, Lingsen Ampuero, Jean-Paul Wei, Shengji Chu, Risheng Helmberger, Donald V. Kanamori, Hiroo Hetland, Eric Moore, Angelyn W. Webb, Frank H. TI The 2011 Magnitude 9.0 Tohoku-Oki Earthquake: Mosaicking the Megathrust from Seconds to Centuries SO SCIENCE LA English DT Article ID SUBDUCTION-ZONE EARTHQUAKES; SANRIKU TSUNAMI EARTHQUAKE; STRONG GROUND MOTIONS; ENERGY RADIATION; FAULT; SUMATRA; INVERSION; MODEL AB Geophysical observations from the 2011 moment magnitude (M(w)) 9.0 Tohoku-Oki, Japan earthquake allow exploration of a rare large event along a subduction megathrust. Models for this event indicate that the distribution of coseismic fault slip exceeded 50 meters in places. Sources of high-frequency seismic waves delineate the edges of the deepest portions of coseismic slip and do not simply correlate with the locations of peak slip. Relative to the M(w) 8.8 2010 Maule, Chile earthquake, the Tohoku-Oki earthquake was deficient in high-frequency seismic radiation-a difference that we attribute to its relatively shallow depth. Estimates of total fault slip and surface secular strain accumulation on millennial time scales suggest the need to consider the potential for a future large earthquake just south of this event. C1 [Simons, Mark; Minson, Sarah E.; Sladen, Anthony; Ortega, Francisco; Jiang, Junle; Meng, Lingsen; Ampuero, Jean-Paul; Wei, Shengji; Chu, Risheng; Helmberger, Donald V.; Kanamori, Hiroo] CALTECH, Seismol Lab, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Sladen, Anthony] Univ Nice Sophia Antipolis, CNRS, IRD, Observ Cote Azur, F-06103 Nice 2, France. [Owen, Susan E.; Moore, Angelyn W.; Webb, Frank H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hetland, Eric] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. RP Simons, M (reprint author), CALTECH, Seismol Lab, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM simons@caltech.edu RI Ampuero, Jean Paul/N-3348-2013; Wei, Shengji/M-2137-2015; Sladen, Anthony/A-2532-2017; Ortega-Culaciati, Francisco Hernan/A-2587-2014; Simons, Mark/N-4397-2015 OI Ampuero, Jean Paul/0000-0002-4827-7987; Wei, Shengji/0000-0002-0319-0714; Sladen, Anthony/0000-0003-4126-0020; Jiang, Junle/0000-0002-8796-5846; Ortega-Culaciati, Francisco Hernan/0000-0002-2983-8646; Simons, Mark/0000-0003-1412-6395 FU Gordon and Betty Moore Foundation; NSF [CDI-0941374, EAR-1015704, EAR-0106924, 02HQAG0008]; National Aeronautics and Space Administration FX Supported in part by the Gordon and Betty Moore Foundation. M.S. and S.E.M. are supported by NSF grant CDI-0941374; J.P.A. and L.S.M. are supported by NSF grant EAR-1015704 and the Southern California Earthquake Center, which is funded by NSF Cooperative Agreement EAR-0106924 and USGS Cooperative Agreement 02HQAG0008. A portion of the research was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded through the internal Research and Technology Development program. We acknowledge the Geospatial Information Authority (GSI) of Japan for kindly providing all the GEONET RINEX data. Raw RINEX data are available directly from GSI. Processed GPS time series are provided through the ARIA project. We thank T. Ito for providing the interseismic velocity estimates used in Fig. 4. This paper is Caltech Tectonics Observatory contribution 165 and Caltech Seismological Laboratory contribution 10059. NR 32 TC 340 Z9 351 U1 39 U2 212 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 17 PY 2011 VL 332 IS 6036 BP 1421 EP 1425 DI 10.1126/science.1206731 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 778FT UT WOS:000291689000039 PM 21596953 ER PT J AU Hicks, MD Buratti, BJ Nettles, J Staid, M Sunshine, J Pieters, CM Besse, S Boardman, J AF Hicks, M. D. Buratti, B. J. Nettles, J. Staid, M. Sunshine, J. Pieters, C. M. Besse, S. Boardman, J. TI A photometric function for analysis of lunar images in the visual and infrared based on Moon Mineralogy Mapper observations SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID BIDIRECTIONAL REFLECTANCE SPECTROSCOPY; MULTIPLE-SCATTERING; SATELLITES; CLEMENTINE; SURFACES; LIGHT AB Changes in observed photometric intensity on a planetary surface are caused by variations in local viewing geometry defined by the radiance incidence, emission, and solar phase angle coupled with a wavelength-dependent surface phase function f(alpha, lambda) which is specific for a given terrain. In this paper we provide preliminary empirical models, based on data acquired inflight, which enable the correction of Moon Mineralogy Mapper (M(3)) spectral images to a standard geometry with the effects of viewing geometry removed. Over the solar phase angle range for which the M(3) data were acquired our models are accurate to a few percent, particularly where thermal emission is not significant. Our models are expected to improve as additional refinements to the calibrations occur, including improvements to the flatfield calibration; improved scattered and stray light corrections; improved thermal model corrections; and the computation of more accurate local incident and emission angles based on surface topography. C1 [Hicks, M. D.; Buratti, B. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Nettles, J.; Pieters, C. M.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Staid, M.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Sunshine, J.; Besse, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Boardman, J.] Analyt Imaging & Geophys LLC, Boulder, CO 80305 USA. RP Hicks, MD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 183-401, Pasadena, CA 91109 USA. EM michael.hicks@jpl.nasa.gov OI Besse, Sebastien/0000-0002-1052-5439 FU National Aeronautics and Space Administration FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 22 TC 20 Z9 20 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUN 16 PY 2011 VL 116 AR E00G15 DI 10.1029/2010JE003733 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 780BF UT WOS:000291825400001 ER PT J AU Taktakishvili, A Pulkkinen, A MacNeice, P Kuznetsova, M Hesse, M Odstrcil, D AF Taktakishvili, A. Pulkkinen, A. MacNeice, P. Kuznetsova, M. Hesse, M. Odstrcil, D. TI Modeling of coronal mass ejections that caused particularly large geomagnetic storms using ENLIL heliosphere cone model SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID SOLAR-WIND STRUCTURES; MAGNETIC-FIELD; ART.; ARRIVAL; PROPAGATION; PREDICTION; EVENTS; SHOCKS AB In our previous paper we reported the results of modeling of 14 selected well-observed strong halo coronal mass ejection (CME) events using the WSA-ENLIL cone model combination. Cone model input parameters were obtained from white light coronagraph images of the CME events using the analytical method developed by Xie et al. (2004). This work verified that coronagraph input gives reasonably good results for the CME arrival time prediction. In contrast to Taktakishvili et al. (2009), where we started the analysis by looking for clear CME signatures in the data and then proceeded to model the interplanetary consequences at 1 AU, in the present paper we start by generating a list of observed geomagnetic storm events and then work our way back to remote solar observations and carry out the corresponding CME modeling. The approach used in this study is addressing space weather forecasting and operational needs. We analyzed 36 particularly strong geomagnetic storms, then tried to associate them with particular CMEs using SOHO/LASCO catalogue, and finally modeled these CMEs using WSA-ENLIL cone model. Recently, Pulkkinen et al. (2010) developed a novel method for automatic determination of cone model parameters. We employed both analytical and automatic methods to determine cone model input parameters. We examined the CME arrival times and magnitude of impact at 1 AU for both techniques. The results of the simulations are compared with the ACE satellite observations. This comparison demonstrated that WSA-ENLIL model combination with coronagraph input gives reasonably good results for the CME arrival times for this set of "geoeffective" CME events as well. C1 [Taktakishvili, A.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Taktakishvili, A.; Pulkkinen, A.; MacNeice, P.; Kuznetsova, M.; Hesse, M.; Odstrcil, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Odstrcil, D.] George Mason Univ, Dept Computat & Data Sci, Fairfax, VA 22030 USA. [Taktakishvili, A.] Abastumany Observ, Tbilisi, Rep of Georgia. RP Taktakishvili, A (reprint author), Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. EM aleksandre.taktakishvili-1@nasa.gov RI Hesse, Michael/D-2031-2012; Kuznetsova, Maria/F-6840-2012 NR 32 TC 15 Z9 16 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD JUN 16 PY 2011 VL 9 AR S06002 DI 10.1029/2010SW000642 PG 12 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 780JO UT WOS:000291852100001 ER PT J AU Barnett, IL Groenzin, H Shultz, MJ AF Barnett, Irene Li Groenzin, Henning Shultz, Mary Jane TI Hydrogen Bonding in the Hexagonal Ice Surface SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID SUM-FREQUENCY GENERATION; OPTICAL NULL ELLIPSOMETRY; SPECTROSCOPY SFG-VS; X-RAY-SCATTERING; VIBRATIONAL SPECTROSCOPY; LIQUID INTERFACE; STRETCHING BANDS; METHYL-GROUP; WATER; ORIENTATION AB A recently developed technique in sum frequency generation spectroscopy, polarization angle null (or PAN-SFG), is applied to two orientations of the prism face of hexagonal ice. It is found that the vibrational modes of the surface are similar in different faces. As in the basal face, the prism face of ice contains five dominant resonances: 3096, 3146, 3205, 3253, and 3386 cm(-1). On the basal face, the reddest resonance occurs at 3098 cm(-1); within the bandwidth, the same as the prism face. On both the prism and basal faces, this mode contains a significant quadrupole component and is assigned to the bilayer stitching hydrogen bonds. The bluest of the resonances, 3386 cm(-1), occurs slightly blue-shifted at 3393 cm(-1) in the basal face. The prism face has two orientations: one with the optic or c axis in the input plane (the plane formed by the surface normal and the interrogating beam propagation) and one with the c axis perpendicular to the input plane. The 3386 cm(-1) mode has significant intensity only with the c axis in the input plane. On the basis of these orientation characteristics, the 3386 cm(-1) mode is assigned to double-donor molecules in either the top half bilayer or in the lower half bilayer. On the basis of frequency considerations, it is assigned to double-donor molecules in the top half bilayer. These are water molecules containing a nonbonded lone pair. In addition to identification of the components of the broad hydrogen-bonded region, PAN-SFG measures the tangential vs longitudinal content of the vibrational modes. In accord with previous suggestions, the lower frequency modes are predominantly tangential, whereas the higher frequency modes are mainly longitudinal. On the prism face, the 3386 cm(-1) mode is entirely longitudinal. C1 [Shultz, Mary Jane] Tufts Univ, Dept Chem, Water & Surfaces Lab, Medford, MA 02155 USA. [Barnett, Irene Li] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Groenzin, Henning] MB Technol GmbH, D-71063 Sindelfingen, Germany. RP Shultz, MJ (reprint author), Tufts Univ, Dept Chem, Water & Surfaces Lab, Pearson Bldg, Medford, MA 02155 USA. EM Mary.Shultz@Tufts.edu FU United States National Science Foundation [CHE0844986, CHE0240172] FX Acknowledgement is made to the United States National Science Foundation Grant numbers CHE0844986 and CHE0240172 for partial support of this work. The authors also acknowledge inspirational discussions with Victoria Buch, whose enthusiasm for understanding hydrogen bonding at the aqueous surface can only be called infectious. NR 62 TC 13 Z9 13 U1 1 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 16 PY 2011 VL 115 IS 23 BP 6039 EP 6045 DI 10.1021/jp110431j PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 773VG UT WOS:000291338800036 PM 21189006 ER PT J AU Balaraman, GS Park, IH Jain, A Vaidehi, N AF Balaraman, Gouthaman S. Park, In-Hee Jain, Abhinandan Vaidehi, Nagarajan TI Folding of Small Proteins Using Constrained Molecular Dynamics SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID TRP-CAGE; BIOLOGICAL MOLECULES; STRUCTURE PREDICTION; SIMULATIONS; ALGORITHM; WATER; EQUATIONS; UBIQUITIN; PEPTIDES; SYSTEMS AB The focus of this paper is to examine whether conformational search using constrained molecular dynamics (MD) method is more enhanced and enriched toward "native-like" structures compared to all-atom MD for the protein folding as a model problem. Constrained MD methods provide an alternate MD tool for protein structure prediction and structure refinement. It is computationally expensive to perform all-atom simulations of protein folding because the processes occur on a time scale of microseconds. Compared to the all-atom MD simulation, constrained MD methods have the advantage that stable dynamics can be achieved for larger time steps and the number of degrees of freedom is an order of magnitude smaller, leading to a decrease in computational cost. We have developed a generalized constrained MD method that allows the user to "freeze and thaw" torsional degrees of freedom as fit for the problem studied. We have used this method to perform all-torsion constrained MD in implicit solvent coupled with the replica exchange method to study folding of small proteins with various secondary structural motifs such as, a-helix (polyalanine,WALP16), beta-turn (1E0Q), and a mixed motif protein (Trp-cage). We demonstrate that constrained MD replica exchange method exhibits a wider conformational search than all-atom MD with increased enrichment of near-native structures. "Hierarchical" constrained MD simulations, where the partially formed helical regions in the initial stretch of the all-torsion folding simulation trajectory of Trp-cage were frozen, showed a better sampling of near-native structures than all-torsion constrained MD simulations. This is in agreement with the zipping-and-assembly folding model put forth by Dill and co-workers for folding proteins. The use of hierarchical "freeze and thaw" clustering schemes in constrained MD simulation can be used to sample conformations that contribute significantly to folding of proteins. C1 [Balaraman, Gouthaman S.; Park, In-Hee; Vaidehi, Nagarajan] Beckman Res Inst City Hope, Div Immunol, Duarte, CA 91010 USA. [Jain, Abhinandan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Vaidehi, N (reprint author), Beckman Res Inst City Hope, Div Immunol, Duarte, CA 91010 USA. EM nvaidehi@coh.org RI Park, In-Hee/D-5364-2013 FU National Institutes of Health [RO1GM082896-01A2]; National Aeronautics and Space Administration FX This project has been supported by grant no. RO1GM082896-01A2 from the National Institutes of Health. We thank Dr. Jerry Li and Dr. Karin Remington for their support and encouragement. Part of the research described in this paper was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the National Aeronautics and Space Administration. We thank Simbios for providing us with the GB/SA solvation module, Mark Friedrichs for his help with validating our GB/SA module, and Michael Sherman and Christopher Bruns for helping us with running Simbody. The Simbios software was made freely available on https://simtk.org/home/openmm by the Simbios NIH National Center for Biomedical Computing. NR 35 TC 12 Z9 12 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 16 PY 2011 VL 115 IS 23 BP 7588 EP 7596 DI 10.1021/jp200414z PG 9 WC Chemistry, Physical SC Chemistry GA 773VH UT WOS:000291338900011 PM 21591767 ER PT J AU Pascal, TA Boxe, C Goddard, WA AF Pascal, Tod A. Boxe, Christopher Goddard, William A., III TI An Inexpensive, Widely Available Material for 4 wt % Reversible Hydrogen Storage Near Room Temperature SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID METAL-ORGANIC FRAMEWORKS; ICE; ADSORPTION; HYDRATE; HELIUM; H-2 AB The search for cheap, renewable energy sources to replace fossil fuels has identified hydrogen gas (H-2) as the most promising, particularly for transportation. However, despite intense research efforts to find reliable storage materials, current practical technologies store only 1.3 wt % H-2 at 270 K, far short of the U.S. DOE targets. We report that hexagonal ice, the ordinary form of ice in snow, may be an efficient hydrogen storage material, achieving 3.8 wt % H-2 storage and 42 g L-1 at 150K and that after loading at 150 K, the 3.8 wt % H-2 can be kept at 270 K and then released upon heating by a few degrees Kelvin. This leads us to propose the ice-fixed melt-triggered (IFMT) strategy for hydrogen storage and utilization with ice as the median. C1 [Pascal, Tod A.; Goddard, William A., III] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA. [Pascal, Tod A.; Goddard, William A., III] Korea Adv Inst Sci & Technol, Grad Sch EEWS WCU, Taejon 305701, South Korea. [Boxe, Christopher] NASA, Jet Prop Labs, Earth & Planetary Sci Div, Pasadena, CA 91109 USA. RP Goddard, WA (reprint author), CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA. FU Department of Energy [DE-PS36-08GO 98004P]; WCU through National Research Foundation of Korea [31-2008-000-10055-0]; U.S. Department of Energy CSGF; National Science Foundation FX The authors thank Jose Mendoza (Caltech) and Sang Soo Han (KRISS, Korea) for providing data on H2 storage in MOFs prior to-publication. This project was partially supported by grants to Caltech from the Department of Energy (DE-PS36-08GO 98004P). It was also supported by the WCU program (31-2008-000-10055-0) through the National Research Foundation of Korea with the generous allocation of computing time from the KISTI supercomputing center. TAP. thanks the U.S. Department of Energy CSGF and the National Science Foundation for graduate fellowships. NR 25 TC 13 Z9 13 U1 2 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUN 16 PY 2011 VL 2 IS 12 BP 1417 EP 1420 DI 10.1021/jz200453u PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 779MK UT WOS:000291781700013 ER PT J AU Berger, EL Zega, TJ Keller, LP Lauretta, DS AF Berger, Eve L. Zega, Thomas J. Keller, Lindsay P. Lauretta, Dante S. TI Evidence for aqueous activity on comet 81P/Wild 2 from sulfide mineral assemblages in Stardust samples and CI chondrites SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID INTERPLANETARY DUST PARTICLES; TRANSMISSION ELECTRON-MICROSCOPY; IRON-NICKEL SULFIDES; SOLAR NEBULA; CARBONACEOUS CHONDRITES; PYRRHOTITE SUPERSTRUCTURES; CRYSTAL-STRUCTURE; PARENT BODY; CUBANITE; SYSTEM AB The discovery of nickel-, copper-, and zinc-bearing iron sulfides from comet 81P/Wild 2 (Wild 2) represents the strongest evidence, in the Stardust collection, of grains that formed in an aqueous environment. We investigated three microtomed TEM sections which contain crystalline sulfide assemblages from Wild 2 and twelve thin sections of the hydrothermally altered CI chondrite Orgueil. Detailed structural and compositional characterizations of the sulfide grains from both collections reveal striking similarities. The Stardust samples include a cubanite (CuFe2S3) grain, a pyrrhotite [(Fe,Ni)(1-x)S]/pentlandite [(Fe, Ni)(9)S-8] assemblage, and a pyrrhotite/sphalerite [(Fe, Zn)S] assemblage. Similarly, the CI-chondrite sulfides include individual cubanite and pyrrhotite grains, cubanite/pyrrhotite assemblages, pyrrhotite/pentlandite assemblages, as well as possible sphalerite inclusions within pyrrhotite grains. The cubanite is the low temperature orthorhombic form, which constrains temperature to a maximum of 210 degrees C. The Stardust and Orgueil pyrrhotites are the 4C monoclinic polytype, which is not stable above similar to 250 degrees C. The combinations of cubanite and pyrrhotite, as well as pyrrhotite and pentlandite signify even lower temperatures. The crystal structures, compositions, and petrographic relationships of these sulfides constrain formation and alteration conditions. Taken together, these constraints attest to low-temperature hydrothermal processing. Our analyses of these minerals provide constraints on large scale issues such as: heat sources in the comet-forming region; aqueous activity on cometary bodies; and the extent and mechanisms of radial mixing of material in the early nebula. The sulfides in the Wild 2 collection are most likely the products of low-temperature aqueous alteration. They provide evidence of radial mixing of material (e. g. cubanite, troilite) from the inner solar system to the comet-forming region and possible secondary aqueous processing on the cometary body. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Berger, Eve L.; Lauretta, Dante S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Zega, Thomas J.] USN, Res Lab, Washington, DC 20375 USA. [Keller, Lindsay P.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Berger, EL (reprint author), Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. EM elberger@lpl.arizona.edu FU NASA [NNX08AW48H, NNH08AH58I, 06-SSAP06-0026, NNX09AC60G] FX Special thanks to G. Consolmagno and the Vatican Observatory for providing samples of Orgueil. We thank D. Brownlee, D. Joswiak and G. Matrajt, at the University of Washington; K. Nakamura-Messenger for assistance in Stardust sample selection; and CAPTEM for providing Stardust samples; Emma Bullock, Hughes Leroux, and an anonymous referee for constructive reviews; and Associate Editor, Sara Russell, for helpful comments. This work was supported by NASA grants: NNX08AW48H (ELB), NNH08AH58I (Rhonda Stroud PI, TJZ Co-I), 06-SSAP06-0026 (Scott Messenger PI, LPK Co-I), and NNX09AC60G (DSL PI). NR 98 TC 43 Z9 43 U1 2 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN 15 PY 2011 VL 75 IS 12 BP 3501 EP 3513 DI 10.1016/j.gca.2011.03.026 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 796YD UT WOS:000293088500012 ER PT J AU Suh, JO Tu, KN Wu, AT Tamura, N AF Suh, J. O. Tu, K. N. Wu, Albert T. Tamura, N. TI Preferred orientation relationships with large misfit interfaces between Ni3Sn4 and Ni in reactive wetting of eutectic SnPb on Ni SO JOURNAL OF APPLIED PHYSICS LA English DT Article AB Ni3Sn4 grains were formed on Ni by reactive wetting between molten eutectic SnPb and thermally annealed Ni foil. Using synchrotron white beam micro x-ray diffraction analysis, two kinds of preferred orientation relationships between Ni3Sn4 and Ni were found. The existence of preferred orientation with large interfacial misfit is suggested as a general mechanism of intermetallic compound formation in reactive solder wetting on metals. (C) 2011 American Institute of Physics. [doi:10.1063/1.3592184] C1 [Suh, J. O.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tu, K. N.] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. [Wu, Albert T.] Natl Cent Univ, Dept Chem & Mat Engn, Jhongli 320, Taiwan. [Tamura, N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Suh, JO (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU NSF [0503726]; Seoul Technopark, South Korea; Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231] FX The study at UCLA was supported by NSF Contract No. 0503726 and Seoul Technopark, South Korea. The work at Advanced Light Source was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 12 TC 4 Z9 4 U1 1 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2011 VL 109 IS 12 AR 123513 DI 10.1063/1.3592184 PG 5 WC Physics, Applied SC Physics GA 786TQ UT WOS:000292331200032 ER PT J AU Tripathi, N Bell, LD Shahedipour-Sandvik, F AF Tripathi, N. Bell, L. D. Shahedipour-Sandvik, F. TI AlGaN based III-nitride tunnel barrier hyperspectral detector: Effect of internal polarization SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID WELL INFRARED DETECTOR; QUANTUM BALLISTIC CHANNEL; TUNABLE DETECTOR; GAAS AB We report on the recent progress made toward development of a III-nitride based tunable hyperspectral detector pixel with the potential advantages of reduced hardware complexity and increased dynamic control on the detection parameters in the context of existing hyperspectral detection systems. We discuss the concept, experiments, and simulation of devices along with the different obstacles to be overcome before this technology can mature into a commercial application. (C) 2011 American Institute of Physics. [doi:10.1063/1.3599878] C1 [Tripathi, N.; Shahedipour-Sandvik, F.] SUNY Albany, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA. [Bell, L. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Shahedipour-Sandvik, F (reprint author), SUNY Albany, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA. EM sshahedipour@uamail.albany.edu NR 31 TC 2 Z9 2 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2011 VL 109 IS 12 AR 124508 DI 10.1063/1.3599878 PG 11 WC Physics, Applied SC Physics GA 786TQ UT WOS:000292331200139 ER PT J AU Gallagher, PT Young, CA Byrne, JP McAteer, RTJ AF Gallagher, P. T. Young, C. A. Byrne, J. P. McAteer, R. T. J. TI Coronal mass ejection detection using wavelets, curvelets and ridgelets: Applications for space weather monitoring SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Coronal mass ejection (CME); Multiscale methods; Space weather; Wavelets ID CMES; ACCELERATION; RECOGNITION AB Coronal mass ejections (CMEs) are large-scale eruptions of plasma and magnetic field that can produce adverse space weather at Earth and other locations in the Heliosphere. Due to the intrinsic multiscale nature of features in coronagraph images, wavelet and multiscale image processing techniques are well suited to enhancing the visibility of CMEs and suppressing noise. However, wavelets are better suited to identifying point-like features, such as noise or background stars, than to enhancing the visibility of the curved form of a typical CME front. Higher order multiscale techniques, such as ridgelets and curvelets, were therefore explored to characterise the morphology (width, curvature) and kinematics (position, velocity, acceleration) of CMEs. Curvelets in particular were found to be well suited to characterising CME properties in a self-consistent manner. Curvelets are thus likely to be of benefit to autonomous monitoring of CME properties for space weather applications. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Gallagher, P. T.; Byrne, J. P.; McAteer, R. T. J.] Trinity Coll Dublin, Sch Phys, Astrophys Res Grp, Dublin 2, Ireland. [Young, C. A.] ADNET Syst Inc, NASA Goddard Space Flight Ctr, Greenbelt, MD 20850 USA. RP Gallagher, PT (reprint author), Trinity Coll Dublin, Sch Phys, Astrophys Res Grp, Dublin 2, Ireland. EM peter.gallagher@tcd.ie; c.alex.young@nasa.gov RI Byrne, Jason/K-4827-2013; Gallagher, Peter/C-7717-2011 OI Byrne, Jason/0000-0002-9412-8878; Gallagher, Peter/0000-0001-9745-0400 FU Science Foundation Ireland [07-RFP-PHYF39]; NASA [07-HGI07-0119] FX This research is supported by Science Foundation Ireland's Research Frontiers Programme (Grant No. 07-RFP-PHYF39). R.T.J.M. is a Marie Curie Fellow at TCD. C.A.Y. is supported through the NASA SESDA Grant and the NASA 07-HGI07-0119. The authors thank the SOHO and STEREO teams for making their data and data analysis software available publicly. NR 29 TC 9 Z9 10 U1 1 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD JUN 15 PY 2011 VL 47 IS 12 BP 2118 EP 2126 DI 10.1016/j.asr.2010.03.028 PG 9 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 780FS UT WOS:000291840500006 ER PT J AU Bentley, RD Csillaghy, A Aboudarham, J Jacquey, C Hapgood, MA Bocchialini, K Messerotti, M Brooke, J Gallagher, P Fox, P Hurlburt, N Roberts, DA Duarte, LS AF Bentley, R. D. Csillaghy, A. Aboudarham, J. Jacquey, C. Hapgood, M. A. Bocchialini, K. Messerotti, M. Brooke, J. Gallagher, P. Fox, P. Hurlburt, N. Roberts, D. A. Duarte, L. Sanchez TI HELIO: The Heliophysics Integrated Observatory SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Heliophysics; HELLO; Virtual observatory; Sun; Solar system; Heliosphere; Magnetosphere; Ionosphere; Services; Semantics; Ontology; Workflow; Metadata; Data access; Distributed data systems; Interoperability; Interdisciplinary AB Heliophysics is a new research field that explores the Sun Solar System Connection; it requires the joint exploitation of solar, heliospheric, magnetospheric and ionospheric observations. HELIO, the Heliophysics Integrated Observatory, will facilitate this study by creating an integrated e-Infrastructure that has no equivalent anywhere else. It will be a key component of a worldwide effort to integrate heliophysics data and will coordinate closely with international organizations to exploit synergies with complementary domains. HELIO was proposed under a Research Infrastructure call in the Capacities Programme of the European Commission's 7th Framework Programme (FP7). The project was selected for negotiation in January 2009; following a successful conclusion to these, the project started on I June 2009 and will last for 36 months. 0 2010 Published by Elsevier Ltd. on behalf of COSPAR. C1 [Bentley, R. D.] Univ Coll London, MSSL, Dorking RH5 6NT, Surrey, England. [Csillaghy, A.] Fachhochschule Nordwestschweiz, CH-5210 Windisch, Switzerland. [Aboudarham, J.] Observ Paris, LESIA, F-92190 Meudon, France. [Jacquey, C.] Univ Toulouse 3, CESR, F-31062 Toulouse, France. [Hapgood, M. A.] STEC Rutherford Appleton Lab, Dept Space Sci, Didcot OX11 0QX, Oxon, England. [Bocchialini, K.] Univ Paris 11, IAS, F-91405 Orsay, France. [Messerotti, M.] INAF Observ Trieste, I-34149 Trieste, Italy. [Brooke, J.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Gallagher, P.] Trinity Coll Dublin, Sch Phys, Coll Green, Dublin 2, Ireland. [Fox, P.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Hurlburt, N.] Lockheed Martin ATC, Palo Alto, CA 94304 USA. [Roberts, D. A.] NASA GSFC, HSD, Greenbelt, MD 20771 USA. [Duarte, L. Sanchez] ESA ESAC, Madrid 28691, Spain. RP Bentley, RD (reprint author), Univ Coll London, MSSL, Holnthury St Mary, Dorking RH5 6NT, Surrey, England. EM rdb@mssl.ucl.ac.uk RI Hapgood, Mike/D-6269-2014; Gallagher, Peter/C-7717-2011; OI Hapgood, Mike/0000-0002-0211-0241; Gallagher, Peter/0000-0001-9745-0400; Messerotti, Mauro/0000-0002-5422-1963; Fox, Peter/0000-0002-1009-7163 NR 8 TC 12 Z9 12 U1 2 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD JUN 15 PY 2011 VL 47 IS 12 BP 2235 EP 2239 DI 10.1016/j.asr.2010.02.006 PG 5 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 780FS UT WOS:000291840500018 ER PT J AU Bottein, MYD Kashinsky, L Wang, ZH Littnan, C Ramsdell, JS AF Bottein, Marie-Yasmine Dechraoui Kashinsky, Lizabeth Wang, Zhihong Littnan, Charles Ramsdell, John S. TI Identification of Ciguatoxins in Hawaiian Monk Seals Monachus schauinslandi from the Northwestern and Main Hawaiian Islands SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID GAMBIERDISCUS-TOXICUS; SODIUM-CHANNELS; CELL BIOASSAY; CIGUATERA; FISH; BREVETOXINS; CONGENER; PACIFIC; ASSAY; DIET AB Ciguatoxins are potent algal neurotoxins that concentrate in fish preyed upon by the critically endangered Hawaiian monk seal (Monachus schauinslandi). The only report for Hawaiian monk seal exposure to ciguatoxins occurred during a 1978 mortality event when two seal liver extracts tested positive by mouse bioassay. Ciguatoxins were thus proposed as a potential threat to the Hawaiian monk seal population. To reinvestigate monk seal exposure to ciguatoxins we utilized more selective detection methods, the Neuro-2A cytotoxicity assay, to quantify ciguatoxin activity and an analytical method LC-MS/MS to confirm the molecular structure. Tissue analysis from dead stranded animals revealed ciguatoxin activity in brain, liver, and muscle, whereas analysis of blood samples from 55 free-ranging animals revealed detectable levels of ciguatoxin activity (0.43 to 5.49 pg/mL P-CTX-1 equiv) in 19% of the animals. Bioassay-guided LC fractionation of two monk seal liver extracts identified several ciguatoxin-like peaks of activity including a peak corresponding to the P-CTX-3C which was confirmed present by LC-MS/MS. In conclusion, this work provides first confirmation that Hawaiian monk seals are exposed to significant levels of ciguatoxins and first evidence of transfer of ciguatoxin to marine mammals. This threat could pose management challenges for this endangered marine mammal species. C1 [Bottein, Marie-Yasmine Dechraoui; Wang, Zhihong; Ramsdell, John S.] NOAA, Marine Biotoxins Program, Ctr Coastal Environm Hlth & Biomol Res, Natl Ocean Serv, Charleston, SC 29412 USA. [Kashinsky, Lizabeth; Littnan, Charles] NOAA, Hawaiian Monk Seal Res Program, Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv, Honolulu, HI 96822 USA. RP Ramsdell, JS (reprint author), NOAA, Marine Biotoxins Program, Ctr Coastal Environm Hlth & Biomol Res, Natl Ocean Serv, Charleston, SC 29412 USA. EM john.ramsdell@noaa.gov NR 35 TC 3 Z9 3 U1 4 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 15 PY 2011 VL 45 IS 12 BP 5403 EP 5409 DI 10.1021/es2002887 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 774YH UT WOS:000291422200050 PM 21591690 ER PT J AU Raj, SV AF Raj, S. V. TI Microstructural characterization of metal foams: An examination of the applicability of the theoretical models for modeling foams SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Metal foams; Cells; FeCrAlY; Kelvin cell; Matzke cell ID CRYSTAL SIZE DISTRIBUTIONS; SINTERED FECRALY FOAMS; ACOUSTIC PROPERTIES; SOUND-ABSORPTION; CELLS; TOPOLOGY; SHAPES AB Establishing the geometry of foam cells is useful in developing microstructure-based acoustic and structural models. Since experimental data on the geometry of the foam cells are limited, most modeling efforts use an idealized three-dimensional, space-filling Kelvin tetrakaidecahedron. The validity of this assumption is investigated in the present paper. Several FeCrAlY foams with relative densities varying between 3 and 15% and cells per mm (c.p.mm.) varying between 0.2 and 3.9 c.p.mm. were microstructurally evaluated. The number of edges per face for each foam specimen was counted by approximating the cell faces by regular polygons, where the number of cell faces measured varied between 207 and 745. The present observations revealed that 50-57% of the cell faces were pentagonal while 24-28% were quadrilateral and 15-22% were hexagonal. The present measurements are shown to be in excellent agreement with literature data. It is demonstrated that the Kelvin model, as well as other proposed theoretical models, cannot accurately describe the FeCrAlY foam cell structure. Instead, it is suggested that the ideal foam cell geometry consists of 11 faces with 3 quadrilateral, 6 pentagonal faces and 2 hexagonal faces consistent with the 3-6-2 Matzke cell. Published by Elsevier B.V. C1 NASA, Glenn Res Ctr, Mat & Struct Div, Cleveland, OH 44135 USA. RP Raj, SV (reprint author), NASA, Glenn Res Ctr, Mat & Struct Div, MS 106-5,21000 Brookpk Rd, Cleveland, OH 44135 USA. EM sai.v.raj@nasa.gov FU NASA FX The investigation was funded by NASA's Subsonic Fixed Wing Program. Discussions with Prof. John Russ, North Carolina State University, N.C., and Dr. Don Roth, NASA Glenn Research Center, Cleveland, OH, are gratefully acknowledged. NR 44 TC 13 Z9 13 U1 2 U2 15 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUN 15 PY 2011 VL 528 IS 15 BP 5289 EP 5295 DI 10.1016/j.msea.2011.02.005 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 770ZB UT WOS:000291125900057 ER PT J AU Yan, HR Huang, JP Minnis, P Wang, TH Bi, JR AF Yan, Hongru Huang, Jianping Minnis, Patrick Wang, Tianhe Bi, Jianrong TI Comparison of CERES surface radiation fluxes with surface observations over Loess Plateau SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE surface radiative fluxes; CERES/SSF; validation ID ENERGY SYSTEM CERES; SATELLITE DATA; BUDGET EXPERIMENT; CLIMATE RESEARCH; PARAMETERIZATION; TRMM; VALIDATION; ALGORITHMS; CLOUDS; SPACE AB Surface energy budget is an important factor in weather and climate processes. To estimate the errors in satellite-retrieved surface radiation budget over the interior of China, instantaneous-footprint surface radiation fluxes from the Terra/Aqua FLASHFlux SSF product are compared with the measurements taken at the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) from July 2008 to March 2010. Validation is performed separately for different conditions: clear-sky and cloudy-sky, daytime and nighttime for four seasons. Differences between the FLASHFlux CERES shortwave radiation flux and surface measurements have larger standard deviations in cloudy-sky conditions than in clear-sky conditions, indicating that cloud contamination increases uncertainty in the retrieval algorithm. Upward shortwave radiation flux (USW) is overestimated in cloudy conditions suggesting that the cloud parameters and surface scene type in the retrieval process are not optimal for northwestern China. The CERES downward longwave radiation fluxes (DLW) accurately follow the variation of surface measurements during daytime, but are slightly underestimated during nighttime due to the coarse sounding profile and undetected low clouds at nighttime. The CERES upwelling longwave radiation fluxes (ULW) are strongly underestimated during daytime but are slightly underestimated during nighttime regardless of cloud coverage. This large bias could be caused by an underestimate of surface skin temperature and/or surface emissivity, or spatial inhomogeneity around the site. Generally, except for diurnal ULW, other components of the surface radiative fluxes obtained from CERES SSF datasets are close to meeting the accuracy requirements for climate research. (C) 2011 Elsevier Inc. All rights reserved. C1 [Yan, Hongru; Huang, Jianping; Wang, Tianhe; Bi, Jianrong] Lanzhou Univ, Coll Atmospher Sci, Minist Educ, Key Lab Semiarid Climate Change, Lanzhou 730000, Peoples R China. [Minnis, Patrick] NASA, Langley Res Ctr, Hampton, VA 23666 USA. RP Huang, JP (reprint author), Lanzhou Univ, Coll Atmospher Sci, Minist Educ, Key Lab Semiarid Climate Change, Lanzhou 730000, Peoples R China. EM hjp@lzu.edu.cn RI Wang, Tianhe/F-8236-2012; Minnis, Patrick/G-1902-2010 OI Minnis, Patrick/0000-0002-4733-6148 FU Lanzhou University [985]; National Science Foundation of China [40725015, 40905007]; Fundamental Research Funds for the Central Universities [LZUJBKY-2010-10]; Ministry of Education, China; NASA FX The CERES SSF data were obtained from the NASA Earth Observing System Data and Information System, Langley Research Center Atmospheric Sciences Data Center (ASDC). SACOL is sponsored by Lanzhou University through the 985 Program. The work is supported by National Science Foundation of China under Grants Nos. 40725015 and 40905007, the Fundamental Research Funds for the Central Universities LZUJBKY-2010-10, and the Ministry of Education, China through the Innovation Program to University. Support for Patrick Minnis was provided by the NASA CERES Project. We are grateful for the excellent support provided by the people at the College of Atmospheric Sciences, Lanzhou University. NR 43 TC 13 Z9 15 U1 2 U2 19 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN 15 PY 2011 VL 115 IS 6 BP 1489 EP 1500 DI 10.1016/j.rse.2011.02.008 PG 12 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 756KX UT WOS:000290011200018 ER PT J AU Wang, ZS Schaaf, CB Lewis, P Knyazikhin, Y Schull, MA Strahler, AH Yao, T Myneni, RB Chopping, MJ Blair, BJ AF Wang, Zhuosen Schaaf, Crystal B. Lewis, Philip Knyazikhin, Yuri Schull, Mitchell A. Strahler, Alan H. Yao, Tian Myneni, Ranga B. Chopping, Mark J. Blair, Bryan J. TI Retrieval of canopy height using moderate-resolution imaging spectroradiometer (MODIS) data SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Canopy height; Forest structure; Biomass; New England forests; La Selva Forest; LVIS; MODIS BRDF/Albedo product ID PHOTON RECOLLISION PROBABILITY; LEAF-AREA INDEX; SPECTRAL INVARIANTS; MISR DATA; PART 1; VEGETATION; FOREST; COVER; LIDAR; ALGORITHM AB In this study we use the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) product to develop multivariate linear regression models that estimate canopy heights over study sites at Howland Forest, Maine, Harvard Forest, Massachusetts and La Selva Forest, Costa Rica using (1) directional escape probabilities that are spectrally independent and (2) the directional spectral reflectances used to derive the directional escape probabilities. These measures of canopy architecture are compared with canopy height information retrieved from the airborne laser Vegetation Imaging Sensor (LVIS). Both the escape probability and the directional reflectance approaches achieve good results, with correlation coefficients in the range 0.54-0.82, although escape probability results are usually slightly better. This suggests that MODIS 500 m BRDF data can be used to extrapolate canopy heights observed by widely-spaced satellite LIDAR swaths to larger areas, thus providing wide-area coverage of canopy height. (C) 2011 Elsevier Inc. All rights reserved. C1 [Wang, Zhuosen; Schaaf, Crystal B.; Knyazikhin, Yuri; Schull, Mitchell A.; Strahler, Alan H.; Yao, Tian; Myneni, Ranga B.] Boston Univ, Dept Geog & Environm, Ctr Remote Sensing, Boston, MA 02215 USA. [Wang, Zhuosen; Yao, Tian] Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing Key Lab Remote Sensing Environm & Digital, Ctr Remote Sensing & GIS,Geog Coll, Beijing 100875, Peoples R China. [Lewis, Philip] UCL, Dept Geog, London WC1E 6BT, England. [Lewis, Philip] UCL, NCEO, London WC1E 6BT, England. [Chopping, Mark J.] Montclair State Univ, Dept Earth & Environm Studies, Montclair, NJ USA. [Blair, Bryan J.] NASA Goddard Space Flight Ctr, Laser Remote Sensing Lab, Greenbelt, MD USA. RP Wang, ZS (reprint author), Boston Univ, Dept Geog & Environm, Ctr Remote Sensing, Boston, MA 02215 USA. EM wangzhs@bu.edu RI Lewis, Philip/C-1588-2008; Blair, James/D-3881-2013; Myneni, Ranga/F-5129-2012; Beckley, Matthew/D-4547-2013 OI Lewis, Philip/0000-0002-8562-0633; FU NASA [NNX08AE94A, NNG06GI92G, NNX09AI30G, NNX08AE81G]; National Key Basic Research Development Program of China [2007CB714407]; National Natural Science Foundation of China [40871163] FX We would like to acknowledge the entire LVIS team for use of the LVIS data. This research was supported by NASA grants NNX08AE94A, NNG06GI92G, NNX09AI30G, NNX08AE81G, National Key Basic Research Development Program of China (2007CB714407) and National Natural Science Foundation of China (40871163). NR 34 TC 21 Z9 23 U1 1 U2 20 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD JUN 15 PY 2011 VL 115 IS 6 BP 1595 EP 1601 DI 10.1016/j.rse.2011.02.010 PG 7 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 756KX UT WOS:000290011200027 ER PT J AU Saatchi, SS Harris, NL Brown, S Lefsky, M Mitchard, ETA Salas, W Zutta, BR Buermann, W Lewis, SL Hagen, S Petrova, S White, L Silman, M Morel, A AF Saatchi, Sassan S. Harris, Nancy L. Brown, Sandra Lefsky, Michael Mitchard, Edward T. A. Salas, William Zutta, Brian R. Buermann, Wolfgang Lewis, Simon L. Hagen, Stephen Petrova, Silvia White, Lee Silman, Miles Morel, Alexandra TI Benchmark map of forest carbon stocks in tropical regions across three continents SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE forest biomass; forest height; microwave and optical imaging; error propagation; carbon cycling ID ABOVEGROUND LIVE BIOMASS; EMISSIONS; AMAZON; DEFORESTATION; TERRESTRIAL; ROOT AB Developing countries are required to produce robust estimates of forest carbon stocks for successful implementation of climate change mitigation policies related to reducing emissions from deforestation and degradation (REDD). Here we present a "benchmark" map of biomass carbon stocks over 2.5 billion ha of forests on three continents, encompassing all tropical forests, for the early 2000s, which will be invaluable for REDD assessments at both project and national scales. We mapped the total carbon stock in live biomass (above-and belowground), using a combination of data from 4,079 in situ inventory plots and satellite light detection and ranging (Lidar) samples of forest structure to estimate carbon storage, plus optical and microwave imagery (1-km resolution) to extrapolate over the landscape. The total biomass carbon stock of forests in the study region is estimated to be 247 Gt C, with 193 Gt C stored aboveground and 54 Gt C stored belowground in roots. Forests in Latin America, sub-Saharan Africa, and Southeast Asia accounted for 49%, 25%, and 26% of the total stock, respectively. By analyzing the errors propagated through the estimation process, uncertainty at the pixel level (100 ha) ranged from +/- 6% to +/- 53%, but was constrained at the typical project (10,000 ha) and national (>1,000,000 ha) scales at ca. +/- 5% and ca. +/- 1%, respectively. The benchmark map illustrates regional patterns and provides methodologically comparable estimates of carbon stocks for 75 developing countries where previous assessments were either poor or incomplete. C1 [Saatchi, Sassan S.; Zutta, Brian R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Saatchi, Sassan S.; Zutta, Brian R.; Buermann, Wolfgang] Univ Calif Los Angeles, Inst Environm, Los Angeles, CA 90095 USA. [Harris, Nancy L.; Brown, Sandra; Petrova, Silvia] Winrock Int Livestock Res & Training Ctr, Ecosyst Serv Unit, Arlington, VA 22202 USA. [Lefsky, Michael] Colorado State Univ, Coll Nat Resources, Ft Collins, CO 80523 USA. [Mitchard, Edward T. A.] Univ Edinburgh, Sch Geosci, Inst Geog, Edinburgh EH8 9XP, Midlothian, Scotland. [Salas, William; Hagen, Stephen] Appl GeoSolut, Durham, NH 03824 USA. [Lewis, Simon L.] Univ Leeds, Earth & Biosphere Inst, Leeds LS2 9JT, W Yorkshire, England. [White, Lee] Agence Natl Parcs Nationaux, Republique Gabonaise 20379, BP, Gabon. [Silman, Miles] Wake Forest Univ, Dept Biol, Winston Salem, NC 27106 USA. [Morel, Alexandra] Univ Oxford, Environm Change Inst, Oxford OX1 3QY, England. RP Saatchi, SS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM saatchi@jpl.nasa.gov RI Silman, Miles/H-1280-2011; OI Mitchard, Edward/0000-0002-5690-4055; Lewis, Simon/0000-0002-8066-6851 FU Winrock International [7150484]; World Bank Group [7150484]; National Aeronautics and Space Administration; National Science Foundation; Blue Moon Fund FX We thank J. Reitsma, H. Woell, J. Woods, A. Daniels, S. Chinekan, and the Forest Developments Authority (Liberia) for assistance in processing inventory plots. This work was carried out under Contract 7150484 between Winrock International and The World Bank Group. The original remote sensing data were distributed online and were compiled and processed at the Jet Propulsion Laboratory, California Institute of Technology from previous National Aeronautics and Space Administration grants. The integrated remote sensing and distribution model was developed at the University of California, Los Angeles, Institute of Environment from previous National Aeronautics and Space Administration and National Science Foundation grants. The Blue Moon Fund supported forest inventory plots in the Peruvian Amazon for Lidar calibration. NR 31 TC 525 Z9 539 U1 36 U2 316 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 14 PY 2011 VL 108 IS 24 BP 9899 EP 9904 DI 10.1073/pnas.1019576108 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 777DD UT WOS:000291594000036 PM 21628575 ER PT J AU Xu, TB Jiang, XN Su, J AF Xu, Tian-Bing Jiang, Xiaoning Su, Ji TI A piezoelectric multilayer-stacked hybrid actuation/transduction system SO APPLIED PHYSICS LETTERS LA English DT Article ID PERFORMANCE; TRANSDUCER AB A piezoelectric multilayer-stacked hybrid actuation/transduction system (stacked-HYBATS) is reported in this letter. It uses synergetic contributions from positive-strain and negative-strain piezoelectric multilayer-stacks to give displacements of about 3.5 times those of the same-sized piezoelectric flextensional actuator/transducer. The resonance of a stacked-HYBATS is enhanced comparing with that of actuators with either stack alone. The effective piezoelectric coefficient of the stacked-HYBATS is 2.5 X 10(6) pm/V at the resonance frequency and 1.5 X 10(5) pm/V at off-resonance frequencies. The stacked-HYBATS provides an approach for high performance electromechanical devices. (C) 2011 American Institute of Physics. [doi:10.1063/1.3600057] C1 [Xu, Tian-Bing] Natl Inst Aerosp, Hampton, VA 23666 USA. [Jiang, Xiaoning] N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA. [Su, Ji] NASA Langley Res Ctr, Hampton, VA 23681 USA. RP Xu, TB (reprint author), Natl Inst Aerosp, 100 Explorat Way, Hampton, VA 23666 USA. EM tbxu@nianet.org RI Jiang, Xiaoning/E-6619-2011 OI Jiang, Xiaoning/0000-0003-3605-3801 NR 11 TC 12 Z9 12 U1 3 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 13 PY 2011 VL 98 IS 24 AR 243503 DI 10.1063/1.3600057 PG 3 WC Physics, Applied SC Physics GA 779SZ UT WOS:000291803600100 ER PT J AU Burgarella, D Heinis, S Magdis, G Auld, R Blain, A Bock, J Brisbin, D Buat, V Chanial, P Clements, DL Cooray, A Eales, S Franceschini, A Giovannoli, E Glenn, J Solares, EAG Griffin, M Hwang, HS Ilbert, O Marchetti, L Mortier, AMJ Oliver, SJ Page, MJ Papageorgiou, A Pearson, CP Perez-Fournon, I Pohlen, M Rawlings, JI Raymond, G Rigopoulou, D Rodighiero, G Roseboom, IG Rowan-Robinson, M Scott, D Seymour, N Smith, AJ Symeonidis, M Tugwell, KE Vaccari, M Vieira, JD Viero, M Vigroux, L Wang, L Wright, G AF Burgarella, D. Heinis, S. Magdis, G. Auld, R. Blain, A. Bock, J. Brisbin, D. Buat, V. Chanial, P. Clements, D. L. Cooray, A. Eales, S. Franceschini, A. Giovannoli, E. Glenn, J. Solares, E. A. Gonzalez Griffin, M. Hwang, H. S. Ilbert, O. Marchetti, L. Mortier, A. M. J. Oliver, S. J. Page, M. J. Papageorgiou, A. Pearson, C. P. Perez-Fournon, I. Pohlen, M. Rawlings, J. I. Raymond, G. Rigopoulou, D. Rodighiero, G. Roseboom, I. G. Rowan-Robinson, M. Scott, Douglas Seymour, N. Smith, A. J. Symeonidis, M. Tugwell, K. E. Vaccari, M. Vieira, J. D. Viero, M. Vigroux, L. Wang, L. Wright, G. TI HerMES: LYMAN BREAK GALAXIES INDIVIDUALLY DETECTED AT 0.7 <= z <= 2.0 IN GOODS-N WITH HERSCHEL/SPIRE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: evolution; galaxies: formation; galaxies: high-redshift; infrared: galaxies; ultraviolet: galaxies ID STAR-FORMING GALAXIES; FAR-INFRARED PROPERTIES; MU-M; DUST ATTENUATION; HIGH-REDSHIFT; FIELD; EVOLUTION; UV; Z-SIMILAR-TO-1; OBSCURATION AB As part of the Herschel Multi-tiered Extragalactic Survey we have investigated the rest-frame far-infrared (FIR) properties of a sample of more than 4800 Lyman break galaxies (LBGs) in the Great Observatories Origins Deep Survey North field. Most LBGs are not detected individually, but we do detect a sub-sample of 12 objects at 0.7 < z < 1.6 and one object at z = 2.0. The ones detected by Herschel SPIRE have redder observed NUV - U and U - R colors than the others, while the undetected ones have colors consistent with average LBGs at z > 2.5. The UV-to-FIR spectral energy distributions of the objects detected in the rest-frame FIR are investigated using the code CIGALE to estimate physical parameters. We find that LBGs detected by SPIRE are high-mass, luminous infrared galaxies. It appears that LBGs are located in a triangle-shaped region in the A(FUV) versus log L(FUV) = 0 diagram limited by A(FUV) = 0 at the bottom and by a diagonal following the temporal evolution of the most massive galaxies from the bottom right to the top left of the diagram. This upper envelop can be used as upper limits for the UV dust attenuation as a function of L(FUV). The limits of this region are well explained using a closed-box model, where the chemical evolution of galaxies produces metals, which in turn lead to higher dust attenuation when the galaxies age. C1 [Burgarella, D.; Heinis, S.; Buat, V.; Giovannoli, E.; Ilbert, O.] Univ Aix Marseille, CNRS, Lab Astrophys Marseille, OAMP, F-13388 Marseille 13, France. [Magdis, G.; Hwang, H. S.] Univ Paris Diderot, CE Saclay, Lab AIM Paris Saclay, CEA DSM Irfu CNRS, F-91191 Gif Sur Yvette, France. [Auld, R.; Eales, S.; Griffin, M.; Papageorgiou, A.; Pohlen, M.; Raymond, G.] Cardiff Univ, Cardiff Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Blain, A.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Bock, J.; Cooray, A.; Vieira, J. D.; Viero, M.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Brisbin, D.] Cornell Univ, Ithaca, NY 14853 USA. [Chanial, P.; Clements, D. L.; Mortier, A. M. J.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Franceschini, A.; Marchetti, L.; Rodighiero, G.; Vaccari, M.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Glenn, J.] Univ Colorado, Dept Astrophys & Planetary Sci, CASA UCB 389, Boulder, CO 80309 USA. [Solares, E. A. Gonzalez] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Oliver, S. J.; Roseboom, I. G.; Smith, A. J.; Wang, L.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Page, M. J.; Rawlings, J. I.; Seymour, N.; Symeonidis, M.; Tugwell, K. E.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Pearson, C. P.] Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England. [Pearson, C. P.] Univ Lethbridge, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Perez-Fournon, I.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Tenerife, Spain. [Perez-Fournon, I.] Univ La Laguna, Dept Astrofis, E-38205 San Cristobal la Laguna, Tenerife, Spain. [Rigopoulou, D.] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Rigopoulou, D.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Scott, Douglas] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Vigroux, L.] Univ Paris 06, CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Wright, G.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. RP Burgarella, D (reprint author), Univ Aix Marseille, CNRS, Lab Astrophys Marseille, OAMP, 38 Rue Frederic Joliot Curie, F-13388 Marseille 13, France. EM denis.burgarella@oamp.fr; sebastien.heinis@oamp.fr RI Magdis, Georgios/C-7295-2014; Vaccari, Mattia/R-3431-2016; OI Magdis, Georgios/0000-0002-4872-2294; Vaccari, Mattia/0000-0002-6748-0577; Scott, Douglas/0000-0002-6878-9840; Marchetti, Lucia/0000-0003-3948-7621; Seymour, Nicholas/0000-0003-3506-5536; Rodighiero, Giulia/0000-0002-9415-2296 FU CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); NASA (USA) FX SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including University of Lethbridge (Canada); NAOC (China); CEA, OAMP (France); IFSI, University of Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, University of Sussex (UK); and Caltech/JPL, IPAC, University of Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); Stockholm Observatory (Sweden); STFC (UK); and NASA (USA). The data presented in this paper will be released through the Herschel Database in Marseille (HeDaM; http://hedam.oamp.fr/HerMES). This work makes use of TOPCAT (http://www.star.bristol.ac.uk/similar to mbt/topcat/). NR 36 TC 18 Z9 18 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 10 PY 2011 VL 734 IS 1 AR L12 DI 10.1088/2041-8205/734/1/L12 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797NV UT WOS:000293135500012 ER PT J AU Harmon, JK Nolan, MC Howell, ES Giorgini, JD Taylor, PA AF Harmon, John K. Nolan, Michael C. Howell, Ellen S. Giorgini, Jon D. Taylor, Patrick A. TI RADAR OBSERVATIONS OF COMET 103P/HARTLEY 2 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE comets: general; comets: individual (103P/Hartley 2); techniques: radar astronomy ID 2P/ENCKE; NUCLEUS AB Comets rarely come close enough to be studied intensively with Earth-based radar. The most recent such occurrence was when Comet 103P/Hartley 2 passed within 0.12 AU in late 2010 October, less than two weeks before the EPOXI flyby. This offered a unique opportunity to improve pre-encounter trajectory knowledge and obtain complementary physical data for a spacecraft-targeted comet. 103P/Hartley 2 is only the fourth comet nucleus to be imaged with radar and already the second to be identified as an elongated, bilobate object based on its delay-Doppler signature. The images show the dominant spin mode to be a rotation about the short axis with a period of 18.2 hr. The nucleus has a low radar albedo consistent with a surface density of 0.5-1.0 g cm(-3). A separate echo component was detected from large (>cm) grains ejected anisotropically with velocities of several to tens of meters per second. Radar shows that, in terms of large-grain production, 103P/Hartley 2 is an unusually active comet for its size. C1 [Harmon, John K.; Nolan, Michael C.; Howell, Ellen S.; Taylor, Patrick A.] Natl Astron & Ionosphere Ctr, Arecibo Observ, Arecibo, PR 00612 USA. [Giorgini, Jon D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Harmon, JK (reprint author), Natl Astron & Ionosphere Ctr, Arecibo Observ, HC3,Box 53995, Arecibo, PR 00612 USA. EM harmon@naic.edu RI Nolan, Michael/H-4980-2012 OI Nolan, Michael/0000-0001-8316-0680 FU National Aeronautics and Space Administration FX Arecibo Observatory (NAIC) is operated by Cornell University under a cooperative agreement with the National Science Foundation and with support from the National Aeronautics and Space Administration. NR 22 TC 34 Z9 34 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 10 PY 2011 VL 734 IS 1 AR L2 DI 10.1088/2041-8205/734/1/L2 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797NV UT WOS:000293135500002 ER PT J AU Meech, KJ A'Hearn, MF Adams, JA Bacci, P Bai, J Barrera, L Battelino, M Bauer, JM Becklin, E Bhatt, B Biver, N Bockelee-Morvan, D Bodewits, D Bohnhardt, H Boissier, J Bonev, BP Borghini, W Brucato, JR Bryssinck, E Buie, MW Canovas, H Castellano, D Charnley, SB Chen, WP Chiang, P Choi, YJ Christian, DJ Chuang, YL Cochran, AL Colom, P Combi, MR Coulson, IM Crovisier, J Dello Russo, N Dennerl, K DeWahl, K DiSanti, MA Facchini, M Farnham, TL Fernandez, Y Floren, HG Frisk, U Fujiyoshi, T Furusho, R Fuse, T Galli, G Garcia-Hernandez, DA Gersch, A Getu, Z Gibb, EL Gillon, M Guido, E Guillermo, RA Hadamcik, E Hainaut, O Hammel, HB Harker, DE Harmon, JK Harris, WM Hartogh, P Hashimoto, M Hausler, B Herter, T Hjalmarson, A Holland, ST Honda, M Hosseini, S Howell, ES Howes, N Hsieh, HH Hsiao, HY Hutsemekers, D Immler, SM Jackson, WM Jeffers, SV Jehin, E Jones, TJ Ovelar, MD Kaluna, HM Karlsson, T Kawakita, H Keane, JV Keller, LD Kelley, MS Kinoshita, D Kiselev, NN Kleyna, J Knight, MM Kobayashi, H Kobulnicky, HA Kolokolova, L Kreiny, M Kuan, YJ Kuppers, M Lacruz, JM Landsman, WB Lara, LM Lecacheux, A Levasseur-Regourd, AC Li, B Licandro, J Ligustri, R Lin, ZY Lippi, M Lis, DC Lisse, CM Lovell, AJ Lowry, SC Lu, H Lundin, S Magee-Sauer, K Magain, P Manfroid, J Epifani, EM McKay, A Melita, MD Mikuz, H Milam, SN Milani, G Min, M Moreno, R Mueller, BEA Mumma, MJ Nicolini, M Nolan, MC Nordh, HL Nowajewski, PB Team, O Ootsubo, T Paganini, L Perrella, C Pittichova, J Prosperi, E Radeva, YL Reach, WT Remijan, AJ Rengel, M Riesen, TE Rodenhuis, M Rodriguez, DP Russell, RW Sahu, DK Samarasinha, NH Caso, AS Sandqvist, A Sarid, G Sato, M Schleicher, DG Schwieterman, EW Sen, AK Shenoy, D Shi, JC Shinnaka, Y Skvarc, J Snodgrass, C Sitko, ML Sonnett, S Sosseini, S Sostero, G Sugita, S Swinyard, BM Szutowicz, S Takato, N Tanga, P Taylor, PA Tozzi, GP Trabatti, R Trigo-Rodriguez, JM Tubiana, C de Val-Borro, M Vacca, W Vandenbussche, B Vaubaillion, J Velichko, FP Velichko, SF Vervack, RJ Vidal-Nunez, MJ Villanueva, GL Vinante, C Vincent, JB Wang, M Wasserman, LH Watanabe, J Weaver, HA Weissman, PR Wolk, S Wooden, DH Woodward, CE Yamaguchi, M Yamashita, T Yanamandra-Fischer, PA Yang, B Yao, JS Yeomans, DK Zenn, T Zhao, H Ziffer, JE AF Meech, K. J. A'Hearn, M. F. Adams, J. A. Bacci, P. Bai, J. Barrera, L. Battelino, M. Bauer, J. M. Becklin, E. Bhatt, B. Biver, N. Bockelee-Morvan, D. Bodewits, D. Boehnhardt, H. Boissier, J. Bonev, B. P. Borghini, W. Brucato, J. R. Bryssinck, E. Buie, M. W. Canovas, H. Castellano, D. Charnley, S. B. Chen, W. P. Chiang, P. Choi, Y-J Christian, D. J. Chuang, Y-L Cochran, A. L. Colom, P. Combi, M. R. Coulson, I. M. Crovisier, J. Dello Russo, N. Dennerl, K. DeWahl, K. DiSanti, M. A. Facchini, M. Farnham, T. L. Fernandez, Y. Floren, H. G. Frisk, U. Fujiyoshi, T. Furusho, R. Fuse, T. Galli, G. Garcia-Hernandez, D. A. Gersch, A. Getu, Z. Gibb, E. L. Gillon, M. Guido, E. Guillermo, R. A. Hadamcik, E. Hainaut, O. Hammel, H. B. Harker, D. E. Harmon, J. K. Harris, W. M. Hartogh, P. Hashimoto, M. Haeusler, B. Herter, T. Hjalmarson, A. Holland, S. T. Honda, M. Hosseini, S. Howell, E. S. Howes, N. Hsieh, H. H. Hsiao, H-Y Hutsemekers, D. Immler, S. M. Jackson, W. M. Jeffers, S. V. Jehin, E. Jones, T. J. Ovelar, M. de Juan Kaluna, H. M. Karlsson, T. Kawakita, H. Keane, J. V. Keller, L. D. Kelley, M. S. Kinoshita, D. Kiselev, N. N. Kleyna, J. Knight, M. M. Kobayashi, H. Kobulnicky, H. A. Kolokolova, L. Kreiny, M. Kuan, Y-J Kueppers, M. Lacruz, J. M. Landsman, W. B. Lara, L. M. Lecacheux, A. Levasseur-Regourd, A. C. Li, B. Licandro, J. Ligustri, R. Lin, Z-Y Lippi, M. Lis, D. C. Lisse, C. M. Lovell, A. J. Lowry, S. C. Lu, H. Lundin, S. Magee-Sauer, K. Magain, P. Manfroid, J. Epifani, E. Mazzotta McKay, A. Melita, M. D. Mikuz, H. Milam, S. N. Milani, G. Min, M. Moreno, R. Mueller, B. E. A. Mumma, M. J. Nicolini, M. Nolan, M. C. Nordh, H. L. Nowajewski, P. B. Team, Odin Ootsubo, T. Paganini, L. Perrella, C. Pittichova, J. Prosperi, E. Radeva, Y. L. Reach, W. T. Remijan, A. J. Rengel, M. Riesen, T. E. Rodenhuis, M. Rodriguez, D. P. Russell, R. W. Sahu, D. K. Samarasinha, N. H. Sanchez Caso, A. Sandqvist, A. Sarid, G. Sato, M. Schleicher, D. G. Schwieterman, E. W. Sen, A. K. Shenoy, D. Shi, J-C Shinnaka, Y. Skvarc, J. Snodgrass, C. Sitko, M. L. Sonnett, S. Sosseini, S. Sostero, G. Sugita, S. Swinyard, B. M. Szutowicz, S. Takato, N. Tanga, P. Taylor, P. A. Tozzi, G-P Trabatti, R. Trigo-Rodriguez, J. M. Tubiana, C. de Val-Borro, M. Vacca, W. Vandenbussche, B. Vaubaillion, J. Velichko, F. P. Velichko, S. F. Vervack, R. J., Jr. Vidal-Nunez, M. J. Villanueva, G. L. Vinante, C. Vincent, J-B Wang, M. Wasserman, L. H. Watanabe, J. Weaver, H. A. Weissman, P. R. Wolk, S. Wooden, D. H. Woodward, C. E. Yamaguchi, M. Yamashita, T. Yanamandra-Fischer, P. A. Yang, B. Yao, J-S Yeomans, D. K. Zenn, T. Zhao, H. Ziffer, J. E. TI EPOXI: COMET 103P/HARTLEY 2 OBSERVATIONS FROM A WORLDWIDE CAMPAIGN SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE comets: individual (103P/Hartley 2) ID MIDINFRARED SPECTROMETER; SPACE-TELESCOPE; HERSCHEL; PERFORMANCE; PHOTOMETRY; MISSION; NUCLEUS; IMAGER; MIRSI; DUST AB Earth- and space-based observations provide synergistic information for space mission encounters by providing data over longer timescales, at different wavelengths and using techniques that are impossible with an in situ flyby. We report here such observations in support of the EPOXI spacecraft flyby of comet 103P/Hartley 2. The nucleus is small and dark, and exhibited a very rapidly changing rotation period. Prior to the onset of activity, the period was similar to 16.4 hr. Starting in 2010 August the period changed from 16.6 hr to near 19 hr in December. With respect to dust composition, most volatiles and carbon and nitrogen isotope ratios, the comet is similar to other Jupiter-family comets. What is unusual is the dominance of CO2-driven activity near perihelion, which likely persists out to aphelion. Near perihelion the comet nucleus was surrounded by a large halo of water-ice grains that contributed significantly to the total water production. C1 [Meech, K. J.; Hsieh, H. H.; Kaluna, H. M.; Keane, J. V.; Kleyna, J.; Pittichova, J.; Riesen, T. E.; Sarid, G.; Sonnett, S.; Yang, B.; Zenn, T.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [A'Hearn, M. F.; Bodewits, D.; Farnham, T. L.; Gersch, A.; Kelley, M. S.; Kolokolova, L.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Adams, J. A.; Herter, T.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Bacci, P.; Prosperi, E.] Ctr Astron Libbiano, Peccioli Pisa, Italy. [Bai, J.] Chinese Acad Sci, Yunnan Astron Observ, Kunming 65011, Yunnan, Peoples R China. [Barrera, L.] Univ Metropolitana Ciencias Educ, Santiago, Chile. [Battelino, M.; Frisk, U.; Karlsson, T.; Lundin, S.] Swedish Space Corp, S-17104 Solna, Sweden. [Bauer, J. M.; Weissman, P. R.; Yanamandra-Fischer, P. A.; Yeomans, D. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Becklin, E.; Reach, W. T.; Vacca, W.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Bhatt, B.; Sahu, D. K.] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Biver, N.; Bockelee-Morvan, D.; Colom, P.; Crovisier, J.; Lecacheux, A.; Moreno, R.] Observ Paris, LESIA, F-92195 Meudon, France. [Boehnhardt, H.; Hartogh, P.; Lippi, M.; Rengel, M.; Snodgrass, C.; Tubiana, C.; de Val-Borro, M.; Vincent, J-B] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Boissier, J.] INAF Inst Radioastron, I-40129 Bologna, Italy. [Boissier, J.; Hainaut, O.] ESO, D-85748 Garching, Germany. [Bonev, B. P.] Catholic Univ Amer, Dept Phys, GSFC, Washington, DC 20064 USA. [Borghini, W.] Osservatorio Astron Naturalist Casasco, I-15050 Casasco, Italy. [Brucato, J. R.; Tozzi, G-P] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Bryssinck, E.] Brixiis Observ, B-9150 Kruibeke, Belgium. [Buie, M. W.] SW Res Inst, Dept Space Studies, Boulder, CO 80302 USA. [Canovas, H.; Jeffers, S. V.; Ovelar, M. de Juan; Min, M.; Rodenhuis, M.] Univ Utrecht, Astron Inst, NL-3584 CC Utrecht, Netherlands. [Castellano, D.; Perrella, C.] IASF INAF, I-00133 Rome, Italy. [Chen, W. P.; Hsiao, H-Y; Kinoshita, D.] Natl Cent Univ, Grad Inst Astron, Jhongli 32001, Taiwan. [Chiang, P.; Choi, Y-J] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Christian, D. J.] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA. [Chuang, Y-L; Kuan, Y-J] Natl Taiwan Normal Univ, Dept Earth Sci, Taipei 11677, Taiwan. [Cochran, A. L.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Combi, M. R.] Univ Michigan, Dept Atm Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Coulson, I. M.] Joint Astron Ctr, Hilo, HI 96720 USA. [Dello Russo, N.; Lisse, C. M.; Vervack, R. J., Jr.; Weaver, H. A.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Dennerl, K.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [DeWahl, K.; Jones, T. J.; Kreiny, M.; Shenoy, D.; Woodward, C. E.] Univ Minnesota, Dept Astron, Minneapolis, MN 55455 USA. [Facchini, M.; Nicolini, M.] G Montanari Observ, I-41032 Cavezzo, Italy. [Fernandez, Y.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Floren, H. G.; Sandqvist, A.] SCFAB AlbaNova, Stockholm Observ, S-10691 Stockholm, Sweden. [Fujiyoshi, T.; Takato, N.] Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Furusho, R.; Sato, M.; Vidal-Nunez, M. J.; Watanabe, J.; Yamashita, T.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Fuse, T.] NICT, Kashima Space Res Ctr, Ibaraki 3148501, Japan. [Galli, G.] GiaGa Observ, Milan, Italy. [Garcia-Hernandez, D. A.; Trigo-Rodriguez, J. M.] Fac Sci, Inst Space Sci CSIC IEEC, E-08193 Bellaterra, Barcelona, Spain. [Getu, Z.; Li, B.; Lu, H.; Shi, J-C; Wang, M.; Yao, J-S; Zhao, H.] Acad Sinica, Purple Mt Observ, Nanjing 210008, Peoples R China. [Gibb, E. L.] Univ Missouri, Dept Phys & Astron, St Louis, MO 63121 USA. [Gillon, M.; Hutsemekers, D.; Jehin, E.; Magain, P.; Manfroid, J.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Guido, E.; Sostero, G.] Remanzacco Observ, I-33047 Remanzacco, Italy. [Guillermo, R. A.] Univ Chile, Fac Ciencias, Dept Fis, Santiago, Chile. [Hadamcik, E.; Levasseur-Regourd, A. C.] Univ Paris 06, LATMOS IPSL, F-78280 Guyancourt, France. [Hammel, H. B.] AURA, Washington, DC 20005 USA. [Hammel, H. B.] Space Sci Inst, Boulder, CO 80301 USA. [Harker, D. E.; Sitko, M. L.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Harmon, J. K.; Howell, E. S.; Nolan, M. C.; Taylor, P. A.] Arecibo Observ, Arecibo, PR 00612 USA. [Harris, W. M.; Hosseini, S.; Jackson, W. M.; Sosseini, S.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Hashimoto, M.] Saga Pref Space & Sci Museum, Nagashima, Takeo 8430021, Japan. [Haeusler, B.] Maidbronn Observ, D-97222 Maidbronn, Germany. [Hjalmarson, A.; Team, Odin] Onsala Space Observ, S-43992 Onsala, Sweden. [Holland, S. T.] NASA, Goddard Space Flight Ctr, Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. [Honda, M.] Kanagawa Univ, Dept Informat Sci, Kanagawa 2591293, Japan. [Kawakita, H.; Kobayashi, H.; Shinnaka, Y.] Kyoto Sangyo Univ, Facil Sci, Dept Phys, Kita Ku, Kyoto 6038555, Japan. [Keller, L. D.] Ithaca Coll, Ithaca, NY 14850 USA. [Kiselev, N. N.] Natl Acad Sci Ukraine, Main Astron Observ, UA-03680 Kiev, Ukraine. [Knight, M. M.; Schleicher, D. G.; Schwieterman, E. W.; Wasserman, L. H.] Lowell Observ, Flagstaff, AZ 86001 USA. [Kobulnicky, H. A.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82701 USA. [Kueppers, M.] European Space Agcy, European Space Astron Ctr, Rosetta Sci Operat Ctr, Madrid, Spain. [Lacruz, J. M.] La Canada Observ, Madrid 28035, Spain. [Lara, L. M.; Lin, Z-Y] IAA CSIC, Granada 18008, Spain. [Licandro, J.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Licandro, J.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Ligustri, R.] Talmassons Observ CAST, I-33030 Talmassons, Italy. [Lovell, A. J.] Agnes Scott Coll, Dept Phys & Astron, Decatur, GA 30030 USA. [Lowry, S. C.] Univ Kent, Ctr Astrophys & Planetary Sci, Canterbury CT2 7NH, Kent, England. [Magee-Sauer, K.] Rowan Univ, Dept Phys & Astron, Glassboro, NJ 08028 USA. [Epifani, E. Mazzotta] INAF OAC, I-80131 Naples, Italy. [McKay, A.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Melita, M. D.] Inst Astron & Fis Espacio, RA-1428 Buenos Aires, DF, Argentina. [Mikuz, H.; Skvarc, J.] Astron Obsevatorij, Crni Vrh Nad Idrigo 5274, Crni Vrh, Slovenia. [Milani, G.] Univ Padua, Dip Sci Biomed Sperimentali, I-35121 Padua, Italy. [Mueller, B. E. A.; Samarasinha, N. H.] Planetary Space Inst, Tucson, AZ 85719 USA. [Nordh, H. L.] Swedish Natl Space Board, S-17104 Solna, Sweden. [Nowajewski, P. B.] Univ Chile, Dept Astron, Santiago, Chile. [Ootsubo, T.] Tohoku Univ, Grad Sch Sci, Astron Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Remijan, A. J.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Rodriguez, D. P.] Guadarrama Observ, Madrid 28400, Spain. [Russell, R. W.] Aerosp Corp, Los Angeles, CA 90009 USA. [Sanchez Caso, A.] Gualba Astron Observ, Barcelona 08474, Spain. [Sen, A. K.] Assam Univ, Dept Phys, Silchar 788001, India. [Sugita, S.] Univ Tokyo, Dept Complex Sci & Engn, Chiba 2778561, Japan. [Swinyard, B. M.] Rutherford Appleton Lab, Space Sci & Technol Dept, Planets & Space Plasmas Grp, Oxford, England. [Swinyard, B. M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Szutowicz, S.] Polish Acad Sci, Space Res Ctr, PL-01237 Warsaw, Poland. [Tanga, P.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, UMR Cassiopee 6202, F-06304 Nice 4, France. [Trabatti, R.] Stn Astron Descartes, I-27013 Chignolo Po, Italy. [Vandenbussche, B.] KU, Inst Astron, Louvain, Belgium. [Vaubaillion, J.] IMCCE Observ Paris, F-75014 Paris, France. [Velichko, F. P.] Kharkiv Univ, Astron Inst, UA-61022 Kharkov, Ukraine. [Velichko, S. F.] Int Ctr Astron Med & Ecol Res, UA-03680 Kiev, Ukraine. [Vinante, C.] Univ Padua, Dipartimento Geosci, I-35131 Padua, Italy. [Wolk, S.] Harvard Smithsonian Ctr Astrophys, Chandra Xray Ctr, Cambridge, MA 02138 USA. [Wooden, D. H.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Ziffer, J. E.] Univ So Maine, Portland, ME 04104 USA. [Lis, D. C.] CALTECH, Pasadena, CA 91125 USA. RP Meech, KJ (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. RI Vervack, Ronald/C-2702-2016; Weaver, Harold/D-9188-2016; Lisse, Carey/B-7772-2016; Charnley, Steven/C-9538-2012; Milam, Stefanie/D-1092-2012; Combi, Michael/J-1697-2012; de Val-Borro, Miguel/H-1319-2013; mumma, michael/I-2764-2013; Nolan, Michael/H-4980-2012; Magee-Sauer, Karen/K-6061-2015; Dello Russo, Neil/G-2727-2015 OI Kelley, Michael/0000-0002-6702-7676; Fernandez, Yanga/0000-0003-1156-9721; Tanga, Paolo/0000-0002-2718-997X; Bodewits, Dennis/0000-0002-2668-7248; Tozzi, Gian Paolo/0000-0003-4775-5788; Christian, Damian/0000-0003-1746-3020; Reach, William/0000-0001-8362-4094; Snodgrass, Colin/0000-0001-9328-2905; Mazzotta Epifani, Elena/0000-0003-1412-0946; Harker, David/0000-0001-6397-9082; Retamales, Guillermo/0000-0002-3973-3848; Brucato, John Robert/0000-0002-4738-5521; Knight, Matthew/0000-0003-2781-6897; Canovas, Hector/0000-0001-7668-8022; Wolk, Scott/0000-0002-0826-9261; Vervack, Ronald/0000-0002-8227-9564; Lisse, Carey/0000-0002-9548-1526; Milam, Stefanie/0000-0001-7694-4129; Combi, Michael/0000-0002-9805-0078; de Val-Borro, Miguel/0000-0002-0455-9384; Nolan, Michael/0000-0001-8316-0680; Magee-Sauer, Karen/0000-0002-4979-9875; Dello Russo, Neil/0000-0002-8379-7304 FU Swedish National Space Board; Canadian Space Agency; National Technology Agency of Finland; Centre National d'Etudes Spatiales (CNES, France); Belgian Fund for Scientific Research (FNRS); Swiss National Science Foundation; European Community [229517]; Spanish Ministerio de Ciencia e Innovacion [AYA2008-01839/ESP, AyA2009-08011]; Junta de Andalucia [PE2007-TIC 02744]; NASA [NNM07AA99C]; Aerospace Corporation; NASA through NASA Astrobiology Institute [NNA04CC08A] FX Odin is a Swedish-led satellite project funded jointly by the Swedish National Space Board, the Canadian Space Agency, the National Technology Agency of Finland, and the Centre National d'Etudes Spatiales (CNES, France). The Swedish Space Corporation is the prime contractor, also responsible for Odin operations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. We thank A. Tokunaga, Director of the NASA IRTF, for allocating time for an observing campaign at this telescope. The Faulkes Telescope North contributed to the CARA observing campaign. TRAPPIST is a project driven by the University of Liege, in close collaboration with the Observatory of Geneva, supported by the Belgian Fund for Scientific Research (FNRS) and the Swiss National Science Foundation. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013 under grant agreement no. 229517. Faulkes Telescope North contributed to CARA around the flyby period. The CSIC-IEEC and CSIC-IAA teams acknowledge support from grants AYA2008-01839/ESP and AyA2009-08011 from the Spanish Ministerio de Ciencia e Innovacion and PE2007-TIC 02744 from Junta de Andalucia. This work was supported in part by the NASA Planetary Astronomy Program and was performed in part at the Jet Propulsion Laboratory under contract with NASA. This work is also supported in part at The Aerospace Corporation by the Independent Research and Development Program. This work was supported by NASA's Discovery Program through contract NNM07AA99C to the University of Maryland, and in part through the NASA Astrobiology Institute under cooperative agreement no. NNA04CC08A. NR 48 TC 55 Z9 56 U1 0 U2 27 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 10 PY 2011 VL 734 IS 1 AR L1 DI 10.1088/2041-8205/734/1/L1 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797NV UT WOS:000293135500001 ER PT J AU Monje, RR Emprechtinger, M Phillips, TG Lis, DC Goldsmith, PF Bergin, EA Bell, TA Neufeld, DA Sonnentrucker, P AF Monje, R. R. Emprechtinger, M. Phillips, T. G. Lis, D. C. Goldsmith, P. F. Bergin, E. A. Bell, T. A. Neufeld, D. A. Sonnentrucker, P. TI HERSCHEL/HIFI OBSERVATIONS OF HYDROGEN FLUORIDE TOWARD SAGITTARIUS B2(M) SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Galaxy: abundances; ISM: abundances; ISM: individual objects (Sagittarius B2) ID MOLECULAR CLOUDS; ABSORPTION; ABUNDANCE; CHEMISTRY; DIFFUSE; REGION; RATIO; W31C; LINE; GAS AB Herschel/HIFI observations have revealed the presence of widespread absorption by hydrogen fluoride (HF) J = 1-0 rotational transition, toward a number of Galactic sources. We present observations of HF J = 1-0 toward the high-mass star-forming region Sagittarius B2(M). The spectrum obtained shows a complex pattern of absorption, with numerous features covering a wide range of local standard of rest velocities (-130 to 100 km (-1)). An analysis of this absorption yields HF abundances relative to H(2) of similar to 1.3 x 10(-8), in most velocity intervals. This result is in good agreement with estimates from chemical models, which predict that HF should be the main reservoir of gas-phase fluorine under a wide variety of interstellar conditions. Interestingly, we also find velocity intervals in which the HF spectrum shows strong absorption features that are not present, or are very weak, in spectra of other molecules, such as (13)CO (1-0) and CS (2-1). HF absorption reveals components of diffuse clouds with small extinction that can be studied for the first time. Another interesting observation is that water is significantly more abundant than hydrogen fluoride over a wide range of velocities toward Sagittarius B2(M), in contrast to the remarkably constant H(2)O/HF abundance ratio with average value close to unity measured toward other Galactic sources. C1 [Monje, R. R.; Emprechtinger, M.; Phillips, T. G.; Lis, D. C.] CALTECH, Pasadena, CA 91125 USA. [Goldsmith, P. F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bergin, E. A.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Bell, T. A.] INTA CSIC, Dept Astrofis, Ctr Astrobiol CAB, Madrid 28850, Spain. [Neufeld, D. A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Sonnentrucker, P.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Monje, RR (reprint author), CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM raquel@caltech.edu RI Goldsmith, Paul/H-3159-2016 FU NASA through JPL/Caltech; NSF [AST-0540882]; National Aeronautics and Space Administration FX We thank the referee Dr. Andrew Walsh for his helpful comments and suggestions. HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada, and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands, and with major contributions from Germany, France, and the US. Consortium members are Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland: NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri-INAF; The Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA). Sweden: Chalmers University of Technology-MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University-Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. Support for this work was provided by NASA through an award issued by JPL/Caltech. This research has been supported in part by the NSF, award AST-0540882 to the CSO. A portion of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 20 TC 22 Z9 22 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 10 PY 2011 VL 734 IS 1 AR L23 DI 10.1088/2041-8205/734/1/L23 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797NV UT WOS:000293135500023 ER PT J AU Mumma, MJ Bonev, BP Villanueva, GL Paganini, L DiSanti, MA Gibb, EL Keane, JV Meech, KJ Blake, GA Ellis, RS Lippi, M Boehnhardt, H Magee-Sauer, K AF Mumma, M. J. Bonev, B. P. Villanueva, G. L. Paganini, L. DiSanti, M. A. Gibb, E. L. Keane, J. V. Meech, K. J. Blake, G. A. Ellis, R. S. Lippi, M. Boehnhardt, H. Magee-Sauer, K. TI TEMPORAL AND SPATIAL ASPECTS OF GAS RELEASE DURING THE 2010 APPARITION OF COMET 103P/HARTLEY 2 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE comets: general; comets: individual (103P/Hartley 2); infrared: planetary systems ID CARBON-MONOXIDE; INFRARED OBSERVATIONS; WATER PRODUCTION; MU-M; EXCITATION; SYSTEM; CO2 AB We report measurements of eight primary volatiles (H2O, HCN, CH4, C2H6, CH3OH, C2H2, H2CO, and NH3) and two product species (OH and NH2) in comet 103P/Hartley 2 using high-dispersion infrared spectroscopy. We quantified the long-and short-term behavior of volatile release over a three-month interval that encompassed the comet's close approach to Earth, its perihelion passage, and flyby of the comet by the Deep Impact spacecraft during the EPOXI mission. We present production rates for individual species, their mixing ratios relative to water, and their spatial distributions in the coma on multiple dates. The production rates for water, ethane, HCN, and methanol vary in a manner consistent with independent measures of nucleus rotation, but mixing ratios for HCN, C2H6, and CH3OH are independent of rotational phase. Our results demonstrate that the ensemble average composition of gas released from the nucleus is well defined and relatively constant over the three-month interval (September 18 through December 17). If individual vents vary in composition, enough diverse vents must be active simultaneously to approximate (in sum) the bulk composition of the nucleus. The released primary volatiles exhibit diverse spatial properties which favor the presence of separate polar and apolar ice phases in the nucleus, establish dust and gas release from icy clumps (and from the nucleus), and provide insights into the driver for the cyanogen (CN) polar jet. The spatial distributions of C2H6 and HCN along the near-polar jet (UT October 19.5) and nearly orthogonal to it (UT October 22.5) are discussed relative to the origin of CN. The ortho-para ratio (OPR) of water was 2.85 +/- 0.20; the lower bound (2.65) defines T-spin > 32 K. These values are consistent with results returned from the Infrared Space Observatory in 1997. C1 [Mumma, M. J.; Bonev, B. P.; Villanueva, G. L.; Paganini, L.; DiSanti, M. A.] NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, Greenbelt, MD 20771 USA. [Bonev, B. P.; Villanueva, G. L.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Gibb, E. L.] Univ Missouri, Dept Phys & Astron, St Louis, MO 63121 USA. [Keane, J. V.; Meech, K. J.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Blake, G. A.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Ellis, R. S.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Boehnhardt, H.] Max Planck Inst Solar Syst Res, DE-37191 Katlenburg Lindau, Germany. [Magee-Sauer, K.] Rowan Univ, Dept Phys & Astron, Glassboro, NJ 08028 USA. RP Mumma, MJ (reprint author), NASA, Goddard Space Flight Ctr, Goddard Ctr Astrobiol, MS 690-3, Greenbelt, MD 20771 USA. EM michael.j.mumma@nasa.gov RI mumma, michael/I-2764-2013; Magee-Sauer, Karen/K-6061-2015 OI Magee-Sauer, Karen/0000-0002-4979-9875 FU NSF FX Keck telescope time was granted by NOAO (through the Telescope System Instrumentation Program funded by NSF), the University of Hawaii, and the California Institute of Technology. VLT time was granted by the European Southern Observatory. We gratefully acknowledge support by the NSF Astronomy and Astrophysics Research Grants Program (PI/co-PI Bonev/Gibb), by the NASA Astrobiology Institute (PI: Meech, PI: Mumma), by NASA's Planetary Astronomy (PI: DiSanti; PI: Mumma), Planetary Atmospheres (PI: DiSanti; PI: Villanueva), and Discovery (Meech) Programs, and by the German-Israel Foundation (D. Prialnik; M. Lippi). NR 32 TC 42 Z9 42 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 10 PY 2011 VL 734 IS 1 AR L7 DI 10.1088/2041-8205/734/1/L7 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797NV UT WOS:000293135500007 ER PT J AU Ofman, L Thompson, BJ AF Ofman, L. Thompson, B. J. TI SDO/AIA OBSERVATION OF KELVIN-HELMHOLTZ INSTABILITY IN THE SOLAR CORONA SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: activity; Sun: corona; Sun: coronal mass ejections (CMEs); Sun: UV radiation ID ALFVEN WAVES; MAGNETOSPHERE; ABSORPTION; PLASMA AB We present observations of the formation, propagation, and decay of vortex-shaped features in coronal images from the Solar Dynamics Observatory associated with an eruption starting at about 2:30 UT on 2010 April 8. The series of vortices were formed along the interface between an erupting (dimming) region and the surrounding corona. They ranged in size from several to 10 arcsec and traveled along the interface at 6-14 km s(-1). The features were clearly visible in six out of the seven different EUV wave bands of the Atmospheric Imaging Assembly. Based on the structure, formation, propagation, and decay of these features, we identified the event as the first observation of the Kelvin-Helmholtz instability (KHI) in the corona in EUV. The interpretation is supported by linear analysis and by a nonlinear 2.5-dimensional magnetohydrodynamic model of KHI. We conclude that the instability is driven by the velocity shear between the erupting and closed magnetic field of the coronal mass ejection. The shear-flow-driven instability can play an important role in energy transfer processes in coronal plasma. C1 [Ofman, L.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Ofman, L.; Thompson, B. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ofman, L (reprint author), Tel Aviv Univ, Dept Geophys & Planetary Sci, IL-69978 Tel Aviv, Israel. RI Thompson, Barbara/C-9429-2012 FU NASA [NNX08AV88G, NNX09AG10G] FX We are grateful to SDO/AIA team for providing the data used in this study. L.O. was supported by NASA grants NNX08AV88G and NNX09AG10G. NR 19 TC 43 Z9 43 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 10 PY 2011 VL 734 IS 1 AR L11 DI 10.1088/2041-8205/734/1/L11 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797NV UT WOS:000293135500011 ER PT J AU Way, MJ AF Way, M. J. TI GALAXY ZOO MORPHOLOGY AND PHOTOMETRIC REDSHIFTS IN THE SLOAN DIGITAL SKY SURVEY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: distances and redshifts; methods: statistical ID ARTIFICIAL NEURAL-NETWORKS; SPECTROSCOPIC TARGET SELECTION; LUMINOUS RED GALAXIES; DATA RELEASE; SAMPLE; STAR AB It has recently been demonstrated that one can accurately derive galaxy morphology from particular primary and secondary isophotal shape estimates in the Sloan Digital Sky Survey (SDSS) imaging catalog. This was accomplished by applying Machine Learning techniques to the Galaxy Zoo morphology catalog. Using the broad bandpass photometry of the SDSS in combination with precise knowledge of galaxy morphology should help in estimating more accurate photometric redshifts for galaxies. Using the Galaxy Zoo separation for spirals and ellipticals in combination with SDSS photometry we attempt to calculate photometric redshifts. In the best case we find that the root-mean-square error for luminous red galaxies classified as ellipticals is as low as 0.0118. Given these promising results we believe better photometric redshift estimates for all galaxies in the SDSS (similar to 350 million) will be feasible if researchers can also leverage their derived morphologies via Machine Learning. These initial results look to be promising for those interested in estimating weak lensing, baryonic acoustic oscillation, and other fields dependent upon accurate photometric redshifts. C1 [Way, M. J.] NASA, Goddard Inst Space Studies, New York, NY 10029 USA. [Way, M. J.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Way, M. J.] Dept Astron & Space Phys, Uppsala, Sweden. RP Way, MJ (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10029 USA. RI Way, Michael/D-5254-2012; OI Way, Michael/0000-0003-3728-0475 FU NASA; NASA Ames Research Center FX Thanks to Jim Gray, Ani Thakar, Maria SanSebastien, and Alex Szalay for their help with the SDSS casjobs server and Jeffrey Scargle for reading an early draft. Thanks goes to the Galaxy Group in the Astronomy Department at Uppsala University in Sweden for their generous hospitality where part of this work was discussed and completed. We acknowledge funding received from the NASA Applied Information Systems Research Program and from the NASA Ames Research Center Director's Discretionary Fund. NR 40 TC 2 Z9 2 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 10 PY 2011 VL 734 IS 1 AR L9 DI 10.1088/2041-8205/734/1/L9 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797NV UT WOS:000293135500009 ER PT J AU Rajabi-Jaghargh, E Kolli, KK Back, LH Banerjee, RK AF Rajabi-Jaghargh, Ehsan Kolli, Kranthi K. Back, Lloyd H. Banerjee, Rupak K. TI Effect of guidewire on contribution of loss due to momentum change and viscous loss to the translesional pressure drop across coronary artery stenosis: An analytical approach SO BIOMEDICAL ENGINEERING ONLINE LA English DT Article DE Throat length; throat diameter; guidewire; hyperemic flow; basal flow; viscous loss; mo-mentum change; diagnostic parameter; stenosis ID FRACTIONAL FLOW RESERVE; GRADIENT RELATION; FLUID-DYNAMICS; STENOTIC FLOWS; BLOOD-FLOW; ANGIOPLASTY; CATHETER; STEADY; HUMANS; WIRE AB Background: Guidewire (GW) size and stenosis dimensions are the two major factors affecting the translesional pressure drop. Studying the combined effect of these parameters on the mean pressure drop (Delta p) across the stenosis is of high practical importance. Methods: In this study, time averaged mass and momentum conservation equations are solved analytically to obtain pressure drop-flow, Delta p-Q, curves for three different percentage area blockages corresponding to moderate (64%), intermediate (80%), and severe (90%) stenoses. Stenosis is considered to be axisymmetric consisting of three different sections namely converging, throat, and diverging regions. Analytical expressions for pressure drop are obtained for each of these regions separately. Using this approach, effects of lesion length and GW insertion on the mean translesional pressure drop and its component (loss due to momentum change and viscous loss) are analyzed. Results and Conclusion: It is observed that for a given percent area stenosis (AS), increase in the throat length only increases the viscous loss. However, increase in the severity of stenosis and GW insertion increase both loss due to momentum change and viscous loss. GW insertion has greater contribution to the rise in viscous loss (increase by 2.14 and 2.72 times for 64% and 90% AS, respectively) than loss due to momentum change (1.34% increase for 64% AS and 25% decrease for 90% AS). It also alters the hyperemic pressure drop in moderate (48% increase) to intermediate (30% increase) stenoses significantly. However, in severe stenoses GW insertion has a negligible effect (0.5% increase) on hyperemic translesional pressure drop. It is also observed that pressure drop in a severe stenosis is less sensitive to lesion length variation (4% and 14% increase in Delta p for without and with GW, respectively) as compared to intermediate (10% and 30% increase in Delta p for without and with GW, respectively) and moderate stenoses (22% and 48% increase in Delta p for without and with GW, respectively). Based on the contribution of pressure drop components to the total translesional pressure drop, it is found that viscous losses are dominant in moderate stenoses, while in severe stenoses losses due to momentum changes are significant. It is also shown that this simple analytical solution can provide valuable information regarding interpretation of coronary diagnostic parameters such as fractional flow reserve (FFR). C1 [Rajabi-Jaghargh, Ehsan; Kolli, Kranthi K.; Banerjee, Rupak K.] Univ Cincinnati, Sch Dynam Syst, Mech Engn Program, Cincinnati, OH 45221 USA. [Back, Lloyd H.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Banerjee, RK (reprint author), Univ Cincinnati, Sch Dynam Syst, Mech Engn Program, 593 Rhodes Hall,POB 210072, Cincinnati, OH 45221 USA. EM banerjee@uc.edu FU Great Rivers Affiliate; American Heart Association; VA Merit Review Grant [0755236B, 0335270N, I01CX000342-01] FX This work is supported by Grant-in-Aid of Great Rivers Affiliate, National-Scientific Development Grant of American Heart Association, and VA Merit Review Grant (Grant Reference #s: 0755236B, 0335270N, and I01CX000342-01, respectively). Authors would like to acknowledge the initial help of Koustubh Ashtekar who was unable to continue the study because of other commitments. The authors have corrected and significantly improved the initial results into its final form. NR 34 TC 8 Z9 8 U1 0 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1475-925X J9 BIOMED ENG ONLINE JI Biomed. Eng. Online PD JUN 10 PY 2011 VL 10 AR 51 DI 10.1186/1475-925X-10-51 PG 22 WC Engineering, Biomedical SC Engineering GA 794QV UT WOS:000292917100001 PM 21658283 ER PT J AU Rappazzo, AF Velli, M AF Rappazzo, A. F. Velli, M. TI Magnetohydrodynamic turbulent cascade of coronal loop magnetic fields SO PHYSICAL REVIEW E LA English DT Article ID SCALING LAWS AB The Parker model for coronal heating is investigated through a high resolution simulation. An inertial range is resolved where fluctuating magnetic energy E-M(k(perpendicular to)) proportional to k(perpendicular to)(-2.7). exceeds kinetic energy E-K(k(perpendicular to)) proportional to k(perpendicular to)(-0.6). Increments scale as delta b(l) similar or equal to l(-0.85) and delta u(l) similar or equal to l(+0.2) with velocity increasing at small scales, indicating that magnetic reconnection plays a prime role in this turbulent system. We show that spectral energy transport is akin to standard magnetohydrodynamic (MHD) turbulence even for a system of reconnecting current sheets sustained by the boundary. In this new MHD turbulent cascade, kinetic energy flows are negligible while cross-field flows are enhanced, and through a series of " reflections" between the two fields, cascade more than half of the total spectral energy flow. C1 [Rappazzo, A. F.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Tenerife, Spain. [Rappazzo, A. F.; Velli, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rappazzo, A. F.] Univ Delaware, Bartol Res Inst, Dept Phys & Astron, Newark, DE 19716 USA. RP Rappazzo, AF (reprint author), Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Tenerife, Spain. FU Jet Propulsion Laboratory, California Institute of Technology; NASA [ATM-0752135, 09-1112, 10-1633]; European Commission through the SOLAIRE Network [MRTN-CT-2006-035484]; Spanish Ministry of Research and Innovation [AYA2007-66502, CSD2007-00050]; NSF [ATM-0752135, AGS-1063439]; CINECA FX Research supported in part by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA, and in part by the European Commission through the SOLAIRE Network (MRTN-CT-2006-035484) and by the Spanish Ministry of Research and Innovation through projects AYA2007-66502 and CSD2007-00050, and by NSF grants AGS-1063439 and (SHINE) ATM-0752135 as well as NASA Heliophysics Theory Program grant ATM-0752135. Simulations were carried out through NASA Advanced Supercomputing SMD Award Nos. 09-1112 and 10-1633, and a Key Project at CINECA. NR 21 TC 9 Z9 9 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD JUN 10 PY 2011 VL 83 IS 6 AR 065401 DI 10.1103/PhysRevE.83.065401 PN 2 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 778KH UT WOS:000291702100001 PM 21797433 ER PT J AU Herd, CDK Blinova, A Simkus, DN Huang, YS Tarozo, R Alexander, CMO Gyngard, F Nittler, LR Cody, GD Fogel, ML Kebukawa, Y Kilcoyne, ALD Hilts, RW Slater, GF Glavin, DP Dworkin, JP Callahan, MP Elsila, JE De Gregorio, BT Stroud, RM AF Herd, Christopher D. K. Blinova, Alexandra Simkus, Danielle N. Huang, Yongsong Tarozo, Rafael Alexander, Conel M. O'D. Gyngard, Frank Nittler, Larry R. Cody, George D. Fogel, Marilyn L. Kebukawa, Yoko Kilcoyne, A. L. David Hilts, Robert W. Slater, Greg F. Glavin, Daniel P. Dworkin, Jason P. Callahan, Michael P. Elsila, Jamie E. De Gregorio, Bradley T. Stroud, Rhonda M. TI Origin and Evolution of Prebiotic Organic Matter As Inferred from the Tagish Lake Meteorite SO SCIENCE LA English DT Article ID MURCHISON METEORITE; CARBONACEOUS CHONDRITE; MONOCARBOXYLIC ACIDS; HYDROUS PYROLYSIS; AMINO-ACIDS; ISOVALINE AB The complex suite of organic materials in carbonaceous chondrite meteorites probably originally formed in the interstellar medium and/or the solar protoplanetary disk, but was subsequently modified in the meteorites' asteroidal parent bodies. The mechanisms of formation and modification are still very poorly understood. We carried out a systematic study of variations in the mineralogy, petrology, and soluble and insoluble organic matter in distinct fragments of the Tagish Lake meteorite. The variations correlate with indicators of parent body aqueous alteration. At least some molecules of prebiotic importance formed during the alteration. C1 [Herd, Christopher D. K.; Blinova, Alexandra; Simkus, Danielle N.] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB T6G 2E3, Canada. [Huang, Yongsong; Tarozo, Rafael] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Alexander, Conel M. O'D.; Gyngard, Frank; Nittler, Larry R.] Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA. [Cody, George D.; Fogel, Marilyn L.; Kebukawa, Yoko] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Kilcoyne, A. L. David] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Hilts, Robert W.] Grant MacEwan Univ, Dept Phys Sci, Edmonton, AB T5J 4S2, Canada. [Slater, Greg F.] McMaster Univ, Sch Geog & Earth Sci, Hamilton, ON L8S 4K1, Canada. [Glavin, Daniel P.; Dworkin, Jason P.; Callahan, Michael P.; Elsila, Jamie E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [De Gregorio, Bradley T.] NASA, Lyndon B Johnson Space Ctr, Engn & Sci Contract Grp, Houston, TX 77058 USA. [De Gregorio, Bradley T.; Stroud, Rhonda M.] USN, Res Lab, Washington, DC 20375 USA. RP Herd, CDK (reprint author), Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB T6G 2E3, Canada. EM herd@ualberta.ca RI Elsila, Jamie/C-9952-2012; Callahan, Michael/D-3630-2012; Slater, Greg/B-5163-2013; De Gregorio, Bradley/B-8465-2008; Glavin, Daniel/D-6194-2012; Alexander, Conel/N-7533-2013; Fogel, Marilyn/M-2395-2015; Kilcoyne, David/I-1465-2013; Stroud, Rhonda/C-5503-2008; Dworkin, Jason/C-9417-2012; Kebukawa, Yoko/A-7315-2010 OI Slater, Greg/0000-0001-7418-7566; De Gregorio, Bradley/0000-0001-9096-3545; Glavin, Daniel/0000-0001-7779-7765; Alexander, Conel/0000-0002-8558-1427; Fogel, Marilyn/0000-0002-1176-3818; Stroud, Rhonda/0000-0001-5242-8015; Dworkin, Jason/0000-0002-3961-8997; Kebukawa, Yoko/0000-0001-8430-3612 FU Natural Sciences and Engineering Research Council of Canada; Alberta Innovates; NASA; U.S. Office of Naval Research; CIW; Grant MacEwan University; Carnegie Institution of Canada; U.S. Department of Energy [DE-AC02-05CH11231]; W.M. Keck Foundation FX Funding for this study was provided by the Natural Sciences and Engineering Research Council of Canada, Alberta Innovates, NASA (Astrobiology, including Carnegie Institution Astrobiology and the Goddard Center for Astrobiology; Origins of Solar Systems; Cosmochemistry and Postdoctoral Programs), the U.S. Office of Naval Research, the CIW, Grant MacEwan University, and the Carnegie Institution of Canada. The Canadian Institute for Advanced Research is thanked for hosting workshops that facilitated work on the MCAs. J. Kirby assisted with MCA analysis. R. Bowden carried out bulk IOM analyses. XANES data were acquired on the Scanning Transmission X-ray Microscope at beamline 5.3.2.2 of the Advanced Light Source, which is supported by the Director of the Office of Science, U.S. Department of Energy, under contract no. DE-AC02-05CH11231, and by a W.M. Keck Foundation grant to the CIW. Three anonymous reviewers are thanked for constructive comments that improved the manuscript. NR 37 TC 86 Z9 87 U1 4 U2 56 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 10 PY 2011 VL 332 IS 6035 BP 1304 EP 1307 DI 10.1126/science.1203290 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 775EP UT WOS:000291441700041 PM 21659601 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Brandt, TJ Bregeon, J Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Chaty, S Chekhtman, A Cheung, CC Chiang, J Cillis, AN Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Corbel, S Cutini, S de Angelis, A de Palma, F Dermer, CD Digel, SW Silva, EDE Drell, PS Drlica-Wagner, A Dubois, R Dumora, D Favuzzi, C Ferrara, EC Fortin, P Frailis, M Fukazawa, Y Fukui, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grondin, MH Guiriec, S Hadasch, D Hanabata, Y Harding, AK Hayashida, M Hayashi, K Hays, E Horan, D Jackson, MS Johannesson, G Johnson, AS Kamae, T Katagiri, H Kataoka, J Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Lemoine-Goumard, M Longo, F Loparco, F Lovellette, MN Lubrano, P Madejski, GM Makeev, A Mazziotta, MN McEnery, JE Michelson, PF Mignani, RP Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Naumann-Godo, M Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Orlando, E Ormes, JF Paneque, D Parent, D Pelassa, V Pesce-Rollins, M Pierbattista, M Piron, F Pohl, M Porter, TA Raino, S Rando, R Razzano, M Reimer, O Reposeur, T Ritz, S Romani, RW Roth, M Sadrozinski, HFW Parkinson, PMS Sgro, C Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JG Thayer, JB Thompson, DJ Tibaldo, L Tibolla, O Torres, DF Tosti, G Tramacere, A Troja, E Uchiyama, Y Vandenbroucke, J Vasileiou, V Vianello, G Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Yamamoto, H Yamazaki, R Yang, Z Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Brandt, T. J. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Chaty, S. Chekhtman, A. Cheung, C. C. Chiang, J. Cillis, A. N. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Corbel, S. Cutini, S. de Angelis, A. de Palma, F. Dermer, C. D. Digel, S. W. do Couto e Silva, E. Drell, P. S. Drlica-Wagner, A. Dubois, R. Dumora, D. Favuzzi, C. Ferrara, E. C. Fortin, P. Frailis, M. Fukazawa, Y. Fukui, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Guiriec, S. Hadasch, D. Hanabata, Y. Harding, A. K. Hayashida, M. Hayashi, K. Hays, E. Horan, D. Jackson, M. S. Johannesson, G. Johnson, A. S. Kamae, T. Katagiri, H. Kataoka, J. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Lemoine-Goumard, M. Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Mazziotta, M. N. McEnery, J. E. Michelson, P. F. Mignani, R. P. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Naumann-Godo, M. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Orlando, E. Ormes, J. F. Paneque, D. Parent, D. Pelassa, V. Pesce-Rollins, M. Pierbattista, M. Piron, F. Pohl, M. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, O. Reposeur, T. Ritz, S. Romani, R. W. Roth, M. Sadrozinski, H. F. -W. Parkinson, P. M. Saz Sgro, C. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. G. Thayer, J. B. Thompson, D. J. Tibaldo, L. Tibolla, O. Torres, D. F. Tosti, G. Tramacere, A. Troja, E. Uchiyama, Y. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yamamoto, H. Yamazaki, R. Yang, Z. Ziegler, M. TI OBSERVATIONS OF THE YOUNG SUPERNOVA REMNANT RX J1713.7-3946 WITH THE FERMI LARGE AREA TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; gamma rays: general; gamma rays: ISM; ISM: individual objects (RX J1713.7-3946); ISM: supernova remnants; radiation mechanisms: non-thermal ID X-RAY-EMISSION; MOLECULAR CLOUDS; COSMIC-RAYS; PARTICLE-ACCELERATION; SHOCK ACCELERATION; CASSIOPEIA-A; SHELL; G347.3-0.5; DISCOVERY; TEV AB We present observations of the young supernova remnant (SNR) RX J1713.7-3946 with the Fermi Large Area Telescope (LAT). We clearly detect a source positionally coincident with the SNR. The source is extended with a best-fit extension of 0 degrees.55 +/- 0 degrees.04 matching the size of the non-thermal X-ray and TeV gamma-ray emission from the remnant. The positional coincidence and the matching extended emission allow us to identify the LAT source with SNR RX J1713.7-3946. The spectrum of the source can be described by a very hard power law with a photon index of Gamma = 1.5 +/- 0.1 that coincides in normalization with the steeper H. E. S. S.-detected gamma-ray spectrum at higher energies. The broadband gamma-ray emission is consistent with a leptonic origin as the dominant mechanism for the gamma-ray emission. C1 [Abdo, A. A.; Makeev, A.; Parent, D.] George Mason Univ, Coll Sci, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Kerr, M.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Orlando, E.; Paneque, D.; Porter, T. A.; Reimer, O.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tramacere, A.; Uchiyama, Y.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Kerr, M.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Orlando, E.; Paneque, D.; Porter, T. A.; Reimer, O.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tramacere, A.; Uchiyama, Y.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Chaty, S.; Corbel, S.; Grenier, I. A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.] CEA IRFU CNRS Univ Paris Diderot, Serv Astrophys, CEA Saclay, Lab AIM, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Bouvier, A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Bouvier, A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Brandt, T. J.; Knoedlseder, J.; Vilchez, N.] CNRS, IRAP, F-31028 Toulouse 4, France. [Brandt, T. J.; Knoedlseder, J.; Vilchez, N.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Brandt, T. J.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Dept Phys, Columbus, OH 43210 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fortin, P.; Horan, D.] Ecole Polytech, CNRS IN2P3, Lab Leprince Ringuet, Palaiseau, France. [Caliandro, G. A.; Hadasch, D.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Chekhtman, A.] Artep Inc, Ellicott City, MD 21042 USA. [Cheung, C. C.] Natl Acad Sci, Washington, DC 20001 USA. [Cillis, A. N.] Inst Astron & Fis Espacio, Buenos Aires, DF, Argentina. [Cillis, A. N.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cohen-Tanugi, J.; Nuss, E.; Pelassa, V.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS IN2P3, Montpellier, France. [Conrad, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Jackson, M. S.; Yang, Z.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Corbel, S.] Inst Univ France, F-75005 Paris, France. [Cutini, S.; Gasparrini, D.] Agenzia Spaziale Italiana ASI, Sci Data Ctr, I-00044 Rome, Italy. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Dermer, C. D.; Lovellette, M. N.; Strickman, M. S.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Dumora, D.; Lemoine-Goumard, M.; Reposeur, T.; Smith, D. A.] Univ Bordeaux 1, CNRS IN2p3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fukazawa, Y.; Hanabata, Y.; Hayashi, K.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Fukui, Y.; Yamamoto, H.] Nagoya Univ, Dept Phys & Astrophys, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Grondin, M. -H.] Univ Tubingen, Inst Astron & Astrophys, D-72076 Tubingen, Germany. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Jackson, M. S.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Mignani, R. P.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Moiseev, A. A.] CRESST, Greenbelt, MD 20771 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Kanagawa 2525210, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Pohl, M.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Pohl, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.; Vianello, G.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Yamazaki, R.] Aoyama Gakuin Univ, Dept Math & Phys, Kanagawa 2525258, Japan. RP Abdo, AA (reprint author), George Mason Univ, Coll Sci, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA. EM markusa@slac.stanford.edu; funk@slac.stanford.edu; uchiyama@slac.stanford.edu RI Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Morselli, Aldo/G-6769-2011; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Funk, Stefan/B-7629-2015 OI Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Chaty, Sylvain/0000-0002-5769-8601; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Cutini, Sara/0000-0002-1271-2924; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Giordano, Francesco/0000-0002-8651-2394; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; Morselli, Aldo/0000-0002-7704-9553; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080 FU K. A. Wallenberg Foundation; European Community [ERC-StG-259391]; International Doctorate on Astroparticle Physics (IDAPP) program FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation.; Funded by contract ERC-StG-259391 from the European Community.; Partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program. NR 47 TC 134 Z9 137 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2011 VL 734 IS 1 AR 28 DI 10.1088/0004-637X/734/1/28 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OS UT WOS:000291026900028 ER PT J AU Arendt, RG George, JV Staguhn, JG Benford, DJ Devlin, MJ Dicker, SR Fixsen, DJ Irwin, KD Jhabvala, CA Korngut, PM Kovacs, A Maher, SF Mason, BS Miller, TM Moseley, SH Navarro, S Sievers, A Sievers, JL Sharp, E Wollack, EJ AF Arendt, R. G. George, J. V. Staguhn, J. G. Benford, D. J. Devlin, M. J. Dicker, S. R. Fixsen, D. J. Irwin, K. D. Jhabvala, C. A. Korngut, P. M. Kovacs, A. Maher, S. F. Mason, B. S. Miller, T. M. Moseley, S. H. Navarro, S. Sievers, A. Sievers, J. L. Sharp, E. Wollack, E. J. TI THE RADIO-2 mm SPECTRAL INDEX OF THE CRAB NEBULA MEASURED WITH GISMO SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: individual objects (Crab Nebula); ISM: supernova remnants; radiation mechanisms: non-thermal ID PROBE WMAP OBSERVATIONS; PULSAR WIND NEBULAE; INFRARED OBSERVATIONS; TELESCOPE; CALIBRATION; MILLIMETER; EVOLUTION; EMISSION; WISPS; DUST AB We present results of 2 mm observations of the Crab Nebula, obtained using the Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) bolometer camera on the IRAM 30 m telescope. Additional 3.3 mm observations with the MUSTANG bolometer array on the Green Bank Telescope are also presented. The integrated 2 mm flux density of the Crab Nebula provides no evidence for the emergence of a second synchrotron component that has been proposed. It is consistent with the radio power-law spectrum, extrapolated up to a break frequency of log(nu(b) [GHz]) = 2.84 +/- 0.29 or nu(b) = 695(-336)(+651) GHz. The Crab Nebula is well resolved by the similar to 16 ''.7 beam (FWHM) of GISMO. Comparison to radio data at comparable spatial resolution enables us to confirm significant spatial variation of the spectral index between 21 cm and 2 mm. The main effect is a spectral flattening in the inner region of the Crab Nebula, correlated with the toroidal structure at the center of the nebula that is prominent in the near-IR through X-ray regime. C1 [Arendt, R. G.; Staguhn, J. G.; Benford, D. J.; Fixsen, D. J.; Jhabvala, C. A.; Maher, S. F.; Miller, T. M.; Moseley, S. H.; Sharp, E.; Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [George, J. V.; Staguhn, J. G.; Fixsen, D. J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Staguhn, J. G.] Johns Hopkins Univ, Henry A Rowland Dept Phys & Astron, Baltimore, MD 21218 USA. [Devlin, M. J.; Dicker, S. R.; Korngut, P. M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Irwin, K. D.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Kovacs, A.] Univ Minnesota, Dept Astron, Minneapolis, MN 55414 USA. [Maher, S. F.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Mason, B. S.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Navarro, S.; Sievers, A.] Inst Radioastron Milimetr IRAM, Granada 18012, Spain. [Sievers, J. L.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Arendt, R. G.] Univ Maryland Baltimore Cty, CRESST, Baltimore, MD 21250 USA. [Sharp, E.] Global Sci & Technol Inc, Greenbelt, MD 20770 USA. RP Arendt, RG (reprint author), Univ Maryland Baltimore Cty, CRESST, Baltimore, MD 21250 USA. EM Richard.G.Arendt@nasa.gov RI Benford, Dominic/D-4760-2012; Kovacs, Attila/C-1171-2010; Wollack, Edward/D-4467-2012; OI Benford, Dominic/0000-0002-9884-4206; Kovacs, Attila/0000-0001-8991-9088; Wollack, Edward/0000-0002-7567-4451; Sievers, Jonathan/0000-0001-6903-5074; Arendt, Richard/0000-0001-8403-8548 FU INSU/CNRS (France); MPG (Germany); IGN (Spain); NSF [AST-0705185, AST-1020981]; NASA [APRA 04-0055-149] FX Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).; We are extremely grateful to M. Bietenholz and R. Bandiera having provided us with the high-quality radio maps and the 1.3 mm map, respectively, of the Crab Nebula. We thank the anonymous referee for suggesting useful improvements to the paper. We thank the IRAM 30 m telescope support staff in Granada, especially Javier Lobato and Dave John, for their assistance on the inaugural GISMO observing run. Support for this work was provided through NSF grants AST-0705185 and AST-1020981 and NASA grant APRA 04-0055-149. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The IRAC map is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This research has made use of data obtained from the Chandra Data Archive operated by the Chandra X-ray Center (CXC). NR 43 TC 10 Z9 10 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2011 VL 734 IS 1 AR 54 DI 10.1088/0004-637X/734/1/54 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OS UT WOS:000291026900054 ER PT J AU Brandenburg, A Subramanian, K Balogh, A Goldstein, ML AF Brandenburg, Axel Subramanian, Kandaswamy Balogh, Andre Goldstein, Melvyn L. TI SCALE DEPENDENCE OF MAGNETIC HELICITY IN THE SOLAR WIND SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetohydrodynamics (MHD); turbulence ID MAGNETOHYDRODYNAMIC TURBULENCE; ACTIVE REGIONS; DYNAMO THEORY; FIELD; FLUX; FLUCTUATIONS; TRANSPORT; ROTATION; ENERGY; SUN AB We determine the magnetic helicity, along with the magnetic energy, at high latitudes using data from the Ulysses mission. The data set spans the time period from 1993 to 1996. The basic assumption of the analysis is that the solar wind is homogeneous. Because the solar wind speed is high, we follow the approach first pioneered by Matthaeus et al. by which, under the assumption of spatial homogeneity, one can use Fourier transforms of the magnetic field time series to construct one-dimensional spectra of the magnetic energy and magnetic helicity under the assumption that the Taylor frozen-in-flow hypothesis is valid. That is a well-satisfied assumption for the data used in this study. The magnetic helicity derives from the skew-symmetric terms of the three-dimensional magnetic correlation tensor, while the symmetric terms of the tensor are used to determine the magnetic energy spectrum. Our results show a sign change of magnetic helicity at wavenumber k approximate to 2 AU(-1) (or frequency nu approximate to 2 mu Hz) at distances below 2.8 AU and at k approximate to 30 AU(-1) (or nu approximate to 25 mu Hz) at larger distances. At small scales the magnetic helicity is positive at northern heliographic latitudes and negative at southern latitudes. The positive magnetic helicity at small scales is argued to be the result of turbulent diffusion reversing the sign relative to what is seen at small scales at the solar surface. Furthermore, the magnetic helicity declines toward solar minimum in 1996. The magnetic helicity flux integrated separately over one hemisphere amounts to about 10(45) Mx(2) cycle(-1) at large scales and to a three times lower value at smaller scales. C1 [Brandenburg, Axel] AlbaNova Univ Ctr, NORDITA, SE-10691 Stockholm, Sweden. [Brandenburg, Axel] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Subramanian, Kandaswamy] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Balogh, Andre] Int Space Sci Inst, CH-3012 Bern, Switzerland. [Balogh, Andre] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Space & Atmospher Grp, London, England. [Goldstein, Melvyn L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Brandenburg, A (reprint author), AlbaNova Univ Ctr, NORDITA, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden. EM brandenb@nordita.org; kandu@iucaa.ernet.in; a.balogh@imperial.ac.uk; melvyn.l.goldstein@nasa.gov RI Goldstein, Melvyn/B-1724-2008; Brandenburg, Axel/I-6668-2013 OI Brandenburg, Axel/0000-0002-7304-021X FU European Research Council [227952]; Swedish Research Council [621-2007-4064] FX A.B. and K.S. acknowledge the hospitality of the International Space Science Institute in Bern, where this work was started. This work was supported in part by the European Research Council under the AstroDyn Research Project No. 227952 and the Swedish Research Council Grant No. 621-2007-4064. NR 59 TC 19 Z9 19 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2011 VL 734 IS 1 AR 9 DI 10.1088/0004-637X/734/1/9 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OS UT WOS:000291026900009 ER PT J AU Fixsen, DJ Kashlinsky, A AF Fixsen, D. J. Kashlinsky, A. TI PROBING THE UNIVERSE'S TILT WITH THE COSMIC INFRARED BACKGROUND DIPOLE SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; infrared: diffuse background ID SCALE PECULIAR VELOCITIES; COBE FIRAS; COSMOLOGICAL IMPLICATIONS; PREINFLATIONARY UNIVERSE; SKY MAPS; MICROWAVE; ANISOTROPY; GALAXIES; SPECTRUM; CLUSTERS AB Conventional interpretation of the observed cosmic microwave background (CMB) dipole is that all of it is produced by local peculiar motions. Alternative explanations requiring part of the dipole to be primordial have received support from measurements of large-scale bulk flows. A test of the two hypotheses is whether other cosmic dipoles produced by collapsed structures later than the last scattering coincide with the CMB dipole. One background is the cosmic infrared background (CIB) whose absolute spectrum was measured to similar to 30% by the COBE satellite. Over the 100-500 mu m wavelength range its spectral energy distribution can provide a probe of its alignment with the CMB. This is tested with the COBE FIRAS data set which is available for such a measurement because of its low noise and frequency resolution which are important for Galaxy subtraction. Although the FIRAS instrument noise is in principle low enough to determine the CIB dipole, the Galactic foreground is sufficiently close spectrally to keep the CIB dipole hidden. A similar analysis is performed with DIRBE, which-because of the limited frequency coverage-provides a poorer data set. We discuss strategies for measuring the CIB dipole with future instruments to probe the tilt and apply it to the Planck, Herschel, and the proposed Pixie missions. We demonstrate that a future FIRAS-like instrument with instrument noise a factor of similar to 10 lower than FIRAS would make a statistically significant measurement of the CIB dipole. We find that the Planck and Herschel data sets will not allow a robust CIB dipole measurement. The Pixie instrument promises a determination of the CIB dipole and its alignment with either the CMB dipole or the dipole galaxy acceleration vector. C1 [Fixsen, D. J.] Univ Maryland, Dept Phys & Astron, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kashlinsky, A.] NASA, Goddard Space Flight Ctr, SSAI, Greenbelt, MD 20771 USA. RP Fixsen, DJ (reprint author), Univ Maryland, Dept Phys & Astron, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM dale.j.fixsen@nasa.gov; alexander.kashlinsky@nasa.gov FU NASA [06-ADP06-0012]; NSF [AST 04-06587] FX This work was supported by NASA 06-ADP06-0012 and NSF AST 04-06587 grants. We thank Al Kogut for providing data on the projected Pixie noise levels and the anonymous referee for useful critique of the original manuscript. NR 43 TC 7 Z9 7 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2011 VL 734 IS 1 AR 61 DI 10.1088/0004-637X/734/1/61 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OS UT WOS:000291026900061 ER PT J AU Fixsen, DJ Kogut, A Levin, S Limon, M Lubin, P Mirel, P Seiffert, M Singal, J Wollack, E Villela, T Wuensche, CA AF Fixsen, D. J. Kogut, A. Levin, S. Limon, M. Lubin, P. Mirel, P. Seiffert, M. Singal, J. Wollack, E. Villela, T. Wuensche, C. A. TI ARCADE 2 MEASUREMENT OF THE ABSOLUTE SKY BRIGHTNESS AT 3-90 GHz SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; diffuse radiation; radio continuum: general ID CONTINUUM SURVEY; RADIO-EMISSION; TEMPERATURE; COBE; INSTRUMENT; MHZ AB The ARCADE 2 instrument has measured the absolute temperature of the sky at frequencies 3, 8, 10, 30, and 90 GHz, using an open-aperture cryogenic instrument observing at balloon altitudes with no emissive windows between the beam-forming optics and the sky. An external blackbody calibrator provides an in situ reference. Systematic errors were greatly reduced by using differential radiometers and cooling all critical components to physical temperatures approximating the cosmic microwave background (CMB) temperature. A linear model is used to compare the output of each radiometer to a set of thermometers on the instrument. Small corrections are made for the residual emission from the flight train, balloon, atmosphere, and foreground Galactic emission. The ARCADE 2 data alone show an excess radio rise of 54 +/- 6 mK at 3.3 GHz in addition to a CMB temperature of 2.731 +/- 0.004 K. Combining the ARCADE 2 data with data from the literature shows an excess power-law spectrum of T = 24.1 +/- 2.1 (K) (nu/nu(0))(-2.599 +/- 0.036) from 22 MHz to 10 GHz (nu(0) = 310 MHz) in addition to a CMB temperature of 2.725 +/- 0.001 K. C1 [Fixsen, D. J.] Univ Maryland, Dept Phys & Astron, NASA, GSFC, Greenbelt, MD 20771 USA. [Kogut, A.; Wollack, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Levin, S.; Seiffert, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Limon, M.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Lubin, P.] Univ Calif Santa Barbara, Dept Phys & Astron, Santa Barbara, CA 93106 USA. [Mirel, P.] Wyle Informat Syst, Mclean, VA USA. [Singal, J.] Kavli Inst Particle Astrophys & Cosmol, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Villela, T.; Wuensche, C. A.] Inst Nacl Pesquisas Espaciais, Div Astrofis, BR-12245970 Sao Jose Dos Campos, SP, Brazil. RP Fixsen, DJ (reprint author), Univ Maryland, Dept Phys & Astron, NASA, GSFC, Code 665, Greenbelt, MD 20771 USA. EM dale.j.fixsen@nasa.gov RI Tecnologias espaciai, Inct/I-2415-2013; Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Limon, Michele/0000-0002-5900-2698 FU National Aeronautics and Space Administration through the Science Mission Directorate; National Aeronautics and Space Administration; CNPq [466184/00-0, 305219-2004-9, 303637/2007-2-FA, 307433/2004-8-FA] FX This research is based upon work supported by the National Aeronautics and Space Administration through the Science Mission Directorate under the Astronomy and Physics Research and Analysis suborbital program. The research described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We also thank the interns who worked on this experiment Adam Bushmaker, Jane Cornett, Sarah Fixsen, Luke Lowe, and Alexander Rischard. T.V. acknowledges support from CNPq grants 466184/00-0, 305219-2004-9, and 303637/2007-2-FA, and the technical support from LuizReitano. C.A.W. acknowledges support from CNPq grant 307433/2004-8-FA. NR 21 TC 59 Z9 59 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2011 VL 734 IS 1 AR 5 DI 10.1088/0004-637X/734/1/5 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OS UT WOS:000291026900005 ER PT J AU Jenkins, LP Brandt, WN Colbert, EJM Koribalski, B Kuntz, KD Levan, AJ Ojha, R Roberts, TP Ward, MJ Zezas, A AF Jenkins, L. P. Brandt, W. N. Colbert, E. J. M. Koribalski, B. Kuntz, K. D. Levan, A. J. Ojha, R. Roberts, T. P. Ward, M. J. Zezas, A. TI INVESTIGATING THE NUCLEAR ACTIVITY OF BARRED SPIRAL GALAXIES: THE CASE OF NGC 1672 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: individual (NGC 1672); galaxies: nuclei; galaxies: spiral ID RADIATIVELY INEFFICIENT ACCRETION; TELESCOPE ADVANCED CAMERA; NEARBY SEYFERT-GALAXIES; XMM-NEWTON OBSERVATIONS; STAR-FORMING GALAXIES; X-RAY SUPERNOVAE; GALACTIC NUCLEI; SPACE-TELESCOPE; EMISSION-LINE; RADIO-EMISSION AB We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST), infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D-25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (L-X > 5 x 10(39) erg s(-1)) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (Gamma similar to 1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 x 10(38) erg s(-1). This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN. C1 [Jenkins, L. P.] NASA, Goddard Space Flight Ctr, Lab Xray Astrophys, Greenbelt, MD 20771 USA. [Jenkins, L. P.; Colbert, E. J. M.; Kuntz, K. D.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Brandt, W. N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Koribalski, B.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Levan, A. J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Ojha, R.] USN Observ, NVI, Washington, DC 20392 USA. [Roberts, T. P.; Ward, M. J.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Zezas, A.] Univ Crete, Dept Phys, GR-71003 Iraklion, Greece. RP Jenkins, LP (reprint author), NASA, Goddard Space Flight Ctr, Lab Xray Astrophys, Code 662, Greenbelt, MD 20771 USA. RI Brandt, William/N-2844-2015; Zezas, Andreas/C-7543-2011; OI Brandt, William/0000-0002-0167-2453; Zezas, Andreas/0000-0001-8952-676X; Jenkins, Leigh/0000-0001-9464-0719 FU NASA [NNX10AC99G, NAS8-03060, NAS 5-26555]; ESA Member States; Commonwealth of Australia FX We thank the referee for helpful comments that have improved the manuscript. L.P.J. acknowledges funding for the majority of this project from the NASA Postdoctoral Fellowship Program. W.N.B. acknowledges NASA ADP grant NNX10AC99G. This research has made use of software provided by the Chandra X-ray Center (CXC), which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. The XMM-Newton observatory is an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. Observations made with the NASA/ESA Hubble Space Telescope were obtained from the data archive at the Space Telescope Institute. STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555. The Spitzer Space Telescope is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. The Australia Telescope Compact Array is part of the Australia Telescope which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 99 TC 3 Z9 3 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2011 VL 734 IS 1 AR 33 DI 10.1088/0004-637X/734/1/33 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OS UT WOS:000291026900033 ER PT J AU Kogut, A Fixsen, DJ Levin, SM Limon, M Lubin, PM Mirel, P Seiffert, M Singal, J Villela, T Wollack, E Wuensche, CA AF Kogut, A. Fixsen, D. J. Levin, S. M. Limon, M. Lubin, P. M. Mirel, P. Seiffert, M. Singal, J. Villela, T. Wollack, E. Wuensche, C. A. TI ARCADE 2 OBSERVATIONS OF GALACTIC RADIO EMISSION SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; radiation mechanisms: non-thermal; radio continuum: ISM ID MICROWAVE BACKGROUND-RADIATION; ABSOLUTE SKY BRIGHTNESS; 45-MHZ CONTINUUM SURVEY; FOREGROUND EMISSION; SYNCHROTRON EMISSION; SPECTRAL INDEX; GHZ; MAPS; MHZ; TEMPERATURE AB We use absolutely calibrated data from the ARCADE 2 flight in 2006 July to model Galactic emission at frequencies 3, 8, and 10 GHz. The spatial structure in the data is consistent with a superposition of free-free and synchrotron emission. Emission with spatial morphology traced by the Haslam 408 MHz survey has spectral index beta(synch) = -2.5 +/- 0.1, with free-free emission contributing 0.10 +/- 0.01 of the total Galactic plane emission in the lowest ARCADE 2 band at 3.15 GHz. We estimate the total Galactic emission toward the polar caps using either a simple plane-parallel model with csc vertical bar b vertical bar dependence or a model of high-latitude radio emission traced by the COBE/FIRAS map of C II emission. Both methods are consistent with a single power law over the frequency range 22 MHz to 10 GHz, with total Galactic emission toward the north polar cap T-Gal = 10.12 +/- 0.90 K and spectral index beta = -2.55 +/- 0.03 at reference frequency 0.31 GHz. Emission associated with the plane-parallel structure accounts for only 30% of the observed high-latitude sky temperature, with the residual in either a Galactic halo or an isotropic extragalactic background. The well-calibrated ARCADE 2 maps provide a new test for spinning dust emission, based on the integrated intensity of emission from the Galactic plane instead of cross-correlations with the thermal dust spatial morphology. The Galactic plane intensity measured by ARCADE 2 is fainter than predicted by models without spinning dust and is consistent with spinning dust contributing 0.4 +/- 0.1 of the Galactic plane emission at 23 GHz. C1 [Kogut, A.; Mirel, P.] NASA, Goddard Space Flight Ctr, Wyle Informat Syst, Greenbelt, MD 20771 USA. [Fixsen, D. J.] Univ Maryland, Dept Phys & Astron, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Levin, S. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Limon, M.; Seiffert, M.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Lubin, P. M.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Singal, J.] Kavli Inst Particle Astrophys & Cosmol, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Villela, T.; Wuensche, C. A.] Inst Nacl Pesquisas Espaciais, Div Astrophys, BR-12245970 Sao Jose Dos Campos, SP, Brazil. RP Kogut, A (reprint author), NASA, Goddard Space Flight Ctr, Wyle Informat Syst, Code 665, Greenbelt, MD 20771 USA. EM Alan.J.Kogut@nasa.gov RI Tecnologias espaciai, Inct/I-2415-2013; Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Limon, Michele/0000-0002-5900-2698 FU National Aeronautics and Space Administration through the Science Mission Directorate; National Aeronautics and Space Administration; CNPq [466184/00-0, 305219-2004-9, 303637/2007-2-FA, 307433/2004-8-FA] FX We thank the staff of the Columbia Scientific Balloon Facility for their capable support throughout the integration, launch, flight, and recovery of the ARCADE 2 mission. We thank the students whose work helped make ARCADE 2 possible: Adam Bushmaker, Jane Cornett, Sarah Fixsen, Luke Lowe, and Alexander Rischard. We thank P. Reich for providing the 45 MHz and 1420 MHz surveys in electronic format. We acknowledge use of the HEALPix software package (Gorski et al. 2005). This research is based upon work supported by the National Aeronautics and Space Administration through the Science Mission Directorate under the Astronomy and Physics Research and Analysis suborbital program. The research described in this paper was performed in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. T.V. acknowledges support from CNPq grants 466184/00-0, 305219-2004-9, and 303637/2007-2-FA, and the technical support from Luiz Reitano. C.A.W. acknowledges support from CNPq grant 307433/2004-8-FA. NR 40 TC 37 Z9 37 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2011 VL 734 IS 1 AR 4 DI 10.1088/0004-637X/734/1/4 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OS UT WOS:000291026900004 ER PT J AU Millan-Gabet, R Serabyn, E Mennesson, B Traub, WA Barry, RK Danchi, WC Kuchner, M Stark, CC Ragland, S Hrynevych, M Woillez, J Stapelfeldt, K Bryden, G Colavita, MM Booth, AJ AF Millan-Gabet, R. Serabyn, E. Mennesson, B. Traub, W. A. Barry, R. K. Danchi, W. C. Kuchner, M. Stark, C. C. Ragland, S. Hrynevych, M. Woillez, J. Stapelfeldt, K. Bryden, G. Colavita, M. M. Booth, A. J. TI EXOZODIACAL DUST LEVELS FOR NEARBY MAIN-SEQUENCE STARS: A SURVEY WITH THE KECK INTERFEROMETER NULLER SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; techniques: high angular resolution; zodiacal dust ID SOLAR-TYPE STARS; DEBRIS DISKS; EXTRASOLAR PLANETS; KUIPER-BELT; ETA-CORVI; HOT DUST; SEARCH; EMISSION; SPECTRA; CLOUD AB The Keck Interferometer Nuller (KIN) was used to survey 25 nearby main-sequence stars in the mid-infrared, in order to assess the prevalence of warm circumstellar (exozodiacal) dust around nearby solar-type stars. The KIN measures circumstellar emission by spatially blocking the star but transmitting the circumstellar flux in a region typically 0.1-4 AU from the star. We find one significant detection (eta Crv), two marginal detections (gamma Oph and alpha Aql), and 22 clear non-detections. Using a model of our own solar system's zodiacal cloud, scaled to the luminosity of each target star, we estimate the equivalent number of target zodis needed to match our observations. Our three zodi detections are eta Crv (1250 +/- 260), gamma Oph (200 +/- 80), and alpha Aql (600 +/- 200), where the uncertainties are 1 sigma. The 22 non-detected targets have an ensemble weighted average consistent with zero, with an average individual uncertainty of 160 zodis (1 sigma). These measurements represent the best limits to date on exozodi levels for a sample of nearby main-sequence stars. A statistical analysis of the population of 23 stars not previously known to contain circumstellar dust (excluding eta Crv and gamma Oph) suggests that, if the measurement errors are uncorrelated (for which we provide evidence) and if these 23 stars are representative of a single class with respect to the level of exozodi brightness, the mean exozodi level for the class is < 150 zodis (3 sigma upper limit, corresponding to 99% confidence under the additional assumption that the measurement errors are Gaussian). We also demonstrate that this conclusion is largely independent of the shape and mean level of the (unknown) true underlying exozodi distribution. C1 [Millan-Gabet, R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Serabyn, E.; Mennesson, B.; Traub, W. A.; Stapelfeldt, K.; Bryden, G.; Colavita, M. M.; Booth, A. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Barry, R. K.; Danchi, W. C.; Kuchner, M.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Stark, C. C.] Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA. [Ragland, S.; Hrynevych, M.; Woillez, J.] Keck Observ, Kamuela, HI 96743 USA. RP Millan-Gabet, R (reprint author), CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. EM R.Millan-Gabet@caltech.edu FU National Aeronautics and Space Administration; W. M. Keck Foundation; NASA FX The Keck Interferometer is funded by the National Aeronautics and Space Administration as part of its Exoplanet Exploration Program. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. This work has made use of services produced by the NASA Exoplanet Science Institute at the California Institute of Technology. This research has made use of the Washington Double Star Catalog maintained at the U.S. Naval Observatory. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The authors wish to acknowledge invaluable contributions from the KI team at Keck Observatory, the Jet Propulsion Lab, and the NASA Exoplanet Science Institute. R.M.G. acknowledges fruitful discussions with J. D. Monnier. NR 50 TC 36 Z9 36 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2011 VL 734 IS 1 AR 67 DI 10.1088/0004-637X/734/1/67 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OS UT WOS:000291026900067 ER PT J AU Ofman, L Abbo, L Giordano, S AF Ofman, Leon Abbo, Lucia Giordano, Silvio TI MULTI-FLUID MODEL OF A STREAMER AT SOLAR MINIMUM AND COMPARISON WITH OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE solar wind; Sun: corona; Sun: magnetic topology; Sun: UV radiation ID ULTRAVIOLET CORONAGRAPH SPECTROMETER; MAGNETOHYDRODYNAMIC MODEL; UV OBSERVATIONS; MAGNETIC-FIELD; ACTIVITY CYCLE; OUTER CORONA; FLOW SPEEDS; LYMAN-ALPHA; WIND MODEL; SLOW WIND AB We present the results of a time-dependent 2.5-dimensional three-fluid magnetohydrodynamic model of the coronal streamer belt, which is compared with the slow solar wind plasma parameters obtained in the extended corona by the UV spectroscopic data from the Ultraviolet Coronagraph Spectrometer (UVCS) on board SOHO during the past minimum of solar activity (Carrington Rotation 1913). Our previous three-fluid streamer model has been improved by considering the solar magnetic field configuration relevant for solar minimum conditions, and preferential heating for O5+ ions. The model was run until a fully self-consistent streamer solution was obtained in the quasi-steady state. The plasma parameters from the multi-fluid model were used to compute the expected UV observables from H I Ly alpha 1216 angstrom and O VI 1032 angstrom spectral lines, and the results were compared in detail with the UVCS measurements. A good agreement between the model and the data was found. The results of the study provide insight into the acceleration and heating of the multi-ion slow solar wind. C1 [Ofman, Leon] Catholic Univ Amer, Dept Phys, Greenbelt, MD 20771 USA. [Ofman, Leon] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Abbo, Lucia; Giordano, Silvio] INAF Astron Observ Turin, Turin, Italy. RP Ofman, L (reprint author), Tel Aviv Univ, Dept Geophys & Planetary Sci, IL-69978 Tel Aviv, Israel. EM Leon.Ofman@nasa.gov OI Abbo, Lucia/0000-0001-8235-2242; Giordano, Silvio/0000-0002-3468-8566 FU NASA [NNX08AF85G, NNX08AV88G]; NSF [AGS-1059838]; National Institute for Astrophysics (INAF) [I/023/09/0]; ASI [I/023/09/0] FX This work was supported by NASA grants NNX08AF85G and NNX08AV88G, and by NSF grant AGS-1059838. UVCS is a joint project of NASA, the Agenzia Spaziale Italiana (ASI), and the Swiss Founding Agencies. The research of L. A. has been funded through contract I/023/09/0 between the National Institute for Astrophysics (INAF) and the ASI. NR 59 TC 8 Z9 9 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2011 VL 734 IS 1 AR 30 DI 10.1088/0004-637X/734/1/30 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OS UT WOS:000291026900030 ER PT J AU Rouillard, AP Sheeley, NR Cooper, TJ Davies, JA Lavraud, B Kilpua, EKJ Skoug, RM Steinberg, JT Szabo, A Opitz, A Sauvaud, JA AF Rouillard, A. P. Sheeley, N. R., Jr. Cooper, T. J. Davies, J. A. Lavraud, B. Kilpua, E. K. J. Skoug, R. M. Steinberg, J. T. Szabo, A. Opitz, A. Sauvaud, J. -A. TI THE SOLAR ORIGIN OF SMALL INTERPLANETARY TRANSIENTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE solar wind; Sun: corona; Sun: coronal mass ejections (CMEs); Sun: heliosphere ID CORONAL MASS EJECTIONS; MAGNETIC CLOUD EXPANSION; ALFVEN WAVES; FLUX ROPE; 1 AU; HELIOSPHERIC IMAGERS; STEREO OBSERVATIONS; WIND SPACECRAFT; STREAMER BLOBS; PLASMA AB In this paper, we present evidence for magnetic transients with small radial extents ranging from 0.025 to 0.118 AU measured in situ by the Solar-Terrestrial Relations Observatory (STEREO) and the near-Earth Advanced Composition Explorer (ACE) and Wind spacecraft. The transients considered in this study are much smaller (< 0.12 AU) than the typical sizes of magnetic clouds measured near 1 AU (similar to 0.23 AU). They are marked by low plasma beta values, generally lower magnetic field variance, short timescale magnetic field rotations, and are all entrained by high-speed streams by the time they reach 1 AU. We use this entrainment to trace the origin of these small interplanetary transients in coronagraph images. We demonstrate that these magnetic field structures originate as either small or large mass ejecta. The small mass ejecta often appear from the tip of helmet streamers as arch-like structures and other poorly defined white-light features (the so-called blobs). However, we have found a case of a small magnetic transient tracing back to a small and narrow mass ejection erupting from below helmet streamers. Surprisingly, one of the small magnetic structures traces back to a large mass ejection; in this case, we show that the central axis of the coronal mass ejection is along a different latitude and longitude to that of the in situ spacecraft. The small size of the transient is related to the in situ measurements being taken on the edges or periphery of a larger magnetic structure. In the last part of the paper, an ejection with an arch-like aspect is tracked continuously to 1 AU in the STEREO images. The associated in situ signature is not that of a magnetic field rotation but rather of a temporary reversal of the magnetic field direction. Due to its "open-field topology," we speculate that this structure is partly formed near helmet streamers due to reconnection between closed and open magnetic field lines. The implications of these observations for our understanding of the variability of the slow solar wind are discussed. C1 [Rouillard, A. P.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Rouillard, A. P.; Szabo, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sheeley, N. R., Jr.; Cooper, T. J.] USN, Res Lab, Washington, DC USA. [Davies, J. A.] Rutherford Appleton Lab, RAL Space, Chilton OX11 0QX, England. [Lavraud, B.; Opitz, A.; Sauvaud, J. -A.] Univ Toulouse, Ctr Etud Spatiale Rayonnements, F-21028 Toulouse, France. [Lavraud, B.; Opitz, A.; Sauvaud, J. -A.] CNRS, UMR 5187, Toulouse, France. [Kilpua, E. K. J.] Univ Helsinki, Dept Phys Sci, Div Theoret Phys, FIN-00014 Helsinki, Finland. [Skoug, R. M.; Steinberg, J. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Rouillard, AP (reprint author), George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. RI Kilpua, Emilia/G-8994-2012 FU NASA [NNX11AD40G-45527, NNXIOAT06G]; Academy of Finland [130298]; Office of Naval Research FX The STEREO/SECCHI data are produced by a consortium of RAL (UK), NRL (USA), LMSAL (USA), GSFC (USA), MPS (Germany), CSL (Belgium), IOTA (France), and IAS (France). The ACE data were obtained from the ACE science center. The Wind data were obtained from the Space Physics Data Facility. The SECCHI images were obtained from the Naval Research Laboratory, Washington DC, USA, and the World Data Center, Chilton, UK. This work was partly supported by NASA. E.K. J.K.'s study was supported through the Academy of Finland (project 130298). The NRL employees acknowledge support from the Office of Naval Research. The work of A.P.R. was partly funded by NASA contracts NNX11AD40G-45527 and NNXIOAT06G. NR 70 TC 21 Z9 21 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2011 VL 734 IS 1 AR 7 DI 10.1088/0004-637X/734/1/7 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OS UT WOS:000291026900007 ER PT J AU Seiffert, M Fixsen, DJ Kogut, A Levin, SM Limon, M Lubin, PM Mirel, P Singal, J Villela, T Wollack, E Wuensche, CA AF Seiffert, M. Fixsen, D. J. Kogut, A. Levin, S. M. Limon, M. Lubin, P. M. Mirel, P. Singal, J. Villela, T. Wollack, E. Wuensche, C. A. TI INTERPRETATION OF THE ARCADE 2 ABSOLUTE SKY BRIGHTNESS MEASUREMENT SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations ID MICROWAVE BACKGROUND SPECTRUM; ON SPIRAL GALAXIES; RADIO-EMISSION; DEEP FIELD; RADIATION TEMPERATURE; CONTINUUM SURVEY; 2.5 GHZ; COBE; DISTORTIONS; UNIVERSE AB We use absolutely calibrated data between 3 and 90 GHz from the 2006 balloon flight of the ARCADE 2 instrument, along with previous measurements at other frequencies, to constrain models of extragalactic emission. Such emission is a combination of the cosmic microwave background (CMB) monopole, Galactic foreground emission, the integrated contribution of radio emission from external galaxies, any spectral distortions present in the CMB, and any other extragalactic source. After removal of estimates of foreground emission from our own Galaxy, and an estimated contribution of external galaxies, we present fits to a combination of the flat-spectrum CMB and potential spectral distortions in the CMB. We find 2 sigma upper limits to CMB spectral distortions of mu < 6 x 10(-4) and vertical bar Y-ff vertical bar < 1 x 10(-4). We also find a significant detection of a residual signal beyond that, which can be explained by the CMB plus the integrated radio emission from galaxies estimated from existing surveys. This residual signal may be due to an underestimated galactic foreground contribution, an unaccounted for contribution of a background of radio sources, or some combination of both. The residual signal is consistent with emission in the form of a power law with amplitude 18.4 +/- 2.1 K at 0.31 GHz and a spectral index of -2.57 +/- 0.05. C1 [Seiffert, M.; Mirel, P.] CALTECH, Jet Prop Lab, Wyle Informat Syst, Pasadena, CA 91109 USA. [Fixsen, D. J.; Kogut, A.; Wollack, E.] Univ Maryland, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Limon, M.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Lubin, P. M.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Singal, J.] Kavli Inst Particle Astrophys & Cosmol, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Villela, T.; Wuensche, C. A.] Inst Nacl Pesquisas Espaciais, Div Astrofis, BR-12245970 Sao Jose Dos Campos, SP, Brazil. RP Seiffert, M (reprint author), CALTECH, Jet Prop Lab, Wyle Informat Syst, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Michael.D.Seiffert@jpl.nasa.gov RI Tecnologias espaciai, Inct/I-2415-2013; Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Limon, Michele/0000-0002-5900-2698 FU National Aeronautics and Space Administration; CNPq [466184/00-0, 305219-2004-9, 303637/2007-2-FA, 307433/2004-8-FA] FX It is a pleasure to thank the staff of the Columbia Scientific Balloon Facility for their support of ARCADE 2. We thank the undergraduate students whose work helped make ARCADE 2 possible: Adam Bushmaker, Jane Cornett, Sarah Fixsen, Luke Lowe, and Alexander Rischard. ARCADE 2 was supported by the National Aeronautics and Space Administration suborbital program. T.V. acknowledges support from CNPq grants 466184/00-0, 305219-2004-9, and 303637/2007-2-FA, and the technical support from LuizReitano. C.A.W. acknowledges support from CNPq grant 307433/2004-8-FA. The research described in this paper was performed in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 57 TC 43 Z9 43 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2011 VL 734 IS 1 AR 6 DI 10.1088/0004-637X/734/1/6 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OS UT WOS:000291026900006 ER PT J AU Thejappa, G MacDowall, RJ Gopalswamy, N AF Thejappa, G. MacDowall, R. J. Gopalswamy, N. TI EFFECTS OF REFRACTION ON ANGLES AND TIMES OF ARRIVAL OF SOLAR RADIO BURSTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: coronal mass ejections; Sun: flares; Sun: radio radiation ID STEREO MISSION; EMISSION; DENSITY; CORONA AB Solar type III and type II radio bursts suffer severe bending and group delay due to refraction while escaping from the source where the refractive index mu can be as low as similar to 0 to the observer where mu similar to 1. These propagation effects can manifest themselves as errors in the observed directions and times of arrival at the telescope. We describe a ray-tracing technique that can be used to estimate these errors. By applying this technique to the spherically symmetric density model derived using the data from the WIND/Waves experiment, we show that (1) the fundamental and harmonic emissions escape the solar atmosphere in narrow cones (at 625 kHz the widths of these escape cones are similar to 1 degrees.1 and similar to 8 degrees, respectively), (2) the errors in the angles as well as the times of arrival increase monotonically with the angle of arrival (at 625 kHz these errors are 0 degrees.26 and similar to 17.2 s for the fundamental and similar to 0 degrees.52 and similar to 7.6 s for the harmonic at the maximum possible angles of arrival of similar to 0 degrees.55 and similar to 4 degrees, respectively), and (3) the lower the frequencies are, the higher the errors in both the angles and times of arrival are. This implies that at 625 kHz the measured arrival angles and arrival times of the fundamental and harmonic are off by similar to 50% and similar to 13%, and similar to 3.4% and similar to 1.5%, respectively. C1 [Thejappa, G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [MacDowall, R. J.; Gopalswamy, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Thejappa, G (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM thejappa@astro.umd.edu; Robert.MacDowall@nasa.gov RI MacDowall, Robert/D-2773-2012; Gopalswamy, Nat/D-3659-2012; OI Gopalswamy, Nat/0000-0001-5894-9954 FU NASA [NNX08AO02G, NNX09AB19G] FX Support for T.G. was provided by the NASA Grants NNX08AO02G and NNX09AB19G. NR 18 TC 5 Z9 5 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2011 VL 734 IS 1 AR 16 DI 10.1088/0004-637X/734/1/16 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OS UT WOS:000291026900016 ER PT J AU Hansen, CJ Shemansky, DE Esposito, LW Stewart, AIF Lewis, BR Colwell, JE Hendrix, AR West, RA Waite, JH Teolis, B Magee, BA AF Hansen, C. J. Shemansky, D. E. Esposito, L. W. Stewart, A. I. F. Lewis, B. R. Colwell, J. E. Hendrix, A. R. West, R. A. Waite, J. H., Jr. Teolis, B. Magee, B. A. TI The composition and structure of the Enceladus plume SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID NEUTRAL MASS-SPECTROMETER; CASSINI ION; E-RING; WATER; FRACTURES; DUST; JETS AB The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed an occultation of the Sun by the water vapor plume at the south polar region of Saturn's moon Enceladus. The Extreme Ultraviolet (EUV) spectrum is dominated by the spectral signature of H(2)O gas, with a nominal line-of-sight column density of 0.90 +/- 0.23 x 10(16) cm(-2) (upper limit of 1.0 x 10(16) cm(-2)). The upper limit for N(2) is 5 x 10(13) cm(-2), or <0.5% in the plume; the lack of N(2) has significant implications for models of the geochemistry in Enceladus' interior. The inferred rate of water vapor injection into Saturn's magnetosphere is similar to 200 kg/s. The calculated values of H(2)O flux from three occultations observed by UVIS have a standard deviation of 30 kg/s (15%), providing no evidence for substantial short-term variability. Collimated gas jets are detected in the plume with Mach numbers of 5-8, implying vertical gas velocities that exceed 1000 m/sec. Observations at higher altitudes with the Cassini Ion Neutral Mass Spectrometer indicate correlated structure in the plume. Our results support the subsurface liquid model, with gas escaping and being accelerated through nozzle-like channels to the surface, and are consistent with recent particle composition results from the Cassini Cosmic Dust Analyzer. Citation: Hansen, C. J., et al. (2011), The composition and structure of the Enceladus plume, Geophys. Res. Lett., 38, L11202, doi:10.1029/2011GL047415. C1 [Hansen, C. J.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Shemansky, D. E.] Space Environm Technol, Altadena, CA 91001 USA. [Esposito, L. W.; Stewart, A. I. F.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA. [Lewis, B. R.] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 0200, Australia. [Colwell, J. E.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Hendrix, A. R.; West, R. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Waite, J. H., Jr.; Teolis, B.; Magee, B. A.] SW Res Inst, San Antonio, TX 78238 USA. RP Hansen, CJ (reprint author), Planetary Sci Inst, 1700 E Ft Lowell,Ste 106, Tucson, AZ 85719 USA. EM cjhansen@psi.edu FU Cassini Mission at the Jet Propulsion Laboratory; California Institute of Technology; National Aeronautics and Space Administration FX This work was supported by the Cassini Mission at the Jet Propulsion Laboratory, California Institute of Technology, and the Cassini Data Analysis Program under contracts with the National Aeronautics and Space Administration. The coupled-channel calculations were supported by the Australian Research Council's Discovery Program. The authors thank J.-H. Fillion for providing numerical listings for the H2O cross-sections published in 2003 as well as a description of the limits in accuracy and dynamic range; and Tom Spilker for helpful comments. NR 22 TC 57 Z9 58 U1 2 U2 40 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 9 PY 2011 VL 38 AR L11202 DI 10.1029/2011GL047415 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 776NG UT WOS:000291541500002 ER PT J AU Holzworth, RH McCarthy, MP Pfaff, RF Jacobson, AR Willcockson, WL Rowland, DE AF Holzworth, R. H. McCarthy, M. P. Pfaff, R. F. Jacobson, A. R. Willcockson, W. L. Rowland, D. E. TI Lightning-generated whistler waves observed by probes on the Communication/Navigation Outage Forecast System satellite at low latitudes SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EXPLOSIVE SPREAD-F; GAMMA-RAY FLASHES; ELECTRICAL MEASUREMENTS; ACTIVE THUNDERSTORM; ATMOSPHERE; IONOSPHERE; CAMPAIGN; LAYERS AB Direct evidence is presented for a causal relationship between lightning and strong electric field transients inside equatorial ionospheric density depletions. In fact, these whistler mode plasma waves may be the dominant electric field signal within such depletions. Optical lightning data from the Communication/Navigation Outage Forecast System (C/NOFS) satellite and global lightning location information from the World Wide Lightning Location Network are presented as independent verification that these electric field transients are caused by lightning. The electric field instrument on C/NOFS routinely measures lightning-related electric field wave packets or sferics, associated with simultaneous measurements of optical flashes at all altitudes encountered by the satellite (401-867 km). Lightning-generated whistler waves have abundant access to the topside ionosphere, even close to the magnetic equator. C1 [Holzworth, R. H.; McCarthy, M. P.; Jacobson, A. R.; Willcockson, W. L.] Univ Washington, Seattle, WA 98195 USA. [Pfaff, R. F.; Rowland, D. E.] NASA, Lab Space Weather, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Holzworth, RH (reprint author), Univ Washington, Seattle, WA 98195 USA. EM bobholz@uw.edu RI Rowland, Douglas/F-5589-2012; Pfaff, Robert/F-5703-2012 OI Rowland, Douglas/0000-0003-0948-6257; Pfaff, Robert/0000-0002-4881-9715 FU AFOSR [FA9550-09-1-0309]; NASA [NNX08AD12G] FX This analysis at the University of Washington was supported in part by AFOSR grant FA9550-09-1-0309 and in part by NASA grant NNX08AD12G. The authors wish to thank the World Wide Lightning Location Network (http://wwlln.net), a collaboration among over 50 universities and institutions, for providing the lightning location data used in this paper. NR 28 TC 10 Z9 10 U1 4 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN 8 PY 2011 VL 116 AR A06306 DI 10.1029/2010JA016198 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 776SJ UT WOS:000291557900002 ER PT J AU Gao, J Vale, LR Mates, JAB Schmidt, DR Hilton, GC Irwin, KD Mallet, F Castellanos-Beltran, MA Lehnert, KW Zmuidzinas, J Leduc, HG AF Gao, J. Vale, L. R. Mates, J. A. B. Schmidt, D. R. Hilton, G. C. Irwin, K. D. Mallet, F. Castellanos-Beltran, M. A. Lehnert, K. W. Zmuidzinas, J. Leduc, H. G. TI Strongly quadrature-dependent noise in superconducting microresonators measured at the vacuum-noise limit SO APPLIED PHYSICS LETTERS LA English DT Article ID QUANTUM; AMPLIFICATION; AMPLIFIERS AB We measure frequency- and dissipation-quadrature noise in superconducting microresonators with sensitivity near the vacuum noise level using a Josephson parametric amplifier. At an excitation power of 100 nW, frequency noise rises orders of magnitude above the vacuum noise, but no excess dissipation-quadrature noise is observed above the vacuum noise level. Our results suggest that using quantum amplifiers in dissipation measurement may greatly improve the sensitivity of microresonator readout, which has important implications for applications such as detectors, qubits, and nanomechanical oscillators. (c) 2011 American Institute of Physics. [doi:10.1063/1.3597156] C1 [Gao, J.; Vale, L. R.; Mates, J. A. B.; Schmidt, D. R.; Hilton, G. C.; Irwin, K. D.] Natl Inst Stand & Technol, Boulder, CO 80305 USA. [Mallet, F.; Castellanos-Beltran, M. A.; Lehnert, K. W.] Natl Inst Stand & Technol, Dept Phys, JILA, Boulder, CO 80309 USA. [Mallet, F.; Castellanos-Beltran, M. A.; Lehnert, K. W.] Univ Colorado, Boulder, CO 80309 USA. [Zmuidzinas, J.; Leduc, H. G.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Gao, J (reprint author), Natl Inst Stand & Technol, Boulder, CO 80305 USA. EM jgao@boulder.nist.gov RI Lehnert, Konrad/B-7577-2009; mallet, francois/O-5956-2016 OI Lehnert, Konrad/0000-0002-0750-9649; FU DARPA QUEST FX We thank Jose Aumentado, Lafe Spietz, John Teufel, and John Martinis for useful discussions. The resonator was fabricated in the JPL Microdevices Laboratory. The JPA was fabricated in the NIST, Boulder fabrication facility. This work was supported in part by the DARPA QUEST program. NR 16 TC 11 Z9 11 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 6 PY 2011 VL 98 IS 23 AR 232508 DI 10.1063/1.3597156 PG 3 WC Physics, Applied SC Physics GA 777XQ UT WOS:000291658900049 ER PT J AU Abadie, J Abbott, BP Abbott, R Abernathy, M Accadia, T Acernese, F Adams, C Adhikari, R Ajith, P Allen, B Allen, GS Ceron, EA Amin, RS Anderson, SB Anderson, WG Antonucci, F Arain, MA Araya, MC Aronsson, M Aso, Y Aston, SM Astone, P Atkinson, D Aufmuth, P Aulbert, C Babak, S Baker, P Ballardin, G Ballinger, T Ballmer, S Barker, D Barnum, S Barone, F Barr, B Barriga, P Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Bauchrowitz, J Bauer, TS Behnke, B Beker, MG Belletoile, A Benacquista, M Bertolini, A Betzwieser, J Beveridge, N Beyersdorf, PT Bilenko, IA Billingsley, G Birch, J Birindelli, S Biswas, R Bitossi, M Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Blom, M Boccara, C Bock, O Bodiya, TP Bondarescu, R Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Boschi, V Bose, S Bosi, L Bouhou, B Boyle, M Braccini, S Bradaschia, C Brady, PR Braginsky, VB Brau, JE Breyer, J Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Budzynski, R Bulik, T Bulten, HJ Buonanno, A Burguet-Castell, J Burmeister, O Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cain, J Calloni, E Camp, JB Campagna, E Campsie, P Cannizzo, J Cannon, K Canuel, B Cao, J Capano, C Carbognani, F Caride, S Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chaibi, O Chalermsongsak, T Chalkley, E Charlton, P Chassande-Mottin, E Chelkowski, S Chen, Y Chincarini, A Christensen, N Chua, SSY Chung, CTY Clark, D Clark, J Clayton, JH Cleva, F Coccia, E Colacino, CN Colas, J Colla, A Colombini, M Conte, R Cook, D Corbitt, TR Cornish, N Corsi, A Costa, CA Coulon, JP Coward, DM Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Culter, RM Cumming, A Cunningham, L Cuoco, E Dahl, K Danilishin, SL Dannenberg, R D'Antonio, S Danzmann, K Das, K Dattilo, V Daudert, B Davier, M Davies, G Davis, A Daw, EJ Day, R Dayanga, T DeRosa, R Debra, D Debreczeni, G Degallaix, J del Prete, M Dergachev, V De Rosa, R DeSalvo, R Devanka, P Dhurandhar, S Di Fiore, L Di Lieto, A Di Palma, I Emilio, MD Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Doomes, EE Dorsher, S Douglas, ESD Drago, M Drever, RWP Driggers, JC Dueck, J Dumas, JC Eberle, T Edgar, M Edwards, M Effler, A Ehrens, P Ely, G Engel, R Etzel, T Evans, M Evans, T Fafone, V Fairhurst, S Fan, Y Farr, BF Fazi, D Fehrmann, H Feldbaum, D Ferrante, I Fidecaro, F Finn, LS Fiori, I Flaminio, R Flanigan, M Flasch, K Foley, S Forrest, C Forsi, E Forte, LA Fotopoulos, N Fournier, JD Franc, J Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fulda, P Fyffe, M Galimberti, M Gammaitoni, L Garofoli, JA Garufi, F Gaspar, ME Gemme, G Genin, E Gennai, A Gholami, I Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Gill, C Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Graef, C Granata, M Grant, A Gras, S Gray, C Greenhalgh, RJS Gretarsson, AM Greverie, C Grosso, R Grote, H Grunewald, S Guidi, GM Gustafson, EK Gustafson, R Hage, B Hall, P Hallam, JM Hammer, D Hammond, G Hanks, J Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Haughian, K Hayama, K Hayau, JF Hayler, T Heefner, J Heitmann, H Hello, P Heng, IS Heptonstall, AW Hewitson, M Hild, S Hirose, E Hoak, D Hodge, KA Holt, K Hosken, DJ Hough, J Howell, EJ Hoyland, D Huet, D Hughey, B Husa, S Huttner, SH Huynh-Dinh, T Ingram, DR Inta, R Isogai, T Ivanov, A Jaranowski, P Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kanner, JB Katsavounidis, E Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Khalaidovski, A Khalili, FY Khazanov, EA Kim, H King, PJ Kinzel, DL Kissel, JS Klimenko, S Kondrashov, V Kopparapu, R Koranda, S Kowalska, I Kozak, D Krause, T Kringel, V Krishnamurthy, S Krishnan, B Krolak, A Kuehn, G Kullman, J Kumar, R Kwee, P Landry, M Lang, M Lantz, B Lastzka, N Lazzarini, A Leaci, P Leong, J Leonor, I Leroy, N Letendre, N Li, J Li, TGF Liguori, N Lin, H Lindquist, PE Lockerbie, NA Lodhia, D Lorenzini, M Loriette, V Lormand, M Losurdo, G Lu, P Luan, J Lubinski, M Lucianetti, A Luck, H Lundgren, AD Machenschalk, B MacInnis, M Mageswaran, M Mailand, K Majorana, E Mak, C Maksimovic, I Man, N Mandel, I Mandic, V Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McIntyre, G McIvor, G McKechan, DJA Meadors, G Mehmet, M Meier, T Melatos, A Melissinos, AC Mendell, G Menendez, DF Mercer, RA Merill, L Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mino, Y Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Moe, B Mohan, M Mohanty, SD Mohapatra, SRP Moraru, D Moreau, J Moreno, G Morgado, N Morgia, A Morioka, T Mors, K Mosca, S Moscatelli, V Mossavi, K Mours, B Mow-Lowry, CM Mueller, G Mukherjee, S Mullavey, A Muller-Ebhardt, H Munch, J Murray, PG Nash, T Nawrodt, R Nelson, J Neri, I Newton, G Nishizawa, A Nocera, F Nolting, D Ochsner, E O'Dell, J Ogin, GH Oldenburg, RG O'Reilly, B O'Shaughnessy, R Osthelder, C Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pagliaroli, G Palladino, L Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Pardi, S Pareja, M Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pathak, D Pedraza, M Pekowsky, L Penn, S Peralta, C Perreca, A Persichetti, G Pichot, M Pickenpack, M Piergiovanni, F Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Postiglione, F Prato, M Predoi, V Price, LR Prijatelj, M Principe, M Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Quetschke, V Raab, FJ Rabeling, DS Racz, I Radke, T Radkins, H Raffai, P Rakhmanov, M Rankins, B Rapagnani, P Raymond, V Re, V Reed, CM Reed, T Regimbau, T Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Roberts, P Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rolland, L Rollins, J Romano, JD Romano, R Romie, JH Rosinska, D Rover, C Rowan, S Rudiger, A Ruggi, P Ryan, K Sakata, S Sakosky, M Salemi, F Sammut, L de la Jordana, LS Sandberg, V Sannibale, V Santamaria, L Santostasi, G Saraf, S Sassolas, B Sathyaprakash, BS Sato, S Satterthwaite, M Saulson, PR Savage, R Schilling, R Schnabel, R Schofield, RMS Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Seifert, F Sellers, D Sengupta, AS Sentenac, D Sergeev, A Shaddock, DA Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Singer, A Sintes, AM Skelton, G Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Somiya, K Sorazu, B Speirits, FC Sperandio, L Stein, AJ Stein, LC Steinlechner, S Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, AS Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Szokoly, GP Tacca, M Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thomas, P Thorne, KA Thorne, KS Thrane, E Thuring, A Titsler, C Tokmakov, KV Toncelli, A Tonelli, M Torre, O Torres, C Torrie, CI Tournefier, E Travasso, F Traylor, G Trias, M Tseng, K Turner, L Ugolini, D Urbanek, K Vahlbruch, H Vaishnav, B Vajente, G Vallisneri, M van den Brand, JFJ Van den Broeck, C van der Putten, S van der Sluys, MV van Veggel, AA Vass, S Vasuth, M Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G Veitch, J Veitch, PJ Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, AE Vinet, JY Vocca, H Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Wanner, A Ward, RL Was, M Wei, P Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wessels, P West, M Westphal, T Wette, K Whelan, JT Whitcomb, SE White, D Whiting, BF Wilkinson, C Willems, PA Williams, L Willke, B Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Yakushin, I Yamamoto, H Yamamoto, K Yeaton-Massey, D Yoshida, S Yu, P Yvert, M Zanolin, M Zhang, L Zhang, Z Zhao, C Zotov, N Zucker, ME Zweizig, J AF Abadie, J. Abbott, B. P. Abbott, R. Abernathy, M. Accadia, T. Acernese, F. Adams, C. Adhikari, R. Ajith, P. Allen, B. Allen, G. S. Ceron, E. Amador Amin, R. S. Anderson, S. B. Anderson, W. G. Antonucci, F. Arain, M. A. Araya, M. C. Aronsson, M. Aso, Y. Aston, S. M. Astone, P. Atkinson, D. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. Ballardin, G. Ballinger, T. Ballmer, S. Barker, D. Barnum, S. Barone, F. Barr, B. Barriga, P. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Bauchrowitz, J. Bauer, Th. S. Behnke, B. Beker, M. G. Belletoile, A. Benacquista, M. Bertolini, A. Betzwieser, J. Beveridge, N. Beyersdorf, P. T. Bilenko, I. A. Billingsley, G. Birch, J. Birindelli, S. Biswas, R. Bitossi, M. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Blom, M. Boccara, C. Bock, O. Bodiya, T. P. Bondarescu, R. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Boschi, V. Bose, S. Bosi, L. Bouhou, B. Boyle, M. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Brau, J. E. Breyer, J. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Budzynski, R. Bulik, T. Bulten, H. J. Buonanno, A. Burguet-Castell, J. Burmeister, O. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cain, J. Calloni, E. Camp, J. B. Campagna, E. Campsie, P. Cannizzo, J. Cannon, K. Canuel, B. Cao, J. Capano, C. Carbognani, F. Caride, S. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chaibi, O. Chalermsongsak, T. Chalkley, E. Charlton, P. Chassande-Mottin, E. Chelkowski, S. Chen, Y. Chincarini, A. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Clark, D. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, R. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Costa, C. A. Coulon, J. -P. Coward, D. M. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Culter, R. M. Cumming, A. Cunningham, L. Cuoco, E. Dahl, K. Danilishin, S. L. Dannenberg, R. D'Antonio, S. Danzmann, K. Das, K. Dattilo, V. Daudert, B. Davier, M. Davies, G. Davis, A. Daw, E. J. Day, R. Dayanga, T. DeRosa, R. Debra, D. Debreczeni, G. Degallaix, J. del Prete, M. Dergachev, V. De Rosa, R. DeSalvo, R. Devanka, P. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Di Palma, I. Di Paolo Emilio, M. Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Doomes, E. E. Dorsher, S. Douglas, E. S. D. Drago, M. Drever, R. W. P. Driggers, J. C. Dueck, J. Dumas, J. -C. Eberle, T. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Ely, G. Engel, R. Etzel, T. Evans, M. Evans, T. Fafone, V. Fairhurst, S. Fan, Y. Farr, B. F. Fazi, D. Fehrmann, H. Feldbaum, D. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Flaminio, R. Flanigan, M. Flasch, K. Foley, S. Forrest, C. Forsi, E. Forte, L. A. Fotopoulos, N. Fournier, J. -D. Franc, J. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Galimberti, M. Gammaitoni, L. Garofoli, J. A. Garufi, F. Gaspar, M. E. Gemme, G. Genin, E. Gennai, A. Gholami, I. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Gill, C. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Graef, C. Granata, M. Grant, A. Gras, S. Gray, C. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grosso, R. Grote, H. Grunewald, S. Guidi, G. M. Gustafson, E. K. Gustafson, R. Hage, B. Hall, P. Hallam, J. M. Hammer, D. Hammond, G. Hanks, J. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Haughian, K. Hayama, K. Hayau, J. -F. Hayler, T. Heefner, J. Heitmann, H. Hello, P. Heng, I. S. Heptonstall, A. W. Hewitson, M. Hild, S. Hirose, E. Hoak, D. Hodge, K. A. Holt, K. Hosken, D. J. Hough, J. Howell, E. J. Hoyland, D. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Huynh-Dinh, T. Ingram, D. R. Inta, R. Isogai, T. Ivanov, A. Jaranowski, P. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kanner, J. B. Katsavounidis, E. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, H. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kondrashov, V. Kopparapu, R. Koranda, S. Kowalska, I. Kozak, D. Krause, T. Kringel, V. Krishnamurthy, S. Krishnan, B. Krolak, A. Kuehn, G. Kullman, J. Kumar, R. Kwee, P. Landry, M. Lang, M. Lantz, B. Lastzka, N. Lazzarini, A. Leaci, P. Leong, J. Leonor, I. Leroy, N. Letendre, N. Li, J. Li, T. G. F. Liguori, N. Lin, H. Lindquist, P. E. Lockerbie, N. A. Lodhia, D. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lu, P. Luan, J. Lubinski, M. Lucianetti, A. Lueck, H. Lundgren, A. D. Machenschalk, B. MacInnis, M. Mageswaran, M. Mailand, K. Majorana, E. Mak, C. Maksimovic, I. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McIvor, G. McKechan, D. J. A. Meadors, G. Mehmet, M. Meier, T. Melatos, A. Melissinos, A. C. Mendell, G. Menendez, D. F. Mercer, R. A. Merill, L. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mino, Y. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Moe, B. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moraru, D. Moreau, J. Moreno, G. Morgado, N. Morgia, A. Morioka, T. Mors, K. Mosca, S. Moscatelli, V. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, G. Mukherjee, S. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murray, P. G. Nash, T. Nawrodt, R. Nelson, J. Neri, I. Newton, G. Nishizawa, A. Nocera, F. Nolting, D. Ochsner, E. O'Dell, J. Ogin, G. H. Oldenburg, R. G. O'Reilly, B. O'Shaughnessy, R. Osthelder, C. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pagliaroli, G. Palladino, L. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Pardi, S. Pareja, M. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pathak, D. Pedraza, M. Pekowsky, L. Penn, S. Peralta, C. Perreca, A. Persichetti, G. Pichot, M. Pickenpack, M. Piergiovanni, F. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Postiglione, F. Prato, M. Predoi, V. Price, L. R. Prijatelj, M. Principe, M. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Raab, F. J. Rabeling, D. S. Racz, I. Radke, T. Radkins, H. Raffai, P. Rakhmanov, M. Rankins, B. Rapagnani, P. Raymond, V. Re, V. Reed, C. M. Reed, T. Regimbau, T. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Roberts, P. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Rolland, L. Rollins, J. Romano, J. D. Romano, R. Romie, J. H. Rosinska, D. Roever, C. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sakata, S. Sakosky, M. Salemi, F. Sammut, L. Sancho de la Jordana, L. Sandberg, V. Sannibale, V. Santamaria, L. Santostasi, G. Saraf, S. Sassolas, B. Sathyaprakash, B. S. Sato, S. Satterthwaite, M. Saulson, P. R. Savage, R. Schilling, R. Schnabel, R. Schofield, R. M. S. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Seifert, F. Sellers, D. Sengupta, A. S. Sentenac, D. Sergeev, A. Shaddock, D. A. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Singer, A. Sintes, A. M. Skelton, G. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Somiya, K. Sorazu, B. Speirits, F. C. Sperandio, L. Stein, A. J. Stein, L. C. Steinlechner, S. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Szokoly, G. P. Tacca, M. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Thuering, A. Titsler, C. Tokmakov, K. V. Toncelli, A. Tonelli, M. Torre, O. Torres, C. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Trias, M. Tseng, K. Turner, L. Ugolini, D. Urbanek, K. Vahlbruch, H. Vaishnav, B. Vajente, G. Vallisneri, M. van den Brand, J. F. J. Van den Broeck, C. van der Putten, S. van der Sluys, M. V. van Veggel, A. A. Vass, S. Vasuth, M. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. E. Vinet, J. -Y. Vocca, H. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Wanner, A. Ward, R. L. Was, M. Wei, P. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, L. Willke, B. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yeaton-Massey, D. Yoshida, S. Yu, P. Yvert, M. Zanolin, M. Zhang, L. Zhang, Z. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI Search for gravitational waves from binary black hole inspiral, merger, and ringdown SO PHYSICAL REVIEW D LA English DT Article ID COMPACT BINARIES; NUMERICAL RELATIVITY; MODELING KICKS; MASS; COALESCENCE; SPIN; GALAXY; LIGO; RADIATION; CLUSTERS AB We present the first modeled search for gravitational waves using the complete binary black-hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data, taken between November 2005 and September 2007, for systems with component masses of 1-99M(circle dot) and total masses of 25-100M(circle dot). We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for 19M(circle dot) <= m(1), m(2) <= 28M(circle dot) binary black-hole systems with negligible spin to be no more than 2.0 Mpc(-3) Myr(-1) at 90% confidence. C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Araya, M. C.; Aronsson, M.; Aso, Y.; Ballmer, S.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cannon, K.; Cepeda, C.; Chalermsongsak, T.; Coyne, D. C.; Dannenberg, R.; Daudert, B.; Dergachev, V.; DeSalvo, R.; Driggers, J. C.; Ehrens, P.; Engel, R.; Etzel, T.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A. W.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Kozak, D.; Lazzarini, A.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Mak, C.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Mitra, S.; Nash, T.; Ogin, G. H.; Osthelder, C.; Patel, P.; Pedraza, M.; Robertson, N. A.; Sannibale, V.; Searle, A. C.; Seifert, F.; Sengupta, A. S.; Singer, A.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Turner, L.; Vass, S.; Villar, A. E.; Wallace, L.; Ward, R. L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Babak, S.; Behnke, B.; Gholami, I.; Grunewald, S.; Krishnan, B.; Leaci, P.; Papa, M. A.; Peralta, C.; Radke, T.; Robinson, E. L.; Santamaria, L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Burmeister, O.; Dahl, K.; Danzmann, K.; Degallaix, J.; Di Palma, I.; Dueck, J.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Giampanis, S.; Gossler, S.; Graef, C.; Grote, H.; Hage, B.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kullman, J.; Kwee, P.; Lastzka, N.; Leong, J.; Lueck, H.; Machenschalk, B.; Mehmet, M.; Meier, T.; Messenger, C.; Mors, K.; Mossavi, K.; Mueller-Ebhardt, H.; Pareja, M.; Pickenpack, M.; Pletsch, H. J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schulz, B.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.; Zweizig, J.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Barsuglia, M.; Bouhou, B.; Buy, C.; Chassande-Mottin, E.; Granata, M.] Univ Paris Diderot, Lab AstroParticule & Cosmol APC, Observ Paris, CNRS,IN2P3,CEA,DSM,IRFU, F-75013 Paris, France. [Chua, S. S. Y.; Inta, R.; McClelland, D. E.; Mow-Lowry, C. M.; Mullavey, A.; Satterthwaite, M.; Scott, S. M.; Shaddock, D. A.; Slagmolen, B. J. J.; Wette, K.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Boyle, M.; Chen, Y.; Luan, J.; Mino, Y.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Wen, L.] Caltech CaRT, Pasadena, CA 91125 USA. [Clark, J.; Davies, G.; Devanka, P.; Edwards, M.; Fairhurst, S.; Hall, P.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Pathak, D.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Ballinger, T.; Christensen, N.; Ely, G.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Bartos, I.; Marka, S.; Marka, Z.; Matone, L.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Huet, D.; Marque, J.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.; Tacca, M.] EGO, I-56021 Cascina, PI, Italy. [Davis, A.; Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Frei, Z.; Raffai, P.; Szokoly, G. P.] Eotvos Lorand Univ, H-1117 Budapest, Hungary. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Cagnoli, G.; Campagna, E.; Guidi, G. M.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Campagna, E.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Acernese, F.; Barone, F.; Calloni, E.; DeRosa, R.; Di Fiore, L.; Forte, L. A.; Garufi, F.; Milano, L.; Mosca, S.; Pardi, S.; Parisi, M.; Persichetti, G.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Acernese, F.; Calloni, E.; DeRosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Pardi, S.; Parisi, M.; Persichetti, G.] Univ Naples Federico II, I-80126 Naples, Italy. [Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Bosi, L.; Gammaitoni, L.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Gammaitoni, L.; Neri, I.; Travasso, F.] Univ Perugia, I-06123 Perugia, Italy. [Bitossi, M.; Bonelli, L.; Boschi, V.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; del Prete, M.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Torre, O.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bonelli, L.; Colacino, C. N.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Torre, O.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [del Prete, M.; Mantovani, M.] Univ Siena, I-53100 Siena, Italy. [Antonucci, F.; Astone, P.; Colla, A.; Corsi, A.; Frasca, S.; Majorana, E.; Moscatelli, V.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Colla, A.; Frasca, S.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Coccia, E.; Fafone, V.; Morgia, A.; Sperandio, L.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Di Paolo Emilio, M.; Pagliaroli, G.; Palladino, L.] Univ Aquila, I-67100 Laquila, Italy. [Khazanov, E. A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Dhurandhar, S.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, LAL, IN2P3, CNRS, F-91898 Orsay, France. [Boccara, C.; Loriette, V.; Maksimovic, I.; Moreau, J.] CNRS, ESPCI, F-75005 Paris, France. [Accadia, T.; Belletoile, A.; Buskulic, D.; Dietz, A.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Verkindt, D.; Yvert, M.] Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Burmeister, O.; Dahl, K.; Danzmann, K.; Degallaix, J.; Di Palma, I.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Giampanis, S.; Gossler, S.; Graef, C.; Grote, H.; Hage, B.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J.; Lueck, H.; Machenschalk, B.; Mehmet, M.; Meier, T.; Messenger, C.; Mossavi, K.; Mueller-Ebhardt, H.; Pareja, M.; Pickenpack, M.; Pletsch, H. J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Schulz, B.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Atkinson, D.; Barker, D.; Barton, M. A.; Bland, B.; Cook, D.; Douglas, E. S. D.; Flanigan, M.; Gray, C.; Hanks, J.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sakosky, M.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Adams, C.; Birch, J.; Bridges, D. O.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Holt, K.; Huynh-Dinh, T.; Kinzel, D. L.; Lormand, M.; Meyer, M. S.; Nolting, D.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Barnum, S.; Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Corbitt, T. R.; Donovan, F.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Stein, A. J.; Stein, L. C.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Bonnand, R.; Flaminio, R.; Franc, J.; Galimberti, M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] CNRS, IN2P3, LMA, F-69622 Villeurbanne, France. [Caudill, S.; Costa, C. A.; De Rosa, R.; Effler, A.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Kissel, J. S.; Slutsky, J.; Sung, M.; Wen, S.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Baker, P.; Cornish, N.] Montana State Univ, Bozeman, MT 59717 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Camp, J. B.; Cannizzo, J.; Stroeer, A. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hayama, K.; Kawamura, S.; Morioka, T.; Nishizawa, A.; Sakata, S.; Sato, S.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Bauer, Th. S.; Beker, M. G.; Blom, M.; Bulten, H. J.; Li, T. G. F.; Rabeling, D. S.; van den Brand, J. F. J.; Van den Broeck, C.; van der Putten, S.] Nikhef, Amsterdam, Netherlands. [Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Farr, B. F.; Fazi, D.; Kalogera, V.; Krishnamurthy, S.; Mandel, I.; Raymond, V.; van der Sluys, M. V.] Northwestern Univ, Evanston, IL 60208 USA. [Birindelli, S.; Chaibi, O.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Heitmann, H.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J. -Y.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France. [Bondu, F.; Hayau, J. -F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Liguori, N.; Prodi, G. A.; Re, V.] Grp Coll Trento, Ist Nazl Fis Nucl, Trento, Italy. [Liguori, N.; Prodi, G. A.; Re, V.] Univ Trent, I-38050 Trento, Italy. [Drago, M.; Vedovato, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Drago, M.] Univ Padua, I-35131 Padua, Italy. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Budzynski, R.] Warsaw Univ, PL-00681 Warsaw, Poland. [Bulik, T.; Kowalska, I.; Pietka, M.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bulik, T.] CAMK PAN, PL-00716 Warsaw, Poland. [Jaranowski, P.] Bialystok Univ, PL-15424 Bialystok, Poland. [Krolak, A.] IPJ, PL-05400 Otwock, Poland. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Debreczeni, G.; Gaspar, M. E.; Racz, I.; Vasuth, M.] RMKI, H-1121 Budapest, Hungary. [Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Greenhalgh, R. J. S.; Hayler, T.; O'Dell, J.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [Doomes, E. E.; McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [Doomes, E. E.; McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Allen, G. S.; Byer, R. L.; Clark, D.; Debra, D.; Lantz, B.; Lu, P.; Tseng, K.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Brown, D. A.; Capano, C.; Garofoli, J. A.; Hirose, E.; Lundgren, A. D.; Pekowsky, L.; Saulson, P. R.; Wei, P.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Bondarescu, R.; Finn, L. S.; Kopparapu, R.; Lang, M.; Menendez, D. F.; O'Shaughnessy, R.; Owen, B. J.; Titsler, C.] Penn State Univ, University Pk, PA 16802 USA. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Cain, J.; Cavaglia, M.; Rankins, B.] Univ Mississippi, University, MS 38677 USA. [Daw, E. J.; White, D.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Frei, M.; Krause, T.; Matzner, R. A.; McIvor, G.] Univ Texas Austin, Austin, TX 78712 USA. [Benacquista, M.; Creighton, T. D.; Diaz, M.; Grosso, R.; Li, J.; Mohanty, S. D.; Mukherjee, S.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Vaishnav, B.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Cao, J.] Tsinghua Univ, Beijing 100084, Peoples R China. [Husa, S.; Sancho de la Jordana, L.; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Aston, S. M.; Chelkowski, S.; Cruise, A. M.; Culter, R. M.; Freise, A.; Fulda, P.; Hallam, J. M.; Hoyland, D.; Lodhia, D.; Page, A.; Perreca, A.; Vecchio, A.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Arain, M. A.; Das, K.; Dooley, K. L.; Feldbaum, D.; Klimenko, S.; Lin, H.; Lucianetti, A.; Martin, R. M.; Mitselmakher, G.; Mueller, G.; Ottens, R. S.; Pankow, C.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Beveridge, N.; Campsie, P.; Chalkley, E.; Cumming, A.; Cunningham, L.; Edgar, M.; Gill, C.; Grant, A.; Hammond, G.; Haughian, K.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Martin, I. W.; Miller, J.; Murray, P. G.; Nawrodt, R.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Scott, J.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Tokmakov, K. V.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Buonanno, A.; Kanner, J. B.; Ochsner, E.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Hoak, D.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Caride, S.; Goetz, E.; Gustafson, R.; Meadors, G.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Dorsher, S.; Kandhasamy, S.; Mandic, V.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Schofield, R. M. S.] Univ Oregon, Eugene, OR 97403 USA. [Forrest, C.; Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Conte, R.; Postiglione, F.] Univ Salerno, I-84084 Salerno, Italy. [Conte, R.; Pinto, I. M.; Postiglione, F.; Principe, M.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [Barriga, P.; Blair, D.; Coward, D. M.; Dumas, J. -C.; Fan, Y.; Gras, S.; Howell, E. J.; Ju, L.; Merill, L.; Miao, H.; Susmithan, S.; Wen, L.; Zhang, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Allen, B.; Ceron, E. Amador; Anderson, W. G.; Biswas, R.; Brady, P. R.; Burguet-Castell, J.; Clayton, J. H.; Creighton, J. D. E.; Flasch, K.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Moe, B.; Oldenburg, R. G.; Papa, M. A.; Price, L. R.; Siemens, X.; Skelton, G.; Vaulin, R.; Wiseman, A. G.; Yu, P.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. RP Abadie, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Parisi, Maria/D-2817-2013; Hild, Stefan/A-3864-2010; Steinlechner, Sebastian/D-5781-2013; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Pitkin, Matthew/I-3802-2013; Vyatchanin, Sergey/J-2238-2012; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Lucianetti, Antonio/G-7383-2014; Losurdo, Giovanni/K-1241-2014; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; Mitrofanov, Valery/D-8501-2012; Puppo, Paola/J-4250-2012; Colla, Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Hammond, Giles/A-8168-2012; Vocca, Helios/F-1444-2010; Acernese, Fausto/E-4989-2010; Finn, Lee Samuel/A-3452-2009; Khalili, Farit/D-8113-2012; Prato, Mirko/D-8531-2012; prodi, giovanni/B-4398-2010; Santamaria, Lucia/A-7269-2012; Costa, Cesar/G-7588-2012; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Punturo, Michele/I-3995-2012; Strigin, Sergey/I-8337-2012; Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; Freise, Andreas/F-8892-2011; Abernathy, Matthew/G-1113-2011; Marchesoni, Fabio/A-1920-2008; Kawabe, Keita/G-9840-2011; Bondu, Francois/A-2071-2012; Toncelli, Alessandra/A-5352-2012; Strain, Kenneth/D-5236-2011; Gammaitoni, Luca/B-5375-2009; Raab, Frederick/E-2222-2011; Neri, Igor/F-1482-2010; Martin, Iain/A-2445-2010; Ward, Robert/I-8032-2014; Howell, Eric/H-5072-2014; Sigg, Daniel/I-4308-2015; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Ferrante, Isidoro/F-1017-2012; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; McClelland, David/E-6765-2010; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Tacca, Matteo/J-1599-2015; Graef, Christian/J-3167-2015; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Shaddock, Daniel/A-7534-2011; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Gehring, Tobias/A-8596-2016; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016 OI Steinlechner, Sebastian/0000-0003-4710-8548; Pitkin, Matthew/0000-0003-4548-526X; Miao, Haixing/0000-0003-4101-9958; Losurdo, Giovanni/0000-0003-0452-746X; Danilishin, Stefan/0000-0001-7758-7493; Vicere, Andrea/0000-0003-0624-6231; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Zhao, Chunnong/0000-0001-5825-2401; Vocca, Helios/0000-0002-1200-3917; Acernese, Fausto/0000-0003-3103-3473; Finn, Lee Samuel/0000-0002-3937-0688; Prato, Mirko/0000-0002-2188-8059; prodi, giovanni/0000-0001-5256-915X; Gorodetsky, Michael/0000-0002-5159-2742; Punturo, Michele/0000-0001-8722-4485; Lueck, Harald/0000-0001-9350-4846; Marchesoni, Fabio/0000-0001-9240-6793; Bondu, Francois/0000-0001-6487-5197; Toncelli, Alessandra/0000-0003-4400-8808; Strain, Kenneth/0000-0002-2066-5355; Gammaitoni, Luca/0000-0002-4972-7062; Neri, Igor/0000-0002-9047-9822; Freise, Andreas/0000-0001-6586-9901; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Douglas, Ewan/0000-0002-0813-4308; Kanner, Jonah/0000-0001-8115-0577; O'Shaughnessy, Richard/0000-0001-5832-8517; Pathak, Devanka/0000-0002-1768-8353; Granata, Massimo/0000-0003-3275-1186; Aulbert, Carsten/0000-0002-1481-8319; Di Paolo Emilio, Maurizio/0000-0002-9558-3610; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Nishizawa, Atsushi/0000-0003-3562-0990; calloni, enrico/0000-0003-4819-3297; Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Stuver, Amber/0000-0003-0324-5735; Zweizig, John/0000-0002-1521-3397; Husa, Sascha/0000-0002-0445-1971; Pinto, Innocenzo M./0000-0002-2679-4457; Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870; Santamaria, Lucia/0000-0002-5986-0449; Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461; Vetrano, Flavio/0000-0002-7523-4296; Ward, Robert/0000-0001-5503-5241; Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; Howell, Eric/0000-0001-7891-2817; Fairhurst, Stephen/0000-0001-8480-1961; Boschi, Valerio/0000-0001-8665-2293; Matichard, Fabrice/0000-0001-8982-8418; Sigg, Daniel/0000-0003-4606-6526; Ferrante, Isidoro/0000-0002-0083-7228; Travasso, Flavio/0000-0002-4653-6156; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Stein, Leo/0000-0001-7559-9597; Swinkels, Bas/0000-0002-3066-3601; McClelland, David/0000-0001-6210-5842; Vecchio, Alberto/0000-0002-6254-1617; Tacca, Matteo/0000-0003-1353-0441; Graef, Christian/0000-0002-4535-2603; Garufi, Fabio/0000-0003-1391-6168; Shaddock, Daniel/0000-0002-6885-3494; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Gehring, Tobias/0000-0002-4311-2593; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587 FU United States National Science Foundation; Science and Technology Facilities Council of the United Kingdom; Max-Planck-Society; State of Niedersachsen/Germany; Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Foundation for Fundamental Research on Matter; Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. NR 133 TC 77 Z9 77 U1 4 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN 6 PY 2011 VL 83 IS 12 AR 122005 DI 10.1103/PhysRevD.83.122005 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 773MZ UT WOS:000291312700002 ER PT J AU Ouzounov, D Hattori, K Liu, JY AF Ouzounov, Dimitar Hattori, Katsumi Liu, J. Y. TI Validation of Earthquake Precursors-VESTO Preface SO JOURNAL OF ASIAN EARTH SCIENCES LA English DT Editorial Material C1 [Ouzounov, Dimitar] Chapman Univ, Orange, CA 92866 USA. [Ouzounov, Dimitar] NASA, Goddard Space Flight Ctr, SSAI, Greenbelt, MD 20771 USA. [Hattori, Katsumi] Chiba Univ, Dept Earth Sci, Grad Sch Sci, Inage Ku, Chiba 2638522, Japan. [Liu, J. Y.] Natl Cent Univ, Inst Space Sci, Chungli 320, Taiwan. RP Ouzounov, D (reprint author), Chapman Univ, Orange, CA 92866 USA. EM Dimitar.P.Ouzounov@nasa.gov; hattori@earth.s.chiba-u.ac.jp; jyliu@jupiter.ss.ncu.edu.tw NR 0 TC 3 Z9 3 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1367-9120 J9 J ASIAN EARTH SCI JI J. Asian Earth Sci. PD JUN 5 PY 2011 VL 41 IS 4-5 SI SI BP 369 EP 370 DI 10.1016/j.jseaes.2011.04.008 PG 2 WC Geosciences, Multidisciplinary SC Geology GA 779HB UT WOS:000291767600001 ER PT J AU Pulinets, S Ouzounov, D AF Pulinets, S. Ouzounov, D. TI Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model - An unified concept for earthquake precursors validation SO JOURNAL OF ASIAN EARTH SCIENCES LA English DT Article; Proceedings Paper CT International Workshop on Validation of Earthquake Precursors by Satellite, Terrestrial and other Observations (VESTO) CY MAR, 2009 CL Chiba Univ, Nishi-Chiba Campus, Chiba, JAPAN SP Chapman Univ, Natl Inst Informat & Commun Technol HO Chiba Univ, Nishi-Chiba Campus DE Radon; Tectonic fault; Thermal anomaly; Earthquake precursor ID PHYSICAL-MECHANISM; MAJOR EARTHQUAKES; RADON; VARIABILITY; IONIZATION; PREDICTION; ANOMALIES; EMANATION; AREA AB The paper presents a conception of complex multidisciplinary approach to the problem of clarification the nature of short-term earthquake precursors observed in atmosphere, atmospheric electricity and in ionosphere and magnetosphere. Our approach is based on the most fundamental principles of tectonics giving understanding that earthquake is an ultimate result of relative movement of tectonic plates and blocks of different sizes. Different kind of gases: methane, helium, hydrogen, and carbon dioxide leaking from the crust can serve as carrier gases for radon including underwater seismically active faults. Radon action on atmospheric gases is similar to the cosmic rays effects in upper layers of atmosphere: it is the air ionization and formation by ions the nucleus of water condensation. Condensation of water vapor is accompanied by the latent heat exhalation is the main cause for observing atmospheric thermal anomalies. Formation of large ion clusters changes the conductivity of boundary layer of atmosphere and parameters of the global electric circuit over the active tectonic faults. Variations of atmospheric electricity are the main source of ionospheric anomalies over seismically active areas. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model can explain most of these events as a synergy between different ground surface, atmosphere and ionosphere processes and anomalous variations which are usually named as short-term earthquake precursors. A newly developed approach of Interdisciplinary Space-Terrestrial Framework (ISTF) can provide also a verification of these precursory processes in seismically active regions. The main outcome of this paper is the unified concept for systematic validation of different types of earthquake precursors united by physical basis in one common theory. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Pulinets, S.] Inst Appl Geophys, Moscow 129128, Russia. [Pulinets, S.] RAS, Inst Space Res, Moscow 117997, Russia. [Ouzounov, D.] Chapman Univ, Orange, CA 92866 USA. [Ouzounov, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Pulinets, S (reprint author), Inst Appl Geophys, Rostokinskaya Str 9, Moscow 129128, Russia. EM pulse1549@gmail.com RI Pulinets, Sergey/F-7462-2011; Ouzounov, Dimitar/A-5929-2012 OI Pulinets, Sergey/0000-0003-3944-6686; NR 61 TC 94 Z9 103 U1 2 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1367-9120 J9 J ASIAN EARTH SCI JI J. Asian Earth Sci. PD JUN 5 PY 2011 VL 41 IS 4-5 SI SI BP 371 EP 382 DI 10.1016/j.jseaes.2010.03.005 PG 12 WC Geosciences, Multidisciplinary SC Geology GA 779HB UT WOS:000291767600002 ER PT J AU Freund, F AF Freund, Friedemann TI Pre-earthquake signals: Underlying physical processes SO JOURNAL OF ASIAN EARTH SCIENCES LA English DT Article; Proceedings Paper CT International Workshop on Validation of Earthquake Precursors by Satellite, Terrestrial and Other Observations (VESTO) CY MAR, 2009 CL Chiba Univ, Nishi-Chiba Campus, Chiba, JAPAN SP Chapman Univ, Natl Inst Informat & Commun Technol HO Chiba Univ, Nishi-Chiba Campus DE Earthquake; Pre-earthquake signals; Peroxy; Positive holes; EM emissions; Air ionization; Thermal infrared anomalies ID ELECTRIC-FIELD; ROCK FRACTURE; MAGNESIUM-OXIDE; ELECTROMAGNETIC EMISSIONS; SEISMO-ELECTROMAGNETICS; IONOSPHERIC ANOMALIES; GENERATION MECHANISM; EXOELECTRON EMISSION; CHARGE-DISTRIBUTION; MAJOR EARTHQUAKES AB Prior to large earthquakes the Earth sends out transient signals, sometimes strong, more often subtle and fleeting. These signals may consist of local magnetic field variations, electromagnetic emissions over a wide range of frequencies, a variety of atmospheric and ionospheric phenomena. Great uncertainty exists as to the nature of the processes that could produce such signals, both inside the Earth's crust and at the surface. The absence of a comprehensive physical mechanism has led to a patchwork of explanations, which are not internally consistent. The recognition that most crustal rocks contain dormant electronic charge carriers in the form of peroxy defects, O3Si/(oo)\ SiO3, holds the key to a deeper understanding of these pre-earthquake signals from a solid state physics perspective. When rocks are stressed, peroxy links break, releasing electronic charge carriers, h(.), known as positive holes. The positive holes are highly mobile and can flow out of the stressed subvolume. The situation is similar to that in a battery. The h(.) outflow is possible when the battery circuit closes. The h(.) outflow constitutes an electric current, which generates magnetic field variations and low frequency EM emissions. When the positive holes arrive at the Earth's surface, they lead to ionization of air at the ground-air interface. Under certain conditions corona discharges occur, which cause RF emission. The upward expansion of ionized air may be the reason for perturbations in the ionosphere. Recombination of h(.) charge carriers at the surface leads to a spectroscopically distinct, non-thermal IR emission. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Freund, Friedemann] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Freund, Friedemann] San Jose State Univ, Dept Phys, San Jose, CA 95192 USA. [Freund, Friedemann] SETI Inst, CSC, Mountain View, CA 94043 USA. RP Freund, F (reprint author), NASA, Ames Res Ctr, MS 242-4, Moffett Field, CA 94035 USA. EM friedemann.t.freund@nasa.gov NR 183 TC 44 Z9 45 U1 4 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1367-9120 EI 1878-5786 J9 J ASIAN EARTH SCI JI J. Asian Earth Sci. PD JUN 5 PY 2011 VL 41 IS 4-5 SI SI BP 383 EP 400 DI 10.1016/j.jseaes.2010.03.009 PG 18 WC Geosciences, Multidisciplinary SC Geology GA 779HB UT WOS:000291767600003 ER PT J AU Wolfe-Simon, F Blum, JS Kulp, TR Gordon, GW Hoeft, SE Pett-Ridge, J Stolz, JF Webb, SM Weber, PK Davies, PCW Anbar, AD Oremland, RS AF Wolfe-Simon, Felisa Blum, Jodi Switzer Kulp, Thomas R. Gordon, Gwyneth W. Hoeft, Shelley E. Pett-Ridge, Jennifer Stolz, John F. Webb, Samuel M. Weber, Peter K. Davies, Paul C. W. Anbar, Ariel D. Oremland, Ronald S. TI A Bacterium That Can Grow by Using Arsenic Instead of Phosphorus SO SCIENCE LA English DT Article ID MARINE AB Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. Although these six elements make up nucleic acids, proteins, and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here, we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical importance. C1 [Wolfe-Simon, Felisa; Davies, Paul C. W.; Anbar, Ariel D.] NASA, Astrobiol Inst, Washington, DC 20546 USA. [Wolfe-Simon, Felisa; Blum, Jodi Switzer; Kulp, Thomas R.; Hoeft, Shelley E.; Oremland, Ronald S.] US Geol Survey, Menlo Pk, CA 94025 USA. [Gordon, Gwyneth W.; Anbar, Ariel D.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Pett-Ridge, Jennifer; Weber, Peter K.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Stolz, John F.] Duquesne Univ, Dept Biol Sci, Pittsburgh, PA 15282 USA. [Webb, Samuel M.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Davies, Paul C. W.] Arizona State Univ, BEYOND Ctr Fundamental Concepts Sci, Tempe, AZ 85287 USA. [Anbar, Ariel D.] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. RP Wolfe-Simon, F (reprint author), NASA, Astrobiol Inst, Washington, DC 20546 USA. EM felisawolfesimon@gmail.com RI Webb, Samuel/D-4778-2009 OI Webb, Samuel/0000-0003-1188-0464 FU DOE Office of Basic Energy Sciences, Office of Biological and Environmental Research; National Institutes of Health, National Center for Research Resources; DOE at Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE OBER [SCW1039]; NASA Exobiology; NASA; NASA Astrobiology Institute at the U.S. Geological Survey, Menlo Park, CA FX The authors thank S. Benner, W. Hastings, I. L. ten Kate, A. Pohorille, B. Rosen, D. Schulze-Makuch, and R. Shapiro for stimulating discussions. We thank G. King, A. Oren, and L. Young for constructive criticisms of earlier drafts of this manuscript and S. Baesman, M. Dudash, and L. Miller for technical assistance. Cultures of GFAJ-1 were submitted to the American Type Culture Collection and Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) culture collections on 21 March 2011 and will be available from these sources within several months. Until then, samples of GFAJ-1 are available to the community from the Oremland lab upon completion of a materials transfer agreement, which is required by the U.S. Geological Survey for the transfer of bacterial cultures. Sequence data are deposited with GenBank (accession HQ449183). Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL), a division of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Stanford University. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Basic Energy Sciences, Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program. NanoSIMS analyses were performed under the auspices of the DOE at Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. J.P.R. and P.K.W. were supported in part by the DOE OBER Genomic Sciences program SCW1039. R.S.O. and J.F.S. were supported by NASA Exobiology. F.W.S. acknowledges support from the NASA Postdoctoral Program, NASA Astrobiology/Exobiology, and the NASA Astrobiology Institute while in residence at the U.S. Geological Survey, Menlo Park, CA. The authors declare no conflicts of interest. NR 18 TC 163 Z9 170 U1 15 U2 297 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 3 PY 2011 VL 332 IS 6034 BP 1163 EP 1166 DI 10.1126/science.1197258 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 772BO UT WOS:000291205200038 PM 21127214 ER PT J AU Schoepp-Cothenet, B Nitschke, W Barge, LM Ponce, A Russell, MJ Tsapin, AI AF Schoepp-Cothenet, B. Nitschke, W. Barge, L. M. Ponce, A. Russell, M. J. Tsapin, A. I. TI Comment on "A Bacterium That Can Grow by Using Arsenic Instead of Phosphorus" SO SCIENCE LA English DT Editorial Material C1 [Schoepp-Cothenet, B.; Nitschke, W.] CNRS, IFR88, F-13402 Marseille, France. [Barge, L. M.; Ponce, A.; Russell, M. J.; Tsapin, A. I.] CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA. RP Nitschke, W (reprint author), CNRS, IFR88, F-13402 Marseille, France. EM nitschke@ifr88.cnrs-mrs.fr OI Nitschke, Wolfgang/0000-0003-2084-3032 NR 7 TC 13 Z9 13 U1 2 U2 36 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 3 PY 2011 VL 332 IS 6034 DI 10.1126/science.1201438 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 772BO UT WOS:000291205200023 PM 21622707 ER PT J AU Wolfe-Simon, F Blum, JS Kulp, TR Gordon, GW Hoeft, SE Pett-Ridge, J Stolz, JF Webb, SM Weber, PK Davies, PCW Anbar, AD Oremland, RS AF Wolfe-Simon, Felisa Blum, Jodi Switzer Kulp, Thomas R. Gordon, Gwyneth W. Hoeft, Shelley E. Pett-Ridge, Jennifer Stolz, John F. Webb, Samuel M. Weber, Peter K. Davies, Paul C. W. Anbar, Ariel D. Oremland, Ronald S. TI Response to Comments on "A Bacterium That Can Grow Using Arsenic Instead of Phosphorus" SO SCIENCE LA English DT Editorial Material ID HYDROLYSIS; KINETICS AB Concerns have been raised about our recent study suggesting that arsenic ( As) substitutes for phosphorus in major biomolecules of a bacterium that tolerates extreme As concentrations. We welcome the opportunity to better explain our methods and results and to consider alternative interpretations. We maintain that our interpretation of As substitution, based on multiple congruent lines of evidence, is viable. C1 [Wolfe-Simon, Felisa; Davies, Paul C. W.] NASA, Astrobiol Inst, Washington, DC 20546 USA. [Wolfe-Simon, Felisa; Blum, Jodi Switzer; Kulp, Thomas R.; Hoeft, Shelley E.; Oremland, Ronald S.] US Geol Survey, Menlo Pk, CA 94025 USA. [Gordon, Gwyneth W.; Anbar, Ariel D.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Pett-Ridge, Jennifer; Weber, Peter K.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Stolz, John F.] Duquesne Univ, Dept Biol Sci, Pittsburgh, PA 15282 USA. [Webb, Samuel M.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Davies, Paul C. W.] Arizona State Univ, BEYOND Ctr Fundamental Concepts Sci, Tempe, AZ 85287 USA. [Anbar, Ariel D.] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. RP Wolfe-Simon, F (reprint author), NASA, Astrobiol Inst, Washington, DC 20546 USA. EM felisawolfesimon@gmail.com RI Webb, Samuel/D-4778-2009 OI Webb, Samuel/0000-0003-1188-0464 NR 30 TC 12 Z9 15 U1 1 U2 54 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 3 PY 2011 VL 332 IS 6034 DI 10.1126/science.1202098 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 772BO UT WOS:000291205200029 ER PT J AU Baird, BJ Dickey, JS Nakamura, AJ Redon, CE Parekh, P Griko, YV Aziz, K Georgakilas, AG Bonner, WM Martin, OA AF Baird, Brandon J. Dickey, Jennifer S. Nakamura, Asako J. Redon, Christophe E. Parekh, Palak Griko, Yuri V. Aziz, Khaled Georgakilas, Alexandros G. Bonner, William M. Martin, Olga A. TI Hypothermia postpones DNA damage repair in irradiated cells and protects against cell killing SO MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS LA English DT Article DE Hypothermia; Radioprotective effect; Cell survival; DNA damage ID DOUBLE-STRAND BREAKS; INDUCED HAIR LOSS; SQUIRRELS CITELLUS-TRIDECEMLINEATUS; BASE EXCISION-REPAIR; IONIZING-RADIATION; GROUND SQUIRRELS; IN-VITRO; BLOOD-LYMPHOCYTES; SPACE EXPLORATION; TOPOISOMERASE-I AB Hibernation is an established strategy used by some homeothermic organisms to survive cold environments. In true hibernation, the core body temperature of an animal may drop to below 0 degrees C and metabolic activity almost cease. The phenomenon of hibernation in humans is receiving renewed interest since several cases of victims exhibiting core body temperatures as low as 13.7 degrees C have been revived with minimal lasting deficits. In addition, local cooling during radiotherapy has resulted in normal tissue protection. The experiments described in this paper were prompted by the results of a very limited pilot study, which showed a suppressed DNA repair response of mouse lymphocytes collected from animals subjected to 7-Gy total body irradiation under hypothermic (13 degrees C) conditions, compared to normothermic controls. Here we report that human BJ-hTERT cells exhibited a pronounced radioprotective effect on clonogenic survival when cooled to 13 degrees C during and 12h after irradiation. Mild hypothermia at 20 and 30 degrees C also resulted in some radioprotection. The neutral comet assay revealed an apparent lack on double strand break (DSB) rejoining at 13 degrees C. Extension of the mouse lymphocyte study to ex vivo-irradiated human lymphocytes confirmed lower levels of induced phosphorylated H2AX (gamma-H2AX) and persistence of the lesions at hypothermia compared to the normal temperature. Parallel studies of radiation-induced oxidatively clustered DNA lesions (0CDL5) revealed partial repair at 13 degrees C compared to the rapid repair at 37 degrees C. For both gamma-H2AX foci and OCDLs, the return of lymphocytes to 37 degrees C resulted in the resumption of normal repair kinetics. These results, as well as observations made by others and reviewed in this study, have implications for understanding the radiobiology and protective mechanisms underlying hypothermia and potential opportunities for exploitation in terms of protecting normal tissues against radiation. (C) 2011 Published by Elsevier B.V. C1 [Baird, Brandon J.; Dickey, Jennifer S.; Nakamura, Asako J.; Redon, Christophe E.; Parekh, Palak; Bonner, William M.; Martin, Olga A.] NCI, Mol Pharmacol Lab, CCR, Bethesda, MD 20892 USA. [Aziz, Khaled; Georgakilas, Alexandros G.] E Carolina Univ, Dept Biol, Greenville, NC 27858 USA. [Griko, Yuri V.] NASA, Ames Res Ctr, Radiat & Space Biotechnol Branch, Moffett Field, CA 94035 USA. RP Martin, OA (reprint author), Bldg 37,Room 5050,9000 Rockville Pike, Bethesda, MD USA. EM sedelnio@mail.nih.gov RI Parekh, Palak/B-7042-2015 OI Parekh, Palak/0000-0001-9201-5194 FU National Cancer Institute, Center for Cancer Research, National Institutes of Health; NASA [NNX08AB13A]; ECU FX This work was founded by the Intramural Research Program of the National Cancer Institute, Center for Cancer Research, National Institutes of Health; by the NASA Human Research Program and the NASA contract to the Carnegie Mellon University Silicon Valley #NNX08AB13A; and by funds provided to Dr. Georgakilas by a 2009/2010 ECU Research/Creative Activity Award. NR 64 TC 8 Z9 9 U1 2 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0027-5107 J9 MUTAT RES-FUND MOL M JI Mutat. Res.-Fundam. Mol. Mech. Mutagen. PD JUN 3 PY 2011 VL 711 IS 1-2 SI SI BP 142 EP 149 DI 10.1016/j.mrfmmm.2010.12.006 PG 8 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 781EZ UT WOS:000291914700014 PM 21185842 ER PT J AU Hada, M Wu, HL Cucinotta, FA AF Hada, Megumi Wu, Honglu Cucinotta, Francis A. TI mBAND analysis for high- and low-LET radiation-induced chromosome aberrations: A review SO MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS LA English DT Review DE mBAND; Chromosome aberrations; Intrachromosomal exchanges; Breakpoint high-LET ID DENSELY IONIZING-RADIATION; DOUBLE-STRAND BREAKS; CLUSTERED DNA LESIONS; EXPOSED IN-VITRO; HUMAN-LYMPHOCYTES; ALPHA-PARTICLES; GAMMA-RAYS; HEAVY-IONS; BLOOD-LYMPHOCYTES; INTRACHROMOSOMAL EXCHANGES AB During long-term space travel or cancer therapy, humans are exposed to high linear energy transfer (LET) energetic heavy ions. High-LET radiation is much more effective than low-LET radiation in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, and cytogenetic damage can be utilized as a biomarker for radiation insults. Epidemiological data, mainly from survivors of the atomic bomb detonations in Japan, have enabled risk estimation from low-LET radiation exposures. The identification of a cytogenetic signature that distinguishes high- from low-LET exposure remains a long-term goal in radiobiology. Recently developed fluorescence in situ hybridization (FISH)-painting methodologies have revealed unique endpoints related to radiation quality. Heavy-ions induce a high fraction of complex-type exchanges, and possibly unique chromosome rearrangements. This review will concentrate on recent data obtained with multicolor banding in situ hybridization (mBAND) methods in mammalian cells exposed to low- and high-LET radiations. Chromosome analysis with mBAND technique allows detection of both inter- and intrachromosomal exchanges, and also distribution of the breakpoints of aberrations. (C) 2011 Elsevier B.V. All rights reserved. C1 [Hada, Megumi] NASA, Lyndon B Johnson Space Ctr, Radiat Biophys Lab, Human Adaptat & Countermeasures Div, Houston, TX 77058 USA. [Hada, Megumi] Univ Space Res Assoc, Houston, TX 77058 USA. RP Hada, M (reprint author), NASA, Lyndon B Johnson Space Ctr, Radiat Biophys Lab, Human Adaptat & Countermeasures Div, Houston, TX 77058 USA. EM megumi.hada-1@nasa.gov NR 82 TC 11 Z9 14 U1 3 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0027-5107 J9 MUTAT RES-FUND MOL M JI Mutat. Res.-Fundam. Mol. Mech. Mutagen. PD JUN 3 PY 2011 VL 711 IS 1-2 SI SI BP 187 EP 192 DI 10.1016/j.mrfmmm.2010.12.018 PG 6 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 781EZ UT WOS:000291914700019 PM 21232544 ER PT J AU Rahman, R Park, SH Klimeck, G Hollenberg, LCL AF Rahman, Rajib Park, Seung H. Klimeck, Gerhard Hollenberg, Lloyd C. L. TI Stark tuning of the charge states of a two-donor molecule in silicon SO NANOTECHNOLOGY LA English DT Article ID QUANTUM DOTS; NEMO 3-D; SINGLE; SPIN; SPECTROSCOPY; PHOSPHORUS; ATOM AB A singly ionized two-donor molecule in silicon is an interesting test-bed system for implementing a quantum bit using charge degrees of freedom at the atomic limit of device fabrication. The operating principles of such a device are based on wavefunction symmetries defined by charge localizations and energy gaps in the spectrum. The Stark-shifted electronic structure of a two-donor phosphorus molecule is investigated using a multi-million-atom tight-binding framework. The effects of surface (S) and barrier (B) gates are analyzed for various voltage regimes. It is found that gate control is smooth for any donor separation, although at certain donor orientations the S and B gates may alter in functionality. Effects such as interface ionization, saturation of the lowest energy gap, and sensitivity to donor and gate placements are also investigated. Excited molecular states of P-2+ are found to impose limits on the allowed donor separations and operating gate voltages for coherent operation. This work therefore outlines and analyzes the various issues that are of importance in the design and control of such donor molecular systems. C1 [Rahman, Rajib] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Rahman, Rajib; Park, Seung H.; Klimeck, Gerhard] Purdue Univ, Network Computat Nanotechnol, W Lafayette, IN 47907 USA. [Klimeck, Gerhard] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hollenberg, Lloyd C. L.] Univ Melbourne, Sch Phys, Ctr Quantum Comp Technol, Melbourne, Vic 3010, Australia. RP Rahman, R (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rrahman@sandia.gov; gekco@purdue.edu; lloydch@unimelb.edu.au RI Klimeck, Gerhard/A-1414-2012; OI Klimeck, Gerhard/0000-0001-7128-773X; Rahman, Rajib/0000-0003-1649-823X FU Australian Research Council; Australian Government; US National Security Agency (NSA); Army Research Office (ARO) [W911NF-08-1-0527]; Caltech; NASA; United States Department of Energy [DEAC04-94AL85000] FX This work was supported by the Australian Research Council, the Australian Government and the US National Security Agency (NSA), and the Army Research Office (ARO) under contract no. W911NF-08-1-0527. Part of the development of NEMO-3D was done at JPL, Caltech under a contract with NASA. NCN/nanohub.org computational resources were used. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Corporation, for the United States Department of Energy under contract no. DEAC04-94AL85000. NR 43 TC 6 Z9 6 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD JUN 3 PY 2011 VL 22 IS 22 AR 225202 DI 10.1088/0957-4484/22/22/225202 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 750BE UT WOS:000289518000004 PM 21454928 ER PT J AU Boardman, JW Pieters, CM Green, RO Lundeen, SR Varanasi, P Nettles, J Petro, N Isaacson, P Besse, S Taylor, LA AF Boardman, Joseph W. Pieters, C. M. Green, R. O. Lundeen, S. R. Varanasi, P. Nettles, J. Petro, N. Isaacson, P. Besse, S. Taylor, L. A. TI Measuring moonlight: An overview of the spatial properties, lunar coverage, selenolocation, and related Level 1B products of the Moon Mineralogy Mapper SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID INFORMATION AB The Moon Mineralogy Mapper (M-3), a high-resolution, high-precision imaging spectrometer, flew on board India's Chandrayaan-1 Mission from October 2008 through August 2009. This paper describes some of the spatial sampling aspects of the instrument, the planned mission, and the mission as flown. We also outline the content and context of the resulting Level 1B spatial products that form part of the M-3 archive. While designed and planned to operate for 2 years in a 100 km lunar orbit, M-3 was able to meet its lunar coverage requirements despite the shortened mission; an increase of the orbit altitude to 200 km; and several relevant problems with spacecraft attitude, timing, and ephemeris. The unexpected spacecraft issues required us to invent a novel two-step approach for selenolocation. Leveraging newly available Lunar Reconnaissance Orbiter-Lunar Orbiter Laser Altimeter (LOLA) topography and an improved spacecraft ephemeris, we have created a method that permits us to bootstrap spacecraft attitude estimates from the image data themselves. This process performs a nonlinear optimization to honor a set of data-derived image-to-image tie points and image-to-LOLA control points. Error analysis of the final results suggests we have converged to a selenolocation result that has image-to-image root-mean-square (RMS) errors less than 200 m and image-to-LOLA RMS errors less than 450 m, despite using data-derived spacecraft attitude results. The Level 1B products include the lunar coordinates resulting from this inversion process and 10 relevant observational geometry parameters that fully characterize the ray tracing geometry on a pixel-by-pixel basis. C1 [Boardman, Joseph W.] Analyt Imaging & Geophys LLC, Boulder, CO 80305 USA. [Besse, S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Green, R. O.; Lundeen, S. R.; Varanasi, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Pieters, C. M.; Nettles, J.; Isaacson, P.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Petro, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Taylor, L. A.] Univ Tennessee, Planetary Geosci Inst, Knoxville, TN 37996 USA. RP Boardman, JW (reprint author), Analyt Imaging & Geophys LLC, 4450 Arapahoe Ave,Ste 100, Boulder, CO 80305 USA. EM boardman@aigllc.com RI Petro, Noah/F-5340-2013; OI Besse, Sebastien/0000-0002-1052-5439 NR 19 TC 42 Z9 43 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUN 2 PY 2011 VL 116 AR E00G14 DI 10.1029/2010JE003730 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 773PH UT WOS:000291318700001 ER PT J AU Bristow, TF Bonifacie, M Derkowski, A Eiler, JM Grotzinger, JP AF Bristow, Thomas F. Bonifacie, Magali Derkowski, Arkadiusz Eiler, John M. Grotzinger, John P. TI A hydrothermal origin for isotopically anomalous cap dolostone cements from south China SO NATURE LA English DT Article ID GAS HYDRATE; NEOPROTEROZOIC SEAWATER; DOUSHANTUO FORMATION; METHANE SEEPS; CARBONATE; EVOLUTION; OXYGEN; FRACTIONATION; TEMPERATURE; EARTH AB The release of methane into the atmosphere through destabilization of clathrates is a positive feedback mechanism capable of amplifying global warming trends that may have operated several times in the geological past(1-3). Such methane release is a hypothesized cause or amplifier for one of the most drastic global warming events in Earth history, the end of the Marinoan 'snowball Earth' ice age, similar to 635 Myr ago(4-7). A key piece of evidence supporting this hypothesis is the occurrence of exceptionally depleted carbon isotope signatures (delta(13)C(PDB) down to -48 parts per thousand; ref. 8) in post-glacial cap dolostones (that is, dolostone overlying glacial deposits) from south China; these signatures have been interpreted as products of methane oxidation at the time of deposition(5,6,8). Here we show, on the basis of carbonate clumped isotope thermometry, (87)Sr/(86)Sr isotope ratios, trace element content and clay mineral evidence, that carbonates bearing the (13)C-depleted signatures crystallized more than 1.6 Myr after deposition of the cap dolostone. Our results indicate that highly (13)C-depleted carbonate cements grew from hydrothermal fluids and suggest that their carbon isotope signatures are a consequence of thermogenic methane oxidation at depth. This finding not only negates carbon isotope evidence for methane release during Marinoan deglaciation in south China, but also eliminates the only known occurrence of a Precambrian sedimentary carbonate with highly (13)C-depleted signatures related to methane oxidation in a seep environment. We propose that the capacity to form highly (13)C-depleted seep carbonates, through biogenic anaeorobic oxidation of methane using sulphate, was limited in the Precambrian period by low sulphate concentrations in sea water(9). As a consequence, although clathrate destabilization may or may not have had a role in the exit from the 'snowball' state, it would not have left extreme carbon isotope signals in cap dolostones. C1 [Bristow, Thomas F.; Bonifacie, Magali; Eiler, John M.; Grotzinger, John P.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Bonifacie, Magali] Univ Paris Diderot, Equipe Geochim Isotopes Stables, Inst Phys Globe Paris, CNRS,UMR 7154, F-75005 Paris, France. [Derkowski, Arkadiusz] Polish Acad Sci, Inst Geol Sci, PL-31002 Krakow, Poland. RP Bristow, TF (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM thomas.f.bristow@nasa.gov FU O.K. Earl Postdoctoral fellowship; NSF; INSU FX We thank G. Jiang for guidance in the field and for providing samples, V. Orphan and W. Fischer for discussion and advice, M. Kennedy for supporting fieldwork and use of analytical equipment, and E. Peterman and K. Morrison for laboratory work. C. Ma and M. Anderson are thanked for analytical assistance and advice. This work was supported by an O.K. Earl Postdoctoral fellowship (to T.F.B.), by the NSF EAR and GEG programmes (to J.M.E.), and by INSU (to M.B.). Part of the work of M.B. is IPGP contribution 3138. NR 37 TC 50 Z9 52 U1 9 U2 64 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUN 2 PY 2011 VL 474 IS 7349 BP 68 EP U92 DI 10.1038/nature10096 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 771KV UT WOS:000291156700038 PM 21613997 ER PT J AU Goldblatt, C Zahnle, KJ AF Goldblatt, Colin Zahnle, Kevin J. TI Faint young Sun paradox remains SO NATURE LA English DT Letter ID DIMETHYL-SULFIDE; ORGANIC HAZE; AEROSOL; EVOLUTION; EARTH C1 [Goldblatt, Colin; Zahnle, Kevin J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. RP Goldblatt, C (reprint author), Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA. EM cgoldbla@uw.edu NR 15 TC 18 Z9 19 U1 3 U2 35 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JUN 2 PY 2011 VL 474 IS 7349 BP E3 EP E4 DI 10.1038/nature09961 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 771KV UT WOS:000291156700003 PM 21637210 ER PT J AU Calabrese, E Huterer, D Linder, EV Melchiorri, A Pagano, L AF Calabrese, Erminia Huterer, Dragan Linder, Eric V. Melchiorri, Alessandro Pagano, Luca TI Limits on dark radiation, early dark energy, and relativistic degrees of freedom SO PHYSICAL REVIEW D LA English DT Article ID MICROWAVE; NUCLEOSYNTHESIS; CONSTANT; SPECTRUM AB Recent cosmological data analyses hint at the presence of an extra relativistic energy component in the early universe. This component is often parametrized as an excess of the effective neutrino number N-eff over the standard value of 3.046. The excess relativistic energy could be an indication for an extra (sterile) neutrino, but early dark energy and barotropic dark energy also contribute to the relativistic degrees of freedom. We examine the capabilities of current and future data to constrain and discriminate between these explanations, and to detect the early dark energy density associated with them. We find that while early dark energy does not alter the current constraints on N-eff, a dark radiation component, such as that provided by barotropic dark energy models, can substantially change current constraints on N-eff, bringing its value back to agreement with the theoretical prediction. Both dark energy models also have implications for the primordial mass fraction of Helium Y-p and the scalar perturbation index n(s). The ongoing Planck satellite mission will be able to further discriminate between sterile neutrinos and early dark energy. C1 [Calabrese, Erminia; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Calabrese, Erminia; Melchiorri, Alessandro] Univ Roma La Sapienza, INFN, I-00185 Rome, Italy. [Huterer, Dragan] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Linder, Eric V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Linder, Eric V.] Ewha Womans Univ, Inst Early Univ WCU, Seoul, South Korea. [Pagano, Luca] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Calabrese, E (reprint author), Univ Roma La Sapienza, Dept Phys, Ple Aldo Moro 2, I-00185 Rome, Italy. OI Melchiorri, Alessandro/0000-0001-5326-6003 FU PRIN-INAF; DOE OJI [DE-FG02-95ER40899]; NSF [AST-0807564]; NASA [NNX09AC89G]; World Class University through the National Research Foundation [R32-2009-000-10130-0]; Ministry of Education, Science and Technology of Korea; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231] FX E. C. and A. M. are supported by PRIN-INAF grant, "Astronomy probes fundamental physics". D. H. is supported by the DOE OJI grant under Contract No. DE-FG02-95ER40899, NSF under Contract No. AST-0807564, and NASA under Contract No. NNX09AC89G. E. L. has been supported in part by the World Class University Grant No. R32-2009-000-10130-0 through the National Research Foundation, Ministry of Education, Science and Technology of Korea and also by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231; he thanks Nordita for hospitality during part of this work, and Claudia de Rham for helpful discussions. Part of the research of L. P. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 42 TC 50 Z9 50 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN 2 PY 2011 VL 83 IS 12 AR 123504 DI 10.1103/PhysRevD.83.123504 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 771ZB UT WOS:000291198100002 ER PT J AU Field, SE Galley, CR Herrmann, F Hesthaven, JS Ochsner, E Tiglio, M AF Field, Scott E. Galley, Chad R. Herrmann, Frank Hesthaven, Jan S. Ochsner, Evan Tiglio, Manuel TI Reduced Basis Catalogs for Gravitational Wave Templates SO PHYSICAL REVIEW LETTERS LA English DT Article ID ENERGY-LOSS; BINARIES; ORDER AB We introduce a reduced basis approach as a new paradigm for modeling, representing and searching for gravitational waves. We construct waveform catalogs for nonspinning compact binary coalescences, and we find that for accuracies of 99% and 99.999% the method generates a factor of about 10-10(5) fewer templates than standard placement methods. The continuum of gravitational waves can be represented by a finite and comparatively compact basis. The method is robust under variations in the noise of detectors, implying that only a single catalog needs to be generated. C1 [Field, Scott E.] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Galley, Chad R.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Galley, Chad R.] CALTECH, TAPIR, Pasadena, CA 91125 USA. [Galley, Chad R.; Herrmann, Frank; Tiglio, Manuel] Univ Maryland, Dept Phys, Maryland Ctr Fundamental Phys, Joint Space Sci Inst,Ctr Sci Computat & Math Mode, College Pk, MD 20742 USA. [Hesthaven, Jan S.] Brown Univ, Div Appl Math, Providence, RI 02912 USA. [Ochsner, Evan] Univ Wisconsin, Ctr Gravitat & Cosmol, Milwaukee, WI 53201 USA. RP Field, SE (reprint author), Brown Univ, Dept Phys, Providence, RI 02912 USA. RI Hesthaven, Jan/A-7602-2009 OI Hesthaven, Jan/0000-0001-8074-1586 FU NSF [PHY0801213, PHY0908457, DMS 0554377, PHY0970074]; OSD/AFOSR [FA9550-09-1-0613]; NASA FX We thank P. Ajith, E. Barausse, A. Buonanno, C. Cutler, A. Le Tiec, S. Lau, T. Littenberg, J. McFarland, R. Nochetto, L. Price, M. Vallisneri, and B. Zheng for helpful discussions and suggestions, and especially B. Stamm for introducing several of us to the use of Reduced Basis. This work has been supported by NSF Grants PHY0801213 and PHY0908457 to UMD, NSF DMS 0554377 and OSD/AFOSR FA9550-09-1-0613 to Brown University and NSF Grant PHY0970074 to UWM. C. G. was supported in part by an appointment to the NPP at JPL through a contract with NASA. NR 15 TC 26 Z9 26 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 2 PY 2011 VL 106 IS 22 AR 221102 DI 10.1103/PhysRevLett.106.221102 PG 4 WC Physics, Multidisciplinary SC Physics GA 771ZK UT WOS:000291199000003 PM 21702591 ER PT J AU Loeffler, MJ Baragiola, RA AF Loeffler, M. J. Baragiola, R. A. TI Isothermal Decomposition of Hydrogen Peroxide Dihydrate SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID WATER ICE; H2O2; EUROPA; ATMOSPHERE; ENCELADUS; MIXTURES; MANTLES; MODEL AB We present a new method of growing pure solid hydrogen peroxide in an ultra high vacuum environment and apply it to determine thermal stability of the dihydrate compound that forms when water and hydrogen peroxide are mixed at low temperatures. Using infrared spectroscopy and thermogravimetric analysis, we quantified the isothermal decomposition of the metastable dihydrate at 151.6 K. This decomposition occurs by fractional distillation through the preferential sublimation of water, which leads to the formation of pure hydrogen peroxide. The results imply that in an astronomical environment where condensed mixtures of H(2)O(2) and H(2)O are shielded from radiolytic decomposition and warmed to temperatures where sublimation is significant, highly concentrated or even pure hydrogen peroxide may form. C1 [Loeffler, M. J.; Baragiola, R. A.] Univ Virginia, Lab Atom & Surface Phys, Charlottesville, VA 22904 USA. [Loeffler, M. J.] NASA GSFC, Astrochem Lab, Greenbelt, MD 20775 USA. RP Baragiola, RA (reprint author), Univ Virginia, Lab Atom & Surface Phys, Thornton Hall B113, Charlottesville, VA 22904 USA. RI Loeffler, Mark/C-9477-2012 FU NASA FX This work was supported by NASA Planetary Geology and Geophysics and Planetary Atmospheres, and Outer Solar System programs. We thank W. A. Jesser for useful discussions. NR 22 TC 9 Z9 9 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 2 PY 2011 VL 115 IS 21 BP 5324 EP 5328 DI 10.1021/jp200188b PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 768EO UT WOS:000290914500010 PM 21545167 ER PT J AU Antonarakis, AS Saatchi, SS Chazdon, RL Moorcroft, PR AF Antonarakis, Alexander S. Saatchi, Sassan S. Chazdon, Robin L. Moorcroft, Paul R. TI Using Lidar and Radar measurements to constrain predictions of forest ecosystem structure and function SO ECOLOGICAL APPLICATIONS LA English DT Article DE biomass; canopy height; ecosystem demography; ecosystem modeling; forest composition; forest structure; La Selva Biological Station; Costa Rica; Lidar; NASA's DESDynI mission; net primary production, NPP; radar; reducing modeling error ID WOOD DENSITY; RAIN-FORESTS; SAR INTERFEROMETRY; TROPICAL TREES; COSTA-RICA; OLD-GROWTH; BIOMASS; CARBON; MODEL; VEGETATION AB Insights into vegetation and aboveground biomass dynamics within terrestrial ecosystems have come almost exclusively from ground-based forest inventories that are limited in their spatial extent. Lidar and synthetic-aperture Radar are promising remote-sensing-based techniques for obtaining comprehensive measurements of forest structure at regional to global scales. In this study we investigate how Lidar-derived forest heights and Radar-derived aboveground biomass can be used to constrain the dynamics of the ED2 terrestrial biosphere model. Four-year simulations initialized with Lidar and Radar structure variables were compared against simulations initialized from forest-inventory data and output from a long-term potential-vegtation simulation. Both height and biomass initializations from Lidar and Radar measurements significantly improved the representation of forest structure within the model, eliminating the bias of too many large trees that arose in the potential-vegtation-initialized simulation. The Lidar and Radar initializations decreased the proportion of larger trees estimated by the potential vegetation by; similar to 20-30%, matching the forest inventory. This resulted in improved predictions of ecosystem-scale carbon fluxes and structural dynamics compared to predictions from the potential-vegtation simulation. The Radar initialization produced biomass values that were 75% closer to the forest inventory, with Lidar initializations producing canopy height values closest to the forest inventory. Net primary production values for the Radar and Lidar initializations were around 6-8% closer to the forest inventory. Correcting the Lidar and Radar initializations for forest composition resulted in improved biomass and basal-area dynamics as well as leaf-area index. Correcting the Lidar and Radar initializations for forest composition and fine-scale structure by combining the remote-sensing measurements with ground-based inventory data further improved predictions, suggesting that further improvements of structural and carbon-flux metrics will also depend on obtaining reliable estimates of forest composition and accurate representation of the fine-scale vertical and horizontal structure of plant canopies. C1 [Antonarakis, Alexander S.; Moorcroft, Paul R.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. [Saatchi, Sassan S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Chazdon, Robin L.] Univ Connecticut, Dept Ecol & Evolutionary Biol, Storrs, CT 06269 USA. RP Moorcroft, PR (reprint author), Harvard Univ, Dept Organism & Evolutionary Biol, 26 Oxford St, Cambridge, MA 02138 USA. EM paul_moorcraft@harvard.edu OI Antonarakis, Alexander/0000-0003-3194-1682 FU National Aeronautics and Space Administration (NASA) [NNH05ZDA001N-RSSCC] FX The authors acknowledge the National Aeronautics and Space Administration (NASA) NNH05ZDA001N-RSSCC grant entitled "Remote Sensing Science for Carbon and Climate". We thank the NASA AIRSAR crew for the acquisition of the radar images and the JPL airborne SAR group for processing and calibration of the data. We thank the Goddard Space Flight Center for the availability of the LVIS data. We also thank R. Dubayah and B. Blair for advice and comments on the analysis. Our special thanks go to the La Selva Biological Station of the Organization for Tropical Studies. NR 55 TC 16 Z9 18 U1 3 U2 61 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 1051-0761 J9 ECOL APPL JI Ecol. Appl. PD JUN PY 2011 VL 21 IS 4 BP 1120 EP 1137 DI 10.1890/10-0274.1 PG 18 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA 776LE UT WOS:000291535500012 PM 21774418 ER PT J AU Heuer, AH Hovis, DB Smialek, JL Gleeson, B AF Heuer, Arthur H. Hovis, David B. Smialek, James L. Gleeson, Brian TI Alumina Scale Formation: A New Perspective SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID GRAIN-BOUNDARY DIFFUSION; HIGH-TEMPERATURE ALLOYS; SINGLE-CRYSTAL ALUMINA; OXYGEN SELF-DIFFUSION; CR-AL ALLOYS; SAPPHIRE ALPHA-AL2O3; TRANSIENT OXIDATION; TRACER DIFFUSION; GROWTH-MECHANISM; CREEP RESISTANCE AB Oxidation of Al(2)O(3) scale-forming alloys is of immense technological significance and has been a subject of much scientific inquiry for decades. The oxidation reaction is remarkably complex, involving issues of alloy composition, kinetics, thermodynamics, microstructure, mechanics and mechanical properties, crystallography, etc. A brief overview of the formation of passivating, thermally grown oxide Al(2)O(3) scales will be given in the light of recent findings on the defect structure and associated transport behavior of alpha-Al(2)O(3). It is inferred that the electronic structure of Al(2)O(3) is of direct relevance to understand the Al(2)O(3) scale growth. We also discuss the effect of the so-called "reactive" elements (REs)-Y, Zr, and Hf-on reducing the rate of Al(2)O(3) scale thickening by reducing the outward flux of aluminum. An important aspect of the "new perspective" is the suggestion that the REs change the electronic structure of Al(2)O(3)-the relevant near-band-edge defect (grain boundary) states that are crucial to vacancy creation both at the scale/gas and scale/metal interfaces. C1 [Heuer, Arthur H.; Hovis, David B.] Case Western Reserve Univ, Dept Mat Sci & Engn, Cleveland, OH 44106 USA. [Smialek, James L.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. [Gleeson, Brian] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15260 USA. RP Heuer, AH (reprint author), Case Western Reserve Univ, Dept Mat Sci & Engn, Cleveland, OH 44106 USA. EM ahh@case.edu FU ONR [N00014-02-0479, N000014-0911127] FX This paper is dedicated to the memory of Tony Evans, whose loss to the materials community is immense. In particular, Tony's role in focusing the community's attention on Prime Reliant Coatings was key to AHH's efforts on studying TGO formation. We thank N. Hine, M. Finnis, and M. Foulkes (Imperial College, London) and T. Nakagama and Y. Ikuhara (University of Tokyo) for permission to quote unpublished data. This research was supported by ONR grants N00014-02-0479 (A. H. Heuer) and N000014-0911127 (B. Gleeson), Dr. D. Shifler, Program Manager. NR 53 TC 32 Z9 33 U1 4 U2 59 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JUN PY 2011 VL 94 SU 1 BP S146 EP S153 DI 10.1111/j.1551-2916.2011.04573.x PG 8 WC Materials Science, Ceramics SC Materials Science GA 785EC UT WOS:000292209200016 ER PT J AU Person, S Yang, GW Rungta, N Khurshid, S AF Person, Suzette Yang, Guowei Rungta, Neha Khurshid, Sarfraz TI Directed Incremental Symbolic Execution SO ACM SIGPLAN NOTICES LA English DT Article DE Verification; Algorithms; Program Differencing; Symbolic Execution; Software Evolution AB The last few years have seen a resurgence of interest in the use of symbolic execution - a program analysis technique developed more than three decades ago to analyze program execution paths. Scaling symbolic execution and other path-sensitive analysis techniques to large systems remains challenging despite recent algorithmic and technological advances. An alternative to solving the problem of scalability is to reduce the scope of the analysis. One approach that is widely studied in the context of regression analysis is to analyze the differences between two related program versions. While such an approach is intuitive in theory, finding efficient and precise ways to identify program differences, and characterize their effects on how the program executes has proved challenging in practice. In this paper, we present Directed Incremental Symbolic Execution (DiSE), a novel technique for detecting and characterizing the effects of program changes. The novelty of DiSE is to combine the efficiencies of static analysis techniques to compute program difference information with the precision of symbolic execution to explore program execution paths and generate path conditions affected by the differences. DiSE is a complementary technique to other reduction or bounding techniques developed to improve symbolic execution. Furthermore, DiSE does not require analysis results to be carried forward as the software evolves-only the source code for two related program versions is required. A case-study of our implementation of DiSE illustrates its effectiveness at detecting and characterizing the effects of program changes. C1 [Person, Suzette] NASA, Langley Res Ctr, Washington, DC 20546 USA. [Rungta, Neha] NASA, Ames Res Ctr, Washington, DC 20546 USA. [Yang, Guowei; Khurshid, Sarfraz] Univ Texas Austin, Austin, TX 78712 USA. RP Person, S (reprint author), NASA, Langley Res Ctr, Washington, DC 20546 USA. EM suzette.person@nasa.gov; gyang@ece.utexas.edu; neha.s.rungta@nasa.gov; khurshid@ece.utexas.edu FU NSF [IIS-0438967, CCF-0845628]; AFOSR [FA9550-09-1-0351] FX The authors gratefully acknowledge the contributions of Matt Dwyer and Gregg Rothermel to early work on DiSE. The authors also thank Eric Mercer for the helpful comments to improve the paper. The work of Yang and Khurshid was supported in part by the NSF under Grant Nos. IIS-0438967 and CCF-0845628, and AFOSR grant FA9550-09-1-0351. NR 39 TC 22 Z9 23 U1 0 U2 2 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0362-1340 J9 ACM SIGPLAN NOTICES JI ACM Sigplan Not. PD JUN PY 2011 VL 46 IS 6 BP 504 EP 515 DI 10.1145/1993316.1993558 PG 12 WC Computer Science, Software Engineering SC Computer Science GA 816NQ UT WOS:000294609500044 ER PT J AU Kodera, K Eguchi, N Lee, JN Kuroda, Y Yukimoto, S AF Kodera, Kunihiko Eguchi, Nawo Lee, Jae N. Kuroda, Yuhji Yukimoto, Seiji TI Sudden Changes in the Tropical Stratospheric and Tropospheric Circulation during January 2009 SO JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN LA English DT Article ID INTERANNUAL VARIABILITY; WARMING EVENT; WAVES; PACIFIC; FIELDS AB In mid-January 2009, sudden changes in circulation occurred in the tropical troposphere and stratosphere. Convective activity situated over the equatorial Maritime Continent showed an abrupt weakening, whereas that over the South American to African sectors became stronger. Changes also occurred in the latitudinal structure; convective activity in the Northern Hemisphere became weaker, whereas that in the Southern Hemisphere became stronger. The change in convective activity took place in association with a change in tropical circulation, from east west to north south type (i.e., from Walker- to Hadley-type circulation). Almost simultaneously with these events in the troposphere, a change in meridional circulation occurred in the stratosphere during a record-breaking stratospheric sudden warming event in January 2009. Stratospheric tropical temperature showed a decrease in response to a strengthening of the hemispherical meridional circulation. In the present study, we show how the stratospheric and tropospheric circulation changes are dynamically coupled. C1 [Kodera, Kunihiko] Nagoya Univ, Solar Terr Environm Lab, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [Kodera, Kunihiko; Kuroda, Yuhji; Yukimoto, Seiji] Meteorolig Res Inst, Tsukuba, Ibaraki, Japan. [Eguchi, Nawo] Tohoku Univ, Ctr Atmospher & Ocean Studies, Sendai, Miyagi 980, Japan. [Lee, Jae N.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Kodera, K (reprint author), Nagoya Univ, Solar Terr Environm Lab, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan. EM kodera@stelab.nagoya-u.ac.jp FU Ministry of Education, Science, Sports and Culture [20244076, 20340131]; NIES CGER FX The authors thank T. Ichimaru, Y. Harada, T. Hirooka, H. Mukougawa, and P. Newman for useful information and discussions on the 2009 sudden warming event. Thanks are extended to T. Nasuno for valuable discussions on the tropical variability. Figure 1 was made using ITACS data provided by the Japan Meteorological Agency. Analysis of the cloud top pressure was performed using the Giovanni online data system, which was developed and is maintained by NASA GES DISC. This work was supported in part by the Ministry of Education, Science, Sports and Culture via a Grant-in-Aid for Scientific Research (A) 20244076 and (B) 20340131 and NIES CGER support. NR 24 TC 9 Z9 9 U1 1 U2 12 PU METEOROLOGICAL SOC JAPAN PI TOKYO PA C/O JAPAN METEOROLOGICAL AGENCY 1-3-4 OTE-MACHI, CHIYODA-KU, TOKYO, 100-0004, JAPAN SN 0026-1165 EI 2186-9057 J9 J METEOROL SOC JPN JI J. Meteorol. Soc. Jpn. PD JUN PY 2011 VL 89 IS 3 BP 283 EP 290 DI 10.2151/jmsj.2011-308 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 811FZ UT WOS:000294192600008 ER PT J AU Nalli, NR Joseph, E Morris, VR Barnet, CD Wolf, WW Wolfe, D Minnett, PJ Szczodrak, M Izaguirre, MA Lumpkin, R Xie, H Smirnov, A King, TS Wei, J AF Nalli, Nicholas R. Joseph, Everette Morris, Vernon R. Barnet, Christopher D. Wolf, Walter W. Wolfe, Daniel Minnett, Peter J. Szczodrak, Malgorzata Izaguirre, Miguel A. Lumpkin, Rick Xie, Hua Smirnov, Alexander King, Thomas S. Wei, Jennifer TI MULTIYEAR OBSERVATIONS OF THE TROPICAL ATLANTIC ATMOSPHERE Multidisciplinary Applications of the NOAA Aerosols and Ocean Science Expeditions SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID SAHARAN AIR LAYER; EMITTED RADIANCE INTERFEROMETER; HIGH-RESOLUTION RADIOMETER; SEA-SURFACE TEMPERATURE; VERTICAL RESOLUTION; OZONE MAXIMUM; WATER-VAPOR; WAVE-ONE; RETRIEVALS; HUMIDITY C1 [Nalli, Nicholas R.; King, Thomas S.; Wei, Jennifer] Dell Serv Fed Govt Inc, Camp Springs, MD USA. [Nalli, Nicholas R.; Barnet, Christopher D.; Wolf, Walter W.; King, Thomas S.; Wei, Jennifer] NOAA NESDIS Ctr Satellite Applicat & Res STAR, Camp Springs, MD USA. [Joseph, Everette; Morris, Vernon R.] Howard Univ, NOAA Ctr Atmospher Sci, Washington, DC 20059 USA. [Wolf, Walter W.] NOAA Earth Syst Res Lab, Boulder, CO USA. [Minnett, Peter J.; Szczodrak, Malgorzata; Izaguirre, Miguel A.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. [Lumpkin, Rick] NOAA OAR Atlantic Oceanog & Meteorol Lab, Miami, FL USA. [Nalli, Nicholas R.; Xie, Hua] NOAA NESDIS STAR, IM Syst Grp, Camp Springs, MD 20746 USA. [Smirnov, Alexander] NASA, Goddard Space Flight Ctr, Sigma Space Corp, Greenbelt, MD 20771 USA. RP Nalli, NR (reprint author), NOAA NESDIS STAR, IM Syst Grp, Airmen Mem Bldg Ste 204,5211 Auth Rd, Camp Springs, MD 20746 USA. EM nick.nalli@noaa.gov RI Nalli, Nicholas/F-6731-2010; Wolf, Walter/E-7935-2011; Barnet, Christopher/F-5573-2010; Lumpkin, Rick/C-9615-2009 OI Nalli, Nicholas/0000-0002-6914-5537; Wolf, Walter/0000-0002-2102-8833; Lumpkin, Rick/0000-0002-6690-1704 FU NOAA [NA17AE1625, NA17AE1623]; STAR Satellite Meteorology and Climatology Division (SMCD); GOES-R Algorithm Working Group; NOAA's Office of Climate Observations FX This research has been supported by the NOAA Educational Partnership Program Grant NA17AE1625, NOAA Grant NA17AE1623 to establish NCAS, the STAR Satellite Meteorology and Climatology Division (SMCD) and GOES-R Algorithm Working Group (M. D. Goldberg, SMCD Division Chief, and A. Powell, Director of STAR), the NOAA Integrated Program Office (2008-10), the Joint Center for Satellite Data Assimilation FY05-06 Science Development and Implementation Task, and the NASA AIRS Science Team (2006-08). Funding for PNE is provided by NOAA's Office of Climate Observations (Climate Program Office). NR 68 TC 17 Z9 17 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD JUN PY 2011 VL 92 IS 6 BP 765 EP 789 DI 10.1175/2011BAMS2997.1 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 797MU UT WOS:000293132800009 ER PT J AU Reid, JS Benedetti, A Colarco, PR Hansen, JA AF Reid, Jeffrey S. Benedetti, Angela Colarco, Peter R. Hansen, James A. TI INTERNATIONAL OPERATIONAL AEROSOL OBSERVABILITY WORKSHOP SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Editorial Material C1 [Reid, Jeffrey S.; Hansen, James A.] USN, Marine Meteorol Div, Res Lab, Monterey, CA 93943 USA. [Benedetti, Angela] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England. [Colarco, Peter R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Reid, JS (reprint author), USN, Marine Meteorol Div, Res Lab, Monterey, CA 93943 USA. EM jeffrey.reid@nrlmry.navy.mil RI Reid, Jeffrey/B-7633-2014; Colarco, Peter/D-8637-2012 OI Reid, Jeffrey/0000-0002-5147-7955; Colarco, Peter/0000-0003-3525-1662 NR 0 TC 10 Z9 10 U1 0 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD JUN PY 2011 VL 92 IS 6 BP ES21 EP ES24 DI 10.1175/2010BAMS3183.1 PG 4 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 797MU UT WOS:000293132800001 ER PT J AU Elardo, SM Draper, DS Shearer, CK AF Elardo, Stephen M. Draper, David S. Shearer, Charles K., Jr. TI Lunar Magma Ocean crystallization revisited: Bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID FRACTIONAL CRYSTALLIZATION; OLIVINE-LIQUID; ORTHO-PYROXENE; HIGH-PRESSURE; MARE BASALTS; PARTITION-COEFFICIENTS; EXPERIMENTAL PETROLOGY; TERRESTRIAL PLANETS; MELTING EXPERIMENTS; OXYGEN FUGACITY AB Crystallization of the Lunar Magma Ocean (LMO) has been numerically modeled and its products inferred from sample observations, but it has never been fully tested experimentally. This study is a reexamination of the LMO hypothesis by means of the first experimental simulation of lunar differentiation. Two end-member bulk Moon compositions are considered: one enriched in refractory lithophile elements relative to Earth and one with no such enrichment. A "two-stage" model of magma ocean crystallization based on geophysical constraints is simulated and features early crystal suspension and equilibrium crystallization followed by fractional crystallization of the residual magma ocean. An initially entirely molten Moon is assumed. Part 1 of this study, presented here, focuses on stage 1 of this model and considers the early cumulates formed by equilibrium crystallization, differences in mantle mineralogy resulting from different bulk Moon compositions, and implications for the source regions of the highlands Mg-suite. Refractory element enriched bulk Moon compositions produce a deep mantle that contains garnet and trace Cr-spinel in addition to low-Ca pyroxene and olivine. In contrast, compositions without refractory element enrichment produce a deep dunitic mantle with low-Ca pyroxene but without an aluminous phase. The differences in bulk composition are magnified in the residual melt; the residual LMO from the refractory element enriched composition will likely produce plagioclase and ilmenite earlier and in greater quantities. Both compositions produce Mg-rich early cumulate piles that extend from the core-mantle boundary to similar to 355 km depth, if 50% equilibrium crystallization and whole Moon melting are assumed. These early LMO cumulates provide good fits for the source regions for a component of the high-Mg*, Ni- and Co-poor parental magmas of the Mg-suite cumulates, if certain conditions are called upon. The olivine in early LMO cumulates produced by either bulk Moon composition is far too rich in Cr to be reasonable for the source regions of the Mg-suite, meaning either core formation in the presence of S and/or C must be invoked to deplete the LMO and the crystallizing olivine in Cr, or that current estimates of the bulk lunar Cr content are too high. We infer that melts meeting the criteria of the Mg-suite parents could be produced from early LMO cumulates by solid state KREEP and plagioclase hybridization near the base of the crust and subsequent partial melting. Additionally, we propose a revised model for Mg-suite petrogenesis. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Elardo, Stephen M.; Draper, David S.; Shearer, Charles K., Jr.] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. [Draper, David S.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Elardo, SM (reprint author), Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. EM selardo@unm.edu RI Elardo, Stephen/E-5865-2010 FU NASA [NNX08AH81G, NNX10AI77G]; Institute of Meteoritics; New Mexico Space Grant Consortium FX We thank John Longhi, Jeff Taylor and an anonymous reviewer for their thorough and insightful comments, and Al D. Brandon for his work as associate editor. We also thank Loan Le (NASA Johnson Space Center) for assistance in preparation of starting materials, Paul Burger for help with SIMS analyses, Francis McCubbin for many helpful discussions and Tracy Paul at Depths of the Earth for her endless support in keeping our QUICKpress up and running. This work was funded by NASA Cosmochemistry Grants NNX08AH81G to David S. Draper and NNX10AI77G to Charles K. Shearer, and by the Institute of Meteoritics. Additionally, Stephen M. Elardo gratefully acknowledges support from a graduate fellowship from the New Mexico Space Grant Consortium. NR 94 TC 59 Z9 59 U1 2 U2 47 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN 1 PY 2011 VL 75 IS 11 BP 3024 EP 3045 DI 10.1016/j.gca.2011.02.033 PG 22 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 796XU UT WOS:000293087600003 ER PT J AU Rocha, G Contaldi, CR Bond, JR Gorski, KM AF Rocha, G. Contaldi, C. R. Bond, J. R. Gorski, K. M. TI Application of XFASTER power spectrum and likelihood estimator to Planck SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; methods: statistical; cosmology: observations; cosmic microwave background; cosmological parameters ID MICROWAVE BACKGROUND DATA; DMR SKY MAPS; 30 GHZ DATA; PRIMORDIAL INHOMOGENEITY; ANISOTROPY; TEMPERATURE; ALGORITHMS; MISSION AB We develop the XFASTER cosmic microwave background (CMB) temperature and polarization anisotropy power spectrum and likelihood technique for the Planck CMB satellite mission. We give an overview of this estimator and its current implementation, and present the results of applying this algorithm to simulated Planck data. We show that it can accurately extract the power spectrum of Planck data for the high-l multipoles range. We compare the XFASTER approximation for the likelihood to other high-l likelihood approximations such as Gaussian and Offset Lognormal and a low-l pixel-based likelihood. We show that the XFASTER likelihood is not only accurate at high l, but also performs well at moderately low multipoles. We also present results for cosmological parameter Markov chain Monte Carlo estimation with the XFASTER likelihood. As long as the low-l polarization and temperature power are properly accounted for, e.g. by adding an adequate low-l likelihood ingredient, the input parameters are recovered to a high level of accuracy. C1 [Rocha, G.; Gorski, K. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rocha, G.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Contaldi, C. R.] Univ London, Imperial Coll, Dept Phys, London SW7 2AZ, England. [Bond, J. R.] Univ Toronto, CITA, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Rocha, G (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM graca@its.caltech.edu FU Office of Science of the US Department of Energy [DE-AC03-76SF00098]; NASA Science Mission Directorate; NASA FX This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC03-76SF00098.; GR Planck Project is supported by the NASA Science Mission Directorate.; The research described in this paper was partially carried out at the Jet propulsion Laboratory, California Institute of Technology, under a contract with NASA. Copyright 2009. All rights reserved. NR 43 TC 8 Z9 8 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2011 VL 414 IS 2 BP 823 EP 846 DI 10.1111/j.1365-2966.2010.17980.x PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 792JS UT WOS:000292740500003 ER PT J AU Keith, MJ Johnston, S Ray, PS Ferrara, EC Parkinson, PMS Celik, O Belfiore, A Donato, D Cheung, CC Abdo, AA Camilo, F Freire, PCC Guillemot, L Harding, AK Kramer, M Michelson, PF Ransom, SM Romani, RW Smith, DA Thompson, DJ Weltevrede, P Wood, KS AF Keith, M. J. Johnston, S. Ray, P. S. Ferrara, E. C. Parkinson, P. M. Saz Celik, O. Belfiore, A. Donato, D. Cheung, C. C. Abdo, A. A. Camilo, F. Freire, P. C. C. Guillemot, L. Harding, A. K. Kramer, M. Michelson, P. F. Ransom, S. M. Romani, R. W. Smith, D. A. Thompson, D. J. Weltevrede, P. Wood, K. S. TI Discovery of millisecond pulsars in radio searches of southern Fermi Large Area Telescope sources SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE pulsars: general; pulsars: individual: J2241-5236 ID GAMMA-RAY PULSARS; BLIND FREQUENCY SEARCHES; SOURCE CATALOG; LAT; POPULATION; SYSTEM AB Using the Parkes Radio Telescope, we have carried out deep observations of 11 unassociated gamma-ray sources. Periodicity searches of these data have discovered two millisecond pulsars, PSR J1103-5403 (1FGL J1103.9-5355) and PSR J2241-5236 (1FGL J2241.9-5236), and a long-period pulsar, PSR J1604-44 (1FGL J1604.7-4443). In addition, we searched for but did not detect any radio pulsations from six gamma-ray pulsars discovered by the Fermi satellite to a level of similar to 0.04 mJy (for pulsars with a 10 per cent duty cycle). The timing of the millisecond pulsar PSR J1103-5403 has shown that its position is 9 arcmin from the centroid of the gamma-ray source. Since these observations were carried out, independent evidence has shown that 1FGL J1103.9-5355 is associated with the flat spectrum radio sourcePKS 1101-536. It appears certain that the pulsar is not associated with the gamma-ray source, despite the seemingly low probability of a chance detection of a radio millisecond pulsar. We consider that PSR J1604-44 is a chance discovery of a weak, long-period pulsar and is unlikely to be associated with 1FGL J1604.7-4443. PSR J2241-5236 has a spin period of 2.2 ms and orbits a very low mass companion with a 3.5-h orbital period. The relatively high flux density and low dispersion measure of PSR J2241-5236 make it an excellent candidate for high precision timing experiments. The gamma rays of 1FGL J2241.9-5236 have a spectrum that is well modelled by a power law with an exponential cut-off, and phase binning with the radio ephemeris results in a multipeaked gamma-ray pulse profile. Observations with Chandra have identified a coincident X-ray source within 0.1 arcsec of the position of the pulsar obtained by radio timing. C1 [Keith, M. J.; Johnston, S.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Ray, P. S.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Ferrara, E. C.; Celik, O.; Donato, D.; Kramer, M.; Thompson, D. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Parkinson, P. M. Saz; Belfiore, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Parkinson, P. M. Saz; Belfiore, A.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Celik, O.; Donato, D.] CRESST, Greenbelt, MD 20771 USA. [Celik, O.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, O.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Belfiore, A.] INAF Ist Astrofis Spaziale Fis Cosm, I-20133 Milan, Italy. [Belfiore, A.] Univ Pavia, DFNT, I-27100 Pavia, Italy. [Donato, D.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Donato, D.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Cheung, C. C.; Abdo, A. A.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Camilo, F.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Freire, P. C. C.; Guillemot, L.; Kramer, M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Kramer, M.; Weltevrede, P.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Michelson, P. F.; Romani, R. W.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Michelson, P. F.; Romani, R. W.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Ransom, S. M.] NRAO, Charlottesville, VA 22903 USA. [Smith, D. A.] Univ Bordeaux 1, Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2p3, F-33175 Gradignan, France. RP Keith, MJ (reprint author), CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. EM mkeith@pulsarastronomy.net RI Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Saz Parkinson, Pablo Miguel/I-7980-2013; OI Thompson, David/0000-0001-5217-9135; Ransom, Scott/0000-0001-5799-9714; Ray, Paul/0000-0002-5297-5278 FU Commonwealth of Australia; National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX The Parkes Observatory is part of the Australia Telescope which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.; The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT and scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 33 TC 46 Z9 46 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2011 VL 414 IS 2 BP 1292 EP 1300 DI 10.1111/j.1365-2966.2011.18464.x PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 792JS UT WOS:000292740500036 ER PT J AU Breger, M Balona, L Lenz, P Hollek, JK Kurtz, DW Catanzaro, G Marconi, M Pamyatnykh, AA Smalley, B Suarez, JC Szabo, R Uytterhoeven, K Ripepi, V Christensen-Dalsgaard, J Kjeldsen, H Fanelli, MN Ibrahim, KA Uddin, K AF Breger, M. Balona, L. Lenz, P. Hollek, J. K. Kurtz, D. W. Catanzaro, G. Marconi, M. Pamyatnykh, A. A. Smalley, B. Suarez, J. C. Szabo, R. Uytterhoeven, K. Ripepi, V. Christensen-Dalsgaard, J. Kjeldsen, H. Fanelli, M. N. Ibrahim, K. A. Uddin, K. TI Regularities in frequency spacings of delta Scuti stars: the Kepler star KIC 9700322 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: abundances; stars: individual: delta Sct; stars: individual: KIC 9700322; stars: oscillations; stars: rotation ID MODE-IDENTIFICATION; PETERSEN DIAGRAMS; NORTHERN SKY; GAMMA DOR; ROTATION; OSCILLATIONS; VARIABILITY; EXCITATION; PULSATION; OPACITIES AB In the faint star KIC 9700322 observed by the Kepler satellite, 76 frequencies with amplitudes from 14 to 29 000 ppm were detected. The two dominant frequencies at 9.79 and 12.57 d(-1) (113.3 and 145.5 mu Hz), interpreted to be radial modes, are accompanied by a large number of combination frequencies. A small additional modulation with a 0.16 d(-1) frequency is also seen; this is interpreted to be the rotation frequency of the star. The corresponding prediction of slow rotation is confirmed by a spectrum from which upsilon sin i = 19 +/- 1 km s(-1) is obtained. The analysis of the spectrum shows that the star is one of the coolest delta Sct variables. We also determine T-eff = 6700 +/- 100 K and log g = 3.7 +/- 0.1, compatible with the observed frequencies of the radial modes. Normal solar abundances are found. An l = 2 frequency quintuplet is also detected with a frequency separation consistent with predictions from the measured rotation rate. A remarkable result is the absence of additional independent frequencies down to an amplitude limit near 14 ppm, suggesting that the star is stable against most forms of non-radial pulsation. A low-frequency peak at 2.7763 d(-1) in KIC 9700322 is the frequency difference between the two dominant modes and is repeated over and over in various frequency combinations involving the two dominant modes. The relative phases of the combination frequencies show a strong correlation with frequency, but the physical significance of this result is not clear. C1 [Breger, M.; Lenz, P.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Breger, M.; Hollek, J. K.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Balona, L.] S African Astron Observ, ZA-7935 Observatory, South Africa. [Lenz, P.; Pamyatnykh, A. A.] Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Kurtz, D. W.] Univ Cent Lancashire, Jeremiah Horrocks Inst Astrophys, Preston PR1 2HE, Lancs, England. [Catanzaro, G.] INAF Osservatorio Astrofis Catania, I-95123 Catania, Italy. [Marconi, M.; Ripepi, V.] INAF Osservatorio Astron Capodimonte, I-80131 Naples, Italy. [Pamyatnykh, A. A.] Russian Acad Sci, Inst Astron, Moscow 109017, Russia. [Smalley, B.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Suarez, J. C.] Inst Astrofis Andalucia CSIC, Granada 3004, Spain. [Szabo, R.] Hungarian Acad Sci, Konkoly Observ, H-1121 Budapest, Hungary. [Uytterhoeven, K.] Univ Paris Diderot, Lab AIM, CEA DSM CNRS, CEA,IRFU,SAp,Ctr Saclay, F-91191 Gif Sur Yvette, France. [Christensen-Dalsgaard, J.; Kjeldsen, H.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Fanelli, M. N.] NASA, Bay Area Environm Res Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. [Ibrahim, K. A.; Uddin, K.] NASA, Orbital Sci Corp, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Breger, M (reprint author), Univ Vienna, Inst Astron, Turkenschanzstr 17, A-1180 Vienna, Austria. EM michel.breger@univie.ac.at RI Suarez, Juan Carlos/C-1015-2009; OI Suarez, Juan Carlos/0000-0003-3649-8384; Catanzaro, Giovanni/0000-0003-4337-8612 FU Austrian Fonds zur Forderung der wissenschaftlichen Forschung [P 21830-N16]; South African Astronomical Observatory; Polish MNiSW [N N203 379 636]; Hungarian Academy of Sciences; Hungarian OTKA [K83790]; NASA's Science Mission Directorate FX MB is grateful to E. L. Robinson and M. Montgomery for helpful discussions. This investigation has been supported by the Austrian Fonds zur Forderung der wissenschaftlichen Forschung through project P 21830-N16. LAB which to acknowledge financial support from the South African Astronomical Observatory. AAP and PL acknowledge partial financial support from the Polish MNiSW grant No. N N203 379 636. This work has been supported by the 'Lendulet' programme of the Hungarian Academy of Sciences and Hungarian OTKA grant K83790.; The authors wish to thank the Kepler team for their generosity in allowing the data to be released to the Kepler Asteroseismic Science Consortium (KASC) ahead of public release and for their outstanding efforts which have made these results possible. Funding for the Kepler mission is provided by NASA's Science Mission Directorate. NR 50 TC 28 Z9 28 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2011 VL 414 IS 2 BP 1721 EP 1731 DI 10.1111/j.1365-2966.2011.18508.x PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 792JS UT WOS:000292740500070 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Baldini, L Ballet, J Barbiellini, G Bastieri, D Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cavazzuti, E Cecchi, C Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Conrad, J Cutini, S D'Ammando, F de Angelis, A de Palma, F Dermer, CD Digel, SW Silva, EDE Drell, PS Dubois, R Dumora, D Escande, L Favuzzi, C Fegan, SJ Ferrara, EC Fortin, P Fukazawa, Y Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grove, JE Guiriec, S Hadasch, D Hayashida, M Hays, E Horan, D Itoh, R Johannesson, G Johnson, AS Kamae, T Katagiri, H Kataoka, J Knodlseder, J Kuss, M Lande, J Larsson, S Latronico, L Lee, SH Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Mazziotta, MN McConville, W McEnery, JE Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Naumann-Godo, M Nishino, S Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Orlando, E Ormes, JF Paneque, D Pelassa, V Pesce-Rollins, M Pierbattista, M Piron, F Porter, TA Raino, S Rando, R Razzaque, S Reimer, A Reimer, O Ritz, S Roth, M Sadrozinski, HFW Sanchez, D Scargle, JD Schalk, TL Sgro, C Siskind, EJ Smith, PD Spandre, G Spinelli, P Strickman, MS Takahashi, H Takahashi, T Tanaka, T Tanaka, Y Thayer, JG Thayer, JB Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Troja, E Vandenbroucke, J Vasileiou, V Vianello, G Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Yang, Z Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Conrad, J. Cutini, S. D'Ammando, F. de Angelis, A. de Palma, F. Dermer, C. D. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Escande, L. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Fortin, P. Fukazawa, Y. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grove, J. E. Guiriec, S. Hadasch, D. Hayashida, M. Hays, E. Horan, D. Itoh, R. Johannesson, G. Johnson, A. S. Kamae, T. Katagiri, H. Kataoka, J. Knoedlseder, J. Kuss, M. Lande, J. Larsson, S. Latronico, L. Lee, S. -H. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Mazziotta, M. N. McConville, W. McEnery, J. E. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Naumann-Godo, M. Nishino, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Orlando, E. Ormes, J. F. Paneque, D. Pelassa, V. Pesce-Rollins, M. Pierbattista, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzaque, S. Reimer, A. Reimer, O. Ritz, S. Roth, M. Sadrozinski, H. F. -W. Sanchez, D. Scargle, J. D. Schalk, T. L. Sgro, C. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Takahashi, H. Takahashi, T. Tanaka, T. Tanaka, Y. Thayer, J. G. Thayer, J. B. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Troja, E. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Ziegler, M. TI FERMI GAMMA-RAY SPACE TELESCOPE OBSERVATIONS OF THE GAMMA-RAY OUTBURST FROM 3C454.3 IN NOVEMBER 2010 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: active ID ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; BLAZAR 3C 454.3; DETECTED BLAZARS; VARIABILITY; QUASARS; FLARE; CATALOG; MASSES AB The flat-spectrum radio quasar 3C454.3 underwent an extraordinary 5 day gamma-ray outburst in 2010 November when the daily flux measured with the Fermi Large Area Telescope (LAT) at photon energies E > 100 MeV reached (66 +/- 2) x 10(-6) photons cm(-2) s(-1). This is a factor of three higher than its previous maximum flux recorded in 2009 December and greater than or similar to 5 times brighter than the Vela pulsar, which is normally the brightest source in the gamma-ray sky. The 3 hr peak flux was (85 +/- 5) x 10(-6) photons cm-2 s(-1), corresponding to an apparent isotropic luminosity of (2.1 +/- 0.2) x10(50) erg s(-1), the highest ever recorded for a blazar. In this Letter, we investigate the features of this exceptional event in the gamma-ray band of the Fermi-LAT. In contrast to previous flares of the same source observed with the Fermi-LAT, clear spectral changes are observed during the flare. C1 [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Orlando, E.; Paneque, D.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tramacere, A.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Orlando, E.; Paneque, D.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tramacere, A.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Bouvier, A.; Ritz, S.; Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Bouvier, A.; Ritz, S.; Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Hadasch, D.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Cutini, S.; Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana Sci Data Ctr, I-00044 Frascati, Roma, Italy. [Chekhtman, A.] Artep Inc, Excelsior Springs Court 2922, Ellicott City, MD 21042 USA. [Conrad, J.; Larsson, S.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [D'Ammando, F.] IASF Palermo, I-90146 Palermo, Italy. [Conrad, J.; Larsson, S.; Yang, Z.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [D'Ammando, F.] INAF Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Abdo, A. A.; Dermer, C. D.; Grove, J. E.; Lovellette, M. N.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Dumora, D.; Escande, L.; Lott, B.] Univ Bordeaux 1, Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, F-33175 Gradignan, France. [Escande, L.] CNRS, Ctr Etud Nucl Bordeaux Gradignan, IN2P3, UMR 5797, F-33175 Gradignan, France. [Ferrara, E. C.; Gehrels, N.; Hays, E.; McConville, W.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fukazawa, Y.; Itoh, R.; Katagiri, H.; Mizuno, T.; Nishino, S.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS, IRAP, F-31028 Toulouse 4, France. [Knoedlseder, J.; Vilchez, N.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Larsson, S.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Makeev, A.; Razzaque, S.] George Mason Univ, Coll Sci, Ctr Earth Observat & Space Res, Fairfax, VA 22030 USA. [McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Moiseev, A. A.] CRESST, Greenbelt, MD 20771 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Nuss, E.; Pelassa, V.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.; Takahashi, T.; Tanaka, Y.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Kanagawa 2525210, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.; Vianello, G.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM charles.dermer@nrl.navy.mil; escande@cenbg.in2p3.fr; lott@cenbg.in2p3.fr RI Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Morselli, Aldo/G-6769-2011; Gargano, Fabio/O-8934-2015; Thompson, David/D-2939-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Loparco, Francesco/O-8847-2015 OI Cutini, Sara/0000-0002-1271-2924; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Morselli, Aldo/0000-0002-7704-9553; Gargano, Fabio/0000-0002-5055-6395; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Loparco, Francesco/0000-0002-1173-5673 FU K. A. Wallenberg Foundation; International Doctorate on Astroparticle Physics (IDAPP) program FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation.; Partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program. NR 23 TC 80 Z9 80 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2011 VL 733 IS 2 AR L26 DI 10.1088/2041-8205/733/2/L26 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797NQ UT WOS:000293135000010 ER PT J AU Park, S Zhekov, SA Burrows, DN Racusin, JL Dewey, D McCray, R AF Park, Sangwook Zhekov, Svetozar A. Burrows, David N. Racusin, Judith L. Dewey, Daniel McCray, Richard TI A NEW EVOLUTIONARY PHASE OF SUPERNOVA REMNANT 1987A SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE ISM: supernova remnants; supernovae: individual (SN 1987A); X-rays: individual (SN 1987A) ID INNER CIRCUMSTELLAR RING; X-RAY-SPECTRUM; SN 1987A; CHANDRA OBSERVATIONS; HOT-SPOTS; EMISSION; SN-1987A; SHOCK; SPECTROSCOPY; EXPANSION AB We have been monitoring the supernova remnant (SNR) 1987A with Chandra observations since 1999. Here we report on the latest change in the soft X-ray light curve of SNR 1987A. For the last similar to 1.5 yr (since day similar to 8000), the soft X-ray flux has significantly flattened, staying (within uncertainties) at f(X) similar to 5.7 x 10 (12) erg cm (2) s (1) (corresponding to L-X similar to 3.6 x 10(36) erg s(-1)) in the 0.5-2 keV band. This remarkable change in the recent soft X-ray light curve suggests that the forward shock is now interacting with a decreasing density structure, after interacting with an increasing density gradient over similar to 10 yr prior to day similar to 8000. Possibilities may include the case that the shock is now propagating beyond a density peak of the inner ring. We briefly discuss some possible implications on the nature of the progenitor and the future prospects of our Chandra monitoring observations. C1 [Park, Sangwook] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Zhekov, Svetozar A.] Space & Solar Terr Res Inst, Sofia 1000, Bulgaria. [Burrows, David N.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Racusin, Judith L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dewey, Daniel] MIT, MIT Kavli Inst, Cambridge, MA 02139 USA. [McCray, Richard] Univ Colorado, JILA, Boulder, CO 80309 USA. RP Park, S (reprint author), Univ Texas Arlington, Dept Phys, 108 Sci Hall,Box 19059, Arlington, TX 76019 USA. EM s.park@uta.edu RI Racusin, Judith/D-2935-2012 FU SAO [GO9-0082X, GO0-11072X] FX The authors thank K. Borkowski for providing the augmented NEI shock model. This work was supported in part by SAO under Chandra grants GO9-0082X and GO0-11072X. NR 35 TC 9 Z9 9 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2011 VL 733 IS 2 AR L35 DI 10.1088/2041-8205/733/2/L35 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797NQ UT WOS:000293135000019 ER PT J AU Poteet, CA Megeath, ST Watson, DM Calvet, N Remming, IS McClure, MK Sargent, BA Fischer, WJ Furlan, E Allen, LE Bjorkman, JE Hartmann, L Muzerolle, J Tobin, JJ Ali, B AF Poteet, Charles A. Megeath, S. Thomas Watson, Dan M. Calvet, Nuria Remming, Ian S. McClure, Melissa K. Sargent, Benjamin A. Fischer, William J. Furlan, Elise Allen, Lori E. Bjorkman, Jon E. Hartmann, Lee Muzerolle, James Tobin, John J. Ali, Babar TI A SPITZER INFRARED SPECTROGRAPH DETECTION OF CRYSTALLINE SILICATES IN A PROTOSTELLAR ENVELOPE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE circumstellar matter; infrared: stars; stars: formation; stars: individual (FIR-2); stars: protostars ID YOUNG STELLAR OBJECTS; CLASS-I PROTOSTARS; T-TAURI STARS; SPACE-TELESCOPE; GRAIN-GROWTH; INTERSTELLAR-MEDIUM; OPTICAL-CONSTANTS; ACCRETION DISKS; DUST EMISSION; SPECTRA AB We present the Spitzer Space Telescope Infrared Spectrograph spectrum of the Orion A protostar HOPS-68. The mid-infrared spectrum reveals crystalline substructure at 11.1, 16.1, 18.8, 23.6, 27.9, and 33.6 mu m superimposed on the broad 9.7 and 18 mu m amorphous silicate features; the substructure is well matched by the presence of the olivine end-member forsterite (Mg2SiO4). Crystalline silicates are often observed as infrared emission features around the circumstellar disks of Herbig Ae/Be stars and T Tauri stars. However, this is the first unambiguous detection of crystalline silicate absorption in a cold, infalling, protostellar envelope. We estimate the crystalline mass fraction along the line of sight by first assuming that the crystalline silicates are located in a cold absorbing screen and secondly by utilizing radiative transfer models. The resulting crystalline mass fractions of 0.14 and 0.17, respectively, are significantly greater than the upper limit found in the interstellar medium (less than or similar to 0.02-0.05). We propose that the amorphous silicates were annealed within the hot inner disk and/or envelope regions and subsequently transported outward into the envelope by entrainment in a protostellar outflow. C1 [Poteet, Charles A.; Megeath, S. Thomas; Fischer, William J.; Bjorkman, Jon E.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Watson, Dan M.; Remming, Ian S.; McClure, Melissa K.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Calvet, Nuria; McClure, Melissa K.; Hartmann, Lee; Tobin, John J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Sargent, Benjamin A.; Muzerolle, James] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Furlan, Elise] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Allen, Lori E.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Ali, Babar] CALTECH, NHSC IPAC, Pasadena, CA 91125 USA. RP Poteet, CA (reprint author), Univ Toledo, Dept Phys & Astron, 2801 W Bancroft St, Toledo, OH 43606 USA. EM charles.poteet@gmail.com OI Fischer, William J/0000-0002-3747-2496; McClure, Melissa/0000-0003-1878-327X; Furlan, Elise/0000-0001-9800-6248 FU NASA [1407, 1289605] FX The Spitzer Space Telescope is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. This work was supported by NASA through contract number 1289605 issued by JPL/Caltech. C.A.P. thanks Henrik Spoon and Adwin Boogert for insightful discussions. NR 49 TC 18 Z9 18 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2011 VL 733 IS 2 AR L32 DI 10.1088/2041-8205/733/2/L32 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797NQ UT WOS:000293135000016 ER PT J AU Williams, PKG Tomsick, JA Bodaghee, A Bower, GC Pooley, GG Pottschmidt, K Rodriguez, J Wilms, J Migliari, S Trushkin, SA AF Williams, Peter K. G. Tomsick, John A. Bodaghee, Arash Bower, Geoffrey C. Pooley, Guy G. Pottschmidt, Katja Rodriguez, Jerome Wilms, Joern Migliari, Simone Trushkin, Sergei A. TI THE 2010 MAY FLARING EPISODE OF CYGNUS X-3 IN RADIO, X-RAYS, AND gamma-RAYS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE black hole physics; X-rays: binaries; X-rays: individual (Cygnus X-3) ID HIGH-ENERGY EMISSION; LARGE-AREA TELESCOPE; GRS 1915+105; SCATTERING HALO; CYG X-3; MICROQUASARS; MISSION; MODEL; JETS; OUTBURST AB In 2009, Cygnus X-3 (Cyg X-3) became the first microquasar to be detected in the GeV gamma-ray regime, via the satellites Fermi and AGILE. The addition of this new band to the observational toolbox holds promise for building a more detailed understanding of the relativistic jets of this and other systems. We present a rich data set of radio, hard and soft X-ray, and gamma-ray observations of Cyg X-3 made during a flaring episode in 2010 May. We detect a similar to 3 day softening and recovery of the X-ray emission, followed almost immediately by a similar to 1 Jy radio flare at 15 GHz, followed by a 4.3 sigma gamma-ray flare (E > 100 MeV) similar to 1.5 days later. The radio sampling is sparse, but we use archival data to argue that it is unlikely the gamma-ray flare was followed by any significant unobserved radio flares. In this case, the sequencing of the observed events is difficult to explain in a model in which the gamma-ray emission is due to inverse Compton scattering of the companion star's radiation field. Our observations suggest that other mechanisms may also be responsible for gamma-ray emission from Cyg X-3. C1 [Williams, Peter K. G.; Bower, Geoffrey C.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Tomsick, John A.; Bodaghee, Arash] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Pooley, Guy G.] Univ Cambridge, Cavendish Lab, Mullard Radio Astron Observ, Cambridge CB3 0HE, England. [Pottschmidt, Katja] CRESST, Greenbelt, MD 20771 USA. [Pottschmidt, Katja] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Pottschmidt, Katja] Univ Maryland Baltimore Cty, CSST, Baltimore, MD 21250 USA. [Rodriguez, Jerome] Univ Paris 07, AIM Astrophys Instrumentat Modelisat, UMR CEA 7158, CNRS,CEA Saclay,DSM,IRFU,Serv Astrophys, FR-91191 Gif Sur Yvette, France. [Wilms, Joern] Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte & Erlangen Ctr Astropar, D-96049 Bamberg, Germany. [Migliari, Simone] Univ Barcelona, DAM, E-08028 Barcelona, Spain. [Migliari, Simone] Univ Barcelona, ICC, E-08028 Barcelona, Spain. [Trushkin, Sergei A.] Special Astrophys Observ RAS, Karachaevo Cherkassian R 36916, Nizhnij Arkhyz, Russia. RP Williams, PKG (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall 3411, Berkeley, CA 94720 USA. EM pwilliams@astro.berkeley.edu RI Wilms, Joern/C-8116-2013 OI Wilms, Joern/0000-0003-2065-5410 FU Space Sciences Lab; Fermi and INTEGRAL Guest Investigator grant [NNX08AW58G, NNX08AX91G, NNX10AG50G]; MEC; European Social Fund; Spanish MICINN [AYA2010-21782-C03-01]; G. Allen Family Foundation; National Science Foundation; US Naval Observatory; STFC FX The authors thank S. Corbel for useful discussions. P. K. G. W. was supported by a Space Sciences Lab Summer Fellowship. P. K. G. W., J.A.T., and A. B. acknowledge partial support from Fermi and INTEGRAL Guest Investigator grants NNX08AW58G, NNX08AX91G, and NNX10AG50G. S. M. acknowledges financial support from MEC and European Social Funds through a Ramon y Cajal and the Spanish MICINN through grant AYA2010-21782-C03-01. Research with the ATA is supported by the Paul G. Allen Family Foundation, the National Science Foundation, the US Naval Observatory, and other public and private donors. AMI is operated by the University of Cambridge and supported by STFC. This research has made use of NASA's Astrophysics Data System. NR 50 TC 3 Z9 3 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 1 PY 2011 VL 733 IS 2 AR 20 DI 10.1088/2041-8205/733/2/20 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797NQ UT WOS:000293135000004 ER PT J AU Cheng, GC Venkatachari, BS Chang, CL Chang, SC AF Cheng, Gary C. Venkatachari, Balaji Shankar Chang, Chau-Lyan Chang, Sin-Chung TI Comparative study of different numerical approaches in space-time CESE framework for high-fidelity flow simulations SO COMPUTERS & FLUIDS LA English DT Article DE CFD; Space-time CESE method; Aeroacoustics; Hypersonic flows; Roughness element ID SOLUTION ELEMENT METHOD; CONSERVATION ELEMENT; HIGH-RESOLUTION; NAVIER-STOKES; SCHEMES; EQUATIONS; LAWS AB With the advancement of computer hardware, the trend of research in computational fluid dynamics is moving towards development of highly accurate, unstructured-mesh compatible, robust and efficient numerical methods for simulating problems involving strong transient effects and relatively complex geometries as well as physics. The space-time conservation element and solution element method is a genuinely multi-dimensional, unstructured-mesh compatible numerical framework, which was built from a consistent and synergetic integration of conservation laws in the space-time domain to avoid the limitations of conventional schemes, such as the use of 1-D flux reconstruction with a Riemann solver. It has been shown that the framework can be used for time-accurate simulations of a variety of problems involving unsteady waves, strong flow discontinuities, and their interactions with remarkable accuracy. However, this method at its current state has encountered the challenge in balancing the robustness and numerical accuracy when highly stretched meshes were used in viscous flow simulation. In this paper, we briefly discuss various numerical approaches developed for this framework thus far as well as their strengths and weaknesses, and conduct a comparative study of their numerical accuracies using some 2-D viscous benchmark test cases. The application of this method in realistic, complex 3-D problems is also included here to demonstrate its computational efficiency in large-scale computing. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Cheng, Gary C.; Venkatachari, Balaji Shankar] Univ Alabama Birmingham, Birmingham, AL 35294 USA. [Chang, Chau-Lyan] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Chang, Sin-Chung] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Cheng, GC (reprint author), Univ Alabama Birmingham, Birmingham, AL 35294 USA. EM gcheng@uab.edu NR 33 TC 1 Z9 3 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 J9 COMPUT FLUIDS JI Comput. Fluids PD JUN PY 2011 VL 45 IS 1 SI SI BP 47 EP 54 DI 10.1016/j.compfluid.2011.01.030 PG 8 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 796FL UT WOS:000293037100006 ER PT J AU Christe, S Krucker, S Saint-Hilaire, P AF Christe, S. Krucker, S. Saint-Hilaire, P. TI The RHESSI Microflare Height Distribution SO SOLAR PHYSICS LA English DT Article ID MAGNETIC-FIELDS; SOLAR-FLARES; STATISTICS; HINOTORI; CORONA AB We present the first in-depth statistical survey of flare source heights observed by RHESSI. Flares were found using a flare-finding algorithm designed to search the 6 - 10 keV count-rate when RHESSI's full sensitivity was available in order to find the smallest events (Christe et al. in Astrophys. J. 677, 1385, 2008). Between March 2002 and March 2007, a total of 25 006 events were found. Source locations were determined in the 4 - 10 keV, 10 - 15 keV, and 15 - 30 keV energy ranges for each event. In order to extract the height distribution from the observed projected source positions, a forward-fit model was developed with an assumed source height distribution where height is measured from the photosphere. We find that the best flare height distribution is given by g(h) proportional to exp(-h/lambda) where lambda = 6.1 +/- 0.3 Mm is the scale height. A power-law height distribution with a negative power-law index, gamma = 3.1 +/- 0.1 is also consistent with the data. Interpreted as thermal loop-top sources, these heights are compared to loops generated by a potential-field model (PFSS). The measured flare heights distribution are found to be much steeper than the potential-field loop height distribution, which may be a signature of the flare energization process. C1 [Christe, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krucker, S.; Saint-Hilaire, P.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Krucker, S.] Univ Appl Sci NW Switzerland, Inst Technol 4D, CH-5210 Windisch, Switzerland. RP Christe, S (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM steven.d.christe@nasa.gov; skrucker@ssl.berkeley.edu; shilaire@ssl.berkeley.edu OI Christe, Steven/0000-0001-6127-795X FU NASA [NAS5-98033, NNM05ZA 12H] FX This work was partially supported under NASA grant NAS5-98033 and NNM05ZA 12H. The authors would like to thank the referee for input which has greatly improved this paper. NR 21 TC 4 Z9 4 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD JUN PY 2011 VL 270 IS 2 BP 493 EP 502 DI 10.1007/s11207-011-9777-7 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797QP UT WOS:000293142700006 ER PT J AU Richardson, IG Cane, HV AF Richardson, I. G. Cane, H. V. TI Galactic Cosmic Ray Intensity Response to Interplanetary Coronal Mass Ejections/Magnetic Clouds in 1995-2009 SO SOLAR PHYSICS LA English DT Article DE Interplanetary coronal mass ejections; Magnetic clouds; Cosmic rays; Solar wind plasma; Interplanetary magnetic field; Coronal mass ejections ID RECENT MAGNETIC STORM; SOLAR-CYCLE 23; ENERGETIC PARTICLES; FORBUSH DECREASES; FLUX ROPE; WIND; DISTURBANCES; ASSOCIATION; REGIONS; EJECTA AB We summarize the response of the galactic cosmic ray (CGR) intensity to the passage of the more than 300 interplanetary coronal mass ejections (ICMEs) and their associated shocks that passed the Earth during 1995 - 2009, a period that encompasses the whole of Solar Cycle 23. In similar to 80% of cases, the GCR intensity decreased during the passage of these structures, i.e., a "Forbush decrease" occurred, while in similar to 10% there was no significant change. In the remaining cases, the GCR intensity increased. Where there was an intensity decrease, minimum intensity was observed inside the ICME in similar to 90% of these events. The observations confirm the role of both post-shock regions and ICMEs in the generation of these decreases, consistent with many previous studies, but contrary to the conclusion of Reames, Kahler, and Tylka (Astrophys. J. Lett. 700, L199, 2009) who, from examining a subset of ICMEs with flux-rope-like magnetic fields (magnetic clouds) argued that these are "open structures" that allow free access of particles including GCRs to their interior. In fact, we find that magnetic clouds are more likely to participate in the deepest GCR decreases than ICMEs that are not magnetic clouds. C1 [Richardson, I. G.; Cane, H. V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Richardson, I. G.] Univ Maryland, CRESST, College Pk, MD 20742 USA. [Richardson, I. G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Cane, H. V.] Univ Tasmania, Sch Math & Phys, Hobart, Tas, Australia. RP Richardson, IG (reprint author), NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. EM ian.g.richardson@nasa.gov; hilary.cane@utas.edu.au OI Richardson, Ian/0000-0002-3855-3634 FU University of Delaware; Bartol Research Institute FX The Thule neutron monitor (PI: John Bieber) is supported by the University of Delaware and the Bartol Research Institute. Data were obtained from the Bartol website (http://neutronm.bartol.udel.edu/). We are indebted to the many experimenters who have contributed the near-Earth data used in the ICME identification. NR 38 TC 31 Z9 31 U1 1 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD JUN PY 2011 VL 270 IS 2 BP 609 EP 627 DI 10.1007/s11207-011-9774-x PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797QP UT WOS:000293142700014 ER PT J AU Corbett, LB Young, NE Bierman, PR Briner, JP Neumann, TA Rood, DH Graly, JA AF Corbett, Lee B. Young, Nicolas E. Bierman, Paul R. Briner, Jason P. Neumann, Thomas A. Rood, Dylan H. Graly, Joseph A. TI Paired bedrock and boulder Be-10 concentrations resulting from early Holocene ice retreat near Jakobshavn Isfjord, western Greenland SO QUATERNARY SCIENCE REVIEWS LA English DT Article DE Greenland ice sheet; Holocene; Cosmogenic dating; Deglaciation; Erosion ID SURFACE EXPOSURE AGES; LAST GLACIAL MAXIMUM; MARIE-BYRD-LAND; DISKO-BUGT; COSMOGENIC NUCLIDES; SHEET DYNAMICS; EROSION RATES; ARCTIC CANADA; BAFFIN-ISLAND; CHRONOLOGY AB We measured in situ cosmogenic Be-10 in 16 bedrock and 14 boulder samples collected along a 40-km transect outside of and normal to the modern ice margin near Sikuijuitsoq Fjord in central-west Greenland (69 degrees N). We use these data to understand better the efficiency of glacial erosion and to infer the timing, pattern, and rate of ice loss after the last glaciation. In general, the ages of paired bedrock and boulder samples are in close agreement (r(2) = 0.72). Eleven of the fourteen paired bedrock and boulder samples are indistinguishable at 1 sigma; this concordance indicates that subglacial erosion rates are sufficient to remove most or all Be-10 accumulated during previous periods of exposure, and that few, if any, nuclides are inherited from pre-Holocene interglaciations. The new data agree well with previously-published landscape chronologies from this area, and suggest that two chronologically-distinct land surfaces exist: one outside the Fjord Stade moraine complex (similar to 10.3 +/- 0.4 ka; n = 7) and another inside (similar to 8.0 +/- 0.7 ka; n = 21). Six Be-10 ages from directly outside the historic (Little Ice Age) moraine show that the ice margin first reached its present-day position similar to 7.6 +/- 0.4 ka. Early Holocene ice margin retreat rates after the deposition of the Fjord Stade moraine complex were similar to 100-110 m yr(-1). Sikuijuitsoq Fjord is a tributary to the much larger jakobshavn Isfjord and the deglaciation chronologies of these two fjords are similar. This synchronicity suggests that the ice stream in jakobshavn Isfjord set the timing and pace of early Holocene deglaciation of the surrounding ice margin. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Corbett, Lee B.; Bierman, Paul R.; Graly, Joseph A.] Univ Vermont, Dept Geol, Burlington, VT 05405 USA. [Young, Nicolas E.; Briner, Jason P.] SUNY Buffalo, Dept Geol, Buffalo, NY 14260 USA. [Neumann, Thomas A.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Rood, Dylan H.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Rood, Dylan H.] Univ Calif Santa Barbara, Earth Res Inst, Santa Barbara, CA 93106 USA. RP Corbett, LB (reprint author), Univ Vermont, Dept Geol, Burlington, VT 05405 USA. EM Ashley.Corbett@uvm.edu RI Neumann, Thomas/D-5264-2012; OI Graly, Joseph/0000-0002-7939-6022 FU National Science Foundation [ARC-0713956, NSF-0752848]; University of Vermont; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX Support for this research was provided by National Science Foundation award number ARC-0713956 to Bierman and Neumann, NSF-0752848 to Briner, a National Science Foundation Graduate Research Fellowship to Corbett, and the University of Vermont. Field support was provided by CH2MHILL. This work performed in part under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Thank you to R. Braucher and one anonymous reviewer for constructive comments. NR 65 TC 34 Z9 35 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-3791 J9 QUATERNARY SCI REV JI Quat. Sci. Rev. PD JUN PY 2011 VL 30 IS 13-14 BP 1739 EP 1749 DI 10.1016/j.quascirev.2011.04.001 PG 11 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 795BP UT WOS:000292946800014 ER PT J AU Santos, RG Martins, AS Farias, JD Horta, PA Pinheiro, HT Torezani, E Baptistotte, C Seminoff, JA Balazs, GH Work, TM AF Santos, Robson G. Martins, Agnaldo Silva Farias, Julyana da Nobrega Horta, Paulo Antunes Pinheiro, Hudson Tercio Torezani, Evelise Baptistotte, Cecilia Seminoff, Jeffrey A. Balazs, George H. Work, Thierry M. TI Coastal habitat degradation and green sea turtle diets in Southeastern Brazil SO MARINE POLLUTION BULLETIN LA English DT Article DE Coastal environments; Chelonia mydas; Environmental degradation; Diet; Feeding preference; Urbanization ID BAJA-CALIFORNIA PENINSULA; CHELONIA-MYDAS; HAWAIIAN-ISLANDS; PACIFIC COAST; FIBROPAPILLOMATOSIS; REEF; ECOSYSTEMS; PATTERNS; MEXICO; VARIABILITY AB To show the influence of coastal habitat degradation on the availability of food for green turtles (Chelonia mydas), we assessed the dietary preferences and macroalgae community at a feeding area in a highly urbanized region. The area showed low species richness and was classified as degraded. We examined stomach contents of 15 dead stranded turtles (CCL = 44.0 cm (SD 6.7 cm)). The diet was composed primarily of green algae Ulva spp. (83.6%). In contrast, the macroalgae community was dominated by the green alga Caulerpa mexicana. We found a selection for red algae, seagrass and Ulva spp., and avoidance for C. mexicana and brown alga Dictyopteris delicatula. The low diversity of available food items, possibly a result of environmental degradation, likely contributed to the low dietary diversity. The nutritional implications of this restricted diet are unclear. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Santos, Robson G.; Martins, Agnaldo Silva; Pinheiro, Hudson Tercio] Univ Fed Espirito Santo, CCHN, Dept Oceanog & Ecol, BR-29075910 Vitoria, ES, Brazil. [Farias, Julyana da Nobrega; Horta, Paulo Antunes] Univ Fed Santa Catarina, CCB, Dept Bot, BR-88010970 Florianopolis, SC, Brazil. [Torezani, Evelise; Baptistotte, Cecilia] Escritorio Reg Vitoria, Projeto TAMAR ICMBio, BR-29040715 Vitoria, ES, Brazil. [Seminoff, Jeffrey A.] NOAA, Natl Marine Fisheries Serv, SW Fisheries Sci Ctr, La Jolla, CA 92037 USA. [Balazs, George H.] NOAA, Natl Marine Fisheries Serv, Pacific Isl Fisheries Ctr, Honolulu, HI 96822 USA. [Work, Thierry M.] US Geol Survey, Natl Wildlife Hlth Ctr, Honolulu Field Stn, Honolulu, HI 96850 USA. RP Santos, RG (reprint author), Univ Fed Espirito Santo, CCHN, Dept Oceanog & Ecol, BR-29075910 Vitoria, ES, Brazil. EM robsongsantos@gmail.com RI Martins, Agnaldo/F-1615-2011; Horta, Paulo/E-5236-2013; SANTOS, ROBSON/E-7183-2010; Horta, Paulo/L-3092-2015 OI Martins, Agnaldo/0000-0003-2160-1326; SANTOS, ROBSON/0000-0001-5240-6799; FU FAPES; CAPES; CNPq [308867/2006-8]; TAMAR/ICMBio FX We thank the FAPES, CAPES, CNPq (ASM Grant 308867/2006-8) and TAMAR/ICMBio for the financial support, the TAMAR team for helping with the field work, Acqua Sub and its team for lending SCUBA equipment and helping in the collection of marine algae, and Dr. D.J. Russell and Dr. K.J. McDermid for their manuscript review and helpful comments. Use of products or trade names does not imply endorsement by the US Government. NR 61 TC 17 Z9 18 U1 3 U2 50 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0025-326X EI 1879-3363 J9 MAR POLLUT BULL JI Mar. Pollut. Bull. PD JUN PY 2011 VL 62 IS 6 BP 1297 EP 1302 DI 10.1016/j.marpolbul.2011.03.004 PG 6 WC Environmental Sciences; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA 791PL UT WOS:000292677000030 PM 21450314 ER PT J AU Nakamura-Messenger, K Clemett, SJ Messenger, S Keller, LP AF Nakamura-Messenger, Keiko Clemett, Simon J. Messenger, Scott Keller, Lindsay P. TI Experimental aqueous alteration of cometary dust SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID FINE-GRAINED RIMS; INTERPLANETARY DUST; CARBONACEOUS CHONDRITES; STRATOSPHERIC MICROMETEORITES; SOLAR-SYSTEM; TAGISH LAKE; PARTICLES; MINERALOGY; ASTEROIDS; METEORITES AB Recent spacecraft missions to comets have reopened a long-standing debate about the histories and origins of cometary materials. Comets contain mixtures of anhydrous minerals and ices seemingly unaffected by planetary processes, yet there are indications of a hydrated silicate component. We have performed aqueous alteration experiments on anhydrous interplanetary dust particles (IDPs) that likely derived from comets. Hydrated silicates rapidly formed from submicrometer amorphous silicates within the IDPs at room temperature in mildly alkaline solution. Hydrated silicates may thus form in the near-surface regions of comets if liquid water is ever present. Our findings provide insight into origins of cometary IDPs containing both anhydrous and hydrated minerals and help reconcile the seemingly inconsistent observations of hydrated silicates from the Stardust and Deep Impact missions. C1 [Nakamura-Messenger, Keiko; Clemett, Simon J.; Messenger, Scott; Keller, Lindsay P.] NASA, Lyndon B Johnson Space Ctr, Robert M Walker Lab Space Sci, Astromat Res & Explorat Sci Directorate, Houston, TX 77058 USA. [Nakamura-Messenger, Keiko] Jacobs Technol, ESC Grp, Houston, TX 77058 USA. [Clemett, Simon J.] ERC Inc, ESC Grp, Houston, TX 77058 USA. RP Nakamura-Messenger, K (reprint author), NASA, Lyndon B Johnson Space Ctr, Robert M Walker Lab Space Sci, Astromat Res & Explorat Sci Directorate, Houston, TX 77058 USA. EM keiko.nakamura-1@nasa.gov FU NASA FX The authors thank Drs Donald Brownlee, Liza Chizmadia, and Joe Nuth for detailed reviews and numerous suggestions which helped improve the manuscript substantially. We also thank the associate editor Dr. Christine Floss for her detailed comments. The IDP samples were provided by the cosmic dust curation facility at NASA Johnson Space Center. The work was supported by a grant from the NASA Cosmochemistry program to L. P. K. NR 75 TC 14 Z9 14 U1 1 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUN PY 2011 VL 46 IS 6 BP 843 EP 856 DI 10.1111/j.1945-5100.2011.01197.x PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 788XG UT WOS:000292477100006 ER PT J AU Fontana, P Schefer, J Pettit, D AF Fontana, Pietro Schefer, Juerg Pettit, Donald TI Characterization of sodium chloride crystals grown in microgravity SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Crystal morphology; Crystal structure; Hopper crystals; Skeletal crystals; Microgravity conditions; Salt (sodium chloride) ID FLUID INCLUSIONS; SPACE; SINQ AB NaCl crystals grown by the evaporation of an aqueous salt solution in microgravity on the International Space Station (ISS) were characterized and compared to salt crystals grown on earth. NaCl crystallized as thin wafers in a supersaturated film of 200-700 mu m thickness and 50 mm diameter, or as hopper cubes in 10 mm diameter supersaturated spheres. Neutron diffraction shows no change in crystal structure and in cell parameters compared to earth-grown crystals. However, the morphology can be different, frequently showing circular, disk-like shapes of single crystals with < 1 1 1 > perpendicular to the disks, an unusual morphology for salt crystals. In contrast to the growth on earth the lateral faces of the microgravity tabular hopper crystals are symmetrical because they are free floating during the crystallization process. Hopper cubes were produced without the need to suspend the growing crystals by an ongoing stirring. "Fleur de Sel" is shown as an example of two-dimensional growth of salt on earth and compared to the space grown crystals. It is shown that in microgravity conditions brine fluid inclusions form within the salt crystals. (C) 2011 Elsevier B.V. All rights reserved. C1 [Schefer, Juerg] Paul Scherrer Inst, LNS, CH-5232 Villigen, Switzerland. [Pettit, Donald] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Fontana, P (reprint author), Josef Reinhartweg 1, CH-4500 Solothurn, Switzerland. EM Pietro.Fontana@gawnet.ch; jurg.schefer@psi.ch NR 15 TC 5 Z9 6 U1 4 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD JUN 1 PY 2011 VL 324 IS 1 BP 207 EP 211 DI 10.1016/j.jcrysgro.2011.04.001 PG 5 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 787FS UT WOS:000292362600036 ER PT J AU Barghouty, AF Meyer, FW Harris, PR Adams, JH AF Barghouty, A. F. Meyer, F. W. Harris, P. R. Adams, J. H., Jr. TI Solar-wind protons and heavy ions sputtering of lunar surface materials SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 18th International Workshop on Inelastic Ion-Surface Collisions (IISC-18) CY SEP 26-OCT 01, 2010 CL Gatlinburg, TN DE Solar wind sputtering; Lunar regolith; KREEP soil; Potential sputtering; Sputtering timescale; Non-equilibrium elemental abundances; Hydrogen deposits on the moon ID HIGHLY-CHARGED IONS; SLOW; HYDROGEN; POLES; ICE; ATMOSPHERE; WATER; ATOMS; MOON AB Lunar surface materials are exposed to similar to 1 keV/amu solar-wind protons and heavy ions on almost continuous basis. As the lunar surface consists of mostly oxides, these materials suffer, in principle, both kinetic and potential sputtering due to the actions of the solar-wind ions. Sputtering is an important mechanism affecting the composition of both the lunar surface and its tenuous exosphere. While the contribution of kinetic sputtering to the changes in the composition of the surface layer of these oxides is well understood and modeled, the role and implications of potential sputtering remain unclear. As new potential-sputtering data from multi-charged ions impacting lunar regolith simulants are becoming available from Oak Ridge National Laboratory's MIRF, we examine the role and possible implications of potential sputtering of Lunar KREEP soil. Using a non-equilibrium model we demonstrate that solar-wind heavy ions' induced sputtering is critical in establishing the timescale of the overall solar-wind sputtering process of the lunar surface. We also show that potential sputtering leads to a more pronounced and significant differentiation between depleted and enriched surface elements. We briefly discuss the impacts of enhanced sputtering on the composition of the regolith and the exosphere, as well as of solar-wind sputtering as a source of hydrogen and water on the moon. Published by Elsevier B.V. C1 [Barghouty, A. F.; Adams, J. H., Jr.] NASA, Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. [Meyer, F. W.; Harris, P. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Barghouty, AF (reprint author), NASA, Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. EM abdulnasser.f.barghouty@nasa.gov NR 33 TC 11 Z9 11 U1 1 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD JUN 1 PY 2011 VL 269 IS 11 SI SI BP 1310 EP 1315 DI 10.1016/j.nimb.2010.12.033 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 787IZ UT WOS:000292371100033 ER PT J AU Meyer, FW Harris, PR Taylor, CN Meyer, HM Barghouty, AF Adams, JH AF Meyer, F. W. Harris, P. R. Taylor, C. N. Meyer, H. M., III Barghouty, A. F. Adams, J. H. TI Sputtering of lunar regolith simulant by protons and singly and multicharged Ar ions at solar wind energies SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 18th International Workshop on Inelastic Ion-Surface Collisions (IISC-18) CY SEP 26-OCT 01, 2010 CL Gatlinburg, TN DE Solar wind; Sputtering; Lunar regolith; Ion-surface interactions ID HIGHLY-CHARGED IONS; SLOW; SURFACES; GRAPHITE AB We report preliminary results on sputtering of a lunar regolith simulant at room temperature by singly and multiply charged solar wind ions using quadrupole and time-of-flight (TOF) mass spectrometry approaches. Sputtering of the lunar regolith by solar-wind heavy ions may be an important particle source that contributes to the composition of the lunar exosphere, and is a possible mechanism for lunar surface ageing and compositional modification. The measurements were performed in order to assess the relative sputtering efficiency of protons, which are the dominant constituent of the solar wind, and less abundant heavier multicharged solar wind constituents, which have higher physical sputtering yields than same-velocity protons, and whose sputtering yields may be further enhanced due to potential sputtering. Two different target preparation approaches using JSC-1A AGGL lunar regolith simulant are described and compared using SEM and XPS surface analysis. (C) 2010 Published by Elsevier B.V. C1 [Meyer, F. W.; Harris, P. R.; Taylor, C. N.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Meyer, H. M., III] Oak Ridge Natl Lab, MST Div, Oak Ridge, TN 37831 USA. [Barghouty, A. F.; Adams, J. H.] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Meyer, FW (reprint author), Oak Ridge Natl Lab, Div Phys, POB 2008, Oak Ridge, TN 37831 USA. EM meyerfw@ornl.gov NR 18 TC 10 Z9 10 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD JUN 1 PY 2011 VL 269 IS 11 SI SI BP 1316 EP 1320 DI 10.1016/j.nimb.2010.11.091 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 787IZ UT WOS:000292371100034 ER PT J AU Willis, J Miller, L Mountain, G AF Willis, Josh Miller, Laury Mountain, Gregory TI Sea Level An Introduction to the Special Issue SO OCEANOGRAPHY LA English DT Editorial Material C1 [Willis, Josh] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Mountain, Gregory] Rutgers State Univ, Piscataway, NJ 08855 USA. RP Willis, J (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RI Miller, Laury/B-8305-2011 OI Miller, Laury/0000-0003-3095-5804 NR 0 TC 0 Z9 0 U1 0 U2 1 PU OCEANOGRAPHY SOC PI ROCKVILLE PA P.O. BOX 1931, ROCKVILLE, MD USA SN 1042-8275 J9 OCEANOGRAPHY JI Oceanography PD JUN PY 2011 VL 24 IS 2 SI SI BP 22 EP 23 PG 2 WC Oceanography SC Oceanography GA 787AC UT WOS:000292348000006 ER PT J AU Leuliette, EW Willis, JK AF Leuliette, Eric W. Willis, Josh K. TI Balancing the Sea Level Budget SO OCEANOGRAPHY LA English DT Article ID SATELLITE ALTIMETRY; GRACE; RISE; CLIMATE; HEAT; REEVALUATION; PATTERNS; JASON-2 AB Sea level rise is both a powerful impact of and indicator for global warming and climate change. Observing sea level change, as well as its causes, is therefore a top priority for scientists and society at large. By measuring the ocean's temperature, salinity, mass, and surface height, the relative sources of recent sea level rise can be discerned. With these observations, sea level change is determined in terms of total sea level:and its two major components, ocean mass and steric (density-related) sea level. The sea level budget is closed-when the sum of the independent components agrees with measurements of total sea level, indicating that the observations can be used to interpret the causes of sea level change. While nearly global monitoring of sea level from space-based radar altimeters has been available since the early 1990s, satellite gravity missions capable of weighing changes in ocean mass have been available for less than 10 years. Even more-recently, the Argo array of profiling floats achieved a level of coverage that now allows assessment of global sea level change due to temperature and salinity in the upper 2,000 m of the ocean. Only during the overlapping period of all three observing systems can the sea level budget be directly addressed by observations. C1 [Leuliette, Eric W.] Natl Ocean & Atmospher Adm, Lab Satellite Altimetry, Silver Spring, MD USA. [Willis, Josh K.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Leuliette, EW (reprint author), Natl Ocean & Atmospher Adm, Lab Satellite Altimetry, Silver Spring, MD USA. EM eric.leuliette@noaa.gov RI Leuliette, Eric/D-1527-2010 OI Leuliette, Eric/0000-0002-3425-4039 FU NOAA Office of Climate; NASA; US National Aeronautics and Space Administration (NASA) FX This work was supported in part by the NOAA Office of Climate Observations program and the NASA Ocean Surface Topography program and was carried out in part at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the US National Aeronautics and Space Administration (NASA). The Argo data were obtained from the Global Argo Data Repository (http://www.nodc.noaa.gov/argo) maintained by the NOAA National Oceanographic Data Center. The float data were collected and made freely available by the International Argo Project and contributing national programs (available at http://www.argo.net). The GRACE data were obtained from the Physical Oceanography Distributed Active Archive Center (PO.DAAC) (http://podaac.jpl.nasa.gov/grace) at the NASA Jet Propulsion Laboratory, Pasadena, CA. The views, opinions, and findings contained in this report are those of the authors, and should not be construed as an official NOAA or US government position, policy, or decision. NR 39 TC 52 Z9 54 U1 1 U2 24 PU OCEANOGRAPHY SOC PI ROCKVILLE PA P.O. BOX 1931, ROCKVILLE, MD USA SN 1042-8275 J9 OCEANOGRAPHY JI Oceanography PD JUN PY 2011 VL 24 IS 2 SI SI BP 122 EP 129 PG 8 WC Oceanography SC Oceanography GA 787AC UT WOS:000292348000014 ER PT J AU Chang, CL Choudhari, M AF Chang, Chau-Lyan Choudhari, Meelan M. TI Hypersonic viscous flow over large roughness elements SO THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS LA English DT Article DE Transition; Absolute instability; Roughness; Wake instability; Space-time CESE method; Hypersonic boundary layers ID BOUNDARY-LAYER; LAMINAR AB Viscous flow over discrete or distributed surface roughness has great implications for hypersonic flight due to aerothermodynamic considerations related to laminar-turbulent transition. Current prediction capability is greatly hampered by the limited knowledge base for such flows. To help fill that gap, numerical computations are used to investigate the intricate flow physics involved. An unstructured mesh, compressible Navier-Stokes code based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for two roughness shapes investigated in wind tunnel experiments at NASA Langley Research Center. It was found through 2D parametric study that at subcritical Reynolds numbers, spontaneous absolute instability accompanying by sustained vortex shedding downstream of the roughness is likely to take place at subsonic free-stream conditions. On the other hand, convective instability may be the dominant mechanism for supersonic boundary layers. Three-dimensional calculations for both a rectangular and a cylindrical roughness element at post-shock Mach numbers of 4.1 and 6.5 also confirm that no self-sustained vortex generation from the top face of the roughness is observed, despite the presence of flow unsteadiness for the smaller post-shock Mach number case. C1 [Chang, Chau-Lyan; Choudhari, Meelan M.] NASA, Computat AeroSci Branch, Langley Res Ctr, Hampton, VA 23681 USA. RP Chang, CL (reprint author), NASA, Computat AeroSci Branch, Langley Res Ctr, Hampton, VA 23681 USA. EM Chau-Lyan.Chang@nasa.gov; meelan.m.choudhari@nasa.gov RI Choudhari, Meelan/F-6080-2017 OI Choudhari, Meelan/0000-0001-9120-7362 NR 19 TC 9 Z9 9 U1 3 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0935-4964 EI 1432-2250 J9 THEOR COMP FLUID DYN JI Theor. Comput. Fluid Dyn. PD JUN PY 2011 VL 25 IS 1-4 SI SI BP 85 EP 104 DI 10.1007/s00162-010-0191-9 PG 20 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 769ZE UT WOS:000291056000008 ER PT J AU Bradshaw, SJ Klimchuk, JA AF Bradshaw, S. J. Klimchuk, J. A. TI WHAT DOMINATES THE CORONAL EMISSION SPECTRUM DURING THE CYCLE OF IMPULSIVE HEATING AND COOLING? SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE Sun: corona ID X-RAY TELESCOPE; ACTIVE-REGION LOOPS; HOT PLASMA; ATOMIC DATABASE; SOLAR CORONA; HINODE; NONEQUILIBRIUM; IONIZATION; TRACE; DYNAMICS AB The "smoking gun" of small-scale, impulsive events heating the solar corona is expected to be the presence of hot (>5 MK) plasma. Evidence for this has been scarce, but has gradually begun to accumulate due to recent studies designed to constrain the high-temperature part of the emission measure distribution. However, the detected hot component is often weaker than models predict and this is due in part to the common modeling assumption that the ionization balance remains in equilibrium. The launch of the latest generation of space-based observing instrumentation on board Hinode and the Solar Dynamics Observatory (SDO) has brought the matter of the ionization state of the plasma firmly to the forefront. It is timely to consider exactly what emission current instruments would detect when observing a corona heated impulsively on small scales by nanoflares. Only after we understand the full effects of nonequilibrium ionization can we draw meaningful conclusions about the plasma that is (or is not) present. We have therefore performed a series of hydrodynamic simulations for a variety of different nanoflare properties and initial conditions. Our study has led to several key conclusions. (1) Deviations from equilibrium are greatest for short-duration nanoflares at low initial coronal densities. (2) Hot emission lines are the most affected and are suppressed sometimes to the point of being invisible. (3) For the many scenarios we have considered, the emission detected in several of the SDO-AIA channels (131, 193, and 211 angstrom) would be dominated by warm, overdense, cooling plasma. (4) It is difficult not to create coronal loops that emit strongly at 1.5 MK and in the range 2-6 MK, which are the most commonly observed kind, for a broad range of nanoflare scenarios. (5) The Fe XV (284.16 angstrom) emission in most of our models is about 10 times brighter than the Ca XVII (192.82 angstrom) emission, consistent with observations. Our overarching conclusion is that small-scale, impulsive heating inducing a nonequilibrium ionization state leads to predictions for observable quantities that are entirely consistent with what is actually observed. C1 [Bradshaw, S. J.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Klimchuk, J. A.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD 20771 USA. RP Bradshaw, SJ (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. EM stephen.bradshaw@rice.edu; james.a.klimchuk@nasa.gov RI Klimchuk, James/D-1041-2012 OI Klimchuk, James/0000-0003-2255-0305 FU NASA FX We thank Peter Cargill and Harry Warren for helpful discussions. We also thank Harry for providing the EIS count rates discussed in Section 5 and Mark Weber for providing the SDO-AIA wavelength resolved response functions. Our thanks to the referee for their thoughtful review of our manuscript. This work was supported by the NASA Supporting Research and Technology program. NR 37 TC 46 Z9 46 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUN PY 2011 VL 194 IS 2 AR 26 DI 10.1088/0067-0049/194/2/26 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 778CB UT WOS:000291675700010 ER PT J AU Peterson, DE Garatti, ACO Bourke, TL Forbrich, J Gutermuth, RA Jorgensen, JK Allen, LE Patten, BM Dunham, MM Harvey, PM Merin, B Chapman, NL Cieza, LA Huard, TL Knez, C Prager, B Evans, NJ AF Peterson, Dawn E. Garatti, Alessio Caratti O. Bourke, Tyler L. Forbrich, Jan Gutermuth, Robert A. Jorgensen, Jes K. Allen, Lori E. Patten, Brian M. Dunham, Michael M. Harvey, Paul M. Merin, Bruno Chapman, Nicholas L. Cieza, Lucas A. Huard, Tracy L. Knez, Claudia Prager, Brian Evans, Neal J., II TI THE SPITZER SURVEY OF INTERSTELLAR CLOUDS IN THE GOULD BELT. III. A MULTI-WAVELENGTH VIEW OF CORONA AUSTRALIS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE infrared: general; ISM: clouds; ISM: individual objects (Corona Australis); ISM: jets and outflows; stars: formation; stars: pre-main sequence ID YOUNG STELLAR OBJECTS; HERBIG-HARO OBJECTS; STAR-FORMATION REGION; X-RAY SOURCES; MOLECULAR-HYDROGEN EMISSION; NEAR-INFRARED OBSERVATIONS; MAIN-SEQUENCE STARS; CRA DARK CLOUD; T-TAURI STARS; R-CRA AB We present Spitzer Space Telescope IRAC and MIPS observations of a 0.85 deg(2) field including the Corona Australis (CrA) star-forming region. At a distance of 130 pc, CrA is one of the closest regions known to be actively forming stars, particularly within its embedded association, the Coronet. Using the Spitzer data, we identify 51 young stellar objects (YS0s) in CrA which include sources in the well-studied Coronet cluster as well as sources distributed throughout the molecular cloud. Twelve of the YSOs discussed are new candidates, one of which is located in the Coronet. Known YSOs retrieved from the literature are also added to the list, and a total of 116 candidate YSOs in CrA are compiled. Based on these YSO candidates, the star formation rate is computed to be 12M(circle dot) Myr(-1), similar to that of the Lupus clouds. A clustering analysis was also performed, finding that the main cluster core, consisting of 68 members, is elongated (having an aspect ratio of 2.36), with a circular radius of 0.59 pc and mean surface density of 150 pc(-2). In addition, we analyze outflows and jets in CrA by means of new CO and H-2 data. We present 1 3 mm interferometric continuum observations made with the Submillimeter Array (SMA) covering R CrA, IRS 5, IRS 7, and IRAS 18595-3712 (IRAS 32). We also present multi-epoch H2 maps and detect jets and outflows, study their proper motions, and identify exciting sources. The Spitzer and ISAAC/VET observations of IRAS 32 show a bipolar precessing jet, which drives a CO(2-1) outflow detected in the SMA observations. There is also clear evidence for a parsec-scale precessing outflow, which is east west oriented and originates in the SMA 2 region and likely driven by SMA 2 or IRS 7A. C1 [Peterson, Dawn E.; Bourke, Tyler L.; Forbrich, Jan; Patten, Brian M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Garatti, Alessio Caratti O.] Dublin Inst Adv Studies, Dublin 2, Ireland. [Gutermuth, Robert A.] Smith Coll, Coll Astron Dept 5, Northampton, MA 01063 USA. [Gutermuth, Robert A.] Univ Massachusetts, Dept Astron, Amherst, MA 01002 USA. [Jorgensen, Jes K.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen K, Denmark. [Allen, Lori E.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Dunham, Michael M.; Harvey, Paul M.; Evans, Neal J., II] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Merin, Bruno] European Space Astron Ctr ESA, Herschel Sci Ctr, Madrid 28691, Spain. [Chapman, Nicholas L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Cieza, Lucas A.] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. [Huard, Tracy L.; Knez, Claudia; Prager, Brian] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Peterson, DE (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM dpeterson@cfa.harvard.edu RI Caratti o Garatti, Alessio/D-1537-2012; OI Merin, Bruno/0000-0002-8555-3012; Caratti o Garatti, Alessio/0000-0001-8876-6614 FU National Aeronautics and Space Administration, NASA [1288820, 1298236, 1407]; Science Foundation of Ireland [07/RFP/PHYF790]; Danish National Research Foundation; National Science Foundation FX The authors thank Karl Stapelfeldt, Eli Bressert, and the anonymous referee for their helpful comments. In addition, we thank Amanda Heiderman for very helpful discussions of the overall cloud properties and comparison with her work. Support for this work, part of the Spitzer Legacy Science Program, was provided by NASA through contract numbers 1288820 and 1298236 issued by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. A.C.G. was supported by the Science Foundation of Ireland, grant 07/RFP/PHYF790. The research at Centre for Star and Planet Formation (coauthor J.K.J.) is funded by the Danish National Research Foundation and the University of Copenhagen's programme of excellence.; This research is partially based on observations collected at the European Southern Observatory (Paranal and La Silla, Chile, 079.C-00020(A), 075.C-0561(A), 071.B-0274(A), 065.L-0637(A), 63.1-0031(A)). This research made use of APLpy, an open-source plotting package for Python hosted at http://aplpy.github.com. This research has also made use of NASA's Astrophysics Data System Bibliographic Services and the SIMBAD database, operated at the CDS, Strasbourg, France, and the 2MASS data, obtained as part of the Two Micron All Sky Survey, a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. NR 140 TC 41 Z9 41 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUN PY 2011 VL 194 IS 2 DI 10.1088/0067-0049/194/2/43 PG 43 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 778CB UT WOS:000291675700027 ER PT J AU Ray, PS Kerr, M Parent, D Abdo, AA Guillemot, L Ransom, SM Rea, N Wolff, MT Makeev, A Roberts, MSE Camilo, F Dormody, M Freire, PCC Grove, JE Gwon, C Harding, AK Johnston, S Keith, M Kramer, M Michelson, PF Romani, RW Parkinson, PMS Thompson, DJ Weltevrede, P Wood, KS Ziegler, M AF Ray, P. S. Kerr, M. Parent, D. Abdo, A. A. Guillemot, L. Ransom, S. M. Rea, N. Wolff, M. T. Makeev, A. Roberts, M. S. E. Camilo, F. Dormody, M. Freire, P. C. C. Grove, J. E. Gwon, C. Harding, A. K. Johnston, S. Keith, M. Kramer, M. Michelson, P. F. Romani, R. W. Parkinson, P. M. Saz Thompson, D. J. Weltevrede, P. Wood, K. S. Ziegler, M. TI PRECISE gamma-RAY TIMING AND RADIO OBSERVATIONS OF 17 FERMI gamma-RAY PULSARS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE gamma rays: stars; pulsars: general; radio continuum: stars; X-rays: stars ID LARGE-AREA TELESCOPE; BLIND FREQUENCY SEARCHES; X-RAY; LAT OBSERVATIONS; SPACE-TELESCOPE; GEMINGA PULSAR; LIGHT CURVES; CATALOG; COUNTERPART; STATISTICS AB We present precise phase-connected pulse timing solutions for 16 gamma-ray-selected pulsars recently discovered using the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope plus one very faint radio pulsar (PSR J1124-5916) that is more effectively timed with the LAT. We describe the analysis techniques including a maximum likelihood method for determining pulse times of arrival from unbinned photon data. A major result of this work is improved position determinations, which are crucial for multiwavelength follow-up. For most of the pulsars, we overlay the timing localizations on X-ray images from Swift and describe the status of X-ray counterpart associations. We report glitches measured in PSRs J0007+7303, J1124-5916, and J1813-1246. We analyze a new 20 ks Chandra ACIS observation of PSR J0633+0632 that reveals an arcminute-scale X-ray nebula extending to the south of the pulsar. We were also able to precisely localize the X-ray point source counterpart to the pulsar and find a spectrum that can be described by an absorbed blackbody or neutron star atmosphere with a hard power-law component. Another Chandra ACIS image of PSR J1732-3131 reveals a faint X-ray point source at a location consistent with the timing position of the pulsar. Finally, we present a compilation of new and archival searches for radio pulsations from each of the gamma-ray-selected pulsars as well as a new Parkes radio observation of PSR J1124-5916 to establish the gamma-ray to radio phase offset. C1 [Ray, P. S.; Wolff, M. T.; Grove, J. E.; Gwon, C.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Kerr, M.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Parent, D.; Makeev, A.] George Mason Univ, Coll Sci, Ctr Earth Observat & Space Res, Fairfax, VA 22030 USA. [Abdo, A. A.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Guillemot, L.; Freire, P. C. C.; Kramer, M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Ransom, S. M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Rea, N.] Inst Ciencias Espai IEEC CSIC, Barcelona 08193, Spain. [Roberts, M. S. E.] Eureka Sci, Oakland, CA 94602 USA. [Camilo, F.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Dormody, M.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Dormody, M.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Harding, A. K.; Thompson, D. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Johnston, S.; Keith, M.] Australia Telescope Natl Facil, CSIRO Astron & Space Sci, Epping, NSW 1710, Australia. [Kramer, M.; Weltevrede, P.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Michelson, P. F.; Romani, R. W.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Michelson, P. F.; Romani, R. W.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. RP Ray, PS (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM Paul.Ray@nrl.navy.mil RI Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Rea, Nanda/I-2853-2015; OI Thompson, David/0000-0001-5217-9135; Rea, Nanda/0000-0003-2177-6388; Ray, Paul/0000-0002-5297-5278 FU Commonwealth of Australia FX The Arecibo Observatory is part of the National Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative agreement with the National Science Foundation. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The Parkes Observatory is part of the Australia Telescope which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. NR 55 TC 84 Z9 85 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUN PY 2011 VL 194 IS 2 AR 17 DI 10.1088/0067-0049/194/2/17 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 778CB UT WOS:000291675700001 ER PT J AU Swetz, DS Ade, PAR Amiri, M Appel, JW Battistelli, ES Burger, B Chervenak, J Devlin, MJ Dicker, SR Doriese, WB Dunner, R Essinger-Hileman, T Fisher, RP Fowler, JW Halpern, M Hasselfield, M Hilton, GC Hincks, AD Irwin, KD Jarosik, N Kaul, M Klein, J Lau, JM Limon, M Marriage, TA Marsden, D Martocci, K Mauskopf, P Moseley, H Netterfield, CB Niemack, MD Nolta, MR Page, LA Parker, L Staggs, ST Stryzak, O Switzer, ER Thornton, R Tucker, C Wollack, E Zhao, Y AF Swetz, D. S. Ade, P. A. R. Amiri, M. Appel, J. W. Battistelli, E. S. Burger, B. Chervenak, J. Devlin, M. J. Dicker, S. R. Doriese, W. B. Duenner, R. Essinger-Hileman, T. Fisher, R. P. Fowler, J. W. Halpern, M. Hasselfield, M. Hilton, G. C. Hincks, A. D. Irwin, K. D. Jarosik, N. Kaul, M. Klein, J. Lau, J. M. Limon, M. Marriage, T. A. Marsden, D. Martocci, K. Mauskopf, P. Moseley, H. Netterfield, C. B. Niemack, M. D. Nolta, M. R. Page, L. A. Parker, L. Staggs, S. T. Stryzak, O. Switzer, E. R. Thornton, R. Tucker, C. Wollack, E. Zhao, Y. TI OVERVIEW OF THE ATACAMA COSMOLOGY TELESCOPE: RECEIVER, INSTRUMENTATION, AND TELESCOPE SYSTEMS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmic background radiation; cosmology: observations; instrumentation: detectors; instrumentation: miscellaneous; telescopes ID MICROWAVE-ANISOTROPY-PROBE; BACKGROUND POWER SPECTRUM; OPTICAL DESIGN; ARRAY CAMERA; 148 GHZ; ACT; POLARIZATION; FABRICATION AB The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the cosmic microwave background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Toco in the Atacama Desert, at an altitude of 5190 m. A 6 m off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three 1000-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space millimeter-wave optics. Each frequency band has a field of view of approximately 22' x 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance. C1 [Swetz, D. S.; Devlin, M. J.; Dicker, S. R.; Kaul, M.; Klein, J.; Limon, M.; Marsden, D.; Thornton, R.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Swetz, D. S.; Doriese, W. B.; Hilton, G. C.; Irwin, K. D.; Niemack, M. D.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Ade, P. A. R.; Mauskopf, P.; Tucker, C.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Amiri, M.; Battistelli, E. S.; Burger, B.; Halpern, M.; Hasselfield, M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Appel, J. W.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Hincks, A. D.; Jarosik, N.; Lau, J. M.; Limon, M.; Martocci, K.; Niemack, M. D.; Page, L. A.; Parker, L.; Staggs, S. T.; Stryzak, O.; Switzer, E. R.; Zhao, Y.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Battistelli, E. S.] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Chervenak, J.; Moseley, H.; Wollack, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Duenner, R.] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Lau, J. M.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Lau, J. M.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Limon, M.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Marriage, T. A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Martocci, K.; Switzer, E. R.] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Netterfield, C. B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Nolta, M. R.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Thornton, R.] W Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA. RP Swetz, DS (reprint author), Univ Penn, Dept Phys & Astron, 209 S 33rd St, Philadelphia, PA 19104 USA. RI Klein, Jeffrey/E-3295-2013; Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Limon, Michele/0000-0002-5900-2698 FU ACT project; US National Science Foundation [AST-0408698, PHY-0355328, AST-0707731, PIRE-0507768]; Princeton University; University of Pennsylvania; Natural Science and Engineering Research Council of Canada (NSERC) FX The ACT project was proposed in 2000 and funded in 2004 January 1. Many have contributed to the project since its inception. We especially thank Asad Aboobaker, Christine Allen, Dominic Benford, Paul Bode, Kristen Burgess, Angelica de Oliveira-Costa, Peter Hargrave, Amber Miller, Carl Reintsema, Uros Seljak, Martin Spergel, Johannes Staghun, Carl Stahle, Max Tegmark, Masao Uehara, and Ed Wishnow. It is a pleasure to acknowledge Bob Margolis, ACT's project manager. Reed Plimpton and David Jacobson worked at the telescope during the 2008 season, and Mike McLaren during the 2009 season. ACT is on the Chajnantor Science preserve which was made possible by the Chilean Comision Nacional de Investigacion Cientffica y Tecnologica. We are grateful for the assistance we received at various times from the ALMA, APEX, ASTE, CBI/QUIET, and Nanten groups. The PWV data come from the public APEX weather site. Field operations were based at the Don Esteban facility run by Astro-Norte. We thank Tom Herbig who chaired our external advisory board (with Amy Newbury, Charles Alcock, Walter Gear, Cliff Jackson, and Paul Steinhardt), which helped guide the project to fruition. This work was supported by the US National Science Foundation through awards AST-0408698 for the ACT project, and PHY-0355328, AST-0707731, and PIRE-0507768. Funding was also provided by Princeton University and the University of Pennsylvania. A.H. received additional support from a Natural Science and Engineering Research Council of Canada (NSERC) PGS-D scholarship. PhD thesis based on ACT can be found at www.physics.princeton.edu/act/papers.html. NR 51 TC 78 Z9 78 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUN PY 2011 VL 194 IS 2 AR 41 DI 10.1088/0067-0049/194/2/41 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 778CB UT WOS:000291675700025 ER PT J AU Zolensky, ME AF Zolensky, Michael E. TI EXTRATERRESTRIAL WATER SO ELEMENTS LA English DT Editorial Material C1 NASA, Washington, DC 20546 USA. RP Zolensky, ME (reprint author), NASA, Washington, DC 20546 USA. EM michael.e.zolensky@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 3 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 1811-5209 J9 ELEMENTS JI Elements PD JUN PY 2011 VL 7 IS 3 BP 152 EP 152 PG 1 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 777NZ UT WOS:000291629700004 ER PT J AU Fletcher, LN Orton, GS Rogers, JH Simon-Miller, AA de Pater, I Wong, MH Mousis, O Irwin, PGJ Jacquesson, M Yanamandra-Fisher, PA AF Fletcher, Leigh N. Orton, G. S. Rogers, J. H. Simon-Miller, A. A. de Pater, I. Wong, M. H. Mousis, O. Irwin, P. G. J. Jacquesson, M. Yanamandra-Fisher, P. A. TI Jovian temperature and cloud variability during the 2009-2010 fade of the South Equatorial Belt SO ICARUS LA English DT Article DE Jupiter; Atmospheres, Composition; Atmospheres, Structure ID JUPITERS ATMOSPHERE; AMMONIA; IDENTIFICATION; STRATOSPHERE; CASSINI/CIRS; OSCILLATION; DISTURBANCE; PLANETS; SATURN; JET AB Mid-infrared 7-20 mu m imaging of Jupiter from ESO's Very Large Telescope (VLT/VISIR) demonstrate that the increased albedo of Jupiter's South Equatorial Belt (SEB) during the 'fade' (whitening) event of 2009-2010 was correlated with changes to atmospheric temperature and aerosol opacity. The opacity of the tropospheric condensation cloud deck at pressures less than 800 mbar increased by 80% between May 2008 and July 2010, making the SEB (7-17 degrees S) as opaque in the thermal infrared as the adjacent equatorial zone. After the cessation of discrete convective activity within the SEB in May 2009, a cool band of high aerosol opacity (the SEB zone at 11-15 degrees S) was observed separating the cloud-free northern and southern SEB components. The cooling of the SEBZ (with peak-to-peak contrasts of 1.0 +/- 0.5 K), as well as the increased aerosol opacity at 4.8 and 8.6 mu m, preceded the visible whitening of the belt by several months. A chain of five warm, cloud-free 'brown barges' (subsiding airmasses) were observed regularly in the SEB between June 2009 and June 2010, by which time they too had been obscured by the enhanced aerosol opacity of the SEB, although the underlying warm circulation was still present in July 2010. Upper tropospheric temperatures (150-300 mbar) remained largely unchanged during the fade, but the cool SEBZ formation was detected at deeper levels (p > 300 mbar) within the convectively-unstable region of the troposphere. The SEBZ formation caused the meridional temperature gradient of the SEB to decrease between 2008 and 2010, reducing the vertical thermal windshear on the zonal jets bounding the SEB. The southern SEB had fully faded by July 2010 and was characterised by short-wave undulations at 19-20 degrees S. The northern SEB persisted as a narrow grey lane of cloud-free conditions throughout the fade process. The cool temperatures and enhanced aerosol opacity of the SEBZ after July 2009 are consistent with an upward flux of volatiles (e.g., ammonia-laden air) and enhanced condensation, obscuring the blue-absorbing chromophore and whitening the SEB by April 2010. These changes occurred within cloud decks in the convective troposphere, and not in the radiatively-controlled upper troposphere. NH3 ice coatings on aerosols at p < 800 mbar are plausible sources of the suppressed 4.8 and 8.6-mu m emission, although differences in the spatial distribution of opacity at these two wavelengths suggest that enhanced attenuation by a deeper cloud (p > 800 mbar) also occurred during the fade. Revival of the dark SEB coloration in the coming months will ultimately require sublimation of these ices by subsidence and warming of volatile-depleted air. (C) 2011 Elsevier Inc. All rights reserved. C1 [Fletcher, Leigh N.; Irwin, P. G. J.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Orton, G. S.; Yanamandra-Fisher, P. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jacquesson, M.] British Astron Assoc, JUPOS Team, London W1J ODU, England. [Simon-Miller, A. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [de Pater, I.; Wong, M. H.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Mousis, O.] Univ Franche Comte, Inst UTINAM, CNRS UMR 5213, Observ Besancon, F-25030 Besancon, France. RP Fletcher, LN (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. EM fletcher@atm.ox.ac.uk RI Fletcher, Leigh/D-6093-2011; Simon, Amy/C-8020-2012; OI Fletcher, Leigh/0000-0001-5834-9588; Simon, Amy/0000-0003-4641-6186; Irwin, Patrick/0000-0002-6772-384X FU Glasstone Science Fellowship at the University of Oxford; NASA [NCC 5-538] FX Fletcher was supported during this research by a Glasstone Science Fellowship at the University of Oxford. We wish to thank the director and staff of the ESO Very Large Telescope for their assistance with the execution of these observations. This investigation was based on observations acquired at the Paranal UT3/Melipal Observatory under Jupiter observing programmes executed between May 2008 and July 2010 (ID in Table 1). We are extremely grateful to all the amateur observers who have contributed to the ongoing coverage of Jupiter, especially those whose images are shown in the figures: M. Salway, A. Wesley, C. Go, J.P. Prost, T. Barry and R. Chavez. We acknowledge the JUPOS team (Hans-Joerg Mettig, Michel Jacquesson, Gianluigi Adamoli, Marco Vedovato), whose measurements of these images enabled the comparative mapping of these features. VLT and IRTF data were reduced with the assistance of a number of JPL student interns, including E. Otto, N. Reshetnikov, A. Allahverdi, J. Greco, Z. Greene, D. Holt, S. Lai and G. Villar. Furthermore, we thank M. Lystrup for her generous donation of time on the IRTF during the July-August observations. Orton and Yanamandra-Fisher carried out part of this research at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. We are grateful to the staff and telescope operators at the NASA Infrared Telescope Facility operated by the University of Hawaii under Cooperative Agreement No. NCC 5-538 with the NASA Science Mission Directorate of Planetary Astronomy Program. We are grateful to two anonymous reviewers for their constructive comments about this manuscript. NR 43 TC 17 Z9 17 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUN PY 2011 VL 213 IS 2 BP 564 EP 580 DI 10.1016/j.icarus.2011.03.007 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 776AF UT WOS:000291506200012 ER PT J AU Li, Y Mehdi, I Maestrini, A Lin, RH Papapolymerou, J AF Li, Yuan Mehdi, Imran Maestrini, Alain Lin, Robert H. Papapolymerou, John TI A Broadband 900-GHz Silicon Micromachined Two-Anode Frequency Tripler SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES LA English DT Article DE Balanced diodes; frequency multiplier; micromachining; Schottky diode; submillimeter wave ID WAVE-GUIDE; MILLIMETER-WAVE; EFFICIENCY; FABRICATION; GHZ; FILTERS; POWER; PERFORMANCE; TECHNOLOGY; DEVICES AB The design, fabrication, and measurement are presented for a 900-GHz frequency tripler with silicon micromachined blocks made using deep reactive ion etching. The broadband design results in more than 60 mu W between 877.5-922.5 GHz and the peak output power of 85.3 mu W in the frequency response, all measured at room temperature. In power sweep measurement, the tripler delivers the maximum power of 109.3 mu W at 909 GHz. This is the first demonstration of a frequency tripler using silicon micromachining at these frequencies and suggests that this technology is a viable option for receiver arrays in the terahertz frequency range. C1 [Li, Yuan; Papapolymerou, John] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. [Mehdi, Imran; Lin, Robert H.] CALTECH, Jet Prop Lab, Pasadena, CA 91009 USA. [Maestrini, Alain] Univ Paris 06, F-75014 Paris, France. [Maestrini, Alain] Observ Paris, LERMA, F-75014 Paris, France. RP Li, Y (reprint author), Mindspeed Technol, Newport Beach, CA 92660 USA. EM yuan.li@gatech.edu; papapol@ece.gatech.edu FU National Science Foundation (NSF) [ECS-0133514]; Army Research Office (ARO) [45799-EL-YIP] FX This work was supported in part by the National Science Foundation (NSF) under CAREER Grant ECS-0133514 and by the Army Research Office (ARO) under Young Investigator Award Grant 45799-EL-YIP. NR 53 TC 8 Z9 8 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9480 J9 IEEE T MICROW THEORY JI IEEE Trans. Microw. Theory Tech. PD JUN PY 2011 VL 59 IS 6 BP 1673 EP 1681 DI 10.1109/TMTT.2011.2123112 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 778EG UT WOS:000291683100026 ER PT J AU Berg, M Kim, H Friendlich, M Perez, C Seidleck, C Label, K Ladbury, R AF Berg, M. Kim, H. Friendlich, M. Perez, C. Seidleck, C. LaBel, K. Ladbury, R. TI SEU Analysis of Complex Circuits Implemented in Actel RTAX-S FPGA Devices SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 2010 Conference on Radiation and its Effects on Components and Systems (RADECS) CY SEP 20-24, 2010 CL Langenfeld, AUSTRIA DE Counter test structures; error prediction; field programmable gate arrays; single event effects ID SINGLE; PROPAGATION; FREQUENCY AB A novel approach to SEE characterization of counters implemented in a RTAX-S FPGA is presented. Net fan-out, capacitive loading, and operational frequency have demonstrated a direct impact to counter SEU cross sections as compared to shift registers. C1 [Berg, M.; Kim, H.; Friendlich, M.; Perez, C.; Seidleck, C.] NASA, Goddard Space Flight Ctr, MEI Technol Inc, Greenbelt, MD 20771 USA. RP Berg, M (reprint author), NASA, Goddard Space Flight Ctr, MEI Technol Inc, Greenbelt, MD 20771 USA. EM melanie.d.berg@nasa.gov NR 7 TC 4 Z9 4 U1 3 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD JUN PY 2011 VL 58 IS 3 BP 1015 EP 1022 DI 10.1109/TNS.2011.2128886 PN 2 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 777XG UT WOS:000291657900039 ER PT J AU Allen, G Edmonds, LD Swift, G Carmichael, C Tseng, CW Heldt, K Anderson, SA Coe, M AF Allen, Gregory Edmonds, Larry D. Swift, Gary Carmichael, Carl Tseng, Chen Wei Heldt, Kevin Anderson, Scott Arlo Coe, Michael TI Single Event Test Methodologies and System Error Rate Analysis for Triple Modular Redundant Field Programmable Gate Arrays SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 2010 Conference on Radiation and its Effects on Components and Systems (RADECS) CY SEP 20-24, 2010 CL Langenfeld, AUSTRIA DE Error rate calculation; field programmable gate array; single event upset; triple modular redundancy AB We present a test methodology for estimating system error rates of Field Programmable Gate Arrays (FPGAs) mitigated with Triple Modular Redundancy (TMR). The test methodology is founded in a mathematical model, which is also presented. Accelerator data from 90 nm Xilinx Military/Aerospace grade FPGA are shown to fit the model. Fault injection (FI) results are discussed and related to the test data. Design implementation and the corresponding impact of multiple bit upset (MBU) are also discussed. C1 [Allen, Gregory; Edmonds, Larry D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Swift, Gary; Carmichael, Carl; Tseng, Chen Wei] Xilinx Inc, San Jose, CA USA. [Heldt, Kevin; Anderson, Scott Arlo; Coe, Michael] SEAKR Engn Inc, Centennial, CO 80111 USA. RP Allen, G (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM gregory.r.allen@jpl.nasa.gov; gswift@xilinx.com; carlc@xilinx.com; chenweit@xilinx.com NR 10 TC 4 Z9 4 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD JUN PY 2011 VL 58 IS 3 BP 1040 EP 1046 DI 10.1109/TNS.2011.2105282 PN 2 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 777XG UT WOS:000291657900042 ER PT J AU Frost, SA Balas, MJ Wright, AD AF Frost, Susan A. Balas, Mark J. Wright, Alan D. TI Generator speed regulation in the presence of structural modes through adaptive control using residual mode filters SO MECHATRONICS LA English DT Article DE Wind turbine; Pitch control; Adaptive control; Flexible structure control; Residual mode filter; Disturbance rejection ID ADVANCED RESEARCH TURBINE; WIND TURBINES; SYSTEMS; SPACE AB Wind turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, potentially causing component fatigue and failure. Two key technology drivers for turbine manufacturers are increasing turbine up time and reducing maintenance costs. Since the trend in wind turbine design is towards larger, more flexible turbines with lower frequency structural modes, manufacturers will want to develop control paradigms that properly account for the presence of these modes. Accurate models of the dynamic characteristics of new wind turbines are often not available due to the complexity and expense of the modeling task, making wind turbines ideally suited to adaptive control approaches. In this paper, we develop theory for adaptive control with rejection of disturbances in the presence of modes that inhibit the controller. A residual mode filter is introduced to accommodate these modes and restore important properties to the adaptively controlled plant. This theory is then applied to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine. The adaptive pitch controller is compared in simulations with a baseline classical proportional integrator (PI) collective pitch controller. Published by Elsevier Ltd. C1 [Frost, Susan A.] NASA, Ames Res Ctr, Intelligent Syst Div, Moffett Field, CA 94035 USA. [Balas, Mark J.] Univ Wyoming, Dept Elect & Comp Engn, Laramie, WY 82071 USA. [Wright, Alan D.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Frost, SA (reprint author), NASA, Ames Res Ctr, Intelligent Syst Div, M-S 269-3, Moffett Field, CA 94035 USA. EM susan.a.frost@nasa.gov; mbalas@uwyo.edu; alan.wright@nrel.gov NR 24 TC 3 Z9 3 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0957-4158 J9 MECHATRONICS JI Mechatronics PD JUN PY 2011 VL 21 IS 4 SI SI BP 660 EP 667 DI 10.1016/j.mechatronics.2011.01.006 PG 8 WC Automation & Control Systems; Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic; Engineering, Mechanical SC Automation & Control Systems; Computer Science; Engineering GA 780DI UT WOS:000291834300004 ER PT J AU Druyan, LM Fulakeza, M AF Druyan, Leonard M. Fulakeza, Matthew TI The sensitivity of African easterly waves to eastern tropical Atlantic sea-surface temperatures SO METEOROLOGY AND ATMOSPHERIC PHYSICS LA English DT Article ID SAHEL RAINFALL; WEST-AFRICA; DISTURBANCES; CLIMATE; VARIABILITY; PARAMETERIZATION; CYCLOGENESIS; PACIFIC; MONSOON; IMPACT AB The results of two regional atmospheric model simulations are compared to assess the influence of the eastern tropical Atlantic sea-surface temperature maximum on local precipitation, transient easterly waves and the West African summer monsoon. Both model simulations were initialized with reanalysis 2 data (US National Center for Environmental Prediction and Department of Energy) on 15 May 2006 and extended through 6 October 2006, forced by synchronous reanalysis 2 lateral boundary conditions introduced four times daily. One simulation uses 2006 reanalysis 2 sea-surface temperatures, also updated four times daily, while the second simulation considers ocean forcing absent the sea-surface temperature maximum, achieved here by subtracting 3A degrees K at every ocean grid point between 0A degrees and 15A degrees N during the entire simulation. The simulation with 2006 sea-surface temperature forcing produces a realistic distribution of June-September mean precipitation and realistic westward propagating swaths of maximum rainfall, based on validation against Tropical Rainfall Measuring Mission (TRMM) estimates. The simulation without the sea-surface temperature maximum produces only 57% of the control June-September total precipitation over the eastern tropical Atlantic and about 83% of the Sahel precipitation. The simulation with warmer ocean temperatures generates generally stronger circulation, which in turn enhances precipitation by increasing moisture convergence. Some local precipitation enhancement is also attributed to lower vertical thermal stability above the warm water. The study shows that the eastern tropical Atlantic sea-surface temperature maximum enhances the strength of transient easterly waves and broadens the spatial extent of associated precipitation. However, large-scale circulation and its interaction with the African continent, and not sea-surface temperatures, control the timing and trajectories of the waves. C1 [Druyan, Leonard M.; Fulakeza, Matthew] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA. [Druyan, Leonard M.; Fulakeza, Matthew] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Druyan, LM (reprint author), Columbia Univ, Ctr Climate Syst Res, 2880 Broadway, New York, NY 10025 USA. EM Leonard.M.Druyan@nasa.gov FU National Science Foundation [AGS-0652518]; National Aeronautics and Space Administration (NAMMA) [NNX07A193G] FX This research was supported by National Science Foundation grants AGS-0652518 and AGS-0652518, National Aeronautics and Space Administration (NAMMA) grant NNX07A193G and the National Aeronautics and Space Administration Climate and Earth Observing System Program. TRMM data were acquired using the GES DISC Interactive Online Visualization and Analysis Infrastructure (Giovanni) as part of NASA's Goddard Earth Sciences (GES) Data and Information Services Center (DISC). NCEP reanalysis 2 data were obtained online from the National Oceanographic and Atmospheric Agency/Earth System Research Laboratory (Physical Sciences Division). We gratefully acknowledge the three anonymous reviewers who made suggestions that contributed significantly to the final version of the paper. NR 29 TC 3 Z9 3 U1 0 U2 1 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7971 J9 METEOROL ATMOS PHYS JI Meteorol. Atmos. Phys. PD JUN PY 2011 VL 113 IS 1-2 BP 39 EP 53 DI 10.1007/s00703-011-0145-9 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 778ZQ UT WOS:000291748300004 ER PT J AU Wang, X Sun, XD Duval, WM AF Wang, Xia Sun, Xiaodong Duval, Walter M. TI Predictions of Phase Distribution in Liquid-Liquid Two-Component Flow SO MICROGRAVITY SCIENCE AND TECHNOLOGY LA English DT Article DE Reduced-gravity two-phase flow; Liquid-liquid two-component flow; Interfacial area transport equation; FLUENT-IATE model; Wake entrainment ID INTERFACIAL AREA TRANSPORT; BUBBLY FLOWS; 2-PHASE FLOW; EQUATION; GRAVITY; SIMULATION AB Ground-based liquid-liquid two-component flow can be used to study reduced-gravity gas-liquid two-phase flows provided that the two liquids are immiscible with similar densities. In this paper, we present a numerical study of phase distribution in liquid-liquid two-component flows using the Eulerian two-fluid model in FLUENT, together with a one-group interfacial area transport equation (IATE) that takes into account fluid particle interactions, such as coalescence and disintegration. This modeling approach is expected to dynamically capture changes in the interfacial structure. We apply the FLUENT-IATE model to a water-Therminol 59(A (R)) two-component vertical flow in a 25-mm inner diameter pipe, where the two liquids are immiscible with similar densities (3% difference at 20A degrees C). This study covers bubbly (drop) flow and bubbly-to-slug flow transition regimes with area-averaged void (drop) fractions from 3 to 30%. Comparisons of the numerical results with the experimental data indicate that for bubbly flows, the predictions of the lateral phase distributions using the FLUENT-IATE model are generally more accurate than those using the model without the IATE. In addition, we demonstrate that the coalescence of fluid particles is dominated by wake entrainment and enhanced by increasing either the continuous or dispersed phase velocity. However, the predictions show disagreement with experimental data in some flow conditions for larger void fraction conditions, which fall into the bubbly-to-slug flow transition regime. We conjecture that additional fluid particle interaction mechanisms due to the change of flow regimes are possibly involved. C1 [Wang, Xia; Sun, Xiaodong] Ohio State Univ, Dept Mech & Aerosp Engn, Nucl Engn Program, Columbus, OH 43210 USA. [Duval, Walter M.] NASA, Fluid Phys & Transport Branch, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Wang, X (reprint author), Ohio State Univ, Dept Mech & Aerosp Engn, Nucl Engn Program, Columbus, OH 43210 USA. EM wang.1037@osu.edu; sun.200@osu.edu; walter.m.duval@nasa.gov RI Sun, Xiaodong/F-3752-2015 OI Sun, Xiaodong/0000-0002-9852-160X FU National Aeronautics and Space Administration [NNX07AM57G]; Ohio Super-computer Center FX Part of this work has been supported by National Aeronautics and Space Administration through Grant NNX07AM57G. The authors would also like to acknowledge the computing resources and support provided by the Ohio Super-computer Center. Comments regarding the experimental data from Prof. M. Ishii of Purdue University and Dr. S. Vasavada of Energy Research, Inc., are appreciated. NR 27 TC 1 Z9 1 U1 0 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0938-0108 J9 MICROGRAVITY SCI TEC JI Microgravity Sci. Technol. PD JUN PY 2011 VL 23 IS 3 BP 293 EP 303 DI 10.1007/s12217-010-9248-z PG 11 WC Engineering, Aerospace; Thermodynamics; Mechanics SC Engineering; Thermodynamics; Mechanics GA 777WY UT WOS:000291657000003 ER PT J AU Jules, K Istasse, E Stenuit, H Murakami, K Yoshizaki, I Johnson-Green, P AF Jules, Kenol Istasse, Eric Stenuit, Hilde Murakami, Keiji Yoshizaki, Izumi Johnson-Green, Perry TI Summary of Recent Research Accomplishment Onboard the International Space Station-Within the United States Orbital Segment SO MICROGRAVITY SCIENCE AND TECHNOLOGY LA English DT Article DE Microgravity; Spinal elongation; Nutrition; International space station; ISS; Bisphosphonates; Epstein-Barr; Extra vehicular activity; Integrated immune; Neurospat; Visual performance; Space adaption syndrome; Otolith; Space research; Deconditioning; Protein crystallization; Space motion sickness; Magnethorheological; Low earth orbit (LEO); Life science; Fundamental biology; Materials science; Radiation; Human and environment interaction; Fluid physics; Space products and development; Education and earth observation; Research planning; Research execution; Research operations; Real time operations AB November 20, 2010, marked a significant milestone in the annals of human endeavors in space since it was the twelfth anniversary of one of the most challenging and complex construction projects ever attempted by humans away from our planet: The construction of the International Space Stations. On November 20, 1998, the Zarya Control Module was launched. With this simple, almost unnoticed launch in the science community, the construction of a continuously staffed research platform, in Low Earth Orbit, was underway. This paper discusses the research that was performed by many occupants of this research platform during the year celebrating its twelfth anniversary. The main objectives of this paper are fourfold: (1) to discuss the integrated manner in which science planning/replanning and prioritization during the execution phase of an increment is carried out across the United States Orbital Segment since that segment is made of four independent space agencies; (2) to discuss and summarize the research that was performed during increments 16 and 17 (October 2007 to October 2008). The discussion for these two increments is primarily focused on the main objectives of each investigation and its associated hypotheses that were investigated. Whenever available and approved, preliminary research results are also discussed for each of the investigations performed during these two increments; (3) to compare the planned research portfolio for these two increments versus what was actually accomplished during the execution phase in order to discuss the challenges associated with planning and performing research in a space laboratory located over 240 miles up in space, away from the ground support team; (4) to briefly touch on the research portfolio of increments 18 and 19/20 as the International Space Station begins its next decade in Low Earth Orbit. C1 [Jules, Kenol] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Istasse, Eric; Stenuit, Hilde] European Space Agcy, ESA Mission Sci Off, ESTEC HME GAC, NL-2200 AG Noordwijk, Netherlands. [Murakami, Keiji; Yoshizaki, Izumi] JAXA, Space Environm Utilizat Ctr, Tsukuba, Ibaraki 3058505, Japan. [Johnson-Green, Perry] CSA, John H Chapman Space Ctr, St Hubert, PQ J3Y 8Y9, Canada. RP Jules, K (reprint author), NASA, Lyndon B Johnson Space Ctr, Mail Code OZ 4,2101 NASA Pkwy, Houston, TX 77058 USA. EM kenol.jules-1@nasa.gov NR 28 TC 1 Z9 1 U1 2 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0938-0108 J9 MICROGRAVITY SCI TEC JI Microgravity Sci. Technol. PD JUN PY 2011 VL 23 IS 3 BP 311 EP 343 DI 10.1007/s12217-010-9253-2 PG 33 WC Engineering, Aerospace; Thermodynamics; Mechanics SC Engineering; Thermodynamics; Mechanics GA 777WY UT WOS:000291657000005 ER PT J AU Witte, JC Duncan, BN Douglass, AR Kurosu, TP Chance, K Retscher, C AF Witte, J. C. Duncan, B. N. Douglass, A. R. Kurosu, T. P. Chance, K. Retscher, C. TI The unique OMI HCHO/NO2 feature during the 2008 Beijing Olympics: Implications for ozone production sensitivity SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Air quality; OMI; NO2; HCHO; Beijing Olympics ID AIR-QUALITY; MONITORING INSTRUMENT; SOURCE APPORTIONMENT; TROPOSPHERIC OZONE; POLLUTION; CHINA; EMISSIONS; NOX; FORMALDEHYDE; ATMOSPHERE AB In preparation of the Beijing Summer Olympic and Paralympics Games, strict emission control measures (ECMs) were imposed between July and September 2008 on motor vehicle traffic and industrial emissions to improve air quality. We estimated changes in the chemical sensitivity of ozone production to these ECMs using Ozone Monitoring Instrument (OMI) column measurements of formaldehyde (HCHO) and nitrogen dioxide (NO2), where their ratio serves as a proxy for the sensitivity. During the ECMs, OMI NO2 significantly decreased, subsequently increasing the HCHO/NO2. For the first half of the ECM time period, the ratios maintained values greater than two indicating that ozone production became primarily NOx-limited. In contrast, ozone production was predominantly volatile organic compound (VOC)-limited or mixed VOC-NOx-Iimited during the same period in the preceding three years. After the ECMs were lifted, NO2 and HCHO/NO2 returned to their previous values. The 2005-2008 OMI record shows that this transition to a predominantly NO,-limited regime during the ECMs was unique. Meteorological factors likely explain the variability in HCHO/NO2, particularly the transition to a mixed NOx-VOC-limitation in mid-August during the Olympics, where ozone production became sensitive to both NOx and VOCs until the end of the ECMs. The mixed VOC-NOx-limited regime observed during the Paralympics is also unique because previous years show that Beijing in September is predominantly VOC-limited. Beijing's large-scale tree-planting program was expected to increase levels of biogenic VOCs, but this is not supported by OMI HCHO data. However, MODIS vegetation indices show a small increase in vegetation cover from 2003 leading up to the Games in 2008. After the Games, however, there was a downturn in the indices (2009 and 2010) to levels similar to 2006. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Witte, J. C.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Witte, J. C.; Duncan, B. N.; Douglass, A. R.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Branch, Greenbelt, MD 20771 USA. [Kurosu, T. P.; Chance, K.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Retscher, C.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. RP Witte, JC (reprint author), Sci Syst & Applicat Inc, 10210 Greenbelt Rd,Suite 600, Lanham, MD 20706 USA. EM jacquelyn.Witte@nasa.gov RI Duncan, Bryan/A-5962-2011; Douglass, Anne/D-4655-2012; OI Chance, Kelly/0000-0002-7339-7577 FU NASA's Atmospheric Chemistry, Modeling and Analysis; Applied Sciences Air Quality Programs FX This work is supported by NASA's Atmospheric Chemistry, Modeling and Analysis and Applied Sciences Air Quality Programs. NR 45 TC 9 Z9 11 U1 6 U2 52 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD JUN PY 2011 VL 45 IS 18 BP 3103 EP 3111 DI 10.1016/j.atmosenv.2011.03.015 PG 9 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 775JB UT WOS:000291454500011 ER PT J AU Giles, LJ Grigoropoulos, A Szilagyi, RK AF Giles, Logan J. Grigoropoulos, Alexios Szilagyi, Robert K. TI Electron and Spin Density Topology of the H-Cluster and Its Biomimetic Complexes SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Cluster compounds; Electronic structure; Spin density; Electron density critical points; Density functional calculations; [FeFe]-hydrogenase ID FE-ONLY HYDROGENASE; ACTIVE-SITE; FUNCTIONAL THEORY; DESULFOVIBRIO-DESULFURICANS; CLOSTRIDIUM-PASTEURIANUM; IRON-HYDROGENASES; CARBON-MONOXIDE; LIGAND; ENERGY; MODEL AB The catalytically active cluster of [FeFe]-hydrogenase (H-cluster) is unique due to its chemical composition and electronic and geometric structures. Protein crystallography revealed the presence of biologically unique diatomic ligands coordinating to the Fe centers and three light atoms bridging the sulfur atoms of its [2Fe]-subcluster. The identity of the light atoms remains uncertain, even at close to atomic resolution (1.39 angstrom), as well as due to the lack of understanding at the molecular level of the cluster's biosynthetic pathway. By using all of the proposed ligand compositions, we carried out a comprehensive electronic structure analysis by evaluating the topology of the electron density and, particularly, the atomic spin density distribution derived from various population analysis methods for the free dithiolate ligands, the biomimetic [2Fe] complexes, and the entire H-cluster embedded in its approximately 3.5 angstrom protein environment. In the biomimetic model complexes we found substantial spin density de-localization at the bridgehead of the dithiolate ligands. We attributed the presence of spin density to the through-space spin polarization interaction between the paramagnetic iron centers and the bridgehead group, as represented by the ring critical points for the [Fe-(S-R-S)-Fe] metallacycles. However, this spin polarization of the bridgehead group vanishes for some of the biomimetic models, as well as for the 208-atom computational model of the H-cluster, due to a network of weak interactions. When the bridgehead group becomes part of a conduit for transmitting the spin polarization towards the terminal ends of each interaction network, such as the distal water or H-bonded residues, the spin density vanishes. The variations of the Fe atomic spin densities were compared and contrasted for the proximal and distal iron sites in the crystallographic and the rotated conformations, respectively. C1 [Giles, Logan J.; Grigoropoulos, Alexios; Szilagyi, Robert K.] Montana State Univ, NASA, Astrobiol Biogeocatalysis Res Ctr, Dept Chem & Biochem, Bozeman, MT 59717 USA. RP Szilagyi, RK (reprint author), Montana State Univ, NASA, Astrobiol Biogeocatalysis Res Ctr, Dept Chem & Biochem, Bozeman, MT 59717 USA. RI Szilagyi, Robert/G-9268-2012; OI Szilagyi, Robert/0000-0002-9314-6222; Grigoropoulos, Alexios/0000-0002-3108-7052 FU National Science Foundation [CBET 0744820]; NASA Astrobiology Institute [NNA08C-N85A] FX This work was supported by a grant from the National Science Foundation CBET 0744820. The Astrobiology Biogeocatalysis Research Center is funded by NASA Astrobiology Institute Funded Grant NNA08C-N85A. We thank Dr. Todd Keith for the excellent support to AIMPro and the reviewers for their candid and constructive criticism of our manuscript. NR 52 TC 10 Z9 10 U1 1 U2 13 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1434-1948 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD JUN PY 2011 IS 17 BP 2677 EP 2690 DI 10.1002/ejic.201100318 PG 14 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 776TN UT WOS:000291561100005 ER PT J AU Bills, BG Nimmo, F AF Bills, B. G. Nimmo, F. TI Forced obliquities and moments of inertia of Ceres and Vesta SO ICARUS LA English DT Article DE Asteroids, Dynamics; Asteroid Ceres; Asteroid Vesta; Rotational dynamics ID RUNGE-LENZ VECTOR; TRIAXIAL ELLIPSOID DIMENSIONS; ADAPTIVE OPTICS IMAGES; PARENT BODY; TERRESTRIAL PLANETS; ASTEROID FAMILIES; ROTATIONAL POLES; KORONIS FAMILY; DAWN MISSION; SOLAR-SYSTEM AB We examine models of secular variations in the orbit and spin poles of Ceres and Vesta, the two most massive bodies in the main asteroid belt. If the spin poles are fully damped, then the current values of obliquity, or angular separation between spin and orbit poles, are diagnostic of the moments of inertia and thus indicative of the extent of differentiation of these bodies. Using existing shape models and assuming uniform density, the present obliquity values are predicted to be 12.31 degrees for Ceres and 15.66 degrees for Vesta. Part of this difference is related to differing orbital inclinations; a more centrally condensed internal structure would yield more rapid spin pole precession, and larger obliquity. Time scales for tidal damping are expected to be rather long. However, at least for Vesta, current estimates of the spin pole location are consistent with its obliquity being fully damped. When the degree two gravity coefficients and spin pole orientations are determined by the Dawn spacecraft, it will allow accurate determination of the moments of inertia of these bodies, assuming the obliquities are damped. (C) 2011 Published by Elsevier Inc. C1 [Bills, B. G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Nimmo, F.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. RP Bills, BG (reprint author), CALTECH, Jet Prop Lab, MS 183-301,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Bruce.Bills@jpl.nasa.gov; fnimmo@es.ucsc.edu FU National Aeronautics and Space Administration FX Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 91 TC 13 Z9 13 U1 0 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2011 VL 213 IS 2 BP 496 EP 509 DI 10.1016/j.icarus.2010.09.002 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 776AF UT WOS:000291506200006 ER PT J AU Lim, LF Emery, JP Moskovitz, NA AF Lim, Lucy F. Emery, Joshua P. Moskovitz, Nicholas A. TI Mineralogy and thermal properties of V-type Asteroid 956 Elisa: Evidence for diogenitic material from the Spitzer IRS (5-35 mu m) spectrum SO ICARUS LA English DT Article DE Asteroids, Composition; Asteroids, Surfaces; Spectroscopy; Mineralogy; Infrared observations ID MODIFIED GAUSSIAN MODEL; SPACE-TELESCOPE; PARENT BODY; 4 VESTA; REFLECTANCE SPECTRA; BASALTIC ASTEROIDS; PYROXENE MIXTURES; EMISSION-SPECTRA; FE PYROXENES; METEORITES AB We present the thermal infrared (5-35 mu m) spectrum of 956 Elisa as measured by the Spitzer Infrared Spectrograph ("IRS"; Houck, J.R. et al. [2004]. Astrophys. J. Suppl. 154, 18-24) together with new ground-based lightcurve data and near-IR spectra. From the visible lightcurve photometry, we determine a rotation period of 16.494 +/- 0.001 h, identify the rotational phase of the Spitzer observations, and estimate the visible absolute magnitude (H(v)) at that rotational phase to be 12.58 +/- 0.04. From radiometric analysis of the thermal flux spectrum, we find that at the time of observation 956 Elisa had a projected radius of 5.3 +/- 0.4 km with a visible albedo pv = 0.142 +/- 0.022, significantly lower than that of the prototype V-type asteroid, 4 Vesta. (This corresponds to a radius of 5.2 +/- 0.4 km at lightcurve mean.) Analysis with the standard thermal model (STM) results in a sub-solar temperature of 292.3 +/- 2.8 K and beaming parameter eta = 1.16 +/- 0.05. Thermophysical modeling places a lower limit of 20 J m(-2) s(-1/2) on the thermal inertia of the asteroid's surface layer (if the surface is very smooth) but more likely values fall between 30 and 150 J m(-2) K(-1) s(-1/2) depending on the sense of rotation. The emissivity spectrum, calculated by dividing the measured thermal flux spectrum by the modeled thermal continuum, exhibits mineralogically interpretable spectral features within the 9-12 mu m reststrahlen band, the 15-16.5 mu m Si-O-Si stretching region, and the 16-25 mu m reststrahlen region that are consistent with pyroxene of diogenitic composition: extant diogenitic pyroxenes fall within the narrow compositional range Wo(2 +/- 1)En(74 +/- 2)Fs(24 +/- 1). Spectral deconvolution of the 9-12 mu m reststrahlen features indicates that up to approximate to 20% olivine may also be present, suggesting an olivine-diogenite-like mineralogy. The mid-IR spectrum is inconsistent with non-cumulate eucrite as the major component on the surface of 956 Elisa, although cumulate eucrite material may be present at abundances lower than that of the diogenite component. Analysis of new near-IR spectra of 956 Elisa with the Modified Gaussian Model (MGM; Sunshine, J.M., Pieters, CM., Pratt, S.F. [1990]. J. Geophys. Res. 95 (May), 6955-6966) results in two pyroxene compositions: 75% magnesian low-Ca pyroxene and 25% high-Ca pyroxene. High-Ca pyroxene is not evident in the mid-IR data, but may belong to a component that is underrepresented in the mid-IR spectrum either because of its spatial distribution on the asteroid or because of its particle size. High-Ca pyroxenes that occur as exsolution lamellae may also be more evident spectrally in the NIR than in the mid-IR. In any case, we find that the mid-IR spectrum of 956 Elisa is dominated by emission from material of diogenite-like composition, which has very rarely been observed among asteroids. Published by Elsevier Inc. C1 [Lim, Lucy F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Emery, Joshua P.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Moskovitz, Nicholas A.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Moskovitz, Nicholas A.] Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA. RP Lim, LF (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM lucy.f.lim@nasa.gov RI Lim, Lucy/C-9557-2012 OI Lim, Lucy/0000-0002-9696-9654 FU NASA GSRP [NNX06A130H]; NASA PGG [NNX08BA78G]; National Aeronautics and Space Administration, Science Mission Directorate [NNX-08AE38A] FX This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA. N.M. acknowledges the support of NASA GSRP Grant NNX06A130H. J.P.E. and L.L. were also supported in part by NASA PG&G Grant NNX08BA78G.; For the Mauna Kea NIR data, the authors are indebted to the indigenous people of Hawai'i. We also thank the IRTF staff for their contribution to the IRTF data obtained by N.M. as a Visiting Astronomer at the Infrared Telescope Facility. IRTF is operated by the University of Hawaii under Cooperative Agreement no. NNX-08AE38A with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. NR 57 TC 6 Z9 6 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2011 VL 213 IS 2 BP 510 EP 523 DI 10.1016/j.icarus.2010.12.006 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 776AF UT WOS:000291506200007 ER PT J AU Fieber-Beyer, SK Gaffey, MJ Kelley, MS Reddy, V Reynolds, CM Hicks, T AF Fieber-Beyer, Sherry K. Gaffey, Michael J. Kelley, Michael S. Reddy, Vishnu Reynolds, Chalbeth M. Hicks, Tony TI The Maria asteroid family: Genetic relationships and a plausible source of mesosiderites near the 3:1 Kirkwood Gap SO ICARUS LA English DT Article DE Asteroids, Composition; Infrared observations; Mineralogy ID REFLECTANCE SPECTRA; SPECTROSCOPIC SURVEY; PARENT BODY; IRON-METEORITES; OXYGEN-ISOTOPE; ORTHO-PYROXENE; BELT; HISTORY; MOTION; RESONANCES AB We present a mineralogical assessment of 12 Maria family asteroids, using near-infrared spectral data obtained over the years 2000-2009 combined with visible spectral data (when available) to cover the spectral interval of 0.4-2.5 mu m. Our analysis indicates the Maria asteroid family, which is located adjacent to the chaotic region of the 3:1 Kirkwood Gap, appears to be a true genetic family composed of assemblages analogous to mesosiderite-type meteorites. Dynamical models by Farinella et al. (Farinella, P., Gunczi, R., Froeschle, Ch., Froeschle, C., [1993]. Icarus 101, 174-187) predict this region should supply meteoroids into Earth-crossing orbits. Thus, the Maria family is a plausible source of some or all of the mesosiderites in our meteorite collections. These individual asteroids were most likely once part of a larger parent object that was broken apart and dispersed. One of the Maria dynamical family members investigated, ((695) Bella), was found to be unrelated to the genetic Maria family members. The parameters of (695) Bella indicate an H-chondrite assemblage, and that Bella may be a sister or daughter of Asteroid (6) Hebe. (C) 2011 Elsevier Inc. All rights reserved. C1 [Fieber-Beyer, Sherry K.; Gaffey, Michael J.; Reddy, Vishnu; Reynolds, Chalbeth M.] Univ N Dakota, Dept Space Studies, Grand Forks, ND 58202 USA. [Fieber-Beyer, Sherry K.] Univ N Dakota, Dept Earth Syst Sci & Policy, Grand Forks, ND 58202 USA. [Kelley, Michael S.] NASA HQ, Planetary Sci Div, Washington, DC 20546 USA. [Hicks, Tony] Georgia So Univ, Dept Geol & Geog, Statesboro, GA 30460 USA. RP Fieber-Beyer, SK (reprint author), Univ N Dakota, Dept Space Studies, Univ Stop 9008, Grand Forks, ND 58202 USA. EM sherryfieb@hotmail.com OI Reddy, Vishnu/0000-0002-7743-3491 FU NASA HQ under the NESSF [NNX08AW0414]; NASA [NNX07AP73G]; NASA PAST [NAG5-12445, NNG05GF90G]; National Aeronautics and Space Administration, Science Mission Directorate [NCC 5-538] FX This work was supported by NASA HQ under the NESSF Grant NNX08AW0414 (S.K.FB) and NASA PGG Program Grant NNX07AP73G (M.J.G.). Portions of this work were supported by NASA PAST Grants NAG5-12445 and NNG05GF90G.; Visiting Astronomer at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement No. NCC 5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. NR 99 TC 10 Z9 10 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2011 VL 213 IS 2 BP 524 EP 537 DI 10.1016/j.icarus.2011.03.009 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 776AF UT WOS:000291506200008 ER PT J AU Howell, RR Lopes, RMC AF Howell, Robert R. Lopes, Rosaly M. C. TI Morphology, temperature, and eruption dynamics at Pele SO ICARUS LA English DT Article DE Io; Volcanism; Jupiter, Satellites; Geological processes; Satellites, Surfaces; Infrared observations ID JUPITERS MOON IO; VOLCANIC PLUMES; SILICATE VOLCANISM; THERMAL EMISSION; ACTIVE VOLCANISM; GALILEO NIMS; LAVA LAKES; MISSION; MAGMA; STYLE AB The Pele region of lo has been the site of vigorous volcanic activity from the time of the first Voyager 1 observations in 1979 up through the final Galileo ones in 2001. There is high-temperature thermal emission from a visibly dark area that is thought to be a rapidly overturning lava lake, and is also the source of a large sulfur-rich plume. We present a new analysis of Voyager I visible wavelength images, and Galileo Solid State Imager (SSI) and Near Infrared Mapping Spectrometer (NIMS) thermal emission observations which better define the morphology of the region and the intensity of the emission. The observations show remarkable correlations between the locations of the emission and the features seen in the Voyager images, which provide insight into eruption mechanisms and constrain the longevity of the activity. We also analyze an additional wavelength channel of NIMS data (1.87 mu m) which paradoxically, because of reduced sensitivity, allows us to estimate temperatures at the peak locations of emission. Measurements of eruption temperatures on lo are crucial because they provide our best clues to the composition of the magma. High color temperatures indicative of ultramafic composition have been reported for the Pillan hot spot and possibly for Pele, although recent work has called into question the requirement for magma temperatures above those expected for ordinary basalts. Our new analysis of the Pele emission near the peak of the hot spot shows color temperatures near the upper end of the basalt range during the 127 and 132 encounters. In order to analyze the observed color temperatures we also present an analytical model for the thermal emission from fire-fountains, which should prove generally useful for analyzing similar data. This is a modification of the lava flow emission model presented in Howell (Howell, R.R. [1997]. Icarus 127, 394-407), adapted to the fire-fountain cooling curves first discussed in Keszthelyi et al. (Keszthelyi, L., Jaeger, W., Milazzo, M., Radebaugh, J., Davies, A.G., Mitchell, K.L. [2007]. Icarus 192, 491-502). When applied to the 132 observations we obtain a fire-fountain mass eruption rate of 5.1 x 10(5) kg s(-1) for the main vent area and 1.4 x 10(4) kg s(-1) for each of two smaller vent regions to the west. These fire-fountain rates suggest a solution to the puzzling lack of extensive lava flows in the Pele region. Much of the erupted lava may be ejected at high speed into the fire-fountains and plumes, creating dispersed pyroclastic deposits rather than flows. We compare gas and silicate mass eruption rates and discuss briefly the dynamics of this ejection model and the observational evidence. (C) 2011 Elsevier Inc. All rights reserved. C1 [Howell, Robert R.] Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA. [Lopes, Rosaly M. C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Howell, Robert R.] NASA, ASEE, Washington, DC USA. RP Howell, RR (reprint author), Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA. EM rhowell@uwyo.edu; Rosaly.M.Lopes@jpl.nasa.gov RI Lopes, Rosaly/D-1608-2016 OI Lopes, Rosaly/0000-0002-7928-3167 FU NASA-ASEE; NASA [NNX09AE06G]; National Aeronautics and Space Administration FX The analysis described here was begun under a NASA-ASEE Summer Faculty Fellowship for R. Howell at JPL during 2002 and 2003 and was later supported by NASA Jupiter Data Analysis Program Grant NNX09AE06G. Part of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We would also like to thank Lucas Kamp, Frank Leader, William Smythe, and Robert Carlson for useful discussions, and acknowledge the help of the ISIS staff at the USGS, Flagstaff. In addition we thank Kandis Lea Jessup and John Spencer for permission to discuss their recently submitted paper in advance of publication. Finally, we thank Julie Rathbun and an anonymous reviewer for comments which have help to substantially improve this paper. NR 42 TC 4 Z9 4 U1 1 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD JUN PY 2011 VL 213 IS 2 BP 593 EP 607 DI 10.1016/j.icarus.2011.03.008 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 776AF UT WOS:000291506200014 ER PT J AU Le Gall, A Janssen, MA Wye, LC Hayes, AG Radebaugh, J Savage, C Zebker, H Lorenz, RD Lunine, JI Kirk, RL Lopes, RMC Wall, S Callahan, P Stofan, ER Farr, T AF Le Gall, A. Janssen, M. A. Wye, L. C. Hayes, A. G. Radebaugh, J. Savage, C. Zebker, H. Lorenz, R. D. Lunine, J. I. Kirk, R. L. Lopes, R. M. C. Wall, S. Callahan, P. Stofan, E. R. Farr, T. CA Cassini Radar Team TI Cassini SAR, radiometry, scatterometry and altimetry observations of Titan's dune fields SO ICARUS LA English DT Article DE Titan; Radar observations; Radio observations; Geological processes ID RADAR MAPPER; LANDING SITE; SURFACE; IMAGES; WINDS; WAVELENGTH; TOPOGRAPHY AB Large expanses of linear dunes cover Titan's equatorial regions. As the Cassini mission continues, more dune fields are becoming unveiled and examined by the microwave radar in all its modes of operation (SAR, radiometry, scatterometry, altimetry) and with an increasing variety of observational geometries. In this paper, we report on Cassini's radar instrument observations of the dune fields mapped through May 2009 and present our key findings in terms of Titan's geology and climate. We estimate that dune fields cover similar to 12.5% of Titan's surface, which corresponds to an area of similar to 10 million km(2), roughly the area of the United States. If dune sand-sized particles are mainly composed of solid organics as suggested by VIMS observations (Cassini Visual and Infrared Mapping Spectrometer) and atmospheric modeling and supported by radiometry data, dune fields are the largest known organic reservoir on Titan. Dune regions are, with the exception of the polar lakes and seas, the least reflective and most emissive features on this moon. Interestingly, we also find a latitudinal dependence in the dune field microwave properties: up to a latitude of similar to 11 degrees, dune fields tend to become less emissive and brighter as one moves northward. Above similar to 11 degrees this trend is reversed. The microwave signatures of the dune regions are thought to be primarily controlled by the interdune proportion (relative to that of the dune), roughness and degree of sand cover. In agreement with radiometry and scatterometry observations, SAR images suggest that the fraction of interdunes increases northward up to a latitude of similar to 14 degrees. In general, scattering from the subsurface (volume scattering and surface scattering from buried interfaces) makes interdunal regions brighter than the dunes. The observed latitudinal trend may therefore also be partially caused by a gradual thinning of the interdunal sand cover or surrounding sand sheets to the north, thus allowing wave penetration in the underlying substrate. Altimetry measurements over dunes have highlighted a region located in the Fensal dune field (similar to 5 degrees latitude) where the icy bedrock of Titan is likely exposed within smooth interdune areas. The hemispherical assymetry of dune field properties may point to a general reduction in the availability of sediments and/or an increase in the ground humidity toward the north, which could be related to Titan's asymmetric seasonal polar insolation. Alternatively, it may indicate that either the wind pattern or the topography is less favorable for dune formation in Titan's northern tropics. (C) 2011 Elsevier Inc. All rights reserved. C1 [Le Gall, A.; Janssen, M. A.; Lopes, R. M. C.; Wall, S.; Callahan, P.; Farr, T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wye, L. C.; Zebker, H.] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Hayes, A. G.] CALTECH, Dept Geol & Planetary Sci, Pasadena, CA 91125 USA. [Radebaugh, J.; Savage, C.] Brigham Young Univ, Dept Geol Sci, Provo, UT USA. [Lorenz, R. D.] Johns Hopkins Univ, Dept Space, Appl Phys Lab, Laurel, MD 20723 USA. [Lunine, J. I.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Kirk, R. L.] US Geol Survey, Branch Astrogeol, Flagstaff, AZ 86001 USA. [Stofan, E. R.] Proxemy Res, Rectortown, VA 20140 USA. RP Le Gall, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Alice.Le.Gall@jpl.nasa.gov RI Hayes, Alexander/P-2024-2014; Lorenz, Ralph/B-8759-2016; Lopes, Rosaly/D-1608-2016; OI Hayes, Alexander/0000-0001-6397-2630; Lorenz, Ralph/0000-0001-8528-4644; Lopes, Rosaly/0000-0002-7928-3167; Farr, Thomas/0000-0001-5406-2096 FU Cassini/Huygens mission; NASA; European Space Agency (ESA); Italian Space Agency (ASI) FX This work was supported by the Cassini/Huygens mission, which is a joint endeavor of NASA, the European Space Agency (ESA), and the Italian Space Agency (ASI) and is managed by JPL/Caltech under a contract with NASA. A. Le Gall is supported by the NASA Postdoctoral Program, administrated by Oak Ridge Associated Universities (ORAU). The authors are grateful to Don Jennings for sharing his CIRS measurements of the latitudinal ground temperature distribution. They also wish to thank Philippe Paillou for discussion on the definition of the terms used in the present paper to describe scattering from the dune fields and Dave Rubin for his thorough review of the manuscript. NR 53 TC 34 Z9 34 U1 2 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUN PY 2011 VL 213 IS 2 BP 608 EP 624 DI 10.1016/j.icarus.2011.03.026 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 776AF UT WOS:000291506200015 ER PT J AU Beyer, AD Kenyon, ME Echternach, PM Eom, BH Bueno, J Day, PK Bock, JJ Bradford, CM Khosropanah, P Ridder, M Bruijn, M Hoevers, H Gao, JR AF Beyer, A. D. Kenyon, M. E. Echternach, P. M. Eom, B. -H. Bueno, J. Day, P. K. Bock, J. J. Bradford, C. M. Khosropanah, P. Ridder, M. Bruijn, M. Hoevers, H. Gao, J. R. TI Characterization of an Ultra-Sensitive Transition-Edge Sensor for Space-Borne Far-IR/Sub-mm Spectroscopy SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Far-infrared spectrometer; Si(x)N(y) thermal properties; submillimeter spectrometer; transition-edge sensor AB We measured the noise equivalent power (NEP) of an ultra-sensitive membrane-isolated transition-edge sensor (TES) designed for the SpicA FAR Infrared instrument ( SAFARI) along with several Johnson noise Thermometry Devices (JTDs) simultaneously in a "dark" experimental setup. Our goal was to characterize the dark power P(D) present in our experimental setup and its effect on the measured NEP. By employing resistive attenuators, filters, lossy coaxial connections, and a light-tight box, we reduced P(D) to 0.25 fW in our setup. For the TES, G was measured to be (325 +/- 25) fW/K at T(C) = 78 mK giving an upper-limit expected NEP of (3.5 +/- 0.25) x 10(-19) W/Hz(1/2). We measured an actual NEP on the TES equal to (6.5 +/- 1.5) x 10(-19) W/Hz(1/2), which is approximately double the expected value and likely due to residual electrical dark power in our setup. C1 [Beyer, A. D.; Kenyon, M. E.; Echternach, P. M.; Eom, B. -H.; Bueno, J.; Day, P. K.; Bock, J. J.; Bradford, C. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Khosropanah, P.; Ridder, M.; Bruijn, M.; Hoevers, H.; Gao, J. R.] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands. RP Beyer, AD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM beyer@caltech.edu FU Caltech Moore Foundation FX A. D. Beyer thanks the Caltech Moore Foundation for financial support. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. 2010. All rights reserved. Government sponsorship acknowledged. NR 6 TC 7 Z9 7 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2011 VL 21 IS 3 BP 199 EP 202 DI 10.1109/TASC.2010.2083612 PN 1 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 769XB UT WOS:000291050500024 ER PT J AU Bonetti, JA Turner, AD Kenyon, M LeDuc, HG Brevik, JA Orlando, A Trangsrud, A Sudiwala, R Nguyen, HT Day, PK Bock, JJ Golwala, SR Kovac, JM Jones, WC Kuo, CL AF Bonetti, J. A. Turner, A. D. Kenyon, M. LeDuc, H. G. Brevik, J. A. Orlando, A. Trangsrud, A. Sudiwala, R. Nguyen, H. T. Day, P. K. Bock, J. J. Golwala, S. R. Kovac, J. M. Jones, W. C. Kuo, C. L. TI Transition Edge Sensor Focal Plane Arrays for the BICEP2, Keck, and Spider CMB Polarimeters SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE CMB; cosmic microwave background; polarimetry; TES bolometers ID POLARIZATION AB We describe the transition-edge-sensor (TES) focal plane arrays used for three cosmic microwave background (CMB) polarimetry projects. The first is BICEP2. The focal plane array for BICEP2 has been delivered and the instrument is now taking data at the South Pole. Second is the Keck Array. The focal planes for Keck will be nearly identical to those of BICEP2, but will cover multiples frequencies (96, 150 and 225 GHz). The scheduled deployment of Keck is late 2010. Finally, there is Spider, a high-altitude balloon observatory, which will also cover 96, 150, and 225 GHz and will be deployed in 2012. The goal of all three experiment is detecting B modes in the polarization of the CMB. C1 [Bonetti, J. A.; Turner, A. D.; Kenyon, M.; LeDuc, H. G.; Nguyen, H. T.; Day, P. K.; Bock, J. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Brevik, J. A.; Orlando, A.; Trangsrud, A.; Sudiwala, R.; Golwala, S. R.] CALTECH, Dept Phys, Pasadena, CA 91109 USA. [Kovac, J. M.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Kuo, C. L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Bonetti, JA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM joseph.bonetti@jpl.nasa.gov; clkuo@stanford.edu OI Orlando, Angiola/0000-0001-8004-5054 FU National Aeronautics and Space Administration; Gordon and Betty Moore Foundation FX The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a Contract with the National Aeronautics and Space Administration.; The authors thank the Gordon and Betty Moore Foundation for funding. NR 8 TC 3 Z9 4 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2011 VL 21 IS 3 BP 219 EP 222 DI 10.1109/TASC.2010.2093858 PN 1 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 769XB UT WOS:000291050500029 ER PT J AU Finkbeiner, FM Bailey, CN Bandler, SR Brekosky, RP Brown, AD Chervenak, JA Eckart, ME Kelley, RL Kelly, DP Kilbourne, CA Porter, FS Sadleir, JE Smith, SJ AF Finkbeiner, F. M. Bailey, C. N. Bandler, S. R. Brekosky, R. P. Brown, A. D. Chervenak, J. A. Eckart, M. E. Kelley, R. L. Kelly, D. P. Kilbourne, C. A. Porter, F. S. Sadleir, J. E. Smith, S. J. TI Development of Embedded Heatsinking Layers for Compact Arrays of X-Ray TES Microcalorimeters SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Diffusion barrier; heatsinking; superconducting; x-ray microcalorimeter AB Transition-edge sensor microcalorimeter arrays in compact geometries and large formats experience local heating from bias power and x-ray hits that must be dissipated in the frame. For devices on solid, non-perforated silicon substrates, we have introduced an underlying embedded copper heatsinking layer to enhance the ability of the frame to remove this heat. In particular, such a layer can mitigate thermal crosstalk between nearby pixels within the array. Further improvements in array performance, such as decreased magnetic field sensitivity and stray inductance, are possible by turning the heatsinking layer into a superconducting ground plane. In this presentation, we report on the development of heatsinking layers consisting of a 1-2 mu m thick high-quality copper layer which is sandwiched between two thin refractory metal-based diffusion barriers. These diffusion barriers are designed to avoid copper migration into the surrounding material over time, especially during our high temperature TES fabrication process which takes place in excess of 400 degrees C. A 0.3-0.5 mu m thick PECVD SiO2 cover layer isolates the heatsinking layer from the detector circuit. We present first results on our attempt to tailor the materials forming the diffusion barrier to fabricate both well defined superconducting ground planes and non-superconducting layers with the desired barrier characteristics. C1 [Finkbeiner, F. M.; Bailey, C. N.; Bandler, S. R.; Brekosky, R. P.; Brown, A. D.; Chervenak, J. A.; Eckart, M. E.; Kelley, R. L.; Kelly, D. P.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kelley, R. L.] MEI Technol Inc, Seabrook, MD 20706 USA. [Sadleir, J. E.] Univ Illinois, Chicago, IL USA. [Smith, S. J.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. RP Finkbeiner, FM (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Fred.M.Finkbeiner@nasa.gov RI Smith, Stephen/B-1256-2008; Bandler, Simon/A-6258-2010; Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012; Bailey, Catherine/C-6107-2009 OI Smith, Stephen/0000-0003-4096-4675; Bandler, Simon/0000-0002-5112-8106; Porter, Frederick/0000-0002-6374-1119; FU NASA [NNX08AE42G] FX This work was funded through the NASA ROSES Program (Solar and Heliospheric Physics) and through NASA Grant NNX08AE42G. NR 11 TC 12 Z9 12 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2011 VL 21 IS 3 BP 223 EP 226 DI 10.1109/TASC.2010.2091237 PN 1 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 769XB UT WOS:000291050500030 ER PT J AU Zhao, Y Appel, J Chervenak, JA Doriese, WB Staggs, S AF Zhao, Yue Appel, John Chervenak, James A. Doriese, W. B. Staggs, Suzanne TI Study of Excess Heat Capacity and Suppressed Kapitza Conductance in TES Devices SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Bolometer; heat capacity; phonon; transition edge sensor ID X-RAY SPECTROSCOPY; MICROCALORIMETERS; IMPEDANCE AB A number of groups have produced TES bolometers and other devices using dielectric membranes for thermal isolation in which excess heat capacity is reported. We have fabricated a series of TES devices using large area membranes and narrow legs for thermal isolation to study the scaling of intrinsic parameters like the heat capacity of the membrane. The devices are arranged on a single chip to ensure similarity of devices parameters (i.e., film thicknesses) and processing history. Measurements (non-multiplexed) of the current-voltage characteristic and complex impedance are made using a well-characterized, highly uniform, multichannel SQUID setup. We have developed model for non-ideal transition edge sensor performance that enables extraction of heat capacities and thermal conductances identified in the models. We report on the magnitude of excess heat capacity in the dielectric membrane and thermal conductance of the metal-to-dielectric interface in each of the designs. C1 [Zhao, Yue; Appel, John; Staggs, Suzanne] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Chervenak, James A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Doriese, W. B.] NIST, Boulder, CO 80305 USA. RP Zhao, Y (reprint author), Cornell Univ, Ithaca, NY 14850 USA. EM James.A.Chervenak@nasa.gov FU U.S. National Science Foundation [AST-0408698, PHY-0355328]; NASA FX This work was supported by the U.S. National Science Foundation under Awards AST-0408698 and PHY-0355328 and by NASA Internal Research and Development funding. NR 18 TC 5 Z9 5 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2011 VL 21 IS 3 BP 227 EP 231 DI 10.1109/TASC.2010.2097231 PN 1 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 769XB UT WOS:000291050500031 ER PT J AU Barrentine, EM Brandl, DE Brown, AD Denis, KL Hsieh, WT Nagler, PC Stevenson, TR Talley, DJ Timbie, PT U-Yen, K AF Barrentine, Emily M. Brandl, Donald E. Brown, Ari D. Denis, Kevin L. Hsieh, Wen-Ting Nagler, Peter C. Stevenson, Thomas R. Talley, Dorothy J. Timbie, Peter T. U-Yen, Kongpop TI Thermal Conductance Measurements of a Micron-Sized Transition-Edge Hot-Electron Micro-Bolometer SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Hot-electron effect; millimeter wave detectors; transition-edge sensors AB Future ground and space-based astronomy missions in the millimeter and sub-millimeter range will rely upon kilopixel detector arrays. We are developing a superconducting Transition-Edge Hot-Electron Bolometer (THM) for use in these next generation missions. Thermal isolation of the THM is controlled by the hot-electron effect between the electrons and phonons within the small volume of the superconducting detector. To reach noise levels near the photon background noise for observing the Cosmic Microwave Background (CMB) and the submillimeter and far-infrared background the optimal detector size occurs at the micron length scale. We present measurements of the thermal conductance of two micron-sized THM devices which show a hot-electron temperature dependence and predict NEP <= 5 x 10(-18) W/root Hz for CMB loading conditions and NEP <= 1 x 10(-19) W root Hz in the low power loading limit. We also briefly discuss the detector geometry and thermal conductance optimization for CMB loading conditions. C1 [Barrentine, Emily M.; Brandl, Donald E.; Timbie, Peter T.] Univ Wisconsin, Madison, WI 53706 USA. [Brown, Ari D.; Denis, Kevin L.; Hsieh, Wen-Ting; Nagler, Peter C.; Stevenson, Thomas R.; U-Yen, Kongpop] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Barrentine, EM (reprint author), Univ Wisconsin, Madison, WI 53706 USA. EM barrentine@wisc.edu NR 18 TC 0 Z9 0 U1 1 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2011 VL 21 IS 3 BP 258 EP 261 DI 10.1109/TASC.2010.2089961 PN 1 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 769XB UT WOS:000291050500038 ER PT J AU Gottardi, L van de Kuur, J Bandler, S Bruijn, M de Korte, P Gao, JR den Hartog, R Hijmering, RA Hoevers, H Koshropanah, P Kilbourne, C Lindemann, MA Borderias, MP Ridder, M AF Gottardi, L. van de Kuur, J. Bandler, S. Bruijn, M. de Korte, P. Gao, J. R. den Hartog, R. Hijmering, R. A. Hoevers, H. Koshropanah, P. Kilbourne, C. Lindemann, M. A. Parra Borderias, M. Ridder, M. TI AC Read-Out Circuits for Single Pixel Characterization of TES Microcalorimeters and Bolometers SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article AB SRON is developing Frequency Domain Multiplexing (FDM) for the read-out of transition edge sensor (TES) soft x-ray microcalorimeters for the XMS instrument of the International X-ray Observatory and far-infrared bolometers for the SAFARI instrument on the Japanese mission SPICA. In FDM the TESs are AC voltage biased at frequencies from 0.5 to 6 MHz in a superconducting LC resonant circuit and the signal is read-out by low noise and high dynamic range SQUIDs amplifiers. The TES works as an amplitude modulator. We report on several AC bias experiments performed on different detectors. In particular, we discuss the results on the characterization of Goddard Space Flight Center x-ray pixels and SRON bolometers. The paper focuses on the analysis of different read-out configurations developed to optimize the noise and the impedance matching between the detectors and the SQUID amplifier. A novel feedback network electronics has been developed to keep the SQUID in flux locked loop, when coupled to superconducting high Q circuits, and to optimally tune the resonant bias circuit. The achieved detector performances are discussed in view of the instrument requirement for the two space missions. C1 [Gottardi, L.; van de Kuur, J.; Bruijn, M.; de Korte, P.; den Hartog, R.; Hijmering, R. A.; Hoevers, H.; Koshropanah, P.; Kilbourne, C.; Lindemann, M. A.; Ridder, M.] SRON Natl Inst Space Res, Utrecht, Netherlands. [Bandler, S.] NASA, Goddard Space Flight Ctr, Washington, DC USA. [Gao, J. R.] SRON TU, Delft, Netherlands. [Parra Borderias, M.] Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. RP Gottardi, L (reprint author), SRON Natl Inst Space Res, Utrecht, Netherlands. RI Bandler, Simon/A-6258-2010 OI Bandler, Simon/0000-0002-5112-8106 FU Dutch Organization for Scientific Research (NWO); ESA [5417]; FPU FX This work was supported by the Dutch Organization for Scientific Research (NWO) and by the ESA Technical Research Programme under Contract 5417. The work of M. Parra Borderias was supported by the FPU program. NR 5 TC 4 Z9 4 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2011 VL 21 IS 3 BP 272 EP 275 DI 10.1109/TASC.2010.2100090 PN 1 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 769XB UT WOS:000291050500041 ER PT J AU Tan, H Hennig, W Warburton, WK Doriese, WB Kilbourne, CA AF Tan, Hui Hennig, Wolfgang Warburton, William K. Doriese, W. Bertrand Kilbourne, Caroline A. TI Development of a Real-Time Pulse Processing Algorithm for TES-Based X-Ray Microcalorimeters SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Algorithm; microcalorimeters; optimal filter; real-time pulse processing; transition-edge sensors ID SYSTEM AB We report here a real-time pulse processing algorithm for superconducting transition-edge sensor (TES) based x-ray microcalorimeters. TES-based microcalorimeters offer ultra-high energy resolutions, but the small volume of each pixel requires that large arrays of identical microcalorimeter pixels be built to achieve sufficient detection efficiency. That in turn requires as much pulse processing as possible must be performed at the front end of readout electronics to avoid transferring large amounts of data to a host computer for post-processing. Therefore, a real-time pulse processing algorithm that not only can be implemented in the readout electronics but also achieve satisfactory energy resolutions is desired. We have developed an algorithm that can be easily implemented in hardware. We then tested the algorithm offline using several data sets acquired with an 8 x 8 Goddard TES x-ray calorimeter array and 2 x 16 NIST time-division SQUID multiplexer. We obtained an average energy resolution of close to 3.0 eV at 6 keV for the multiplexed pixels while preserving over 99% of the events in the data sets. C1 [Tan, Hui; Hennig, Wolfgang; Warburton, William K.] XIA LLC, Hayward, CA 94544 USA. [Doriese, W. Bertrand] NIST, Boulder, CO 80305 USA. [Kilbourne, Caroline A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Tan, H (reprint author), XIA LLC, Hayward, CA 94544 USA. EM htan@xia.com; doriese@boulder.nist.gov; Caroline.A.Kilbourne@nasa.gov FU U.S. Department of Energy [DE-FG02-07ER84760] FX This work was supported in part by the U.S. Department of Energy under Grant DE-FG02-07ER84760. NR 10 TC 5 Z9 5 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2011 VL 21 IS 3 BP 276 EP 280 DI 10.1109/TASC.2010.2082473 PN 1 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 769XB UT WOS:000291050500042 ER PT J AU Vlahacos, CP Matthews, J Wellstood, FC AF Vlahacos, C. P. Matthews, J. Wellstood, F. C. TI A Cryo-Cooled Scanning SQUID Microscope for Imaging High-Frequency Magnetic Fields SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Hysteretic SQUID; SQUID microscopy AB One important application of scanning SQUID microscopes is fault detection in integrated circuits and multi-chip modules. However, the present generation of computer processors operate at over 1 GHz, well above the bandwidth of the present generation of SQUID microscopes. Towards this end, we present results on a cryo-cooled 4.2 K scanning SQUID microscope with a bandwidth of dc to 2 GHz and a sensitivity of about 50 nT per sample. We use a thin-film hysteretic Nb dc-SQUID and a pulsed sampling technique, rather than a non-hysteretic SQUID and a flux-locked loop, to overcome the bandwidth limitation of existing scanning SQUID microscopes. The microscope allows for non-contact images of time-varying magnetic field to be taken of room-temperature samples with time steps down to 50 ps and spatial resolution ultimately limited by the size of the SQUID. We present time-varying magnetic field images obtained with this scanning SQUID microscope and discuss the advantages and limitations of this method. C1 [Vlahacos, C. P.] NASA, Goddard Space Flight Ctr, Cryogen & Fluids Branch, Greenbelt, MD 20771 USA. [Matthews, J.] Phys Opt Corp, Torrance, CA 90501 USA. [Wellstood, F. C.] Univ Maryland, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA. [Wellstood, F. C.] Univ Maryland, Joint Quantum Inst, Dept Phys, College Pk, MD 20742 USA. RP Vlahacos, CP (reprint author), NASA, Goddard Space Flight Ctr, Cryogen & Fluids Branch, Code 552, Greenbelt, MD 20771 USA. EM kosta.vla-hacos@nasa.gov; jmatthews@poc.com; well@squid.umd.edu FU Laboratory for Physical Sciences; Center for Nanophysics and Advanced Materials FX This work was supported by the Laboratory for Physical Sciences and Center for Nanophysics and Advanced Materials. NR 8 TC 5 Z9 5 U1 0 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2011 VL 21 IS 3 BP 412 EP 415 DI 10.1109/TASC.2010.2087735 PN 1 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 769XB UT WOS:000291050500074 ER PT J AU Karpov, A Miller, DA Stern, JA Bumble, B Leduc, HG Mehdi, I Lin, RH Zmuidzinas, J AF Karpov, Alexandre Miller, David A. Stern, Jeffrey A. Bumble, Bruce LeDuc, Henry G. Mehdi, Imran Lin, Robert H. Zmuidzinas, Jonas TI Low Noise 1 THz SIS Mixer for Stratospheric Observatory: Design and Characterization SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Niobium alloys; radio astronomy; submillimeter wave receivers; superconductor-insulator-superconductor mixers; THz technology ID ASTRONOMY; SOFIA AB We report the development of a low noise SIS mixer aimed for 1 THz channel of the Caltech Airborne Submillimeter Interstellar Medium Investigations Receiver (CASIMIR), designed for the Stratospheric Observatory for Far Infrared Astronomy (SOFIA). The mixer uses Nb/Al-AlN/NbTiN SIS junctions with critical current density of about 45 kA/cm(2). The junctions are shaped in order to optimize the suppression of the Josephson DC currents. We used a double slot planar antenna to couple the mixer chip with the telescope beam. The RF matching microcircuit is made using Nb and gold films. The mixer IF circuit is designed to cover 4-8 GHz band. The test receiver with the new mixer has the low noise operation in a 0.9-1.05 THz band. The minimum DSB receiver noise measured at 1 THz is 260 K (Y = 1.64), apparently the lowest reported up to date. The receiver noise corrected for the loss in the LO injection beam splitter and in the cryostat window is 200 K. The combination of a broad operation band with a low receiver noise is making the new mixer a useful element for application in radio astronomy receivers at 1 THz. C1 [Karpov, Alexandre; Miller, David A.; Zmuidzinas, Jonas] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Stern, Jeffrey A.; Bumble, Bruce; LeDuc, Henry G.; Mehdi, Imran; Lin, Robert H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Karpov, A (reprint author), CALTECH, Dept Phys, Pasadena, CA 91125 USA. EM karpov@submm.caleh.edu FU USRA SOFIA FX This work was supported by USRA SOFIA instrument development program. NR 15 TC 3 Z9 3 U1 0 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2011 VL 21 IS 3 BP 616 EP 619 DI 10.1109/TASC.2011.2124437 PN 1 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 769XB UT WOS:000291050500124 ER PT J AU Pavone, M Frazzoli, E Bullo, F AF Pavone, Marco Frazzoli, Emilio Bullo, Francesco TI Adaptive and Distributed Algorithms for Vehicle Routing in a Stochastic and Dynamic Environment SO IEEE TRANSACTIONS ON AUTOMATIC CONTROL LA English DT Article DE Autonomous systems; cooperative control; decentralized control; dynamic vehicle routing; multivehicle systems ID TARGET ASSIGNMENT; EUCLIDEAN PLANE; OPTIMIZATION AB In this paper, we present adaptive and distributed algorithms for motion coordination of a group of vehicles. The vehicles must service demands whose time of arrival, spatial location, and service requirement are stochastic; the objective is to minimize the average time demands spend in the system. The general problem is known as the m-vehicle Dynamic Traveling Repairman Problem (m-DTRP). The best previously known control algorithms rely on centralized task assignment and are not robust against changes in the environment. In this paper, we first devise new control policies for the 1-DTRP that: i) are provably optimal both in light-load conditions (i.e., when the arrival rate for the demands is small) and in heavy-load conditions (i.e., when the arrival rate for the demands is large), and ii) are adaptive, in particular, they are robust against changes in load conditions. Then, we show that specific partitioning policies, whereby the environment is partitioned among the vehicles and each vehicle follows a certain set of rules within its own region, are optimal in heavy-load conditions. Building upon the previous results, we finally design control policies for the m-DTRP that i) are adaptive and distributed, and ii) have strong performance guarantees in heavy-load conditions and stabilize the system in any load condition. C1 [Pavone, Marco] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Frazzoli, Emilio] MIT, Dept Aeronaut & Astronaut, Informat & Decis Syst Lab, Cambridge, MA 02139 USA. [Bullo, Francesco] Univ Calif Santa Barbara, Ctr Control Engn & Computat, Santa Barbara, CA 93106 USA. RP Pavone, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM marco.pavone@jpl.nasa.gov; frazzoli@mit.edu; bullo@engineering.ucsb.edu RI Bullo, Francesco/B-8146-2013 FU National Science Foundation [0705451, 0705453]; Air Force Office of Scientific Research through AFOSR MURI [FA9550-07-1-0528] FX This work was supported in part by the National Science Foundation under Grants #0705451 and #0705453 and in part by the Air Force Office of Scientific Research through grant AFOSR MURI #FA9550-07-1-0528. Recommended by Associate Editor I. Paschalidis. NR 28 TC 25 Z9 27 U1 1 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9286 EI 1558-2523 J9 IEEE T AUTOMAT CONTR JI IEEE Trans. Autom. Control PD JUN PY 2011 VL 56 IS 6 BP 1259 EP 1274 DI 10.1109/TAC.2010.2092850 PG 16 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA 775BB UT WOS:000291430200003 ER PT J AU Platt, R Permenter, F Pfeiffer, J AF Platt, Robert, Jr. Permenter, Frank Pfeiffer, Joseph TI Using Bayesian Filtering to Localize Flexible Materials During Manipulation SO IEEE TRANSACTIONS ON ROBOTICS LA English DT Article DE Force and tactile sensing; localization; manipulation and compliant assembly ID DEFORMABLE OBJECTS AB Localization and manipulation of features such as buttons, snaps, or grommets embedded in fabrics and other flexible materials is a difficult robotics problem. Approaches that rely too much on sensing and localization that occurs before touching the material are likely to fail because the flexible material can move when the robot actually makes contact. This paper experimentally explores the possibility to use proprioceptive and load-based tactile information to localize features embedded in flexible materials during robot manipulation. In our experiments, Robonaut 2, a robot with human-like hands and arms, uses particle filtering to localize features based on proprioceptive and tactile measurements. Our main contribution is to propose a method to interact with flexible materials that reduces the state space of the interaction by forcing the material to comply in repeatable ways. Measurements are matched to a "haptic map," which is created during a training phase, that describes expected measurements as a low-dimensional function of state. We evaluate localization performance when using proprioceptive information alone and when tactile data are also available. The two types of measurements are shown to contain complementary information. We find that the tactile measurement model is critical to localization performance and propose a series of models that offer increasingly better accuracy. Finally, this paper explores the localization approach in the context of two flexible material insertion tasks that are relevant to manufacturing applications. C1 [Platt, Robert, Jr.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Permenter, Frank] Oceaneering Space Syst, Houston, TX 77058 USA. [Pfeiffer, Joseph] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA. RP Platt, R (reprint author), MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA. EM rplatt@csail.mit.edu; frank.n.permenter@nasa.gov; jpfeiffer@purdue.edu NR 30 TC 13 Z9 13 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1552-3098 EI 1941-0468 J9 IEEE T ROBOT JI IEEE Trans. Robot. PD JUN PY 2011 VL 27 IS 3 SI SI BP 586 EP 598 DI 10.1109/TRO.2011.2139150 PG 13 WC Robotics SC Robotics GA 774RU UT WOS:000291404600018 ER PT J AU Burchell, MJ Standen, S Cole, MJ Corsaro, RD Giovane, F Liou, JC Pisacane, V Sadilek, A Stansbery, E AF Burchell, M. J. Standen, S. Cole, M. J. Corsaro, R. D. Giovane, F. Liou, J. -C. Pisacane, V. Sadilek, A. Stansbery, E. TI Acoustic response of aluminium and Duroid plates to hypervelocity impacts SO INTERNATIONAL JOURNAL OF IMPACT ENGINEERING LA English DT Article; Proceedings Paper CT Symposium on Hypervelocity Impact CY APR 11-15, 2010 CL Freiburg, GERMANY DE Acoustic; Hypervelocity; Impact; Sensors ID OBLIQUE IMPACTS AB The growing need for real-time impact sensors for deployment on both space vehicles and space habitats (in orbit or on the surface of atmosphere-less bodies such as the Moon) has stimulated sensor development programmes. The sensors should be low mass, low power, easily read-out electronically, cover large areas and be sensitive to impacts which can cause damage up to and including penetration. We propose that piezo-strain acoustic sensors can play an important role in this work. Accordingly we report on a series of hypervelocity impact tests of acoustic sensors mounted on thin plates (aluminium and Duroid plates). The acoustic sensors gave strong signals for impacts of sub mm-mm scale projectiles. We investigated dependences on impactor speed and size, angle of incidence and tested the difference between cratering and penetrating impacts. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Burchell, M. J.; Standen, S.; Cole, M. J.] Univ Kent, Sch Phys Sci, Canterbury CT2 7NH, Kent, England. [Corsaro, R. D.] USN, Res Lab, Phys Acoust Branch, Washington, DC 20375 USA. [Giovane, F.] Virginia Polytech Inst & State Univ, Dept Phys, Blacksburg, VA 24061 USA. [Liou, J. -C.; Stansbery, E.] NASA, JSC, Orbital Debris Program Off, Houston, TX 77058 USA. [Pisacane, V.; Sadilek, A.] USN Acad, Annapolis, MD 21402 USA. RP Burchell, MJ (reprint author), Univ Kent, Sch Phys Sci, Canterbury CT2 7NH, Kent, England. EM m.j.burchell@kent.ac.uk OI Burchell, Mark/0000-0002-2680-8943 NR 9 TC 0 Z9 0 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0734-743X J9 INT J IMPACT ENG JI Int. J. Impact Eng. PD JUN PY 2011 VL 38 IS 6 SI SI BP 426 EP 433 DI 10.1016/j.ijimpeng.2010.10.012 PG 8 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA 773VB UT WOS:000291338300005 ER PT J AU Piekutowski, AJ Poormon, KL Christiansen, EL Davis, BA AF Piekutowski, A. J. Poormon, K. L. Christiansen, E. L. Davis, B. A. TI Performance of Whipple shields at impact velocities above 9 km/s SO INTERNATIONAL JOURNAL OF IMPACT ENGINEERING LA English DT Article; Proceedings Paper CT Symposium on Hypervelocity Impact CY APR 11-15, 2010 CL Freiburg, GERMANY DE Whipple shield; Ballistic limit curves; Aluminum spheres; Critical particle diameter; Rear wall damage AB The results of 18 impact tests performed on Whipple shields were compared to the predicted ballistic limits of the shields in the region where the impact velocity of the threatening particle was high enough to produce melting and incipient vaporization of the particle. Ballistic limit equations developed at NASA Johnson Space Center were used to determine nominal failure thresholds for two configurations of all-aluminum Whipple shields. In the tests, 2017-T4 aluminum spheres with diameters ranging from 1.40 to 6.35 mm were used to impact the shields at impact velocities ranging from 6.94 to 9.89 km/s. Two different aluminum alloys were used for the rear walls of a simple Whipple shield. The results of 13 tests using these simple Whipple shields showed they offered better-than-predicted capability as impact velocity increased and that the strength of the rear wall material appeared to have a smaller-than-predicted effect on the shield performance. The results of five tests using three configurations of a scaled Space Station shield - a plain shield at 0 degrees, two shields with multilayer insulation in the space between the bumper and the rear wall (also at 0 degrees), and two tests with the plain shield at 45 degrees obliquity - showed that these shields met their predicted capabilities. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Piekutowski, A. J.; Poormon, K. L.] Univ Dayton, Res Inst, Dayton, OH 45469 USA. [Christiansen, E. L.; Davis, B. A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Piekutowski, AJ (reprint author), Univ Dayton, Res Inst, 300 Coll Pk Ave, Dayton, OH 45469 USA. EM ABPiekutowski@msn.com NR 6 TC 6 Z9 7 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0734-743X J9 INT J IMPACT ENG JI Int. J. Impact Eng. PD JUN PY 2011 VL 38 IS 6 SI SI BP 495 EP 503 DI 10.1016/j.ijimpeng.2010.10.021 PG 9 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA 773VB UT WOS:000291338300014 ER PT J AU Ryan, S Bjorkman, M Christiansen, EL AF Ryan, S. Bjorkman, M. Christiansen, E. L. TI Whipple shield performance in the shatter regime SO INTERNATIONAL JOURNAL OF IMPACT ENGINEERING LA English DT Article; Proceedings Paper CT Symposium on Hypervelocity Impact CY APR 11-15, 2010 CL Freiburg, GERMANY DE Hypervelocity impact; Orbital debris; Whipple shield; Ballistic limit ID EQUATIONS AB A series of hypervelocity impact tests have been performed on aluminum alloy Whipple shields to investigate failure mechanisms and performance limits in the shatter regime. Test results demonstrated a more rapid increase in performance than predicted by the latest iteration of the JSC Whipple shield ballistic limit equation (BLE) following the onset of projectile fragmentation. This increase in performance was found to level out between 4.0 and 5.0 km/s, with a subsequent decrease in performance for velocities up to 5.6 km/s. For a detached spall failure criterion, the failure limit was found to continually decrease up to a velocity of 7.0 km/s, substantially varying from the BLE, while for perforation-based failure an increase in performance was observed. An existing phenomenological ballistic limit curve was found to provide a more accurate reproduction of shield behavior that the BLE, prompting an investigation of appropriate models to replace linear interpolation in shatter regime. A largest fragment relationship was shown to provide accurate predictions up to 4.3 km/s, which was extended to the incipient melt limit (5.6 km/s) based on an assumption of no additional fragmentation. Alternate models, including a shock enhancement approach and debris cloud cratering model are discussed as feasible alternatives to the proposed curve in the shatter regime, due to conflicting assumptions and difficulties in extrapolating the current approach to oblique impact. These alternate models require further investigation. (C) 2010 Published by Elsevier Ltd. C1 [Ryan, S.] USRA, Lunar & Planetary Inst, Houston, TX 77058 USA. [Bjorkman, M.] Jacobs Engn, Houston, TX 77058 USA. [Christiansen, E. L.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Ryan, S (reprint author), USRA, Lunar & Planetary Inst, 3600 Bay Area Blvd, Houston, TX 77058 USA. EM shannon.ryan@dsto.defence.gov.au NR 8 TC 3 Z9 6 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0734-743X J9 INT J IMPACT ENG JI Int. J. Impact Eng. PD JUN PY 2011 VL 38 IS 6 SI SI BP 504 EP 510 DI 10.1016/j.ijimpeng.2010.10.022 PG 7 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA 773VB UT WOS:000291338300015 ER PT J AU Cho, YM Shepherd, GG Shepherd, MG Hocking, WK Mitchell, NJ Won, YI AF Cho, Y. -M. Shepherd, G. G. Shepherd, M. G. Hocking, W. K. Mitchell, N. J. Won, Y. -I. TI A study of temperature and meridional wind relationships at high northern latitudes SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article; Proceedings Paper CT 12th International Workshop on Technical and Scientific Aspects of MST Radar CY MAY 17-23, 2009 CL London, CANADA DE MLT temperature; MLT wind; Large-scale circulation; Polar MLT; SATI; Radar ID LOWER THERMOSPHERE; MEAN WINDS; MESOSPHERE; WINTER; VARIABILITY; WAVES; TIDES AB MLT (Mesosphere and Lower Thermosphere) temperatures were measured using ground-based instruments at two high latitude stations over several winters. Warmer temperatures in wintertime are known to arise from the large-scale hemispheric circulation that drives downwelling and upwelling in the MLT region, leading to accompanying adiabatic heating and cooling. Although a relationship between temperature and meridional wind is expected, it has not yet been properly demonstrated. The OH airglow temperatures measured with a SATI (Spectral Airglow Temperature Imager) instrument and a Michelson interferometer are compared with co-located radar wind measurements at Resolute Bay (75 degrees N, 95 degrees W) and Esrange (68 degrees N, 21 degrees E), respectively. The temperature and meridional wind have a positive relationship that is consistent with the large-scale circulation, but the zonal wind is only weakly correlated. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Cho, Y. -M.; Shepherd, G. G.; Shepherd, M. G.] York Univ, CRESS, N York, ON M3J 1P3, Canada. [Hocking, W. K.] Univ Western Ontario, London, ON N6A 3K7, Canada. [Mitchell, N. J.] Univ Bath, Bath BA2 7AY, Avon, England. [Won, Y. -I.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Cho, YM (reprint author), York Univ, CRESS, 4700 Keele St, N York, ON M3J 1P3, Canada. EM youngmin@yorku.ca; gordon@yorku.ca; mshepher@yorku.ca; whocking@uwo.ca; eesnjm@bath.ac.uk; Young-In.Won@nasa.gov NR 17 TC 2 Z9 2 U1 3 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD JUN PY 2011 VL 73 IS 9 SI SI BP 936 EP 943 DI 10.1016/j.jastp.2010.08.011 PG 8 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 776AI UT WOS:000291506500010 ER PT J AU Davis, XJ Rothstein, LM Dewar, WK Menemenlis, D AF Davis, Xujng Jia Rothstein, Lewis M. Dewar, William K. Menemenlis, Dimitris TI Numerical Investigations of Seasonal and Interannual Variability of North Pacific Subtropical Mode Water and Its Implications for Pacific Climate Variability SO JOURNAL OF CLIMATE LA English DT Article ID GENERAL-CIRCULATION MODEL; KUROSHIO EXTENSION SYSTEM; HIGH-RESOLUTION GCM; MIXED-LAYER; TEMPERATURE-VARIATIONS; DECADAL VARIABILITY; NORTHWESTERN PART; SARGASSO SEA; HEAT-FLUX; OCEAN AB North Pacific Subtropical Mode Water (NPSTMW) is an essential feature of the North Pacific subtropical gyre imparting significant influence on regional SST evolution on seasonal and longer time scales and, as such, is an important component of basin-scale North Pacific climate variability. This study examines the seasonal-to-interannual variability of NPSTMW, the physical processes responsible for this variability, and the connections between NPSTMW and basin-scale climate signals using an eddy-permitting 1979-2006 ocean simulation made available by the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2). The monthly mean seasonal cycle of NPSTMW in the simulation exhibits three distinct phases: (i) formation during November March, (ii) isolation during March June, and (iii) dissipation during June November each corresponding to significant changes in upper-ocean structure. An interannual signal is also evident in NPSTMW volume and other characteristic properties with volume minima occurring in 1979, 1988, and 1999. This volume variability is correlated with the Pacific decadal oscillation (PDO) with zero time lag. Further analyses demonstrate the connection of NPSTMW to the basin-scale ocean circulation. With this, modulations of upper-ocean structure driven by the varying strength and position of the westerlies as well as the regional air sea heat flux pattern are seen to contribute to the variability of NPSTMW volume on interannual time scales. C1 [Davis, Xujng Jia] Woods Hole Oceanog Inst, Dept Phys Oceanog, Woods Hole, MA 02543 USA. [Rothstein, Lewis M.] Univ Rhode Isl, Grad Sch Oceanog, Narragansett, RI 02882 USA. [Dewar, William K.] Florida State Univ, Dept Oceanog, Tallahassee, FL 32306 USA. [Menemenlis, Dimitris] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Davis, XJ (reprint author), Woods Hole Oceanog Inst, Dept Phys Oceanog, Clark 344B,MS 21, Woods Hole, MA 02543 USA. EM xdavis@whoi.edu FU Partnership for Advancing Interdisciplinary Modeling (PARADIGM); National Ocean Partnership Program; NASA FX We would like to express our sincere appreciation to the two anonymous reviewers for their valuable comments. We would also like to thank Young-Oh Kwon, Ruixin Huang, Tangdong Qu, and Shannon Davis for insightful discussions. Support for this research was provided by the Partnership for Advancing Interdisciplinary Modeling (PARADIGM), a National Ocean Partnership Program and by a NASA Modeling, Analysis, and the Prediction (MAP) project called Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2). Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 57 TC 10 Z9 10 U1 0 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD JUN 1 PY 2011 VL 24 IS 11 BP 2648 EP 2665 DI 10.1175/2010JCLI3435.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 776AV UT WOS:000291507800002 ER PT J AU Koch, D Bauer, SE Del Genio, A Faluvegi, G McConnell, JR Menon, S Miller, RL Rind, D Ruedy, R Schmidt, GA Shindell, D AF Koch, Dorothy Bauer, Susanne E. Del Genio, Anthony Faluvegi, Greg McConnell, Joseph R. Menon, Surabi Miller, Ronald L. Rind, David Ruedy, Reto Schmidt, Gavin A. Shindell, Drew TI Coupled Aerosol-Chemistry-Climate Twentieth-Century Transient Model Investigation: Trends in Short-Lived Species and Climate Responses SO JOURNAL OF CLIMATE LA English DT Article ID GENERAL-CIRCULATION MODEL; BLACK CARBON; GODDARD-INSTITUTE; ICE CORE; SURFACE-TEMPERATURE; TROPOSPHERIC OZONE; GLOBAL SIMULATION; GISS MODELE; SULFATE; EMISSIONS AB The authors simulate transient twentieth-century climate in the Goddard Institute for Space Studies (GISS) GCM, with aerosol and ozone chemistry fully coupled to one another and to climate including a full dynamic ocean. Aerosols include sulfate, black carbon (BC), organic carbon, nitrate, sea salt, and dust. Direct and BC-snow-albedo radiative effects are included. Model BC and sulfur trends agree fairly well with records from Greenland and European ice cores and with sulfur deposition in North America; however, the model underestimates the sulfur decline at the end of the century in Greenland. Global BC effects peak early in the century (1940s); afterward the BC effects decrease at high latitudes of the Northern Hemisphere but continue to increase at lower latitudes. The largest increase in aerosol optical depth occurs in the middle of the century (1940s-80s) when sulfate forcing peaks and causes global dimming. After this, aerosols decrease in eastern North America and northern Eurasia leading to regional positive forcing changes and brightening. These surface forcing changes have the correct trend but are too weak. Over the century, the net aerosol direct effect is -0.41 W m(-2), the BC-albedo effect is -0.02 W m(-2), and the net ozone forcing is +0.24 W m(-2). The model polar stratospheric ozone depletion develops, beginning in the 1970s. Concurrently, the sea salt load and negative radiative flux increase over the oceans around Antarctica. Net warming over the century is modeled fairly well; however, the model fails to capture the dynamics of the observed midcentury cooling followed by the late century warming. Over the century, 20% of Arctic warming and snow-ice cover loss is attributed to the BC-albedo effect. However, the decrease in this effect at the end of the century contributes to Arctic cooling. To test the climate responses to sulfate and BC pollution, two experiments were branched from 1970 that removed all pollution sulfate or BC. Averaged over 1970-2000, the respective radiative forcings relative to the full experiment were +0.3 and -0.3 W m(-2); the average surface air temperature changes were +0.2 and -0.03 degrees C. The small impact of BC reduction on surface temperature resulted from reduced stability and loss of low-level clouds. C1 [Koch, Dorothy; Bauer, Susanne E.; Del Genio, Anthony; Miller, Ronald L.; Rind, David; Schmidt, Gavin A.; Shindell, Drew] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Koch, Dorothy; Bauer, Susanne E.] Columbia Univ, New York, NY USA. [Faluvegi, Greg; Ruedy, Reto] Sigma Space Partners LLC, New York, NY USA. [McConnell, Joseph R.] Univ Nevada, Desert Res Inst, Reno, NV 89506 USA. [Menon, Surabi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Koch, D (reprint author), Dept Energy, SC23-1 CESD GTN,19901 Germantown Rd, Germantown, MD 20874 USA. EM dorothy.koch@science.doe.gov RI Shindell, Drew/D-4636-2012; Del Genio, Anthony/D-4663-2012; Schmidt, Gavin/D-4427-2012; Miller, Ron/E-1902-2012; Bauer, Susanne/P-3082-2014 OI Del Genio, Anthony/0000-0001-7450-1359; Schmidt, Gavin/0000-0002-2258-0486; FU NASA; Clean Air Task Force; U.S. Department of Energy [DE- AC02-05CH11231]; DOE; NSF; NSF Arctic Section [0909541, 0336450, 0856845] FX Support for this research is from the NASA Modeling, Analysis, and Prediction Program and the Clean Air Task Force. The work at Lawrence Berkeley National Laboratory was supported by the U.S. Department of Energy under Contract No. DE- AC02-05CH11231. S.M. acknowledges funding from the NASA MAP and the DOE ASR program. Collection and initial analyses of the Greenland ice cores was supported by a number of NASA and NSF grants. Reanalysis of the Humboldt and Summit ice cores for BC and sulfur was supported by NSF Arctic Section Grants 0909541, 0336450, and 0856845. We thank L. Husain for providing his lake core BC data. NR 65 TC 45 Z9 46 U1 2 U2 29 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUN 1 PY 2011 VL 24 IS 11 BP 2693 EP 2714 DI 10.1175/2011JCLI3582.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 776AV UT WOS:000291507800005 ER PT J AU Cole, J Barker, HW Loeb, NG von Salzen, K AF Cole, Jason Barker, Howard W. Loeb, Norman G. von Salzen, Knut TI Assessing Simulated Clouds and Radiative Fluxes Using Properties of Clouds Whose Tops are Exposed to Space SO JOURNAL OF CLIMATE LA English DT Article ID ENERGY SYSTEM INSTRUMENT; ANGULAR-DISTRIBUTION MODELS; INDEPENDENT COLUMN APPROXIMATION; BOUNDARY-LAYER CLOUDS; AVERAGED SOLAR FLUXES; UNRESOLVED CLOUDS; PART I; TERRA SATELLITE; CLIMATE-CHANGE; WATER PATH AB Coincident top-of-atmosphere (TOA) radiative fluxes and cloud optical properties for portions of clouds whose tops are exposed to space within several pressure ranges are used to evaluate how a GCM realizes its all-sky radiative fluxes and vertical structure. In particular, observations of cloud properties and radiative fluxes from the Clouds and the Earth's Radiant Energy System (CERES) Science Team are used to assess the Canadian Centre for Climate Modeling and Analysis atmospheric global climate model (CanAM4). Through comparison of CanAM4 with CERES observations it was found that, while the July-mean all-sky TOA shortwave and longwave fluxes simulated by CanAM4 agree well with those observed, this agreement rests on compensating biases in simulated cloud properties and radiative fluxes for low, middle, and high clouds. Namely, low and middle cloud albedos simulated by CanAM4 are larger than those observed by CERES attributable to CanAM4 simulating cloud optical depths via large liquid water paths that are too large but are partly compensated by too small cloud fractions. It was also found that CanAM4 produces 2D histograms of cloud fraction and cloud albedo for low, middle, and high clouds that are significantly different than generated using the CERES observations. C1 [Cole, Jason] Environm Canada, Canadian Ctr Climate Modelling & Anal, Div Climate Res, Toronto, ON M3H 5T4, Canada. [Barker, Howard W.] Environm Canada, Cloud Phys & Severe Weather Res Sect, Toronto, ON M3H 5T4, Canada. [Loeb, Norman G.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [von Salzen, Knut] Environm Canada, Canadian Ctr Climate Modelling & Anal, Victoria, BC, Canada. RP Cole, J (reprint author), Environm Canada, Canadian Ctr Climate Modelling & Anal, Div Climate Res, 4905 Dufferin St, Toronto, ON M3H 5T4, Canada. EM jason.cole@ec.gc.ca OI Cole, Jason/0000-0003-0450-2748 FU Canadian Foundation for Climate and Atmospheric Sciences FX This study was supported by the Cloud Aerosol Feedbacks and Climate grant funded through the Canadian Foundation for Climate and Atmospheric Sciences. We thank Alejandro Bodas-Salcedo (Met Office) for providing the code for the orbit simulator and Michael Lazare and Larry Solheim (CCCma) for technical help with the CCCma CanAM4. We would also like to thank the anonymous reviewers for their constructive suggestions. NR 47 TC 16 Z9 16 U1 0 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUN 1 PY 2011 VL 24 IS 11 BP 2715 EP 2727 DI 10.1175/2011JCLI3652.1 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 776AV UT WOS:000291507800006 ER PT J AU Su, H Jiang, JH Lu, XH Penner, JE Read, WG Massie, S Schoeberl, MR Colarco, P Livesey, NJ Santee, ML AF Su, Hui Jiang, Jonathan H. Lu, Xiaohong Penner, Joyce E. Read, William G. Massie, Steven Schoeberl, Mark R. Colarco, Peter Livesey, Nathaniel J. Santee, Michelle L. TI Observed Increase of TTL Temperature and Water Vapor in Polluted Clouds over Asia SO JOURNAL OF CLIMATE LA English DT Article ID TROPICAL TROPOPAUSE LAYER; MICROWAVE LIMB SOUNDER; TIBETAN PLATEAU; CIRRUS CLOUDS; TRANSPORT; STRATOSPHERE; CONVECTION; DEEP; MLS; PARAMETERIZATION AB Satellite observations are analyzed to examine the correlations between aerosols and the tropical tropopause layer (TTL) temperature and water vapor. This study focuses on two regions, both of which are important pathways for the mass transport from the troposphere to the stratosphere and over which Asian pollution prevails: South and East Asia during boreal summer and the Maritime Continent during boreal winter. Using the upper-tropospheric carbon monoxide measurements from the Aura Microwave Limb Sounder as a proxy of aerosols to classify ice clouds as polluted or clean, the authors find that polluted clouds have a smaller ice effective radius and a higher temperature and specific humidity near the tropopause than clean clouds. The increase in water vapor appears to be related to the increase in temperature, as a result of increased aerosols. Meteorological differences between the clouds cannot explain the differences in temperature and water vapor for the polluted and clean clouds. The authors hypothesize that aerosol semidirect radiative heating and/or changes in cirrus radiative heating, resulting from aerosol microphysical effects on clouds, may contribute to the increased TTL temperature and thus increased water vapor in the polluted clouds. C1 [Su, Hui; Jiang, Jonathan H.; Read, William G.; Livesey, Nathaniel J.; Santee, Michelle L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jiang, Jonathan H.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Penner, Joyce E.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Massie, Steven] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Schoeberl, Mark R.; Colarco, Peter] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Su, H (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM hui.su@jpl.nasa.gov RI Colarco, Peter/D-8637-2012; Penner, Joyce/J-1719-2012; Liu, Xiaohong/E-9304-2011 OI Colarco, Peter/0000-0003-3525-1662; Liu, Xiaohong/0000-0002-3994-5955 FU NASA FX We thank the funding support from the NASA ACMAP, AST, and IDS programs. XL and JEP acknowledge the support from the DOE Atmospheric System Research Program. The Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. Discussions with Daniel Rosenfeld are greatly appreciated. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under NR 38 TC 14 Z9 15 U1 1 U2 11 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUN 1 PY 2011 VL 24 IS 11 BP 2728 EP 2736 DI 10.1175/2010JCLI3749.1 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 776AV UT WOS:000291507800007 ER PT J AU Taylor, PC Ellingson, RG Cai, M AF Taylor, Patrick C. Ellingson, Robert G. Cai, Ming TI Geographical Distribution of Climate Feedbacks in the NCAR CCSM3.0 SO JOURNAL OF CLIMATE LA English DT Article ID GENERAL-CIRCULATION MODELS; GREENHOUSE-PLUS FEEDBACK; CLOUD FEEDBACK; PART I; AMPLIFICATION; SENSITIVITY; SYSTEM AB This study performs offline, partial radiative perturbation calculations to determine the geographical distributions of climate feedbacks contributing to the top-of-atmosphere (TOA) radiative energy budget. These radiative perturbations are diagnosed using monthly mean model output from the NCAR Community Climate System Model version 3 (CCSM3.0) forced with the Special Report Emissions Scenario (SRES) A1B emission scenario. The Monte Carlo Independent Column Approximation (MCICA) technique with a maximum random overlap rule is used to sample monthly mean cloud frequency profiles to perform the radiative transfer calculations. It is shown that the MCICA technique provides a good estimate of all feedback sensitivity parameters. The radiative perturbation results are used to investigate the spatial variability of model feedbacks showing that the shortwave cloud and lapse rate feedbacks exhibit the most and second most spatial variability, respectively. It has been shown that the model surface temperature response is highly correlated with the change in the TOA net flux, and that the latter is largely determined by the total feedback spatial pattern rather than the external forcing. It is shown by representing the change in the TOA net flux as a linear combination of individual feedback radiative perturbations that the lapse rate explains the most spatial variance of the surface temperature response. Feedback spatial patterns are correlated with the model response and other feedback spatial patterns to investigate these relationships. The results indicate that the model convective response is strongly correlated with cloud and water vapor feedbacks, but the lapse rate feedback geographic distribution is strongly correlated with the climatological distribution of convection. The implication for the water vapor lapse rate anticorrelation is discussed. C1 [Taylor, Patrick C.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Ellingson, Robert G.; Cai, Ming] Florida State Univ, Dept Meteorol, Tallahassee, FL 32306 USA. RP Taylor, PC (reprint author), NASA, Langley Res Ctr, 100 NASA Rd,Mail Stop 420, Hampton, VA 23681 USA. EM patrick.c.taylor@nasa.gov RI Taylor, Patrick/D-8696-2015 OI Taylor, Patrick/0000-0002-8098-8447 FU Office of Biological and Environmental Research of the U.S. Department of Energy [DE-FEG02-02ER63338] FX The Office of Biological and Environmental Research of the U.S. Department of Energy supported this research under Grant DE-FEG02-02ER63338 as part of the Atmospheric Radiation Measurement Program. Also, we thank the two anonymous reviewers for their helpful comments. We acknowledge that The Florida State University shared High-Performance Computing facility and staff for contributions to results presented in this paper. NR 27 TC 16 Z9 17 U1 0 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD JUN 1 PY 2011 VL 24 IS 11 BP 2737 EP 2753 DI 10.1175/2010JCLI3788.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 776AV UT WOS:000291507800008 ER PT J AU Cullather, RI Bosilovich, MG AF Cullather, Richard I. Bosilovich, Michael G. TI The Moisture Budget of the Polar Atmosphere in MERRA SO JOURNAL OF CLIMATE LA English DT Article ID SURFACE MASS-BALANCE; GREENLAND ICE-SHEET; ANTARCTIC SNOW ACCUMULATION; ERA-40 REANALYSIS; SOUTHERN-OCEAN; WATER-VAPOR; CLIMATE; PRECIPITATION; VARIABILITY; SIMULATIONS AB The atmospheric moisture budget from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) is evaluated in polar regions for the period 1979-2005 and compared with previous estimates, accumulation syntheses over polar ice sheets, and in situ Arctic precipitation observations. The system is based on a nonspectral background model and utilizes the incremental analysis update scheme. The annual moisture convergence from MERRA for the north polar cap is comparable to previous estimates using 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) and earlier reanalyses but it is more than 50% larger than MERRA precipitation minus evaporation (P-E) computed from physics output fields. This imbalance is comparable to earlier reanalyses for the Arctic. For the south polar cap, the imbalance is 20%. The MERRA physics output fields are also found to be overly sensitive to changes in the satellite observing system, particularly over data-sparse regions of the Southern Ocean. Comparisons between MERRA and prognostic fields from two contemporary reanalyses yield a spread of values from 6% of the mean over the Antarctic Ice Sheet to 61% over a domain of the Arctic Ocean. These issues highlight continued problems associated with the representation of cold-climate physical processes in global data assimilation models. The distribution of MERRA surface fluxes over the major polar ice sheets emphasizes larger values along the coastal escarpments, which agrees more closely with recent assessments of ice sheet accumulation using regional models. Differences between these results and earlier assessments illustrate a continued ambiguity in the surface moisture flux distribution over Greenland and Antarctica. The higher spatial and temporal resolution as well as the availability of all budget components, including analysis increments in MERRA, offer prospects for an improved representation of the high-latitude water cycle in reanalyses. C1 [Cullather, Richard I.] Univ Maryland, Earth Syst Sci interdisciplinary Ctr, College Pk, MD 20742 USA. [Bosilovich, Michael G.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. RP Cullather, RI (reprint author), Univ Maryland Coll Pk, ESSIC, C-O NASA GSFC Code 610-1,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM richard.cullather@nasa.gov RI Bosilovich, Michael/F-8175-2012 FU NASA FX The ERA-I data were obtained from the Data Support Section at the National Center for Atmospheric Research. The CFSR data were obtained from the National Operational Model Archive and Distribution System (NOMADS) at the U.S. National Climatic Data Center. Output model fields from Burgess et al. (2010) were obtained from Byrd Polar Research Center, The Ohio State University, Columbus, Ohio. Dataset Arctic Ocean snow and meteorological observations from drifting stations: 1937, 1950-91, version 1.0, was obtained from the National Snow and Data Center (NSIDC), University of Colorado, Boulder. Digitized Antarctic accumulation map of Arthern et al. (2006) was obtained from British Antarctic Survey (BAS), Cambridge, United Kingdom. The Antarctic accumulation map of van de Berg et al. (2006) was obtained from Le Brocq et al. (2010). This study was funded by grants from the NASA Modeling, Analysis, and Prediction (MAP) Program and the NASA Energy and Water Cycle Study (NEWS) to the second author. NR 56 TC 34 Z9 34 U1 0 U2 11 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD JUN 1 PY 2011 VL 24 IS 11 BP 2861 EP 2879 DI 10.1175/2010JCLI4090.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 776AV UT WOS:000291507800016 ER PT J AU Maggioni, V Reichle, RH Anagnostou, EN AF Maggioni, Viviana Reichle, Rolf H. Anagnostou, Emmanouil N. TI The Effect of Satellite Rainfall Error Modeling on Soil Moisture Prediction Uncertainty SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID LATITUDE HYDROLOGICAL PROCESSES; LAND DATA ASSIMILATION; TORNE-KALIX BASIN; PASSIVE MICROWAVE; PILPS PHASE-2(E); SURFACE; SIMULATION AB This study assesses the impact of satellite rainfall error structure on soil moisture simulations with the NASA Catchment land surface model. Specifically, the study contrasts a complex satellite rainfall error model (SREM2D) with the standard rainfall error model used to generate ensembles of rainfall fields as part of the Land Data Assimilation System (LDAS) developed at the NASA Global Modeling and Assimilation Office. The study is conducted in the Oklahoma region, which offers good coverage by weather radars and in situ meteorological and soil moisture measurement stations. The authors used high-resolution (25 km, 3-hourly) satellite rainfall fields derived from the NOAA/Climate Prediction Center morphing (CMORPH) global satellite product and rain gauge-calibrated radar rainfall fields (considered as the reference rainfall). The LDAS simulations are evaluated in terms of rainfall and soil moisture error. Comparisons of rainfall ensembles generated by SREM2D and LDAS against reference rainfall show that both rainfall error models preserve the satellite rainfall error characteristics across a range of spatial scales. The error structure in SREM2D is shown to generate rainfall replicates with higher variability that better envelop the reference rainfall than those generated by the LDAS error model. Likewise, the SREM2D-generated soil moisture ensemble shows slightly higher spread than the LDAS-generated ensemble and thus better encapsulates the reference soil moisture. Soil moisture errors, however, are less sensitive than precipitation errors to the complexity of the precipitation error modeling approach because soil moisture dynamics are dissipative and nonlinear. C1 [Maggioni, Viviana; Anagnostou, Emmanouil N.] Univ Connecticut, Dept Civil & Environm Engn, Storrs, CT 06269 USA. [Reichle, Rolf H.] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Maggioni, V (reprint author), Univ Connecticut, Dept Civil & Environm Engn, Storrs, CT 06269 USA. EM viviana@engr.uconn.edu RI Reichle, Rolf/E-1419-2012 FU NASA [NNX08AH36G, NNX07AE31G] FX V. Maggioni was supported by a NASA Earth System Science Graduate Fellowship. R. Reichle was supported by NASA Grant NNX08AH36G. E. Anagnostou was supported by NASA Grant NNX07AE31G. Computing was supported by the NASA High End Computing Program. The authors thank Faisal Hossain from the Tennessee Technological University for his precious help with the SREM2D model. NR 32 TC 17 Z9 17 U1 1 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X J9 J HYDROMETEOROL JI J. Hydrometeorol. PD JUN PY 2011 VL 12 IS 3 BP 413 EP 428 DI 10.1175/2011JHM1355.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 777AF UT WOS:000291584300005 ER PT J AU Su, FG Gao, HL Huffman, GJ Lettenmaier, DP AF Su, Fengge Gao, Huilin Huffman, George J. Lettenmaier, Dennis P. TI Potential Utility of the Real-Time TMPA-RT Precipitation Estimates in Streamflow Prediction SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID LA-PLATA BASIN; PASSIVE-MICROWAVE; SOUTH-AMERICA; RAINFALL; ALGORITHMS; SYSTEM; STATES AB The potential utility of the real-time Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis real-time product 3B42RT (TMPA-RT) data for streamflow prediction, both through direct comparisons of TMPA-RT estimates with a gridded gauge product and through evaluation of streamflow simulations over four tributaries of La Plata basin (LPB) in South America using the two precipitation products, is investigated. Assessments indicate that the relative accuracy and the hydrologic performance of TMPA-RT-based streamflow simulations generally improved after February 2005. The improvements in TMPA-RT since 2005 are closely related to upgrades in the TMPA-RT algorithm in early February 2005, which include use of additional microwave sensors [Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and Advanced Microwave Sounding Unit-B (AMSU-B)] and implementation of different calibration schemes. This study suggests considerable potential for hydrologic prediction using purely satellite-derived precipitation estimates (no adjustments by in situ gauges) in parts of the globe where in situ observations are sparse. C1 [Su, Fengge] Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Tibetan Environm Changes & Land Surface P, Beijing 100085, Peoples R China. [Su, Fengge; Gao, Huilin; Lettenmaier, Dennis P.] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. [Huffman, George J.] NASA, Atmospheres Lab, Goddard Space Flight Ctr, Greenbelt, MD USA. [Huffman, George J.] Sci Syst & Applicat Inc, Greenbelt, MD USA. RP Su, FG (reprint author), Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Tibetan Environm Changes & Land Surface P, Beijing 100085, Peoples R China. EM fgsu@itpcas.ac.cn RI lettenmaier, dennis/F-8780-2011; Huffman, George/F-4494-2014 OI lettenmaier, dennis/0000-0003-3317-1327; Huffman, George/0000-0003-3858-8308 FU National Aeronautics and Space Administration [NNX08AO34G] FX The authors thank Brant Liebmann and Dave Allured for providing the 0.25 degrees gridded precipitation data for the La Plata basin. We also thank Yang Hong and Jiahu Wang for technical assistance, and William L. Crosson for his helpful comments. This work was supported by the National Aeronautics and Space Administration under Grant NNX08AO34G to the University of Washington. NR 24 TC 26 Z9 27 U1 1 U2 22 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X J9 J HYDROMETEOROL JI J. Hydrometeorol. PD JUN PY 2011 VL 12 IS 3 BP 444 EP 455 DI 10.1175/2010JHM1353.1 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 777AF UT WOS:000291584300007 ER PT J AU Roth, DJ Abdul-Aziz, A Gray, JN AF Roth, D. J. Abdul-Aziz, Ali Gray, J. N. TI X-ray Test Simulations for the Interior Skin-to-flange Weld for the NASA Ares Rocket Segment SO MATERIALS EVALUATION LA English DT Article DE nondestructive testing; X-ray testing; computational simulation; weld; modeling AB This study presents simulation results for X-ray testing of a welded structure for NASA Ares exploration vehicles. Although the testing of these structures is normally done with A-scan ultrasonic techniques, it was useful to consider how such a structure might be X-rayed. X-ray simulator software was utilized to determine test feasibility. C1 [Roth, D. J.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. [Abdul-Aziz, Ali] Cleveland State Univ, Cleveland, OH 44115 USA. [Gray, J. N.] Iowa State Univ, Ctr Nondestruct Evaluat, Ames, IA 50011 USA. RP Roth, DJ (reprint author), NASA Glenn Res Ctr, 21000 Brookpk Rd, Cleveland, OH 44135 USA. NR 5 TC 1 Z9 1 U1 0 U2 0 PU AMER SOC NONDESTRUCTIVE TEST PI COLUMBUS PA 1711 ARLINGATE LANE PO BOX 28518, COLUMBUS, OH 43228-0518 USA SN 0025-5327 J9 MATER EVAL JI Mater. Eval. PD JUN PY 2011 VL 69 IS 6 BP 787 EP 793 PG 7 WC Materials Science, Characterization & Testing SC Materials Science GA 776HO UT WOS:000291525300018 ER PT J AU Small, RJ Campbell, T Teixeira, J Carniel, S Smith, TA Dykes, J Chen, S Allard, R AF Small, R. J. Campbell, T. Teixeira, J. Carniel, S. Smith, T. A. Dykes, J. Chen, S. Allard, R. TI Air-Sea Interaction in the Ligurian Sea: Assessment of a Coupled Ocean-Atmosphere Model Using In Situ Data from LASIE07 SO MONTHLY WEATHER REVIEW LA English DT Article ID WESTERN MEDITERRANEAN SEA; SURFACE TEMPERATURE; BOUNDARY-LAYER; BULK PARAMETERIZATION; CIRCULATION; MESOSCALE; FLUXES; CYCLONES; SYSTEMS AB In situ experimental data and numerical model results are presented for the Ligurian Sea in the northwestern Mediterranean. The Ligurian Sea Air-Sea Interaction Experiment (LASIE07) and LIGURE2007 experiments took place in June 2007. The LASIE07 and LIGURE2007 data are used to validate the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS)(1) developed at the Naval Research Laboratory. This system includes an atmospheric sigma coordinate, nonhydrostatic model, coupled to a hydrostatic sigma-z-level ocean model (Navy Coastal Ocean Model), using the Earth System Modeling Framework (ESMF). A month-long simulation, which includes data assimilation in the atmosphere and full coupling, is compared against an uncoupled run where analysis SST is used for computation of the bulk fluxes. This reveals that COAMPS has reasonable skill in predicting the wind stress and surface heat fluxes at LASIE07 mooring locations in shallow and deep water. At the LASIE07 coastal site (but not at the deep site) the validation shows that the coupled model has a much smaller bias in latent heat flux, because of improvements in the SST field relative to the uncoupled model. This in turn leads to large differences in upper-ocean temperature between the coupled model and an uncoupled ocean model run. C1 [Small, R. J.] Natl Ctr Atmospher Res, Boulder, CO 80305 USA. [Small, R. J.; Campbell, T.; Smith, T. A.; Dykes, J.; Allard, R.] USN, Res Lab, Stennis Space Ctr, MS 39529 USA. [Teixeira, J.] NASA, Jet Prop Lab, Pasadena, CA USA. [Carniel, S.] CNR, ISMAR, Venice, Italy. [Chen, S.] USN, Res Lab, Monterey, CA USA. RP Small, RJ (reprint author), Natl Ctr Atmospher Res, 1850 Table Mesa Dr, Boulder, CO 80305 USA. EM jsmall@ucar.edu RI Carniel, Sandro/J-9278-2012; CNR, Ismar/P-1247-2014; OI Carniel, Sandro/0000-0001-8317-1603; CNR, Ismar/0000-0001-5351-1486; Allard, Richard/0000-0002-6066-2722 FU "MOM'' CNR-RSTL; Battlespace Environments Institute; NRL's [PE 0602435N] FX The members of the LASIE07 and LIGURE2007 projects are thanked for their willingness to share data and ideas. Particular thanks to Roberto Bozzano and Sara Pensieri, CNR-ISSIA (Italy), for provision of ODAS data; Bruno Buongiorno, CNR-ISAC (Italy), for helpful interpretations of the satellite SST data-set; and Joerg Forster (Forschungsanstalt der Bundeswehr fur Wasserschall und Geophysik, Kiel, Germany) and colleagues for providing data. Alvaro Semedo, University of Upsala (Sweden) is thanked for comments on the ceilometer data; and Michel Rixen (NURC, Italy) for very useful comments on manuscript; Emanuel Coelho (NRL, United States) for early discussions on LASIE07 data and coupled modeling. Rupsi Pal of NRL performed fast and helpful simulations with the GOTM code. Paul Martin, Charlie Barron, Clarke Rowley, Germana Peggion, and Jim Richman of NRL provided useful support and discussion of the results. The Italian CNR is thanked for having made R/V Urania available during the dedicated cruise LIGURE2007, and the captain and crew are also thanked for their contributions to making these observations. The activity was partly supported by the "MOM'' CNR-RSTL project. RJS, TC, TAS, and RA were supported by the High Performance Computing Modernization Program's Battlespace Environments Institute and NRL's 6.2 Core Program "Coupled Ocean Wave Prediction System'' (Program Element PE 0602435N). NR 51 TC 6 Z9 6 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD JUN PY 2011 VL 139 IS 6 BP 1785 EP 1808 DI 10.1175/2010MWR3431.1 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 773WN UT WOS:000291342300008 ER PT J AU Streeper, T Cavanagh, PR Hanson, AM Carpenter, RD Saeed, I Kornak, J Frassetto, L Grodsinsky, C Funk, J Lee, SMC Spiering, BA Bloomberg, J Mulavara, A Sibonga, J Lang, T AF Streeper, T. Cavanagh, P. R. Hanson, A. M. Carpenter, R. D. Saeed, I. Kornak, J. Frassetto, L. Grodsinsky, C. Funk, J. Lee, S. M. C. Spiering, B. A. Bloomberg, J. Mulavara, A. Sibonga, J. Lang, T. TI Development of an integrated countermeasure device for use in long-duration spaceflight SO ACTA ASTRONAUTICA LA English DT Article DE Spaceflight; Concurrent strength endurance; Exercise countermeasure; High-intensity interval training; Resistance training ID INTERNATIONAL-SPACE-STATION; CONCURRENT STRENGTH; SKELETAL-MUSCLE; BED REST; ENDURANCE; EXERCISE; MICROGRAVITY; ADAPTATION; WISE-2005; WOMEN AB Prolonged weightlessness is associated with declines in musculoskeletal, cardiovascular, and sensorimotor health. Consequently, in-flight countermeasures are required to preserve astronaut health. We developed and tested a novel exercise countermeasure device (CCD) for use in spaceflight with the aim of preserving musculoskeletal and cardiovascular health along with an incorporated balance training component. Additionally, the CCD features a compact footprint, and a low power requirement. Methods: After design and development of the CCD, we carried out a training study to test its ability to improve cardiovascular and muscular fitness in healthy volunteers. Fourteen male and female subjects (41.4 +/- 9.0 years, 69.5 +/- 15.4 kg) completed 12 weeks (3 sessions per week) of concurrent strength and endurance training on the CCD. All training was conducted with the subject in orthostasis. When configured for spaceflight, subjects will be fixed to the device via a vest with loop attachments secured to subject load devices. Subjects were tested at baseline and after 12 weeks for 1-repetition max leg press strength (1RM), peak oxygen consumption (VO2peak), and isokinetic joint torque (ISO) at the hip, knee, and ankle. Additionally, we evaluated subjects after 6 weeks of training for changes in VO2peak and 1RM. Results: VO2peak and 1RM improved after 6 weeks, with additional improvements after 12 weeks (1.95 +/- 0.5, 2.28 +/- 0.5, 2.47 +/- 0.6 L min(-1), and 131.2 +/- 63.9,182.8 +/- 75.0, 207.0 +/- 75.0 kg) for baseline, 6 weeks, and 12 weeks, respectively. ISO for hip adduction, adduction, and ankle plantar flexion improved after 12 weeks of training (70.3 +/- 39.5, 76.8 +/- 39.2, and 55.7 +/- 21.7 N m vs. 86.1 +/- 37.3, 85.1 +/- 34.3, and 62.1 +/- 26.4 N m, respectively). No changes were observed for ISO during hip flexion, knee extension, or knee flexion. Conclusions: The CCD is effective at improving cardiovascular fitness and isotonic leg strength in healthy adults. Further, the improvement in hip adductor and abductor torque provides support that the CCD may provide additional protection for the preservation of bone health at the hip. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Streeper, T.; Carpenter, R. D.; Saeed, I.; Kornak, J.; Lang, T.] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, UCSF Ctr Mol & Funct Imaging, San Francisco, CA 94143 USA. [Cavanagh, P. R.; Hanson, A. M.] Univ Washington, Med Ctr, Dept Orthopaed & Sports Med, Seattle, WA 98195 USA. [Frassetto, L.] Univ Calif San Francisco, Div Nephrol, Moffitt CTSI Clin Res Ctr 12, San Francisco, CA 94143 USA. [Grodsinsky, C.; Funk, J.] ZIN Technol, Cleveland, OH 44130 USA. [Lee, S. M. C.] Wyle Integrated Sci & Engn, Houston, TX 77058 USA. [Spiering, B. A.] Calif State Univ Fullerton, Dept Kinesiol, Fullerton, CA 92831 USA. [Bloomberg, J.; Mulavara, A.] NASA, Lyndon B Johnson Space Ctr, Neurosci Labs, Human Adaptat & Countermeasures Div, Houston, TX 77058 USA. [Sibonga, J.] NASA, Lyndon B Johnson Space Ctr, Bone Mineral Lab, Houston, TX 77058 USA. [Kornak, J.] Univ Calif San Francisco, Dept Epidemiol & iBiostat, San Francisco, CA 94107 USA. RP Streeper, T (reprint author), Univ Calif San Francisco, Dept Radiol & Biomed Imaging, UCSF Ctr Mol & Funct Imaging, 185 Berry St,Suite 350, San Francisco, CA 94143 USA. EM tim.streeper@radiology.ucsf.edu; cavanagh@uw.edu; andhanso@u.washington.edu; john.kornak@ucsf.edu; Frassett@gcrc.ucsf.edu; grodsinskyc@ZIN-TECH.COM; funkj@ZIN-TECH.COM; stuart.lee-1@nasa.gov; bspiering@fullerton.edu; jacob.j.bloomberg@nasa.gov; ajitkumar.p.mulavara@nasa.gov; jean.sibonga-1@nasa.gov; Thomas.Lang@ucsf.edu RI Lang, Thomas/B-2685-2012 OI Lang, Thomas/0000-0002-3720-8038 FU NSBRI [BL-01301] FX Research supported by NSBRI Grant BL-01301. The authors would like to thank Kathy Mulligan Ph.D., John Duda RN, and the rest of the staff at the UCSF Clinical Research Center for help with exercise testing and scheduling. NR 22 TC 2 Z9 4 U1 1 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD JUN-JUL PY 2011 VL 68 IS 11-12 BP 2029 EP 2037 DI 10.1016/j.actaastro.2010.11.002 PG 9 WC Engineering, Aerospace SC Engineering GA 771PT UT WOS:000291173900040 ER PT J AU Ansdell, M Ehrenfreund, P McKay, C AF Ansdell, M. Ehrenfreund, P. McKay, C. TI Stepping stones toward global space exploration SO ACTA ASTRONAUTICA LA English DT Article DE Space exploration; International cooperation; Extreme environments; International Space Station; CubeSats ID HABITATION; FACILITY; PROGRAM; MARS AB Several nations are currently engaging in or planning for robotic and human space exploration programs that target the Moon, Mars and near-Earth asteroids. These ambitious plans to build new space infrastructures, transport systems and space probes will require international cooperation if they are to be sustainable and affordable. Partnerships must involve not only established space powers, but also emerging space nations and developing countries: the participation of these new space actors will provide a bottom-up support structure that will aid program continuity, generate more active members in the space community, and increase public awareness of space activities in both developed and developing countries. The integration of many stakeholders into a global space exploration program represents a crucial element securing political and programmatic stability. How can the evolving space community learn to cooperate on a truly international level while engaging emerging space nations and developing countries in a meaningful way? We propose a stepping stone approach toward a global space exploration program, featuring three major elements: (1) an international Earth-based field research program preparing for planetary exploration, (2) enhanced exploitation of the International Space Station (ISS) enabling exploration and (3) a worldwide CubeSat program supporting exploration. An international Earth-based field research program can serve as a truly global exploration testbed that allows both established and new space actors to gain valuable experience by working together to prepare for future planetary exploration missions. Securing greater exploitation of the ISS is a logical step during its prolonged lifetime: ISS experiments, partnerships and legal frameworks are valuable foundations for exploration beyond low Earth orbit. Cooperation involving small, low-cost missions could be a major stride toward exciting and meaningful participation from emerging space nations and developing countries. For each of these three proposed stepping stones, recommendations for coordination mechanisms are presented. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Ansdell, M.; Ehrenfreund, P.] George Washington Univ, Elliott Sch Int Affairs, Inst Space Policy, Washington, DC 20052 USA. [McKay, C.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Ansdell, M (reprint author), George Washington Univ, Elliott Sch Int Affairs, Inst Space Policy, 1957 E St,Suite 403, Washington, DC 20052 USA. EM megan.ansdell@gmail.com FU NASA [NNX08AG78G]; NASA Astrobiology Institute (NAI) FX M. Ansdell and P. Ehrenfreund are supported by NASA Grant NNX08AG78G and the NASA Astrobiology Institute (NAI). NR 34 TC 8 Z9 8 U1 3 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD JUN-JUL PY 2011 VL 68 IS 11-12 BP 2098 EP 2113 DI 10.1016/j.actaastro.2010.10.025 PG 16 WC Engineering, Aerospace SC Engineering GA 771PT UT WOS:000291173900046 ER PT J AU Baum, SD Haqq-Misra, JD Domagal-Goldman, SD AF Baum, Seth D. Haqq-Misra, Jacob D. Domagal-Goldman, Shawn D. TI Would contact with extraterrestrials benefit or harm humanity? A scenario analysis SO ACTA ASTRONAUTICA LA English DT Article DE Extraterrestrials; Contact; Scenario analysis ID FERMI PARADOX; SPACE PROBES; SETI; INTELLIGENCE; SEARCH; EARTH; CIVILIZATIONS; CONSEQUENCES; ASTEROIDS; OBJECTS AB While humanity has not yet observed any extraterrestrial intelligence (ETI), contact with ETI remains possible. Contact could occur through a broad range of scenarios that have varying consequences for humanity. However, many discussions of this question assume that contact will follow a particular scenario that derives from the hopes and fears of the author. In this paper, we analyze a broad range of contact scenarios in terms of whether contact with ETI would benefit or harm humanity. This type of broad analysis can help us prepare for actual contact with ETI even if the details of contact do not fully resemble any specific scenario. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Baum, Seth D.] Penn State Univ, Dept Geog, University Pk, PA 16802 USA. [Haqq-Misra, Jacob D.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Domagal-Goldman, Shawn D.] NASA, Planetary Sci Div, Washington, DC 20054 USA. RP Baum, SD (reprint author), Penn State Univ, Dept Geog, 302 Walker Bldg, University Pk, PA 16802 USA. EM sbaum@psu.edu; misra@meteo.psu.edu; shawn.goldman@nasa.gov RI Domagal-Goldman, Shawn/F-3521-2012; OI Domagal-Goldman, Shawn/0000-0003-0354-9325; Haqq-Misra, Jacob/0000-0003-4346-2611 NR 88 TC 15 Z9 16 U1 1 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD JUN-JUL PY 2011 VL 68 IS 11-12 BP 2114 EP 2129 DI 10.1016/j.actaastro.2010.10.012 PG 16 WC Engineering, Aerospace SC Engineering GA 771PT UT WOS:000291173900047 ER PT J AU Liou, JC AF Liou, J. -C. TI An active debris removal parametric study for LEO environment remediation SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Orbital debris; Modeling; Active debris removal ID MODEL AB Recent analyses on the instability of the orbital debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have reignited interest in using active debris removal (ADR) to remediate the environment. There are, however, monumental technical, resource, operational, legal, and political challenges in making economically viable ADR a reality. Before a consensus on the need for ADR can be reached, a careful analysis of its effectiveness must be conducted. The goal is to demonstrate the need and feasibility of using ADR to better preserve the future environment and to explore different operational options to maximize the benefit-to-cost ratio. This paper describes a new sensitivity study on using ADR to stabilize the future LEO debris environment. The NASA long-term orbital debris evolutionary model, LEGEND, is used to quantify the effects of several key parameters, including target selection criteria/constraints and the starting epoch of ADR implementation. Additional analyses on potential ADR targets among the existing satellites and the benefits of collision avoidance maneuvers are also included. Published by Elsevier Ltd. on behalf of COSPAR. C1 NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Liou, JC (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. EM jer-chyi.liou-1@nasa.gov NR 12 TC 65 Z9 66 U1 3 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD JUN 1 PY 2011 VL 47 IS 11 BP 1865 EP 1876 DI 10.1016/j.asr.2011.02.003 PG 12 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 773GX UT WOS:000291296100001 ER PT J AU Sen, S Butts, D Ray, CS Thompson, GB Morris, RA O'Dell, JS AF Sen, S. Butts, D. Ray, C. S. Thompson, G. B. Morris, R. A. O'Dell, J. S. TI Production of high fidelity lunar agglutinate simulant SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Lunar regolith; Lunar regolith simulant; Glass; Nanophase iron (np Fe(0)); Vesicles ID SURFACE; SOIL AB As space faring nations consider manned and unmanned missions to the Moon, there is a growing need to develop high fidelity lunar regolith simulants that can accurately reproduce the properties and behavior of lunar regolith. Such simulants will be employed to verify the performance of equipment, mechanisms, structures and processes to be used on the lunar surface. One of the significant limitations of current terrestrial-based simulants, such as the popular mare simulant, JSC-1A, is the lack of agglutinates. This paper investigates the production of a lunar mare agglutinate simulant based on JSC-1A. A modified plasma processing technique was used to expose the JSC1-A regolith simulant to high temperatures and transform it to predominantly a glassy phase. Detailed characterization results are presented to confirm that the agglutinate simulant material produced during this investigation reasonably satisfies the primary requirements of an agglutinate simulant such as amorphous/crystalline content, particle size, morphology, vesicular structure, chemistry, and presence of nanophase elemental Fe. (C) 2011 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Sen, S.] NASA, George C Marshall Space Flight Ctr, BAE Syst, Huntsville, AL 35812 USA. [Butts, D.; O'Dell, J. S.] Plasma Proc Inc, Huntsville, AL 35811 USA. [Ray, C. S.] Missouri Univ Sci & Technol, Mat Res Ctr, Rolla, MO 65409 USA. [Thompson, G. B.; Morris, R. A.] Univ Alabama, Dept Met & Mat Engn, Tuscaloosa, AL 35453 USA. RP Sen, S (reprint author), NASA, George C Marshall Space Flight Ctr, BAE Syst, Bldg 4464, Huntsville, AL 35812 USA. EM subhayu.sen-1@nasa.gov FU NASA FX The authors wish to thank NASA's Small Business Innovative Research (SBIR) program for funding this effort. NR 18 TC 1 Z9 3 U1 0 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD JUN 1 PY 2011 VL 47 IS 11 BP 1912 EP 1921 DI 10.1016/j.asr.2011.02.005 PG 10 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 773GX UT WOS:000291296100006 ER PT J AU Goldstein, R Nikzad, S Davis, M Frahm, R Slater, D Jones, TJ AF Goldstein, R. Nikzad, S. Davis, M. Frahm, R. Slater, D. Jones, T. J. TI Results of measurements of the response of a delta-doped CCD to neutral and charged particle beams SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Detectors; Space instruments; Plasma; CCD ID CHANNEL ELECTRON MULTIPLIER; COUPLED-DEVICE; ENERGY ELECTRONS; POSITIVE-IONS; EFFICIENCY; PROTONS; ARRAYS; UV AB We report the measurements of the response of a delta-doped Charge Coupled Device (CCD) in imaging mode to beams of charged and neutral particles. That is, the detector imaged the incident beam over its 1024 x 1024 pixels, integrating the number of particles counted in each pixel during the exposure period. In order to count individual particles the exposure time would have had to be reduced considerably compared to the typical >= 5 s used in these studies. Our CCD thus operated in a different manner than do conventional particle detectors such as the CEM and MCP that normally are used in a particle counting mode. The measurements were carried out over an energy range from 0.8 to 30 keV. The species investigated include H, H+, He+, N+, N-2(+), and Ar+. The energy and ion mass covered wider ranges than previous measurements for the CCD. The results of these measurements show, as in the case of the previous measurement, for a given ion the CCD response increases with energy and for a given particle energy the response decreases with increasing mass of the particle. These results are in agreement with predictions of the theory of the range of ions in solids. The results also show the possibility for the application of the delta doped CCD as a detector for low energy particle measurements for space plasma physics applications. (C) 2011 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Goldstein, R.; Davis, M.; Frahm, R.; Slater, D.] SW Res Inst, San Antonio, TX 78228 USA. [Nikzad, S.; Jones, T. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Goldstein, R (reprint author), SW Res Inst, PO Drawer 28510, San Antonio, TX 78228 USA. EM rgoldstein@swri.edu FU Southwest Research Institute; Jet Propulsion Laboratory, California Institute of Technology FX The work reported here was funded in part by the Southwest Research Institute and the Jet Propulsion Laboratory, California Institute of Technology. NR 21 TC 2 Z9 2 U1 2 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD JUN 1 PY 2011 VL 47 IS 11 BP 1931 EP 1936 DI 10.1016/j.asr.2011.01.009 PG 6 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 773GX UT WOS:000291296100008 ER PT J AU Alexander, C Bynum, N Johnson, E King, U Mustonen, T Neofotis, P Oettle, N Rosenzweig, C Sakakibara, C Shadrin, V Vicarelli, M Waterhouse, J Weeks, B AF Alexander, Clarence Bynum, Nora Johnson, Elizabeth King, Ursula Mustonen, Tero Neofotis, Peter Oettle, Noel Rosenzweig, Cynthia Sakakibara, Chie Shadrin, Vyacheslav Vicarelli, Marta Waterhouse, Jon Weeks, Brian TI Linking Indigenous and Scientific Knowledge of Climate Change SO BIOSCIENCE LA English DT Article DE climate change; observed impacts; indigenous knowledge; assessment; temperature change ID IMPACTS; INUPIAT; ALASKA AB We explore the connections among indigenous climate-related narratives, documented temperature changes, and climate change impact studies from the scientific literature. We then propose a framework for enhancing synthesis of these indigenous narratives of observed climate change with global assessments. Our aim is to contribute to the thoughtful and respectful integration of indigenous knowledge with scientific data and analysis, so that this rich body of knowledge can inform science and so that indigenous peoples can use the tools and methods of science for the benefit of their communities if they choose to do so. Improving ways of understanding such connections is critical as the Intergovernmental Panel on Climate Change Fifth Assessment Report process proceeds. C1 [Waterhouse, Jon] Yukon River Intertribal Watershed Council, Fairbanks, AK USA. [Bynum, Nora; Johnson, Elizabeth; Weeks, Brian] Amer Museum Nat Hist, New York, NY 10024 USA. [King, Ursula] Australian Natl Univ, Natl Ctr Epidemiol & Populat Hlth, Canberra, ACT, Australia. [Mustonen, Tero] Snowchange Cooperat, Tampere, Finland. [Neofotis, Peter; Vicarelli, Marta] Columbia Univ, New York, NY USA. [Neofotis, Peter] CUNY, New York, NY 10021 USA. [Oettle, Noel] Environm Monitoring Grp, Nieuwoudtville, South Africa. [Rosenzweig, Cynthia] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Sakakibara, Chie] Appalachian State Univ, Boone, NC 28608 USA. [Shadrin, Vyacheslav] Yukaghir Elders Council, Yakutia, Russia. EM crosenzweig@giss.nasa.gov FU Christensen Fund; Wenner-Gren Foundation; Rockefeller Foundation; National Science Foundation [ARC 0821938]; Ford Foundation; Oak Foundation FX We thank the three anonymous reviewers, whose comments greatly enriched and improved the article. We gratefully acknowledge support from the Christensen Fund, the Wenner-Gren Foundation, the Rockefeller Foundation, the National Science Foundation (ARC 0821938), the Ford Foundation, and the Oak Foundation. We also thank the global indigenous communities who are supportive of and interested in our project. NR 49 TC 32 Z9 33 U1 6 U2 29 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0006-3568 EI 1525-3244 J9 BIOSCIENCE JI Bioscience PD JUN PY 2011 VL 61 IS 6 BP 477 EP 484 DI 10.1525/bio.2011.61.6.10 PG 8 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 773TM UT WOS:000291333700010 ER PT J AU Kumar, KK Kamala, K Rajagopalan, B Hoerling, MP Eischeid, JK Patwardhan, SK Srinivasan, G Goswami, BN Nemani, R AF Kumar, K. Krishna Kamala, K. Rajagopalan, Balaji Hoerling, Martin P. Eischeid, Jon K. Patwardhan, S. K. Srinivasan, G. Goswami, B. N. Nemani, Ramakrishna TI The once and future pulse of Indian monsoonal climate SO CLIMATE DYNAMICS LA English DT Article ID ASIAN SUMMER MONSOON; ATMOSPHERIC BROWN CLOUDS; RICE YIELDS; DAILY RAINFALL; IPCC AR4; EL-NINO; PRECIPITATION; TEMPERATURE; VARIABILITY; MODEL AB We present a comprehensive assessment of the present and expected future pulse of the Indian monsoon climate based on observational and global climate model projections. The analysis supports the view that seasonal Indian monsoon rains in the latter half of the 21th century may not be materially different in abundance to that experienced today although their intensity and duration of wet and dry spells may change appreciably. Such an assessment comes with considerable uncertainty. With regard to temperature, however, we find that the Indian temperatures during the late 21st Century will very likely exceed the highest values experienced in the 130-year instrumental record of Indian data. This assessment comes with higher confidence than for rainfall because of the large spatial scale driving the thermal response of climate to greenhouse gas forcing. We also find that monsoon climate changes, especially temperature, could heighten human and crop mortality posing a socio-economic threat to the Indian subcontinent. C1 [Kumar, K. Krishna; Patwardhan, S. K.; Goswami, B. N.] Indian Inst Trop Meteorol, Pune, Maharashtra, India. [Kamala, K.] Univ Paris 06, LOCEAN IPSL, Paris, France. [Rajagopalan, Balaji] Univ Colorado, Boulder, CO 80309 USA. [Hoerling, Martin P.; Eischeid, Jon K.] NOAA ESRL PSD, Boulder, CO USA. [Srinivasan, G.] RIMES, Pathunthani, Thailand. [Nemani, Ramakrishna] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Kumar, KK (reprint author), Indian Inst Trop Meteorol, Pune, Maharashtra, India. EM krishnakumar.kanikicharla@gmail.com RI Rajagopalan, Balaji/A-5383-2013 OI Rajagopalan, Balaji/0000-0002-6883-7240 FU NASA; UK India Education and Research Initiative (UKIERI); NOAA's climate program office; UK Met office Hadley Center, under DEFRA, a UK funded project FX Part of the work was carried out by the first two authors during the visiting assignments at NASA-ARC and Hadley Center UK Met Office with the funding support from NASA Applied Sciences/Ecological Forecasting program and the UK India Education and Research Initiative (UKIERI) respectively. The fourth author acknowledges the support from NOAA's climate program office. PRECIS simulations were carried out with the help from UK Met office Hadley Center, under DEFRA, a UK funded project. We thank the reviewers for their insightful comments which helped improve the manuscript significantly. NR 59 TC 44 Z9 44 U1 1 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD JUN PY 2011 VL 36 IS 11-12 BP 2159 EP 2170 DI 10.1007/s00382-010-0974-0 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 771NK UT WOS:000291165900009 ER PT J AU Jiang, XN Waliser, DE Li, JL Woods, C AF Jiang, Xianan Waliser, Duane E. Li, Jui-Lin Woods, Christopher TI Vertical cloud structures of the boreal summer intraseasonal variability based on CloudSat observations and ERA-interim reanalysis SO CLIMATE DYNAMICS LA English DT Article DE Intraseasonal variability; Cloud water; Northward propagation; CloudSat ID INDIAN-OCEAN; TRIMODAL CHARACTERISTICS; OSCILLATION; MONSOON; NORTHWARD; CONVECTION; PACIFIC; PRECIPITATION; PROPAGATION; MECHANISMS AB The boreal summer intraseasonal variability (BSISV), which is characterized by pronounced meridional propagation from the equatorial zone to the Indian Continent, exerts significant modulation of the active/break phases of the south Asian monsoon. This form of variability provides a primary source of subseasonal predictive skill of the Asian summer monsoon. Unfortunately, current general circulation models display large deficiencies in representing this variability. The new cloud observations made available by the CloudSat mission provide an unprecedented opportunity to advance our characterization of the BSISV. In this study, the vertical structures of cloud water content and cloud types associated with the BSISV over the Indian Ocean and subcontinent are analyzed based on CloudSat observations from 2006 to 2008. These cloud structures are also compared to their counterparts as derived from ERA-interim reanalysis. A marked vertical tilting structure in cloud water is illustrated during the northward propagation of the BSISV based on both datasets. Increased cloud liquid water content (LWC) tends to appear to the north of the rainfall maximum, while ice water content (IWC) in the upper troposphere slightly lags the convection. This northward shift of increased LWC, which is in accord with local enhanced moisture as previously documented, may play an important role in the northward propagation of the BSISV. The transition in cloud structures associated with BSISV convection is further demonstrated based on CloudSat, with shallow cumuli at the leading edge, followed by the deep convective clouds, and then upper anvil clouds. Some differences in cloud water structures between CloudSat and ERA-interim are also noted, particularly in the amplitudes of IWC and LWC fields. C1 [Jiang, Xianan; Waliser, Duane E.; Li, Jui-Lin; Woods, Christopher] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jiang, Xianan; Waliser, Duane E.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. RP Jiang, XN (reprint author), CALTECH, Jet Prop Lab, MS 183-501,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM xianan@jifresse.ucla.edu RI Jiang, Xianan/A-2283-2012 FU NASA; NSF [ATM-0934285]; NOAA CPPA [NA09OAR4310191] FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. We are grateful to Drs. Richard Johnson, Terry Kubar, Eric Fetzer, Brian Kahn, and Parthasarathi Mukhopadhyay for fruitful discussions. We would also wish to thank two official reviewers for their constructive comments and ECMWF for providing the ERA-interim dataset. The first author (XJ) acknowledges support by NSF Climate and Large-Scale Dynamics Program under Award ATM-0934285 and NOAA CPPA Program under Award NA09OAR4310191. NR 51 TC 30 Z9 30 U1 1 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD JUN PY 2011 VL 36 IS 11-12 BP 2219 EP 2232 DI 10.1007/s00382-010-0853-8 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 771NK UT WOS:000291165900012 ER PT J AU Nigam, S Guan, B AF Nigam, Sumant Guan, Bin TI Atlantic tropical cyclones in the twentieth century: natural variability and secular change in cyclone count SO CLIMATE DYNAMICS LA English DT Article DE Tropical cyclone counts; Sea surface temperature; Natural variability; Secular change ID SEA-SURFACE TEMPERATURE; MAJOR HURRICANE ACTIVITY; NORTH-ATLANTIC; MULTIDECADAL OSCILLATION; CLIMATE-CHANGE; EL-NINO; INTENSITY; RAINFALL; TREND; REANALYSIS AB The twentieth century record of the annual count of Atlantic tropical cyclones (TCs) is analyzed to develop consistent estimates of its natural variability and secular change components. The analysis scheme permits development of multidecadal trends from natural variability alone, reducing aliasing of the variability and change components. The scheme is rooted in recurrent variability modes of the influential SST field and cognizant of Pacific-Atlantic links. The origin of increased cyclone counts in the early 1930s, suppressed counts in 1950-1960s, and the recent increase (since 1990s) is investigated using the count data set developed by Landsea et al. (J Clim 23: 2508-2519, 2010). We show that annual TC counts can be more closely reconstructed from Pacific and Atlantic SSTs than SST of the main development region (MDR) of Atlantic TCs; the former accounting for similar to 60% of the decadal count variance as opposed to similar to 30% for MDR SST. Atlantic Multidecadal Oscillation (AMO) dominates the reconstruction, accounting for similar to 55% of the natural decadal count variance, followed by the ENSO Non-Canonical and Pan-Pacific decadal variability contributions. We argue for an expansive view of the domain of influential SSTs-extending much beyond the MDR. The additional accounting of count variance by SSTs outside the MDR suggests a role for remotely-forced influences over the tropical Atlantic: the Pan-Pacific decadal mode is linked with decreased westerly wind shear (200-850 hPa) in its warm phase, much as the AMO impact itself. Non-canonical ENSO variability, in contrast, exerts little influence on decadal timescales. Interestingly, the secular but non-uniform warming of the oceans is linked with increased westerly shear, leading to off-setting dynamical and thermodynamical impacts on TC activity! The early-1930s increase in smoothed counts can be partially (similar to 50%) reconstructed from SST natural variability. The 1950-1960s decrease, in contrast, could not be reconstructed at all, leading, deductively, to the hypothesis that it results from increased aerosols in this period. The early-1990s increase is shown to arise both from the abatement of count suppression maintained by SST natural variability and the increasing SST secular trend contribution; the abatement is related to the AMO phase-change in early-1990s. Were it not for this suppression, TC counts would have risen since the early 1970s itself, tracking the secular change contribution. The analysis suggests that when SST natural variability begins to significantly augment counts in the post-1990 period-some evidence for which is present in the preceding decade-Atlantic TC counts could increase rapidly on decadal timescales unless offset by SST-unrelated effects which apparently account for a non-trivial amount (similar to 40%) of the decadal count variance. C1 [Nigam, Sumant; Guan, Bin] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Guan, Bin] CALTECH, Jet Prop Lab, Water & Carbon Cycle Grp, Pasadena, CA 91109 USA. RP Nigam, S (reprint author), Univ Maryland, Dept Atmospher & Ocean Sci, 3419 Comp & Space Sci Bldg, College Pk, MD 20742 USA. EM nigam@atmos.umd.edu RI Guan, Bin/F-6735-2010; Nigam, Sumant/A-8338-2009 FU NSF [ATM-0649666]; NOAA [NA08OAR4310878, DOE-DEFG0208ER64548, DOE-DESC0001660]; University of Maryland Graduate School FX The authors acknowledge support of NSF-ATM-0649666, NOAA NA08OAR4310878, and DOE-DEFG0208ER64548 and DOE-DESC0001660 grants. They thank Alfredo Ruiz-Barradas for updating the SST analyses and the three reviewers for several constructive suggestions. Bin Guan's efforts at Maryland were also supported by the Ann G. Wylie Dissertation Fellowship from the University of Maryland Graduate School. NR 46 TC 4 Z9 4 U1 1 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD JUN PY 2011 VL 36 IS 11-12 BP 2279 EP 2293 DI 10.1007/s00382-010-0908-x PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 771NK UT WOS:000291165900016 ER PT J AU Cook, BI Seager, R Miller, RL AF Cook, Benjamin I. Seager, Richard Miller, Ron L. TI Atmospheric circulation anomalies during two persistent north american droughts: 1932-1939 and 1948-1957 SO CLIMATE DYNAMICS LA English DT Article DE Drought; Dynamics; Dust Bowl; Great Plains ID SEA-SURFACE TEMPERATURE; CENTRAL UNITED-STATES; DUST BOWL DROUGHT; LOW-LEVEL JET; ATLANTIC-OCEAN; GREAT-PLAINS; AMIP SIMULATIONS; GISS MODELE; WARM-SEASON; EL-NINO AB We use an early twentieth century (1908-1958) atmospheric reanalysis, based on assimilation of surface and sea level pressure observations, to contrast atmospheric circulation during two periods of persistent drought in North America: 1932-1939 (the 'Dust Bowl') and 1948-1957. Primary forcing for both droughts is believed to come from anomalous sea surface temperatures (SSTs): a warm Atlantic and a cool eastern tropical Pacific. For boreal winter (October-March) in the 1950s, a stationary wave pattern originating from the tropical Pacific is present, with positive centers over the north Pacific and north Atlantic ocean basins and a negative center positioned over northwest North America and the tropical/subtropical Pacific. This wave train is largely absent for the 1930s drought; boreal winter height anomalies are organized much more zonally, with positive heights extending across northern North America. For boreal summer (April-September) during the 1930s, a strong upper level ridge is centered over the Great Plains; this feature is absent during the 1950s and appears to be linked to a weakening of the Great Plains low-level jet (GPLLJ). Subsidence anomalies are co-located over the centers of each drought: in the central Great Plains for the 1930s and in a band extending from the southwest to the southeastern United States for the 1950s. The location and intensity of this subsidence during the 1948-1957 drought is a typical response to a cold eastern tropical Pacific, but for 1932-1939 deviates in terms of the expected intensity, location, and spatial extent. Overall, circulation anomalies during the 1950s drought appear consistent with the expected response to the observed SST forcing. This is not the case for the 1930s, implying some other causal factor may be needed to explain the Dust Bowl drought anomalies. In addition to SST forcing, the 1930s were also characterized by massive alterations to the land surface, including regional-scale devegetation from crop failures and intensive wind erosion and dust storms. Incorporation of these land surface factors into a general circulation model greatly improves the simulation of precipitation and subsidence anomalies during this drought, relative to simulations with SST forcing alone. Even with additional forcing from the land surface, however, the model still has difficulty reproducing some of the other circulation anomalies, including weakening of the GPLLJ and strengthening of the upper level ridge during AMJJAS. This may be due to either weaknesses in the model or uncertainties in the boundary condition estimates. Still, analysis of the circulation anomalies supports the conclusion of an earlier paper (Cook et al. in Proc Natl Acad Sci 106:4997, 2009), demonstrating that land degradation factors are consistent with the anomalous nature of the Dust Bowl drought. C1 [Cook, Benjamin I.; Seager, Richard] Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Cook, Benjamin I.; Miller, Ron L.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Cook, BI (reprint author), Lamont Doherty Earth Observ, 61 Route 9W, Palisades, NY 10964 USA. EM bc9z@ldeo.columbia.edu RI Miller, Ron/E-1902-2012; Cook, Benjamin/H-2265-2012 FU National Science Foundation [ATM-06-20066] FX Twentieth century reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.cdc.noaa.gov. This project received support from the Climate Dynamics Program of the National Science Foundation under ATM-06-20066. The authors also wish to thank two anonymous reviewers who greatly improved the quality of this manuscript. Lamont contribution number 7341. NR 52 TC 29 Z9 29 U1 2 U2 33 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD JUN PY 2011 VL 36 IS 11-12 BP 2339 EP 2355 DI 10.1007/s00382-010-0807-1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 771NK UT WOS:000291165900019 ER PT J AU Moreno-Smith, M Lu, CH Shahzad, MMK Pena, GNA Allen, JK Stone, RL Mangala, LS Han, HD Kim, HS Farley, D Berestein, GL Cole, SW Lutgendorf, SK Sood, AK AF Moreno-Smith, Myrthala Lu, Chunhua Shahzad, Mian M. K. Pena, Guillermo N. Armaiz Allen, Julie K. Stone, Rebecca L. Mangala, Lingegowda S. Han, Hee Dong Kim, Hye Sun Farley, Donna Berestein, Gabriel Lopez Cole, Steve W. Lutgendorf, Susan K. Sood, Anil K. TI Dopamine Blocks Stress-Mediated Ovarian Carcinoma Growth SO CLINICAL CANCER RESEARCH LA English DT Article ID MALIGNANT-TUMOR GROWTH; VASCULAR-PERMEABILITY; ENDOTHELIAL-CELLS; CANCER CELLS; MOUSE MODEL; ANGIOGENESIS; SCHIZOPHRENIA; METASTASIS; MECHANISMS; RECEPTORS AB Purpose: Increased adrenergic activity in response to chronic stress is known to promote tumor growth by stimulating the tumor microenvironment. The focus of the current study was to determine whether dopamine, an inhibitory catecholamine, could block the effects of chronic stress on tumor growth. Experimental Design: Expression of dopamine receptors (DR1-DR5) was analyzed by reverse transcriptase-PCR and by Western blotting. In vitro effects of dopamine on cell viability, apoptosis, and migration were examined. For in vivo therapy, murine and human DR2-siRNAs were incorporated into chitosan nanoparticles (CH-NP). Results: In this model of chronic stress, tumoral norepinephrine levels remained elevated whereas dopamine levels were significantly decreased compared with nonstressed animals. Daily restraint stress resulted in significantly increased tumor growth in both immunodeficient (SKOV3ip1 and HeyA8) and immunocompetent (ID8) ovarian cancer models. This increase was completely blocked with daily dopamine treatment. Dopamine treatment also blocked the stress-induced increase in angiogenesis. Endothelial and ovarian cancer cells expressed all dopamine receptors except for the lack of DR3 expression in ovarian cancer cells. DR2 was responsible for the inhibitory effects of dopamine on tumor growth and microvessel density as well as the stimulatory effect on apoptosis, as the DR2 antagonist eticlopride reversed these effects. Dopamine significantly inhibited cell viability and stimulated apoptosis in vitro. Moreover, dopamine reduced cyclic AMP levels and inhibited norepinephrine and vascular permeability factor/VEGF-induced Src kinase activation. Conclusions: Dopamine depletion under chronic stress conditions creates a permissive microenvironment for tumor growth that can be reversed by dopamine replacement. Clin Cancer Res; 17(11); 3649-59. (C)2011 AACR. C1 [Moreno-Smith, Myrthala; Lu, Chunhua; Pena, Guillermo N. Armaiz; Allen, Julie K.; Stone, Rebecca L.; Han, Hee Dong; Kim, Hye Sun; Sood, Anil K.] Univ Texas MD Anderson Canc Ctr, Dept Gynecol Oncol, Houston, TX 77030 USA. [Berestein, Gabriel Lopez; Sood, Anil K.] Univ Texas MD Anderson Canc Ctr, Dept Canc Biol, Houston, TX 77030 USA. [Berestein, Gabriel Lopez] Univ Texas MD Anderson Canc Ctr, Dept Expt Therapeut, Houston, TX 77030 USA. [Berestein, Gabriel Lopez; Sood, Anil K.] Univ Texas MD Anderson Canc Ctr, Ctr RNA Interference & Noncoding RNA, Houston, TX 77030 USA. [Cole, Steve W.] Univ Calif Los Angeles, Sch Med, Dept Med, Div Hematol Oncol, Los Angeles, CA 90024 USA. [Lutgendorf, Susan K.] Univ Iowa, Dept Psychol, Iowa City, IA 52242 USA. [Lutgendorf, Susan K.] Univ Iowa, Dept Gynecol, Iowa City, IA USA. [Lutgendorf, Susan K.] Univ Iowa, Holden Comprehens Canc Ctr, Iowa City, IA USA. [Shahzad, Mian M. K.] Univ Wisconsin, Sch Med & Publ Hlth, Madison, WI USA. [Mangala, Lingegowda S.] Univ Space Res Assoc, Radiat Biophys Lab, NASA, Lyndon B Johnson Space Ctr, Houston, TX USA. [Farley, Donna] Gen Hosp Boyd Tower, Inst Clin & Translat Sci, Iowa City, IA USA. RP Sood, AK (reprint author), Univ Texas MD Anderson Canc Ctr, Dept Gynecol Oncol, 1155 Herman Pressler,Unit 1362, Houston, TX 77030 USA. EM asood@mdanderson.org OI Armaiz-Pena, Guillermo N/0000-0002-9081-5339 FU NIH [CA110793, CA109298, P50 CA 083639, CA128797, RC2GM092599, U54 CA151668]; Ovarian Cancer Research Fund, Inc.; DOD [OC093146]; Zarrow Foundation; Marcus Foundation; Blanton-Davis Ovarian Cancer Research Program; Laura and John Arnold Foundation; NCI-DHHS-NUH [T32 CA101642]; NIH/NICHD [HD050128]; GCF-Molly Cade Ovarian Cancer Research Grant FX Portions of this work were supported by the NIH (CA110793, CA109298, P50 CA 083639, CA128797, RC2GM092599; U54 CA151668), the Ovarian Cancer Research Fund, Inc. (Program Project Development Grant), the DOD (OC093146), the Zarrow Foundation, the Marcus Foundation, the Blanton-Davis Ovarian Cancer Research Program, the Laura and John Arnold Foundation, and the Betty Anne Asche Murray Distinguished Professorship. R. L. Stone is supported by NCI-DHHS-NUH T32 Training Grant (T32 CA101642). M. M. K. Shahzad is supported by the NIH/NICHD WRHR Grant (HD050128) and the GCF-Molly Cade Ovarian Cancer Research Grant. NR 44 TC 30 Z9 33 U1 0 U2 10 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1078-0432 J9 CLIN CANCER RES JI Clin. Cancer Res. PD JUN 1 PY 2011 VL 17 IS 11 BP 3649 EP 3659 DI 10.1158/1078-0432.CCR-10-2441 PG 11 WC Oncology SC Oncology GA 772AC UT WOS:000291200800016 PM 21531818 ER PT J AU Cohen, PA Schopf, JW Butterfield, NJ Kudryavtsev, AB Macdonald, FA AF Cohen, Phoebe A. Schopf, J. William Butterfield, Nicholas J. Kudryavtsev, Anatoliy B. Macdonald, Francis A. TI Phosphate biomineralization in mid-Neoproterozoic protists SO GEOLOGY LA English DT Article ID TINDIR GROUP; SCALE MICROFOSSILS; NORTHWEST CANADA; NAMA GROUP; MESOSTIGMA; DIATOM; SHELLS AB The origin and expansion of biomineralization in eukaryotes played a critical role in Earth history, linking biological and geochemical processes. However, the onset of this phenomenon is poorly constrained due to a limited early fossil record of biomineralization. Although macroscopic evidence for biomineralization is not known until the late Ediacaran, we here report biologically controlled phosphatic biomineralization of scale microfossils from mid-Neoproterozoic (pre-Sturtian) strata of northwest Canada. Primary biological control on mineralization is supported by the identification of apatite in both chert-hosted and lime-stone-hosted specimens, the conspicuously rigid original morphology of the scale microfossils relative to co-occurring organic-walled cyanobacteria and acritarchs, and the microstructure of the constituent phosphate. Cell-enveloping mineralized scales occur in a wide range of extant protists, but the apparent restriction of phosphate scales to one modern taxon of green algae suggests a possible affiliation for these fossils. Documentation of primary phosphate biomineralization in Fifteenmile Group (Yukon Territory, Canada) microfossils greatly extends the known record of biologically controlled mineralization and provides a unique window into the diversity of early eukaryotes. C1 [Cohen, Phoebe A.; Macdonald, Francis A.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Schopf, J. William] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Schopf, J. William] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA. [Butterfield, Nicholas J.] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England. [Schopf, J. William; Kudryavtsev, Anatoliy B.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Ctr Study Evolut & Origin Life, Los Angeles, CA 90095 USA. [Schopf, J. William; Kudryavtsev, Anatoliy B.] Penn State Univ, Natl Aeronaut & Space Adm, Astrobiol Res Ctr, Astrobiol Inst, University Pk, PA 16802 USA. RP Cohen, PA (reprint author), MIT, NASA Astrobiol Inst, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM pcohen@mit.edu OI Butterfield, Nicholas/0000-0002-3046-7520 FU National Science Foundation (NSF) [EAR-0420592]; Cushman Foundation; National Aeronautics and Space Administration Astrobiology Institute FX We thank A. Knoll, G. Walker, D. Johnston, S. Porter, S. Xiao, C. Marshall, N. Tosca, J. Creveling, B. Kotrc, and B. Gill for helpful discussions and comments on earlier drafts; J. Schiffbauer and two anonymous reviewers provided constructive comments. Scanning electron microscope and energy-dispersive X-ray spectroscopy studies were carried out at the Harvard Center for Nanoscale Systems. Raman and confocal laser scanning microscopy studies were carried out at the University of California-Los Angeles Center for the Study of Evolution and the Origin of Life (CSEOL). Cohen was funded by National Science Foundation (NSF) grant EAR-0420592, the Cushman Foundation, an NSF Graduate Research Fellowship Program award, and the National Aeronautics and Space Administration Astrobiology Institute. The Yukon Geological Survey provided helicopter support to Macdonald for field work. We thank Doyon Resources and the Yukon Heritage Resources Unit for access to the field site. NR 31 TC 35 Z9 36 U1 1 U2 25 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0091-7613 J9 GEOLOGY JI Geology PD JUN PY 2011 VL 39 IS 6 BP 539 EP 542 DI 10.1130/G31833.1 PG 4 WC Geology SC Geology GA 770OG UT WOS:000291096300007 ER PT J AU Siles, JV Maestrini, A Alderman, B Davies, S Wang, H Treuttel, J Leclerc, E Narhi, T Goldstein, C AF Siles, Jose V. Maestrini, Alain Alderman, Byron Davies, Steven Wang, Hui Treuttel, Jeanne Leclerc, Eric Narhi, Tapani Goldstein, Christophe TI A Single-Waveguide In-Phase Power-Combined Frequency Doubler at 190 GHz SO IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS LA English DT Article DE Frequency multiplier; local oscillator; planar Schottky diode; power-combining; submillimeter wavelengths ID MULTIPLIERS; TRIPLERS; BAND AB This work represents the first demonstration of in-phase power-combined frequency multipliers above 100 GHz based on a dual-chip single-waveguide topology, which consists of two integrated circuits symmetrically placed along the E-plane of a single transmission waveguide. This strategy increases by a factor of 2 the maximum sustainable input power with regard to traditional waveguide multipliers. A biasless 190 GHz Schottky doubler based on this novel concept has been designed and tested with a 6-10% conversion efficiency measured across a 177-202 GHz band when driven with a 50-100 mW input power at 300 K. C1 [Siles, Jose V.; Maestrini, Alain; Treuttel, Jeanne] Observ Paris, LERMA, F-75014 Paris, France. [Maestrini, Alain] Univ Paris 06, Paris, France. [Alderman, Byron; Wang, Hui] Rutherford Appleton Lab, Space Sci & Technol Dept, Didcot OX11 0QX, Oxon, England. [Davies, Steven] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England. [Leclerc, Eric] UMS, F-91401 Orsay, France. [Narhi, Tapani] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Goldstein, Christophe] Ctr Natl Etud Spatiales, F-31401 Toulouse, France. RP Siles, JV (reprint author), NASA, Jet Prop Lab, Pasadena, CA 91109 USA. EM jose-vicente.siles@obspm.fr; alain.maestrini@obspm.fr; byron.alderman@stfc.ac.uk; s.r.davies@bath.ac.uk; jeanne.treuttel@obspm.fr; eric.leclerc@ums-gaas.com; tapani.narhi@esa.int; christophe.goldstein@cnes.fr FU European Space Agency ESA/ESTEC [ITT AO/1-5084/06/NL/GL]; Centre National d'Etudes Spatiales, France FX This work was supported by the European Space Agency ESA/ESTEC under contract ITT AO/1-5084/06/NL/GL and by the Centre National d'Etudes Spatiales, France. NR 12 TC 14 Z9 15 U1 2 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1531-1309 EI 1558-1764 J9 IEEE MICROW WIREL CO JI IEEE Microw. Wirel. Compon. Lett. PD JUN PY 2011 VL 21 IS 6 BP 332 EP 334 DI 10.1109/LMWC.2011.2134080 PG 3 WC Engineering, Electrical & Electronic SC Engineering GA 773PB UT WOS:000291318100020 ER PT J AU Imbriale, WA Weinreb, S Jones, G Mani, H Akgiray, A AF Imbriale, William A. Weinreb, Sander Jones, Glenn Mani, Hamdi Akgiray, Ahmed TI The Design and Performance of a Wideband Radio Telescope for the GAVRT Program SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Noise temperature; quadridge horn; radio telescope; reflector antennas; wideband feeds AB A wideband Radio Telescope was designed and built for use in the Goldstone Apple Valley Radio Telescope (GAVRT) program. It uses an existing 34-m antenna retrofitted with a tertiary offset mirror placed at the vertex of the main reflector. It can be rotated to allow using two feeds that cover the 0.5-14-GHz band. The feed for 4.0-14.0 GHz is a cryogenically cooled, commercially available, open-boundary quadridge horn from ETS-Lindgren. Coverage from 0.5 to 4.0 GHz is provided by an uncooled lower frequency version of the same feed that uses a cooled LNA. The measured aperture efficiency is greater than 40% over much of the band. C1 [Imbriale, William A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Weinreb, Sander; Jones, Glenn; Akgiray, Ahmed] CALTECH, Pasadena, CA 91125 USA. [Mani, Hamdi] Arizona State Univ, Tempe, AZ 85287 USA. RP Imbriale, WA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM imbriale@jpl.nasa.gov; sweinreb@caltech.edu; jones_gl@caltech.edu; mani@gmail.com; ahmed@caltech.edu FU National Aeronautics and Space Administration FX This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, under a contract with the National Aeronautics and Space Administration. NR 12 TC 2 Z9 3 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD JUN PY 2011 VL 59 IS 6 BP 1954 EP 1962 DI 10.1109/TAP.2011.2123863 PN 1 PG 9 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 773YB UT WOS:000291346800019 ER PT J AU Imbriale, WA Gundersen, J Thompson, KL AF Imbriale, William A. Gundersen, Joshua Thompson, Keith L. TI The 1.4-m Telescope for the Q/U Imaging Experiment SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Corrugated horns; platelet arrays; radio telescope; wide scanning reflector antenna ID ANTENNAS AB The optical design of the 1.4-m telescope for the Q/U Imaging ExperimenT (QUIET) is described. The telescope is intended to image the polarization of the cosmic microwave background (CMB) with detectors at two frequencies (Q- and W-band) with unprecedented sensitivity. The RF optics uses a classical Dragonian side-fed geometry that employs a paraboloidal main reflector illuminated by a concave hyperboloidal subreflector. The relatively large offset distance and focal length of the main reflector, and the avoidance of caustics between the two reflectors, yield relatively flat reflectors with very low cross-polarization and a wide field of view capability. The antenna is fed by either a 91-element W-band or a 19-element Q-band corrugated platelet feed horn array. The telescope is installed on the CBI platform in Chile, and data taking is underway. C1 [Imbriale, William A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gundersen, Joshua] Univ Miami, Coral Gables, FL 33146 USA. [Thompson, Keith L.] Stanford Univ, Stanford, CA 94305 USA. [Thompson, Keith L.] Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. RP Imbriale, WA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM imbriale@jpl.nasa.gov; gunder@physics.miami.edu; Keith.L.Thompson@stanford.edu FU National Aeronautics and Space Administration FX This work was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.; As with any large project, there are a great number of individuals who contribute to the final product. The authors would like to thank S. E. Church of Stanford University; L. Piccirillo and C. Baines of the University of Manchester; R. Monsalve and R. Bustos of University of Miami; M. Jones and C. Holler of Oxford University; C. Dickinson, R. Reeves, S. Radford, and E. Leitch of the California Institute of Technology; and V. Cable, B. Pickett, and S. Durden of JPL for their help and support. They would especially like to acknowledge B. Winstein, PI, for his excellent leadership on the project. NR 13 TC 3 Z9 3 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD JUN PY 2011 VL 59 IS 6 BP 1972 EP 1980 DI 10.1109/TAP.2011.2123864 PN 1 PG 9 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 773YB UT WOS:000291346800021 ER PT J AU Llombart, N Chattopadhyay, G Skalare, A Mehdi, I AF Llombart, Nuria Chattopadhyay, Goutam Skalare, Anders Mehdi, Imran TI Novel Terahertz Antenna Based on a Silicon Lens Fed by a Leaky Wave Enhanced Waveguide SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Leaky wave antennas; lenses; submillimeter wave technology AB We introduce a novel antenna concept suitable for future integrated arrays at terahertz frequencies. The antenna consists of an extended hemispherical lens antenna fed by a leaky wave waveguide feed that can be integrated with sensors and detectors such as Schottky diodes. In this antenna architecture, a couple of TE/TM leaky wave modes are excited in a resonant cavity formed by a waveguide opening ground plane and a silicon lens. Due to these modes, the field radiated by the waveguide inside the lens is a very directive pattern that illuminates the upper part of the lens. Having a directive primary field helps to increase the f-number of the lens improving several factors as spill over, off axis distortions and coating layer fabrication. The antenna structure is compatible with modern semiconductor fabrication technology and lends itself nicely for large format imaging arrays. In this contribution, we investigate the important parameters of a single antenna such as reflection coefficient, directivity, Gaussicity, phase center and off-axis displacement tolerances, and we validate our simulations by measuring the far field radiation patterns of a 545 GHz prototype. C1 [Llombart, Nuria] Univ Complutense Madrid, Dept Opt, E-28040 Madrid, Spain. [Chattopadhyay, Goutam; Skalare, Anders; Mehdi, Imran] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Llombart, N (reprint author), Univ Complutense Madrid, Dept Opt, E-28040 Madrid, Spain. EM nuria.llombart@opt.ucm.es FU National Aeronautics and Space Administration FX Manuscript received January 21, 2010; revised September 18, 2010; accepted November 19, 2010. Date of publication April 19, 2011; date of current version June 02, 2011. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 20 TC 22 Z9 22 U1 2 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD JUN PY 2011 VL 59 IS 6 BP 2160 EP 2168 DI 10.1109/TAP.2011.2143663 PN 2 PG 9 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 773YO UT WOS:000291348300012 ER PT J AU Devasia, S Iamratanakul, D Chatterji, G Meyer, G AF Devasia, Santosh Iamratanakul, Dhanakorn Chatterji, Gano Meyer, George TI Decoupled Conflict-Resolution Procedures for Decentralized Air Traffic Control SO IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS LA English DT Article DE Air traffic control; conflict decoupling; conflict resolution; distributed algorithms; distributed control; domino effect ID FLOW MANAGEMENT; INTERSECTING FLOWS; AIRCRAFT; OPTIMIZATION; MANEUVERS; AIRSPACE; SYSTEM; MODEL AB This paper addresses the challenge of designing provably safe conflict-resolution procedures (CRPs) that are decentralized and decoupled from each other. The main contribution of this paper is identifying necessary and sufficient conditions to decouple CRPs. Additionally, this paper demonstrates the existence of decentralized en-route CRPs that satisfy the identified decoupling conditions for each local conflict and, thereby, guarantee global conflict resolution. An advantage of the proposed CRPs is that they do not require a reduction in the aircraft flow levels in the intersecting routes for conflict resolution, which can aid in increasing the efficiency of en-route air traffic control. C1 [Devasia, Santosh; Iamratanakul, Dhanakorn] Univ Washington, Seattle, WA 98195 USA. [Chatterji, Gano; Meyer, George] NASA, Ames Res Ctr, Moffett Field, CA 94087 USA. RP Devasia, S (reprint author), Univ Washington, Seattle, WA 98195 USA. EM devasia@u.washington.edu; na@u.washington.edu; Gano.B.Chatterji@nasa.gov; george.meyer@sbcglobal.net FU NASA Ames Research Center [NAG 2-1277, NAG 2-1450, NNA04C131G] FX Manuscript received May 4, 2009; revised July 26, 2010; accepted November 3, 2010. Date of publication February 10, 2011; date of current version June 6, 2011. This work was supported by the NASA Ames Research Center under Grant NAG 2-1277, Grant NAG 2-1450, and Grant NNA04C131G. The Associate Editor for this paper was J.-P. B. Clarke. NR 39 TC 12 Z9 12 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1524-9050 EI 1558-0016 J9 IEEE T INTELL TRANSP JI IEEE Trans. Intell. Transp. Syst. PD JUN PY 2011 VL 12 IS 2 SI SI BP 422 EP 437 DI 10.1109/TITS.2010.2093574 PG 16 WC Engineering, Civil; Engineering, Electrical & Electronic; Transportation Science & Technology SC Engineering; Transportation GA 773NX UT WOS:000291315100013 ER PT J AU Nan, RD Li, D Jin, CJ Wang, QM Zhu, LC Zhu, WB Zhang, HY Yue, YL Qian, L AF Nan, Rendong Li, Di Jin, Chengjin Wang, Qiming Zhu, Lichun Zhu, Wenbai Zhang, Haiyan Yue, Youling Qian, Lei TI THE FIVE-HUNDRED-METER APERTURE SPHERICAL RADIO TELESCOPE (FAST) PROJECT SO INTERNATIONAL JOURNAL OF MODERN PHYSICS D LA English DT Review DE Radio telescope; active main reflector; HI 21cm line; pulsar ID GALACTIC PLANE SURVEY; ALPHA SURVEY; REFLECTOR; GALAXIES; EMISSION; DESIGN; CLOUDS AB Five-hundred-meter Aperture Spherical radio Telescope (FAST) is a Chinese mega-science project to build the largest single dish radio telescope in the world. Its innovative engineering concept and design pave a new road to realize a huge single dish in the most effective way. FAST also represents Chinese contribution in the international efforts to build the square kilometer array (SKA). Being the most sensitive single dish radio telescope, FAST will enable astronomers to jump-start many science goals, such as surveying the neutral hydrogen in the Milky Way and other galaxies, detecting faint pulsars, looking for the first shining stars, hearing the possible signals from other civilizations, etc. The idea of sitting a large spherical dish in a karst depression is rooted in Arecibo telescope. FAST is an Arecibo-type antenna with three outstanding aspects: the karst depression used as the site, which is large to host the 500-meter telescope and deep to allow a zenith angle of 40 degrees; the active main reflector correcting for spherical aberration on the ground to achieve a full polarization and a wide band without involving complex feed systems; and the light-weight feed cabin driven by cables and servomechanism plus a parallel robot as a secondary adjustable system to move with high precision. The feasibility studies for FAST have been carried out for 14 years, supported by Chinese and world astronomical communities. Funding for FAST has been approved by the National Development and Reform Commission in July of 2007 with a capital budget similar to 700 million RMB. The project time is 5.5 years from the commencement of work in March of 2011 and the first light is expected to be in 2016. This review intends to introduce the project of FAST with emphasis on the recent progress since 2006. In this paper, the subsystems of FAST are described in modest details followed by discussions of the fundamental science goals and examples of early science projects. C1 [Nan, Rendong; Li, Di; Jin, Chengjin; Wang, Qiming; Zhu, Lichun; Zhu, Wenbai; Zhang, Haiyan; Yue, Youling; Qian, Lei] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Nan, Rendong; Zhang, Haiyan] Chinese Acad Sci, Key Lab Radio Astron, Nanjing 210008, Peoples R China. [Li, Di] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Nan, RD (reprint author), Chinese Acad Sci, Natl Astron Observ, A20 Datun Rd, Beijing 100012, Peoples R China. EM nrd@bao.ac.cn; dili@jpl.nasa.gov FU Chinese Academy of Sciences; National Natural Science Foundation in China [10433020]; National Aeronautics and Space Administration FX This work is supported by the Chinese Academy of Sciences and a key project grant 10433020 from the National Natural Science Foundation in China. We wish to make special recognition to the diligence and great efforts by colleagues in FAST team and international collaborators, and would also like to apologize for the incomplete coverage of their great contribution to the project of FAST. This work was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 28 TC 101 Z9 116 U1 5 U2 26 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-2718 J9 INT J MOD PHYS D JI Int. J. Mod. Phys. D PD JUN PY 2011 VL 20 IS 6 BP 989 EP 1024 DI 10.1142/S0218271811019335 PG 36 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 770UD UT WOS:000291113100002 ER PT J AU Andrievskaya, ER Kornienko, OA Sayir, A Vasylkiv, OO Sakka, Y AF Andrievskaya, Elena R. Kornienko, Oksana A. Sayir, Ali Vasylkiv, Oleg O. Sakka, Yoshio TI Phase Relation Studies in the ZrO2-CeO2-La2O3 System at 1500 degrees C SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID THERMAL BARRIER COATINGS; CRYSTAL-STRUCTURE; MIXED-OXIDE; DIAGRAM; CONDUCTIVITY; ZIRCONIUM; LA2O3; LA AB The phase relations in the ZrO2-CeO2-La2O3 ternary system at 1500 degrees C were studied by X-ray diffraction (XRD), petrography, and scanning electron microscopy in the overall concentration range. The samples of different compositions have been prepared from nitrate acid solutions by evaporation, drying, and calcinations at 1100 degrees and 1500 degrees C. The solid solutions based on various polymorphous forms of constituent phases and ordered phase of La2Zr2O7 were revealed in the system. No new phases were found. The isothermal section of the phase diagram for the ZrO2-CeO2-La2O3 system has been developed. It was established that in the ternary ZrO2-CeO2-La2O3 system there exist fields of solid solutions based on hexagonal (A) modification of La2O3, monoclinic (M), and tetragonal (T) crystal modifications of ZrO2, cubic modification of CeO2 with fluorite-type structure (F), as well as pyrochlore type ordered phase of cubic symmetry La2Zr2O7 (Py). The refined lattice parameters of the unit cells for solid solutions and microstructures of the definite field of compositions for the systems were determined. C1 [Andrievskaya, Elena R.; Kornienko, Oksana A.] NAS Ukraine, Frantsevich Inst Mat Sci Problems, UA-03142 Kiev, Ukraine. [Andrievskaya, Elena R.] Natl Tech Univ, Kiev Polytech Inst, UA-03056 Kiev, Ukraine. [Sayir, Ali] NASA, John H Glenn Res Ctr Lewis Field, Cleveland, OH 44135 USA. [Vasylkiv, Oleg O.; Sakka, Yoshio] Natl Inst Mat Sci, Ibaraki 3050044, Japan. RP Andrievskaya, ER (reprint author), NAS Ukraine, Frantsevich Inst Mat Sci Problems, UA-03142 Kiev, Ukraine. EM era@ipms.kiev.ua RI VASYLKIV, Oleg/H-2722-2011 OI VASYLKIV, Oleg/0000-0002-5041-6130 FU State Fund of Fundamental Research in Ukraine [F28.3/030-2009] FX This work was supported by the State Fund of Fundamental Research in Ukraine, under Grant No. F28.3/030-2009. NR 28 TC 3 Z9 3 U1 2 U2 23 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JUN PY 2011 VL 94 IS 6 BP 1911 EP 1919 DI 10.1111/j.1551-2916.2010.04316.x PG 9 WC Materials Science, Ceramics SC Materials Science GA 774NN UT WOS:000291393400047 ER PT J AU Duncan, DD Fischer, DG Dayton, A Prahl, SA AF Duncan, Donald D. Fischer, David G. Dayton, Amanda Prahl, Scott A. TI Quantitative Carre differential interference contrast microscopy to assess phase and amplitude SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION LA English DT Article ID PARTIALLY COHERENT BEAMS; IN-SITU; TISSUE; PROPAGATION; CALIBRATION; LIGHT AB We present a method of using an unmodified differential interference contrast microscope to acquire quantitative information on scatter and absorption of thin tissue samples. A simple calibration process is discussed that uses a standard optical wedge. Subsequently, we present a phase-stepping procedure for acquiring phase gradient information exclusive of absorption effects. The procedure results in two-dimensional maps of the local angular (polar and azimuthal) ray deviation. We demonstrate the calibration process, discuss details of the phase-stepping algorithm, and present representative results for a porcine skin sample. (C) 2011 Optical Society of America C1 [Duncan, Donald D.] Portland State Univ, Portland, OR 97201 USA. [Fischer, David G.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. [Dayton, Amanda; Prahl, Scott A.] Providence St Vincent Med Ctr, Oregon Med Laser Ctr, Portland, OR 97225 USA. RP Duncan, DD (reprint author), Portland State Univ, 1900 SW 4th Ave, Portland, OR 97201 USA. EM donald.duncan@pdx.edu FU National Institutes of Health (NIH) [NIH-NIDCR-R21-DE016758] FX This work was sponsored in part by National Institutes of Health (NIH) grant NIH-NIDCR-R21-DE016758. NR 34 TC 9 Z9 9 U1 0 U2 8 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1084-7529 J9 J OPT SOC AM A JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis. PD JUN PY 2011 VL 28 IS 6 BP 1297 EP 1306 PG 10 WC Optics SC Optics GA 773JS UT WOS:000291303700039 PM 21643416 ER PT J AU Papineau, D De Gregorio, BT Cody, GD O'Neil, J Steele, A Stroud, RM Fogel, ML AF Papineau, D. De Gregorio, B. T. Cody, G. D. O'Neil, J. Steele, A. Stroud, R. M. Fogel, M. L. TI Young poorly crystalline graphite in the > 3.8-Gyr-old Nuvvuagittuq banded iron formation SO NATURE GEOSCIENCE LA English DT Article ID SOUTHERN WEST GREENLAND; ISUA SUPRACRUSTAL BELT; ROCKS; BACTERIA; APATITE; CARBON; RAMAN; METASEDIMENTS; SEDIMENTS; LIFE AB Carbonaceous material present in ancient rocks can be used as an indicator of life during the time the rocks were formed. In particular, evidence for the existence of life more than 3,800 million years ago might come from mineral associations between apatite and graphite in rocks from southern West Greenland(1-7). However, this interpretation is partly based on the assumption that the graphite was formed at the same time as the host rocks, an assumption that has been difficult to prove(2-7). Here we investigate the origins of poorly crystalline graphite associated with apatite in metamorphosed banded iron formations from northern Canada that are 3,750 to 4,280 million years old(8-11). We measured average delta(13)C(graphite) values of -22.8 +/- 1.9 parts per thousand(1 sigma), similar to values from West Greenland sedimentary rocks of comparable age(1,3,5-7,12-14), and that point to a biological source for this carbon. Our microscopic and spectroscopic analyses suggest, however, that the graphite experienced much lower temperatures than the host rocks during metamorphism. We conclude that the poorly crystalline graphite in these rocks was deposited by fluids after peak metamorphism of the banded iron formations. We suggest that the occurrence of carbonaceous material with low delta(13)C values in Eoarchaean rocks cannot be used to indicate the presence of a microbial biosphere on the earliest Earth unless the syngeneity of the carbonaceous material in the host rock can be confirmed. C1 [Papineau, D.; Cody, G. D.; Steele, A.; Fogel, M. L.] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Papineau, D.] Boston Coll, Dept Earth & Environm Sci, Chestnut Hill, MA 02467 USA. [De Gregorio, B. T.] NASA, Lyndon B Johnson Space Ctr, ESCG, Houston, TX 77058 USA. [O'Neil, J.] Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA. [Stroud, R. M.] USN, Res Lab, Div Mat Sci & Technol, Washington, DC 20375 USA. RP Papineau, D (reprint author), Carnegie Inst Washington, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. EM dominic.papineau@bc.edu RI De Gregorio, Bradley/B-8465-2008; Stroud, Rhonda/C-5503-2008 OI De Gregorio, Bradley/0000-0001-9096-3545; Stroud, Rhonda/0000-0001-5242-8015 FU NASA [NNX08AO16G]; NASA Astrobiology Institute [NNA04CC09A]; W.M. Keck Foundation; Geophysical Laboratory of the Carnegie Institution of Washington, Carnegie of Canada; Naval Research Laboratory; NRC; Boston College; FQRNT; Office of Science, Department of Energy [DEAC0205CH11231] FX We thank the municipality of Inukjuak and the Pituvik Landholding Corporation for permission to work on their territory and M. Carroll for his support. We acknowledge funding from the NASA Exobiology and Evolutionary Biology Program (Grant No. NNX08AO16G), the NASA Astrobiology Institute (Grant No. NNA04CC09A), the W.M. Keck Foundation, the Geophysical Laboratory of the Carnegie Institution of Washington, Carnegie of Canada, the Naval Research Laboratory, the NRC Research Associateship Program, Boston College, and the FQRNT. Some data was acquired at beamline 5.3.2.2 at the ALS, which is supported by the Director of the Office of Science, Department of Energy (Contract No. DEAC0205CH11231). NR 30 TC 15 Z9 17 U1 0 U2 17 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 J9 NAT GEOSCI JI Nat. Geosci. PD JUN PY 2011 VL 4 IS 6 BP 376 EP 379 DI 10.1038/NGEO1155 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 770LY UT WOS:000291089200016 ER PT J AU Xu, F Davis, AB West, RA Martonchik, JV Diner, DJ AF Xu, Feng Davis, Anthony B. West, Robert A. Martonchik, John V. Diner, David J. TI Markov chain formalism for vector radiative transfer in a plane-parallel atmosphere overlying a polarizing surface SO OPTICS LETTERS LA English DT Article ID SCATTERING; LIGHT AB We report on a way of building bidirectional surface reflectivity into the Markov chain formalism for polarized radiative transfer through a vertically inhomogeneous atmosphere. Numerical results are compared to those obtained by the Monte Carlo method, showing the accuracy of the Markov chain method when 90 streams are used to compute the radiation from a Rayleigh-plus-aerosol atmosphere that overlies a surface with a bidirectional reflection function consisting of both depolarizing and polarizing parts. (C) 2011 Optical Society of America C1 [Xu, Feng; Davis, Anthony B.; West, Robert A.; Martonchik, John V.; Diner, David J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Xu, F (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Feng.Xu@jpl.nasa.gov RI Xu, Feng/G-3673-2013 FU National Aeronautics and Space Administration FX F. Xu is supported by the NASA Postdoctoral Program. This work was done at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. Government sponsorship is acknowledged. NR 10 TC 8 Z9 8 U1 0 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUN 1 PY 2011 VL 36 IS 11 BP 2083 EP 2085 PG 3 WC Optics SC Optics GA 771HZ UT WOS:000291149100045 PM 21633456 ER PT J AU Roibas, AC McCandless, JW AF Roibas, Anxo Cereijo McCandless, Jeffrey W. TI Theme Issue on Human Computer Interaction in Space SO PERSONAL AND UBIQUITOUS COMPUTING LA English DT Editorial Material C1 [Roibas, Anxo Cereijo] YouView TV Ltd, User Experience, Broadcast Ctr, London W12 7TP, England. [McCandless, Jeffrey W.] NASA, Human Syst Integrat Div, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Roibas, AC (reprint author), YouView TV Ltd, User Experience, Broadcast Ctr, B6 Ground Floor,201 Wood Lane, London W12 7TP, England. EM anxo.cereijo@youview.com; jeffrey.w.mccandless@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 4 PU SPRINGER LONDON LTD PI LONDON PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND SN 1617-4909 J9 PERS UBIQUIT COMPUT JI Pers. Ubiquitous Comput. PD JUN PY 2011 VL 15 IS 5 BP 441 EP 441 DI 10.1007/s00779-011-0379-z PG 1 WC Computer Science, Information Systems; Telecommunications SC Computer Science; Telecommunications GA 770AY UT WOS:000291060600001 ER PT J AU McCandless, J AF McCandless, Jeffrey TI Theme Issue on Human Computer Interaction in Space Introduction SO PERSONAL AND UBIQUITOUS COMPUTING LA English DT Editorial Material C1 NASA, Human Syst Integrat Div, Ames Res Ctr, Moffett Field, CA 94040 USA. RP McCandless, J (reprint author), NASA, Human Syst Integrat Div, Ames Res Ctr, Moffett Field, CA 94040 USA. EM jeffrey.w.mccandless@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER LONDON LTD PI LONDON PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND SN 1617-4909 J9 PERS UBIQUIT COMPUT JI Pers. Ubiquitous Comput. PD JUN PY 2011 VL 15 IS 5 BP 443 EP 444 DI 10.1007/s00779-010-0323-7 PG 2 WC Computer Science, Information Systems; Telecommunications SC Computer Science; Telecommunications GA 770AY UT WOS:000291060600002 ER PT J AU Thorpe, JI Maghami, P Livas, J AF Thorpe, J. I. Maghami, P. Livas, J. TI Time domain simulations of arm locking in LISA SO PHYSICAL REVIEW D LA English DT Article ID MODEL AB Arm locking is a proposed laser frequency stabilization technique for the Laser Interferometer Space Antenna (LISA), a gravitational-wave observatory sensitive in the milliHertz frequency band. Arm locking takes advantage of the geometric stability of the triangular constellation of three spacecraft that compose LISA to provide a frequency reference with a stability in the LISA measurement band that exceeds that available from a standard reference such as an optical cavity or molecular absorption line. We have implemented a time-domain simulation of a Kalman-filter-based arm-locking system that includes the expected limiting noise sources as well as the effects of imperfect a priori knowledge of the constellation geometry on which the design is based. We use the simulation to study aspects of the system performance that are difficult to capture in a steady-state frequency-domain analysis such as frequency pulling of the master laser due to errors in estimates of heterodyne frequency. We find that our implementation meets requirements on both the noise and dynamic range of the laser frequency with acceptable tolerances and that the design is sufficiently insensitive to errors in the estimated constellation geometry that the required performance can be maintained for the longest continuous measurement intervals expected for the LISA mission. C1 [Thorpe, J. I.; Livas, J.] NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA. [Maghami, P.] NASA, Goddard Space Flight Ctr, Attitude Control Syst Engn Branch, Greenbelt, MD 20771 USA. RP Thorpe, JI (reprint author), NASA, Goddard Space Flight Ctr, Gravitat Astrophys Lab, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. EM james.i.thorpe@nasa.gov RI Livas, Jeffrey/D-2994-2012; Thorpe, James/D-3150-2012 NR 27 TC 4 Z9 4 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUN 1 PY 2011 VL 83 IS 12 AR 122002 DI 10.1103/PhysRevD.83.122002 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 771IU UT WOS:000291151200003 ER PT J AU Wiehle, S Plaschke, F Motschmann, U Glassmeier, KH Auster, HU Angelopoulos, V Mueller, J Kriegel, H Georgescu, E Halekas, J Sibeck, DG McFadden, JP AF Wiehle, S. Plaschke, F. Motschmann, U. Glassmeier, K. -H. Auster, H. U. Angelopoulos, V. Mueller, J. Kriegel, H. Georgescu, E. Halekas, J. Sibeck, D. G. McFadden, J. P. TI First lunar wake passage of ARTEMIS: Discrimination of wake effects and solar wind fluctuations by 3D hybrid simulations SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Moon; Lunar wake; ARTEMIS; Hybrid simulation ID MAGNETIC FIELD EXPERIMENT; EXPLORER 35; PLASMA; MOON; MISSION AB The spacecraft P1 of the new ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) mission passed the lunar wake for the first time on February 13, 2010. We present magnetic field and plasma data of this event and results of 3D hybrid simulations. As the solar wind magnetic field was highly dynamic during the passage, a simulation with stationary solar wind input cannot distinguish whether distortions were caused by these solar wind variations or by the lunar wake: therefore, a dynamic real-time simulation of the flyby has been performed. The input values of this simulation are taken from NASA OMNI data and adapted to the P1 data, resulting in a good agreement between simulation and measurements. Combined with the stationary simulation showing non-transient lunar wake structures, a separation of solar wind and wake effects is achieved. An anisotropy in the magnitude of the plasma bulk flow velocity caused by a non-vanishing magnetic field component parallel to the solar wind flow and perturbations created by counterstreaming ions in the lunar wake are observed in data and simulations. The simulations help to interpret the data granting us the opportunity to examine the entire lunar plasma environment and, thus, extending the possibilities of measurements alone: A comparison of a simulation cross section to theoretical predictions of MHD wave propagation shows that all three basic MHD modes are present in the lunar wake and that their expansion governs the lunar wake refilling process. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Wiehle, S.; Motschmann, U.; Mueller, J.; Kriegel, H.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Theoret Phys, D-38106 Braunschweig, Germany. [Plaschke, F.; Glassmeier, K. -H.; Auster, H. U.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. [Angelopoulos, V.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Glassmeier, K. -H.; Georgescu, E.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Halekas, J.; McFadden, J. P.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Sibeck, D. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Motschmann, U.] DLR, Inst Planetenforsch, Berlin, Germany. RP Wiehle, S (reprint author), Tech Univ Carolo Wilhelmina Braunschweig, Inst Theoret Phys, Mendelssohnstr 3, D-38106 Braunschweig, Germany. EM s.wiehle@tu-bs.de RI Sibeck, David/D-4424-2012; OI Wiehle, Stefan/0000-0003-1476-6261; Halekas, Jasper/0000-0001-5258-6128 FU Deutsche Forschungsgemeinschaft (DFG) [MO539/17-1, MO539/16-1]; German Ministerium fur Wirtschaft und Technologie; Deutsches Zentrum fur Luftund Raumfahrt [50OC1001]; NASA [NAS5-02099] FX This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) through grant MO539/17-1. The work of U.M. and J.M. was supported by the DFG under grant number MO539/16-1. The simulations were performed on the systems of the North-German Supercomputing Alliance. Financial support for the work of the FGM Lead Investigator Team at the Technical University of Braunschweig by the German Ministerium fur Wirtschaft und Technologie and the Deutsches Zentrum fur Luftund Raumfahrt under grant 50OC1001 is acknowledged. ARTEMIS was made possible by NASA under contract NAS5-02099. NR 34 TC 28 Z9 28 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD JUN PY 2011 VL 59 IS 8 BP 661 EP 671 DI 10.1016/j.pss.2011.01.012 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 770VK UT WOS:000291116400002 ER PT J AU Richter, I Koenders, C Glassmeier, KH Tsurutani, BT Goldstein, R AF Richter, I. Koenders, C. Glassmeier, K. H. Tsurutani, B. T. Goldstein, R. TI Deep Space 1 at comet 19P/Borrelly: Magnetic field and plasma observations SO PLANETARY AND SPACE SCIENCE LA English DT Article DE 19P/Borrelly; Comets; Cometary shocks; Deep Space 1; Field draping; Magnetic field; Magnetospheres; Pileup; Solar wind ID GIOTTO MAGNETOMETER EXPERIMENT; P-GRIGG-SKJELLERUP; SOLAR-WIND; GIACOBINI-ZINNER; SPECTRAL CHARACTERISTICS; ENCOUNTER; MISSION; HALLEY; P/HALLEY AB On September 22, 2001 the Deep Space 1 spacecraft performed a flyby at comet 19P/Borrelly at a solar distance of 1.36 AU leading the Earth by 74 in longitude. The spacecraft-comet distance at closest approach was 2171 km. The bow shock had a magnetic compression ratio of 2.5 at a distance of 147 100 km from the nucleus. Deep Space 1 first entered the sheath region essentially from the north polar region. Fluctuations from the cometary ion pickup were present throughout the sheath region and even well upstream of the shock, as expected. The magnetic field pileup region had a peak field strength of 83 nT and was shown to be consistent with a pressure equal to the solar wind ram pressure. The peak field location was offset from the time of closest approach. It is uncertain whether this is a spatial or temporal variation. Draping of magnetic fields around the nucleus was sought, but evidence for this was not apparent in the data. A possible explanation is that the interplanetary solar wind was composed of turbulent short-scale fields, and thus the fields were not symmetric about the point of closest approach. During the flyby phase there were in general few intervals of ACE data where there were large scale Parker spiral fields. With the addition of plasma data, the shock properties are investigated. The characteristics of magnetic draping, pileup and fluctuations are explored. These comet 19P/Borrelly results are contrasted with other cometary flyby results. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Richter, I.; Koenders, C.; Glassmeier, K. H.; Tsurutani, B. T.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. [Tsurutani, B. T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Goldstein, R.] SW Res Inst, San Antonio, TX 78228 USA. RP Richter, I (reprint author), Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, Mendelssohnstr 3, D-38106 Braunschweig, Germany. EM i.richter@tu-bs.de FU German Bundesministerium fur Wirtschaft und Technologie; Deutsches Zentrum fur Luftund Raumfahrt [50 00 99037, 50 QP 1001]; National Aeronautics and Space Administration FX The work of K.-H. Glassmeier, C. Koenders, and I. Richter was financially supported by the German Bundesministerium fur Wirtschaft und Technologie and the Deutsches Zentrum fur Luftund Raumfahrt under the contracts 50 00 99037 for DS1 and 50 QP 1001 for ROSETTA. The work of B.T. Tsurutani at the Jet Propulsion Laboratory, California Institute of Technology was done under a contract with the National Aeronautics and Space Administration. Also the work by R. Goldstein was supported through a contract to the Southwest Research Institute by the National Aeronautics and Space Administration. All computations concerning the s/c position and orientation have been calculated with the use of the SPICE software developed by NASA's NAIF team. Special thanks go to Boris Semenov who provided the SPICE-kernels on very short notice. NR 44 TC 13 Z9 13 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD JUN PY 2011 VL 59 IS 8 BP 691 EP 698 DI 10.1016/j.pss.2011.02.001 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 770VK UT WOS:000291116400005 ER PT J AU Epperly, MW Wang, H Jones, JA Dixon, T Montesinos, CA Greenberger, JS AF Epperly, Michael W. Wang, Hong Jones, Jeffrey A. Dixon, Tracy Montesinos, Carlos A. Greenberger, Joel S. TI Antioxidant-Chemoprevention Diet Ameliorates Late Effects of Total-Body Irradiation and Supplements Radioprotection by MnSOD-Plasmid Liposome Administration SO RADIATION RESEARCH LA English DT Article ID MANGANESE SUPEROXIDE-DISMUTASE; OXIDATIVE STRESS; SPACE RADIATION; GENE-THERAPY; PLASMID/LIPOSOME DELIVERY; RESVERATROL; PREVENTION; MICE; MITOCHONDRIA; ESOPHAGITIS AB Many acute and chronic effects of ionizing radiation are mediated by reactive oxygen species and reactive nitrogen species, which deplete antioxidant stores, leading to cellular apoptosis, stem cell depletion and accelerated aging. C57BL/6NHsd mice receiving intravenous MnSOD-PL prior to 9.5 Gy total-body irradiation (TB!) show increased survival from the acute hematopoietic syndrome, and males demonstrated improved long-term survival (Epperly et al., Radiat. Res. 170, 437 444, 2008). We evaluated the effect of an antioxidant-chemopreventive diet compared to a regular diet on long-term survival in female mice. Twenty-four hours before the LD(50/30) dose of 9.5 Gy TB!, subgroups of mice were injected intravenously with MnSOD-PL (100 mu g plasmid DNA in 100 mu l of liposomes). Mice on either diet treated with MnSOD-PL showed decreased death after irradiation compared to irradiated mice on the house diet alone (P = 0.031 for the house diet plus MnSOD-PL or 0.015 for antioxidant diet plus MnSOD-PL). The mice on the antioxidant-chemoprevention diet alone or with MnSOD-PL that survived 30 days after irradiation had a significant increase in survival compared to mice on the regular diet (P = 0.04 or 0.01, respectively). In addition, mice treated with MnSOD-PL only and surviving 30 days after radiation also had increased survival compared to those on the regular diet alone (P = 0.02). Survivors of acute ionizing radiation damage have ameliorated life shortening if they are fed an antioxidant-chemopreventive diet. (C) 2011 by Radiation Research Society C1 [Epperly, Michael W.; Wang, Hong; Dixon, Tracy; Greenberger, Joel S.] Univ Pittsburgh, Inst Canc, Dept Radiat Oncol, Pittsburgh, PA USA. [Jones, Jeffrey A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Jones, Jeffrey A.] Baylor Coll Med, Dept Urol, Houston, TX 77030 USA. [Montesinos, Carlos A.] AmeriSci LP, Houston, TX USA. RP Greenberger, JS (reprint author), UPMC Canc Pavil, UPMC Canc Ctr, Dept Radiat Oncol, POB2,5150 Ctr Ave,Rm 533, Pittsburgh, PA 15232 USA. EM greenbergerjs@upmc.edu OI Wang, Hong/0000-0003-0477-2908 FU NIAID/NIH [U19A1068021] FX This research was supported by grant U19A1068021 from the NIAID/NIH. NR 36 TC 24 Z9 27 U1 0 U2 4 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD JUN PY 2011 VL 175 IS 6 BP 759 EP 765 DI 10.1667/RR2398.1 PG 7 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 773UL UT WOS:000291336500009 PM 21466381 ER PT J AU Charpinet, S Van Grootel, V Fontaine, G Green, EM Brassard, P Randall, SK Silvotti, R Ostensen, RH Kjeldsen, H Christensen-Dalsgaard, J Kawaler, SD Clarke, BD Li, J Wohler, B AF Charpinet, S. Van Grootel, V. Fontaine, G. Green, E. M. Brassard, P. Randall, S. K. Silvotti, R. Ostensen, R. H. Kjeldsen, H. Christensen-Dalsgaard, J. Kawaler, S. D. Clarke, B. D. Li, J. Wohler, B. TI Deep asteroseismic sounding of the compact hot B subdwarf pulsator KIC02697388 from Kepler time series photometry SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: oscillations; stars: interiors; stars: horizontal-branch; subdwarfs; stars: individual: KIC02697388 ID BLANKETED MODEL ATMOSPHERES; DIGITAL SKY SURVEY; MULTISITE CAMPAIGN; DRIVING MECHANISM; SPACED DATA; SDB STARS; O-STARS; OSCILLATIONS; PARAMETERS; DISCOVERY AB Context. Contemporary high precision photometry from space provided by the Kepler and CoRoT satellites generates significant breakthroughs in terms of exploiting the long-period, g-mode pulsating hot B subdwarf (sdBV(epsilon)) stars with asteroseismology. Aims. We present a detailed asteroseismic study of the sdBV(s) star KIC02697388 monitored with Kepler, using the rich pulsation spectrum uncovered during the similar to 27-day-long exploratory run Q2.3. Methods. We analyse new high-S/N spectroscopy of KIC02697388 using appropriate NLTE model atmospheres to provide accurate atmospheric parameters for this star. We also reanalyse the Kepler light curve using standard prewhitening techniques. On this basis, we apply a forward modelling technique using our latest generation of sdB models. The simultaneous match of the independent periods observed in KIC02697388 with those of models leads objectively to the identification of the pulsation modes and, more importantly, to the determination of some of the parameters of the star. Results. The light curve analysis reveals 43 independent frequencies that can be associated with oscillation modes. All the modulations observed in this star correspond to g-mode pulsations except one high-frequency signal, which is typical of a p-mode oscillation. Although the presence of this p-mode is surprising considering the atmospheric parameters that we derive for this cool sdB star (T-eff = 25 395 +/- 227 K, log g = 5.500 +/- 0.031 (cgs), and log N(He)/N(H) = -2.767 +/- 0.122), we show that this mode can be accounted for particularly well by our optimal seismic models, both in terms of frequency match and nonadiabatic properties. The seismic analysis leads us to identify two model solutions that can both account for the observed pulsation properties of KIC02697388. Despite this remaining ambiguity, several key parameters of the star can be derived with stringent constraints, such as its mass, its H-rich envelope mass, its radius, and its luminosity. We derive the properties of the core proposing that it is a relatively young sdB star that has burnt less than similar to 34% (in mass) of its central helium and has a relatively large mixed He/C/O core. This latter measurement is in line with the trend already uncovered for two other g-mode sdB pulsators analysed with asteroseismology and suggests that extra mixing is occurring quite early in the evolution of He cores on the horizontal branch. Conclusions. Additional monitoring with Kepler of this particularly interesting sdB star should reveal the inner properties of KIC02697388 and provide important information about the mode driving mechanism and the helium core properties. C1 [Charpinet, S.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Charpinet, S.] CNRS, IRAP, F-31400 Toulouse, France. [Van Grootel, V.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Fontaine, G.; Brassard, P.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Green, E. M.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Randall, S. K.] ESO, D-85748 Garching, Germany. [Silvotti, R.] INAF, Osservatorio Astron Torino, I-10025 Pino Torinese, Italy. [Ostensen, R. H.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Kjeldsen, H.; Christensen-Dalsgaard, J.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Kawaler, S. D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Clarke, B. D.; Li, J.] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. [Wohler, B.] NASA, Orbital Sci Corp, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Charpinet, S (reprint author), Univ Toulouse, UPS OMP, IRAP, Toulouse, France. EM stephane.charpinet@ast.obs-mip.fr; vangroot@astro.ulg.ac.be; fontaine@astro.umontreal.ca; egreen@email.arizona.edu; brassard@astro.umontreal.ca; srandall@eso.org OI Silvotti, Roberto/0000-0002-1295-8174; Charpinet, Stephane/0000-0002-6018-6180; Kawaler, Steven/0000-0002-6536-6367 FU PNPS, CNRS/INSU, France; NSERC of Canada FX S.C. and V. V. G. thank the Programme National de Physique Stellaire (PNPS, CNRS/INSU, France) for financial support. Numerical experiments presented in this paper were carried out using the Grid' 5000 experimental testbed, an initiative from the French Ministry of Research through the ACI GRID incentive action, INRIA, CNRS and RENATER, and other contributing partners (see http://www.grid5000.fr). G. F. acknowledges the support of the NSERC of Canada and the contribution of the Canada Research Chair Program. The authors gratefully acknowledge the Kepler team and everyone who has contributed to making this mission possible. Funding for the Kepler mission is provided by NASA's Science Mission Directorate. NR 60 TC 25 Z9 25 U1 0 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2011 VL 530 AR A3 DI 10.1051/0004-6361/201016412 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OW UT WOS:000291027400003 ER PT J AU Cho, KS Bong, SC Moon, YJ Shanmugaraju, A Kwon, RY Park, YD AF Cho, K. -S. Bong, S. -C. Moon, Y. -J. Shanmugaraju, A. Kwon, R. -Y. Park, Y. D. TI Relationship between multiple type II solar radio bursts and CME observed by STEREO/SECCHI SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE shock waves; Sun: coronal mass ejections (CMEs); Sun: radio radiation; Sun: corona ID CORONAL MASS EJECTIONS; WHITE-LIGHT OBSERVATIONS; STEREO MISSION; LARGE-ANGLE; FLARE MYTH; E-CALLISTO; SHOCK; ORIGIN; RADIOHELIOGRAPH; KINEMATICS AB Aims. Two or more type II bursts are occasionally observed in close time sequence during solar eruptions, which are known as multiple type II bursts. The origin of the successive burst has been interpreted in terms of coronal mass ejections (CMEs) and/or flares. Detailed investigations of the relationship between CMEs and the bursts enable us to understand the nature of the multiple type II bursts. In this study, we examine multiple type II bursts and compare their kinematics with those of a CME occurring near the time of the bursts. Methods. To do this, we selected multiple type II bursts observed by the Culgoora radiospectrographs and a limb CME detected in the low corona field of view (1.4-4 R(s)) of a STEREO/SECCHI instrument on December 31, 2007. To determine the 3D kinematics of the CME, we applied the stereoscopic technique to the STEREO/SECCHI data. Results. Our main results are as follows: (1) the multiple type II bursts occurred successively at ten minute intervals and displayed various emission structures and frequency drifting rates; (2) near the time of the bursts, the CME was observed by STEREO and SOHO simultaneously, but no evidence of other CMEs was detected; (3) inspection of the 3D kinematics of the CME using the stereoscopic observation by STEREO/SECCHI revealed that the CME propagated along the eastward radial direction as viewed from the Earth; (4) very close time and height associations were found between the CME nose and the first type II burst, and between CME-streamer interaction and the second type II burst. Conclusions. On the basis of these results, we suggest that a single shock in the leading edge of the CME could be the source of the multiple type II bursts and support the notion that the CME nose and the CME-streamer interaction are the two main mechanisms able to generate the bursts. C1 [Cho, K. -S.; Bong, S. -C.; Park, Y. D.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Moon, Y. -J.] Kyung Hee Univ, Dept Astron & Space Sci, Yongin 446701, Kyungki Do, South Korea. [Shanmugaraju, A.] Arul Anandar Coll, Dept Phys, Madurai 625514, Tamil Nadu, India. [Kwon, R. -Y.] Seoul Natl Univ, Dept Phys & Astron, Astron Program, Seoul 151, South Korea. [Kwon, R. -Y.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Cho, KS (reprint author), Korea Astron & Space Sci Inst, Taejon 305348, South Korea. EM kscho@kasi.re.kr RI Moon, Yong-Jae/E-1711-2013 FU Development of Korean Space Weather Center; Ministry of Education, Science and Technology [R31-10016]; south Korean Government (MOEHRD) [KRF-2008-314-C00158, 20090071744, 20100014501] FX This work was supported by the Development of Korean Space Weather Center, a project of KASI, and the KASI basic research fund. Y.J.M. was supported by the WCU program (No. R31-10016) though the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology and by the Korea Research Foundation Grant funded by the south Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2008-314-C00158, 20090071744 and 20100014501). NR 35 TC 16 Z9 17 U1 0 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2011 VL 530 AR A16 DI 10.1051/0004-6361/201015578 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OW UT WOS:000291027400016 ER PT J AU de Leon, J Mothe-Diniz, T Licandro, J Pinilla-Alonso, N Campins, H AF de Leon, J. Mothe-Diniz, T. Licandro, J. Pinilla-Alonso, N. Campins, H. TI New observations of asteroid (175706) 1996 FG3, primary target of the ESA Marco Polo-R mission SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE minor planets, asteroids: individual: (175706) 1996 FG3; methods: observational; techniques: spectroscopic ID NEAR-EARTH ASTEROIDS; SPECTRAL PROPERTIES; BINARY ASTEROIDS; PHYSICAL-CHARACTERIZATION; ORDINARY CHONDRITES; ORIGIN; MODEL; FG(3); LIGHTCURVES; DISRUPTION AB Context. Near-Earth asteroid (175706) 1996 FG3 is the primary target of the ESA Marco Polo-R mission, which was selected for the assessment study phase of ESA M3 missions. This is a primitive (C-type), binary asteroid that will allow new research to be performed. The primary is a rapidly rotating (3.6 h) small asteroid (1.4 km diameter) that is almost spherical and has a satellite of similar to 400 m. Aims. We analyse new ground-based spectroscopic data of 1996 FG3 to help us characterise its surface composition and prepare for the mission. Methods. We obtained a near-infrared spectrum covering the range 0.8-2.5 mu m, using the camera-spectrograph NICS at the 3.6 m telescope TNG (Telescopio Nazionale Galileo), located at "El Roque de los Muchachos" Observatory on La Palma, Spain. We combine our near-infrared spectrum with previously published data, and compare all the available spectra of this asteroid with the spectra of meteorites to constrain the mineralogy of the asteroid. Results. Our spectrum of FG3 differs remarkably from previously published ones. Spectral classification performed using the complete visible and near-infrared range yields more than one result, varying from C to Xk types. However, all the possible spectral types indicate that this asteroid is a primitive object. The comparison with meteorites behaves in the same way, providing several good matches to our new near-infrared spectrum (CM2 carbonaceous chondrite, and L6 and H4 ordinary chondrites), and only one match in the case of the previously published spectra (weakly shocked H4 ordinary chondrite, dark vein). The albedo of the asteroid (similar to 0.04), is typical of a primitive object, and is consistent with the reflectance value at 0.55 mu m of the CM2 carbonaceous chondrite. Further observations will be essential to help us characterise more clearly the mineralogy of this asteroid. C1 [de Leon, J.] CSIC, Inst Astrofis Andalucia, E-18008 Granada, Spain. [Mothe-Diniz, T.] Univ Fed Rio de Janeiro, Observ Valongo Lad Pero Antonio, BR-43200809 Rio De Janeiro, Brazil. [Licandro, J.] IAC, San Cristobal la Laguna 38205, Spain. [Licandro, J.] ULL, Dept Astrofis, San Cristobal la Laguna 38205, Spain. [Pinilla-Alonso, N.] NASA, Ames Res Ctr, NASA Postdoctoral Program, Moffett Field, CA 94035 USA. [Campins, H.] Univ Cent Florida, Orlando, FL 32816 USA. RP de Leon, J (reprint author), CSIC, Inst Astrofis Andalucia, Glorieta Astron S-N, E-18008 Granada, Spain. EM jleon@iaa.es; thais.mothe@astro.ufrj.br; jlicandr@iac.es RI Astrofisica, Inct/H-9455-2013; de Leon, Julia/H-7569-2015; 7, INCT/H-6207-2013 OI de Leon, Julia/0000-0002-0696-0411; FU Ministerio de Ciencia e Innovacion [AYA 2009-08011]; Junta de Andalucia [PE07-TIC2744]; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq/Brasil; Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro - FAPERJ; Spanish "Ministerio de Ciencia e Innovacion" [AYA2008-06202-C03-02]; NASA; National Science Foundation FX This research has been partially funded by the Ministerio de Ciencia e Innovacion through the project AYA 2009-08011. J.d.L. acknowledges a post-doctoral contract by the Junta de Andalucia research project PE07-TIC2744. T. M. D. was supported by the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq/Brasil and by the Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro - FAPERJ. J.L. gratefully acknowledges support from the Spanish "Ministerio de Ciencia e Innovacion" project AYA2008-06202-C03-02. N.P.A. acknowledges the support from NASA Postdoctoral Program administered by Oak Ridge Associated Universities through a contract with NASA. H. Campins acknowledges support from NASA and the National Science Foundation. This paper is based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Centro Galileo Galilei of the INAF (Instituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. NR 32 TC 16 Z9 16 U1 0 U2 11 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2011 VL 530 AR L12 DI 10.1051/0004-6361/201117041 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OW UT WOS:000291027400165 ER PT J AU Gruberbauer, M Huber, D Kuschnig, R Weiss, WW Guenther, DB Matthews, JM Moffat, AFJ Rowe, JF Rucinski, SM Sasselov, D Fischer, M AF Gruberbauer, M. Huber, D. Kuschnig, R. Weiss, W. W. Guenther, D. B. Matthews, J. M. Moffat, A. F. J. Rowe, J. F. Rucinski, S. M. Sasselov, D. Fischer, M. TI MOST observations of the roAp stars HD 9289, HD 99563, and HD 134214 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: oscillations; stars: chemically peculiar; stars: magnetic field; stars: rotation ID OSCILLATING AP STARS; UPPER ATMOSPHERIC VARIABILITY; PHOTOMETRY; SPACE; HD-134214 AB We report on the analysis of high-precision space-based photometry of the roAp (rapidly oscillating Ap) stars HD 9289, HD 99563, and HD 134214. All three stars were observed by the MOST satellite for more than 25 days, allowing unprecedented views of their pulsation. We find previously unknown candidate frequencies in all three stars. We establish the rotation period of HD 9289 (8.5 d) for the first time and show that the star is pulsating in two modes that show different mode geometries. We present a detailed analysis of HD 99563' s mode multiplet and find a new candidate frequency that appears to be independent of the previously known mode. Finally, we report on 11 detected pulsation frequencies in HD 134214, nine of which have never before been detected in photometry, and three of which are completely new detections. Thanks to the unprecedentedly small frequency uncertainties, the p-mode spectrum of HD 134214 can be seen to have a well-defined large frequency spacing similar to the well-studied roAp star HD 24712 (HR 1217). C1 [Gruberbauer, M.; Huber, D.; Kuschnig, R.; Weiss, W. W.] Univ Vienna, Inst Astron IfA, A-1180 Vienna, Austria. [Gruberbauer, M.; Guenther, D. B.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Huber, D.] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Matthews, J. M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Moffat, A. F. J.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Rowe, J. F.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Rucinski, S. M.] Univ Toronto, Dept Phys & Astron, Toronto, ON M5S 3H4, Canada. [Sasselov, D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Fischer, M.] Vienna Univ Technol, Inst Telecommun, A-1040 Vienna, Austria. RP Gruberbauer, M (reprint author), Univ Vienna, Inst Astron IfA, Turkenschanzstr 17, A-1180 Vienna, Austria. EM mgruberbauer@ap.smu.ca; dhuber@physics.usyd.edu.au; rainer.kuschnig@univie.ac.at; werner.weiss@univie.ac.at; guenther@ap.smu.ca; matthews@astro.ubc.ca; moffat@astro.umontreal.ca; jasonfrowe@gmail.com; rucinski@astro.utoronto.ca; sasselov@cfa.harvard.edu; michael.fischer@nt.tuwien.ac.at FU Natural Sciences & Engineering Research Council (NSERC) Canada; Austrian Science Funds [P 22691-N16] FX The authors dedicate this work to the memory of our dear friend and colleague Dr. Piet Reegen, who will be greatly missed by us all. The authors would like to thank Hideyuki Saio (Tohoku University) for contributing his models and valuable discussion. M.G., D.B.G., A.F.J.M., J.M.M., and S.R. acknowledge funding from the Natural Sciences & Engineering Research Council (NSERC) Canada, and W. W. from the Austrian Science Funds (P 22691-N16). NR 33 TC 3 Z9 4 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2011 VL 530 AR A135 DI 10.1051/0004-6361/201116736 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OW UT WOS:000291027400135 ER PT J AU Hekker, S Basu, S Stello, D Kallinger, T Grundahl, F Mathur, S Garcia, RA Mosser, B Huber, D Bedding, TR Szabo, R De Ridder, J Chaplin, WJ Elsworth, Y Hale, SJ Christensen-Dalsgaard, J Gilliland, RL Still, M McCauliff, S Quintana, EV AF Hekker, S. Basu, S. Stello, D. Kallinger, T. Grundahl, F. Mathur, S. Garcia, R. A. Mosser, B. Huber, D. Bedding, T. R. Szabo, R. De Ridder, J. Chaplin, W. J. Elsworth, Y. Hale, S. J. Christensen-Dalsgaard, J. Gilliland, R. L. Still, M. McCauliff, S. Quintana, E. V. TI Asteroseismic inferences on red giants in open clusters NGC 6791, NGC 6819, and NGC 6811 using Kepler SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: late-type; open clusters and associations: general; methods: observational; techniques: photometric; asteroseismology ID SOLAR-LIKE OSCILLATIONS; STELLAR EVOLUTION DATABASE; DWARF COOLING SEQUENCE; OLD OPEN CLUSTERS; 1ST 4 MONTHS; CCD PHOTOMETRY; METAL-RICH; POPULATION SYNTHESIS; BRANCH BUMP; HOT STARS AB Context. Four open clusters are present in the Kepler field of view and timeseries of nearly a year in length are now available. These timeseries allow us to derive asteroseismic global oscillation parameters of red-giant stars in the three open clusters NGC 6791, NGC 6819 and NGC 6811. From these parameters and effective temperatures, we derive masses, radii and luminosities for the clusters as well as field red giants. Aims. We study the influence of evolution and metallicity on the observed red-giant populations. Methods. The global oscillation parameters are derived using different published methods and the effective temperatures are derived from 2MASS colours. The observational results are compared with BaSTI evolution models. Results. We find that the mass has significant influence on the asteroseismic quantities Delta nu vs nu(max) relation, while the influence of metallicity is negligible, under the assumption that the metallicity does not affect the excitation/damping of the oscillations. The positions of the stars in the H-R diagram depend on both mass and metallicity. Furthermore, the stellar masses derived for the field stars are bracketed by those of the cluster stars. Conclusions. Both the mass and metallicity contribute to the observed difference in locations in the H-R diagram of the old metal-rich cluster NGC 6791 and the middle-aged solar-metallicity cluster NGC 6819. For the young cluster NGC 6811, the explanation of the position of the stars in the H-R diagram challenges the assumption of solar metallicity, and this open cluster might have significantly lower metallicity [Fe/H] in the range -0.3 to -0.7 dex. Also, nearly all the observed field stars seem to be older than NGC 6811 and younger than NGC 6791. C1 [Hekker, S.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 XH Amsterdam, Netherlands. [Hekker, S.; Chaplin, W. J.; Elsworth, Y.; Hale, S. J.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Basu, S.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Stello, D.; Huber, D.; Bedding, T. R.] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Kallinger, T.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Grundahl, F.; Christensen-Dalsgaard, J.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Mathur, S.] NCAR, High Altitude Observ, Boulder, CO 80307 USA. [Garcia, R. A.] Univ Paris 7 Diderot, Ctr Saclay, Lab AIM, CEA DSM CNRS,IRFU SAp, F-91191 Gif Sur Yvette, France. [Mosser, B.] Univ Paris 07, Observ Paris, Univ Pierre & Marie Curie, LESIA,UMR8109, F-92195 Meudon, France. [Szabo, R.] Hungarian Acad Sci, Konkoly Observ, H-1121 Budapest, Hungary. [De Ridder, J.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Gilliland, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Still, M.] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. [McCauliff, S.] Orbital Sci Corp, NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Quintana, E. V.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. RP Hekker, S (reprint author), Univ Amsterdam, Astron Inst Anton Pannekoek, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands. EM S.Hekker@uva.nl RI Hale, Steven/E-3472-2015; OI Kallinger, Thomas/0000-0003-3627-2561; Bedding, Timothy/0000-0001-5943-1460; Hale, Steven/0000-0002-6402-8382; Szabo, Robert/0000-0002-3258-1909; Bedding, Tim/0000-0001-5222-4661; Garcia, Rafael/0000-0002-8854-3776 FU UK Science and Technology Facilities Council (STFC); NASAs Science Mission Directorate; Netherlands Organisation for Scientific Research (NWO); Hungarian Academy of Sciences; Hungarian OTKA [K83790, MB08C 81013]; National Science Foundation FX The authors gratefully acknowledge the Kepler Science Team and all those who have contributed to making the Kepler mission possible. Funding for the Kepler Discovery mission is provided by NASAs Science Mission Directorate. This work has made use of BaSTI web tools. S. H., W.J.C., Y.E. and S.J.H. acknowledge financial support from the UK Science and Technology Facilities Council (STFC). S. H. also acknowledges financial support from the Netherlands Organisation for Scientific Research (NWO). This project has been supported by the "Lendulet" program of the Hungarian Academy of Sciences and the Hungarian OTKA grants K83790 and MB08C 81013. NCAR is supported by the National Science Foundation. NR 60 TC 32 Z9 32 U1 1 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2011 VL 530 AR A100 DI 10.1051/0004-6361/201016303 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OW UT WOS:000291027400100 ER PT J AU Hounsell, R Darnley, MJ Bode, MF Harman, DJ Helton, LA Schwarz, GJ AF Hounsell, R. Darnley, M. J. Bode, M. F. Harman, D. J. Helton, L. A. Schwarz, G. J. TI A very luminous, highly extinguished, very fast nova-V1721 Aquilae SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE novae; cataclysmic variables; stars: individual: V1721 Aql ID NOVA U-SCORPII; CLASSICAL NOVAE; RECURRENT NOVAE; QUIESCENCE; EVOLUTION; OUTBURST; REMNANTS; LIGHT AB Studies indicate that fast novae are primarily located within the plane of the Milky Way and slow novae are found within its bulge. Because of high interstellar extinction along the line of sight many novae lying close to the plane are missed and only the brightest seen. One nova lying very close to the Galactic plane is V1721 Aquilae, which was discovered in outburst on 2008 September 22.5 UT. Examination of spectra obtained 2.69 days after outburst revealed very high expansion velocities (FWHM of the Ha emission approximate to 6450 km s(-1)). In this paper we have used available pre- and post-outburst photometry and post-outburst spectroscopy to conclude that the object is a very fast, luminous, and highly extinguished (A(V) = 11.6 +/- 0.2) nova system with an average ejection velocity of approximate to 3400 km s(-1). Pre-outburst near-IR colours from the 2MASS point source catalogue indicate that at quiescence the object is similar to many quiescent classical novae and appears to have a main sequence/sub-giant secondary rather than a giant counterpart. Based on the speed of decline of the nova and its emission line profiles we hypothesise that the axis ratio of the nova ejecta is similar to 1.4 and that its inclination is such that the central binary accretion disc is face-on to the observer. As such, the accretion disc's blue contribution to the system's near-IR quiescent colours may be significant. Simple models of the nova ejecta have been constructed using the morphological modelling code XS5, and the results support the above hypothesis. Precise spectral classification of this object has been exceptionally difficult owing to low signal-to-noise levels and high extinction, which has eliminated all evidence of any He/N or Fe II emission within the spectra. We suggest two possibilities for the nature of V1721 Aql: that it is a U Sco type RN with a sub-giant secondary or, less likely, that it is a highly energetic bright and fast classical nova with a main sequence secondary. Future monitoring of the object for possible RN episodes may be worthwhile, as would archival searches for previous outbursts. C1 [Hounsell, R.; Darnley, M. J.; Bode, M. F.; Harman, D. J.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Helton, L. A.] NASA, Ames Res Ctr, USRA, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Helton, L. A.] Univ Minnesota, Dept Astron, Minneapolis, MN 55455 USA. [Schwarz, G. J.] Amer Astron Soc, Washington, DC 20009 USA. RP Hounsell, R (reprint author), Liverpool John Moores Univ, Astrophys Res Inst, 12 Quays House, Birkenhead CH41 1LD, Merseyside, England. EM rah@astro.livjm.ac.uk FU Science and Technology Facilities Council of the UK; National Aeronautics and Space Administration; National Science Foundation FX This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infra-red Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. We would like to thank Stephen Smartt and Rubina Kotak of Queen's University Belfast for pointing out this very interesting nova and providing us with further information. We would also like to thank an anonymous referee for detailed and thoughtful comments that have helped improve the paper. R. Hounsell is supported by a Ph.D. studentship from the Science and Technology Facilities Council of the UK. NR 30 TC 5 Z9 5 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2011 VL 530 AR A81 DI 10.1051/0004-6361/201016085 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OW UT WOS:000291027400081 ER PT J AU Inglis, AR Zimovets, IV Dennis, BR Kontar, EP Nakariakov, VM Struminsky, AB Tolbert, AK AF Inglis, A. R. Zimovets, I. V. Dennis, B. R. Kontar, E. P. Nakariakov, V. M. Struminsky, A. B. Tolbert, A. K. TI Instrumental oscillations in RHESSI count rates during solar flares SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Sun: corona; Sun: oscillations; Sun: flares ID QUASI-PERIODIC PULSATIONS; X-RAY-EMISSION; BRAGG CRYSTAL SPECTROMETER; DOPPLER-SHIFT OSCILLATIONS; MICROWAVE; RADIO; YOHKOH AB Aims. We seek to illustrate the analysis problems posed by RHESSI spacecraft motion by studying persistent instrumental oscillations found in the lightcurves measured by RHESSI's X-ray detectors in the 6-12 keV and 12-25 keV energy range during the decay phase of the flares of 2004 November 4 and 6. Methods. The various motions of the RHESSI spacecraft which may contribute to the manifestation of oscillations are studied. The response of each detector in turn is also investigated. Results. We find that on 2004 November 6 the observed oscillations correspond to the nutation period of the RHESSI instrument. These oscillations are of greatest amplitude for detector 5, while in the lightcurves of many other detectors the oscillations are small or undetectable. We also find that the variation in detector pointing is much larger during this flare than the counterexample of 2004 November 4. Conclusions. Sufficiently large nutation motions of the RHESSI spacecraft lead to clearly observable oscillations in count rates, posing a significant hazard for data analysis. This issue is particularly problematic for detector 5 due to its design characteristics. Dynamic correction of the RHESSI counts, accounting for the livetime, data gaps, and the transmission of the bi-grid collimator of each detector, is required to overcome this issue. These corrections should be applied to all future oscillation studies. C1 [Inglis, A. R.; Dennis, B. R.; Tolbert, A. K.] NASA, Solar Phys Lab, Heliophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Zimovets, I. V.; Struminsky, A. B.] Russian Acad Sci, Space Res Inst, Moscow 117997, Russia. [Kontar, E. P.] Univ Glasgow, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Nakariakov, V. M.] Univ Warwick, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England. [Inglis, A. R.] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland. [Nakariakov, V. M.] Russian Acad Sci, Cent Astron Observ Pulkovo, St Petersburg 196140, Russia. [Tolbert, A. K.] Wyle Informat Syst Inc, Mclean, VA 22102 USA. RP Inglis, AR (reprint author), NASA, Solar Phys Lab, Heliophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM a.r.inglis@gmail.com RI Kontar, Eduard/B-7897-2008; Dennis, Brian/C-9511-2012; Inglis, Andrew/D-7674-2012; Nakariakov, Valery/E-2375-2013; Lee, SungHwan/O-2563-2013; Zimovets, Ivan/E-4431-2017 OI Kontar, Eduard/0000-0002-8078-0902; Nakariakov, Valery/0000-0001-6423-8286; Zimovets, Ivan/0000-0001-6995-3684 FU NASA; Russian Foundation for Basic Research [10-02-01285-a]; programme Minnauki [14.740.11.0086]; Royal Society; [NSch-3200.2010.2] FX We are grateful to Richard Schwartz for assistance with RHESSI data and software, and to Gordon Hurford for helpful comments. We also extend our thanks to the anonymous referee, whose comments were instrumental in improving the manuscript. A.R.I. was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. I.V.Z. and A.B.S. were partially supported by the Russian Foundation for Basic Research (grant No. 10-02-01285-a), by the grant NSch-3200.2010.2 and by the programme Minnauki Contract No. 14.740.11.0086. I.V.Z., V.M.N. and A.B.S. are also supported by the Royal Society British-Russian Research Collaboration grant. NR 29 TC 5 Z9 5 U1 0 U2 8 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2011 VL 530 AR A47 DI 10.1051/0004-6361/201016322 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OW UT WOS:000291027400047 ER PT J AU Jones, AP Nuth, JA AF Jones, A. P. Nuth, J. A., III TI Dust destruction in the ISM: a re-evaluation of dust lifetimes SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: abundances; dust, extinction ID HYDROGENATED AMORPHOUS-CARBON; DIFFUSE INTERSTELLAR-MEDIUM; HUBBLE-SPACE-TELESCOPE; LONG-PERIOD VARIABLES; X-RAY-EMISSION; 3.4 MU-M; SILICATE GRAINS; INTERPLANETARY DUST; CIRCUMSTELLAR DUST; ASTROPHYSICAL ENVIRONMENTS AB Context. There is a long-standing conundrum in interstellar dust studies relating to the discrepancy between the time-scales for dust formation from evolved stars and the apparently more rapid destruction in supernova-generated shock waves. Aims. We re-examine some of the key issues relating to dust evolution and processing in the interstellar medium. Methods. We use recent and new constraints from observations, experiments, modelling and theory to re-evaluate dust formation in the interstellar medium (ISM). Results. We find that the discrepancy between the dust formation and destruction time-scales may not be as significant as has previously been assumed because of the very large uncertainties involved. Conclusions. The derived silicate dust lifetime could be compatible with its injection time-scale, given the inherent uncertainties in the dust lifetime calculation. The apparent need to re-form significant quantities of silicate dust in the tenuous interstellar medium may therefore not be a strong requirement. Carbonaceous matter, on the other hand, appears to be rapidly recycled in the ISM and, in contrast to silicates, there are viable mechanisms for its re-formation in the ISM. C1 [Jones, A. P.] Univ Paris 11, IAS, F-91405 Orsay, France. [Jones, A. P.] CNRS, F-91405 Orsay, France. [Nuth, J. A., III] NASA, Astrochem Lab, Solar Syst Explorat Div, GSFC, Greenbelt, MD 20771 USA. RP Jones, AP (reprint author), Univ Paris 11, IAS, Batiment 121, F-91405 Orsay, France. EM Anthony.Jones@ias.u-psud.fr; Joseph.A.Nuth@nasa.gov RI Nuth, Joseph/E-7085-2012 FU Agence National de la Recherche (ANR) [ANR-07-BLAN-0364-01] FX We wish to thank our numerous colleagues and friends for interesting and stimulating discussions on dust evolution in the ISM. This research was made possible through the key financial support of the Agence National de la Recherche (ANR) through the program Cold Dust (ANR-07-BLAN-0364-01). NR 150 TC 84 Z9 84 U1 1 U2 8 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2011 VL 530 AR A44 DI 10.1051/0004-6361/201014440 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OW UT WOS:000291027400044 ER PT J AU Muller, C Kadler, M Ojha, R Wilms, J Bock, M Edwards, PG Fromm, CM Hase, H Horiuchi, S Katz, U Lovell, JEJ Plotz, C Pursimo, T Richers, S Ros, E Rothschild, RE Taylor, GB Tingay, SJ Zensus, JA AF Mueller, C. Kadler, M. Ojha, R. Wilms, J. Boeck, M. Edwards, P. G. Fromm, C. M. Hase, H. Horiuchi, S. Katz, U. Lovell, J. E. J. Ploetz, C. Pursimo, T. Richers, S. Ros, E. Rothschild, R. E. Taylor, G. B. Tingay, S. J. Zensus, J. A. TI Dual-frequency VLBI study of Centaurus A on sub-parsec scales The highest-resolution view of an extragalactic jet SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE techniques: high angular resolution; galaxies: individual: Centaurus A; black hole physics; galaxies: active; galaxies: individual: NGC 5128; galaxies: jets ID ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; RADIO GALAXY; BLACK-HOLE; NGC 5128; EVOLUTION AB Context. Centaurus A is the closest active galactic nucleus. High resolution imaging using Very Long Baseline Interferometry (VLBI) enables us to study the spectral and kinematic behavior of the radio jet-counterjet system on sub-parsec scales, providing essential information for jet emission and formation models. Aims. Our aim is to study the structure and spectral shape of the emission from the central-parsec region of Cen A. Methods. As a target of the Southern Hemisphere VLBI monitoring program TANAMI (Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry), VLBI observations of Cen A are made regularly at 8.4 and 22.3 GHz with the Australian Long Baseline Array (LBA) and associated telescopes in Antarctica, Chile, and South Africa. Results. The first dual-frequency images of this source are presented along with the resulting spectral index map. An angular resolution of 0.4 mas x 0.7 mas is achieved at 8.4 GHz, corresponding to a linear scale of less than 0.013 pc. Hence, we obtain the highest resolution VLBI image of CenA, comparable to previous space-VLBI observations. By combining with the 22.3 GHz image, which has been taken without contributing transoceanic baselines at somewhat lower resolution, we present the corresponding dual-frequency spectral index distribution along the sub-parsec scale jet revealing the putative emission regions for recently detected gamma-rays from the core region by Fermi/LAT. Conclusions. We resolve the innermost structure of the milliarcsecond scale jet and counterjet system of CenA into discrete components. The simultaneous observations at two frequencies provide the highest resolved spectral index map of an AGN jet allowing us to identify multiple possible sites as the origin of the high energy emission. C1 [Mueller, C.; Kadler, M.; Wilms, J.; Boeck, M.; Richers, S.] Univ Erlangen Nurnberg, Dr Remeis Sternwarte, D-96049 Bamberg, Germany. [Mueller, C.; Kadler, M.; Wilms, J.; Boeck, M.; Richers, S.] Univ Erlangen Nurnberg, ECAP, D-96049 Bamberg, Germany. [Kadler, M.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Kadler, M.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Kadler, M.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Edwards, P. G.] Australia Telescope Natl Facil, CSIRO Astron & Space Sci, Epping, NSW 1710, Australia. [Fromm, C. M.; Ros, E.; Zensus, J. A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Hase, H.; Ploetz, C.] Geodet Observ Wettzell, Fed Agcy Cartog & Geodesy, D-93444 Bad Kotzting, Germany. [Horiuchi, S.] CDSCC, CSIRO Astron & Space Sci, Tuggeranong, ACT 2901, Australia. [Katz, U.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Lovell, J. E. J.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. [Pursimo, T.] Nord Opt Telescope, Santa Cruz De La Palma 38700, Spain. [Ros, E.] Univ Valencia, Dept Astron & Astrofis, E-46100 Valencia, Spain. [Rothschild, R. E.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Taylor, G. B.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Tingay, S. J.] Curtin Univ Technol, Curtin Inst Radio Astron, Bentley, WA 6102, Australia. RP Muller, C (reprint author), Univ Erlangen Nurnberg, Dr Remeis Sternwarte, Sternwartstr 7, D-96049 Bamberg, Germany. EM cornelia.mueller@sternwarte.uni-erlangen.de RI Wilms, Joern/C-8116-2013; Katz, Uli/E-1925-2013; Tingay, Steven/B-5271-2013 OI Wilms, Joern/0000-0003-2065-5410; Katz, Uli/0000-0002-7063-4418; Ros, Eduardo/0000-0001-9503-4892; Kadler, Matthias/0000-0001-5606-6154; FU Bundesministerium fur Wirtschaft und Technologie under Deutsches Zentrum fur Luft- und Raumfahrt [50 OR 0808]; European Commission [ITN 215212]; NASA [NNH09ZDA001N]; Spanish MICINN [AYA2009-13036-C02-02]; Commonwealth of Australia FX We acknowledge partial funding from the Bundesministerium fur Wirtschaft und Technologie under Deutsches Zentrum fur Luft- und Raumfahrt grant 50 OR 0808 and from the European Commission under contract number ITN 215212 "Black Hole Universe". This research was funded in part by NASA through Fermi Guest Investigator grant NNH09ZDA001N. This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. E. R. acknowledges partial support by the Spanish MICINN through grant AYA2009-13036-C02-02. The Long Baseline Array is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. We thank the referee, D. L. Jauncey, for insightful comments which helped us to improve the manuscript. NR 24 TC 19 Z9 19 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2011 VL 530 AR L11 DI 10.1051/0004-6361/201116605 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OW UT WOS:000291027400164 ER PT J AU Omont, A Neri, R Cox, P Lupu, R Guelin, M van der Werf, P Weiss, A Ivison, R Negrello, M Leeuw, L Lehnert, M Smail, I Verma, A Baker, AJ Beelen, A Aguirre, JE Baes, M Bertoldi, F Clements, DL Cooray, A Coppin, K Dannerbauer, H De Zotti, G Dye, S Fiolet, N Frayer, D Gavazzi, R Hughes, D Jarvis, M Krips, M Michalowski, MJ Murphy, EJ Riechers, D Serjeant, S Swinbank, AM Temi, P Vaccari, M Vieira, JD Auld, R Buttiglione, B Cava, A Dariush, A Dunne, L Eales, SA Fritz, J Gomez, H Ibar, E Maddox, S Pascale, E Pohlen, M Rigby, E Smith, DJB Bock, J Bradford, CM Glenn, J Scott, KS Zmuidzinas, J AF Omont, A. Neri, R. Cox, P. Lupu, R. Guelin, M. van der Werf, P. Weiss, A. Ivison, R. Negrello, M. Leeuw, L. Lehnert, M. Smail, I. Verma, A. Baker, A. J. Beelen, A. Aguirre, J. E. Baes, M. Bertoldi, F. Clements, D. L. Cooray, A. Coppin, K. Dannerbauer, H. De Zotti, G. Dye, S. Fiolet, N. Frayer, D. Gavazzi, R. Hughes, D. Jarvis, M. Krips, M. Michalowski, M. J. Murphy, E. J. Riechers, D. Serjeant, S. Swinbank, A. M. Temi, P. Vaccari, M. Vieira, J. D. Auld, R. Buttiglione, B. Cava, A. Dariush, A. Dunne, L. Eales, S. A. Fritz, J. Gomez, H. Ibar, E. Maddox, S. Pascale, E. Pohlen, M. Rigby, E. Smith, D. J. B. Bock, J. Bradford, C. M. Glenn, J. Scott, K. S. Zmuidzinas, J. TI Observation of H2O in a strongly lensed Herschel-ATLAS source at z=2.3 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: high-redshift; galaxies: starburst; galaxies: active; infrared: galaxies; submillimeter: galaxies; radio lines: galaxies ID MOLECULAR GAS EXCITATION; STAR-FORMING GALAXIES; HIGH-REDSHIFT; INTERSTELLAR-MEDIUM; CLOVERLEAF QUASAR; MARKARIAN 231; INFRARED GALAXIES; APM 08279+5255; WATER; EMISSION AB The Herschel survey, H-ATLAS, with its large areal coverage, has recently discovered a number of bright, strongly lensed high-z submillimeter galaxies. The strong magnification makes it possible to study molecular species other than CO, which are otherwise difficult to observe in high-z galaxies. Among the lensed galaxies already identified by H-ATLAS, the source J090302.9-014127B (SDP.17b) at z = 2.305 is remarkable because of its excitation conditions and a tentative detection of the H2O 2(02)-1(11) emission line (Lupu et al. 2010, ApJ, submitted). We report observations of this line in SDP.17b using the IRAM interferometer equipped with its new 277-371 GHz receivers. The H2O line is detected at a redshift of z = 2.3049 +/- 0.0006, with a flux of 7.8 +/- 0.5 Jy km s(-1) and a FWHM of 250 +/- 60 km s(-1). The new flux is 2.4 times weaker than the previous tentative detection, although both remain marginally consistent within 1.6 sigma. The intrinsic line luminosity and ratio of H2O(2(02)-1(11))/CO(8-7) are comparable with those of the nearby starburst/enshrouded-AGN Mrk 231, and the ratio I(H2O)/L-FIR is even higher, suggesting that SDP.17b could also host a luminous AGN. The detection of a strong H2O 2(02)-1(11) line in SDP.17b implies an efficient excitation mechanism of the water levels that must occur in very dense and warm interstellar gas probably similar to Mrk 231. C1 [Omont, A.; Fiolet, N.; Gavazzi, R.] Univ Paris 06, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Omont, A.; Fiolet, N.; Gavazzi, R.] Inst Astrophys, CNRS, UMR7095, F-75014 Paris, France. [Neri, R.; Cox, P.; Guelin, M.; Krips, M.] Inst Radioastron Millimetr IRAM, F-38406 St Martin Dheres, France. [Lupu, R.; Aguirre, J. E.; Scott, K. S.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [van der Werf, P.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Negrello, M.; Serjeant, S.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Beelen, A.; Fiolet, N.] Univ Paris 11, F-91405 Orsay, France. [Beelen, A.; Fiolet, N.] CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Bertoldi, F.] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Clements, D. L.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Dept Phys, Astrophys Grp, London SW7, England. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Smail, I.; Swinbank, A. M.] Univ Durham, Inst Computat Cosmol, Durham DH1 3LE, England. [Dannerbauer, H.] Univ Paris Diderot, Lab Astrophys Instrumentat & Modelisat Paris Sacl, Inst Rech Fondamentales Univers Irfu, CEA,DSM,CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [De Zotti, G.] SISSA, I-34136 Trieste, Italy. [De Zotti, G.] Osserv Astron Padova, INAF, I-35122 Padua, Italy. [Dye, S.; Auld, R.; Dariush, A.; Eales, S. A.; Gomez, H.; Pascale, E.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Hughes, D.] Inst Nacl Astrofis Opt & Electr, Puebla 72000, Mexico. [Ivison, R.; Ibar, E.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Dunne, L.; Maddox, S.; Rigby, E.; Smith, D. J. B.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Lehnert, M.] Univ Paris Diderot, CNRS, Observ Paris, GEPI, F-92190 Meudon, France. [Leeuw, L.] SETI Inst, Mountain View, CA 94043 USA. [Temi, P.] NASA, Astrophys Branch, Ames Res Ctr, Moffett Field, CA 94035 USA. [Verma, A.] Univ Oxford, Oxford OX1 3RH, England. [Weiss, A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Frayer, D.] Natl Radio Astron Observ, Green Bank, WV 24944 USA. [Vaccari, M.] INAF IASF Milano, I-20133 Milan, Italy. [Michalowski, M. J.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Buttiglione, B.; Fritz, J.] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Dariush, A.] Inst Res Fundamental Sci IPM, Sch Astron, Tehran, Iran. [Murphy, E. J.; Riechers, D.; Bock, J.; Bradford, C. M.; Zmuidzinas, J.] CALTECH, Pasadena, CA 91125 USA. [Bock, J.; Bradford, C. M.; Zmuidzinas, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Glenn, J.] Univ Colorado, Boulder, CO 80303 USA. [Baes, M.] Univ Ghent, B-9000 Ghent, Belgium. [Cava, A.] Univ Complutense Madrid, Dept Astrofis, Fac CC Fis, E-28040 Madrid, Spain. [Coppin, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Baker, A. J.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Jarvis, M.; Smith, D. J. B.] Univ Hertfordshire, Ctr Astrophys, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England. RP Omont, A (reprint author), Univ Paris 06, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. EM omont@iap.fr RI Baes, Maarten/I-6985-2013; Smail, Ian/M-5161-2013; Lupu, Roxana/P-9060-2014; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI Dye, Simon/0000-0002-1318-8343; /0000-0002-0729-2988; Baes, Maarten/0000-0002-3930-2757; Smail, Ian/0000-0003-3037-257X; Lupu, Roxana/0000-0003-3444-5908; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Maddox, Stephen/0000-0001-5549-195X FU INSU/CNRS (France); MPG (Germany); IGN (Spain); NASA; ASI-INAF [I/009/10/0]; CSA (Canada); NAOC (China); CEA; CNES; CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA) FX Based on observations carried out with the IRAM Plateau de Bure interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). The authors are grateful to the IRAM staff for their support. US participants in H-ATLAS acknowledge support from NASA through a contract from JPL. Italian participants in H-ATLAS acknowledge a financial contribution from the agreement ASI-INAF I/009/10/0. The SPIRE development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); and NASA (USA). We also thank the anonymous referee for very helpful suggestions. NR 44 TC 29 Z9 29 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2011 VL 530 AR L3 DI 10.1051/0004-6361/201116921 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OW UT WOS:000291027400156 ER PT J AU Pillai, T Kauffmann, J Wyrowski, F Hatchell, J Gibb, AG Thompson, MA AF Pillai, T. Kauffmann, J. Wyrowski, F. Hatchell, J. Gibb, A. G. Thompson, M. A. TI Probing the initial conditions of high-mass star formation II. Fragmentation, stability, and chemistry towards high-mass star-forming regions G29.96-0.02 and G35.20-1.74 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; molecular data; turbulence; ISM: clouds; ISM: jets ond outflows; ISM: molecules ID INFRARED DARK CLOUDS; MOLECULAR CLOUDS; COMPETITIVE ACCRETION; PROTOSTELLAR CORES; GALACTIC PLANE; MAIN CLOUD; COLD CORES; CONTINUUM; PROTOSTARS; TURBULENT AB Most work on high-mass star formation has focused on observations of young massive stars in protoclusters. Very little is known about the preceding stage. Here, we present a new high-resolution study of pre-protocluster regions in tracers exclusively probing the coldest and dense gas (NH2D). The two target regions G29.96-0.02 and G35.20-1.74 (W48) are drawn from the SCAMPS project, which searches for pre-protoclusters near known ultracompact HII regions. We used our data to constrain the chemical, thermal, kinematic, and physical conditions (i.e., densities) in G29.96e and G35.20w. NH3, NH2D, HCO+, and continuum emission were mapped using the VLA, PdBI, and BIMA. In particular, NH2D is a unique tracer of cold, precluster gas at high densities, while NH3 traces both the cold and warm gas of modest-to-high densities. In G29.96e, Spitzer images reveal two massive filaments, one of them in extinction (infrared dark cloud). Dust and line observations reveal fragmentation into multiple massive cores strung along filamentary structures. Most of these are cold (<20 K), dense (> 10(5) cm(-3)) and highly deuterated ([NH2D/NH3] > 6%). In particular, we observe very low line widths in NH2D (FWHM less than or similar to 1 km s(-1)). These are very narrow lines that are unexpected towards a region forming massive stars. Only one core in the center of each filament appears to be forming massive stars (identified by the presence of masers and massive outflows); however, it appears that only a few such stars are currently forming (i.e., just a single Spitzer source per region). These multi-wavelength, high-resolution observations of high-mass pre-protocluster regions show that the target regions are characterized by (i) turbulent Jeans fragmentation of massive clumps into cores (from a Jeans analysis); (ii) cores and clumps that are "over-bound/subvirial", i.e. turbulence is too weak to support them against collapse, meaning that (iii) some models of monolithic cloud collapse are quantitatively inconsistent with data; (iv) accretion from the core onto a massive star, which can (for observed core sizes and velocities) be sustained by accretion of envelope material onto the core, suggesting that (similar to competitive accretion scenarios) the mass reservoir for star formation is not necessarily limited to the natal core; (v) high deuteration ratios ([NH2D/NH3] > 6%), which make the above discoveries possible; (vi) and the destruction of NH2D toward embedded stars. C1 [Pillai, T.] CALTECH, Pasadena, CA 91125 USA. [Pillai, T.; Kauffmann, J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Kauffmann, J.] Harvard Univ, Initiat Innovat Comp IIC, Cambridge, MA 02138 USA. [Kauffmann, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wyrowski, F.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Hatchell, J.] Univ Exeter, Exeter EX4 4QJ, Devon, England. [Gibb, A. G.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Thompson, M. A.] Univ Hertfordshire, Ctr Astrophys Res, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England. RP Pillai, T (reprint author), CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM tpillai@astro.caltech.edu FU INSU/CNRS (France); MPG (Germany); IGN (Spain); Combined Array for Research in Millimeter-wave Astronomy (CARMA); National Science Foundation [AST 05-40399]; NASA FX Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).; We thank an anonymous referee for a very thorough review which helped to significantly improve the paper. T.P. acknowledges support from the Combined Array for Research in Millimeter-wave Astronomy (CARMA), which is supported by the National Science Foundation through grant AST 05-40399. J.K. also thanks Di Li, his host at JPL, for making this research possible. This project was supported by an appointment of J.K. to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. J.K.s research was executed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Air and Space Administration. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. NR 80 TC 38 Z9 38 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2011 VL 530 AR A118 DI 10.1051/0004-6361/201015899 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OW UT WOS:000291027400118 ER PT J AU Preibisch, T Ratzka, T Gehring, T Ohlendorf, H Zinnecker, H King, RR McCaughrean, MJ Lewis, JR AF Preibisch, T. Ratzka, T. Gehring, T. Ohlendorf, H. Zinnecker, H. King, R. R. McCaughrean, M. J. Lewis, J. R. TI Detection of a large massive circumstellar disk around a high-mass young stellar object in the Carina Nebula SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; circumstellar matter; stars: pre-main sequence; ISM: individual objects: NGC 3372 ID SPECTRAL ENERGY-DISTRIBUTIONS; HERBIG-AE/BE STARS; MIDINFRARED OBSERVATIONS; ACCRETION; PROTOSTARS; TELESCOPE; EMISSION; FEEDBACK; OUTFLOW; COMPLEX AB Context. The characterization of circumstellar disks around young stellar objects can provide important information about the process of star formation and the possible formation of planetary systems. Aims. We investigate the spatial structure and the spectral energy distribution of a newly discovered edge-on circumstellar disk around an optically invisible young stellar object that is embedded in a dark cloud in the Carina Nebula. Methods. The disk object was serendipitously discovered in our deep near-IR imaging survey of the Carina Nebula obtained with HAWK-I at the ESO VLT. Whereas the object was detected as an apparently point-like source in earlier infrared observations, only the superb image quality (FWHM approximate to 0.5 '') of the HAWK-I data could reveal, for the first time, the peculiar morphology of the object. It consists of a very red point-like central source that is surrounded by a roughly spherical nebula, which is intersected by a remarkable dark lane through the center. We construct the spectral energy distribution of the object from 1 mu m to 870 mu m and perform a detailed radiative transfer modeling of the spectral energy distribution and the source morphology. Results. The observed object morphology in the near-IR images clearly suggests a young stellar object that is embedded in an extended, roughly spherical envelope and surrounded by a large circumstellar disk with a diameter of approximate to 5500 AU that is seen nearly edge-on. The radiative transfer modeling shows that the central object is highly luminous and thus must be a massive young stellar object, most likely in the range 10-15 M-circle dot. The circumstellar disk has a mass of about 2 M-circle dot. Conclusions. The disk object in Carina is one of the most massive young stellar objects for which a circumstellar disk has been detected so far. The size and mass of the disk are very large compared to the corresponding values found for most other similar objects. These results support the assumption that 10-15 M-circle dot stars can form via accretion from a circumstellar disk. C1 [Preibisch, T.; Ratzka, T.; Gehring, T.; Ohlendorf, H.] Univ Munich, Univ Sternwarte Munchen, D-81679 Munich, Germany. [Zinnecker, H.] Astrophys Inst Potsdam, D-14482 Potsdam, Germany. [Zinnecker, H.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Zinnecker, H.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [King, R. R.; McCaughrean, M. J.] Univ Exeter, Astrophys Grp, Coll Engn Math & Phys Sci, Exeter EX4 4QL, Devon, England. [McCaughrean, M. J.] European Space Agcy, Res & Sci Support Dept, Estec, NL-2200 AG Noordwijk, Netherlands. [Lewis, J. R.] Univ Cambridge, Inst Astron, Cambridge Astron Survey Unit, Cambridge CB3 0HA, England. RP Preibisch, T (reprint author), Univ Munich, Univ Sternwarte Munchen, Scheinerstr 1, D-81679 Munich, Germany. EM preibisch@usm.uni-muenchen.de OI Ratzka, Thorsten/0000-0001-9557-8232 FU German Deutsche Forschungsgemeinschaft [PR 569/9-1]; Munich Cluster of Excellence; National Aeronautics and Space Administration; National Science Foundation FX We would like to thank the referee for comments that helped to improve the paper. We gratefully acknowledge funding of this work by the German Deutsche Forschungsgemeinschaft, DFG project number PR 569/9-1. Additional support came from funds from the Munich Cluster of Excellence: "Origin and Structure of the Universe". This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This work makes use of observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. NR 52 TC 14 Z9 14 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2011 VL 530 AR A40 DI 10.1051/0004-6361/201116528 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OW UT WOS:000291027400040 ER PT J AU Preibisch, T Ratzka, T Kuderna, B Ohlendorf, H King, RR Hodgkin, S Irwin, M Lewis, JR McCaughrean, MJ Zinnecker, H AF Preibisch, T. Ratzka, T. Kuderna, B. Ohlendorf, H. King, R. R. Hodgkin, S. Irwin, M. Lewis, J. R. McCaughrean, M. J. Zinnecker, H. TI Deep wide-field near-infrared survey of the Carina Nebula SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: formation; stars: luminosity function, mass function; circumstellar matter; stars: pre-main sequence; ISM: individual objects: NGC 3372; ISM: jets and outflows ID INITIAL MASS FUNCTION; YOUNG STELLAR POPULATION; SCORPIUS OB ASSOCIATION; ORION ULTRADEEP PROJECT; STAR-FORMATION HISTORY; X-RAY; SPATIAL-DISTRIBUTION; SOLAR NEIGHBORHOOD; INTRINSIC COLORS; MOLECULAR CLOUD AB Context. The Great Nebula in Carina is a giant H II region and a superb location in which to study the physics of violent massive star formation, but the population of the young low-mass stars remained very poorly studied until recently. Aims. Our aim was to produce a near-infrared survey that is deep enough to detect the full low-mass stellar population (i.e. down to approximate to 0.1 M-circle dot and for extinctions up to A(V) approximate to 15 mag) and wide enough to cover all important parts of the Carina Nebula complex (CNC), including the clusters Tr 14, 15, and 16 as well as the South Pillars region. Methods. We used HAWK-I at the ESO VLT to survey the central approximate to 0.36 deg(2) area of the Carina Nebula. These data reveal more than 600 000 individual infrared sources down to magnitudes as faint as J approximate to 23, H approximate to 22, and K-s approximate to 21. The results of a recent deep X-ray survey (which is complete down to stellar masses of similar to 0.5-1 M-circle dot) are used to distinguish between young stars in Carina and background contaminants. We analyze color-magnitude diagrams (CMDs) to derive information about the ages and masses of the low-mass stars. Results. The ages of the low-mass stars agree with previous age estimates for the massive stars. The CMD suggests that approximate to 3200 of the X-ray selected stars have masses of M-* >= 1 M-circle dot; this number is in good agreement with extrapolations of the field IMF based on the number of high-mass (M-* >= 20 M-circle dot) stars and shows that there is no deficit of low-mass stars in the CNC. The HAWK-I images confirm that about 50% of all young stars in Carina are in a widely distributed, non-clustered spatial configuration. Narrow-band images reveal six molecular hydrogen emission objects (MHOs) that trace jets from embedded protostars. However, none of the optical HH objects shows molecular hydrogen emission, suggesting that the jet-driving protostars are located very close to the edges of the globules in which they are embedded. Conclusions. The near-infrared excess fractions for the stellar population in Carina are lower than typical for other, less massive clusters of similar age, suggesting that the process of circumstellar disk dispersal proceeds on a faster timescale in the CNC than in the more quiescent regions, most likely due to the very high level of massive star feedback in the CNC. The location of all but one of the known jet-driving protostars at the edges of the globules adds strong support to the scenario that their formation was triggered by the advancing ionization fronts. C1 [Preibisch, T.; Ratzka, T.; Kuderna, B.; Ohlendorf, H.] Univ Munich, Univ Sternwarte Munchen, D-81679 Munich, Germany. [King, R. R.; McCaughrean, M. J.] Univ Exeter, Astrophys Grp, Coll Engn Math & Phys Sci, Exeter EX4 4QL, Devon, England. [Hodgkin, S.; Irwin, M.; Lewis, J. R.] Univ Cambridge, Inst Astron, Cambridge Astron Survey Unit, Cambridge CB3 0HA, England. [McCaughrean, M. J.] European Space Agcy, Res & Sci Support Dept, Estec, NL-2200 AG Noordwijk, Netherlands. [Zinnecker, H.] Astrophys Inst Potsdam, D-14482 Potsdam, Germany. [Zinnecker, H.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Zinnecker, H.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Preibisch, T (reprint author), Univ Munich, Univ Sternwarte Munchen, Scheinerstr 1, D-81679 Munich, Germany. EM preibisch@usm.uni-muenchen.de OI Ratzka, Thorsten/0000-0001-9557-8232 FU German Deutsche Forschungsgemeinschaft [PR 569/9-1]; Munich Cluster of Excellence; Leverhulme research project [F/00 144/BJ] FX We would like to thank the referee for a very competent review and several suggestions that helped to improve this paper. We thank the ESO staff (especially Markus Kissler-Patig and Monika Petr-Gotzens) for performing the HAWK-I observations in service mode. We gratefully acknowledge funding of this work by the German Deutsche Forschungsgemeinschaft, DFG project number PR 569/9-1. Additional support came from funds from the Munich Cluster of Excellence: "Origin and Structure of the Universe". R.R.K. is supported by a Leverhulme research project grant (F/00 144/BJ). NR 92 TC 29 Z9 29 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2011 VL 530 AR A34 DI 10.1051/0004-6361/201116781 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OW UT WOS:000291027400034 ER PT J AU Raymond, SN Armitage, PJ Moro-Martin, A Booth, M Wyatt, MC Armstrong, JC Mandell, AM Selsis, F West, AA AF Raymond, S. N. Armitage, P. J. Moro-Martin, A. Booth, M. Wyatt, M. C. Armstrong, J. C. Mandell, A. M. Selsis, F. West, A. A. TI Debris disks as signposts of terrestrial planet formation SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planets and satellites: formation; methods: numerical; planets and satellites: dynamical evolution and stability; circumstellar matter; infrared: planetary systems; astrobiology ID SUN-LIKE STARS; MAIN-SEQUENCE STARS; EARTH-LIKE PLANETS; MEAN MOTION RESONANCES; T-TAURI STARS; CIRCUMSTELLAR DUST DISKS; LATE HEAVY BOMBARDMENT; INNER SOLAR-SYSTEM; LOW-MASS STARS; GIANT PLANETS AB There exists strong circumstantial evidence from their eccentric orbits that most of the known extra-solar planetary systems are the survivors of violent dynamical instabilities. Here we explore the effect of giant planet instabilities on the formation and survival of terrestrial planets. We numerically simulate the evolution of planetary systems around Sun-like stars that include three components: (i) an inner disk of planetesimals and planetary embryos; (ii) three giant planets at Jupiter-Saturn distances; and (iii) an outer disk of planetesimals comparable to estimates of the primitive Kuiper belt. We calculate the dust production and spectral energy distribution of each system by assuming that each planetesimal particle represents an ensemble of smaller bodies in collisional equilibrium. Our main result is a strong correlation between the evolution of the inner and outer parts of planetary systems, i. e. between the presence of terrestrial planets and debris disks. Strong giant planet instabilities - that produce very eccentric surviving planets - destroy all rocky material in the system, including fully-formed terrestrial planets if the instabilities occur late, and also destroy the icy planetesimal population. Stable or weakly unstable systems allow terrestrial planets to accrete in their inner regions and significant dust to be produced in their outer regions, detectable at mid-infrared wavelengths as debris disks. Stars older than similar to 100 Myr with bright cold dust emission (in particular at lambda similar to 70 mu m) signpost dynamically calm environments that were conducive to efficient terrestrial accretion. Such emission is present around similar to 16% of billion-year old Solar-type stars. Our simulations yield numerous secondary results: 1) the typical eccentricities of as-yet undetected terrestrial planets are similar to 0.1 but there exists a novel class of terrestrial planet system whose single planet undergoes large amplitude oscillations in orbital eccentricity and inclination; 2) by scaling our systems to match the observed semimajor axis distribution of giant exoplanets, we predict that terrestrial exoplanets in the same systems should be a few times more abundant at similar to 0.5 AU than giant or terrestrial exoplanets at 1 AU; 3) the Solar System appears to be unusual in terms of its combination of a rich terrestrial planet system and a low dust content. This may be explained by the weak, outward-directed instability that is thought to have caused the late heavy bombardment. C1 [Raymond, S. N.; Selsis, F.] Univ Bordeaux, Observ Aquitain Sci Univers, F-33271 Floirac, France. [Raymond, S. N.; Selsis, F.] CNRS, Lab Astrophys Bordeaux, UMR 5804, F-33271 Floirac, France. [Armitage, P. J.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Armitage, P. J.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Moro-Martin, A.] Ctr Astrobiol, Dept Astrophys, Madrid 28850, Spain. [Moro-Martin, A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Booth, M.; Wyatt, M. C.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Booth, M.] Univ Victoria, Victoria, BC V8P 1A1, Canada. [Armstrong, J. C.] Weber State Univ, Dept Phys, Ogden, UT 84408 USA. [Mandell, A. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [West, A. A.] Boston Univ, Dept Astron, Boston, MA 02215 USA. RP Raymond, SN (reprint author), Univ Bordeaux, Observ Aquitain Sci Univers, 2 Rue Observ,BP 89, F-33271 Floirac, France. EM raymond@obs.u-bordeaux1.fr RI Mandell, Avi/F-9361-2012; West, Andrew/H-3717-2014; OI Armstrong, John/0000-0003-2009-1459; Booth, Mark/0000-0001-8568-6336 FU NSF; CNRS; NASA Astrobiology Institute's Virtual Planetary Laboratory lead team; NASA [NNX09AB90G, NNX07AH08G]; NSFs Division of Astronomical Sciences [0807471] FX We thank the referee, Scott Kenyon, for a very thorough review that helped us improve the paper. Simulations were run at Weber State University and at Purdue University (supported in part by the NSF through TeraGrid resources). Some of the collaborations vital to this paper (in particular, between S.N.R, P.J.A., A.M.-M., M. B. and M. C. W.) started during the Isaac Newton Institutes Dynamics of Disks and Planets program in Cambridge, UK. S.N.R. acknowledges funding from the CNRS's PNP and EPOV programs and NASA Astrobiology Institute's Virtual Planetary Laboratory lead team. P.J.A. acknowledges funding from NASAs Origins of Solar Systems program (NNX09AB90G, NASAs Astrophysics Theory and Fundamental Physics program (NNX07AH08G), and the NSFs Division of Astronomical Sciences (0807471). This paper is dedicated to office B329 in the University of Washington's Physics and Astronomy building, which from 2000-2003 housed S.N.R., J.C.A., and A. A. W. and was the site of many ridiculous pursuits. NR 174 TC 66 Z9 66 U1 2 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2011 VL 530 AR A62 DI 10.1051/0004-6361/201116456 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OW UT WOS:000291027400062 ER PT J AU Thi, WF Menard, F Meeus, G Martin-Zaidi, C Woitke, P Tatulli, E Benisty, M Kamp, I Pascucci, I Pinte, C Grady, CA Brittain, S White, GJ Howard, CD Sandell, G Eiroa, C AF Thi, W. -F. Menard, F. Meeus, G. Martin-Zaidi, C. Woitke, P. Tatulli, E. Benisty, M. Kamp, I. Pascucci, I. Pinte, C. Grady, C. A. Brittain, S. White, G. J. Howard, C. D. Sandell, G. Eiroa, C. TI Detection of CH+ emission from the disc around HD 100546 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE protoplanetary disks; astrochemistry ID HERBIG-AE/BE STARS; PROTOPLANETARY DISKS; ORGANIC-MOLECULES; ROTATIONAL-EXCITATION; CIRCUMSTELLAR DISKS; INTERSTELLAR-MEDIUM; RADIATIVE-TRANSFER; 1ST DETECTION; DM TAU; INNER AB Despite its importance in the thermal balance of the gas and in the determination of primeval planetary atmospheres, the chemistry in protoplanetary discs remains poorly constrained with only a handful of detected species. We observed the emission from the disc around the Herbig Be star HD 100546 with the PACS instrument in the spectroscopic mode on board the Herschel Space Telescope as part of the GAS in Protoplanetary Systems (GASPS) programme and used archival data from the DIGIT programme to search for the rotational emission of CH+. We detected in both datasets an emission line centred at 72.16 mu m that most likely corresponds to the J = 5-4 rotational emission of CH+. The J = 3-2 and 6-5 transitions are also detected albeit with lower confidence. Other CH+ rotational lines in the PACS observations are blended with water lines. A rotational diagram analysis shows that the CH+ gas is warm at 323(-151)(+2320) K with a mass of similar to 3x10(-14)-5x10(-12) M-circle dot. We modelled the CH+ chemistry with the chemo-physical code PRODIMO using a disc density structure and grain parameters that match continuum observations and near-and mid-infrared interferometric data. The model suggests that CH+ is most abundant at the location of the disc rim at 10-13 AU from the star where the gas is warm, which is consistent with previous observations of hot CO gas emission. C1 [Thi, W. -F.; Menard, F.; Martin-Zaidi, C.; Woitke, P.; Tatulli, E.; Pinte, C.] UJF Grenoble 1, CNRS INSU, Inst Planetol & Astrophys IPAG, UMR 5274, F-38041 Grenoble, France. [Meeus, G.; Eiroa, C.] Univ Autonoma Madrid, Fac Ciencias, Dep Fis Teor, E-28049 Madrid, Spain. [Woitke, P.] Univ Vienna, Dept Astron, A-1180 Vienna, Austria. [Woitke, P.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Woitke, P.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Benisty, M.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Kamp, I.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Pascucci, I.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Grady, C. A.] NASA, Goddard Space Flight Ctr, Eureka Sci & Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Brittain, S.] Clemson Univ, Clemson, SC USA. [White, G. J.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [White, G. J.] Rutherford Appleton Lab, Didcot OX11 OQL, Oxon, England. [Howard, C. D.; Sandell, G.] NASA, Ames Res Ctr, SOFIA USRA, Moffett Field, CA 94035 USA. RP Thi, WF (reprint author), UJF Grenoble 1, CNRS INSU, Inst Planetol & Astrophys IPAG, UMR 5274, F-38041 Grenoble, France. EM Wing-Fai.Thi@obs.ujf-grenoble.fr RI Brittain, Sean/K-9001-2012 OI Brittain, Sean/0000-0001-5638-1330 FU PNPS; CNES; ANR [ANR-07-BLAN-0221]; EC [PIEF-GA-2008-220891, PERG06-GA-2009-256513]; [AYA 2008-01727] FX The Grenoble group acknowledges PNPS, CNES, and ANR (contract ANR-07-BLAN-0221). C. Eiroa and G. Meeus are partly supported by the Spanish grant AYA 2008-01727. C. Pinte acknowledges the funding from the EC 7th Framework Programme (PIEF-GA-2008-220891, PERG06-GA-2009-256513). I. Pascucci, M. Grady, S. Brittain, C. Howard, and G. Sandell acknowledge NASA/JPL. NR 51 TC 35 Z9 35 U1 0 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUN PY 2011 VL 530 AR L2 DI 10.1051/0004-6361/201116678 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 769OW UT WOS:000291027400155 ER PT J AU Queface, AJ Piketh, SJ Eck, TF Tsay, SC Mavume, AF AF Queface, Antonio J. Piketh, Stuart J. Eck, Thomas F. Tsay, Si-Chee Mavume, Alberto F. TI Climatology of aerosol optical properties in Southern Africa SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Aerosol climatology; Aerosol trends; Fine and coarse components ID INITIATIVE SAFARI 2000; DEPTH; AERONET AB A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with significant dominance of fine mode particles. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Queface, Antonio J.; Piketh, Stuart J.] Univ Witwatersrand, Climatol Res Grp, ZA-2050 Johannesburg, South Africa. [Eck, Thomas F.; Tsay, Si-Chee] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Queface, Antonio J.; Mavume, Alberto F.] Eduardo Mondlane Univ, Dept Phys, Maputo, Mozambique. RP Queface, AJ (reprint author), Univ Witwatersrand, Climatol Res Grp, Priv Bag 3, ZA-2050 Johannesburg, South Africa. EM queface@uem.mz RI ECK, THOMAS/D-7407-2012; Tsay, Si-Chee/J-1147-2014 FU Sida-SAREC project from Sweden; Eduardo Mondlane University FX This work was undertaken in collaboration with Climatology Research Group at the University of the Witwatersrand, Department of Physics of Eduardo Mondlane University (UEM) and the Aerosol Robotic Network (AERONET) of NASA Goddard Space Flight Center. We thank the Sida-SAREC project from Sweden, for supporting longstanding research cooperation with Eduardo Mondlane University. We also thank Brent Holben, head of the AERONET team, the Mongu, Zambia site manager, Mukufute Mukulabai and Skukuza, South Africa site manager Walter Kubheka for their efforts in maintaining long term systematic measurements. NR 22 TC 20 Z9 20 U1 0 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD JUN PY 2011 VL 45 IS 17 BP 2910 EP 2921 DI 10.1016/j.atmosenv.2011.01.056 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 770ID UT WOS:000291079300012 ER PT J AU Conkin, J AF Conkin, Johnny TI Decompression Sickness After Air Break in Prebreathe Described with a Survival Model SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Article DE denitrogenation; renitrogenation; survival analysis; nitrogen kinetics ID 100-PERCENT OXYGEN; RISK; DENITROGENATION; PREOXYGENATION; EXPOSURES; PERFUSION; NITROGEN; EVA AB CONKIN J. Decompression sickness after air break in prebreathe described with a survival model. Aviat Space Environ Med 2011; 82:589-98. Introduction:A perception exists in aerospace that a brief interruption in a 100% oxygen prebreathe (PB) by breathing air has a substantial decompression sickness (DCS) consequence. The consequences of an air break during PB on the subsequent hypobaric DCS outcomes were evaluated. The hypothesis was that asymmetrical and not symmetrical nitrogen (N-2) kinetics was best to model the distribution of subsequent DCS survival times after PBs that included air breaks. Methods: DCS survival times from 95 controls for a 60-min PB prior to 2- or 4-h exposures to 4.37 psia (9144 m; 30,000 ft) were analyzed along with 3 experimental conditions: 10-min air break (N = 40), 20-min air break (N = 40), or 60-min air break (N = 32) 30 min into the PB followed by 30 min of PB. Ascent rate was 1524 m . min(-1) and all 207 exposures included light exercise at 4.37 psia. Various computations of decompression dose were evaluated; either the difference or ratio of P1N2 and P2, where P1N2 was computed tissue N-2 pressure to account for the PB and P2 was altitude pressure. Results: Survival times were described with an accelerated log logistic model with asymmetrical N-2 kinetics defining P1N2 - P2 as best decompression dose. Exponential N-2 uptake during the air break was described with a 10-min half time and N-2 elimination during PB with a 60-min half time. Conclusion: A simple conclusion about compensation for air break is not possible because the duration and location of a break in a PB is variable. The resulting survival model is used to compute additional PB time to compensate for an air break in PB within the range of tested conditions. C1 [Conkin, Johnny] Univ Space Res Assoc, Houston, TX USA. RP Conkin, J (reprint author), NASA, Lyndon B Johnson Space Ctr, Human Adaptat & Countermeasures Div, Environm Physiol Lab, SK2,2101 NASA Pkwy, Houston, TX 77058 USA. EM johnny.conkin-1@nasa.gov NR 36 TC 1 Z9 1 U1 0 U2 3 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD JUN PY 2011 VL 82 IS 6 BP 589 EP 598 DI 10.3357/ASEM.3020.2011 PG 10 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA 770EC UT WOS:000291068800001 PM 21702308 ER PT J AU Stowe, RP Sams, CF Pierson, DL AF Stowe, Raymond P. Sams, Clarence F. Pierson, Duane L. TI Adrenocortical and Immune Responses Following Short- and Long-Duration Spaceflight SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Article DE stress; spaceflight; microgravity; leukocyte trafficking; IFN-gamma; IL-10 ID SHORT-TERM SPACEFLIGHT; EPSTEIN-BARR-VIRUS; SPACE-FLIGHT; HERPESVIRUS REACTIVATION; BED REST; ASTRONAUTS; MISSIONS AB STOWE RP, SAMS CF, PIERSON DL. Adrenocortical and immune responses following short- and long-duration spaceflight. Aviat Space Environ Med 2011; 82:627-34. Introduction: Short-term spaceflight is associated with significant but reversible immunological alterations. However, little information exists on the effects of long-duration spaceflight on neuroimmune responses. Methods: We collected multiple pre- and postflight samples from Shuttle and International Space Station (ISS) crewmembers in order to compare adrenocortical and immune responses between short- (similar to 11 d) and long-duration (similar to 180 d) spaceflight. Results: In Shuttle crewmembers, increased stress hormone levels and altered leukocyte subsets were observed prior to launch and at landing. Additionally, typical stress-induced shifts in leukocyte and lymphocyte subsets, as well as the percentage of T-cells capable of producing intracellular IFN- gamma were also decreased just before launch and immediately after landing. Plasma IL-10 levels were increased before launch but not postflight. No preflight changes occurred in ISS crewmembers, but long-duration crewmembers exhibited significantly greater spikes in both plasma and urinary cortisol at landing as compared to Shuttle crewmembers. The percertage of T-cells capable of producing intracellular IFN-gamma was decreased in ISS crewmembers. Plasma IL-10 was increased postflight. Unexpectedly, stress-induced shifts in lymphocyte subpopulations were absent after long-duration flights despite significantly increased stress hormones at landing. Conclusion: Our results demonstrate significant differences in neuroimmune responses between astronauts flying on short-duration Shuttle missions versus long-duration ISS missions, and they agree with prior studies demonstrating the importance of mission durat on in the magnitude of these changes. C1 [Stowe, Raymond P.] Microgen Labs, La Marque, TX 77568 USA. [Sams, Clarence F.; Pierson, Duane L.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Stowe, RP (reprint author), Microgen Labs, 903 Texas Ave, La Marque, TX 77568 USA. EM rpstowe@microgenlabs.com FU NASA [NNJ06HB73A, NAS9-01006, NNJ04HD6, NNJ06HC59G, NNJ04HD75G] FX We thank the subjects who participated in this study as well as the mission planners. We also thank Deborah Yetman, Michael Garza, Jennifer Williams, and Christina Reichert for excellent technical assistance. We also thank Mimi Shao and the personnel at the KSC Baseline Data Collection Facility. This work was supported by NASA awards NNJ06HB73A and NAS9-01006. This work was also supported in part by NASA grants NNJ04HD6, NNJ06HC59G, and NNJ04HD75G. NR 26 TC 15 Z9 18 U1 0 U2 7 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD JUN PY 2011 VL 82 IS 6 BP 627 EP 634 DI 10.3357/ASEM.2980.2011 PG 8 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA 770EC UT WOS:000291068800007 PM 21702314 ER PT J AU Lee, SMC Guined, JR Brown, AK Stenger, MB Platts, SH AF Lee, Stuart M. C. Guined, Jamie R. Brown, Angela K. Stenger, Michael B. Platts, Steven H. TI Metabolic Consequences of Garments Worn to Protect Against Post-Spaceflight Orthostatic Intolerance SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Article DE oxygen consumption; stockings; compression; ventilation; walking ID SIMULATED SHUTTLE EGRESS; COMPRESSION GARMENTS; FLUID SHIFTS; EXERCISE; THERMOREGULATION; PERFORMANCE; ASTRONAUTS; VOLUME; MUSCLE; SUIT AB LEE SMC, GUINED JR, BROWN AK, STENGER MB, PLATTS SH. Metabolic consequences of garments worn to protect against post-spaceflight orthostatic intolerance. Aviat Space Environ Med 2011; 82:648-53. Introduction: Astronauts have worn an inflatable antigravity suit (AGS) during Space Shuttle re-entry and landing to protect against hypotension and syncope, but ambulation with an inflated AGS requires significant effort and may prevent successful completion of an unaided emergency egress from the vehicle. NASA is considering the use of alternative garments to provide protection against post-spaceflight orthostatic intolerance. The purpose of this study was to compare the metabolic cost of walking in NASA's current AGS with that of walking in a commercially available elastic compression garment (thigh-high stockings), a candidate garment for use after exploration missions. Methods: There were 10 volunteers (5 men, 5 women) who walked on a treadmill at 5.6 km . h(-1) for 5 min, a simulation of unaided egress previously used in our laboratory, in 3 different conditions presented in random order: wearing exercise clothes, wearing elastic compression garments, and wearing the AGS. Oxygen consumption ((V) over dotO(2)), carbon dioxide production (VCO(2)), and ventilation (V(E)) were compared using repeated-measures ANOVA and Tukey's Honestly Significant Difference test. Results: (V) over dotO(2) while wearing the AGS was 12% greater than when wearing the elastic compression garments and 15% greater than while wearing exercise clothes. There were no differences between the elastic compression garments and exercise clothes only conditions. VCO(2) and V(E) also were greater while walking in the AGS than walking in the elastic compression garments or exercise clothes. Conclusions: Wearing elastic compression garments as a countermeasure to post-spaceflight orthostatic intolerance may not impair unaided egress from a space vehicle. C1 [Lee, Stuart M. C.; Stenger, Michael B.] Wyle Integrated Sci & Engn Grp, Houston, TX USA. [Guined, Jamie R.] Univ Houston, Houston, TX USA. [Brown, Angela K.] MEI Technol Inc, Houston, TX USA. [Platts, Steven H.] NASA, Lyndon B Johnson Space Ctr, Human Adaptat & Countermeasures Div, Houston, TX 77058 USA. RP Lee, SMC (reprint author), Wyle Integrated Sci & Engn, 1290 Hercules Blvd, Houston, TX 77058 USA. EM stuart.lee-1@nasa.gov NR 20 TC 2 Z9 2 U1 0 U2 2 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD JUN PY 2011 VL 82 IS 6 BP 648 EP 653 DI 10.3357/ASEM.3039.2011 PG 6 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA 770EC UT WOS:000291068800010 PM 21702317 ER PT J AU Tan, B Morisette, JT Wolfe, RE Gao, F Ederer, GA Nightingale, J Pedelty, JA AF Tan, Bin Morisette, Jeffrey T. Wolfe, Robert E. Gao, Feng Ederer, Gregory A. Nightingale, Joanne Pedelty, Jeffrey A. TI An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics From MODIS Data SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article; Proceedings Paper CT 5th International Workshop on Multi-Temporal Imagerhy Analysis CY JUL 28-30, 2009 CL Univ Connecticut, Storrs, CT HO Univ Connecticut DE MODIS; NACP; phenology; TIMESAT ID VALIDATION; PRODUCTS; GROWTH; SERIES; INDEX AB An enhanced TIMESAT algorithm was developed for retrieving vegetation phenology metrics from 250 m and 500 m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indexes (VI) over North America. MODIS VI data were pre-processed using snow-cover and land surface temperature data, and temporally smoothed with the enhanced TIMESAT algorithm. An objective third derivative test was applied to define key phenology dates and retrieve a set of phenology metrics. This algorithm has been applied to two MODIS VIs: Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). In this paper, we describe the algorithm and use EVI as an example to compare three sets of TIMESAT algorithm/MODIS VI combinations: a) original TIMESAT algorithm with original MODIS VI, b) original TIMESAT algorithm with pre-processed MODIS VI, and c) enhanced TIMESAT and pre-processed MODIS VI. All retrievals were compared with ground phenology observations, some made available through the National Phenology Network. Our results show that for MODIS data in middle to high latitude regions, snow and land surface temperature information is critical in retrieving phenology metrics from satellite observations. The results also show that the enhanced TIMESAT algorithm can better accommodate growing season start and end dates that vary significantly from year to year. The TIMESAT algorithm improvements contribute to more spatial coverage and more accurate retrievals of the phenology metrics. Among three sets of TIMESAT/MODIS VI combinations, the start of the growing season metric predicted by the enhanced TIMESAT algorithm using pre-processed MODIS VIs has the best associations with ground observed vegetation greenup dates. C1 [Tan, Bin; Gao, Feng] ERT Inc, Laurel, MD 20707 USA. [Tan, Bin; Wolfe, Robert E.; Gao, Feng; Nightingale, Joanne; Pedelty, Jeffrey A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Morisette, Jeffrey T.] US Geol Survey, Ft Collins Sci Ctr, Ft Collins, CO 80526 USA. [Ederer, Gregory A.; Nightingale, Joanne] Sigma Space, Lanham, MD 20706 USA. RP Tan, B (reprint author), ERT Inc, Laurel, MD 20707 USA. RI Wolfe, Robert/E-1485-2012; Tan, Bin/G-1331-2012 OI Wolfe, Robert/0000-0002-0915-1855; NR 22 TC 53 Z9 54 U1 5 U2 43 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD JUN PY 2011 VL 4 IS 2 BP 361 EP 371 DI 10.1109/JSTARS.2010.2075916 PG 11 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA 769EO UT WOS:000290992900013 ER PT J AU Williams, BA Long, DG AF Williams, Brent A. Long, David G. TI A Reconstruction Approach to Scatterometer Wind Vector Field Retrieval SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Irregular sampling; maximum a posteriori (MAP) estimation; reconstruction; scatterometry; wind estimation ID MODEL-BASED ESTIMATION; AMBIGUITY REMOVAL; SEASAT SCATTEROMETER; OCEAN; ASSIMILATION; ACCURACY AB This paper approaches wind field estimation from scatterometer measurements as the inversion of a noisy nonlinear sampling operation. The forward sampling model is presented and made discrete for practical purposes. Generally, the wind estimation problem is ill-posed at high resolution, which means that there are more parameters to estimate than measurements. A Bayesian approach based on maximum a posteriori (MAP) estimation is proposed to regularize the problem. This allows the simultaneous estimation of the regular samples of the high-resolution wind vector field directly from the noisy aperture-filtered backscatter sigma 0 measurements. The MAP reconstruction approach is applied to the Sea Winds scatterometer, the examples are presented, and the results are compared to standard products. The MAP reconstruction method produces results that are consistent with standard products while preserving the higher spatial resolution information. The MAP estimates result in a similar resolution to the standard ultrahigh-resolution processing method but with a lower bias and a lower variability in the estimates. C1 [Williams, Brent A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Long, David G.] Brigham Young Univ, Provo, UT 84602 USA. RP Williams, BA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM williams@mers.byu.edu; long@ee.byu.edu RI Long, David/K-4908-2015 OI Long, David/0000-0002-1852-3972 NR 37 TC 3 Z9 5 U1 1 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JUN PY 2011 VL 49 IS 6 BP 1850 EP 1864 DI 10.1109/TGRS.2010.2100402 PN 1 PG 15 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 769FT UT WOS:000290997600004 ER PT J AU Buckley, SM Gudipati, K AF Buckley, Sean M. Gudipati, Krishnavikas TI Evaluating ScanSAR Interferometry Deformation Time Series Using Bursted Stripmap Data SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Deformation time series; interferometric synthetic aperture radar (InSAR); small baseline subsets (SBAS); scanning synthetic aperture radar (ScanSAR) ID DIFFERENTIAL SAR INTERFEROMETRY; SCATTERERS; IMAGES; EARTHQUAKE; ALGORITHM; MODE AB We demonstrate scanning synthetic aperture radar (ScanSAR) advanced radar interferometry processing for surface deformation time series analysis. We apply the small baseline subsets (SBAS) technique to ScanSAR data synthesized from 40 ERS-1 and ERS-2 stripmap SAR images over known deformation in Phoenix, Arizona. The strategy is to construct a burst pattern similar to Envisat ScanSAR data for two scenarios, namely, an idealized 100% burst overlap case and a realistic variable-burst synchronization case in which any image pair has at least 50% burst overlap. We find this latter scenario to be reasonable based on an assessment of the effect of burst overlap on Phoenix interferometric phase coherence. The differences between the variable burst overlap ScanSAR and stripmap SAR SBAS-derived pixel velocities have a mean of 0.02 cm/year and a standard deviation of 0.02 cm/year. It is noted that one can expect SBAS velocity and displacement one-sigma errors of 0.1 cm/year and 0.5 cm, respectively, from multilooked stripmap data. We observe that 96% and 99% of the variable burst overlap ScanSAR pixel velocities are within +/- 0.1 and +/- 0.2 cm/year (one-and two-sigma), respectively, of our stripmap SAR pixel velocities. These results are similar to those reported for SBAS analysis applied to low-resolution multilook interferograms derived from coherence-preserving down-sampling of stripmap data. We also find that the rms deviations between variable burst overlap ScanSAR and stripmap SBAS displacement estimates are 0.40 +/- 0.30 cm. 68% and 94% of the variable burst overlap ScanSAR pixel displacements are within +/- 0.5 and +/- 1.0 cm, respectively, of the stripmap displacements. C1 [Buckley, Sean M.; Gudipati, Krishnavikas] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA. [Buckley, Sean M.; Gudipati, Krishnavikas] Univ Texas Austin, Ctr Space Res, Austin, TX 78712 USA. RP Buckley, SM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM buckley@jpl.nasa.gov; gkvikas@yahoo.com FU National Aeronautics and Space Administration [NNX08AF62G, BAA-01-OES-01]; Arizona Department of Water Resources; NSF; USGS FX This work was supported in part by the National Aeronautics and Space Administration under Grant NNX08AF62G.; The authors thank the European Space Agency for providing the original ERS-1 and ERS-2 SAR data (copyright 1992-2000). The authors also thank the Arizona Department of Water Resources with funding from the NASA Earth Science Applications Program (BAA-01-OES-01) and through the WInSAR Consortium with funding from NASA, NSF, and USGS for the SAR data purchases. The authors would also like to thank the USGS National Map Seamless Server (http://seamless.usgs.gov) for the SRTM DEM data. Finally, the authors also thank D. Yang for his contributions to the development of our SBAS processing software and the anonymous reviewers for their helpful comments. In memory of Prof. K. Clint Slatton. NR 37 TC 4 Z9 5 U1 3 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JUN PY 2011 VL 49 IS 6 BP 2335 EP 2342 DI 10.1109/TGRS.2010.2102360 PN 2 PG 8 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 769FU UT WOS:000290997800013 ER PT J AU Bater, CW Wulder, MA Coops, NC Nelson, RF Hilker, T Naesset, E AF Bater, Christopher W. Wulder, Michael A. Coops, Nicholas C. Nelson, Ross F. Hilker, Thomas Naesset, Erik TI Stability of Sample-Based Scanning-LiDAR-Derived Vegetation Metrics for Forest Monitoring SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Forest monitoring; laser altimetry; light detection and ranging (LiDAR); sampling ID AIRBORNE LASER DATA; MULTIPLE RESOURCE INVENTORY; FLYING ALTITUDES; CANOPY HEIGHT; TREE HEIGHT; DENSITY; INTENSITY; TEMPERATE; LIGHT AB The objective of this paper is to gain insights into the reproducibility of light detection and ranging (LiDAR)-derived vegetation metrics for multiple acquisitions carried out on the same day, where we can assume that forest and terrain conditions at a given location have not changed. Four overlapping lines were flown over a forested area in Vancouver Island, British Columbia, Canada. Forty-six 0.04-ha plots were systematically established, and commonly derived variables were extracted from first and last returns, including height-related metrics, cover estimates, return intensities, and absolute scan angles. Plot-level metrics from each LiDAR pass were then compared using multivariate repeated-measures analysis-of-variance tests. Results indicate that, while the number of returns was significantly different between the four overlapping flight lines, most LiDAR-derived first return vegetation height metrics were not. First return maximum height and overstory cover, however, were significantly different and varied between flight lines by an average of approximately 2% and 4%, respectively. First return intensities differed significantly between overpasses where sudden changes in the metric occurred without any apparent explanation; intensity should only be used following calibration. With the exception of the standard deviation of height, all second return metrics were significantly different between flight lines. Despite these minor differences, the study demonstrates that, when the LiDAR sensor, settings, and data acquisition flight parameters remain constant, and time-related forest dynamics are not factors, LiDAR-derived metrics of the same location provide stable and repeatable measures of the forest structure, confirming the suitability of LiDAR for forest monitoring. C1 [Bater, Christopher W.; Coops, Nicholas C.; Hilker, Thomas] Univ British Columbia, Dept Forest Resources Management, Fac Forestry, Vancouver, BC V6T 1Z4, Canada. [Wulder, Michael A.] Nat Resources Canada, Pacific Forestry Ctr, Canadian Forestry Serv, Victoria, BC V8Z 1M5, Canada. [Nelson, Ross F.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20770 USA. [Naesset, Erik] Norwegian Univ Life Sci, Dept Ecol & Nat Resource Management, N-1432 As, Norway. RP Bater, CW (reprint author), Univ British Columbia, Dept Forest Resources Management, Fac Forestry, Vancouver, BC V6T 1Z4, Canada. EM cbater@interchange.ubc.ca; Mike.Wulder@NRCan-RNCan.gc.ca; nicholas.coops@ubc.ca; rfn104@gmail.com; thilker@interchange.ubc.ca; erik.naesset@umb.no RI Coops, Nicholas/J-1543-2012; Nelson, Ross/H-8266-2014; Wulder, Michael/J-5597-2016 OI Coops, Nicholas/0000-0002-0151-9037; Wulder, Michael/0000-0002-6942-1896 FU Canadian Forest Service FX This work was supported by the Canadian Forest Service Innovative Ideas Program. NR 39 TC 28 Z9 28 U1 2 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JUN PY 2011 VL 49 IS 6 BP 2385 EP 2392 DI 10.1109/TGRS.2010.2099232 PN 2 PG 8 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 769FU UT WOS:000290997800018 ER PT J AU Chang, TJ Xiong, XX AF Chang, Tiejun Xiong, Xiaoxiong TI Assessment of MODIS Thermal Emissive Band On-Orbit Calibration SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Blackbody (BB); Moderate Resolution Imaging Spectroradiometer (MODIS); onboard calibration; thermal emissive bands (TEBs) ID RESOLUTION IMAGING SPECTRORADIOMETER; LAND-SURFACE TEMPERATURE; VALIDATION; TERRA; PERFORMANCE; EOS-AM1; WATER; AQUA AB Sixteen Moderate Resolution Imaging Spectroradiometer thermal emissive bands (TEBs) cover the wavelength from 3.75 to 14.24 mu m. TEB calibration uses data collected from the detector responses to the onboard blackbody (BB) and space view. The BB was designed to operate either at a constant temperature for detector linear gain calibration or at temperatures varying from ambient (similar to 270 K) to 315 K for on-orbit characterization of nonlinear coefficients. In this paper, we assess TEB on-orbit calibration performance in two aspects: One is to review the calibration trending on the orbital, daily, and multiyear timescales, and the other is to analyze the on-orbit calibration radiance uncertainty and its impact on the calibration. The calibration trending confirms the detector response dependence on the instrument temperature. The temperature trending and prelaunch characterization provide the basis for determining the calibration radiance source temperature range and uncertainties. An analytical approach was used to assess the impacts of onboard radiance uncertainties. The BB emission uncertainty, resulting from the temperature measurement error and emissivity uncertainty, causes a calibration uncertainty up to 0.3%, a value decreasing with the band wavelength. The BB nonblackness effect is analyzed and found to be insignificant. For the band with the lowest BB emissivity, the nonblackness affects the calibration radiance by less than 0.08%. The cavity emission uncertainty and the scan-mirror emission uncertainty both cause a less than 0.1% calibration uncertainty. The analysis of the nonlinear calibration coefficient uncertainty shows that its effect on the low Earth-view brightness-temperature range varies by band and is generally insignificant. C1 [Chang, Tiejun] Sigma Space Corp, Lanham, MD 20706 USA. [Xiong, Xiaoxiong] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. RP Chang, TJ (reprint author), Sigma Space Corp, Lanham, MD 20706 USA. EM tiejun.chang@noaa.gov; Xiaoxiong.Xiong-1@nasa.gov NR 27 TC 9 Z9 10 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JUN PY 2011 VL 49 IS 6 BP 2415 EP 2425 DI 10.1109/TGRS.2010.2098881 PN 2 PG 11 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 769FU UT WOS:000290997800021 ER PT J AU O'Brien, DM Pollock, R Polonsky, I Rogers, M AF O'Brien, Denis M. Pollock, Randy Polonsky, Igor Rogers, Matt TI Identification and Correction of Residual Image in the O-2 A-Band of the Orbiting Carbon Observatory SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Hyperspectral sensors; optical detectors; remote sensing; silicon AB The detector used for the O-2 A-band (0.76 mu m) of the National Aeronautics and Space Administration's Orbiting Carbon Observatory (OCO) employed a HyViSI Hawaii-1RG sensor, operating at 180 K in a rolling read-out mode. During the thermal vacuum testing of the flight instrument, it was discovered that the detector exhibited residual images that lasted for many seconds and were of sufficient magnitude to compromise the mission objectives. Independent testing of flight-spare detectors revealed that the problem was common to all and was not simply a fault of the flight detector. The residual image was found to depend upon even-order derivatives of the spectrum, and its decay was a function of the number of frames rather than time. An empirical model was developed, which represented the measured spectrum in terms of the true spectrum and a history of all previous changes in the spectra. On the basis of the model, an algorithm was devised to correct spectra for the effects of residual image, using a time-marching analysis of a history of previous spectra. The algorithm was tested with spectra acquired during the second thermal vacuum test of OCO and was found to reduce the effect of residual image to almost the noise level of the detector. Numerical simulations indicate that residual image has a negligible impact on retrieved concentrations of O-2 and CO2 once the spectra have been corrected. C1 [O'Brien, Denis M.; Polonsky, Igor; Rogers, Matt] Colorado State Univ, Ft Collins, CO 80523 USA. [Pollock, Randy] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91109 USA. RP O'Brien, DM (reprint author), Colorado State Univ, Ft Collins, CO 80523 USA. FU Jet Propulsion Laboratory [1280999]; National Aeronautics and Space Administration FX The work of D. M. O'Brien, I. Polonsky, and M. Rogers was supported by the Jet Propulsion Laboratory under Contract 1280999.; The authors would like to thank B. Hancock at the Jet Propulsion Laboratory (JPL) for his guidance and invaluable suggestions and C. O'Dell at Colorado State University and J. McDuffie at JPL for applying the OCO "full-physics" retrieval algorithm to the heliostat spectra and simulated spectra, as described in Section VIII. A portion of the research described in this paper was carried out at JPL, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 12 TC 3 Z9 3 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JUN PY 2011 VL 49 IS 6 BP 2426 EP 2437 DI 10.1109/TGRS.2010.2091683 PN 2 PG 12 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 769FU UT WOS:000290997800022 ER PT J AU O'Dell, CW Day, JO Pollock, R Bruegge, CJ O'Brien, DM Castano, R Tkatcheva, I Miller, CE Crisp, D AF O'Dell, Christopher W. Day, Jason O. Pollock, Randy Bruegge, Carol J. O'Brien, Denis M. Castano, Rebecca Tkatcheva, Irina Miller, Charles E. Crisp, David TI Preflight Radiometric Calibration of the Orbiting Carbon Observatory SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE IEEEtran; journal; LaTeX ID MISSION AB This paper describes the radiometric calibration of the original Orbiting Carbon Observatory. The calibration process required characterizing both the dark current level and gain coefficients of each instrumental channel. The dark response was characterized with extensive testing and revealed some unexpected instrument behavior. The gain coefficients were characterized via illumination of the instrument spectrometers with a laboratory-calibrated integrating sphere source. Comparison between the spectrometer output and a calibrated photodiode led to a set of calibration coefficients for each spectrometer channel. The calibration coefficients were validated by a novel approach involving observation of the solar spectrum through a transmission filter. Validation occurred by examination of both the ratio of the filtered to unfiltered spectra and retrievals of geophysical quantities such as surface pressure. The linearity of the calibration was established to approximately 0.2%. Finally, using the calibration data from the integrating sphere, a simple noise model was developed for each channel of the instrument. A summary of the signal-to-noise performance is included. C1 [O'Dell, Christopher W.; O'Brien, Denis M.] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Day, Jason O.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Pollock, Randy; Bruegge, Carol J.; Castano, Rebecca; Tkatcheva, Irina; Miller, Charles E.; Crisp, David] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP O'Dell, CW (reprint author), Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. EM odell@atmos.colostate.edu; obrien@atmos.colostate.edu FU National Aeronautics and Space Administration (NASA) [1280999] FX The authors would like to thank L. Wayne of JPL for the information on the calibration setup and help in diagnosing the strong CO2 band photodiode issues, B. Hancock of JPL for the discussions on the W-pattern, J. McDuffie for the computing help, and all the JPL employees who worked tirelessly to acquire the OCO TVAC data. A portion of the research described in this paper was carried out at the JPL, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). The Colorado State University contributions to this work were carried out under NASA Contract 1280999. NR 12 TC 10 Z9 10 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JUN PY 2011 VL 49 IS 6 BP 2438 EP 2447 DI 10.1109/TGRS.2010.2090887 PN 2 PG 10 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 769FU UT WOS:000290997800023 ER PT J AU Beal, MP Crochemore, M Moision, BE Siegel, PH AF Beal, Marie-Pierre Crochemore, Maxime Moision, Bruce E. Siegel, Paul H. TI Periodic-Finite-Type Shift Spaces SO IEEE TRANSACTIONS ON INFORMATION THEORY LA English DT Article DE Capacity of constrained system; constrained code; finite-type; periodic constraint; shift spaces; sofic system ID PARTIAL-RESPONSE CHANNELS; UNCONSTRAINED POSITIONS; CONSTRAINED SYSTEMS; FORBIDDEN WORDS; CODES AB We study the class of periodic-finite-type (PFT) shift spaces, which can be used to model time-varying constrained codes used in digital magnetic recording systems. A PFT shift is determined by a finite list of periodically forbidden words. We show that the class of PFT shifts properly contains all finite-type (FT) shifts, and the class of almost finite-type (AFT) shifts properly contains all PFT shifts. We establish several basic properties of PFT shift spaces of a given period, and provide a characterization of such a shift in terms of properties of its Shannon cover (i.e., its unique minimal, deterministic, irreducible graph presentation). We present an algorithm that, given the Shannon cover of an irreducible sofic shift, decides whether or not is PFT in time that is quadratic in the number of states of. From any periodic irreducible presentation of a given period, we define a periodic forbidden list, unique up to conjugacy (a circular permutation) for that period, that satisfies certain minimality properties. We show that an irreducible sofic shift is PFT if and only if the list corresponding to its Shannon cover and its period is finite. Finally, we discuss methods for computing the capacity of a PFT shift from a periodic forbidden list, either by construction of a corresponding graph or in a combinatorial manner directly from the list itself. C1 [Beal, Marie-Pierre; Crochemore, Maxime] Univ Paris Est, Lab Informat Gaspard Monge, F-77454 Marne La Vallee 2, France. [Beal, Marie-Pierre; Crochemore, Maxime] Univ Marne la Vallee, Inst Gaspard Monge, Marne La Vallee, France. [Moision, Bruce E.] CALTECH, Jet Prop Lab, Commun Syst & Res Sect, Pasadena, CA 91101 USA. [Siegel, Paul H.] Univ Calif San Diego, Ctr Magnet Recording Res, La Jolla, CA 92093 USA. [Siegel, Paul H.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. RP Beal, MP (reprint author), Univ Paris Est, Lab Informat Gaspard Monge, F-77454 Marne La Vallee 2, France. EM beal@univ-mlv.fr; mac@univ-mlv.fr; bmoision@jpl.nasa.gov; psiegel@ucsd.edu FU Marvell Semiconductor, Inc. [98-140]; National Science Foundation [CCR-9612802, CCF-0514859, CCF-0829865]; Universite Paris-Est; Center for Magnetic Recording Research, University of California, San Diego FX This work was supported in part by the UC MICRO Program under Grant 98-140 in cooperation with Marvell Semiconductor, Inc.; by the National Science Foundation under Grants CCR-9612802, CCF-0514859, and CCF-0829865; by Universite Paris-Est; and by the Center for Magnetic Recording Research, University of California, San Diego. The material in this paper was presented in part at the IEEE International Symposium on Information Theory, Washington, DC, June 2001. NR 41 TC 2 Z9 2 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9448 EI 1557-9654 J9 IEEE T INFORM THEORY JI IEEE Trans. Inf. Theory PD JUN PY 2011 VL 57 IS 6 BP 3677 EP 3691 DI 10.1109/TIT.2011.2143910 PG 15 WC Computer Science, Information Systems; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 769HQ UT WOS:000291003900035 ER PT J AU Stringer, DB Sheth, PN Allaire, PE AF Stringer, D. B. Sheth, P. N. Allaire, P. E. TI Modal reduction of geared rotor systems with general damping and gyroscopic effects SO JOURNAL OF VIBRATION AND CONTROL LA English DT Article DE Gearing effect; general damping systems; gyroscopic systems; modal reduction ID COORDINATE TRANSFORMATIONS; VIBRATION ANALYSIS; 2ND-ORDER SYSTEMS; BEARINGS AB The presence of damping, gyroscopic behavior, and gearing complicates traditional vibration analysis. This paper presents a methodology for conducting modal reduction on a geared rotor dynamic system under the influences of general damping and gyroscopic effects. Based on the first-order, state-space methodology, a coordinate transformation is presented for diagonalizing the state equations of motion for each substructure in the system. A modal synthesis procedure assembles the system equations from the individual substructures. The substructures are coupled via gear-mesh interactions. Using this technique, the size and complexity of a model can be reduced without incurring significant loss of accuracy. The reduced model allows for traditional methods of system analysis to include eigen-solution analysis, and frequency response. Validation occurs through application to a simple geared system widely discussed in the literature. The results of the modal reduction match closely with the full finite element model. A transmission system is also analyzed to illustrate the method's usefulness to a complex system model of multiple shafts and gear interactions. Considerations arising from the analysis of geared systems are also discussed. C1 [Stringer, D. B.] NASA, USA, Res Lab, Vehicle Technol Directorate,Glenn Res Ctr, Cleveland, OH 44135 USA. [Sheth, P. N.] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA USA. RP Stringer, DB (reprint author), NASA, USA, Res Lab, Vehicle Technol Directorate,Glenn Res Ctr, MS 23-3, Cleveland, OH 44135 USA. EM david.stringer@us.army.mil RI Stringer, D. Blake/B-3051-2017 OI Stringer, D. Blake/0000-0002-4375-2638 NR 27 TC 8 Z9 9 U1 1 U2 15 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1077-5463 J9 J VIB CONTROL JI J. Vib. Control PD JUN PY 2011 VL 17 IS 7 BP 975 EP 987 DI 10.1177/1077546310372848 PG 13 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA 769JB UT WOS:000291007600002 ER PT J AU Balona, LA Pigulski, A De Cat, P Handler, G Gutierrez-Soto, J Engelbrecht, CA Frescura, F Briquet, M Cuypers, J Daszynska-Daszkiewicz, J Degroote, P Dukes, RJ Garcia, RA Green, EM Heber, U Kawaler, SD Lehmann, H Leroy, B Molenda-Zakowicz, J Neiner, C Noels, A Nuspl, J Ostensen, R Pricopi, D Roxburgh, I Salmon, S Smith, MA Suarez, JC Suran, M Szabo, R Uytterhoeven, K Christensen-Dalsgaard Kjeldsen, H Caldwell, DA Girouard, FR Sanderfer, DT AF Balona, L. A. Pigulski, A. De Cat, P. Handler, G. Gutierrez-Soto, J. Engelbrecht, C. A. Frescura, F. Briquet, M. Cuypers, J. Daszynska-Daszkiewicz, J. Degroote, P. Dukes, R. J. Garcia, R. A. Green, E. M. Heber, U. Kawaler, S. D. Lehmann, H. Leroy, B. Molenda-Zakowicz, J. Neiner, C. Noels, A. Nuspl, J. Ostensen, R. Pricopi, D. Roxburgh, I. Salmon, S. Smith, M. A. Suarez, J. C. Suran, M. Szabo, R. Uytterhoeven, K. Christensen-Dalsgaard Kjeldsen, H. Caldwell, D. A. Girouard, F. R. Sanderfer, D. T. TI Kepler observations of the variability in B-type stars SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: early-type; stars: oscillations ID SOLAR-LIKE OSCILLATIONS; ALPHA EMISSION STARS; MAIN-SEQUENCE STARS; BETA-CEPHEI STARS; DETECTS G-MODES; OPACITY MECHANISM; INITIAL CHARACTERISTICS; ROTATIONAL VELOCITIES; SPECTRAL-ANALYSIS; CADENCE DATA AB The analysis of the light curves of 48 B-type stars observed by Kepler is presented. Among these are 15 pulsating stars, all of which show low frequencies, characteristic of slowly pulsating B (SPB) stars. Seven of these stars also show a few weak, isolated high frequencies and they could be considered as SPB/beta Cephei (beta Cep) hybrids. In all cases, the frequency spectra are quite different from what is seen from ground-based observations. We suggest that this is because most of the low frequencies are modes of high degree which are predicted to be unstable in models of mid-B stars. We find that there are non-pulsating stars within the beta Cep and SPB instability strips. Apart from the pulsating stars, we can identify stars with frequency groupings similar to what is seen in Be stars but which are not Be stars. The origin of the groupings is not clear, but may be related to rotation. We find periodic variations in other stars which we attribute to proximity effects in binary systems or possibly rotational modulation. We find no evidence for pulsating stars between the cool edge of the SPB and the hot edge of the delta Sct instability strips. None of the stars shows the broad features which can be attributed to stochastically excited modes as recently proposed. Among our sample of B stars are two chemically peculiar stars, one of which is a HgMn star showing rotational modulation in the light curve. C1 [Balona, L. A.] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Pigulski, A.; Daszynska-Daszkiewicz, J.; Molenda-Zakowicz, J.] Uniwersytet Wroclawski, Inst Astron, PL-51622 Wroclaw, Poland. [De Cat, P.; Cuypers, J.] Koninklijke Sterrenwacht Belgie, B-1180 Brussels, Belgium. [Handler, G.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Gutierrez-Soto, J.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Gutierrez-Soto, J.; Leroy, B.; Neiner, C.] Univ Paris Diderot, UPMC, CNRS, LESIA,Observ Paris, F-92195 Meudon, France. [Engelbrecht, C. A.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Frescura, F.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Briquet, M.; Degroote, P.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Dukes, R. J.] Coll Charleston, Dept Phys & Astron, Charleston, SC 29424 USA. [Garcia, R. A.; Uytterhoeven, K.] CEA DSM CNRS Univ Paris Diderot, IRFU SAp, Ctr Saclay, Lab AIM, F-91191 Gif Sur Yvette, France. [Green, E. M.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Heber, U.] FAU Erlangen Nuremberg, Astron Inst, Dr Karl Remeis Observ ECAP, D-96049 Bamberg, Germany. [Kawaler, S. D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Lehmann, H.] Thuringer Landessternwarte, Tautenburg, Germany. [Noels, A.; Salmon, S.] Univ Liege, Inst Astron & Geophys, Liege, Belgium. [Pricopi, D.] Acad Romana, Astron Inst, Bucharest, Romania. [Smith, M. A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Szabo, R.] Hungarian Acad Sci, Konkoly Observ, Budapest, Hungary. [Christensen-Dalsgaard; Kjeldsen, H.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Caldwell, D. A.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Girouard, F. R.] NASA, Ames Res Ctr, Orbital Sci Corp, Moffett Field, CA 94035 USA. [Nuspl, J.; Roxburgh, I.] Queen Mary Univ London, London E1 4NS, England. RP Balona, LA (reprint author), S African Astron Observ, POB 9, ZA-7935 Cape Town, South Africa. EM lab@saao.ac.za RI Heber, Ulrich/G-3306-2013; Caldwell, Douglas/L-7911-2014; Gutierrez-Soto, Juan/H-9620-2015; Suarez, Juan Carlos/C-1015-2009; OI Heber, Ulrich/0000-0001-7798-6769; Caldwell, Douglas/0000-0003-1963-9616; Gutierrez-Soto, Juan/0000-0001-6736-0551; Suarez, Juan Carlos/0000-0003-3649-8384; Engelbrecht, Christian/0000-0001-7984-9557; Szabo, Robert/0000-0002-3258-1909; Garcia, Rafael/0000-0002-8854-3776; Kawaler, Steven/0000-0002-6536-6367 FU NASA's Science Mission Directorate; South African Astronomical Observatory; MNiSzW [NN203 302635]; Fund for Scientific Research of Flanders (FWO), Belgium; Hungarian OTKA [K83790]; Hungarian Academy of Sciences; Association of Universities for Research in Astronomy, Inc., under NASA [NAS5-26555]; NASA Office of Space Science [NNX09AF08G] FX The authors wish to thank the Kepler team for their generosity in allowing the data to be released to the KASC ahead of public release and for their outstanding efforts which have made these results possible. Funding for the Kepler mission is provided by NASA's Science Mission Directorate. We particularly thank Ron Gilliland for his tireless work on behalf of the KASC.; LAB wishes to thank the South African Astronomical Observatory for financial support. AP acknowledges the financial support from the MNiSzW grant NN203 302635. MB is a Postdoctoral Fellow of the Fund for Scientific Research of Flanders (FWO), Belgium. JN and RS acknowledge the support by the Hungarian OTKA grant K83790 and the 'Lendulet' programme of the Hungarian Academy of Sciences.; The GALEX data presented in this paper were obtained from the Multimission Archive at the STScI (MAST). The STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for the MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. NR 87 TC 57 Z9 57 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2011 VL 413 IS 4 BP 2403 EP 2420 DI 10.1111/j.1365-2966.2011.18311.x PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 766XM UT WOS:000290819900009 ER PT J AU Vaughan, S Uttley, P Pounds, KA Nandra, K Strohmayer, TE AF Vaughan, S. Uttley, P. Pounds, K. A. Nandra, K. Strohmayer, T. E. TI The rapid X-ray variability of NGC 4051 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; galaxies: individual: NGC 4051; galaxies: Seyfert; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; QUASI-PERIODIC OSCILLATIONS; MICROQUASAR GRO J1655-40; SUPERMASSIVE BLACK-HOLES; LONG-TERM VARIABILITY; POWER SPECTRUM; SEYFERT-GALAXIES; XMM-NEWTON; HARD STATE; RED NOISE AB We present an analysis of the high-frequency X-ray variability of NGC 4051 (M-BH similar to 1.7 x 106 M-circle dot) based on a series of XMM-Newton observations taken in 2009 with a total exposure of similar to 570 ks (EPIC pn). These data reveal the form of the power spectrum over frequencies from 10-4 Hz, below the previously detected power spectral break, to greater than or similar to 10-2 Hz, above the frequency of the innermost stable circular orbit (ISCO) around the black hole (nu(ISCO) similar to 10-3-10-2 Hz, depending on the black hole spin parameter j). This is equivalent to probing frequencies of greater than or similar to 1 kHz in a stellar mass (M-BH similar to 10 M-circle dot) black hole binary system. The power spectrum is a featureless power law over the region of the expected ISCO frequency, suggesting no strong enhancement or change in the variability at the fastest orbital period in the system. Despite the huge amplitude of the flux variations between the observations (peak-to-peak factor of greater than or similar to 50), the power spectrum appears to be stationary in shape and varies in amplitude at all observed frequencies following the previously established linear rms-flux relation. The rms-flux relation is offset in flux by a small and energy-dependent amount. The simplest interpretation of the offset is in terms of a very soft spectral component that is practically constant (compared to the primary source of variability). One possible origin for this emission is a circumnuclear shock energized by a radiatively driven outflow from the central regions and emitting via inverse-Compton scattering of the central engine's optical-UV continuum (as inferred from a separate analysis of the energy spectrum). A comparison with the power spectrum of a long XMM-Newton observation taken in 2001 gives only weak evidence for non-stationarity in power spectral shape or amplitude. Despite being among the most precisely estimated power spectra for any active galaxy, we find no strong evidence for quasi-periodic oscillations (QPOs) and determine an upper limit on the strength of a plausible QPO of less than or similar to 2 per cent rms in the 3 x 10-3 -0.1 Hz range and similar to 5-10 per cent in the 10-4 -3 x 10-3 Hz range. We compare these results to the known properties of accreting stellar mass black holes in X-ray binaries, with the further aim of developing a 'black hole unification' scheme. C1 [Vaughan, S.; Pounds, K. A.] Univ Leicester, Dept Phys & Astron, Xray & Observat Astron Grp, Leicester LE1 7RH, Leics, England. [Uttley, P.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Nandra, K.] Max Planck Inst Extraterr Phys MPE, D-85748 Garching, Germany. [Nandra, K.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Strohmayer, T. E.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Vaughan, S (reprint author), Univ Leicester, Dept Phys & Astron, Xray & Observat Astron Grp, Leicester LE1 7RH, Leics, England. EM sav2@star.le.ac.uk FU STFC; European Community [ITN 215215] FX We thank the referee, Iossif Papadakis, for a thorough and constructive report. PU is supported by an STFC Advanced Fellowship, and funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number ITN 215215 'Black Hole Universe'. This research has made use of NASA's Astrophysics Data System Bibliographic Services and the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This paper is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). NR 84 TC 31 Z9 31 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN PY 2011 VL 413 IS 4 BP 2489 EP 2499 DI 10.1111/j.1365-2966.2011.18319.x PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 766XM UT WOS:000290819900015 ER PT J AU Balona, LA Cunha, MS Gruberbauer, M Kurtz, DW Saio, H White, TR Christensen-Dalsgaard, J Kjeldsen, H Christiansen, JL Hall, JR Seader, SE AF Balona, L. A. Cunha, M. S. Gruberbauer, M. Kurtz, D. W. Saio, H. White, T. R. Christensen-Dalsgaard, J. Kjeldsen, H. Christiansen, J. L. Hall, J. R. Seader, S. E. TI Rotation and oblique pulsation in Kepler observations of the roAp star KIC 10483436 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: chemically peculiar; stars: individual: KIC 10483436; stars: oscillations ID RAPIDLY OSCILLATING AP; FREQUENCY-ANALYSIS; MECHANISM; SCIENCE AB Photometry of KIC 10483436 was obtained continuously with 1-min exposures over a 27-d period from the Kepler satellite. The light curve shows rotational variations from surface spots with a period of 4.303 +/- 0.002 d, an amplitude of about 6 mmag and eight pulsation frequencies typical of roAp stars. The high-frequency pattern consists of a quintuplet of equally spaced peaks where the frequency of the dominant central peak (68 mu mag amplitude) is 1353.00 mu Hz (P = 12.32 min). A second set of three peaks of lower amplitude are also visible. These appear to form part of a quintuplet centred on 1511.6 mu Hz with the central peak and one side peak missing. The equidistant frequency spacing is 2.69 mu Hz, which corresponds to the 4.303 d rotation period. However, the amplitudes (12 mu mag) of these peaks are too close to the detection level to allow definite identification of the multiplets. Although no spectrum is available, the character of the pulsations shows that this is a roAp star with two high-frequency modes modulated in amplitude in accordance with the oblique pulsator model. The 4.303-d variation in the light curve, which is interpreted as rotational modulation, shows harmonics as high as the 26th. These harmonics are probably a result of many patches of varying surface brightness associated with surface abundance variations characteristic of Ap stars. C1 [Balona, L. A.] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Cunha, M. S.] Univ Porto, Ctr Astrofis, P-4150 Oporto, Portugal. [Cunha, M. S.] Univ Porto, Fac Ciencias, P-4150 Oporto, Portugal. [Gruberbauer, M.] St Marys Univ, Dept Astron & Phys, Halifax, NS B3H 3C3, Canada. [Kurtz, D. W.] Univ Cent Lancashire, Jeremiah Horrocks Inst Astrophys, Preston PR1 2HE, Lancs, England. [Saio, H.] Tohoku Univ, Astron Inst, Grad Sch Sci, Sendai, Miyagi 9808578, Japan. [White, T. R.] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Christensen-Dalsgaard, J.; Kjeldsen, H.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Christiansen, J. L.; Seader, S. E.] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. [Hall, J. R.] NASA, Orbital Sci Corp, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Balona, LA (reprint author), S African Astron Observ, POB 9, ZA-7935 Cape Town, South Africa. EM lab@saao.ac.za OI Cunha, Margarida/0000-0001-8237-7343 FU NASA's Science Mission Directorate; South African Astronomical Observatory; FCT/MCTES, Portugal [PTDC/CTE-AST/098754/2008]; FCT/MCTES(Portugal); POPH/FSE (EC); NSERC FX The authors wish to thank the Kepler team for their generosity in allowing the data to be released to the Kepler Asteroseismic Science Consortium (KASC) ahead of public release and for their outstanding efforts which have made these results possible. Funding for the Kepler mission is provided by NASA's Science Mission Directorate. We particularly thank Ron Gilliland for his tireless work on behalf of the KASC.; LAB wishes to thank the South African Astronomical Observatory for financial support.; This work was partially supported by the project PTDC/CTE-AST/098754/2008 funded by FCT/MCTES, Portugal. MSC is supported by a Ciencia 2007 contract, funded by FCT/MCTES(Portugal) and POPH/FSE (EC).; MG has received financial support through D. Guenther's NSERC grant. NR 19 TC 21 Z9 22 U1 0 U2 1 PU