FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Abadie, J Abbott, BP Abbott, R Abernathy, M Accadia, T Acernese, F Adams, C Adhikari, R Affeldt, C Allen, B Allen, GS Ceron, EA Amariutei, D Amin, RS Anderson, SB Anderson, WG Antonucci, F Arai, K Arain, MA Araya, MC Aston, SM Astone, P Atkinson, D Aufmuth, P Aulbert, C Aylott, BE Babak, S Baker, P Ballardin, G Ballmer, S Barker, D Barnum, S Barone, F Barr, B Barriga, P Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Basti, A Bauchrowitz, J Bauer, TS Behnke, B Bejger, M Beker, MG Bell, AS Belletoile, A Belopolski, I Benacquista, M Bertolini, A Betzwieser, J Beveridge, N Beyersdorf, PT Bilenko, IA Billingsley, G Birch, J Birindelli, S Biswas, R Bitossi, M Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Blom, M Bock, O Bodiya, TP Bogan, C Bondarescu, R Bondu, F Bonelli, L Bonnand, R Bork, R Born, M Boschi, V Bose, S Bosi, L Bouhou, B Boyle, M Braccini, S Bradaschia, C Brady, PR Braginsky, VB Brau, JE Breyer, J Bridges, DO Brillet, A Brinkmann, M Brisson, V Britzger, M Brooks, AF Brown, DA Brummit, A Budzynski, R Bulik, T Bulten, HJ Buonanno, A Burguet-Castell, J Burmeister, O Buskulic, D Buy, C Byer, RL Cadonati, L Cagnoli, G Cain, J Calloni, E Camp, JB Campagna, E Campsie, P Cannizzo, J Cannon, K Canuel, B Cao, J Capano, C Carbognani, F Caride, S Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chaibi, O Chalermsongsak, T Chalkley, E Charlton, P Chassande-Mottin, E Chelkowski, S Chen, Y Chincarini, A Christensen, N Chua, SSY Chung, CTY Chung, S Clara, F Clark, D Clark, J Clayton, JH Cleva, F Coccia, E Colacino, CN Colas, J Colla, A Colombini, M Conte, R Cook, D Corbitt, TR Cornish, N Corsi, A Costa, CA Coughlin, M Coulon, JP Coward, DM Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Culter, RM Cumming, A Cunningham, L Cuoco, E Dahl, K Danilishin, SL Dannenberg, R D'Antonio, S Danzmann, K Das, K Dattilo, V Daudert, B Daveloza, H Davier, M Davies, G Daw, EJ Day, R Dayanga, T De Rosa, R DeBra, D Debreczeni, G Degallaix, J del Prete, M Dent, T Dergachev, V DeRosa, R DeSalvo, R Dhurandhar, S Di Fiore, L Di Lieto, A Di Palma, I Emilio, MD Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Dorsher, S Douglas, ESD Drago, M Drever, RWP Driggers, JC Dumas, JC Dwyer, S Eberle, T Edgar, M Edwards, M Effler, A Ehrens, P Engel, R Etzel, T Evans, M Evans, T Factourovich, M Fafone, V Fairhurst, S Fan, Y Farr, BF Fazi, D Fehrmann, H Feldbaum, D Ferrante, I Fidecaro, F Finn, LS Fiori, I Flaminio, R Flanigan, M Foley, S Forsi, E Forte, LA Fotopoulos, N Fournier, JD Franc, J Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, TT Friedrich, D Fritschel, P Frolov, VV Fulda, P Fyffe, M Galimberti, M Gammaitoni, L Garcia, J Garofoli, JA Garufi, F Gaspar, ME Gemme, G Genin, E Gennai, A Ghosh, S Giaime, JA Giampanis, S Giardina, KD Giazotto, A Gill, C Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Graef, C Granata, M Grant, A Gras, S Gray, C Greenhalgh, RJS Gretarsson, AM Greverie, C Grosso, R Grote, H Grunewald, S Guidi, GM Guido, C Gupta, R Gustafson, EK Gustafson, R Hage, B Hallam, JM Hammer, D Hammond, G Hanks, J Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Hartman, MT Haughian, K Hayama, K Hayau, JF Hayler, T Heefner, J Heitmann, H Hello, P Hendry, MA Heng, IS Heptonstall, AW Herrera, V Hewitson, M Hild, S Hoak, D Hodge, KA Holt, K Hong, T Hooper, S Hosken, DJ Hough, J Howell, EJ Huet, D Hughey, B Husa, S Huttner, SH Ingram, DR Inta, R Isogai, T Ivanov, A Jaranowski, P Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kanner, JB Katsavounidis, E Katzman, W Kawabe, K Kawamura, S Kawazoe, F Kells, W Kelner, M Keppel, DG Khalaidovski, A Khalili, FY Khazanov, EA Kim, H Kim, N King, PJ Kinzel, DL Kissel, JS Klimenko, S Kondrashov, V Kopparapu, R Koranda, S Korth, WZ Kowalska, I Kozak, D Kringel, V Krishnamurthy, S Krishnan, B Krolak, A Kuehn, G Kumar, R Kwee, P Landry, M Lantz, B Lastzka, N Lazzarini, A Leaci, P Leong, J Leonor, I Leroy, N Letendre, N Li, J Li, TGF Liguori, N Lindquist, PE Lockerbie, NA Lodhia, D Lorenzini, M Loriette, V Lormand, M Losurdo, G Lu, P Luan, J Lubinski, M Luck, H Lundgren, AP Macdonald, E Machenschalk, B MacInnis, M Mageswaran, M Mailand, K Majorana, E Maksimovic, I Man, N Mandel, I Mandic, V Mantovani, M Marandi, A Marchesoni, F Marion, F Marka, S Marka, Z Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McIntyre, G McKechan, DJA Meadors, G Mehmet, M Meier, T Melatos, A Melissinos, AC Mendell, G Mercer, RA Merill, L Meshkov, S Messenger, C Meyer, MS Miao, H Michel, C Milano, L Miller, J Minenkov, Y Mino, Y Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Moesta, P Mohan, M Mohanty, SD Mohapatra, SRP Moraru, D Moreno, G Morgado, N Morgia, A Mosca, S Moscatelli, V Mossavi, K Mours, B Mow-Lowry, CM Mueller, G Mukherjee, S Mullavey, A Muller-Ebhardt, H Munch, J Murray, PG Nash, T Nawrodt, R Nelson, J Neri, I Newton, G Nishida, E Nishizawa, A Nocera, F Nolting, D Ochsner, E O'Dell, J Ogin, GH Oldenburg, RG O'Reilly, B O'Shaughnessy, R Osthelder, C Ott, CD Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Page, A Pagliaroli, G Palladino, L Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Parameswaran, A Pardi, S Parisi, M Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pathak, D Pedraza, M Pekowsky, L Penn, S Peralta, C Perreca, A Persichetti, G Phelps, M Pichot, M Pickenpack, M Piergiovanni, F Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Podkaminer, J Poggiani, R Pold, J Postiglione, F Prato, M Predoi, V Price, LR Prijatelj, M Principe, M Privitera, S Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Quetschke, V Raab, FJ Rabeling, DS Racz, I Radkins, H Raffai, P Rakhmanov, M Ramet, CR Rankins, B Rapagnani, P Raymond, V Re, V Redwine, K Reed, CM Reed, T Regimbau, T Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Roberts, P Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rolland, L Rollins, J Romano, JD Romano, R Romie, JH Rosinska, D Rover, C Rowan, S Rudiger, A Ruggi, P Ryan, K Sakata, S Sakosky, M Salemi, F Salit, M Sammut, L de la Jordana, LS Sandberg, V Sannibale, V Santamaria, L Santiago-Prieto, I Santostasi, G Saraf, S Sassolas, B Sathyaprakash, BS Sato, S Satterthwaite, M Saulson, PR Savage, R Schilling, R Schlamminger, S Schnabel, R Schofield, RMS Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Seifert, F Sellers, D Sengupta, AS Sentenac, D Sergeev, A Shaddock, DA Shaltev, M Shapiro, B Shawhan, P Weerathunga, TS Shoemaker, DH Sibley, A Siemens, X Sigg, D Singer, A Singer, L Sintes, AM Skelton, G Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Smith, R Somiya, K Sorazu, B Soto, J Speirits, FC Sperandio, L Stefszky, M Stein, AJ Steinlechner, J Steinlechner, S Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, AS Sturani, R Stuver, AL Summerscales, TZ Sung, M Susmithan, S Sutton, PJ Swinkels, B Szokoly, GP Tacca, M Talukder, D Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thomas, P Thorne, KA Thorne, KS Thrane, E Thuring, A Titsler, C Tokmakov, KV Toncelli, A Tonelli, M Torre, O Torres, C Torrie, CI Tournefier, E Travasso, F Traylor, G Trias, M Tseng, K Turner, L Ugolini, D Urbanek, K Vahlbruch, H Vaishnav, B Vajente, G Vallisneri, M van den Brand, JFJ Van den Broeck, C van der Putten, S van der Sluys, MV van Veggel, AA Vass, S Vasuth, M Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G Veitch, J Veitch, PJ Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, AE Vinet, JY Vocca, H Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Wanner, A Ward, RL Was, M Wei, P Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wessels, P West, M Westphal, T Wette, K Whelan, JT Whitcomb, SE White, D Whiting, BF Wilkinson, C Willems, PA Williams, HR Williams, L Willke, B Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Yablon, J Yakushin, I Yamamoto, H Yamamoto, K Yang, H Yeaton-Massey, D Yoshida, S Yu, P Yvert, M Zanolin, M Zhang, L Zhang, Z Zhao, C Zotov, N Zucker, ME Zweizig, J Buchner, S Hotan, A Palfreyman, J AF Abadie, J. Abbott, B. P. Abbott, R. Abernathy, M. Accadia, T. Acernese, F. Adams, C. Adhikari, R. Affeldt, C. Allen, B. Allen, G. S. Ceron, E. Amador Amariutei, D. Amin, R. S. Anderson, S. B. Anderson, W. G. Antonucci, F. Arai, K. Arain, M. A. Araya, M. C. Aston, S. M. Astone, P. Atkinson, D. Aufmuth, P. Aulbert, C. Aylott, B. E. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barker, D. Barnum, S. Barone, F. Barr, B. Barriga, P. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Basti, A. Bauchrowitz, J. Bauer, Th S. Behnke, B. Bejger, M. Beker, M. G. Bell, A. S. Belletoile, A. Belopolski, I. Benacquista, M. Bertolini, A. Betzwieser, J. Beveridge, N. Beyersdorf, P. T. Bilenko, I. A. Billingsley, G. Birch, J. Birindelli, S. Biswas, R. Bitossi, M. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Blom, M. Bock, O. Bodiya, T. P. Bogan, C. Bondarescu, R. Bondu, F. Bonelli, L. Bonnand, R. Bork, R. Born, M. Boschi, V. Bose, S. Bosi, L. Bouhou, B. Boyle, M. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Brau, J. E. Breyer, J. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Britzger, M. Brooks, A. F. Brown, D. A. Brummit, A. Budzynski, R. Bulik, T. Bulten, H. J. Buonanno, A. Burguet-Castell, J. Burmeister, O. Buskulic, D. Buy, C. Byer, R. L. Cadonati, L. Cagnoli, G. Cain, J. Calloni, E. Camp, J. B. Campagna, E. Campsie, P. Cannizzo, J. Cannon, K. Canuel, B. Cao, J. Capano, C. Carbognani, F. Caride, S. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chaibi, O. Chalermsongsak, T. Chalkley, E. Charlton, P. Chassande-Mottin, E. Chelkowski, S. Chen, Y. Chincarini, A. Christensen, N. Chua, S. S. Y. Chung, C. T. Y. Chung, S. Clara, F. Clark, D. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, R. Cook, D. Corbitt, T. R. Cornish, N. Corsi, A. Costa, C. A. Coughlin, M. Coulon, J-P. Coward, D. M. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Culter, R. M. Cumming, A. Cunningham, L. Cuoco, E. Dahl, K. Danilishin, S. L. Dannenberg, R. D'Antonio, S. Danzmann, K. Das, K. Dattilo, V. Daudert, B. Daveloza, H. Davier, M. Davies, G. Daw, E. J. Day, R. Dayanga, T. De Rosa, R. DeBra, D. Debreczeni, G. Degallaix, J. del Prete, M. Dent, T. Dergachev, V. DeRosa, R. DeSalvo, R. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Di Palma, I. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Dorsher, S. Douglas, E. S. D. Drago, M. Drever, R. W. P. Driggers, J. C. Dumas, J-C. Dwyer, S. Eberle, T. Edgar, M. Edwards, M. Effler, A. Ehrens, P. Engel, R. Etzel, T. Evans, M. Evans, T. Factourovich, M. Fafone, V. Fairhurst, S. Fan, Y. Farr, B. F. Fazi, D. Fehrmann, H. Feldbaum, D. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Flaminio, R. Flanigan, M. Foley, S. Forsi, E. Forte, L. A. Fotopoulos, N. Fournier, J-D. Franc, J. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. T. Friedrich, D. Fritschel, P. Frolov, V. V. Fulda, P. Fyffe, M. Galimberti, M. Gammaitoni, L. Garcia, J. Garofoli, J. A. Garufi, F. Gaspar, M. E. Gemme, G. Genin, E. Gennai, A. Ghosh, S. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Gill, C. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Graef, C. Granata, M. Grant, A. Gras, S. Gray, C. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grosso, R. Grote, H. Grunewald, S. Guidi, G. M. Guido, C. Gupta, R. Gustafson, E. K. Gustafson, R. Hage, B. Hallam, J. M. Hammer, D. Hammond, G. Hanks, J. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Hartman, M. T. Haughian, K. Hayama, K. Hayau, J-F. Hayler, T. Heefner, J. Heitmann, H. Hello, P. Hendry, M. A. Heng, I. S. Heptonstall, A. W. Herrera, V. Hewitson, M. Hild, S. Hoak, D. Hodge, K. A. Holt, K. Hong, T. Hooper, S. Hosken, D. J. Hough, J. Howell, E. J. Huet, D. Hughey, B. Husa, S. Huttner, S. H. Ingram, D. R. Inta, R. Isogai, T. Ivanov, A. Jaranowski, P. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kanner, J. B. Katsavounidis, E. Katzman, W. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Kelner, M. Keppel, D. G. Khalaidovski, A. Khalili, F. Y. Khazanov, E. A. Kim, H. Kim, N. King, P. J. Kinzel, D. L. Kissel, J. S. Klimenko, S. Kondrashov, V. Kopparapu, R. Koranda, S. Korth, W. Z. Kowalska, I. Kozak, D. Kringel, V. Krishnamurthy, S. Krishnan, B. Krolak, A. Kuehn, G. Kumar, R. Kwee, P. Landry, M. Lantz, B. Lastzka, N. Lazzarini, A. Leaci, P. Leong, J. Leonor, I. Leroy, N. Letendre, N. Li, J. Li, T. G. F. Liguori, N. Lindquist, P. E. Lockerbie, N. A. Lodhia, D. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lu, P. Luan, J. Lubinski, M. Lueck, H. Lundgren, A. P. Macdonald, E. Machenschalk, B. MacInnis, M. Mageswaran, M. Mailand, K. Majorana, E. Maksimovic, I. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marandi, A. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McIntyre, G. McKechan, D. J. A. Meadors, G. Mehmet, M. Meier, T. Melatos, A. Melissinos, A. C. Mendell, G. Mercer, R. A. Merill, L. Meshkov, S. Messenger, C. Meyer, M. S. Miao, H. Michel, C. Milano, L. Miller, J. Minenkov, Y. Mino, Y. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Moesta, P. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moraru, D. Moreno, G. Morgado, N. Morgia, A. Mosca, S. Moscatelli, V. Mossavi, K. Mours, B. Mow-Lowry, C. M. Mueller, G. Mukherjee, S. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murray, P. G. Nash, T. Nawrodt, R. Nelson, J. Neri, I. Newton, G. Nishida, E. Nishizawa, A. Nocera, F. Nolting, D. Ochsner, E. O'Dell, J. Ogin, G. H. Oldenburg, R. G. O'Reilly, B. O'Shaughnessy, R. Osthelder, C. Ott, C. D. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Page, A. Pagliaroli, G. Palladino, L. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Parameswaran, A. Pardi, S. Parisi, M. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pathak, D. Pedraza, M. Pekowsky, L. Penn, S. Peralta, C. Perreca, A. Persichetti, G. Phelps, M. Pichot, M. Pickenpack, M. Piergiovanni, F. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Podkaminer, J. Poggiani, R. Poeld, J. Postiglione, F. Prato, M. Predoi, V. Price, L. R. Prijatelj, M. Principe, M. Privitera, S. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Raab, F. J. Rabeling, D. S. Racz, I. Radkins, H. Raffai, P. Rakhmanov, M. Ramet, C. R. Rankins, B. Rapagnani, P. Raymond, V. Re, V. Redwine, K. Reed, C. M. Reed, T. Regimbau, T. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Roberts, P. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Rolland, L. Rollins, J. Romano, J. D. Romano, R. Romie, J. H. Rosinska, D. Roever, C. Rowan, S. Ruediger, A. Ruggi, P. Ryan, K. Sakata, S. Sakosky, M. Salemi, F. Salit, M. Sammut, L. Sancho de la Jordana, L. Sandberg, V. Sannibale, V. Santamaria, L. Santiago-Prieto, I. Santostasi, G. Saraf, S. Sassolas, B. Sathyaprakash, B. S. Sato, S. Satterthwaite, M. Saulson, P. R. Savage, R. Schilling, R. Schlamminger, S. Schnabel, R. Schofield, R. M. S. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Seifert, F. Sellers, D. Sengupta, A. S. Sentenac, D. Sergeev, A. Shaddock, D. A. Shaltev, M. Shapiro, B. Shawhan, P. Weerathunga, T. Shihan Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Singer, A. Singer, L. Sintes, A. M. Skelton, G. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Smith, R. Somiya, K. Sorazu, B. Soto, J. Speirits, F. C. Sperandio, L. Stefszky, M. Stein, A. J. Steinlechner, J. Steinlechner, S. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. S. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sung, M. Susmithan, S. Sutton, P. J. Swinkels, B. Szokoly, G. P. Tacca, M. Talukder, D. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thomas, P. Thorne, K. A. Thorne, K. S. Thrane, E. Thuering, A. Titsler, C. Tokmakov, K. V. Toncelli, A. Tonelli, M. Torre, O. Torres, C. Torrie, C. I. Tournefier, E. Travasso, F. Traylor, G. Trias, M. Tseng, K. Turner, L. Ugolini, D. Urbanek, K. Vahlbruch, H. Vaishnav, B. Vajente, G. Vallisneri, M. van den Brand, J. F. J. Van den Broeck, C. van der Putten, S. van der Sluys, M. V. van Veggel, A. A. Vass, S. Vasuth, M. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. Veitch, J. Veitch, P. J. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. E. Vinet, J-Y. Vocca, H. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Wanner, A. Ward, R. L. Was, M. Wei, P. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wessels, P. West, M. Westphal, T. Wette, K. Whelan, J. T. Whitcomb, S. E. White, D. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, H. R. Williams, L. Willke, B. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Yablon, J. Yakushin, I. Yamamoto, H. Yamamoto, K. Yang, H. Yeaton-Massey, D. Yoshida, S. Yu, P. Yvert, M. Zanolin, M. Zhang, L. Zhang, Z. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. Buchner, S. Hotan, A. Palfreyman, J. CA LIGO Sci Collaboration Virgo Collaboration TI BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational waves; pulsars: individual (PSR J0835-4510); stars: neutron ID NEUTRON-STARS; TIMING PACKAGE; DEFORMATIONS; SEARCH; TEMPO2 AB We present direct upper limits on continuous gravitational wave emission from the Vela pulsar using data from the Virgo detector's second science run. These upper limits have been obtained using three independent methods that assume the gravitational wave emission follows the radio timing. Two of the methods produce frequentist upper limits for an assumed known orientation of the star's spin axis and value of the wave polarization angle of, respectively, 1.9 x 10(-24) and 2.2 x 10(-24), with 95% confidence. The third method, under the same hypothesis, produces a Bayesian upper limit of 2.1 x 10(-24), with 95% degree of belief. These limits are below the indirect spin-down limit of 3.3 x 10(-24) for the Vela pulsar, defined by the energy loss rate inferred from observed decrease in Vela's spin frequency, and correspond to a limit on the star ellipticity of similar to 10(-3). Slightly less stringent results, but still well below the spin-down limit, are obtained assuming the star's spin axis inclination and the wave polarization angles are unknown. C1 [Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Anderson, S. B.; Arai, K.; Araya, M. C.; Ballmer, S.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cannon, K.; Cepeda, C.; Chalermsongsak, T.; Coyne, D. C.; Dannenberg, R.; Daudert, B.; Dergachev, V.; DeSalvo, R.; Driggers, J. C.; Ehrens, P.; Engel, R.; Etzel, T.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A. W.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P. J.; Kondrashov, V.; Korth, W. Z.; Kozak, D.; Lazzarini, A.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Nash, T.; Ogin, G. H.; Osthelder, C.; Parameswaran, A.; Patel, P.; Pedraza, M.; Phelps, M.; Privitera, S.; Robertson, N. A.; Sannibale, V.; Searle, A. C.; Seifert, F.; Sengupta, A. S.; Singer, A.; Singer, L.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C. I.; Turner, L.; Vass, S.; Villar, A. E.; Wallace, L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Yamamoto, H.; Yeaton-Massey, D.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Abernathy, M.; Barr, B.; Bassiri, R.; Bastarrika, M.; Bell, A. S.; Beveridge, N.; Campsie, P.; Cumming, A.; Cunningham, L.; Edgar, M.; Gill, C.; Grant, A.; Hammond, G.; Haughian, K.; Hendry, M. A.; Heng, I. S.; Hild, S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Macdonald, E.; Martin, I. W.; Miller, J.; Murray, P. G.; Nawrodt, R.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Santiago-Prieto, I.; Sorazu, B.; Speirits, F. C.; Strain, K. A.; Torrie, C. I.; van Veggel, A. A.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Accadia, T.; Belletoile, A.; Buskulic, D.; Dietz, A.; Gouaty, R.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Verkindt, D.; Yvert, M.] Univ Savoie, CNRS IN2P3, Lab Annecy le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. [Acernese, F.; Barone, F.; Calloni, E.; Conte, R.; De Rosa, R.; Di Fiore, L.; Forte, L. A.; Garufi, F.; Milano, L.; Mosca, S.; Pardi, S.; Parisi, M.; Persichetti, G.; Pinto, I. M.; Postiglione, F.; Principe, M.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Acernese, F.; Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Adams, C.; Birch, J.; Bridges, D. O.; Evans, T.; Forsi, E.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Guido, C.; Hanson, J.; Holt, K.; Katzman, W.; Kinzel, D. L.; Lormand, M.; Meyer, M. S.; Nolting, D.; O'Reilly, B.; Overmier, H.; Ramet, C. R.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thorne, K. A.; Torres, C.; Traylor, G.; Wen, S.; Wooley, R.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Burmeister, O.; Dahl, K.; Danzmann, K.; Degallaix, J.; Di Palma, I.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Giampanis, S.; Gossler, S.; Graef, C.; Grote, H.; Hage, B.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J.; Lueck, H.; Machenschalk, B.; Mehmet, M.; Meier, T.; Messenger, C.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Scott, J.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Affeldt, C.; Allen, B.; Aufmuth, P.; Aulbert, C.; Bauchrowitz, J.; Bertolini, A.; Bock, O.; Bogan, C.; Born, M.; Breyer, J.; Brinkmann, M.; Britzger, M.; Burmeister, O.; Dahl, K.; Danzmann, K.; Degallaix, J.; Di Palma, I.; Eberle, T.; Fehrmann, H.; Frede, M.; Friedrich, D.; Giampanis, S.; Gossler, S.; Graef, C.; Grote, H.; Hage, B.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Kim, H.; Kringel, V.; Kuehn, G.; Kwee, P.; Lastzka, N.; Leong, J.; Lueck, H.; Machenschalk, B.; Mehmet, M.; Meier, T.; Messenger, C.; Mossavi, K.; Mueller-Ebhardt, H.; Pickenpack, M.; Pletsch, H. J.; Poeld, J.; Prijatelj, M.; Prix, R.; Puncken, O.; Roever, C.; Ruediger, A.; Salemi, F.; Schilling, R.; Schnabel, R.; Scott, J.; Shaltev, M.; Steinlechner, J.; Steinlechner, S.; Tarabrin, S. P.; Taylor, J. R.; Thuering, A.; Vahlbruch, H.; Veltkamp, C.; Wanner, A.; Weinert, M.; Wessels, P.; Westphal, T.; Wette, K.; Willke, B.; Winkelmann, L.; Winkler, W.; Yamamoto, K.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Allen, B.; Ceron, E. Amador; Anderson, W. G.; Biswas, R.; Brady, P. R.; Burguet-Castell, J.; Clayton, J. H.; Creighton, J. D. E.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Moe, B.; Oldenburg, R. G.; Papa, M. A.; Price, L. R.; Schlamminger, S.; Scott, S. M.; Siemens, X.; Skelton, G.; Vaulin, R.; Wiseman, A. G.; Yu, P.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, G. S.; Byer, R. L.; Clark, D.; DeBra, D.; Herrera, V.; Kim, N.; Lantz, B.; Lu, P.; Marandi, A.; Tseng, K.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Amariutei, D.; Arain, M. A.; Das, K.; Dooley, K. L.; Feldbaum, D.; Hartman, M. T.; Klimenko, S.; Martin, R. M.; Mitselmakher, G.; Mueller, G.; Ottens, R. S.; Pankow, C.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.] Univ Florida, Gainesville, FL 32611 USA. [Amin, R. S.; Caudill, S.; Costa, C. A.; DeRosa, R.; Effler, A.; Fricke, T. T.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Kissel, J. S.; Slutsky, J.; Sung, M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Antonucci, F.; Astone, P.; Colla, A.; Corsi, A.; Frasca, S.; Majorana, E.; Moscatelli, V.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Aston, S. M.; Aylott, B. E.; Chalkley, E.; Chelkowski, S.; Cruise, A. M.; Culter, R. M.; Freise, A.; Fulda, P.; Hallam, J. M.; Lodhia, D.; Page, A.; Perreca, A.; Smith, R.; Vecchio, A.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Atkinson, D.; Barker, D.; Barton, M. A.; Bland, B.; Clara, F.; Cook, D.; Douglas, E. S. D.; Flanigan, M.; Garcia, J.; Gray, C.; Hanks, J.; Ingram, D. R.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moraru, D.; Moreno, G.; Raab, F. J.; Radkins, H.; Reed, C. M.; Ryan, K.; Sakosky, M.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Thomas, P.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Babak, S.; Behnke, B.; Grunewald, S.; Krishnan, B.; Leaci, P.; Moesta, P.; Papa, M. A.; Peralta, C.; Robinson, E. L.; Santamaria, L.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Huet, D.; Marque, J.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.; Tacca, M.] EGO, I-56021 Cascina, PI, Italy. [Barnum, S.; Christensen, N.; Coughlin, M.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Barriga, P.; Blair, D.; Chung, S.; Coward, D. M.; Dumas, J-C.; Fan, Y.; Gras, S.; Hooper, S.; Howell, E. J.; Ju, L.; Merill, L.; Miao, H.; Susmithan, S.; Wen, L.; Zhang, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Corbitt, T. R.; Donovan, F.; Dwyer, S.; Evans, M.; Foley, S.; Fritschel, P.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Mason, K.; Matichard, F.; Mavalvala, N.; Mittleman, R.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Soto, J.; Stein, A. J.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Barsuglia, M.; Bouhou, B.; Buy, C.; Chassande-Mottin, E.; Granata, M.; Ward, R. L.] Univ Paris Diderot, CNRS IN2P3, CEA DSM IRFU, Lab AstroParticule & Cosmol APC,Observ Paris, F-75013 Paris, France. [Bartos, I.; Belopolski, I.; Factourovich, M.; Marka, S.; Marka, Z.; Matone, L.; Redwine, K.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Basti, A.; Bitossi, M.; Bonelli, L.; Boschi, V.; Braccini, S.; Bradaschia, C.; Cella, G.; Colacino, C. N.; del Prete, M.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Torre, O.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Basti, A.; Bonelli, L.; Colacino, C. N.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [Bauer, Th S.; Beker, M. G.; Blom, M.; Bulten, H. J.; Li, T. G. F.; Rabeling, D. S.; van den Brand, J. F. J.; van der Putten, S.] Nikhef, Amsterdam, Netherlands. [Bejger, M.; Bulik, T.; Rosinska, D.] CAMK PAN, PL-00716 Warsaw, Poland. [Benacquista, M.; Creighton, T. D.; Daveloza, H.; Diaz, M.; Grosso, R.; Li, J.; Mohanty, S. D.; Mukherjee, S.; Quetschke, V.; Rakhmanov, M.; Romano, J. D.; Weerathunga, T. Shihan; Stone, R.; Vaishnav, B.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Birindelli, S.; Brillet, A.; Chaibi, O.; Cleva, F.; Coulon, J-P.; Fournier, J-D.; Greverie, C.; Heitmann, H.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J-Y.] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France. [Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, LAL, CNRS IN2P3, F-91898 Orsay, France. [Bondarescu, R.; Finn, L. S.; Kopparapu, R.; O'Shaughnessy, R.; Owen, B. J.; Titsler, C.; Williams, H. R.] Penn State Univ, University Pk, PA 16802 USA. [Bondu, F.; Hayau, J-F.; Heitmann, H.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Bonnand, R.; Flaminio, R.; Franc, J.; Galimberti, M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] IN2P3 CNRS, LMA, F-69622 Lyon, France. [Bose, S.; Dayanga, T.; Ghosh, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Gammaitoni, L.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Boyle, M.; Chen, Y.; Hong, T.; Luan, J.; Mino, Y.; Ott, C. D.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Wen, L.; Yang, H.] Caltech CaRT, Pasadena, CA 91125 USA. [Brau, J. E.; Frey, R.; Harstad, E. D.; Leonor, I.; Schofield, R. M. S.] Univ Oregon, Eugene, OR 97403 USA. [Brown, D. A.; Capano, C.; Garofoli, J. A.; Lundgren, A. P.; Pekowsky, L.; Saulson, P. R.; Schutz, B. F.; Wei, P.; West, M.] Syracuse Univ, Syracuse, NY 13244 USA. [Brummit, A.; Greenhalgh, R. J. S.; Hayler, T.; O'Dell, J.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Budzynski, R.; Bulik, T.; Kowalska, I.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Buonanno, A.; Kanner, J. B.; Ochsner, E.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Hoak, D.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Cagnoli, G.; Campagna, E.; Guidi, G. M.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Cain, J.; Cavaglia, M.; Rankins, B.] Univ Mississippi, University, MS 38677 USA. [Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Pardi, S.; Parisi, M.; Persichetti, G.] Univ Naples Federico II, I-80126 Naples, Italy. [Camp, J. B.; Cannizzo, J.; Stroeer, A. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Campagna, E.; Cesarini, E.; Guidi, G. M.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Cao, J.] Tsinghua Univ, Beijing 100084, Peoples R China. [Caride, S.; Goetz, E.; Gustafson, R.; Meadors, G.; Riles, K.] Univ Michigan, Ann Arbor, MI 48109 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Chua, S. S. Y.; Inta, R.; McClelland, D. E.; Mow-Lowry, C. M.; Mullavey, A.; Satterthwaite, M.; Schulz, B.; Shaddock, D. A.; Slagmolen, B. J. J.; Stefszky, M.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Chung, C. T. Y.; Melatos, A.; Sammut, L.] Univ Melbourne, Parkville, Vic 3010, Australia. [Clark, J.; Davies, G.; Dent, T.; Edwards, M.; Fairhurst, S.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Pathak, D.; Predoi, V.; Robinson, C.; Sathyaprakash, B. S.; Sutton, P. J.; Van den Broeck, C.; Veitch, J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Minenkov, Y.; Morgia, A.; Pagliaroli, G.; Palladino, L.; Re, V.; Rocchi, A.; Sperandio, L.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Milan, Italy. [Coccia, E.; Fafone, V.; Morgia, A.; Re, V.; Sperandio, L.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Colla, A.; Colombini, M.; Frasca, S.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Conte, R.; Postiglione, F.] Univ Salerno, I-84084 Salerno, Italy. [Daw, E. J.; White, D.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Debreczeni, G.; Gaspar, M. E.; Racz, I.; Vasuth, M.] RMKI, H-1121 Budapest, Hungary. [del Prete, M.; Mantovani, M.; Torre, O.] Univ Siena, I-53100 Siena, Italy. [Dhurandhar, S.; Gupta, R.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Emilio, M. Di Paolo; Pagliaroli, G.; Palladino, L.] Univ Aquila, I-67100 Laquila, Italy. [Dorsher, S.; Kandhasamy, S.; Mandic, V.; Thrane, E.] Univ Minnesota, Minneapolis, MN 55455 USA. [Drago, M.; Vedovato, G.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Drago, M.] Univ Padua, I-35131 Padua, Italy. [Farr, B. F.; Fazi, D.; Kalogera, V.; Kelner, M.; Krishnamurthy, S.; Mandel, I.; Raymond, V.; Salit, M.; van der Sluys, M. V.; Yablon, J.] Northwestern Univ, Evanston, IL 60208 USA. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Frei, Z.; Raffai, P.; Szokoly, G. P.] Eotvos Lorand Univ, H-1117 Budapest, Hungary. [Gammaitoni, L.; Neri, I.; Travasso, F.] Univ Perugia, I-06123 Perugia, Italy. [Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Hayama, K.; Kawamura, S.; Miyakawa, O.; Nishida, E.; Nishizawa, A.; Sakata, S.; Sato, S.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P. J.] Univ Adelaide, Adelaide, SA 5005, Australia. [Husa, S.; Sancho de la Jordana, L.; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain. [Jaranowski, P.; Pietka, M.] Bialystok Univ, PL-15424 Bialystok, Poland. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Khazanov, E. A.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Krolak, A.] IPJ, PL-05400 Otwock, Poland. [Liguori, N.; Prodi, G. A.] Ist Nazl Fis Nucl, Grp Collegato Trento, I-38050 Trento, Italy. [Liguori, N.; Prodi, G. A.] Univ Trent, I-38050 Trento, Italy. [Lockerbie, N. A.; Tokmakov, K. V.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [Loriette, V.; Maksimovic, I.] CNRS, ESPCI, F-75005 Paris, France. [McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Penn, S.; Podkaminer, J.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Reed, T.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. [Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Smith, J. R.] Calif State Univ Fullerton, Fullerton, CA 92831 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [Buchner, S.] Hartebeesthoek Radio Astron Observ, ZA-1740 Krugersdorp, South Africa. [Buchner, S.] Univ Witwatersrand, Sch Phys, ZA-2050 Johannesburg, South Africa. [Hotan, A.] CSIRO Astron & Space Sci, Epping, NSW 1710, Australia. [Palfreyman, J.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. RP Abadie, J (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Ward, Robert/I-8032-2014; Frasconi, Franco/K-1068-2016; Sigg, Daniel/I-4308-2015; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Ferrante, Isidoro/F-1017-2012; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Mow-Lowry, Conor/F-8843-2015; Finn, Lee Samuel/A-3452-2009; Tacca, Matteo/J-1599-2015; Graef, Christian/J-3167-2015; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Shaddock, Daniel/A-7534-2011; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Howell, Eric/H-5072-2014; Ott, Christian/G-2651-2011; mosca, simona/I-7116-2012; Parisi, Maria/D-2817-2013; Steinlechner, Sebastian/D-5781-2013; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Pitkin, Matthew/I-3802-2013; Vyatchanin, Sergey/J-2238-2012; Miao, Haixing/O-1300-2013; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Losurdo, Giovanni/K-1241-2014; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; McClelland, David/E-6765-2010; Vecchio, Alberto/F-8310-2015; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; Mitrofanov, Valery/D-8501-2012; Puppo, Paola/J-4250-2012; Colla, Alberto/J-4694-2012; Rapagnani, Piero/J-4783-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Neri, Igor/F-1482-2010; Vocca, Helios/F-1444-2010; prodi, giovanni/B-4398-2010; Acernese, Fausto/E-4989-2010; Gammaitoni, Luca/B-5375-2009; Khalili, Farit/D-8113-2012; Prato, Mirko/D-8531-2012; Santamaria, Lucia/A-7269-2012; Costa, Cesar/G-7588-2012; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Punturo, Michele/I-3995-2012; Strigin, Sergey/I-8337-2012; Marchesoni, Fabio/A-1920-2008; Kawabe, Keita/G-9840-2011; Bondu, Francois/A-2071-2012; Toncelli, Alessandra/A-5352-2012; Hammond, Giles/A-8168-2012; Bell, Angus/E-7312-2011; Strain, Kenneth/D-5236-2011; Hild, Stefan/A-3864-2010; Martin, Iain/A-2445-2010; Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; Freise, Andreas/F-8892-2011; Abernathy, Matthew/G-1113-2011; OI Vetrano, Flavio/0000-0002-7523-4296; Nishizawa, Atsushi/0000-0003-3562-0990; calloni, enrico/0000-0003-4819-3297; Scott, Jamie/0000-0001-6701-6515; Sorazu, Borja/0000-0002-6178-3198; Boschi, Valerio/0000-0001-8665-2293; Matichard, Fabrice/0000-0001-8982-8418; Husa, Sascha/0000-0002-0445-1971; Pinto, Innocenzo M./0000-0002-2679-4457; Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870; Santamaria, Lucia/0000-0002-5986-0449; Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461; Milano, Leopoldo/0000-0001-9487-5876; Swinkels, Bas/0000-0002-3066-3601; Drago, Marco/0000-0002-3738-2431; Ward, Robert/0000-0001-5503-5241; Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; Fairhurst, Stephen/0000-0001-8480-1961; Frasconi, Franco/0000-0003-4204-6587; Sigg, Daniel/0000-0003-4606-6526; Ferrante, Isidoro/0000-0002-0083-7228; Travasso, Flavio/0000-0002-4653-6156; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Palfreyman, Jim/0000-0001-8691-8039; Kanner, Jonah/0000-0001-8115-0577; Wette, Karl/0000-0002-4394-7179; Finn, Lee Samuel/0000-0002-3937-0688; Tacca, Matteo/0000-0003-1353-0441; Graef, Christian/0000-0002-4535-2603; Garufi, Fabio/0000-0003-1391-6168; Shaddock, Daniel/0000-0002-6885-3494; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Howell, Eric/0000-0001-7891-2817; Ott, Christian/0000-0003-4993-2055; mosca, simona/0000-0001-7869-8275; Steinlechner, Sebastian/0000-0003-4710-8548; Pitkin, Matthew/0000-0003-4548-526X; Miao, Haixing/0000-0003-4101-9958; Losurdo, Giovanni/0000-0003-0452-746X; Danilishin, Stefan/0000-0001-7758-7493; McClelland, David/0000-0001-6210-5842; Vecchio, Alberto/0000-0002-6254-1617; Vicere, Andrea/0000-0003-0624-6231; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Zhao, Chunnong/0000-0001-5825-2401; Neri, Igor/0000-0002-9047-9822; Vocca, Helios/0000-0002-1200-3917; prodi, giovanni/0000-0001-5256-915X; Acernese, Fausto/0000-0003-3103-3473; Gammaitoni, Luca/0000-0002-4972-7062; Prato, Mirko/0000-0002-2188-8059; Gorodetsky, Michael/0000-0002-5159-2742; Punturo, Michele/0000-0001-8722-4485; Marchesoni, Fabio/0000-0001-9240-6793; Bondu, Francois/0000-0001-6487-5197; Toncelli, Alessandra/0000-0003-4400-8808; Bell, Angus/0000-0003-1523-0821; Strain, Kenneth/0000-0002-2066-5355; Lueck, Harald/0000-0001-9350-4846; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Douglas, Ewan/0000-0002-0813-4308; Zweizig, John/0000-0002-1521-3397; O'Shaughnessy, Richard/0000-0001-5832-8517; Pathak, Devanka/0000-0002-1768-8353; Granata, Massimo/0000-0003-3275-1186; Aulbert, Carsten/0000-0002-1481-8319; Di Paolo Emilio, Maurizio/0000-0002-9558-3610 FU United States National Science Foundation; Science and Technology Facilities Council of the United Kingdom; Max-Planck-Society; State of Niedersachsen/Germany; Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique; Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Netherlands Organisation for Scientific Research; Polish Ministry of Science and Higher Education; Foundation for Polish Science; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. NR 40 TC 50 Z9 51 U1 3 U2 35 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2011 VL 737 IS 2 AR 93 DI 10.1088/0004-637X/737/2/93 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808WV UT WOS:000294013600047 ER PT J AU Goldsmith, PF Liseau, R Bell, TA Black, JH Chen, JH Hollenbach, D Kaufman, MJ Li, D Lis, DC Melnick, G Neufeld, D Pagani, L Snell, R Benz, AO Bergin, E Bruderer, S Caselli, P Caux, E Encrenaz, P Falgarone, E Gerin, M Goicoechea, JR Hjalmarson, A Larsson, B Le Bourlot, J Le Petit, F De Luca, M Nagy, Z Roueff, E Sandqvist, A van der Tak, F van Dishoeck, EF Vastel, C Viti, S Yildiz, U AF Goldsmith, Paul F. Liseau, Rene Bell, Tom A. Black, John H. Chen, Jo-Hsin Hollenbach, David Kaufman, Michael J. Li, Di Lis, Dariusz C. Melnick, Gary Neufeld, David Pagani, Laurent Snell, Ronald Benz, Arnold O. Bergin, Edwin Bruderer, Simon Caselli, Paola Caux, Emmanuel Encrenaz, Pierre Falgarone, Edith Gerin, Maryvonne Goicoechea, Javier R. Hjalmarson, Ake Larsson, Bengt Le Bourlot, Jacques Le Petit, Franck De Luca, Massimo Nagy, Zsofia Roueff, Evelyne Sandqvist, Aage van der Tak, Floris van Dishoeck, Ewine F. Vastel, Charlotte Viti, Serena Yildiz, Umut TI HERSCHEL* MEASUREMENTS OF MOLECULAR OXYGEN IN ORION SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; ISM: abundances; ISM: individual objects (Orion); ISM: molecules; submillimeter: ISM ID DENSE INTERSTELLAR CLOUDS; WAVE-ASTRONOMY-SATELLITE; INTER-STELLAR CLOUDS; GAS-PHASE CHEMISTRY; DISSOCIATIVE RECOMBINATION; APERTURE SYNTHESIS; O-2 ABUNDANCE; UPPER LIMITS; ROTATIONAL-EXCITATION; INELASTIC-COLLISIONS AB We report observations of three rotational transitions of molecular oxygen (O-2) in emission from the H-2 Peak 1 position of vibrationally excited molecular hydrogen in Orion. We observed the 487 GHz, 774 GHz, and 1121 GHz lines using the Heterodyne Instrument for the Far Infrared on the Herschel Space Observatory, having velocities of 11 km s(-1) to 12 km s(-1) and widths of 3 km s(-1). The beam-averaged column density is N(O-2) = 6.5 x 10(16) cm(-2), and assuming that the source has an equal beam-filling factor for all transitions (beam widths 44, 28, and 19 ''), the relative line intensities imply a kinetic temperature between 65 K and 120 K. The fractional abundance of O-2 relative to H-2 is (0.3-7.3) x 10(-6). The unusual velocity suggests an association with a similar to 5 '' diameter source, denoted Peak A, the Western Clump, or MF4. The mass of this source is similar to 10 M-circle dot and the dust temperature is >= 150 K. Our preferred explanation of the enhanced O-2 abundance is that dust grains in this region are sufficiently warm (T >= 100 K) to desorb water ice and thus keep a significant fraction of elemental oxygen in the gas phase, with a significant fraction as O-2. For this small source, the line ratios require a temperature >= 180 K. The inferred O-2 column density similar or equal to 5 x 10(18) cm(-2) can be produced in Peak A, having N(H-2) similar or equal to 4 x 10(24) cm(-2). An alternative mechanism is a low-velocity (10-15 km s(-1)) C-shock, which can produce N(O-2) up to 10(17) cm(-2). C1 [Goldsmith, Paul F.; Chen, Jo-Hsin; Li, Di] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Liseau, Rene; Black, John H.; Hjalmarson, Ake] Chalmers, Onsala Space Observ, Dept Earth & Space Sci, SE-43992 Onsala, Sweden. [Bell, Tom A.; Goicoechea, Javier R.] CSIC INTA, Ctr Astrobiol, Madrid 28850, Spain. [Hollenbach, David] SETI Inst, Mountain View, CA 94043 USA. [Kaufman, Michael J.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. [Lis, Dariusz C.] CALTECH, Cahill Ctr Astron & Astrophys 301 17, Pasadena, CA 91125 USA. [Melnick, Gary] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Neufeld, David] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Pagani, Laurent; Encrenaz, Pierre] Observ Paris, CNRS, UMR8112, F-75014 Paris, France. [Pagani, Laurent; Encrenaz, Pierre] LERMA, F-75014 Paris, France. [Snell, Ronald] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Benz, Arnold O.; Bruderer, Simon] ETH, Inst Astron, CH-8092 Zurich, Switzerland. [Bergin, Edwin] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Caselli, Paola] Univ Leeds, Sch Phys & Astron, Leeds, W Yorkshire, England. [Caux, Emmanuel; Vastel, Charlotte] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Caux, Emmanuel; Vastel, Charlotte] IRAP, CNRS, F-31028 Toulouse 4, France. [Falgarone, Edith; Gerin, Maryvonne] Ecole Normale Super, F-75231 Paris 05, France. [Falgarone, Edith; Gerin, Maryvonne] Observ Paris, UMR8112, CNRS, LRA LERMA, F-75231 Paris 05, France. [Larsson, Bengt; Sandqvist, Aage] Stockholm Univ, AlbaNova Univ Ctr, Stockholm Observ, SE-10691 Stockholm, Sweden. [Le Bourlot, Jacques; Le Petit, Franck; De Luca, Massimo; Roueff, Evelyne] LUTH, Observ Paris, Paris, France. [Nagy, Zsofia; van der Tak, Floris] Univ Groningen, Kapteyn Astron Inst, Groningen, Netherlands. [Nagy, Zsofia; van der Tak, Floris] SRON Netherlands Inst Space Res, NL-9700 AV Groningen, Netherlands. [van Dishoeck, Ewine F.; Yildiz, Umut] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [van Dishoeck, Ewine F.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Viti, Serena] UCL, Dept Phys & Astron, London, England. RP Goldsmith, PF (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Paul.F.Goldsmith@jpl.nasa.gov RI Yildiz, Umut/C-5257-2011; Goldsmith, Paul/H-3159-2016 OI Yildiz, Umut/0000-0001-6197-2864; FU NSF [AST-0540882]; National Aeronautics and Space Administration FX We are indebted to the many people who worked so hard and for so long to make the Herschel mission and the HIFI instrument a success. HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada, and the US under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands with major contributions from Germany, France, and the US Consortium members are Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA); Sweden: Chalmers University of Technology-MC2, RSS, & GARD, Onsala Space Observatory, Swedish National Space Board, Stockholm University-Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC. The O2 excitation calculations were carried out using the RADEX code (Van der Tak et al. 2007). We appreciate the effort that went into making critical spectroscopic data available through the Jet Propulsion Laboratory Molecular Spectroscopy Data Base (http://spec.jpl.nasa.gov/), the Cologne Database for Molecular Spectroscopy, (http://www.astro.uni-koeln.de/cdms/and Muller et al. 2001) and the Leiden Atomic and Molecular Database (http://www.strw.leidenuniv.nl/similar to moldata/ and Schoier et al. 2005). We thank Holger Muller for helpful discussions about molecular spectroscopy. Colin Borys of the NASA Herschel Science Center gave us valuable assistance in unraveling the pointing offsets of the two HIFI polarization beams. We thank Nathaniel Cuningham and John Bally for sending us the FITS image used to make Figure 2. We appreciate the input from John Pearson and Harshal Gupta in terms of useful discussions about molecular structure and astrophysics. Volker Tolls provided valuable information about the WBS noise bandwidth and noise after combining WBS spectral channels. We have benefited from discussions with D. Quan about grain warmup and its impact on molecular cloud chemistry. The Caltech Submillimeter Observatory is supported by the NSF under award AST-0540882. This work was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We thank K. Oberg for helpful information on desorption of molecules from grains, and the referee for a number of valuable suggestions. NR 116 TC 59 Z9 59 U1 2 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2011 VL 737 IS 2 AR 96 DI 10.1088/0004-637X/737/2/96 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808WV UT WOS:000294013600050 ER PT J AU Gralla, MB Sharon, K Gladders, MD Marrone, DP Barrientos, LF Bayliss, M Bonamente, M Bulbul, E Carlstrom, JE Culverhouse, T Gilbank, DG Greer, C Hasler, N Hawkins, D Hennessy, R Joy, M Koester, B Lamb, J Leitch, E Miller, A Mroczkowski, T Muchovej, S Oguri, M Plagge, T Pryke, C Woody, D AF Gralla, Megan B. Sharon, Keren Gladders, Michael D. Marrone, Daniel P. Barrientos, L. Felipe Bayliss, Matthew Bonamente, Massimiliano Bulbul, Esra Carlstrom, John E. Culverhouse, Thomas Gilbank, David G. Greer, Christopher Hasler, Nicole Hawkins, David Hennessy, Ryan Joy, Marshall Koester, Benjamin Lamb, James Leitch, Erik Miller, Amber Mroczkowski, Tony Muchovej, Stephen Oguri, Masamune Plagge, Tom Pryke, Clem Woody, David TI SUNYAEV-ZEL'DOVICH EFFECT OBSERVATIONS OF STRONG LENSING GALAXY CLUSTERS: PROBING THE OVERCONCENTRATION PROBLEM SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; galaxies: clusters: intracluster medium ID X-RAY; EINSTEIN RADII; PROFILE; MASS; HALO; THERMODYNAMICS; SPECTROSCOPY; IMPACT; SAMPLE; CORES AB We have measured the Sunyaev-Zel'dovich (SZ) effect for a sample of 10 strong lensing selected galaxy clusters using the Sunyaev-Zel'dovich Array (SZA). The SZA is sensitive to structures on spatial scales of a few arcminutes, while the strong lensing mass modeling constrains the mass at small scales (typically <30 ''). Combining the two provides information about the projected concentrations of the strong lensing clusters. The Einstein radii we measure are twice as large as expected given the masses inferred from SZ scaling relations. A Monte Carlo simulation indicates that a sample randomly drawn from the expected distribution would have a larger median Einstein radius than the observed clusters about 3% of the time. The implied overconcentration has been noted in previous studies and persists for this sample, even when we take into account that we are selecting large Einstein radius systems, suggesting that the theoretical models still do not fully describe the observed properties of strong lensing clusters. C1 [Gralla, Megan B.; Gladders, Michael D.; Marrone, Daniel P.; Bayliss, Matthew; Carlstrom, John E.; Greer, Christopher; Hennessy, Ryan; Koester, Benjamin; Leitch, Erik; Plagge, Tom; Pryke, Clem] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Gralla, Megan B.; Sharon, Keren; Gladders, Michael D.; Marrone, Daniel P.; Bayliss, Matthew; Carlstrom, John E.; Greer, Christopher; Hennessy, Ryan; Leitch, Erik; Plagge, Tom; Pryke, Clem] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Barrientos, L. Felipe] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago, Chile. [Bonamente, Massimiliano; Bulbul, Esra; Hasler, Nicole] Univ Alabama, Dept Phys, Huntsville, AL 35812 USA. [Carlstrom, John E.; Pryke, Clem] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carlstrom, John E.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Culverhouse, Thomas; Hawkins, David; Lamb, James; Woody, David] CALTECH, Owens Valley Radio Observ, Big Pine, CA 93513 USA. [Gilbank, David G.; Muchovej, Stephen] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Joy, Marshall] NASA, George C Marshall Space Flight Ctr, VP62, Space Sci Off, Huntsville, AL 35812 USA. [Miller, Amber] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Miller, Amber] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Mroczkowski, Tony] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Oguri, Masamune] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Oguri, Masamune] Natl Astron Observ Japan, Div Theoret Astron, Tokyo 1818588, Japan. RP Gralla, MB (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. RI Oguri, Masamune/C-6230-2011; OI Marrone, Daniel/0000-0002-2367-1080; Mroczkowski, Tony/0000-0003-3816-5372 FU NSF [AST-0838187, PHY-0114422]; Gordon and Betty Moore Foundation; Kenneth T. and Eileen L. Norris Foundation; James S. McDonnell Foundation; Associates of the California Institute of Technology; University of Chicago; state of California; state of Illinois; state of Maryland; National Science Foundation; NASA [HF-51259.01, PF0-110077] FX Support for this work is provided by NSF through award AST-0838187 and PHY-0114422 at the University of Chicago. Support for CARMA construction was derived from the Gordon and Betty Moore Foundation, the Kenneth T. and Eileen L. Norris Foundation, the James S. McDonnell Foundation, the Associates of the California Institute of Technology, the University of Chicago, the states of California, Illinois, and Maryland, and the National Science Foundation. Ongoing CARMA development and operations are supported by the National Science Foundation under a cooperative agreement, and by the CARMA partner universities. S.M. acknowledges support from an NSF Astronomy and Astrophysics Fellowship; C.G. and S.M. from NSF Graduate Research Fellowships; D.P.M. from NASA Hubble Fellowship grant HF-51259.01 Support for T.M. was provided by NASA through the Einstein Fellowship Program, grant PF0-110077. NR 40 TC 22 Z9 22 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2011 VL 737 IS 2 AR 74 DI 10.1088/0004-637X/737/2/74 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808WV UT WOS:000294013600028 ER PT J AU Jee, MJ Dawson, KS Hoekstra, H Perlmutter, S Rosati, P Brodwin, M Suzuki, N Koester, B Postman, M Lubin, L Meyers, J Stanford, SA Barbary, K Barrientos, F Eisenhardt, P Ford, HC Gilbank, DG Gladders, MD Gonzalez, A Harris, DW Huang, X Lidman, C Rykoff, ES Rubin, D Spadafora, AL AF Jee, M. J. Dawson, K. S. Hoekstra, H. Perlmutter, S. Rosati, P. Brodwin, M. Suzuki, N. Koester, B. Postman, M. Lubin, L. Meyers, J. Stanford, S. A. Barbary, K. Barrientos, F. Eisenhardt, P. Ford, H. C. Gilbank, D. G. Gladders, M. D. Gonzalez, A. Harris, D. W. Huang, X. Lidman, C. Rykoff, E. S. Rubin, D. Spadafora, A. L. TI SCALING RELATIONS AND OVERABUNDANCE OF MASSIVE CLUSTERS AT z greater than or similar to 1 FROM WEAK-LENSING STUDIES WITH THE HUBBLE SPACE TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; dark matter; galaxies: clusters: general; galaxies: high-redshift; gravitational lensing: weak; X-rays: galaxies: clusters ID IRAC SHALLOW SURVEY; CHANDRA X-RAY; CHARGE-TRANSFER INEFFICIENCY; RELAXED GALAXY CLUSTERS; COLOR-MAGNITUDE DIAGRAM; HIGH-REDSHIFT CLUSTERS; PIXEL-BASED CORRECTION; DARK-MATTER; ADVANCED CAMERA; RED-SEQUENCE AB We present weak gravitational lensing analysis of 22 high-redshift (z greater than or similar to 1) clusters based on Hubble Space Telescope images. Most clusters in our sample provide significant lensing signals and are well detected in their reconstructed two-dimensional mass maps. Combining the current results and our previous weak-lensing studies of five other high-z clusters, we compare gravitational lensing masses of these clusters with other observables. We revisit the question whether the presence of the most massive clusters in our sample is in tension with the current. CDM structure formation paradigm. We find that the lensing masses are tightly correlated with the gas temperatures and establish, for the first time, the lensing mass-temperature relation at z greater than or similar to 1. For the power-law slope of the M-T-X relation (M proportional to T-alpha), we obtain alpha = 1.54 +/- 0.23. This is consistent with the theoretical self-similar prediction alpha = 3/2 and with the results previously reported in the literature for much lower redshift samples. However, our normalization is lower than the previous results by 20%-30%, indicating that the normalization in the M-T-X relation might evolve. After correcting for Eddington bias and updating the discovery area with a more conservative choice, we find that the existence of the most massive clusters in our sample still provides a tension with the current. CDM model. The combined probability of finding the four most massive clusters in this sample after the marginalization over cosmological parameters is less than 1%. C1 [Jee, M. J.; Lubin, L.; Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Dawson, K. S.; Harris, D. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Hoekstra, H.] Leiden Univ, Leiden Observ, Leiden, Netherlands. [Perlmutter, S.; Suzuki, N.; Meyers, J.; Barbary, K.; Huang, X.; Rykoff, E. S.; Rubin, D.; Spadafora, A. L.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Rosati, P.] European So Observ, D-85748 Garching, Germany. [Brodwin, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Koester, B.; Gladders, M. D.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Postman, M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Barbary, K.; Rubin, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Barrientos, F.] Univ Catolica Chile, Dept Astron & Astrophys, Santiago, Chile. [Eisenhardt, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ford, H. C.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Gilbank, D. G.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Gonzalez, A.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Lidman, C.] Australian Astron Observ, Epping, NSW 1710, Australia. RP Jee, MJ (reprint author), Univ Calif Davis, Dept Phys, 1 Shields Ave, Davis, CA 95616 USA. RI Perlmutter, Saul/I-3505-2015; OI Perlmutter, Saul/0000-0002-4436-4661; Hoekstra, Henk/0000-0002-0641-3231 FU NASA [NAS 5-26555, 9290, 9919, 10496, GO-10496]; TABASGO foundation; Office of Science, Office of High Energy and Nuclear Physics, of the U.S. Department of Energy [AC02-05CH11231]; JSPS [20040003]; Netherlands Organisation for Scientific Research (NWO); Marie Curie International Reintegration Grant; DFG; W. M. Keck Foundation; U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48]; [DE-AC52-07NA27344] FX Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555, under program 9290, 9919, and 10496.; M.J.J. acknowledges support for the current research from the TABASGO foundation presented in the form of the Large Synoptic Survey Telescope Cosmology Fellowship. Financial support for this work was in part provided by NASA through program GO-10496 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. This work was also supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, of the U. S. Department of Energy under Contract No. AC02-05CH11231, as well as a JSPS core-to-core program "International Research Network for Dark Energy" and by JSPS research grant 20040003. H.H. acknowledges support from the Netherlands Organisation for Scientific Research (NWO) through a VIDI grant. H. H. is also supported by a Marie Curie International Reintegration Grant. P. R. acknowledges partial support by the DFG cluster of excellence Origin and Structure of the Universe. Support for M. B. was provided by the W. M. Keck Foundation. The work of S.A.S. was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The work of P. E. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 106 TC 70 Z9 70 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2011 VL 737 IS 2 AR 59 DI 10.1088/0004-637X/737/2/59 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808WV UT WOS:000294013600013 ER PT J AU Kane, SR Dragomir, D Ciardi, DR Lee, JW Lo Curto, G Lovis, C Naef, D Mahadevan, S Pilyavsky, G Udry, S Wang, XS Wright, J AF Kane, Stephen R. Dragomir, Diana Ciardi, David R. Lee, Jae-Woo Lo Curto, Gaspare Lovis, Christophe Naef, Dominique Mahadevan, Suvrath Pilyavsky, Genady Udry, Stephane Wang, Xuesong Wright, Jason TI STELLAR VARIABILITY OF THE EXOPLANET HOSTING STAR HD 63454 SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; stars: individual (HD 63454); techniques: photometric; techniques: radial velocities ID PLANET SEARCH PROGRAM; RADIAL-VELOCITY; GIANT PLANETS; EMISSION; MODELS AB Of the hundreds of exoplanets discovered using the radial velocity ( RV) technique, many are orbiting close to their host stars with periods less than 10 days. One of these, HD 63454, is a young active K dwarf which hosts a Jovian planet in a 2.82 day period orbit. The planet has a 14% transit probability and a predicted transit depth of 1.2%. Here we provide a re-analysis of the RV data to produce an accurate transit ephemeris. We further analyze 8 nights of time series data to search for stellar activity both intrinsic to the star and induced by possible interactions of the exoplanet with the stellar magnetospheres. We establish the photometric stability of the star at the 3 mmag level despite strong Ca II emission in the spectrum. Finally, we rule out photometric signatures of both star-planet magnetosphere interactions and planetary transit signatures. From this we are able to place constraints on both the orbital and physical properties of the planet. C1 [Kane, Stephen R.; Dragomir, Diana; Ciardi, David R.] NASA, Exoplanet Sci Inst, CALTECH, Pasadena, CA 91125 USA. [Dragomir, Diana] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Lee, Jae-Woo] Sejong Univ, Dept Astron & Space Sci, Seoul 143747, South Korea. [Lo Curto, Gaspare] ESO, Garching, Germany. [Lovis, Christophe; Naef, Dominique; Udry, Stephane] Univ Geneva, Observ Geneva, CH-1290 Sauverny, Switzerland. [Mahadevan, Suvrath; Pilyavsky, Genady; Wang, Xuesong; Wright, Jason] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Mahadevan, Suvrath; Wright, Jason] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. RP Kane, SR (reprint author), NASA, Exoplanet Sci Inst, CALTECH, MS 100-22,770 S Wilson Ave, Pasadena, CA 91125 USA. EM skane@ipac.caltech.edu RI Kane, Stephen/B-4798-2013; OI Dragomir, Diana/0000-0003-2313-467X; Wright, Jason/0000-0001-6160-5888; Ciardi, David/0000-0002-5741-3047 FU Pennsylvania State University; Eberly College of Science; Pennsylvania Space Grant Consortium; Basic Science Research Program [20100024954]; Center for Galaxy Evolution Research through the National Research Foundation of Korea; National Aeronautics and Space Administration FX The Center for Exoplanets and Habitable Worlds is supported by the Pennsylvania State University, the Eberly College of Science, and the Pennsylvania Space Grant Consortium. J.-W.L. acknowledges financial support from the Basic Science Research Program (grant no. 20100024954) and the Center for Galaxy Evolution Research through the National Research Foundation of Korea. This research has made use of the NASA/IPAC/NExScI Star and Exoplanet Database, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 26 TC 3 Z9 3 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2011 VL 737 IS 2 AR 58 DI 10.1088/0004-637X/737/2/58 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808WV UT WOS:000294013600012 ER PT J AU Marriage, TA Acquaviva, V Ade, PAR Aguirre, P Amiri, M Appel, JW Barrientos, LF Battistelli, ES Bond, JR Brown, B Burger, B Chervenak, J Das, S Devlin, MJ Dicker, SR Doriese, WB Dunkley, J Dunner, R Essinger-Hileman, T Fisher, RP Fowler, JW Hajian, A Halpern, M Hasselfield, M Hernandez-Monteagudo, C Hilton, GC Hilton, M Hincks, AD Hlozek, R Huffenberger, KM Hughes, DH Hughes, JP Infante, L Irwin, KD Juin, JB Kaul, M Klein, J Kosowsky, A Lau, JM Limon, M Lin, YT Lupton, RH Marsden, D Martocci, K Mauskopf, P Menanteau, F Moodley, K Moseley, H Netterfield, CB Niemack, MD Nolta, MR Page, LA Parker, L Partridge, B Quintana, H Reese, ED Reid, B Sehgal, N Sherwin, BD Sievers, J Spergel, DN Staggs, ST Swetz, DS Switzer, ER Thornton, R Trac, H Tucker, C Warne, R Wilson, G Wollack, E Zhao, Y AF Marriage, Tobias A. Acquaviva, Viviana Ade, Peter A. R. Aguirre, Paula Amiri, Mandana Appel, John William Felipe Barrientos, L. Battistelli, Elia S. Bond, J. Richard Brown, Ben Burger, Bryce Chervenak, Jay Das, Sudeep Devlin, Mark J. Dicker, Simon R. Doriese, W. Bertrand Dunkley, Joanna Duenner, Rolando Essinger-Hileman, Thomas Fisher, Ryan P. Fowler, Joseph W. Hajian, Amir Halpern, Mark Hasselfield, Matthew Hernandez-Monteagudo, Carlos Hilton, Gene C. Hilton, Matt Hincks, Adam D. Hlozek, Renee Huffenberger, Kevin M. Handel Hughes, David Hughes, John P. Infante, Leopoldo Irwin, Kent D. Baptiste Juin, Jean Kaul, Madhuri Klein, Jeff Kosowsky, Arthur Lau, Judy M. Limon, Michele Lin, Yen-Ting Lupton, Robert H. Marsden, Danica Martocci, Krista Mauskopf, Phil Menanteau, Felipe Moodley, Kavilan Moseley, Harvey Netterfield, Calvin B. Niemack, Michael D. Nolta, Michael R. Page, Lyman A. Parker, Lucas Partridge, Bruce Quintana, Hernan Reese, Erik D. Reid, Beth Sehgal, Neelima Sherwin, Blake D. Sievers, Jon Spergel, David N. Staggs, Suzanne T. Swetz, Daniel S. Switzer, Eric R. Thornton, Robert Trac, Hy Tucker, Carole Warne, Ryan Wilson, Grant Wollack, Ed Zhao, Yue TI THE ATACAMA COSMOLOGY TELESCOPE: SUNYAEV-ZEL'DOVICH-SELECTED GALAXY CLUSTERS AT 148 GHz IN THE 2008 SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; galaxies: clusters: general; radio continuum: general; surveys ID SOUTH-POLE TELESCOPE; BACKGROUND POWER SPECTRUM; COSMIC DISTANCE SCALE; X-RAY MEASUREMENTS; HUBBLE CONSTANT; LENSING MEASUREMENTS; PRESSURE PROFILE; SOURCE CATALOG; DARK ENERGY; CONSTRAINTS AB We report on 23 clusters detected blindly as Sunyaev-Zel'dovich (SZ) decrements in a 148 GHz, 455 deg(2) map of the southern sky made with data from the Atacama Cosmology Telescope 2008 observing season. All SZ detections announced in this work have confirmed optical counterparts. Ten of the clusters are new discoveries. One newly discovered cluster, ACT-CL J0102-4915, with a redshift of 0.75 ( photometric), has an SZ decrement comparable to the most massive systems at lower redshifts. Simulations of the cluster recovery method reproduce the sample purity measured by optical follow-up. In particular, for clusters detected with a signal-to-noise ratio greater than six, simulations are consistent with optical follow-up that demonstrated this subsample is 100% pure. The simulations further imply that the total sample is 80% complete for clusters with mass in excess of 6 x 10(14) solar masses referenced to the cluster volume characterized by 500 times the critical density. The Compton y-X-ray luminosity mass comparison for the 11 best-detected clusters visually agrees with both self-similar and non-adiabatic, simulation-derived scaling laws. C1 [Marriage, Tobias A.; Acquaviva, Viviana; Das, Sudeep; Dunkley, Joanna; Hajian, Amir; Lin, Yen-Ting; Lupton, Robert H.; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Acquaviva, Viviana; Hughes, John P.; Menanteau, Felipe] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Ade, Peter A. R.; Mauskopf, Phil; Tucker, Carole] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Aguirre, Paula; Felipe Barrientos, L.; Duenner, Rolando; Infante, Leopoldo; Baptiste Juin, Jean; Lin, Yen-Ting; Quintana, Hernan] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Amiri, Mandana; Battistelli, Elia S.; Burger, Bryce; Halpern, Mark; Hasselfield, Matthew] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Appel, John William; Das, Sudeep; Dunkley, Joanna; Essinger-Hileman, Thomas; Fisher, Ryan P.; Fowler, Joseph W.; Hajian, Amir; Hincks, Adam D.; Lau, Judy M.; Limon, Michele; Martocci, Krista; Niemack, Michael D.; Page, Lyman A.; Parker, Lucas; Reid, Beth; Sherwin, Blake D.; Staggs, Suzanne T.; Switzer, Eric R.; Zhao, Yue] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Battistelli, Elia S.] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Bond, J. Richard; Hajian, Amir; Nolta, Michael R.; Sievers, Jon] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Brown, Ben; Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Chervenak, Jay; Moseley, Harvey; Wollack, Ed] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Das, Sudeep] Univ Calif Berkeley, LBL, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Das, Sudeep] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Devlin, Mark J.; Dicker, Simon R.; Kaul, Madhuri; Klein, Jeff; Limon, Michele; Marsden, Danica; Reese, Erik D.; Swetz, Daniel S.; Thornton, Robert] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Doriese, W. Bertrand; Fowler, Joseph W.; Hilton, Gene C.; Irwin, Kent D.; Niemack, Michael D.; Swetz, Daniel S.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Dunkley, Joanna; Hlozek, Renee] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Hernandez-Monteagudo, Carlos] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Hilton, Matt; Moodley, Kavilan; Warne, Ryan] Univ KwaZulu Natal, Sch Math Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Hilton, Matt; Moodley, Kavilan] Ctr High Performance Comp, Rosebank, Cape Town, South Africa. [Huffenberger, Kevin M.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Handel Hughes, David] INAOE, Puebla, Mexico. [Lau, Judy M.; Sehgal, Neelima] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Lau, Judy M.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Limon, Michele] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Lin, Yen-Ting] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778568, Japan. [Martocci, Krista] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Netterfield, Calvin B.; Switzer, Eric R.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Reid, Beth] Univ Barcelona, ICC, E-08028 Barcelona, Spain. [Thornton, Robert] W Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA. [Trac, Hy] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Trac, Hy] Harvard Univ, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Wilson, Grant] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. RP Marriage, TA (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. RI Klein, Jeffrey/E-3295-2013; Spergel, David/A-4410-2011; Hilton, Matthew James/N-5860-2013; Trac, Hy/N-8838-2014; Wollack, Edward/D-4467-2012; OI Trac, Hy/0000-0001-6778-3861; Wollack, Edward/0000-0002-7567-4451; Huffenberger, Kevin/0000-0001-7109-0099; Menanteau, Felipe/0000-0002-1372-2534; Sievers, Jonathan/0000-0001-6903-5074; Limon, Michele/0000-0002-5900-2698 FU U.S. National Science Foundation [AST-0408698, PHY-0355328, AST-0707731, PIRE-0507768]; Comision Nacional de Investigacion Cientifica y Technologica de Chile (CONICYT); Princeton University; University of Pennsylvania; Canada Foundation for Innovation under the Compute Canada; Government of Ontario; Ontario Research Fund-Research Excellence; University of Toronto; NASA [NNX08AH30G]; FONDECYT [3085031]; Natural Science and Engineering Research Council of Canada (NSERC); NSF [AST-0546035, AST-0606975]; FONDAP Centro de Astrofisica; U.S. Department of Energy [DE-AC3-76SF00515]; CONICYT; MECESUP; Fundacion Andes; Rhodes Trust; NSF Physics Frontier Center [PHY-0114422]; World Premier International Research Center Initiative, MEXT, Japan FX The ACT project was proposed in 2000 and funded by the U.S. National Science Foundation on 2004 January 1. Many have contributed to the project since its inception. We especially wish to thank Asad Aboobaker, Christine Allen, Dominic Benford, Paul Bode, Kristen Burgess, Angelica de Oliveira-Costa, Sean Frazier, Nick Hand, Peter Hargrave, Norm Jarosik, Amber Miller, Carl Reintsema, Felipe Rojas, Uros Seljak, Martin Spergel, Johannes Staghun, Carl Stahle, Max Tegmark, Masao Uehara, Katerina Visnjic, and Ed Wishnow. It is a pleasure to acknowledge Bob Margolis, ACT's project manager. Reed Plimpton and David Jacobson worked at the telescope during the 2008 season. Naoki Itoh and Satoshi Nozawa provided code for calculating relativistic corrections to the SZ. ACT operates in the Parque Astronomico Atacama in northern Chile under the auspices of Programa de Astronomia, a program of the Comision Nacional de Investigacion Cientifica y Technologica de Chile (CONICYT).; This work was supported by the U.S. National Science Foundation through awards AST-0408698 for the ACT project, and PHY-0355328, AST-0707731, and PIRE-0507768. Funding was also provided by Princeton University and the University of Pennsylvania. The PIRE program made possible exchanges between Chile, South Africa, Spain, and the United States that enabled this research program. Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund-Research Excellence; and the University of Toronto.; T.M. was supported through NASA grant NNX08AH30G. J.B.J. was supported by the FONDECYT grant 3085031. A.D.H. received additional support from a Natural Science and Engineering Research Council of Canada (NSERC) PGS-D scholarship. A.K. and B.P. were partially supported through NSF AST-0546035 and AST-0606975, respectively, for work on ACT. H.Q. and L.I. acknowledge partial support from FONDAP Centro de Astrofisica. N.S. is supported by the U.S. Department of Energy contract to SLAC no. DE-AC3-76SF00515. R.D. was supported by CONICYT, MECESUP, and Fundacion Andes. R.H. was supported by the Rhodes Trust. E.S. acknowledges support by NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics. Y.T.L. acknowledges support from the World Premier International Research Center Initiative, MEXT, Japan. The ACT data will be made public through LAMBDA (http://lambda.gsfc.nasa.gov/) and the ACT Web site (http://www.physics.princeton.edu/act/). NR 72 TC 153 Z9 153 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2011 VL 737 IS 2 AR 61 DI 10.1088/0004-637X/737/2/61 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808WV UT WOS:000294013600015 ER PT J AU Venters, TM Pavlidou, V AF Venters, Tonia M. Pavlidou, Vasiliki TI THE EFFECT OF BLAZAR SPECTRAL BREAKS ON THE BLAZAR CONTRIBUTION TO THE EXTRAGALACTIC GAMMA-RAY BACKGROUND SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; gamma rays: diffuse background; gamma rays: galaxies ID LARGE-AREA TELESCOPE; ACTIVE GALACTIC NUCLEI; STAR-FORMING GALAXIES; RADIO-LOUD AGN; LUMINOSITY FUNCTION; SPACE-TELESCOPE; FERMI-LAT; EGRET OBSERVATIONS; X-RAY; EMISSION AB The spectral shapes of the contributions of different classes of unresolved gamma-ray emitters can provide insight into their relative contributions to the extragalactic gamma-ray background (EGB) and the natures of their spectra at GeV energies. We calculate the spectral shapes of the contributions to the EGB arising from BL Lac objects and flat-spectrum radio quasars assuming blazar spectra can be described as broken power laws. We fit the resulting total blazar spectral shape to the Fermi Large Area Telescope measurements of the EGB, finding that the best-fit shape reproduces well the shape of the Fermi EGB for various break scenarios. We conclude that a scenario in which the contribution of blazars is dominant cannot be excluded on spectral grounds alone, even if spectral breaks are shown to be common among Fermi blazars. We also find that while the observation of a featureless (within uncertainties) power-law EGB spectrum by Fermi does not necessarily imply a single class of contributing unresolved sources with featureless individual spectra, such an observation and the collective spectra of the separate contributing populations determine the ratios of their contributions. As such, a comparison with studies including blazar gamma-ray luminosity functions could have profound implications for the blazar contribution to the EGB, blazar evolution, and blazar gamma-ray spectra and emission. C1 [Venters, Tonia M.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Pavlidou, Vasiliki] CALTECH, Dept Astron, Pasadena, CA 91125 USA. RP Venters, TM (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. EM tonia.m.venters@nasa.gov RI Venters, Tonia/D-2936-2012; Pavlidou, Vasiliki/C-2944-2011 OI Pavlidou, Vasiliki/0000-0002-0870-1368 FU NASA [PF8-90060, NNX09AT74G]; Chandra X-ray Center; Smithsonian Astrophysical Observatory [NAS8-03060] FX We gratefully acknowledge enlightening discussions with Floyd Stecker. T.M.V. was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. V.P. acknowledges support for this work provided by NASA through Einstein Postdoctoral Fellowship grant number PF8-90060 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060. This work was partially supported by NASA through the Fermi GI Program grant number NNX09AT74G. NR 52 TC 15 Z9 15 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2011 VL 737 IS 2 AR 80 DI 10.1088/0004-637X/737/2/80 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808WV UT WOS:000294013600034 ER PT J AU Volk, K Hrivnak, BJ Matsuura, M Bernard-Salas, J Szczerba, R Sloan, GC Kraemer, KE van Loon, JT Kemper, F Woods, PM Zijlstra, AA Sahai, R Meixner, M Gordon, KD Gruendl, RA Tielens, AGGM Indebetouw, R Marengo, M AF Volk, Kevin Hrivnak, Bruce J. Matsuura, Mikako Bernard-Salas, Jeronimo Szczerba, Ryszard Sloan, G. C. Kraemer, Kathleen E. van Loon, Jacco Th. Kemper, F. Woods, Paul M. Zijlstra, Albert A. Sahai, Raghvendra Meixner, Margaret Gordon, Karl D. Gruendl, Robert A. Tielens, Alexander G. G. M. Indebetouw, Remy Marengo, Massimo TI DISCOVERY AND ANALYSIS OF 21 mu m FEATURE SOURCES IN THE MAGELLANIC CLOUDS (vol 735, pg 127, 2011) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Volk, Kevin; Meixner, Margaret; Gordon, Karl D.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Hrivnak, Bruce J.] Valparaiso Univ, Dept Phys & Astron, Valparaiso, IN 46383 USA. [Matsuura, Mikako] UCL, UCL Inst Origins, Dept Phys & Astron, London WC1E 6BT, England. [Bernard-Salas, Jeronimo] Univ Paris 11, CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France. [Szczerba, Ryszard] Nicholas Copernicus Astron Ctr, PL-87100 Torun, Poland. [Sloan, G. C.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Kraemer, Kathleen E.] USAF, Res Lab, AFRL RVBYB, Hanscom AFB, MA 01731 USA. [van Loon, Jacco Th.] Univ Keele, Lennard Jones Labs, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Kemper, F.; Woods, Paul M.; Zijlstra, Albert A.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Sahai, Raghvendra] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gruendl, Robert A.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Tielens, Alexander G. G. M.] Leiden Observ, NL-2300 RA Leiden, Netherlands. [Indebetouw, Remy] Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. [Marengo, Massimo] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Matsuura, Mikako] Univ Coll London, Mullard Space Sci Lab, UCL Inst Origins, Dorking RH5 6NT, Surrey, England. [Kemper, F.] Acad Sinica, Inst Astron & Astrophys, Taipei 10647, Taiwan. [Woods, Paul M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Indebetouw, Remy] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Marengo, Massimo] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Volk, K (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM volk@stsci.edu NR 1 TC 0 Z9 0 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2011 VL 737 IS 2 AR 107 DI 10.1088/0004-637X/737/2/107 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808WV UT WOS:000294013600061 ER PT J AU Crow, WT van den Berg, MJ Huffman, GJ Pellarin, T AF Crow, W. T. van den Berg, M. J. Huffman, G. J. Pellarin, T. TI Correcting rainfall using satellite-based surface soil moisture retrievals: The Soil Moisture Analysis Rainfall Tool (SMART) SO WATER RESOURCES RESEARCH LA English DT Article ID ENSEMBLE KALMAN FILTER; REMOTE-SENSING DATA; DATA ASSIMILATION; SAMPLING ERROR; AMSR-E; MODEL; PRECIPITATION; UNCERTAINTY; SENSITIVITY; PRODUCTS AB Recently, Crow et al. (2009) developed an algorithm for enhancing satellite-based land rainfall products via the assimilation of remotely sensed surface soil moisture retrievals into a water balance model. As a follow-up, this paper describes the benefits of modifying their approach to incorporate more complex data assimilation and land surface modeling methodologies. Specific modifications improving rainfall estimates are assembled into the Soil Moisture Analysis Rainfall Tool (SMART), and the resulting algorithm is applied outside the contiguous United States for the first time, with an emphasis on West African sites instrumented as part of the African Monsoon Multidisciplinary Analysis experiment. Results demonstrate that the SMART algorithm is superior to the Crow et al. baseline approach and is capable of broadly improving coarse-scale rainfall accumulations measurements with low risk of degradation. Comparisons with existing multisensor, satellite-based precipitation data products suggest that the introduction of soil moisture information from the Advanced Microwave Scanning Radiometer via SMART provides as much coarse-scale (3 day, 1 degrees) rainfall accumulation information as thermal infrared satellite observations and more information than monthly rain gauge observations in poorly instrumented regions. C1 [Crow, W. T.] ARS, Hydrol & Remote Sensing Lab, USDA, Beltsville, MD 20705 USA. [van den Berg, M. J.] Univ Ghent, Lab Hydrol & Water Management, B-9000 Ghent, Belgium. [Huffman, G. J.] SSAI, Greenbelt, MD USA. [Huffman, G. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Pellarin, T.] Lab Etud Transferts Hydrol & Environm, F-38041 Grenoble 9, France. RP Crow, WT (reprint author), ARS, Hydrol & Remote Sensing Lab, USDA, 10300 Baltimore Ave,Rm 104,Bldg 007,BARC W, Beltsville, MD 20705 USA. EM wade.crow@ars.usda.gov RI Huffman, George/F-4494-2014 OI Huffman, George/0000-0003-3858-8308 FU NASA FX Support for this study was provided by the NASA Precipitation Measurement Missions Program through a grant to W. T. Crow. On the basis of a French initiative, AMMA was built by an international scientific group and is currently funded by a large number of agencies, especially from France, the United Kingdom, the United States, and Africa. NR 44 TC 32 Z9 32 U1 2 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD AUG 20 PY 2011 VL 47 AR W08521 DI 10.1029/2011WR010576 PG 15 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 810LX UT WOS:000294127900007 ER PT J AU Kug, JS Ham, YG AF Kug, Jong-Seong Ham, Yoo-Geun TI Are there two types of La Nina? SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID TONGUE EL-NINO; SOUTHERN-OSCILLATION; PACIFIC RIM; WARM POOL; CLIMATE; EVENTS; MODOKI; TEMPERATURE; ANOMALIES; IMPACTS AB In this study, the existence of two types of La Nina events is examined using observations and model output. We find that cold events in the central and eastern Pacific SST, are highly correlated unlike the corresponding warm events. When two types of La Nina are defined based on the same criteria for the types of warm events, the SST and precipitation patterns between the two types of La Nina are much less distinctive or less independent. In other words, there is a strong asymmetric character between warm and cold events. This asymmetric character is also examined in 20 climate models that participate in the CMIP3. Most climate models have difficulty in simulating independently the two types of El Nino and La Nina events; however, they simulate the two types of El Nino more independently than they simulate the two types of La Nina, supporting our observational arguments to some degree. Citation: Kug, J.-S., and Y.-G. Ham (2011), Are there two types of La Nina?, Geophys. Res. Lett., 38, L16704, doi: 10.1029/2011GL048237. C1 [Kug, Jong-Seong] Korea Ocean Res & Dev Inst, Ansan 425600, South Korea. [Ham, Yoo-Geun] NASA GSFC, Global Modeling & Assimilat Off, Greenbelt, MD USA. [Ham, Yoo-Geun] Univ Space Res Assoc, Columbia, MD USA. RP Kug, JS (reprint author), Korea Ocean Res & Dev Inst, Ansan 425600, South Korea. EM yoo-geun.ham@nasa.gov RI KUG, JONG-SEONG/A-8053-2013 FU Korea Metrological Administration Research and Development Program [RACS 2010-2007]; KORDI [PE98563, PE98651] FX This work is supported by Korea Metrological Administration Research and Development Program under Grant RACS 2010-2007. The first author is also supported by KORDI (PE98563, PE98651). NR 21 TC 35 Z9 43 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 19 PY 2011 VL 38 AR L16704 DI 10.1029/2011GL048237 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 810MU UT WOS:000294130200002 ER PT J AU Adames, AF Reynolds, M Smirnov, A Covert, DS Ackerman, TP AF Adames, A. F. Reynolds, M. Smirnov, A. Covert, D. S. Ackerman, T. P. TI Comparison of Moderate Resolution Imaging Spectroradiometer ocean aerosol retrievals with ship-based Sun photometer measurements from the Around the Americas expedition SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID OPTICAL DEPTH; TROPOSPHERIC AEROSOLS; SPATIAL VARIABILITY; ANGSTROM EXPONENT; WIND-SPEED; MODIS; VALIDATION; INSTRUMENT; THICKNESS; AERONET AB The Around the Americas expedition was a 25,000 mile sailing circumnavigation of the North and South American continents, in coastal waters, that took place from June 2009 to June 2010. The broad geographical span of the voyage made it possible to measure marine aerosol optical depths in regions where surface measurements are not frequently taken. These were measured with a handheld Microtops II Sun photometer. In this study we compare these measurements with the ocean aerosol product from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua and Terra platforms. Results for aerosol optical depth (AOD) show a strong relationship between both measurements, with most values from MODIS falling within published expectations. However, MODIS values are biased high relative to surface observations for small optical depth values. There appears to be a relationship between these discrepancies in measurements and surface wind speed, with a group of values showing overestimation at wind speeds near and over 6 m/s and a second, smaller group showing underestimation for calmer conditions. For derived Angstrom exponents, it is found that higher differences occur at low AOD. No relationship between these differences and wind speed is found. C1 [Adames, A. F.; Covert, D. S.; Ackerman, T. P.] Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA 98195 USA. [Adames, A. F.; Covert, D. S.; Ackerman, T. P.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Reynolds, M.] Remote Res & Measurement Co LLC, Seattle, WA 98122 USA. [Smirnov, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Smirnov, A.] Sigma Space Corp, Lanham, MD USA. RP Adames, AF (reprint author), Univ Washington, Joint Inst Study Atmosphere & Ocean, 408 ATG Bldg, Seattle, WA 98195 USA. RI Smirnov, Alexander/C-2121-2009; OI Smirnov, Alexander/0000-0002-8208-1304; Adames, Angel/0000-0003-3822-5347 FU Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA [NA17RJ1232] FX This research is funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA cooperative agreement NA17RJ1232. The crew of Ocean Watch supported this work with enthusiasm. In particular, David Logan and David Thoreson took measurements when at-sea scientists were not available. NR 49 TC 5 Z9 5 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 19 PY 2011 VL 116 AR D16303 DI 10.1029/2010JD015440 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 810MN UT WOS:000294129500001 ER PT J AU Turyshev, SG Toth, VT Ellis, J Markwardt, CB AF Turyshev, Slava G. Toth, Viktor T. Ellis, Jordan Markwardt, Craig B. TI Support for Temporally Varying Behavior of the Pioneer Anomaly from the Extended Pioneer 10 and 11 Doppler Data Sets SO PHYSICAL REVIEW LETTERS LA English DT Article AB The Pioneer anomaly is a small sunward anomalous acceleration found in the trajectory analysis of the Pioneer 10 and 11 spacecraft. As part of the investigation of the effect, the analysis of recently recovered Doppler data for both spacecraft has been completed. The presence of a small anomalous acceleration is confirmed by using data spans more than twice as long as those that were previously analyzed. We examine the constancy and direction of the Pioneer anomaly and conclude that (i) the data favor a temporally decaying anomalous acceleration (similar to 2 X 10(-11) m/s(2)/yr) with an over 10% improvement in the residuals compared to a constant acceleration model, (ii) although the direction of the acceleration remains imprecisely determined, we find no support in favor of a Sun- pointing direction over the Earthpointing or along the spin- axis directions, and (iii) support for an early "onset" of the acceleration remains weak in the pre- Saturn Pioneer 11 tracking data. We present these new findings and discuss their implications for the nature of the Pioneer anomaly. C1 [Turyshev, Slava G.; Ellis, Jordan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Markwardt, Craig B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Turyshev, SG (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Ellis, John/J-2222-2012; Toth, Viktor/D-3502-2009 OI Ellis, John/0000-0002-7399-0813; Toth, Viktor/0000-0003-3651-9843 FU Planetary Society; ISSI; National Aeronautics and Space Administration FX We thank G. L. Goltz, K. J. Lee, and N. A. Mottinger of JPL for their indispensable help with the Pioneer Doppler data recovery. We thank S. W. Asmar, W. M. Folkner, T. P. McElrath, M. M. Watkins, and J. G. Williams of JPL for their interest, support, and encouragement during the work and preparation of this manuscript. We also thank The Planetary Society for their continuing interest in the Pioneer anomaly and their support. Some aspects of this work were developed at the International Space Science Institute (ISSI), Bern, Switzerland, for which ISSI's hospitality and support are kindly acknowledged. This work in part was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 9 TC 26 Z9 26 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 19 PY 2011 VL 107 IS 8 AR 081103 DI 10.1103/PhysRevLett.107.081103 PG 5 WC Physics, Multidisciplinary SC Physics GA 809OV UT WOS:000294067500003 PM 21929157 ER PT J AU Argus, DF Blewitt, G Peltier, WR Kreemer, C AF Argus, Donald F. Blewitt, Geoffrey Peltier, W. Richard Kreemer, Corne TI Rise of the Ellsworth mountains and parts of the East Antarctic coast observed with GPS SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GLACIAL ISOSTATIC-ADJUSTMENT; SEA-LEVEL DATA; ICE-SHEET; SPACE GEODESY; EARTH; MODEL; VELOCITY; HISTORY; SURFACE; GRACE AB Using GPS observations from 1996 to 2011, we constrain postglacial rebound in Antarctica. Sites in the Ellsworth mountains, West Antarctica, are rising at approximate to 5 +/- 4 mm/yr (95% confidence limits), as in the postglacial rebound model of Peltier, but approximate to 10 mm/yr slower than in the model of Ivins and James. Therefore significant ice loss from the Ellsworth mountains ended by 4 ka, and current ice loss there is less than inferred from GRACE gravity observations in studies assuming the model of Ivins and James. Three sites along the coast of East Antarctica are rising at 3 to 4 +/- 2 mm/yr, in viscous response to Holocene unloading of ice along the Queen Maud Land coast and elsewhere. Kerguelen island and seven sites along the coast of East Antarctic are part of a rigid Antarctica plate. O'Higgins, northern Antarctic peninsula, is moving southeast at 2.3 +/- 0.6 mm/yr relative to the Antarctic plate. Citation: Argus, D. F., G. Blewitt, W. R. Peltier, and C. Kreemer (2011), Rise of the Ellsworth mountains and parts of the East Antarctic coast observed with GPS, Geophys. Res. Lett., 38, L16303, doi:10.1029/2011GL048025. C1 [Argus, Donald F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Blewitt, Geoffrey; Kreemer, Corne] Univ Nevada, Nevada Bur Mines & Geol, Reno, NV 89557 USA. [Blewitt, Geoffrey; Kreemer, Corne] Univ Nevada, Seismol Lab, Reno, NV 89557 USA. [Peltier, W. Richard] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. RP Argus, DF (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 238-600, Pasadena, CA 91109 USA. EM donald.f.argus@jpl.nasa.gov RI Argus, Donald/F-7704-2011; Peltier, William/A-1102-2008 FU NASA under National Science Foundation [EAR-0735156]; (NASA) National Aeronautics and Space Administration; NASA [NNX09AM74G]; University of Toronto under NSERC [A9627] FX We are grateful to the enthusiastic scientists who deployed GPS sites in the harsh Antarctica terrain. We thank Michael Bevis for providing us with the WAGN data and informing us how to connect the WAGN to the ANET benchmarks. We are grateful to T. J. Wilson and the ANET principal investigators. We thank Karen Simon, Thomas James, and Erik Ivins for sharing the predictions of their postglacial rebound model. We thank Michael Bevis and an anonymous reviewer for their constructive criticism. UNAVCO operates the Global GNSS Network at the direction of JPL for NASA with support from NASA under National Science Foundation Cooperative Agreement EAR-0735156. D. F. Argus completed research at Jet Propulsion Laboratory, California Institute of Technology, under contract with the (NASA) National Aeronautics and Space Administration; G. Blewitt performed research under NASA grant NNX09AM74G; W. R. Peltier performed research at the University of Toronto under NSERC Discovery grant A9627. NR 30 TC 18 Z9 19 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 17 PY 2011 VL 38 AR L16303 DI 10.1029/2011GL048025 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 810MP UT WOS:000294129700002 ER PT J AU Rice, R Bales, RC Painter, TH Dozier, J AF Rice, Robert Bales, Roger C. Painter, Thomas H. Dozier, Jeff TI Snow water equivalent along elevation gradients in the Merced and Tuolumne River basins of the Sierra Nevada SO WATER RESOURCES RESEARCH LA English DT Article ID SPATIAL-DISTRIBUTION; MOUNTAIN BASINS; COVERED AREA; ALBEDO; MODEL; MODIS; INTERPOLATION; VARIABILITY; PERSISTENCE; CALIFORNIA AB We used daily remotely sensed fractional snow-covered area (SCA) at 500 m resolution to estimate snow water equivalent (SWE) across the Upper Merced and Tuolumne River basins of the Sierra Nevada of California for 2004 (dry and warm) and 2005 (wet and cool). From 1800 to 3900 m, each successively higher 300 m elevation band consistently melts out 2-3 weeks later than the one below it. We compared two methods of estimating SWE from SCA: (1) blending the fractional SCA with SWE interpolated from snow-pillow measurements; and (2) retrospectively estimating cumulative snowmelt based on a degree-day calculation after the snow disappeared. The interpolation approach estimates a lower snowmelt volume above 3000 m and a higher snowmelt contribution at elevations between 1500 and 2100 m. Snowmelt timing from the depletion approach matches observed streamflow timing much better than snowmelt estimated by the interpolation method. The snow-pillow sites used in the interpolation method do not cover the highest elevations and melted out several weeks before the basin itself was free of snow. Middle elevations (2100-3000 m) contributed 40%-60% of the annual snowmelt in both basins, the lower elevations (1500-2100 m) 10%-15%, and elevations above 3000 m the remaining 30%-40%. The presence of snow in the highest elevations highlights their critical buffering effect in accumulating snow every year. Variability in lower-elevation snow illustrates its susceptibility to climate variability and change. C1 [Rice, Robert; Bales, Roger C.] Univ Calif, Sierra Nevada Res Inst, Merced, CA 95343 USA. [Painter, Thomas H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Dozier, Jeff] Univ Calif Santa Barbara, Bren Sch Environm Sci & Management, Santa Barbara, CA 93106 USA. RP Rice, R (reprint author), Univ Calif, Sierra Nevada Res Inst, 5200 N Lake Rd, Merced, CA 95343 USA. EM rrice@ucmerced.edu RI Dozier, Jeff/B-7364-2009; Painter, Thomas/B-7806-2016 OI Dozier, Jeff/0000-0001-8542-431X; FU NASA [NNG04GC52A]; Naval Postgraduate School [N00244-07-1-0013]; [EAR 0610112] FX Support for this research was provided by NASA Cooperative Agreement NNG04GC52A, grant EAR 0610112, and Naval Postgraduate School Award N00244-07-1-0013. We also acknowledge the contributions of X. Meng and P. Slaughter. Comments from the four anonymous reviewers greatly improved this manuscript. NR 39 TC 28 Z9 28 U1 4 U2 30 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD AUG 17 PY 2011 VL 47 AR W08515 DI 10.1029/2010WR009278 PG 11 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 810LS UT WOS:000294127400001 ER PT J AU Martinez-Garcia, J Braginsky, L Shklover, V Lawson, JW AF Martinez-Garcia, Jorge Braginsky, Leonid Shklover, Valery Lawson, John W. TI Correlation function analysis of fiber networks: Implications for thermal conductivity SO PHYSICAL REVIEW B LA English DT Article ID C/C COMPOSITE PREFORM; TRANSPORT-PROPERTIES AB Transport properties of highly porous fiber structures are investigated. The fibers are assumed to be thin, but long, so that the number of interfiber connections along each fiber is large. We show that the effective conductivity of such structures can be found from the correlation length of the two-point correlation function of the local conductivities. The correlation function in the most interesting cases can be estimated from two-dimensional (2D) images of the structures. This means that the three-dimensional conductivity problem can be considered using 2D digital images of the structure. We apply this approach to analyze the parameters that determine the thermal conductivity of fiber structures. C1 [Martinez-Garcia, Jorge; Braginsky, Leonid; Shklover, Valery] ETH, Dept Mat, Crystallog Lab, CH-8093 Zurich, Switzerland. [Braginsky, Leonid] Inst Semicond Phys, RU-630090 Novosibirsk, Russia. [Lawson, John W.] NASA, Thermal Protect Mat Branch, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Martinez-Garcia, J (reprint author), ETH, Dept Mat, Crystallog Lab, CH-8093 Zurich, Switzerland. RI Braginsky, Leonid/B-5278-2008 OI Braginsky, Leonid/0000-0002-2508-8876 FU Swiss National Science Foundation [200021 - 130274/1] FX This work was supported by the Swiss National Science Foundation (Grant 200021 - 130274/1). NR 23 TC 2 Z9 2 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 17 PY 2011 VL 84 IS 5 AR 054208 DI 10.1103/PhysRevB.84.054208 PG 8 WC Physics, Condensed Matter SC Physics GA 808JE UT WOS:000293973200002 ER PT J AU Chanover, NJ Miller, C Hamilton, RT Suggs, RM McMillan, R AF Chanover, N. J. Miller, C. Hamilton, R. T. Suggs, R. M. McMillan, R. TI Results from the NMSU-NASA Marshall Space Flight Center LCROSS observational campaign SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID LUNAR POLES; WATER ICE; IMPACT; PLUME; MOON AB We observed the Lunar Crater Observation and Sensing Satellite (LCROSS) lunar impact on 9 October 2009 using three telescope and instrument combinations in southern New Mexico: the Agile camera with a V filter on the Astrophysical Research Consortium 3.5 m telescope at Apache Point Observatory (APO), a StellaCam video camera with an R filter on the New Mexico State University (NMSU) 1 m telescope at APO, and a Goodrich near-IR (J and H band) video camera on the NMSU 0.6 m telescope at Tortugas Mountain Observatory. The three data sets were analyzed to search for evidence of the debris plume that rose above the Cabeus crater shortly after the LCROSS impact. Although we saw no evidence of the plume in any of our data sets, we constrained its surface brightness through analysis of our photometrically calibrated data. The minimum surface brightness that we could have detected in our Agile data was 9.69 magnitudes arc sec(-2), which is 177 times fainter than the brightest part of the foreground ridge of Cabeus. In our near-IR data, our minimum detectable surface brightness was 8.58 magnitudes arc sec(-2), which is 370 times fainter than the brightest part of the foreground ridge in the J and H bands. The debris plume was detected by the LCROSS shepherding spacecraft and the Diviner radiometer on the Lunar Reconnaissance Orbiter. Given the plume radiance observed by LCROSS, we cannot distinguish between a conical or cylindrical plume geometry because when seen from Earth, both are below our detection thresholds. C1 [Chanover, N. J.] New Mexico State Univ, Dept Astron, Dept 4500, Las Cruces, NM 88003 USA. [Suggs, R. M.] NASA, George C Marshall Space Flight Ctr, NASA MSFC, Huntsville, AL 35812 USA. [McMillan, R.] Apache Point Observ, Sunspot, NM 88349 USA. RP Chanover, NJ (reprint author), New Mexico State Univ, Dept Astron, Dept 4500, Box 30001, Las Cruces, NM 88003 USA. EM nchanove@nmsu.edu FU Universities Space Research Association [03450-32]; NASA Meteoroid Environment Office FX We thank the additional members of our observing team, without whom we could not have made three successful sets of observations from three different telescopes: E. Ramesh, C. Wu, R. J. Suggs, E. Klimek, and J. Coughlin. We also thank the staff at the Apache Point Observatory for their tireless efforts in supporting the instrument modifications and the numerous observing runs required for this project. We thank P. Strycker for producing the Vega spectrum we used in our analysis of the plume brightness. We are grateful to A. Colaprete, J. Heldmann, and D. Wooden, whose commitment to involving ground-based astronomers in the LCROSS mission provided the impetus for these observations. Finally, we thank the two referees who reviewed this manuscript and provided valuable suggestions for improvement. This work was supported by contract 03450-32 from the Universities Space Research Association. The NASA MSFC team acknowledges partial support from the NASA Meteoroid Environment Office. NR 16 TC 2 Z9 2 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD AUG 16 PY 2011 VL 116 AR E08003 DI 10.1029/2010JE003761 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 810OB UT WOS:000294133500001 ER PT J AU Zelenyi, L Korablev, O Martynov, M Popov, GA Blanc, M Lebreton, JP Pappalardo, R Clark, K Fedorova, A Akim, EL Simonov, AA Lomakin, IV Sukhanov, A Eismont, N AF Zelenyi, L. Korablev, O. Martynov, M. Popov, G. A. Blanc, M. Lebreton, J. P. Pappalardo, R. Clark, K. Fedorova, A. Akim, E. L. Simonov, A. A. Lomakin, I. V. Sukhanov, A. Eismont, N. CA Europa Lander Team TI Europa Lander mission and the context of international cooperation SO ADVANCES IN SPACE RESEARCH LA English DT Review DE Europa; Lander; Mission concept; Spacecraft design ID ICE SHELL; GALILEAN SATELLITES; POLAR WANDER; SUBSURFACE OCEAN; SURFACE; JUPITER; LIFE; CONSTRAINTS; CALLISTO; SALTS AB From 2007 the Russian Academy of Sciences and Roscosmos consider to develop a Europa surface element, in coordination with the Europa Jupiter System Mission (EJSM) international project planned to study the Jupiter system. The main scientific objectives of the Europa Lander are to search for the signatures of possible present and extinct life, in situ studies of the Europa internal structure, the surface and the environment. The mission includes the lander, and the relay orbiter, to be launched by Proton and carried to Jupiter with electric propulsion. The mass of scientific instruments on the lander is similar to 50 kg, and its planned lifetime is 60 days. A dedicated international Europa Lander Workshop (ELW) was held in Moscow in February 2009. Following the ELW materials and few recent developments, the paper describes the planned mission, including the science goals, technical design of the mission elements, the ballistic scheme, and the synergy between the Europa Lander and the EJSM. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Zelenyi, L.; Korablev, O.; Fedorova, A.; Sukhanov, A.; Eismont, N.] Space Res Inst IKI, Moscow 117997, Russia. [Martynov, M.; Simonov, A. A.; Lomakin, I. V.] Lavochkin Assoc, Chimki 141400, Moscow Region, Russia. [Popov, G. A.] NII PME, Moscow 125080, Russia. [Blanc, M.] Ecole Polytech, F-91128 Palaiseau, France. [Lebreton, J. P.] European Space Res Technol Ctr ESTEC, ESA, NL-2200 AG Noordwijk, Netherlands. [Pappalardo, R.; Clark, K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Akim, E. L.] MV Keldysh Appl Math Inst, Moscow 125047, Russia. RP Fedorova, A (reprint author), Space Res Inst IKI, Profsoyuznaya 84-32, Moscow 117997, Russia. EM lzelenyi@iki.rssi.ru; fedorova@iki.rssi.ru RI Fedorova, Anna/L-5116-2013; Korablev, Oleg/L-5083-2013; OI Korablev, Oleg/0000-0003-1115-0656 NR 59 TC 5 Z9 5 U1 1 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD AUG 16 PY 2011 VL 48 IS 4 BP 615 EP 628 DI 10.1016/j.asr.2010.11.027 PG 14 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 802ZX UT WOS:000293550600002 ER PT J AU Clark, K Boldt, J Greeley, R Hand, K Jun, I Lock, R Pappalardo, R Van Houten, T Yan, T AF Clark, K. Boldt, J. Greeley, R. Hand, K. Jun, I. Lock, R. Pappalardo, R. Van Houten, T. Yan, T. TI Return to Europa: Overview of the Jupiter Europa orbiter mission SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Europa; Jovian system; Jupiter; Io; Ganymede; Callisto; Habitability; Ice; Subsurface ocean; Orbiter; Galilean satellites; Radiation; Planetary protection ID THERMAL ANOMALIES; ENCELADUS; EVOLUTION; ORIGIN AB Missions to explore Europa have been imagined ever since the Voyager mission first suggested that Europa was geologically very young. Subsequently, the Galileo spacecraft supplied fascinating new insights into this satellite of Jupiter. Now, an international team is proposing a return to the Jupiter system and Europa with the Europa Jupiter System Mission (EJSM). Currently, NASA and ESA are designing two orbiters that would explore the Jovian system and then each would settle into orbit around one of Jupiter's icy satellites, Europa and Ganymede. In addition, the Japanese Aerospace eXploration Agency (JAXA) is considering a Jupiter magnetospheric orbiter and the Russian Space Agency is investigating a Europa lander. The Jupiter Europa Orbiter (JEO) would be the NASA-led portion of the EJSM; JEO would address a very important subset of the complete EJSM science objectives and is designed to function alone or in conjunction with ESA's Jupiter Ganymede Orbiter (JGO). The JEO mission concept uses a single orbiter flight system that would travel to Jupiter by means of a multiple-gravity-assist trajectory and then perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months. The JEO mission would investigate various options for future surface landings. The JEO mission science objectives, as defined by the international EJSM Science Definition Team, include: A. Europa's ocean: Characterize the extent of the ocean and its relation to the deeper interior. B. Europa's ice shell: Characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface ice ocean exchange. C. Europa's chemistry: Determine global surface compositions and chemistry, especially as related to habitability. D. Europa's geology: Understand the formation of surface features, including sites of recent or current activity, and identify and characterize candidate sites for future in situ exploration. E. Jupiter system: Understand Europa in the context of the Jupiter system. The JEO orbital mission would provide critical measurements to support the scientific and technical selection of future landed options. The primary challenge of a Europa mission is to perform in Jupiter's radiation environment, radiation damage being the life-limiting parameter for the flight system. Instilling a system-level radiation-hardened-by-design approach very early in the mission concept would mitigate the pervasive mission and system-level impacts (including trajectory, configuration, fault protection, operational scenarios, and circuit design) that can otherwise result in runaway growth of cost and mass. This paper addresses the JEO mission concept developed by a joint team from JPL and the Applied Physics Laboratory to address the science objectives defined by an international science definition team formed in 2008, while designing for the Jupiter environment. Published by Elsevier Ltd. on behalf of COSPAR. C1 [Clark, K.; Hand, K.; Jun, I.; Lock, R.; Pappalardo, R.; Van Houten, T.; Yan, T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boldt, J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Greeley, R.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. RP Clark, K (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Blvd, Pasadena, CA 91109 USA. EM Karla.B.Clark@jpl.nasa.gov; John.Boldt@jhuapl.edu; greeley@asu.edu; Kevin.P.Hand@jpl.na-sa.gov; Insoo.Jun@jpl.nasa.gov; Robert.E.Lock@jpl.nasa.gov; Robert.Pappalardo@jpl.nasa.gov; Tracy.J.VanHouten@jpl.nasa.gov; Tsun-Yee.Yan@jpl.nasa.gov FU National Aeronautics and Space Administration; Johns Hopkins University Applied Physics Laboratory FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and in partnership with the Johns Hopkins University Applied Physics Laboratory. The authors would like to acknowledge the hard work completed by all of the members of the JJSDT, the NASA JEO study team, and the ESA JGO study team. NR 27 TC 12 Z9 12 U1 2 U2 48 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD AUG 16 PY 2011 VL 48 IS 4 BP 629 EP 650 DI 10.1016/j.asr.2010.04.011 PG 22 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 802ZX UT WOS:000293550600003 ER PT J AU Ivanov, MA Prockter, LM Dalton, B AF Ivanov, M. A. Prockter, L. M. Dalton, B. TI Landforms of Europa and selection of landing sites SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Europa; Terrain types; Landing sites ID ICY GALILEAN SATELLITES; GEOLOGICAL EVIDENCE; CRATERING RATES; IMPACT FEATURES; SOLAR-SYSTEM; SHELL; CONVECTION; MISSION; ORIGIN; BANDS AB Three major features make Europa a unique scientific target for a lander-oriented interplanetary mission: (1) the knowledge of the composition of the surface of Europa is limited to interpretations of the spectral data, (2) a lander could provide unique new information about outer parts of the solar system, and (3) Europa may have a subsurface ocean that potentially may harbor life, the traces of which may occur on the surface and could be sampled directly by a lander. These characteristics of Europa bring the requirement of safe landing to the highest priority level because any successful landing on the surface of this moon will yield scientific results of fundamental importance. The safety requirements include four major components. (1) A landing site should preferentially be on the anti-Jovian hemisphere of Europa in order to facilitate the orbital maneuvers of the spacecraft. (2) A landing site should be on the leading hemisphere of Europa in order to extend the lifetime of a lander and sample pristine material of the planet. (3) Images with the highest possible resolution must be available for the selection of landing sites. (4) The terrain for landing must have morphology (relief) that minimizes the risk of landing and represents a target that is important from a scientific point of view. These components severely restrict the selection of regions for landing on the surface of Europa. After the photogeologic analysis of all Galileo images with a resolution of better than about 70 m/pixel taken for the leading hemisphere of Europa, we propose one primary and two secondary (backup) landing sites. The primary site (51.8 degrees S, 177.2 degrees W) is within a pull-apart zone affected by a small chaos. The first backup site (68.1 degrees S, 196.7 degrees W) is also inside of a pull-apart zone and is covered by images of the lower resolution (51.4 m/pixel). The second backup site (2.4 degrees N, 181.1 degrees W) is imaged by relatively low-resolution images (similar to 70 m/pixel) and corresponds to a cluster of small patches of dark and probably smooth plains that may represent landing targets of the highest scientific priority from the scientific point of view. The lack of the high-resolution images for this region prevents, however, its selection as the primary landing target. (C) 2011 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Ivanov, M. A.] RAS, VI Vernadsky Inst Geochem & Analyt Chem, Lab Comparat Planetol, Moscow, Russia. [Prockter, L. M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Dalton, B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Ivanov, MA (reprint author), RAS, VI Vernadsky Inst Geochem & Analyt Chem, Lab Comparat Planetol, Moscow, Russia. EM mikhail_ivanov@brown.edu NR 49 TC 6 Z9 6 U1 0 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD AUG 16 PY 2011 VL 48 IS 4 BP 661 EP 677 DI 10.1016/j.asr.2011.05.016 PG 17 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 802ZX UT WOS:000293550600005 ER PT J AU Lorenz, RD Gleeson, D Prieto-Ballesteros, O Gomez, F Hand, K Bulat, S AF Lorenz, Ralph D. Gleeson, Damhnait Prieto-Ballesteros, Olga Gomez, Felipe Hand, Kevin Bulat, Sergey TI Analog environments for a Europa lander mission SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Europa; Ice; Astrobiology; Analog field studies; Antarctica ID INFRARED MAPPING SPECTROMETER; SURFACE; SALTS; ICE; LAKE; MICROORGANISMS; ANTARCTICA; ENERGY; MODELS; ORIGIN AB This paper reviews the utility of analog environments in preparations for a Europa lander mission. Such analogs are useful in the demonstration and rehearsal of engineering functions such as sample acquisition from an icy surface, as well as in the exercise of the scientific protocols needed to identify organic, inorganic and possible biological impurities in ice. Particular attention is drawn to Antarctic and Arctic analog sites where progress in these latter areas has been significant in recent years. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Lorenz, Ralph D.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Gleeson, Damhnait] Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USA. [Prieto-Ballesteros, Olga; Gomez, Felipe] Ctr Astrobiol INTA CSIC, Madrid 28850, Spain. [Hand, Kevin] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bulat, Sergey] Petersburg Nucl Phys Inst, St Petersburg 188300, Russia. RP Lorenz, RD (reprint author), Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM Ralph.lorenz@jhuapl.edu RI Gomez, Felipe/L-7315-2014; Lorenz, Ralph/B-8759-2016 OI Gomez, Felipe/0000-0001-9977-7060; Lorenz, Ralph/0000-0001-8528-4644 NR 37 TC 7 Z9 7 U1 1 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD AUG 16 PY 2011 VL 48 IS 4 BP 689 EP 696 DI 10.1016/j.asr.2010.05.006 PG 8 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 802ZX UT WOS:000293550600007 ER PT J AU Korablev, O Gerasimov, M Dalton, JB Hand, K Lebreton, JP Webster, C AF Korablev, Oleg Gerasimov, Mikhail Dalton, J. Brad Hand, Kevin Lebreton, Jean-Pierre Webster, Chris TI Methods and measurements to assess physical and geochemical conditions at the surface of Europa SO ADVANCES IN SPACE RESEARCH LA English DT Review DE Europa; Icy satellite; Lander; Instrumentation ID INFRARED MAPPING SPECTROMETER; ICY GALILEAN SATELLITES; SUBSURFACE OCEAN; SOLAR-SYSTEM; INTERNAL STRUCTURE; MOON EUROPA; WATER FROST; MU-M; CALLISTO; MAGNETOMETER AB An international effort dedicated to the science exploration of Jupiter system planned by ESA and NASA in the beginning of the next decade includes in-depth science investigation of Europa. In parallel to EJSM (Europa-Jupiter System Mission) Russia plans a Laplace-Europa Lander mission, which will include another orbiter and the surface element: Europa Lander. In-situ methods on the lander provide the only direct way to assess environmental conditions, and to perform the search for signatures of life. A critical advantage of such in situ analysis is the possibility to enhance concentration and detection limits and to provide ground truth for orbital measurements. The science mission of the lander is biological, geophysical, chemical, and environmental characterizations of the Europa surface. This review is dedicated to methods and strategies of geophysical and environmental measurements to be performed at the surface of Europa, and their significance for the biological assessment, basing on the concept of a relatively large softly landed module, allowing to probe a shallow subsurface. Many of the discussed methods were presented on the workshop "Europa Lander: Science Goals and Experiments" held in Moscow in February 2009. Methods and instruments are grouped into geophysical package, means of access to the subsurface, methods of chemical and structural characterization, and methods to assess physical conditions on the surface. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Korablev, Oleg; Gerasimov, Mikhail] Space Res Inst IKI, Moscow 117997, Russia. [Dalton, J. Brad; Hand, Kevin; Webster, Chris] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lebreton, Jean-Pierre] Estec, ESA Sci Directorate, NL-2200 AG Noordwijk, Netherlands. RP Korablev, O (reprint author), Space Res Inst IKI, Profsoyuznaya 84-32, Moscow 117997, Russia. EM korab@iki.rssi.ru RI Korablev, Oleg/L-5083-2013; OI Korablev, Oleg/0000-0003-1115-0656 FU Roscomos [2334/0901-1332/312-2010] FX The authors are grateful to all participants of Europa Lander Workshop (ELW) held in Moscow in February 2009, in particular to Sergey Pavlov and Sergey Bulat whose proposals and discussions have helped us in preparation of the present paper. The authors acknowledge Ralf Lorenz, and two anonymous reviewers for useful comments, which helped to improve the manuscript. The work of the Russian team was supported by Roscomos in the frame of R&D activity Laplace-Europa P (TSNIIMASH contracts 2334/0901-1332/312-2010). NR 92 TC 3 Z9 3 U1 1 U2 31 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD AUG 16 PY 2011 VL 48 IS 4 BP 702 EP 717 DI 10.1016/j.asr.2010.12.010 PG 16 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 802ZX UT WOS:000293550600009 ER PT J AU Gowen, RA Smith, A Fortes, AD Barber, S Brown, P Church, P Collinson, G Coates, AJ Collins, G Crawford, IA Dehant, V Chela-Flores, J Griffiths, AD Grindrod, PM Gurvits, LI Hagermann, A Hussmann, H Jaumann, R Jones, AP Joy, KH Karatekin, O Miljkovic, K Palomba, E Pike, WT Prieto-Ballesteros, O Raulin, F Sephton, MA Sheridan, S Sims, M Storrie-Lombardi, MC Ambrosi, R Fielding, J Fraser, G Gao, Y Jones, GH Kargl, G Karl, WJ Macagnano, A Mukherjee, A Muller, JP Phipps, A Pullan, D Richter, L Sohl, F Snape, J Sykes, J Wells, N AF Gowen, R. A. Smith, A. Fortes, A. D. Barber, S. Brown, P. Church, P. Collinson, G. Coates, A. J. Collins, G. Crawford, I. A. Dehant, V. Chela-Flores, J. Griffiths, A. D. Grindrod, P. M. Gurvits, L. I. Hagermann, A. Hussmann, H. Jaumann, R. Jones, A. P. Joy, K. H. Karatekin, O. Miljkovic, K. Palomba, E. Pike, W. T. Prieto-Ballesteros, O. Raulin, F. Sephton, M. A. Sheridan, S. Sims, M. Storrie-Lombardi, M. C. Ambrosi, R. Fielding, J. Fraser, G. Gao, Y. Jones, G. H. Kargl, G. Karl, W. J. Macagnano, A. Mukherjee, A. Muller, J. P. Phipps, A. Pullan, D. Richter, L. Sohl, F. Snape, J. Sykes, J. Wells, N. TI Penetrators for in situ subsurface investigations of Europa SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Penetrators; Europa; Astrobiology; EJSM ID ICY GALILEAN SATELLITES; JUPITERS MOON EUROPA; HEAT-FLOW; WATER-ICE; HYDROGEN-PEROXIDE; SULFURIC-ACID; SURFACE MATERIAL; MICROBIAL LIFE; LAKE VOSTOK; OCEAN AB We present the scientific case for inclusion of penetrators into the Europan surface, and the candidate instruments which could significantly enhance the scientific return of the joint ESA/NASA Europa-Jupiter System Mission (EJSM). Moreover, a surface element would provide an exciting and inspirational mission highlight which would encourage public and political support for the mission. Whilst many of the EJSM science goals can be achieved from the proposed orbital platform, only surface elements can provide key exploration capabilities including direct chemical sampling and associated astrobiological material detection, and sensitive habitability determination. A targeted landing site of upwelled material could provide access to potential biological material originating from deep beneath the ice. Penetrators can also enable more capable geophysical investigations of Europa (and Ganymede) interior body structures, mineralogy, mechanical, magnetic, electrical and thermal properties. They would provide ground truth, not just for the orbital observations of Europa, but could also improve confidence of interpretation of observations of the other Jovian moons. Additionally, penetrators on both Europa and Ganymede, would allow valuable comparison of these worlds, and gather significant information relevant to future landed missions. The advocated low mass penetrators also offer a comparatively low cost method of achieving these important science goals. A payload of two penetrators is proposed to provide redundancy, and improve scientific return, including enhanced networked seismometer performance and diversity of sampled regions. We also describe the associated candidate instruments, penetrator system architecture, and technical challenges for such penetrators, and include their current status and future development plans. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Gowen, R. A.; Smith, A.; Collinson, G.; Coates, A. J.; Griffiths, A. D.; Jones, G. H.; Muller, J. P.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Barber, S.; Hagermann, A.; Sheridan, S.] Open Univ, Planetary & Space Sci Res Inst, Milton Keynes MK7 6AA, Bucks, England. [Crawford, I. A.] Univ London, Birkbeck Coll, Dept Earth & Planetary Sci, London WC1E 7HX, England. [Gao, Y.] Univ Surrey, Surrey Space Ctr, Surrey GU2 7XH, England. [Brown, P.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Sims, M.; Ambrosi, R.; Fraser, G.; Pullan, D.; Sykes, J.] Univ Leicester, Dept Phys & Astron, Space Res Ctr, Leicester LE1 7RH, Leics, England. [Fortes, A. D.; Grindrod, P. M.; Jones, A. P.; Miljkovic, K.; Snape, J.] UCL, Dept Earth Sci, London WC1E 6BT, England. [Pike, W. T.; Karl, W. J.; Mukherjee, A.] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2AZ, England. [Church, P.] QinetiQ Ltd, Sevenoaks TN14 7BP, Kent, England. [Wells, N.] QinetiQ Ltd, Farnborough GU14 0LX, Hants, England. [Palomba, E.] INAF, Ist Fis Spazio Interplanetario, I-00133 Rome, Italy. [Hussmann, H.; Jaumann, R.; Sohl, F.] Inst Planetary Res, DLR, D-12489 Berlin, Germany. [Macagnano, A.] CNR, Inst Microelect & Microsyst, I-00133 Rome, Italy. [Raulin, F.] Univ Paris 12, LISA, F-94010 Creteil, France. [Raulin, F.] Univ Paris 07, LISA, F-94010 Creteil, France. [Prieto-Ballesteros, O.] CSIC, INTA, Ctr Astrobiol, E-28850 Madrid, Spain. [Chela-Flores, J.] Abdus Salam Int Ctr Theoret Phys ICTP, I-34151 Trieste, Italy. [Richter, L.] Inst Space Syst, DLR, D-28199 Bremen, Germany. [Gurvits, L. I.] Joint Inst VLBI Europe JIVE, NL-7991 PD Dwingeloo, Netherlands. [Kargl, G.] Space Res Inst, IWF, A-8042 Graz, Austria. [Dehant, V.; Karatekin, O.] ROB, BE-1180 Brussels, Belgium. [Phipps, A.] SSTL, Guildford GU2 7YE, Surrey, England. [Storrie-Lombardi, M. C.] Kinohi Inst Inc, Pasadena, CA 91101 USA. [Joy, K. H.] Univ Space Res Assoc, Lunar & Planetary Inst, Ctr Lunar Sci & Explorat, Houston, TX 77058 USA. [Joy, K. H.] NASA, Lunar Sci Inst, Greenbelt, MD 20771 USA. [Fielding, J.] Astrium Ltd, Stevenage SG1 2AS, Herts, England. [Collinson, G.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Collins, G.; Sephton, M. A.] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England. RP Gowen, RA (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM rag@mssl.ucl.ac.uk RI Crawford, Ian/H-7510-2012; Coates, Andrew/C-2396-2008; Miljkovic, Katarina/D-4844-2013; Grindrod, Peter/F-5819-2011; Fortes, Andrew/C-1349-2011; Collinson, Glyn/D-5700-2012; Jones, Geraint/C-1682-2008; Macagnano, Antonella/B-8410-2015; OI Crawford, Ian/0000-0001-5661-7403; Coates, Andrew/0000-0002-6185-3125; Miljkovic, Katarina/0000-0001-8644-8903; Grindrod, Peter/0000-0002-0934-5131; Fortes, Andrew/0000-0001-5907-2285; Macagnano, Antonella/0000-0002-6015-4832; Sephton, Mark/0000-0002-2190-5402; Joy, Katherine/0000-0003-4992-8750; Collins, Gareth/0000-0002-6087-6149; Jones, Geraint/0000-0002-5859-1136; Palomba, Ernesto/0000-0002-9101-6774 FU UK Science and Technology Facilities Council; LPI [1507] FX This work was supported by the UK Science and Technology Facilities Council, and other international funding agencies including contribution 1507 from LPI. NR 122 TC 25 Z9 25 U1 3 U2 37 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD AUG 16 PY 2011 VL 48 IS 4 BP 725 EP 742 DI 10.1016/j.asr.2010.06.026 PG 18 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 802ZX UT WOS:000293550600011 ER PT J AU Tian, F Kasting, JF Zahnle, K AF Tian, Feng Kasting, J. F. Zahnle, K. TI Revisiting HCN formation in Earth's early atmosphere SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE early earth; HCN; photochemistry; ammonia ID CARBON-DIOXIDE CONCENTRATIONS; NITROGEN-FIXATION; ORGANIC HAZES; ARCHEAN EARTH; SOUTH-AFRICA; EVOLUTION; METHANE; LIFE; PHOTOCHEMISTRY; CONSTRAINTS AB Using a new photochemical model, the HCN chemistry in Earth's early atmosphere is revisited. We find that HCN production in a CH(4)-rich early atmosphere could have been efficient, similar to the results of a previous study (Zahnle, 1986). For an assumed CH(4) mixing ratio of 1000 ppmv, HCN surface deposition increases from 2 x 10(9) cm(-2) s(-1) at fCO(2) = 3% to more than 1 x 10(10) cm(-2) s(-1) (30 Tg/yr) at fCO(2) = 0.3% and 1%. These conditions may well have applied throughout much of the Archean eon, 3.8-2.5 Ga. Prior to the origin of life and the advent of methanogens. HCN production rates would likely have been at 1 x 10(7) cm(-2) s(-1) or lower, thereby providing a modest source of HCN for prebiotic synthesis. (C) 2011 Elsevier B.V. All rights reserved. C1 [Tian, Feng] Univ Colorado, Boulder, CO 80309 USA. [Tian, Feng] Chinese Acad Sci, Natl Astron Observ, Beijing 100864, Peoples R China. [Kasting, J. F.] Penn State Univ, University Pk, PA 16802 USA. [Zahnle, K.] NASA, Ames Res Ctr, Washington, DC USA. RP Tian, F (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM feng.tian@colorado.edu RI Tian, Feng/C-1344-2015 OI Tian, Feng/0000-0002-9607-560X FU NASA [NNX10AR17G] FX We thank 3 anonymous reviewers for their constructive comments. F.T. thanks Dr. R.V. Yelle for helpful discussions on HCN chemistry in Titan's atmosphere and Dr. V. Veronique for help with HCN photolysis cross sections. F.T. and O.B.T. are partially supported by NASA Award# NNX10AR17G. NR 44 TC 23 Z9 23 U1 3 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD AUG 15 PY 2011 VL 308 IS 3-4 BP 417 EP 423 DI 10.1016/j.epsl.2011.06.011 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 807VR UT WOS:000293931600017 ER PT J AU Ajello, M Atwood, WB Baldini, L Barbiellini, G Bastieri, D Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bottacini, E Bouvier, A Bregeon, J Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Cecchi, C Charles, E Chekhtman, A Ciprini, S Claus, R Cohen-Tanugi, J Cutini, S de Angelis, A de Palma, F Dermer, CD Digel, SW Silva, EDE Drell, PS Favuzzi, C Fegan, SJ Focke, WB Fukazawa, Y Fusco, P Gargano, F Gehrels, N Germani, S Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Guiriec, S Gustafsson, M Hadasch, D Iafrate, G Johannesson, G Johnson, AS Kamae, T Katagiri, H Kataoka, J Kuss, M Latronico, L Lionetto, AM Longo, F Loparco, F Lovellette, MN Lubrano, P Mazziotta, MN McEnery, JE Michelson, PF Mizuno, T Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Naumann-Godo, M Norris, JP Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Pesce-Rollins, M Pierbattista, M Piron, F Raino, S Rando, R Razzano, M Reimer, A Reimer, O Ritz, S Schalk, TL Sgro, C Siegal-Gaskins, J Siskind, EJ Smith, PD Spandre, G Spinelli, P Suson, DJ Takahashi, H Tanaka, T Thayer, JG Thayer, JB Tibaldo, L Tosti, G Troja, E Usher, TL Vandenbroucke, J Vasileiou, V Vianello, G Vilchez, N Waite, AP Wang, P Winer, BL Wood, KS Yang, Z Zimmer, S AF Ajello, M. Atwood, W. B. Baldini, L. Barbiellini, G. Bastieri, D. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bottacini, E. Bouvier, A. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Cecchi, C. Charles, E. Chekhtman, A. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cutini, S. de Angelis, A. de Palma, F. Dermer, C. D. Digel, S. W. Silva, E. do Couto e Drell, P. S. Favuzzi, C. Fegan, S. J. Focke, W. B. Fukazawa, Y. Fusco, P. Gargano, F. Gehrels, N. Germani, S. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Guiriec, S. Gustafsson, M. Hadasch, D. Iafrate, G. Johannesson, G. Johnson, A. S. Kamae, T. Katagiri, H. Kataoka, J. Kuss, M. Latronico, L. Lionetto, A. M. Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Mazziotta, M. N. McEnery, J. E. Michelson, P. F. Mizuno, T. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Naumann-Godo, M. Norris, J. P. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Pesce-Rollins, M. Pierbattista, M. Piron, F. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Ritz, S. Schalk, T. L. Sgro, C. Siegal-Gaskins, J. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Suson, D. J. Takahashi, H. Tanaka, T. Thayer, J. G. Thayer, J. B. Tibaldo, L. Tosti, G. Troja, E. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vilchez, N. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yang, Z. Zimmer, S. CA Fermi LAT Collaboration TI Constraints on dark matter models from a Fermi LAT search for high-energy cosmic-ray electrons from the Sun SO PHYSICAL REVIEW D LA English DT Article ID LARGE-AREA TELESCOPE; DAMA/LIBRA; EMISSION AB During its first year of data taking, the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope has collected a large sample of high-energy cosmic-ray electrons and positrons (CREs). We present the results of a directional analysis of the CRE events, in which we searched for a flux excess correlated with the direction of the Sun. Two different and complementary analysis approaches were implemented, and neither yielded evidence of a significant CRE flux excess from the Sun. We derive upper limits on the CRE flux from the Sun's direction, and use these bounds to constrain two classes of dark matter models which predict a solar CRE flux: (1) models in which dark matter annihilates to CREs via a light intermediate state, and (2) inelastic dark matter models in which dark matter annihilates to CREs. C1 [Ajello, M.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Charles, E.; Claus, R.; Digel, S. W.; Silva, E. do Couto e; Drell, P. S.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Johnson, A. S.; Kamae, T.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ajello, M.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Charles, E.; Claus, R.; Digel, S. W.; Silva, E. do Couto e; Drell, P. S.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Johnson, A. S.; Kamae, T.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Bouvier, A.; Ritz, S.; Schalk, T. L.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Bouvier, A.; Ritz, S.; Schalk, T. L.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Barbiellini, G.; Iafrate, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Gustafsson, M.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Hadasch, D.] CSIC, IEEE, Inst Ciencies Espai, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Chekhtman, A.] Artep Inc, Ellicott City, MD 21042 USA. [Ciprini, S.; Cutini, S.] ASI Sci Data Ctr, I-00044 Rome, Italy. [Cohen-Tanugi, J.; Nuss, E.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, CNRS, IN2P3, Lab Univers & Particules Montpellier, Montpellier, France. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Dermer, C. D.; Lovellette, M. N.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Fukazawa, Y.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.; McEnery, J. E.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Grenier, I. A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.] Univ Paris Diderot, CEA Saclay, CEA IRFU, CNRS,Serv Astrophys,Lab AIM, F-91191 Gif Sur Yvette, France. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Iafrate, G.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Katagiri, H.] Ibaraki Univ, Coll Sci, Mito, Ibaraki 3108512, Japan. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Lionetto, A. M.; Morselli, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Lionetto, A. M.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [McEnery, J. E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Norris, J. P.] Boise State Univ, Dept Phys, Boise, ID 83725 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ozaki, M.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Kanagawa 2525210, Japan. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Siegal-Gaskins, J.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Dept Phys, Columbus, OH 43210 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Vianello, G.] CIFS, I-10133 Turin, Italy. [Vilchez, N.] IRAP, CNRS, F-31028 Toulouse 4, France. [Vilchez, N.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Troja, E.] NASA, Washington, DC USA. [Yang, Z.; Zimmer, S.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Yang, Z.; Zimmer, S.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. RP Ajello, M (reprint author), Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. EM loparco@ba.infn.it; mazziotta@ba.infn.it; jsg@mps.ohio-state.edu RI Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Orlando, E/R-5594-2016; Morselli, Aldo/G-6769-2011; Rando, Riccardo/M-7179-2013; Loparco, Francesco/O-8847-2015; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013 OI Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Cutini, Sara/0000-0002-1271-2924; Berenji, Bijan/0000-0002-4551-772X; Baldini, Luca/0000-0002-9785-7726; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Giordano, Francesco/0000-0002-8651-2394; De Angelis, Alessandro/0000-0002-3288-2517; Iafrate, Giulia/0000-0002-6185-8292; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Morselli, Aldo/0000-0002-7704-9553; Loparco, Francesco/0000-0002-1173-5673; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; lubrano, pasquale/0000-0003-0221-4806; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; NR 45 TC 13 Z9 13 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG 15 PY 2011 VL 84 IS 3 AR 032007 DI 10.1103/PhysRevD.84.032007 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 806VQ UT WOS:000293844100001 ER PT J AU Vilozny, B Actis, P Seger, RA Vallmajo-Martin, Q Pourmand, N AF Vilozny, Boaz Actis, Paolo Seger, R. Adam Vallmajo-Martin, Queralt Pourmand, Nader TI Reversible Cation Response with a Protein-Modified Nanopipette SO ANALYTICAL CHEMISTRY LA English DT Article ID SOLID-STATE NANOPORES; ION-BINDING; METAL-IONS; CALCIUM; POLYELECTROLYTES; CALMODULIN AB The calcium ion response of a quartz nanopipette was enhanced by immobilization of calmodulin to the nanopore surface. Binding to the analyte is rapidly reversible in neutral buffer and requires no change in media or conditions to regenerate the receptor. The signal remained reproducible over numerous measurements. The modified nanopipette was used to measure binding affinity to calcium ions, with a K-d of 6.3 +/- 0.8 x 10(-5) M. This affinity is in good agreement with reported values of the solution-state protein. The behavior of such reversible nanopore-based sensors can be used to study proteins in a confined environment and may lead to new devices for continuous monitoring. C1 [Vilozny, Boaz; Actis, Paolo; Seger, R. Adam; Vallmajo-Martin, Queralt; Pourmand, Nader] Univ Calif Santa Cruz, Dept Biomol Engn, Santa Cruz, CA 95064 USA. [Vilozny, Boaz; Actis, Paolo; Seger, R. Adam; Pourmand, Nader] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Vilozny, Boaz; Actis, Paolo; Seger, R. Adam; Pourmand, Nader] UC Santa Cruz, Adv Studies Labs, Moffett Field, CA 94035 USA. [Actis, Paolo] Texas So Univ, Dept Biol, Houston, TX 77004 USA. RP Pourmand, N (reprint author), Univ Calif Santa Cruz, Dept Biomol Engn, 1156 High St, Santa Cruz, CA 95064 USA. RI Actis, Paolo/A-7694-2012 FU National Aeronautics and Space Administration [NCC9-165, NNX08BA47A]; National Institutes of Health [P01-HG000205] FX This work was supported in part by grants from the National Aeronautics and Space Administration Cooperative Agreements NCC9-165 and NNX08BA47A and the National Institutes of Health [Grant P01-HG000205]. NR 32 TC 32 Z9 33 U1 7 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD AUG 15 PY 2011 VL 83 IS 16 BP 6121 EP 6126 DI 10.1021/ac201322v PG 6 WC Chemistry, Analytical SC Chemistry GA 805WD UT WOS:000293758800001 PM 21761859 ER PT J AU Anderson, K Dungan, JL MacArthur, A AF Anderson, K. Dungan, J. L. MacArthur, A. TI On the reproducibility of field-measured reflectance factors in the context of vegetation studies SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Hemispherical Conical Reflectance Factors (HCRF); Vegetation; Standard uncertainty; Spectroradiometer; Noise equivalent delta radiance; Uncertainty propagation ID EMPIRICAL LINE METHOD; RADIOMETRIC CALIBRATION; ATMOSPHERIC CORRECTION; SPECTRAL REFLECTANCE; LANDSAT-7 ETM+; LEAVES; VARIABILITY; SURFACES; METHODOLOGIES; RETRIEVAL AB This paper describes a study aimed at quantifying uncertainty in field measurements of vegetation canopy hemispherical conical reflectance factors (HCRF). The use of field spectroradiometers is common for this purpose, but the reliability of such measurements is still in question. In this paper we demonstrate the impact of various measurement uncertainties on vegetation canopy HCRF, using a combined laboratory and field experiment employing three spectroradiometers of the same broad specification (GER 1500). The results show that all three instruments performed similarly in the laboratory when a stable radiance source was measured (NE Delta L<1 mW m(-2) sr(-1) nm(-1) in the range of 400-1000 nm). In contrast, field-derived standard uncertainties (u=SD of 10 consecutive measurements of the same surface measured in ideal atmospheric conditions) significantly differed from the lab-based uncertainty characterisation for two targets: a control (75% Spectralon panel) and a cropped grassland surface. Results indicated that field measurements made by a single instrument of the vegetation surface were reproducible to within +/- 0.015 HCRF and of the control surface to within +/- 0.006 HCRF (400-1000 nm (+/- 1 sigma)). Field measurements made by all instruments of the vegetation surface were reproducible to within +/- 0.019 HCRF and of the control surface to within +/- 0.008 HCRF (400-1000 nm (+/- 1 sigma)). Statistical analysis revealed that even though the field conditions were carefully controlled and the absolute values of u were small, different instruments yielded significantly different reflectance values for the same target. The results also show that laboratory-derived uncertainty quantities do not present a useful means of quantifying all uncertainties in the field. The paper demonstrates a simple method for u characterisation, using internationally accepted terms, in field scenarios. This provides an experiment-specific measure of u that helps to put measurements in context and forms the basis for comparison with other studies. (C) 2011 Elsevier Inc. All rights reserved. C1 [Anderson, K.] Univ Exeter, Dept Geog, Coll Life & Environm Sci, Exeter TR10 9EZ, Devon, England. [Dungan, J. L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [MacArthur, A.] Univ Edinburgh, Sch GeoSci, NERC Field Spect Facil, Edinburgh EH9 3JW, Midlothian, Scotland. RP Anderson, K (reprint author), Univ Exeter, Dept Geog, Coll Life & Environm Sci, Cornwall Campus, Exeter TR10 9EZ, Devon, England. EM Karen.Anderson@exeter.ac.uk; Jennifer.L.Dungan@nasa.gov; fsf@nerc.ac.uk RI Dungan, Jennifer/G-9921-2016; OI Dungan, Jennifer/0000-0002-4863-1616; Anderson, Karen/0000-0002-3289-2598 FU Winston Churchill Memorial Trust FX The Winston Churchill Memorial Trust provided funding for Karen Anderson's (KA) research sabbatical to NASA Ames. NASA Ames Research Center hosted KA during the study. NERC FSF loaned the GER #2002 and #2003 to KA, and provided some calibration data. Ames' Airborne Science and Technology Lab made other calibration measurements possible. Dr. Liane Guild (NASA Ames) loaned GER #2085 for the study and is thanked for her support to the project. Dr. Ted Hildum, Bradley Lobitz and Dr. Vern Vanderbilt (all NASA Ames) are thanked for their assistance and technical insight during the field and laboratory experiments. NR 48 TC 7 Z9 7 U1 3 U2 18 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD AUG 15 PY 2011 VL 115 IS 8 BP 1893 EP 1905 DI 10.1016/j.rse.2011.03.012 PG 13 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 785NJ UT WOS:000292235400009 ER PT J AU Hall, FG Hilker, T Coops, NC AF Hall, Forrest G. Hilker, Thomas Coops, Nicholas C. TI PHOTOSYNSAT, photosynthesis from space: Theoretical foundations of a satellite concept and validation from tower and spaceborne data SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE PRI; LUE; Light-use efficiency; CHRIS-PROBA AMSPEC; Eddy covariance; Shadow fraction; GPP; SOA; DF49; Douglas-fir; Aspen ID LIGHT-USE EFFICIENCY; RADIATION-USE EFFICIENCY; PHOTOCHEMICAL REFLECTANCE INDEX; FOREST BIOPHYSICAL STRUCTURE; LEAF PIGMENT CONTENT; DOUGLAS-FIR FOREST; SPECTRAL REFLECTANCE; CANOPY REFLECTANCE; CHLOROPHYLL FLUORESCENCE; SOLAR-RADIATION AB We develop herein the theoretical foundations for a new satellite concept, utilizing multi-angle, along track spectral measurements to infer photosynthesis and gross primary production, at the landscape level over time. We validate the theory using both tower and space-borne sensors. The concept, originated in Hall et al. (2008), and Hilker et al. (2008a) and is based on two principles: (1) The first derivative of the photochemical reflectance index (PRI) with respect to shadow fraction viewed by the sensor partial derivative PRI/partial derivative alpha(s), is proportional to light-use efficiency c. (2) This behavior can be shown both theoretically and empirically to be independent of vegetation structure and optical properties. These two principles provide the basis for a robust photosynthesis algorithm that can be applied consistently both spatially and temporally. We develop the general theoretical concept using a canopy reflectance model that incorporates a dependence of leaf reflectance on illumination strength, permitting the leaf reflectance at 531 nm to depend on the intensity of photosynthetic down-regulation. Using this model we are able to show that using PRI alone to infer e is confounded by the shadow fraction viewed by a sensor, the PRI value in a non-down-regulated physiological state, and the sunlit canopy reflectance. We are able to demonstrate that these difficulties are mitigated by using partial derivative PRI/partial derivative alpha(s)-not PRI-as the primary measure of canopy level c. We demonstrate our concept using tower and satellite data acquired over three years, in two distinct biomes and vegetation types to show that PRI/partial derivative alpha(s) and c are related by a single function. Building on these ideas we propose the development of a new satellite concept that can utilize a spatially and temporally robust algorithm to map photosynthesis at landscape scales and its temporal variation. (C) 2011 Elsevier Inc. All rights reserved. C1 [Hall, Forrest G.] Univ Maryland, Joint Ctr Earth Syst Technol, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hilker, Thomas; Coops, Nicholas C.] Univ British Columbia, Fac Forest Resources Management, Vancouver, BC V6T 1Z4, Canada. RP Hall, FG (reprint author), Univ Maryland, Joint Ctr Earth Syst Technol, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Forrest.G.Hall@nasa.gov RI Coops, Nicholas/J-1543-2012 OI Coops, Nicholas/0000-0002-0151-9037 FU Natural Sciences and Engineering Research Council of Canada (NSERC); BIOCAP; NERC (Natural Environment Research Council, UK) [NE/G000360/1]; [NNH07ZDA001N-TE] FX We are grateful to Dr Andy Black, Zoran Nesic, Dominic Lessard, Andrew Hum and Rick Ketler of the Micrometeorology Group of UBC Faculty of Land and Food Systems (LFS) for providing the eddy flux data for this study and their assistance in technical design, installation, and maintenance of AMSPEC and AMSPEC II. This research is partially funded by the Canadian Carbon Program, the Natural Sciences and Engineering Research Council of Canada (NSERC) and BIOCAP, and an NSERC-Accelerator grant to Dr. Coops. The Terrestrial Ecology Program under Dr. Diane Wickland also contributed to funding under grant NNH07ZDA001N-TE. The CHRIS PROBA data used in this research were acquired through Dr. Caroline Nichol, from the University of Edinburgh, Scotland. LiDAR data for the Old Aspen site was kindly provided by Dr. Natascha Kljun, Swansea University, UK and was acquired through a NERC (Natural Environment Research Council, UK) grant, number NE/G000360/1. NR 57 TC 37 Z9 38 U1 0 U2 25 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD AUG 15 PY 2011 VL 115 IS 8 BP 1918 EP 1925 DI 10.1016/j.rse.2011.03.014 PG 8 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 785NJ UT WOS:000292235400011 ER PT J AU Brucker, L Royer, A Picard, G Langlois, A Fily, M AF Brucker, L. Royer, A. Picard, G. Langlois, A. Fily, M. TI Hourly simulations of the microwave brightness temperature of seasonal snow in Quebec, Canada, using a coupled snow evolution-emission model SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Snow; Surface-based radiometer; Microwave brightness temperature; Crocus snow model; MEMLS radiative transfer model ID WATER EQUIVALENT; PASSIVE MICROWAVE; DRY SNOW; LAYERED SNOWPACKS; DEPTH ALGORITHM; NUMERICAL-MODEL; SATELLITE DATA; CLPX 2003; IN-SITU; PARAMETERS AB To interpret the snowpack evolution, and in particular to estimate snow water equivalent (SWE), passive microwave remote sensing has proved to be a useful tool given its sensitivity to snow properties. However, the main uncertainties using existing SWE algorithms arise from snow metamorphism which evolves during the winter season, and changes the snow emissivity. To consider the evolution in snow emissivity a coupled snow evolution-emission model can be used to simulate the brightness temperature (T-B) of the snowpack. During a dedicated campaign in the winter season. from November to April, of 2007-2008 two surface-based radiometers operating at 19 GHz and 37 GHz continuously measured the passive microwave radiation emitted through a seasonal snowpack in southern Quebec (Canada). This paper aims at modeling and interpreting this time series of T-B over the whole season, with an hourly step, using a coupled multi-layer snow evolution-emission model. The thermodynamic snow evolution model, referred as to Crocus, was driven by local meteorological measurements. Results from this model provided, in turn, the input variables to run the Microwave Emission Model of Layered Snowpacks (MEMLS) in order to predict T-B at 19 GHz and 37 GHz for both vertical (V) and horizontal (H) polarizations. The accuracy of T-B predicted by the Crocus-MEMLS coupled model was evaluated using continuous measurements from the surface-based radiometers. The weather conditions observed during the winter season were diverse, including several warm periods with melting snow and rain-on-snow events, producing very complex variations in the time series of T-B. To aid our analysis, we identified days with melting snow versus days with dry snow. The Crocus-MEMLS coupled model was able to accurately predict melt events with a success rate of 86%. The residual error was due to an overestimation of the duration of several melt events simulated by Crocus. This problem was explained by 1) a limitation of percolation, and 2) a very long-acting melt of lower layers due to geothermal flux. When the snowpack was completely dry, the global trend of T-B during the season was characterized by a decrease of T-B due to growth in the snow grain size. During most of the season, Crocus-MEMLS correctly predicted the evolution of T-B resulting from temperature gradient metamorphism; the root mean square errors ranged between 2.8 K for the 19 GHz vertical polarization (19V) and 6.9 K for the 37 GHz horizontal polarization (37H). However, during dry periods near the end of the season, the values of T-B were strongly overestimated. This overestimation was mainly due to a limitation of the growth of large snow grains in the wet snowpack simulated by Crocus. This effect was confirmed by estimating snow grain sizes from the observed T-B and the coupled model. The estimated snow grain sizes were larger and more realistic than those initially predicted by the Crocus model. (C) 2011 Elsevier Inc. All rights reserved. C1 [Brucker, L.; Picard, G.; Fily, M.] Univ Grenoble 1, CNRS, Lab Glaciol & Geophys Environm, F-38041 Grenoble, France. [Royer, A.; Langlois, A.] Univ Sherbrooke, Ctr Applicat & Rech Teledetect, Quebec City, PQ, Canada. RP Brucker, L (reprint author), NASA, Goddard Space Flight Ctr, Cryospher Sci Branch, Code 614-1, Greenbelt, MD 20771 USA. EM ludovic.brucker@nasa.gov RI Picard, Ghislain/D-4246-2013; Brucker, Ludovic/A-8029-2010 OI Picard, Ghislain/0000-0003-1475-5853; Brucker, Ludovic/0000-0001-7102-8084 FU Natural Sciences and Engineering Research Council of Canada (NSERC); French remote sensing program (Programme National de Teledetection Spatiale); Collaboration France-Quebec and the Centre Jacques Cartier FX This project was funded by the Government of Canada Program for International Polar Year, the Natural Sciences and Engineering Research Council of Canada (NSERC), the French remote sensing program (Programme National de Teledetection Spatiale). The radiometers were provided by Environment Canada (principal investigator: Anne Walker). This work was done during the stay of L Brucker at CARTEL during the winter of 2007-2008, which was supported by the Collaboration France-Quebec and the Centre Jacques Cartier. We thank Christian Matzler for the MEMLS code and the Centre d'Etudes de la Neige (Meteo France) for the Crocus code. Patrick Cliche (CARTEL) and Ken Asmus (Environment Canada) are acknowledged for their contributions to maintain the various sensors at the SIRENE station. The authors also thank Samuel Morin (Meteo France) and the anonymous reviewers for their constructive comments. NR 71 TC 18 Z9 18 U1 3 U2 17 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD AUG 15 PY 2011 VL 115 IS 8 BP 1966 EP 1977 DI 10.1016/j.rse.2011.03.019 PG 12 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 785NJ UT WOS:000292235400016 ER PT J AU Hill, MJ Roman, MO Schaaf, CB Hutley, L Brannstrom, C Etter, A Hanan, NP AF Hill, Michael J. Roman, Miguel O. Schaaf, Crystal B. Hutley, Lindsay Brannstrom, Christian Etter, Andres Hanan, Niall P. TI Characterizing vegetation cover in global savannas with an annual foliage clumping index derived from the MODIS BRDF product SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Savanna; Clumping index; Canopy; Woody cover; Global; Physiognomy; Shadow ID AUSTRALIAN TROPICAL SAVANNA; LEAF-AREA INDEX; BIDIRECTIONAL REFLECTANCE; LAND-COVER; SURFACE HETEROGENEITY; AFRICAN SAVANNAS; SEMIARID SAVANNA; BURKINA-FASO; WEST-AFRICA; TREE COVER AB The global savanna biome is characterized by enormous diversity in the physiognomy and spatial structure of the vegetation. The foliage clumping index can be calculated from bidirectional reflectance distribution function (BRDF) data. It measures the response of the darkspot reflectance to increased shadow associated with clumped vegetation and is related to leaf area index. Clumping index theoretically declines with increasing woody cover until the tree canopy begins to become uniform. In this study, clumping index is calculated for Moderate Resolution Imaging Spectroradiometer BRDF data for the Australian tropical savanna, the tropical savannas of South America, and the tropical savannas of east, west and southern Africa and compared with site-based measurements of tree canopy cover, and with area-based classifications of land cover. There were differences in sensitivity of clumping index between red and near-infrared reflectance channels, and between savanna systems with markedly different woody vegetation physiognomy. Clumping index was broadly related to foliage cover from historical site data in Australia and in West Africa and Kenya, but not in Southern Africa nor with detailed site-based demographic data in the cerrado of Brazil. However, clumping index decreased with proportion of woody cover in land cover datasets for east Africa, Australia and the Colombian Llanos. There was overlap in the range of clumping index values for forest, cerrado and campo land covers in Brazil. Clumping index was generally negatively correlated with percentage tree cover from the MODIS Vegetation Continuous Fields product, but regional differences in the relationship were evident. There were large differences in the frequency distributions of clumping index from savanna, woody savanna and grassland land cover classes between global ecoregions. The clumping index shows differing sensitivity to savanna woody cover for red and NIR reflectance, and requires regional calibration for application as a universal indicator. (C) 2011 Elsevier Inc. All rights reserved. C1 [Hill, Michael J.] Univ N Dakota, Grand Forks, ND 58202 USA. [Roman, Miguel O.] NASA, Goddard Space Flight Ctr, Terr Informat Syst Branch, Greenbelt, MD 20771 USA. [Schaaf, Crystal B.] Boston Univ, Ctr Remote Sensing, Dept Geog & Environm, Boston, MA 02215 USA. [Hutley, Lindsay] Charles Darwin Univ, Sch Environm & Life Sci, Darwin, NT 0909, Australia. [Brannstrom, Christian] Texas A&M Univ, Dept Geog, College Stn, TX USA. [Etter, Andres] Univ Javeriana, Fac Estudios Ambientales & Rurales, Grp Ecol & Terr, Bogota, DC, Colombia. [Hanan, Niall P.] Colorado State Univ, Nat Resources & Environm Lab, Ft Collins, CO 80523 USA. RP Hill, MJ (reprint author), Univ N Dakota, Clifford Hall,Stop 9011, Grand Forks, ND 58202 USA. EM hillmj@aero.und.edu RI Etter, Andres/E-1860-2011; Hutley, Lindsay/A-7925-2011; Roman, Miguel/D-4764-2012; OI Hanan, Niall/0000-0002-9130-5306; Etter, Andres/0000-0003-0665-9300; Hutley, Lindsay/0000-0001-5533-9886; Roman, Miguel/0000-0003-3953-319X; Hill, Michael/0000-0003-4570-7467; Brannstrom, Christian/0000-0002-6619-2020 NR 74 TC 18 Z9 20 U1 3 U2 38 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD AUG 15 PY 2011 VL 115 IS 8 BP 2008 EP 2024 DI 10.1016/j.rse.2011.04.003 PG 17 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 785NJ UT WOS:000292235400019 ER PT J AU Li, AM Huang, CQ Sun, GQ Shi, H Toney, C Zhu, ZL Rollins, MG Goward, SN Masek, JG AF Li, Among Huang, Chengquan Sun, Guoqing Shi, Hua Toney, Chris Zhu, Zhiliang Rollins, Matthew G. Goward, Samuel N. Masek, Jeffrey G. TI Modeling the height of young forests regenerating from recent disturbances in Mississippi using Landsat and ICESat data SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Young forest; Disturbance; Height modeling; VCT; LTSS; GLAS ID CHANGE TRACKER MODEL; CANOPY HEIGHT; LASER ALTIMETER; TOPOGRAPHY MISSION; MAPPING VEGETATION; NATURE-RESERVE; SHUTTLE RADAR; STAND VOLUME; ETM+ DATA; LIDAR AB Many forestry and earth science applications require spatially detailed forest height data sets. Among the various remote sensing technologies, lidar offers the most potential for obtaining reliable height measurement. However, existing and planned spaceborne lidar systems do not have the capability to produce spatially contiguous, fine resolution forest height maps over large areas. This paper describes a Landsat-lidar fusion approach for modeling the height of young forests by integrating historical Landsat observations with lidar data acquired by the Geoscience Laser Altimeter System (GLAS) instrument onboard the Ice, Cloud, and land Elevation (ICESat) satellite. In this approach, "young" forests refer to forests reestablished following recent disturbances mapped using Landsat time-series stacks (LTSS) and a vegetation change tracker (VCT) algorithm. The GLAS lidar data is used to retrieve forest height at sample locations represented by the footprints of the lidar data. These samples are used to establish relationships between lidar-based forest height measurements and LTSS-VCT disturbance products. The height of "young" forest is then mapped based on the derived relationships and the LTSS-VCT disturbance products. This approach was developed and tested over the state of Mississippi. Of the various models evaluated, a regression tree model predicting forest height from age since disturbance and three cumulative indices produced by the LTSS-VCT method yielded the lowest cross validation error. The R(2) and root mean square difference (RMSD) between predicted and GLAS-based height measurements were 0.91 and 1.97 m, respectively. Predictions of this model had much higher errors than indicated by cross validation analysis when evaluated using field plot data collected through the Forest Inventory and Analysis Program of USDA Forest Service. Much of these errors were due to a lack of separation between stand clearing and non-stand clearing disturbances in current LTSS-VCT products and difficulty in deriving reliable forest height measurements using GLAS samples when terrain relief was present within their footprints. In addition, a systematic underestimation of about 5 m by the developed model was also observed, half of which could be explained by forest growth that occurred between field measurement year and model target year. The remaining difference suggests that tree height measurements derived using waveform lidar data could be significantly underestimated, especially for young pine forests. Options for improving the height modeling approach developed in this study were discussed. (C) 2011 Elsevier Inc. All rights reserved. C1 [Li, Among; Huang, Chengquan; Sun, Guoqing; Goward, Samuel N.] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Li, Among] Chinese Acad Sci, Inst Mt Hazards & Environm, Chengdu 610041, Sichuan, Peoples R China. [Shi, Hua] ASRC Res & Technol Solut ARTS, Sioux Falls, SD 57198 USA. [Toney, Chris] USDA, Forest Serv, Rocky Mt Res Stn, Missoula, MT 59808 USA. [Zhu, Zhiliang] US Geol Survey, Reston, VA USA. [Rollins, Matthew G.] US Geol Survey, Ctr Earth Resources Observat & Sci, Sioux Falls, SD 57198 USA. [Masek, Jeffrey G.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. RP Huang, CQ (reprint author), Univ Maryland, Dept Geog, College Pk, MD 20742 USA. EM cqhuang@umd.edu RI Masek, Jeffrey/D-7673-2012; OI Huang, Chengquan/0000-0003-0055-9798 FU U.S. Geological Survey; NASA's Terrestrial Ecology, Carbon Cycle Science, and Applied Sciences; Chinese Academy of Sciences [KZCX2-YW-QN313]; intergovernmental Wildland Fire Leadership Council of the United States FX Funding support for this study was provided by the U.S. Geological Survey, and by NASA's Terrestrial Ecology, Carbon Cycle Science, and Applied Sciences Programs. Partial support was also provided by the Knowledge Innovation Program of the Chinese Academy of Sciences (grant no. KZCX2-YW-QN313). It contributes to the North American Carbon Program, and the joint USDA-DOI LANDFIRE project sponsored by the intergovernmental Wildland Fire Leadership Council of the United States. Portions of this work were performed in accordance with a memorandum of understanding between the Forest Inventory and Analysis program of USDA Forest Service and the interagency LANDFIRE program, in support of vegetation structure mapping in LANDFIRE. NR 89 TC 25 Z9 29 U1 1 U2 39 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD AUG 15 PY 2011 VL 115 IS 8 BP 1837 EP 1849 DI 10.1016/j.rse.2011.03.001 PG 13 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 785NJ UT WOS:000292235400005 ER PT J AU Long, DA Bielska, K Lisak, D Havey, DK Okumura, M Miller, CE Hodges, JT AF Long, David A. Bielska, Katarzyna Lisak, Daniel Havey, Daniel K. Okumura, Mitchio Miller, Charles E. Hodges, Joseph T. TI The air-broadened, near-infrared CO2 line shape in the spectrally isolated regime: Evidence of simultaneous Dicke narrowing and speed dependence SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DIFFERENTIAL ABSORPTION LIDAR; O-2 A-BAND; CONSTRAINED MULTISPECTRUM ANALYSIS; PRESSURE SHIFT COEFFICIENTS; RING-DOWN SPECTROSCOPY; MU-M REGION; CARBON-DIOXIDE; ATMOSPHERIC CO2; LINESHAPE MODELS; HIGH-RESOLUTION AB Frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) was employed to measure air-broadened CO2 line shape parameters for transitions near 1.6 mu m over a pressure range of 6.7-33 kPa. The high sensitivity of FS-CRDS allowed for the first measurements in this wavelength range of air-broadened line shape parameters on samples with CO2 mixing ratios near those of the atmosphere. The measured air-broadening parameters show several percent deviations (0.9%-2.7%) from values found in the HITRAN 2008 database. Spectra were fit with a variety of models including the Voigt, Galatry, Nelkin-Ghatak, and speed-dependent Nelkin-Ghatak line profiles. Clear evidence of line narrowing was observed, which if unaccounted for can lead to several percent biases. Furthermore, it was observed that only the speed-dependent Nelkin-Ghatak line profile was able to model the spectra to within the instrumental noise level because of the concurrent effects of collisional narrowing and speed dependence of collisional broadening and shifting. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3624527] C1 [Hodges, Joseph T.] Natl Inst Stand & Technol, Chem & Biochem Reference Data Div, Gaithersburg, MD 20899 USA. [Long, David A.; Okumura, Mitchio] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Bielska, Katarzyna; Lisak, Daniel] Uniwersytet Mikolaja Kopernika, Inst Fizyki, PL-87100 Torun, Poland. [Havey, Daniel K.] James Madison Univ, Dept Chem & Biochem, Harrisonburg, VA 22807 USA. [Miller, Charles E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hodges, JT (reprint author), Natl Inst Stand & Technol, Chem & Biochem Reference Data Div, 100 Bur Dr, Gaithersburg, MD 20899 USA. EM joseph.hodges@nist.gov RI Okumura, Mitchio/I-3326-2013; Sanders, Susan/G-1957-2011; Lisak, Daniel/E-1470-2014; Bielska, Katarzyna/G-4532-2014 OI Okumura, Mitchio/0000-0001-6874-1137; FU NIST Greenhouse Gas Measurements and Climate Research Program; NASA Earth System Science Pathfinder (ESSP); Orbiting Carbon Observatory (OCO); National Science Foundation; National Defense Science and Engineering; National Research Council at the National Institute of Technology (NIST), Gaithersburg, MD; Polish MNISW [N N202 1255 35]; National Aeronautics and Space Administration (NASA) [NNG06GD88G, NNX09AE21G]; NASA Atmospheric Carbon Observations from Space (ACOS) [104127-04.02.02] FX David A. Long was supported by the National Science Foundation and National Defense Science and Engineering Graduate Fellowships. Daniel K. Havey was supported by a National Research Council postdoctoral fellowship at the National Institute of Technology (NIST), Gaithersburg, MD, and Katarzyna Bielska and Daniel Lisak were supported by the Polish MNISW Project No. N N202 1255 35. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). Additional support was provided by the Orbiting Carbon Observatory (OCO) project, a NASA Earth System Science Pathfinder (ESSP) mission; the NASA Upper Atmospheric Research Program grants NNG06GD88G and NNX09AE21G; the NASA Atmospheric Carbon Observations from Space (ACOS) grant 104127-04.02.02; and the NIST Greenhouse Gas Measurements and Climate Research Program. NR 64 TC 42 Z9 42 U1 2 U2 35 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 14 PY 2011 VL 135 IS 6 AR 064308 DI 10.1063/1.3624527 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 808DD UT WOS:000293955000018 PM 21842934 ER PT J AU McPhaden, MJ Lee, T McClurg, D AF McPhaden, M. J. Lee, T. McClurg, D. TI El Nino and its relationship to changing background conditions in the tropical Pacific Ocean SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ENSO; VARIABILITY; CLIMATE; IMPACT AB This paper addresses the question of whether the increased occurrence of central Pacific (CP) versus Eastern Pacific (EP) El Ninos is consistent with greenhouse gas forced changes in the background state of the tropical Pacific as inferred from global climate change models. Our analysis uses high-quality satellite and in situ ocean data combined with wind data from atmospheric reanalyses for the past 31 years (1980-2010). We find changes in background conditions that are opposite to those expected from greenhouse gas forcing in climate models and opposite to what is expected if changes in the background state are mediating more frequent occurrences of CP El Ninos. A plausible interpretation of these results is that the character of El Nino over the past 31 years has varied naturally and that these variations projected onto changes in the background state because of the asymmetric spatial structures of CP and EP El Ni os. Citation: McPhaden, M. J., T. Lee, and D. McClurg (2011), El Nino and its relationship to changing background conditions in the tropical Pacific Ocean, Geophys. Res. Lett., 38, L15709, doi: 10.1029/2011GL048275. C1 [McPhaden, M. J.; McClurg, D.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. [Lee, T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP McPhaden, MJ (reprint author), NOAA, Pacific Marine Environm Lab, 7600 Sand Point Way NE, Seattle, WA 98115 USA. EM michael.j.mcphaden@noaa.gov RI McPhaden, Michael/D-9799-2016 FU NOAA Climate Program Office, at the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) [NA17RJ1232]; Jet Propulsion Laboratory, California Institute of Technology; NASA FX This research was carried out at NOAA Pacific Marine Environmental Laboratory with support from the NOAA Climate Program Office, at the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA17RJ1232, and at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This is PMEL publication 3732 and JISAO contribution 1879. NR 23 TC 138 Z9 140 U1 8 U2 35 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 13 PY 2011 VL 38 AR L15709 DI 10.1029/2011GL048275 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 807PG UT WOS:000293911600005 ER PT J AU Solomon, S Daniel, JS Neely, RR Vernier, JP Dutton, EG Thomason, LW AF Solomon, S. Daniel, J. S. Neely, R. R., III Vernier, J. -P. Dutton, E. G. Thomason, L. W. TI The Persistently Variable "Background" Stratospheric Aerosol Layer and Global Climate Change SO SCIENCE LA English DT Article ID MAUNA-LOA AB Recent measurements demonstrate that the "background" stratospheric aerosol layer is persistently variable rather than constant, even in the absence of major volcanic eruptions. Several independent data sets show that stratospheric aerosols have increased in abundance since 2000. Near-global satellite aerosol data imply a negative radiative forcing due to stratospheric aerosol changes over this period of about -0.1 watt per square meter, reducing the recent global warming that would otherwise have occurred. Observations from earlier periods are limited but suggest an additional negative radiative forcing of about -0.1 watt per square meter from 1960 to 1990. Climate model projections neglecting these changes would continue to overestimate the radiative forcing and global warming in coming decades if these aerosols remain present at current values or increase. C1 [Solomon, S.; Daniel, J. S.; Neely, R. R., III] NOAA, Chem Sci Div, Earth Syst Res Lab, Boulder, CO 80305 USA. [Solomon, S.; Neely, R. R., III] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80305 USA. [Vernier, J. -P.; Thomason, L. W.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Vernier, J. -P.] Univ Paris 06, Univ Versailles St Quentin, Lab Atmospheres, CNRS,Inst Natl Sci Univers, F-75252 Paris 05, France. [Neely, R. R., III; Dutton, E. G.] NOAA, Global Monitoring Div, Earth Syst Res Lab, Boulder, CO 80305 USA. [Neely, R. R., III] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. RP Solomon, S (reprint author), NOAA, Chem Sci Div, Earth Syst Res Lab, Boulder, CO 80305 USA. EM susan.solomon@colorado.edu RI Daniel, John/D-9324-2011; Neely, Ryan/F-8702-2010; Manager, CSD Publications/B-2789-2015; OI Neely, Ryan/0000-0003-4560-4812; Thomason, Larry/0000-0002-1902-0840 FU Centre National de la Recherche Scientifique at LATMOS/Universite de Versailles St Quentin; NOAA FX The satellite aerosol observations were analyzed by J.P.V. during his fellowship through the NASA Postdoctoral Program at Langley Research Center, administrated by Oak Ridge Associated Universities. It is also a part of his Ph.D. thesis financed by the Centre National de la Recherche Scientifique at LATMOS/Universite de Versailles St Quentin. The CALIPSO data were made available at the ICARE data center (www-icare.univ-lille1.fr/). The authors also acknowledge help from A. Hauchecorne, J. P. Pommereau, J. Pelon, and A. Garnier in the analysis of the GOMOS and CALIPSO data sets; J. Barnes for Mauna Loa lidar data; and C. Wehrli for Precision Filter Radiometer data. Funding has also been provided by the Atmospheric Composition and Climate Program of NOAA's Climate Program. Helpful discussions with J. Gregory and D. M. Murphy are gratefully acknowledged. NR 28 TC 187 Z9 196 U1 7 U2 75 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD AUG 12 PY 2011 VL 333 IS 6044 BP 866 EP 870 DI 10.1126/science.1206027 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 806DJ UT WOS:000293785400037 PM 21778361 ER PT J AU Lim, YK Schubert, SD AF Lim, Young-Kwon Schubert, Siegfried D. TI The impact of ENSO and the Arctic Oscillation on winter temperature extremes in the southeast United States SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID PRECIPITATION; VARIABILITY; PATTERNS; FLORIDA AB Interannual variations of the winter mean temperature and the number of days of warm and cold extremes were investigated for the southeast United States to identify the relative influence of El Nino-Southern Oscillation (ENSO) and the Arctic Oscillation (AO). Generalized extreme value theory was used to estimate the probability distribution function (PDF) of warm and cold extremes and their return values for different phases of ENSO and the AO. An analysis of the temperature observations for the past 58 years (1951-2008) reveals that both the winter mean temperature anomalies and the number of days of extreme cold are most closely linked to variations in the AO especially in the recent past (1981-2008). In contrast, the number of days of extreme warmth are linked to both ENSO and the AO. Citation: Lim, Y.-K., and S. D. Schubert (2011), The impact of ENSO and the Arctic Oscillation on winter temperature extremes in the southeast United States, Geophys. Res. Lett., 38, L15706, doi:10.1029/2011GL048283. C1 [Lim, Young-Kwon] IM Syst Grp Inc, Goddard Earth Sci Technol & Res, Greenbelt, MD 20771 USA. [Lim, Young-Kwon; Schubert, Siegfried D.] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Lim, YK (reprint author), IM Syst Grp Inc, Goddard Earth Sci Technol & Res, Greenbelt, MD 20771 USA. EM young-kwon.lim@nasa.gov; siegfried.d.schubert@nasa.gov FU NASA; CATER (Center for Atmospheric Sciences and Earthquake Research) [2010-1185] FX This work was supported by both the NASA MAP (Modeling, Analysis and Prediction) program "Simulating and Predicting Sub-seasonal and Longer-term Changes in Tropical Storm Characteristics using High-Resolution Climate Models" (PI: S. Schubert) and the Korean Meteorological Administration Research and Development program under grant CATER (Center for Atmospheric Sciences and Earthquake Research) 2010-1185. NR 16 TC 15 Z9 15 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 11 PY 2011 VL 38 AR L15706 DI 10.1029/2011GL048283 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 807PD UT WOS:000293911300003 ER PT J AU Orphan, VJ Hoehler, TM AF Orphan, Victoria J. Hoehler, Tori M. TI MICROBIOLOGY Hydrogen for dinner SO NATURE LA English DT Editorial Material ID RIFTIA-PACHYPTILA JONES; VENT TUBE WORM C1 [Orphan, Victoria J.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Hoehler, Tori M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Orphan, VJ (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM vorphan@gps.caltech.edu; tori.m.hoehler@nasa.gov RI Orphan, Victoria/K-1002-2014 OI Orphan, Victoria/0000-0002-5374-6178 NR 8 TC 1 Z9 1 U1 3 U2 38 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD AUG 11 PY 2011 VL 476 IS 7359 BP 154 EP 155 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 805MU UT WOS:000293731900021 PM 21833075 ER PT J AU Melin, H Stallard, T Miller, S Gustin, J Galand, M Badman, SV Pryor, WR O'Donoghue, J Brown, RH Baines, KH AF Melin, H. Stallard, T. Miller, S. Gustin, J. Galand, M. Badman, S. V. Pryor, W. R. O'Donoghue, J. Brown, R. H. Baines, K. H. TI Simultaneous Cassini VIMS and UVIS observations of Saturn's southern aurora: Comparing emissions from H, H-2 and H-3(+) at a high spatial resolution SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ATMOSPHERE; ELECTRONS; LOCATION; MOLECULE; JUPITER; IONS AB Here, for the first time, temporally coincident and spatially overlapping Cassini VIMS and UVIS observations of Saturn's southern aurora are presented. Ultraviolet auroral H and H-2 emissions from UVIS are compared to infrared H-3(+) emission from VIMS. The auroral emission is structured into three arcs - H, H-2 and H-3(+) are morphologically identical in the bright main auroral oval (similar to 73 degrees S), but there is an equatorward arc that is seen predominantly in H (similar to 70 degrees S), and a poleward arc (similar to 74 degrees S) that is seen mainly in H-2 and H-3(+). These observations indicate that, for the main auroral oval, UV emission is a good proxy for the infrared H-3(+) morphology (and vice versa), but for emission either poleward or equatorward this is no longer true. Hence, simultaneous UV/IR observations are crucial for completing the picture of how the atmosphere interacts with the magnetosphere. Citation: Melin, H., T. Stallard, S. Miller, J. Gustin, M. Galand, S. V. Badman, W. R. Pryor, J. O'Donoghue, R. H. Brown, and K. H. Baines (2011), Simultaneous Cassini VIMS and UVIS observations of Saturn's southern aurora: Comparing emissions from H, H2 and H-3(+) at a high spatial resolution, Geophys. Res. Lett., 38, L15203, doi:10.1029/2011GL048457. C1 [Melin, H.; Stallard, T.; O'Donoghue, J.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Melin, H.; Pryor, W. R.] Space Environm Technol, Los Angeles, CA USA. [Galand, M.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. [Miller, S.] UCL, Dept Phys & Astron, London WC1 6BT, England. [Gustin, J.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Badman, S. V.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Kanagawa 2525210, Japan. [Pryor, W. R.] Cent Arizona Coll, Coolidge, AZ 85228 USA. [Brown, R. H.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Baines, K. H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Melin, H (reprint author), Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, England. EM h.melin@ion.le.ac.uk; tss@ion.le.ac.uk; s.miller@ucl.ac.uk; gustin@astro.ulg.ac.be; m.galand@imperial.ac.uk; s.badman@stp.isas.jaxa.jp; wayne.pryor@centralaz.edu; jod3@ion.le.ac.uk; kbaines@scn.jpl.nasa.gov OI Stallard, Tom/0000-0003-3990-670X FU University of Leicester by the Science and Technology Facilities Council (STFC) [PP/E/000983/1, ST/G0022223/1]; RCUK; SET by NASA CDAP [NNX10AG35G]; STFC FX This work was supported at the University of Leicester by the Science and Technology Facilities Council (STFC) grant PP/E/000983/1 and ST/G0022223/1 for H. M. and T. S., and a RCUK Fellowship for T. S. Supported at SET by NASA CDAP grant NNX10AG35G. M. G. was partially supported by the STFC rolling grant to Imperial College. We thank G. Holeslaw at LASP for supplying the UVIS calibration routines. NR 25 TC 26 Z9 26 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 10 PY 2011 VL 38 AR L15203 DI 10.1029/2011GL048457 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 807PC UT WOS:000293911200004 ER PT J AU Tian, BJ Waliser, DE Kahn, RA Wong, S AF Tian, Baijun Waliser, Duane E. Kahn, Ralph A. Wong, Sun TI Modulation of Atlantic aerosols by the Madden-Julian Oscillation SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID RESOLUTION IMAGING SPECTRORADIOMETER; WEST-AFRICAN MONSOON; SAHARAN DUST; INTRASEASONAL VARIABILITY; TROPICAL ATLANTIC; NORTH-ATLANTIC; OCEAN; RETRIEVALS; VALIDATION; TRANSPORT AB Our previous study found large intraseasonal variations in satellite-derived aerosol products over the tropical Atlantic Ocean associated with the Madden-Julian Oscillation (MJO). This study aims to investigate the physical mechanism of these aerosol anomalies through analyzing aerosol optical thickness (AOT) from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board the Aqua satellite, precipitation from the Tropical Rainfall Measuring Mission (TRMM) satellite, and low-level (averaged from 925 hPa to 700 hPa) horizontal winds from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. We first show that the intraseasonal variance related to the MJO accounts for about 25% of the total variance of MODIS AOT over the tropical Atlantic. Thus, the intraseasonal variability is one of the important forms of Atlantic aerosol variability. Second, although still inconclusive, our research indicates that precipitation anomalies may play a small role in AOT anomalies through the wet scavenging effect. Third, we show that the AOT anomalies are negatively correlated with the low-level zonal wind anomalies over most parts of the tropical Atlantic, especially over the equatorial Atlantic (60 degrees W-10 degrees W, 10 degrees S-15 degrees N), when the low-level zonal wind anomalies lead the AOT anomalies by about one MJO phase (6 days). When enhanced MJO convection is located over the equatorial Indian Ocean (western Pacific), persistent low-level westerly (easterly) anomalies over the equatorial Atlantic suppress (enhance) the background trade winds that cause the negative (positive) AOT anomalies over the Atlantic region. These results indicate that the AOT anomalies over the tropical Atlantic are very likely produced by the low-level zonal wind anomalies there, although the detailed mechanisms are still to be determined. This study implies that Atlantic aerosol concentration might have predictable components with lead times of 2-4 weeks given the predictability of the MJO and Atlantic trade winds. C1 [Tian, Baijun; Waliser, Duane E.; Wong, Sun] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kahn, Ralph A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Tian, BJ (reprint author), CALTECH, Jet Prop Lab, M-S 183-501,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM baijun.tian@jpl.nasa.gov RI Tian, Baijun/A-1141-2007; Kahn, Ralph/D-5371-2012 OI Tian, Baijun/0000-0001-9369-2373; Kahn, Ralph/0000-0002-5234-6359 FU NASA; Atmospheric Infrared Sounder (AIRS) at the University of California, Los Angeles [ATM-0840755] FX This research was performed at Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with NASA. It was supported in part by the Atmospheric Infrared Sounder (AIRS) project at JPL and National Science Foundation (NSF) grant ATM-0840755 at the University of California, Los Angeles. Comments from three anonymous reviewers, discussions with Lorraine Remer and Robert Levy on the MODIS AOT data, help from Bryan Weare on the statistical significance test, and help from Xun Jiang on the spectrum analysis are gratefully acknowledged. The first author would like to dedicate this paper to his father, HongFang Tian, who passed away in March 2011. Without his father's support and encouragement, there would have been no way for B.T. to grow up in a poor rural village in China and become a scientist in the USA. NR 38 TC 16 Z9 16 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 10 PY 2011 VL 116 AR D15108 DI 10.1029/2010JD015201 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 807NT UT WOS:000293906700002 ER PT J AU Makela, P Gopalswamy, N Akiyama, S Xie, H Yashiro, S AF Maekelae, P. Gopalswamy, N. Akiyama, S. Xie, H. Yashiro, S. TI Energetic storm particle events in coronal mass ejection-driven shocks SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PERPENDICULAR COLLISIONLESS SHOCKS; TRANSIENT INTERPLANETARY SHOCKS; II RADIO-BURSTS; ELECTRON ACCELERATION; SOLAR ERUPTIONS; PROTON EVENTS; NEAR-SUN; SPACECRAFT; ASYMMETRY; FLARE AB We investigate the variability in the occurrence of energetic storm particle (ESP) events associated with shocks driven by coronal mass ejections (CMEs). The interplanetary shocks were detected during the period from 1996 to 2006. First, we analyze the CME properties near the Sun. The CMEs with an ESP-producing shock are faster (< V-CME > = 1088 km/s) than those driving shocks without an ESP event (< V-CME > = 771 km/s) and have a larger fraction of halo CMEs (67% versus 38%). The Alfvenic Mach numbers of shocks with an ESP event are on average 1.6 times higher than those of shocks without. We also contrast the ESP event properties and frequency in shocks with and without a type II radio burst by dividing the shocks into radio-loud (RL) and radio-quiet (RQ) shocks, respectively. The shocks seem to be organized into a decreasing sequence by the energy content of the CMEs: RL shocks with an ESP event are driven by the most energetic CMEs, followed by RL shocks without an ESP event, then RQ shocks with and without an ESP event. The ESP events occur more often in RL shocks than in RQ shocks: 52% of RL shocks and only similar to 33% of RQ shocks produced an ESP event at proton energies above 1.8 MeV; in the keV energy range the ESP frequencies are 80% and 65%, respectively. Electron ESP events were detected in 19% of RQ shocks and 39% of RL shocks. In addition, we find that (1) ESP events in RQ shocks are less intense than those in RL shocks; (2) RQ shocks with ESP events are predominately quasi-perpendicular shocks; (3) their solar sources are located slightly to the east of the central meridian; and (4) ESP event sizes show a modest positive correlation with the CME and shock speeds. The observation that RL shocks tend to produce more frequently ESP events with larger particle flux increases than RQ shocks emphasizes the importance of type II bursts in identifying solar events prone to producing high particle fluxes in the near-Earth space. However, the trend is not definitive. If there is no type II emission, an ESP event is less likely but not absent. The variability in the probability and size of ESP events most likely reflects differences in the shock formation in the low corona and changes in the properties of the shocks as they propagate through interplanetary space and the escape efficiency of accelerated particles from the shock front. C1 [Maekelae, P.; Akiyama, S.; Xie, H.; Yashiro, S.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Maekelae, P.; Gopalswamy, N.; Akiyama, S.; Xie, H.; Yashiro, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Makela, P (reprint author), Catholic Univ Amer, Dept Phys, 620 Michigan Ave NE, Washington, DC 20064 USA. EM pertti.makela@nasa.gov; nat.gopalswamy@nasa.gov; sachiko.akiyama@nasa.gov; hong.xie@nasa.gov; seiji.yashiro@nasa.gov RI Gopalswamy, Nat/D-3659-2012; OI Gopalswamy, Nat/0000-0001-5894-9954 FU NASA [NNX08AD60A, NNX10AL50A] FX This research was supported by NASA grants NNX08AD60A and NNX10AL50A. SOHO is an international cooperation project between ESA and NASA. NR 41 TC 7 Z9 7 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD AUG 10 PY 2011 VL 116 AR A08101 DI 10.1029/2011JA016683 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 807SY UT WOS:000293921200004 ER PT J AU Venable, DD Whiteman, DN Calhoun, MN Dirisu, AO Connell, RM Landulfo, E AF Venable, Demetrius D. Whiteman, David N. Calhoun, Monique N. Dirisu, Afusat O. Connell, Rasheen M. Landulfo, Eduardo TI Lamp mapping technique for independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system SO APPLIED OPTICS LA English DT Article ID LONG-TERM MEASUREMENTS; CROSS-SECTIONS; APPLICABILITY; EQUATIONS; ACCURACY AB We have investigated a technique that allows for the independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system. This technique utilizes a procedure whereby a light source of known spectral characteristics is scanned across the aperture of the lidar system's telescope and the overall optical efficiency of the system is determined. Direct analysis of the temperature-dependent differential scattering cross sections for vibration and vibration-rotation transitions (convolved with narrowband filters) along with the measured efficiency of the system, leads to a theoretical determination of the water vapor mixing ratio calibration factor. A calibration factor was also obtained experimentally from lidar measurements and radiosonde data. A comparison of the theoretical and experimentally determined values agrees within 5%. We report on the sensitivity of the water vapor mixing ratio calibration factor to uncertainties in parameters that characterize the narrowband transmission filters, the temperature-dependent differential scattering cross section, and the variability of the system efficiency ratios as the lamp is scanned across the aperture of the telescope used in the Howard University Raman Lidar system. (C) 2011 Optical Society of America C1 [Venable, Demetrius D.; Calhoun, Monique N.; Connell, Rasheen M.] Howard Univ, Dept Phys & Astron, Washington, DC 20059 USA. [Whiteman, David N.; Dirisu, Afusat O.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Landulfo, Eduardo] IPEN CNEN SP, Ctr Lasers & Aplicacoes, Sao Paulo, Brazil. RP Venable, DD (reprint author), Howard Univ, Dept Phys & Astron, Washington, DC 20059 USA. EM dvenable@howard.edu RI Landulfo, Eduardo/B-7979-2012 OI Landulfo, Eduardo/0000-0002-9691-5306 FU National Aeronautics and Space Administration (NASA) [NNX07AF22, NNX08BA42]; National Oceanic and Atmospheric Administration (NOAA) [NA06OAR4810172] FX This research was supported in part by National Aeronautics and Space Administration (NASA) Cooperative Agreements NNX07AF22 and NNX08BA42 and National Oceanic and Atmospheric Administration (NOAA) Cooperative Agreement NA06OAR4810172. NR 13 TC 10 Z9 10 U1 0 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD AUG 10 PY 2011 VL 50 IS 23 BP 4622 EP 4632 DI 10.1364/AO.50.004622 PG 11 WC Optics SC Optics GA 805MP UT WOS:000293731300009 PM 21833140 ER PT J AU Bongiorno, SD Falcone, AD Stroh, M Holder, J Skilton, JL Hinton, JA Gehrels, N Grube, J AF Bongiorno, S. D. Falcone, A. D. Stroh, M. Holder, J. Skilton, J. L. Hinton, J. A. Gehrels, N. Grube, J. TI A NEW TeV BINARY: THE DISCOVERY OF AN ORBITAL PERIOD IN HESS J0632+057 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma rays: general; X-rays: binaries; X-rays: individual (HESS J0632+057) ID RAY; SWIFT; COUNTERPART AB HESS J0632+057 is a variable, point-like source of very high energy (> 100 GeV) gamma rays located in the Galactic plane. It is positionally coincident with a Be star, it is a variable radio and X-ray source, has a hard X-ray spectrum, and has low radio flux. These properties suggest that the object may be a member of the rare class of TeV/X-ray binary systems. The definitive confirmation of this would be the detection of a periodic orbital modulation of the flux at any wavelength. We have obtained Swift X-Ray Telescope observations of the source from MJD 54857 to 55647 (2009 January-2011 March) to test the hypothesis that HESS J0632+057 is an X-ray/TeV binary. We show that these data exhibit flux modulation with a period of 321 +/- 5 days and we evaluate the significance of this period by calculating the null hypothesis probability, allowing for stochastic flaring. This periodicity establishes the binary nature of HESS J0632+057. C1 [Bongiorno, S. D.; Falcone, A. D.; Stroh, M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Skilton, J. L.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Hinton, J. A.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Grube, J.] Alder Planetarium, Chicago, IL 60605 USA. RP Bongiorno, SD (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. EM sdb210@astro.psu.edu; afalcone@astro.psu.edu RI Gehrels, Neil/D-2971-2012 FU NASA at Pennsylvania State University [NNX10AK92G, NAS5-00136, NNX09AU07G] FX This work is supported at Pennsylvania State University by NASA grant NNX10AK92G, contract NAS5-00136, and grant NNX09AU07G. NR 19 TC 37 Z9 37 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 10 PY 2011 VL 737 IS 1 AR L11 DI 10.1088/2041-8205/737/1/L11 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797PC UT WOS:000293138800011 ER PT J AU Carlton, AK Borkowski, KJ Reynolds, SP Hwang, U Petre, R Green, DA Krishnamurthy, K Willett, R AF Carlton, Ashley K. Borkowski, Kazimierz J. Reynolds, Stephen P. Hwang, Una Petre, Robert Green, David A. Krishnamurthy, Kalyani Willett, Rebecca TI EXPANSION OF THE YOUNGEST GALACTIC SUPERNOVA REMNANT G1.9+0.3 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE ISM: individual objects (G1.9+0.3); ISM: supernova remnants; X-rays: ISM ID EMISSION; SURROUNDINGS; EJECTA AB We present a measurement of the expansion and brightening of G1.9 + 0.3, the youngest Galactic supernova remnant (SNR), comparing Chandra X-ray images obtained in 2007 and 2009. A simple uniform-expansion model describes the data well, giving an expansion rate of 0.642% +/- 0.049% yr(-1) and a flux increase of 1.7% +/- 1.0% yr(-1). Without deceleration, the remnant age would then be 156 +/- 11 yr, consistent with earlier results. Since deceleration must have occurred, this age is an upper limit; we estimate an age of about 110 yr or an explosion date of about 1900. The flux increase is comparable to reported increases at radio wavelengths. G1.9+0.3 is the only Galactic SNR increasing in flux, with implications for the physics of electron acceleration in shock waves. C1 [Carlton, Ashley K.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA. [Borkowski, Kazimierz J.; Reynolds, Stephen P.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Hwang, Una; Petre, Robert] NASA GSFC, Greenbelt, MD 20771 USA. [Green, David A.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Krishnamurthy, Kalyani; Willett, Rebecca] Duke Univ, Durham, NC 27708 USA. RP Carlton, AK (reprint author), Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA. EM carlak7@wfu.edu RI Green, David/E-9609-2010; Willett, Rebecca/G-6930-2012; OI Green, David/0000-0003-3189-9998; , /0000-0002-7463-6007; Willett, Rebecca/0000-0002-8109-7582 FU NASA [G09-0062X] FX This work was supported by NASA through Chandra General Observer Program grant G09-0062X. A. K. C. thanks E. Carlson for discussions and helpful comments on the manuscript. NR 20 TC 16 Z9 16 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 10 PY 2011 VL 737 IS 1 AR L22 DI 10.1088/2041-8205/737/1/L22 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797PC UT WOS:000293138800022 ER PT J AU Harra, LK Sterling, AC Gomory, P Veronig, A AF Harra, Louise K. Sterling, Alphonse C. Goemoery, Peter Veronig, Astrid TI SPECTROSCOPIC OBSERVATIONS OF A CORONAL MORETON WAVE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: coronal mass ejections (CMEs) ID MASS EJECTION; SOLAR-FLARE; EIT WAVES; HINODE; STEREO; VIEW AB We observed a coronal wave (EIT wave) on 2011 February 16, using EUV imaging data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) and EUV spectral data from the Hinode/EUV Imaging Spectrometer (EIS). The wave accompanied an M1.6 flare that produced a surge and a coronal mass ejection (CME). EIS data of the wave show a prominent redshifted signature indicating line-of-sight velocities of similar to 20 km s(-1) or greater. Following the main redshifted wave front, there is a low-velocity period (and perhaps slightly blueshifted), followed by a second redshift somewhat weaker than the first; this progression may be due to oscillations of the EUV atmosphere set in motion by the initial wave front, although alternative explanations may be possible. Along the direction of the EIS slit the wave front's velocity was similar to 500 km s(-1), consistent with its apparent propagation velocity projected against the solar disk as measured in the AIA images, and the second redshifted feature had propagation velocities between similar to 200 and 500 km s(-1). These findings are consistent with the observed wave being generated by the outgoing CME, as in the scenario for the classic Moreton wave. This type of detailed spectral study of coronal waves has hitherto been a challenge, but is now possible due to the availability of concurrent AIA and EIS data. C1 [Harra, Louise K.] UCL Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Sterling, Alphonse C.] NASA, George C Marshall Space Flight Ctr, VP62, Space Sci Off, Huntsville, AL 35812 USA. [Goemoery, Peter] Slovak Acad Sci, Astron Inst, SK-05960 Tatranska Lomnica, Slovakia. [Veronig, Astrid] Graz Univ, Inst Phys, A-8010 Graz, Austria. RP Harra, LK (reprint author), UCL Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. EM lkh@mssl.ucl.ac.uk; alphonse.sterling@nasa.gov; gomory@astro.sk; astrid.veronig@uni-graz.at RI Veronig, Astrid/B-8422-2009; OI Harra, Louise/0000-0001-9457-6200 FU NASA's Science Mission Directorate through the LWS TRT; Solar Physics Supporting Research and Technology programs; Austrian Science Fund (FWF) [P20867-N16]; VEGA [2/0064/09] FX We are grateful to the anonymous referee for helping us improve the clarity of the Letter. We thank R. L. Moore and N. Gopalswamy for helpful discussions. A.C.S. was supported by NASA's Science Mission Directorate through the LWS TR&T and the Solar Physics Supporting Research and Technology programs. Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner and NASA and STFC (UK) as international partners. Scientific operation of the Hinode mission is conducted by the Hinode science team organized at ISAS/JAXA. This team mainly consists of scientists from institutes in the partner countries. Support for the post-launch operation is provided by JAXA and NAOJ (Japan), STFC (UK), NASA (USA), ESA, and NSC (Norway). A. V. acknowledges the Austrian Science Fund (FWF): P20867-N16. P. G. acknowledges the support of the VEGA grant 2/0064/09. NR 22 TC 25 Z9 26 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 10 PY 2011 VL 737 IS 1 AR L4 DI 10.1088/2041-8205/737/1/L4 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797PC UT WOS:000293138800004 ER PT J AU Jennings, DE Cottini, V Nixon, CA Flasar, FM Kunde, VG Samuelson, RE Romani, PN Hesman, BE Carlson, RC Gorius, NJP Coustenis, A Tokano, T AF Jennings, D. E. Cottini, V. Nixon, C. A. Flasar, F. M. Kunde, V. G. Samuelson, R. E. Romani, P. N. Hesman, B. E. Carlson, R. C. Gorius, N. J. P. Coustenis, A. Tokano, T. TI SEASONAL CHANGES IN TITAN'S SURFACE TEMPERATURES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planets and satellites: individual (Titan); planets and satellites: surfaces; radiation mechanisms: thermal; radiative transfer ID COMPOSITE INFRARED SPECTROMETER; MIDLATITUDE CLOUDS; ATMOSPHERE; SPECTRA; DYNAMICS; CIRCULATION; TROPOSPHERE; PAIRS AB Seasonal changes in Titan's surface brightness temperatures have been observed by Cassini in the thermal infrared. The Composite Infrared Spectrometer measured surface radiances at 19 mu m in two time periods: one in late northern winter (LNW; L(s) = 335 degrees) and another centered on northern spring equinox (NSE; L(s) = 0 degrees). In both periods we constructed pole-to-pole maps of zonally averaged brightness temperatures corrected for effects of the atmosphere. Between LNW and NSE a shift occurred in the temperature distribution, characterized by a warming of similar to 0.5 K in the north and a cooling by about the same amount in the south. At equinox the polar surface temperatures were both near 91 K and the equator was at 93.4 K. We measured a seasonal lag of Delta L(S) similar to 9 degrees in the meridional surface temperature distribution, consistent with the post-equinox results of Voyager 1 as well as with predictions from general circulation modeling. A slightly elevated temperature is observed at 65 degrees S in the relatively cloud-free zone between the mid-latitude and southern cloud regions. C1 [Jennings, D. E.; Cottini, V.; Nixon, C. A.; Flasar, F. M.; Kunde, V. G.; Samuelson, R. E.; Romani, P. N.; Hesman, B. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cottini, V.; Nixon, C. A.; Kunde, V. G.; Samuelson, R. E.; Hesman, B. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Carlson, R. C.; Gorius, N. J. P.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Coustenis, A.] LESIA, Observ Paris Meudon, F-92195 Meudon, France. [Tokano, T.] Univ Cologne, Inst Geophys & Meteorol, D-50923 Cologne, Germany. RP Jennings, DE (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM donald.e.jennings@nasa.gov RI Nixon, Conor/A-8531-2009; Flasar, F Michael/C-8509-2012; Romani, Paul/D-2729-2012; Jennings, Donald/D-7978-2012 OI Nixon, Conor/0000-0001-9540-9121; FU NASA's Cassini mission; DFG FX We acknowledge support from NASA's Cassini mission and Cassini Data Analysis Program. T. T. was supported by DFG. NR 37 TC 22 Z9 22 U1 2 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 10 PY 2011 VL 737 IS 1 AR L15 DI 10.1088/2041-8205/737/1/L15 PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797PC UT WOS:000293138800015 ER PT J AU Mainzer, A Grav, T Masiero, J Bauer, J Wright, E Cutri, RM Walker, R McMillan, RS AF Mainzer, A. Grav, T. Masiero, J. Bauer, J. Wright, E. Cutri, R. M. Walker, R. McMillan, R. S. TI THERMAL MODEL CALIBRATION FOR MINOR PLANETS OBSERVED WITH WISE/NEOWISE: COMPARISON WITH INFRARED ASTRONOMICAL SATELLITE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE atlases; catalogs; infrared: general; minor planets, asteroids: general ID NEAR-EARTH ASTEROIDS; SURVEY-EXPLORER; PHOTOMETRY; IRAS AB With thermal infrared observations detected by the NEOWISE project, we have measured diameters for 1742 minor planets that were also observed by the Infrared Astronomical Satellite (IRAS). We have compared the diameters and albedo derived by applying a spherical thermal model to the objects detected by NEOWISE and find that they are generally in good agreement with the IRAS values. We have shown that diameters computed from NEOWISE data are often less systematically biased than those found with IRAS. This demonstrates that the NEOWISE data set can provide accurate physical parameters for the > 157,000 minor planets that were detected by NEOWISE. C1 [Mainzer, A.; Masiero, J.; Bauer, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Grav, T.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Bauer, J.; Cutri, R. M.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Wright, E.] UCLA Astron, Los Angeles, CA 90095 USA. [Walker, R.] Monterey Inst Res Astron, Monterey, CA USA. [McMillan, R. S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. RP Mainzer, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM amainzer@jpl.nasa.gov OI Masiero, Joseph/0000-0003-2638-720X FU National Aeronautics and Space Administration; Planetary Science Division of the National Aeronautics and Space Administration FX This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This publication also makes use of data products from NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology, funded by the Planetary Science Division of the National Aeronautics and Space Administration. We gratefully acknowledge the extraordinary services specific to NEOWISE contributed by the International Astronomical Union's Minor Planet Center, operated by the Harvard-Smithsonian Center for Astrophysics, and the Central Bureau for Astronomical Telegrams, operated by Harvard University. We acknowledge use of NASA's Planetary Data System. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of NASA's Astrophysics Data System. NR 23 TC 21 Z9 21 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 10 PY 2011 VL 737 IS 1 AR L9 DI 10.1088/2041-8205/737/1/L9 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797PC UT WOS:000293138800009 ER PT J AU Paquette, JA Nuth, JA AF Paquette, John A. Nuth, Joseph A., III TI THE LACK OF CHEMICAL EQUILIBRIUM DOES NOT PRECLUDE THE USE OF CLASSICAL NUCLEATION THEORY IN CIRCUMSTELLAR OUTFLOWS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE astrochemistry; circumstellar matter; methods: numerical; stars: AGB and post-AGB; stars: winds, outflows ID ASTROPHYSICAL ENVIRONMENTS; VAPOR-PRESSURE; DUST FORMATION; STARS; CONDENSATION; GROWTH; GRAINS; WINDS; SIO AB Classical nucleation theory (CNT) has been used in models of dust nucleation in circumstellar outflows around oxygen-rich asymptotic giant branch stars. One objection to the application of CNT to astrophysical systems of this sort is that an equilibrium distribution of clusters (assumed by CNT) is unlikely to exist in such conditions due to a low collision rate of condensable species. A model of silicate grain nucleation and growth was modified to evaluate the effect of a nucleation flux orders of magnitude below the equilibrium value. The results show that a lack of chemical equilibrium has only a small effect on the ultimate grain distribution. C1 [Paquette, John A.] NASA, Goddard Space Flight Ctr, Astrochem Lab, Greenbelt, MD 20771 USA. [Nuth, Joseph A., III] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. RP Paquette, JA (reprint author), NASA, Goddard Space Flight Ctr, Astrochem Lab, Code 691, Greenbelt, MD 20771 USA. RI Nuth, Joseph/E-7085-2012 FU NASA FX J.A.P. acknowledges support from NASA's Astrophysics Data Program. J.A.N. acknowledges support from NASA's Cosmochemistry Program. NR 21 TC 6 Z9 6 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 10 PY 2011 VL 737 IS 1 AR L6 DI 10.1088/2041-8205/737/1/L6 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797PC UT WOS:000293138800006 ER PT J AU Stello, D Huber, D Kallinger, T Basu, S Mosser, B Hekker, S Mathur, S Garcia, RA Bedding, TR Kjeldsen, H Gilliland, RL Verner, GA Chaplin, WJ Benomar, O Meibom, S Grundahl, F Elsworth, YP Molenda-Zakowicz, J Szabo, R Christensen-Dalsgaard, J Tenenbaum, P Twicken, JD Uddin, K AF Stello, Dennis Huber, Daniel Kallinger, Thomas Basu, Sarbani Mosser, Benoit Hekker, Saskia Mathur, Savita Garcia, Rafael A. Bedding, Timothy R. Kjeldsen, Hans Gilliland, Ronald L. Verner, Graham A. Chaplin, William J. Benomar, Othman Meibom, Soren Grundahl, Frank Elsworth, Yvonne P. Molenda-Zakowicz, Joanna Szabo, Robert Christensen-Dalsgaard, Jorgen Tenenbaum, Peter Twicken, Joseph D. Uddin, Kamal TI AMPLITUDES OF SOLAR-LIKE OSCILLATIONS: CONSTRAINTS FROM RED GIANTS IN OPEN CLUSTERS OBSERVED BY KEPLER SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: general; open clusters and associations: individual (NGC 6791, NGC 6819, NGC 6811); stars: interiors; stars: oscillations ID MAIN-SEQUENCE STARS; MULTISITE CAMPAIGN; ASTEROSEISMOLOGY; EVOLUTION; PROCYON; MODELS; ISOCHRONES; PARAMETERS; PHYSICS AB Scaling relations that link asteroseismic quantities to global stellar properties are important for gaining understanding of the intricate physics that underpins stellar pulsations. The common notion that all stars in an open cluster have essentially the same distance, age, and initial composition implies that the stellar parameters can be measured to much higher precision than what is usually achievable for single stars. This makes clusters ideal for exploring the relation between the mode amplitude of solar-like oscillations and the global stellar properties. We have analyzed data obtained with NASA's Kepler space telescope to study solar-like oscillations in 100 red giant stars located in either of the three open clusters, NGC 6791, NGC 6819, and NGC 6811. By fitting the measured amplitudes to predictions from simple scaling relations that depend on luminosity, mass, and effective temperature, we find that the data cannot be described by any power of the luminosity-to-mass ratio as previously assumed. As a result we provide a new improved empirical relation which treats luminosity and mass separately. This relation turns out to also work remarkably well for main-sequence and subgiant stars. In addition, the measured amplitudes reveal the potential presence of a number of previously unknown unresolved binaries in the red clump in NGC 6791 and NGC 6819, pointing to an interesting new application for asteroseismology as a probe into the formation history of open clusters. C1 [Stello, Dennis; Huber, Daniel; Bedding, Timothy R.; Benomar, Othman] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Kallinger, Thomas] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Kallinger, Thomas] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Basu, Sarbani] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Mosser, Benoit] Univ Paris 07, Univ Paris 06, CNRS, Observ Paris,LESIA, F-92195 Meudon, France. [Hekker, Saskia] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Mathur, Savita] NCAR, High Altitude Observ, Boulder, CO 80307 USA. [Garcia, Rafael A.] Univ Paris 7 Diderot, IRFU SAp, Lab AIM, Ctr Saclay,CEA DSM CNRS, F-91191 Gif Sur Yvette, France. [Kjeldsen, Hans; Grundahl, Frank; Christensen-Dalsgaard, Jorgen] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Gilliland, Ronald L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Verner, Graham A.; Chaplin, William J.; Elsworth, Yvonne P.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Verner, Graham A.] Queen Mary Univ London, Astron Unit, London, England. [Meibom, Soren] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Molenda-Zakowicz, Joanna] Uniwersytetu Wroclawskiego, Inst Astronomiczny, PL-51622 Wroclaw, Poland. [Szabo, Robert] Hungarian Acad Sci, Konkoly Observ, H-1121 Budapest, Hungary. [Tenenbaum, Peter; Twicken, Joseph D.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. NASA, Ames Res Ctr, Orbital Sci Corp, Moffett Field, CA 94035 USA. RP Stello, D (reprint author), Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. OI Kallinger, Thomas/0000-0003-3627-2561; Bedding, Timothy/0000-0001-5943-1460; Szabo, Robert/0000-0002-3258-1909; Bedding, Tim/0000-0001-5222-4661; Garcia, Rafael/0000-0002-8854-3776 FU NASA's Science Mission Directorate; ARC; NWO; NSF; Polish-Ministry [N N203 405139]; Lendulet-program OTKA [K83790, MB08C 81013] FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. We thank the entire Kepler team without whom this investigation would not have been possible. We acknowledge support from the ARC, NWO, NSF, Polish-Ministry grant N N203 405139, and Lendulet-program OTKA grants K83790 and MB08C 81013. NR 50 TC 33 Z9 33 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 10 PY 2011 VL 737 IS 1 AR L10 DI 10.1088/2041-8205/737/1/L10 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797PC UT WOS:000293138800010 ER PT J AU Winn, JN Matthews, JM Dawson, RI Fabrycky, D Holman, MJ Kallinger, T Kuschnig, R Sasselov, D Dragomir, D Guenther, DB Moffat, AFJ Rowe, JF Rucinski, S Weiss, WW AF Winn, Joshua N. Matthews, Jaymie M. Dawson, Rebekah I. Fabrycky, Daniel Holman, Matthew J. Kallinger, Thomas Kuschnig, Rainer Sasselov, Dimitar Dragomir, Diana Guenther, David B. Moffat, Anthony F. J. Rowe, Jason F. Rucinski, Slavek Weiss, Werner W. TI A SUPER-EARTH TRANSITING A NAKED-EYE STAR SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planetary systems; planets and satellites: formation; planets and satellites: interiors; stars: individual (55 Cnc) ID FINE GUIDANCE SENSOR; LIGHT-CURVE PROJECT; 55 CANCRI; HD 17156; LOW-MASS; PLANETS; SYSTEM; TELESCOPE; PHOTOMETRY; SEARCH AB We have detected transits of the innermost planet "e" orbiting 55 Cnc (V = 6.0), based on two weeks of nearly continuous photometric monitoring with the MOST space telescope. The transits occur with the period (0.74 days) and phase that had been predicted by Dawson & Fabrycky, and with the expected duration and depth for the crossing of a Sun-like star by a hot super-Earth. Assuming the star's mass and radius to be 0.963(-0.029)(+0.051) M-circle dot and 0.943+/-0.010 R-circle dot, the planet's mass, radius, and mean density are 8.63+/-0.35 M-circle plus, 2.00+/-0.14 R-circle plus, and 5.9(-1.1)(+1.5) g cm(-3), respectively. The mean density is comparable to that of Earth, despite the greater mass and consequently greater compression of the interior of 55 Cnc e. This suggests a rock-iron composition supplemented by a significant mass of water, gas, or other light elements. Outside of transits, we detected a sinusoidal signal resembling the expected signal due to the changing illuminated phase of the planet, but with a full range (168 +/- 70 ppm) too large to be reflected light or thermal emission. This signal has no straightforward interpretation and should be checked with further observations. The host star of 55 Cnc e is brighter than that of any other known transiting planet, which will facilitate future investigations. C1 [Winn, Joshua N.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Winn, Joshua N.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Matthews, Jaymie M.; Kallinger, Thomas; Dragomir, Diana] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Dawson, Rebekah I.; Holman, Matthew J.; Sasselov, Dimitar] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Fabrycky, Daniel] Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Kallinger, Thomas; Kuschnig, Rainer; Weiss, Werner W.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Guenther, David B.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Moffat, Anthony F. J.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Rowe, Jason F.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Rucinski, Slavek] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. RP Winn, JN (reprint author), MIT, Dept Phys, Cambridge, MA 02139 USA. OI Kallinger, Thomas/0000-0003-3627-2561; Dragomir, Diana/0000-0003-2313-467X; Fabrycky, Daniel/0000-0003-3750-0183 FU NSERC (Canada); Austrian Science Fund; FQRNT scholarship; National Science Foundation; NASA [HF-51272.01-A, NNX09AB33G] FX J.M., D.G., A.M., and S.R. thank NSERC (Canada) for financial support. T. K. is supported by a contract to the Canadian Space Agency. R. K. and W. W. were supported by the Austrian Science Fund. D. D. is supported by a FQRNT scholarship. R. D. is supported by a National Science Foundation Graduate Research Fellowship, and D. C. F. by NASA Hubble Fellowship HF-51272.01-A. M. H. and J.W. were supported by NASA Origins award NNX09AB33G. NR 33 TC 110 Z9 110 U1 1 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 10 PY 2011 VL 737 IS 1 AR L18 DI 10.1088/2041-8205/737/1/L18 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797PC UT WOS:000293138800018 ER PT J AU Burlaga, LF Ness, NF AF Burlaga, L. F. Ness, N. F. TI TRANSITION FROM THE SECTOR ZONE TO THE UNIPOLAR ZONE IN THE HELIOSHEATH: VOYAGER 2 MAGNETIC FIELD OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetic fields; solar wind; Sun: heliosphere ID DISTANT HELIOSPHERE; TERMINATION SHOCK; SOLAR-WIND; INTERPLANETARY; AU; STATISTICS; EVOLUTION; PLASMA AB The magnetic polarity pattern observed by Voyager 2 (V2) evolved with time from a nearly equal mixture of positive and negative polarity sectors in the sector zone from 2007.00 to 2007.67 to nearly uniform positive polarity (magnetic fields directed away from the Sun) in the unipolar zone from 2009.6 to 2010.3. This change was caused by the decreasing latitudinal extent of the sector zone, when the minimum extent of the heliospheric current sheet moved northward toward the solar equator as the solar activity associated with solar cycle 23 decreased a minimum in 2010. In the heliosheath, the distribution of daily averages of the magnetic field strength B was lognormal in the sector zone from 2008.83 to 2009.57 and Gaussian in the unipolar zone from 2009.57 to 2010.27. The distribution of daily increments of B was a Tsallis distribution (q-Gaussian distribution) with q = 1.66 +/- 0.01 in the sector zone and approximate to Gaussian (q = 1.01 +/- 0.29) in the unipolar zone. The unipolar region appears to be in a relatively undisturbed equilibrium state. C1 [Burlaga, L. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ness, N. F.] Catholic Univ Amer, Inst Astrophys & Computat Sci, Washington, DC 20064 USA. RP Burlaga, LF (reprint author), NASA, Goddard Space Flight Ctr, Code 673, Greenbelt, MD 20771 USA. EM lburlagahsp@verizon.net; nfnudel@yahoo.com FU NASA [NASA NNX 07AW09G, NASA NNX 09AT41G] FX T. McClanahan and S. Kramer provided support for the processing of the data. Daniel Berdichevsky computed the zero level offsets for the instruments. N. F. Ness was partially supported by NASA Grants NASA NNX 07AW09G and NASA NNX 09AT41G to the Catholic University of America. NR 26 TC 15 Z9 15 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2011 VL 737 IS 1 AR 35 DI 10.1088/0004-637X/737/1/35 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 800BM UT WOS:000293332200035 ER PT J AU Madhusudhan, N Burrows, A Currie, T AF Madhusudhan, Nikku Burrows, Adam Currie, Thayne TI MODEL ATMOSPHERES FOR MASSIVE GAS GIANTS WITH THICK CLOUDS: APPLICATION TO THE HR 8799 PLANETS AND PREDICTIONS FOR FUTURE DETECTIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; planets and satellites: general; planets and satellites: individual (HR 8799b, HR 8799c, HR 8799d) ID YOUNG SOLAR ANALOG; BROWN DWARFS; T-DWARF; PHOTOSPHERIC ENVIRONMENT; CHEMICAL-EQUILIBRIUM; EVOLUTIONARY MODELS; DUST FORMATION; SPECTROSCOPY; COMPANION; STARS AB We have generated an extensive new suite of massive giant planet atmosphere models and used it to obtain fits to photometric data for the planets HR 8799b, c, and d. We consider a wide range of cloudy and cloud-free models. The cloudy models incorporate different geometrical and optical thicknesses, modal particle sizes, and metallicities. For each planet and set of cloud parameters, we explore grids in gravity and effective temperature, with which we determine constraints on the planet's mass and age. Our new models yield statistically significant fits to the data, and conclusively confirm that the HR 8799 planets have much thicker clouds than those required to explain data for typical L and T dwarfs. Both models with (1) physically thick forsterite clouds and a 60 mu m modal particle size and (2) clouds made of 1 mu m sized pure iron droplets and 1% supersaturation fit the data. Current data are insufficient to accurately constrain the microscopic cloud properties, such as composition and particle size. The range of best-estimated masses for HR 8799b, HR 8799c, and HR 8799d conservatively span 2-12 M-J, 6-13 M-J, and 3-11 M-J, respectively, and imply coeval ages between similar to 10 and similar to 150 Myr, consistent with previously reported stellar ages. The best-fit temperatures and gravities are slightly lower than values obtained by Currie et al. using even thicker cloud models. Finally, we use these models to predict the near-to-mid-IR colors of soon-to-be imaged planets. Our models predict that planet-mass objects follow a locus in some near-to-mid-IR color-magnitude diagrams that is clearly separable from the standard L/T dwarf locus for field brown dwarfs. C1 [Madhusudhan, Nikku; Burrows, Adam] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Currie, Thayne] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Madhusudhan, N (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. EM nmadhu@astro.princeton.edu; burrows@astro.princeton.edu; thayne.m.currie@nasa.gov FU NASA ATP [NNX07AG80G]; HST [HST-GO-12181.04-A, HST-GO-12314.03-A]; JPL/Spitzer [1417122, 1348668, 1371432, 1377197] FX The authors acknowledge support in part under NASA ATP grant NNX07AG80G, HST grants HST-GO-12181.04-A and HST-GO-12314.03-A, and JPL/Spitzer Agreements 1417122, 1348668, 1371432, and 1377197. We thank David Spiegel, Mike McElwain, Ivan NR 54 TC 79 Z9 79 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2011 VL 737 IS 1 AR 34 DI 10.1088/0004-637X/737/1/34 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 800BM UT WOS:000293332200034 ER PT J AU Moses, JI Visscher, C Fortney, JJ Showman, AP Lewis, NK Griffith, CA Klippenstein, SJ Shabram, M Friedson, AJ Marley, MS Freedman, RS AF Moses, Julianne I. Visscher, C. Fortney, J. J. Showman, A. P. Lewis, N. K. Griffith, C. A. Klippenstein, S. J. Shabram, M. Friedson, A. J. Marley, M. S. Freedman, R. S. TI DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; planets and satellites: atmospheres; planets and satellites: composition; planets and satellites: individual (HD 189733b, HD 209458b); stars: individual (HD 189733, HD 209458) ID EXTRASOLAR GIANT PLANETS; INFRARED-EMISSION-SPECTRUM; HOT JUPITER ATMOSPHERES; HUBBLE-SPACE-TELESCOPE; EVALUATED KINETIC-DATA; TITANS UPPER-ATMOSPHERE; DWARF GLIESE 229B; NEPTUNE GJ 436B; BROWN DWARFS; MU-M AB We have developed a one-dimensional photochemical and thermochemical kinetics and diffusion model to study the effects of disequilibrium chemistry on the atmospheric composition of "hot-Jupiter" exoplanets. Here we investigate the coupled chemistry of neutral carbon, hydrogen, oxygen, and nitrogen species on HD 189733b and HD 209458b and we compare the model results with existing transit and eclipse observations. We find that the vertical profiles of molecular constituents are significantly affected by transport-induced quenching and photochemistry, particularly on the cooler HD 189733b; however, the warmer stratospheric temperatures on HD 209458b help maintain thermochemical equilibrium and reduce the effects of disequilibrium chemistry. For both planets, the methane and ammonia mole fractions are found to be enhanced over their equilibrium values at pressures of a few bar to less than an mbar due to transport-induced quenching, but CH4 and NH3 are photochemically removed at higher altitudes. Disequilibrium chemistry also enhances atomic species, unsaturated hydrocarbons (particularly C2H2), some nitriles (particularly HCN), and radicals like OH, CH3, and NH2. In contrast, CO, H2O, N-2, and CO2 more closely follow their equilibrium profiles, except at pressures less than or similar to 1 mu bar, where CO, H2O, and N-2 are photochemically destroyed and CO2 is produced before its eventual high-altitude destruction. The enhanced abundances of CH4, NH3, and HCN are expected to affect the spectral signatures and thermal profiles of HD 189733b and other relatively cool, transiting exoplanets. We examine the sensitivity of our results to the assumed temperature structure and eddy diffusion coefficients and discuss further observational consequences of these models. C1 [Moses, Julianne I.] Space Sci Inst, Boulder, CO 80301 USA. [Visscher, C.] Lunar & Planetary Inst, Houston, TX 77058 USA. [Fortney, J. J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Showman, A. P.; Lewis, N. K.; Griffith, C. A.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Showman, A. P.; Lewis, N. K.; Griffith, C. A.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Klippenstein, S. J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Shabram, M.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Friedson, A. J.] CALTECH, Jet Prop Lab, Div Earth & Space Sci, Pasadena, CA 91109 USA. [Marley, M. S.; Freedman, R. S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Moses, JI (reprint author), Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. EM jmoses@spacescience.org RI Moses, Julianne/I-2151-2013; Marley, Mark/I-4704-2013; OI Moses, Julianne/0000-0002-8837-0035; Marley, Mark/0000-0002-5251-2943; Klippenstein, Stephen/0000-0001-6297-9187; Fortney, Jonathan/0000-0002-9843-4354 FU NASA [NNX10AF65G, NNX10AF64G, NNH09AK24I, NNX11AD64G]; Lunar and Planetary Institute, USRA (NASA) [NCC5-679] FX We thank A. Garcia Munoz for sending us his HD 209458b thermospheric model results, and Michael Line, Kevin Zahnle, and Roger Yelle for interesting chemistry discussions. We gratefully acknowledge support from the NASA Planetary Atmospheres Program grant numbers NNX10AF65G (J.M.), NNX10AF64G (C. V.), NNH09AK24I (S. K.), and now NNX11AD64G. Support for C. V. also provided by the Lunar and Planetary Institute, USRA (NASA Cooperative Agreement NCC5-679). LPI Contribution Number 1622. NR 207 TC 118 Z9 119 U1 8 U2 38 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2011 VL 737 IS 1 AR 15 DI 10.1088/0004-637X/737/1/15 PG 37 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 800BM UT WOS:000293332200015 ER PT J AU Nelson, T Mukai, K Orio, M Luna, GJM Sokoloski, JL AF Nelson, T. Mukai, K. Orio, M. Luna, G. J. M. Sokoloski, J. L. TI X-RAY AND ULTRAVIOLET EMISSION FROM THE RECURRENT NOVA RS OPHIUCHI IN QUIESCENCE: SIGNATURES OF ACCRETION AND SHOCKED GAS SO ASTROPHYSICAL JOURNAL LA English DT Article DE novae, cataclysmic variables; ultraviolet: stars; white dwarfs; X-rays: stars ID SYMBIOTIC STARS; CATACLYSMIC VARIABLES; 1985 OUTBURST; WHITE-DWARFS; SPECTROSCOPY; BINARIES; ROSAT; SIMULATIONS; VARIABILITY; EXTINCTION AB RS Ophiuchi is a recurrent nova system that experiences outbursts every similar to 20 years, implying accretion at a high rate onto a massive white dwarf. However, previous X-ray observations of the system in quiescence have detected only faint emission that is difficult to reconcile with the high accretion rate (>2 x 10(-8) M-circle dot yr(-1)) predicted by nova theory for such frequent outbursts. Here, we use new Chandra and XMM-Newton observations obtained 537 and 744 days after the 2006 outburst to constrain both the accretion rate onto the white dwarf and the properties of the nova ejecta at these times. We detect low level UV variability with the XMM-Newton Optical Monitor on day 744 that is consistent with accretion disk flickering, and use this to place a lower limit on the accretion rate at this epoch. The X-ray spectra in both observations are well described by a two component thermal plasma model. We identify the first component as the nova shell, which can emit X-rays for up to a decade after the outburst. The other component likely arises in the accretion disk boundary layer, and can be equally well fit by a single temperature plasma or a cooling flow model. Although the flux of the single temperature model implies an accretion rate that is 40 times too low to power the observed nova outburst rate (assuming that half of the accretion luminosity is emitted as X-rays in the boundary layer), the best-fit cooling flow model implies (M)over dot < 1.2 x 10(-8) M-circle dot yr(-1) 537 days after the outburst, which is within a factor of two of the theoretical accretion rate required to power an outburst every 20 years. Furthermore, we place an upper limit on the accretion rate through an optically thick region of the boundary layer of 2.0 x 10(-8) M-circle dot yr(-1). Thus, these new quiescence data are consistent with the accretion rate expectations of nova theory. Finally, we discuss the possible origins of the low temperature associated with the accretion component, which is a factor of 10 lower than in T CrB, an otherwise similar recurrent nova. C1 [Nelson, T.; Mukai, K.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Nelson, T.; Mukai, K.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Nelson, T.; Mukai, K.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Orio, M.] Osserv Astron Padova, INAF, I-35122 Padua, Italy. [Orio, M.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Luna, G. J. M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Sokoloski, J. L.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. RP Nelson, T (reprint author), Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. EM thomas.nelson@nasa.gov FU NASA [GO9-0027X, NAS8-03060, NNX09AF82G]; NASA-GSFC FX We thank the anonymous referee for detailed comments and suggestions. Support for this work was provided by NASA through Chandra award GO9-0027X issued by the Chandra X-ray Observatory Center, which is operated by the SAO for and on behalf of NASA under contract NAS8-03060, and through award NNX09AF82G (to J.L.S.). This research made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA's Goddard Space Flight Center. T.N. and M.O. acknowledge the support of the NASA-GSFC XMM-Newton program. NR 54 TC 9 Z9 9 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2011 VL 737 IS 1 AR 7 DI 10.1088/0004-637X/737/1/7 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 800BM UT WOS:000293332200007 ER PT J AU Hsu, HW Kempf, S Postberg, F Trieloff, M Burton, M Roy, M Moragas-Klostermeyer, G Srama, R AF Hsu, H. -W. Kempf, S. Postberg, F. Trieloff, M. Burton, M. Roy, M. Moragas-Klostermeyer, G. Srama, R. TI Cassini dust stream particle measurements during the first three orbits at Saturn SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID INTERPLANETARY MAGNETIC-FIELD; SOLAR-WIND; MAGNETOSPHERIC DYNAMICS; JUPITER; EJECTION; DETECTOR; GRAINS; RING AB Stream particles are nanometer-scale dust particles ejected with speeds >= 100 km s(-1) from both the Jovian and Saturnian systems. Here we report the dynamical analysis of Saturnian stream particles on the basis of observations made by the Cosmic Dust Analyzer on board the Cassini spacecraft during its first three orbits around Saturn. The time span of the presented measurements covers from the beginning of orbit A to the end of orbit C (from the Saturn orbit insertion on 1 July 2004 UTC to 16 January 2005 UTC). During these orbits the Cassini spacecraft was usually located outside but not far from Saturn's magnetosphere. The Cassini observations therefore provide important information on the dynamics of stream particles just ejected from the system. As with earlier observations, two impact populations are identified. These appear as faint but continuous impacts as well as semiregular and energetic impact bursts. Faint impacts from directions close to the Saturn line of sight are recognized as recently ejected stream particles, while energetic dust bursts most probably consist of previously ejected particles that experienced significant acceleration within the solar wind. The presented measurements not only confirm the previous proposed stream particle ejection scenario but also serve as essential inputs for detailed dynamical modeling. C1 [Hsu, H. -W.; Kempf, S.; Postberg, F.; Moragas-Klostermeyer, G.; Srama, R.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Hsu, H. -W.; Postberg, F.; Trieloff, M.] Univ Heidelberg, Inst Geowissensch, D-69120 Heidelberg, Germany. [Hsu, H. -W.; Moragas-Klostermeyer, G.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Kempf, S.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, Braunschweig, Germany. [Burton, M.; Roy, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Srama, R.] Univ Stuttgart, Inst Raumfahrtsyst, Stuttgart, Germany. RP Hsu, HW (reprint author), Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany. EM sean.hsu@lasp.colorado.edu OI KEMPF, SASCHA/0000-0001-5236-3004 FU Deutsche Forschungsgemeinschaft at the Max-Planck-Institut fur Kernphysik [KE 1384/1-1]; Deutsche Forschungsgemeinschaft [1385] FX This project was supported by the Deutsche Forschungsgemeinschaft under grant KE 1384/1-1 at the Max-Planck-Institut fur Kernphysik. We acknowledge anonymous referees for their valuable comments. H. W. H thanks his family and Chun-Yu. M. T. and F. P. acknowledge support from Priority Programme 1385, "The first 10 million years of the solar system-a planetary materials approach," funded by the Deutsche Forschungsgemeinschaft. NR 22 TC 9 Z9 9 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD AUG 9 PY 2011 VL 116 AR A08213 DI 10.1029/2010JA015959 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 807ST UT WOS:000293920700001 ER PT J AU Thiruppathiraja, C Kumar, S Murugan, V Adaikkappan, P Sankaran, K Alagar, M AF Thiruppathiraja, Chinnasamy Kumar, Subramani Murugan, Vidhyapriya Adaikkappan, Periyakaruppan Sankaran, Krishnan Alagar, Muthukaruppan TI An enhanced immuno-dot blot assay for the detection of white spot syndrome virus in shrimp using antibody conjugated gold nanoparticles probe SO AQUACULTURE LA English DT Article DE White spot syndrome virus; Shrimp; Gold nanoparticles; Antibody; Immunodot-blot assay ID ENVELOPE PROTEIN; WSSV; INFECTION; DIAGNOSIS; ELISA; INDIA; GENE; TIME; PCR AB White Spot Syndrome (WSS) is a worldwide ailment of penaeid shrimp, a lethal and contagious disease in shrimp caused by the White Spot Syndrome Virus (WSSV). It is essential to control; handle early findings and routine screenings under field conditions. Though PCR affirmed sensing of the causative viral nucleic acid has many advantages, for its routine use custom necessitate an advanced equipment and technical expertise. In comparison, protein-based immuno detecting methods are easier to perform by a commoner, but lack of sensitivity due to inadequate signal amplification. In this study, we focused on a sensitive immuno detection method which developed by gold nanoparticles coupled with alkaline phosphatase conjugated secondary antibody in turn recognized primary anti-serum raised against WSSV. We successfully enhanced the sensitivity of immuno-dot blot assay by 80 fold over the conventional method and visually it can be detected up to 1 ng/mL of purified WSSV. The approach described in this study is a prototype for the development of simple and inexpensive diagnostic tool will provide the routine screening of WSS in shrimp farms. (C) 2011 Elsevier B.V. All rights reserved. C1 [Thiruppathiraja, Chinnasamy; Alagar, Muthukaruppan] Anna Univ, Dept Chem Engn, Madras 600025, Tamil Nadu, India. [Kumar, Subramani; Murugan, Vidhyapriya; Sankaran, Krishnan] Anna Univ, Ctr Biotechnol, Madras 600025, Tamil Nadu, India. [Adaikkappan, Periyakaruppan] NASA, Ames Res Ctr, Ctr Nanosci & Nanotechnol, Moffett Field, CA 94035 USA. RP Alagar, M (reprint author), Anna Univ, Dept Chem Engn, Madras 600025, Tamil Nadu, India. EM mkalagar@yahoo.com RI Periyakaruppan, Adaikkappan/B-7398-2013 OI Periyakaruppan, Adaikkappan/0000-0002-0395-6564 FU University Grants Commission and Department of Biotechnology, New Delhi FX Authors dedicate this article to Dr. V. Murugan, Center for Biotechnology, Anna University Chennai for his sweet memories and the authors thank the University Grants Commission and Department of Biotechnology, New Delhi, for their financial support. NR 31 TC 5 Z9 5 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0044-8486 J9 AQUACULTURE JI Aquaculture PD AUG 8 PY 2011 VL 318 IS 3-4 BP 262 EP 267 DI 10.1016/j.aquaculture.2011.06.008 PG 6 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA 799DR UT WOS:000293264200002 ER PT J AU Stroeer, A Blackburn, L Camp, J AF Stroeer, A. Blackburn, L. Camp, J. TI Comparison of signals from gravitational wave detectors with instantaneous time-frequency maps SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article ID EMPIRICAL MODE DECOMPOSITION; LIGO AB Gravitational wave astronomy relies on the use of multiple detectors, so that coincident detections may distinguish real signals from instrumental artifacts, and also so that relative timing of signals can provide the sky position of sources. We show that the comparison of instantaneous time-frequency and time-amplitude maps provided by the Hilbert-Huang Transform (HHT) can be used effectively for relative signal timing of common signals, to discriminate between the case of identical coincident signals and random noise coincidences and to provide a classification of signals based on their time-frequency trajectories. The comparison is done with chi(2) goodness-of-fit method which includes contributions from both the instantaneous amplitude and frequency components of the HHT to match two signals in the time domain. This approach naturally allows the analysis of waveforms with strong frequency modulation. C1 [Stroeer, A.] Univ Maryland, CRESST, College Pk, MD 20742 USA. [Stroeer, A.; Blackburn, L.; Camp, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Stroeer, A (reprint author), Univ Texas Brownsville, Ctr Gravitat Wave Astron, 80 Ft Brown, Brownsville, TX 78520 USA. EM astroeer@phys.utb.edu NR 21 TC 2 Z9 2 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD AUG 7 PY 2011 VL 28 IS 15 AR 155001 DI 10.1088/0264-9381/28/15/155001 PG 12 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 788NZ UT WOS:000292453000004 ER PT J AU Hwang, KJ Kuznetsova, MM Sahraoui, F Goldstein, ML Lee, E Parks, GK AF Hwang, K. -J. Kuznetsova, M. M. Sahraoui, F. Goldstein, M. L. Lee, E. Parks, G. K. TI Kelvin-Helmholtz waves under southward interplanetary magnetic field SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID LATITUDE BOUNDARY-LAYER; MAGNETOSPHERIC BOUNDARY; SOLAR-WIND; MAGNETOTAIL BOUNDARY; EARTHS MAGNETOSPHERE; CLUSTER OBSERVATIONS; GEOTAIL OBSERVATIONS; PLASMA TRANSPORT; ENERGY-TRANSFER; MAGNETOPAUSE AB The Kelvin-Helmholtz waves have been observed along the Earth's low-latitude magnetopause and have been suggested to play a certain role in the entry of solar wind plasma into Earth's magnetosphere. In situ observations of the KH waves (KHW) and, in particular, a nonlinear stage of the KH instability, i.e., rolled-up KH vortices (KHVs), have been reported to occur preferentially for northward interplanetary magnetic field (IMF). Using Cluster data, we present the first in situ observation of nonlinearly developed KHW during southward IMF. The analysis reveals that there is a mixture of less-developed and more-developed KHW that shows inconsistent variations in scale size and the magnetic perturbations in the context of the expected evolution of KH structures. A coherence analysis implies that the observed KHW under southward IMF appear to be irregular and intermittent. These irregular and turbulent characteristics are more noticeable than previously reported KHW events that have been detected preferentially during northward IMF. This suggests that under southward IMF KHVs become easily irregular and temporally intermittent, which might explain the preferential in situ detection of KHVs when the IMF is northward. MHD simulation of the present event shows that during southward IMF dynamically active subsolar environments can cause KHV that evolve with considerable intermittency. The MHD simulations appear to reproduce well the qualitative features of the Cluster observations. C1 [Hwang, K. -J.; Kuznetsova, M. M.; Goldstein, M. L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hwang, K. -J.] Univ Maryland, Goddard Planetary & Heliophys Inst, Baltimore, MD 21201 USA. [Sahraoui, F.] Observ St Maur, Lab Phys Plasmas, CNRS, Ecole Polytech, F-94107 St Maur, France. [Lee, E.] Kyung Hee Univ, Sch Space Res, Yongin 446701, Gyeonggi, South Korea. [Parks, G. K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Hwang, KJ (reprint author), NASA, Goddard Lab Space Flight Ctr, Greenbelt, MD 20771 USA. EM Kyoung-Joo.Hwang@nasa.gov; Maria.M.Kuznetsova@nasa.gov; fouad.sahraoui@lpp.polytechnique.fr; melvyn.l.goldstein@nasa.gov; eslee@khu.ac.kr; parks@ssl.berkeley.edu RI Goldstein, Melvyn/B-1724-2008; Kuznetsova, Maria/F-6840-2012; Lee, Ensang/E-2356-2013; NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU NASA; Goddard Space Flight Center; Goddard grant [67394324/NCC5-494] FX This study was supported, in part, by NASA's Cluster mission and, in part, by a Magnetospheric Multiscale Interdisciplinary Science grant at the Goddard Space Flight Center and by Goddard grant 67394324/NCC5-494 to the UMBC/GEST program. We acknowledge all Cluster instrument teams, including PEACE, CIS, STAFF, and FGM staffs and the Cluster Active Archive (http://caa.estec.esa.int/caa) from which all the processed science-level data were downloaded except the CIS data. Simulation results have been provided by the Community Coordinated Modeling Center at Goddard Space Flight Center through their public Runs on Request system (http://ccmc.gsfc.nasa.gov). K.-J. Hwang appreciates helpful advice from Hiroshi Hasegawa. NR 56 TC 31 Z9 31 U1 2 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD AUG 5 PY 2011 VL 116 AR A08210 DI 10.1029/2011JA016596 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 804JM UT WOS:000293650100004 ER PT J AU McEwen, AS Ojha, L Dundas, CM Mattson, SS Byrne, S Wray, JJ Cull, SC Murchie, SL Thomas, N Gulick, VC AF McEwen, Alfred S. Ojha, Lujendra Dundas, Colin M. Mattson, Sarah S. Byrne, Shane Wray, James J. Cull, Selby C. Murchie, Scott L. Thomas, Nicolas Gulick, Virginia C. TI Seasonal Flows on Warm Martian Slopes SO SCIENCE LA English DT Article ID GULLY ACTIVITY; MARS; STABILITY; EVAPORATION; STREAKS; BRINES; WET AB Water probably flowed across ancient Mars, but whether it ever exists as a liquid on the surface today remains debatable. Recurring slope lineae (RSL) are narrow (0.5 to 5 meters), relatively dark markings on steep (25 degrees to 40 degrees) slopes; repeat images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment show them to appear and incrementally grow during warm seasons and fade in cold seasons. They extend downslope from bedrock outcrops, often associated with small channels, and hundreds of them form in some rare locations. RSL appear and lengthen in the late southern spring and summer from 48 degrees S to 32 degrees S latitudes favoring equator-facing slopes, which are times and places with peak surface temperatures from similar to 250 to 300 kelvin. Liquid brines near the surface might explain this activity, but the exact mechanism and source of water are not understood. C1 [McEwen, Alfred S.; Ojha, Lujendra; Mattson, Sarah S.; Byrne, Shane] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Dundas, Colin M.] US Geol Survey, Flagstaff, AZ 86001 USA. [Wray, James J.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Cull, Selby C.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Murchie, Scott L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Thomas, Nicolas] Univ Bern, Inst Phys, Bern, Switzerland. [Gulick, Virginia C.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gulick, Virginia C.] SETI Inst, Moffett Field, CA 94035 USA. RP McEwen, AS (reprint author), Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. EM mcewen@lpl.arizona.edu RI Byrne, Shane/B-8104-2012; Ojha, Lujendra/B-2805-2013; Wray, James/B-8457-2008; Murchie, Scott/E-8030-2015; OI Wray, James/0000-0001-5559-2179; Murchie, Scott/0000-0002-1616-8751; Dundas, Colin/0000-0003-2343-7224 FU NASA FX This research was supported by NASA's MRO project; we thank them along with the reviewers. All original data reported in this paper are tabulated in the SOM and archived by NASA's Planetary Data System. NR 31 TC 153 Z9 155 U1 11 U2 80 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD AUG 5 PY 2011 VL 333 IS 6043 BP 740 EP 743 DI 10.1126/science.1204816 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 802LH UT WOS:000293512100038 PM 21817049 ER PT J AU Rubincam, DP AF Rubincam, David Parry TI Mars seasonal polar caps as a test of the equivalence principle SO PHYSICAL REVIEW D LA English DT Article ID GRAVITATIONAL-FIELD; ROTATION AB The seasonal polar caps of Mars can be used to test the equivalence principle in general relativity. The north and south caps, which are composed of carbon dioxide, wax and wane with the seasons. If the ratio of the inertial (passive) to gravitational (active) masses of the caps differs from the same ratio for the rest of Mars, then the equivalence principle fails, Newton's third law fails, and the caps will pull Mars one way and then the other with a force aligned with the planet's spin axis. This leads to a secular change in Mars's along-track position in its orbit about the Sun, and to a secular change in the orbit's semimajor axis. The caps are a poor Eotvos test of the equivalence principle, being 4 orders-of-magnitude weaker than laboratory tests and 7 orders-of-magnitude weaker than that found by lunar laser ranging; the reason is the small mass of the caps compared to Mars as a whole. The principal virtue of using Mars is that the caps contain carbon, an element not normally considered in such experiments. The Earth with its seasonal snow cover can also be used for a similar test. C1 NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. RP Rubincam, DP (reprint author), NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. RI Rubincam, David/D-2918-2012 FU NASA FX The paper by David. F. Bartlett and Dave Van Buren [3] and subsequent discussions of it with Bahman Shahid-Saless inspired the present work. I thank an anonymous referee for comments. The support from NASA through a SALMON Proposal by is gratefully acknowledged. NR 13 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 4 PY 2011 VL 84 IS 4 AR 042001 DI 10.1103/PhysRevD.84.042001 PG 4 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 803CC UT WOS:000293556900001 ER PT J AU Chatterjee, A Wayner, PC Plawsky, JL Chao, DF Sicker, RJ Lorik, T Chestney, L Eustace, J Margie, R Zoldak, J AF Chatterjee, Arya Wayner, Peter C., Jr. Plawsky, Joel L. Chao, David F. Sicker, Ronald J. Lorik, Tibor Chestney, Louis Eustace, John Margie, Raymond Zoldak, John TI The Constrained Vapor Bubble Fin Heat Pipe in Microgravity SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID TRIANGULAR MICROGROOVES; CORRELATING EQUATION; FREE CONVECTION; LAMINAR; LIQUIDS AB The Constrained Vapor Bubble (CVB) is a wickless, grooved heat pipe and is the first, full-scale fluids experiment flown on the U.S. module of the International Space Station. The CVB promises to provide new insight into the operation of a heat pipe in space. It is a relatively simple device constructed from a spectrophotometer cuvette and uses pentane as the working fluid. The pentane flows within the corners of the cuvette due to a curvature gradient in the liquid menisci associated with the cuvette corners. The curvature of the liquid interface can be determined by viewing the meniscus through the transparent quartz walls. Extremely accurate temperature and pressure measurements were obtained in addition to the images. In the article, the results from the first two CVB modules-a dry calibration module and a wet heat pipe module-are presented. We show that the axial temperature profiles are significantly different in space. The heat pipes were seen to operate at a higher pressure and higher temperature in space primarily because radiation was the only heat loss mechanism. A fin model was developed to model the data, and Churchill's correlations for natural convection were used to determine the external heat transfer coefficient. Inside evaporation and condensation heat transfer coefficients were regressed from the temperature data. We show that the heat transfer coefficient in microgravity was higher. C1 [Chatterjee, Arya; Wayner, Peter C., Jr.; Plawsky, Joel L.] Rensselaer Polytech Inst, Troy, NY 12181 USA. [Chao, David F.; Sicker, Ronald J.] NASA Glenn Res Ctr, Cleveland, OH USA. [Lorik, Tibor; Chestney, Louis; Eustace, John; Margie, Raymond; Zoldak, John] Zin Technol, Cleveland, OH USA. RP Plawsky, JL (reprint author), Rensselaer Polytech Inst, Troy, NY 12181 USA. EM plawsky@rpi.edu FU National Aeronautics and Space Administration [NNX09AL98G] FX The authors wish to acknowledge NASA astronaut T. J. Creamer for contributing his time voluntarily for this project. We also acknowledge the people from ZIN Technologies for their efforts in the design, construction, and operation of the experiment. NASA's Glenn Research Center provided engineering and science support for this project through many years at NASA. We also would like to acknowledge the Lead Increment Scientist for increment 23-24, for giving us extra crew and operations time. This material is based on work supported by the National Aeronautics and Space Administration under Grant No. NNX09AL98G. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of NASA. NR 15 TC 11 Z9 11 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD AUG 3 PY 2011 VL 50 IS 15 SI SI BP 8917 EP 8926 DI 10.1021/ie102072m PG 10 WC Engineering, Chemical SC Engineering GA 798IN UT WOS:000293196700013 ER PT J AU Le, G Chi, PJ Strangeway, RJ Slavin, JA AF Le, G. Chi, P. J. Strangeway, R. J. Slavin, J. A. TI Observations of a unique type of ULF wave by low-altitude Space Technology 5 satellites SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ION-CYCLOTRON WAVES; HF DOPPLER SOUNDER; GEOMAGNETIC-PULSATIONS; MAGNETIC-FIELD; PI2 PULSATIONS; MAGNETOSPHERE; IONOSPHERE; PLASMA; FREQUENCY; CHAMP AB We report a unique type of ULF waves observed by low-altitude Space Technology 5 (ST-5) constellation mission. ST-5 is a three-microsatellite constellation deployed into a 300 x 4500 km dawn-dusk and Sun-synchronous polar orbit with 105.6 degrees inclination angle. Because of the Earth's rotation and the dipole tilt effect, the spacecraft's dawn-dusk orbit track can reach as low as subauroral latitudes during the course of a day. Whenever the spacecraft traverse the dayside closed field line region at subauroral latitudes, they frequently observe strong transverse oscillations at 30-200 mHz, or in the Pc2-3 frequency range. These Pc2-3 waves appear as wave packets with durations in the order of 5-10 min. As the maximum separations of the ST-5 spacecraft are in the order of 10 min, the three ST-5 satellites often observe very similar wave packets, implying these wave oscillations occur in a localized region. The coordinated ground-based magnetic observations at the spacecraft footprints, however, do not see waves in the Pc2-3 band; instead, the waves appear to be the common Pc4-5 waves associated with field line resonances. We suggest that these unique Pc2-3 waves seen by ST-5 are in fact the Doppler-shifted Pc4-5 waves as a result of rapid traverse of the spacecraft across the resonant field lines azimuthally at low altitudes. The observations with the unique spacecraft dawn-dusk orbits at proper altitudes and magnetic latitudes reveal the azimuthal characteristics of field line resonances. C1 [Le, G.; Slavin, J. A.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Chi, P. J.; Strangeway, R. J.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. RP Le, G (reprint author), NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Code 661, Greenbelt, MD 20771 USA. EM guan.le@nasa.gov; pchi@igpp.ucla.edu; strange@igpp.ucla.edu; james.a.slavin@nasa.gov RI Le, Guan/C-9524-2012; Slavin, James/H-3170-2012 OI Le, Guan/0000-0002-9504-5214; Slavin, James/0000-0002-9206-724X FU NASA [NNX08AF31G]; Canadian Space Agency FX Support to P. Chi at UCLA was in part through NASA grant NNX08AF31G. CARISMA magnetometer data are provided by the Canadian Space Agency. The authors thank I. R. Mann, D. K. Milling, and the rest of the CARISMA team for ground-based magnetometer data. CARISMA is operated by the University of Alberta, funded by the Canadian Space Agency. The authors thank S.-H. Chen for helping with some figures. NR 54 TC 9 Z9 9 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD AUG 2 PY 2011 VL 116 AR A08203 DI 10.1029/2011JA016574 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 804JG UT WOS:000293649500004 ER PT J AU Scott, JM Khakoo, A Mackey, JR Haykowsky, MJ Douglas, PS Jones, LW AF Scott, Jessica M. Khakoo, Aarif Mackey, John R. Haykowsky, Mark J. Douglas, Pamela S. Jones, Lee W. TI Modulation of Anthracycline-Induced Cardiotoxicity by Aerobic Exercise in Breast Cancer Current Evidence and Underlying Mechanisms SO CIRCULATION LA English DT Article DE cardioprotection; cardiotoxicity; exercise; women ID CHRONIC HEART-FAILURE; MAGNETIC-RESONANCE SPECTROSCOPY; RANDOMIZED CONTROLLED-TRIAL; ACTIVATED PROTEIN-KINASE; ACETYL-COA CARBOXYLASE; MYOSIN HEAVY-CHAIN; MUSCLE MALONYL-COA; SKELETAL-MUSCLE; DOXORUBICIN CARDIOTOXICITY; VOLUNTARY EXERCISE C1 [Scott, Jessica M.] NASA, Lyndon B Johnson Space Ctr, Univ Space Res Assoc, Houston, TX 77058 USA. [Khakoo, Aarif] Univ Texas MD, Amgen Inc, San Francisco, CA USA. [Mackey, John R.; Haykowsky, Mark J.] Univ Alberta, Edmonton, AB, Canada. [Douglas, Pamela S.; Jones, Lee W.] Duke Univ, Med Ctr, Durham, NC USA. RP Scott, JM (reprint author), NASA, Lyndon B Johnson Space Ctr, Univ Space Res Assoc, 2101 NASA Pkwy, Houston, TX 77058 USA. EM jessica.m.scott@nasa.gov FU Natural Sciences and Engineering Research Council; National Institutes of Health [CA143254, CA142566, CA138634, CA133895, CA125458]; George and Susan Beischer FX This work was supported in part by a Natural Sciences and Engineering Research Council Postdoctoral Fellowship (Dr Scott); National Institutes of Health grants CA143254, CA142566, CA138634, CA133895, and CA125458; and funds from George and Susan Beischer (Dr Jones). NR 92 TC 57 Z9 59 U1 2 U2 8 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0009-7322 J9 CIRCULATION JI Circulation PD AUG 2 PY 2011 VL 124 IS 5 BP 642 EP 650 DI 10.1161/CIRCULATIONAHA.111.021774 PG 9 WC Cardiac & Cardiovascular Systems; Peripheral Vascular Disease SC Cardiovascular System & Cardiology GA 800CZ UT WOS:000293338400025 PM 21810673 ER PT J AU Hunt, LA Mlynczak, MG Marshall, BT Mertens, CJ Mast, JC Thompson, RE Gordley, LL Russell, JM AF Hunt, Linda A. Mlynczak, Martin G. Marshall, B. Thomas Mertens, Christopher J. Mast, Jeffrey C. Thompson, R. Earl Gordley, Larry L. Russell, James M., III TI Infrared radiation in the thermosphere at the onset of solar cycle 24 SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID KINETIC TEMPERATURE; SABER EXPERIMENT; LIMB EMISSION AB The effects of solar cycle 24 are now clearly evident in the infrared radiative cooling of the thermosphere as observed by the SABER instrument on the NASA TIMED satellite. After reaching a minimum in 2009, infrared radiative cooling of the thermosphere by nitric oxide (NO) and carbon dioxide (CO(2)) has been steadily increasing. The global infrared power radiated by NO in mid-April 2011 is about four times the minimum value while the CO(2) power is about 15% larger than at the minimum. In addition, the short-term variability of the NO emission has increased and is strongly correlated with increased geomagnetic variability as inferred from the Ap index. The increasing levels of infrared emission are indicative of a warming thermosphere and possibly increasing levels of atomic oxygen and nitric oxide. However the infrared power presently radiated by NO is only about 40% of the maximum value observed by the SABER instrument in late 2002 while the CO(2) power is now about 80% of the maximum observed value. The SABER infrared time series, now approaching 10 years in length, is a unique climate data record for testing the radiative and chemical physics of upper atmosphere general circulation models. Citation: Hunt, L. A., M. G. Mlynczak, B. T. Marshall, C. J. Mertens, J. C. Mast, R. E. Thompson, L. L. Gordley, and J. M. Russell III (2011), Infrared radiation in the thermosphere at the onset of solar cycle 24, Geophys. Res. Lett., 38, L15802, doi:10.1029/2011GL048061. C1 [Hunt, Linda A.; Mast, Jeffrey C.] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. [Mlynczak, Martin G.; Mertens, Christopher J.] NASA Langley Res Ctr, Hampton, VA 23681 USA. [Marshall, B. Thomas; Thompson, R. Earl; Gordley, Larry L.] G&A Tech Software, Newport News, VA 23606 USA. [Russell, James M., III] Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23668 USA. RP Hunt, LA (reprint author), Sci Syst & Applicat Inc, 1 Enterprise Pkwy,Ste 200, Hampton, VA 23666 USA. EM m.g.mlynczak@nasa.gov RI Mlynczak, Martin/K-3396-2012 NR 8 TC 7 Z9 7 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 2 PY 2011 VL 38 AR L15802 DI 10.1029/2011GL048061 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 804GL UT WOS:000293642200004 ER PT J AU Llovel, W Meyssignac, B Cazenave, A AF Llovel, W. Meyssignac, B. Cazenave, A. TI Steric sea level variations over 2004-2010 as a function of region and depth: Inference on the mass component variability in the North Atlantic Ocean SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SATELLITE ALTIMETRY; CIRCULATION; OSCILLATION; RAINFALL; BUDGET; ENSO AB We investigate the regional-ocean depth layer (down to 2000 m) contributions to global mean steric sea level from January 2004 to March 2010, using Argo-based ocean temperature and salinity data from the SCRIPPS Oceanographic Institution database. We find that Indian ocean warming is almost compensated by Atlantic ocean cooling, so that the total global mean steric sea level increases only slightly over the considered period (0.35 +/- 0.30 mm/yr). Salinity variations also contribute, at lower rate, to the observed steric compensation. Meanwhile, the Pacific steric sea level increases only slightly (0.35 +/- 0.25 mm/yr). In the North Atlantic region, the mass component (estimated by the difference between satellite altimetry-based minus steric sea level over the same area) is negatively correlated over 2004-2010 with the steric component. During that period, North Atlantic sea level variability seems mostly driven by the North Atlantic Oscillation (NAO). This is unlike during the previous years (1997 to 2004), a period during which we observe significant correlation between North Atlantic sea level and El Nino-Southern Oscillation (ENSO), with positive sea level corresponding to ENSO cold phases (La Nina). Citation: Llovel, W., B. Meyssignac, and A. Cazenave (2011), Steric sea level variations over 2004-2010 as a function of region and depth: Inference on the mass component variability in the North Atlantic Ocean, Geophys. Res. Lett., 38, L15608, doi:10.1029/2011GL047411. C1 [Llovel, W.; Meyssignac, B.; Cazenave, A.] UPS, IRD, CNRS, CNES,LEGOS, F-31400 Toulouse, France. [Llovel, W.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Llovel, W (reprint author), UPS, IRD, CNRS, CNES,LEGOS, 14 Av Edouard Belin, F-31400 Toulouse, France. EM william.llovel@jpl.nasa.gov RI Meyssignac, Benoit/O-1910-2015; LLOVEL, William/G-6930-2016 NR 21 TC 11 Z9 11 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 2 PY 2011 VL 38 AR L15608 DI 10.1029/2011GL047411 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 804GL UT WOS:000293642200001 ER PT J AU Barnes, NP Walsh, BM Amzajerdian, F Reichle, DJ Busch, GE Carrion, WA AF Barnes, Norman P. Walsh, Brian M. Amzajerdian, Farzin Reichle, Donald J. Busch, George E. Carrion, William A. TI Up conversion measurements in Er:YAG; comparison with 1.6 mu m laser performance SO OPTICAL MATERIALS EXPRESS LA English DT Article ID ENERGY-TRANSFER; IONS AB Up conversion significantly affects Er:YAG lasers. Measurements performed here for low Er concentration are markedly different than reported high Er concentration. The results obtained here are used to predict laser performance and are compared with experimental results. (C) 2011 Optical Society of America C1 [Barnes, Norman P.; Walsh, Brian M.; Amzajerdian, Farzin; Reichle, Donald J.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Busch, George E.; Carrion, William A.] Coherent Applicat Inc, Hampton, VA 23681 USA. RP Barnes, NP (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM norman.p.barnes@nasa.gov NR 12 TC 4 Z9 4 U1 0 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 2159-3930 J9 OPT MATER EXPRESS JI Opt. Mater. Express PD AUG 1 PY 2011 VL 1 IS 4 BP 678 EP 685 PG 8 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA 875QG UT WOS:000299048100017 ER PT J AU Bristow, TF Milliken, RE AF Bristow, Thomas F. Milliken, Ralph E. TI TERRESTRIAL PERSPECTIVE ON AUTHIGENIC CLAY MINERAL PRODUCTION IN ANCIENT MARTIAN LAKES SO CLAYS AND CLAY MINERALS LA English DT Article DE Authigenic Clay Minerals; Lacustrine Clay Minerals; Martian Phyllosilicates; Mineral Facies; Neoformation; Transformation ID GREEN RIVER FORMATION; OLDUVAI-GORGE; MG-SMECTITE; SALINE LAKE; TRIOCTAHEDRAL SMECTITES; SEPIOLITE-PALYGORSKITE; NONTRONITE FORMATION; CONNECTICUT-VALLEY; SOUTHERN HIGHLANDS; NORTHERN TANZANIA AB The discovery of phyllosilicates in terrains of Noachian age (>3.5 Ga) on Mars implies a period in the planet's history that was characterized by wetter, warmer conditions that may have been more hospitable for life than the cold and dry conditions prevalent today. More specific information about the original locations and mechanisms of clay mineral formation on Mars is not as well constrained, however, in part because the origin of particular clay minerals is often non-unique. For example, Fe and Mg smectite-bearing deposits on Mars may have formed in various environments, including the weathering profiles of basic volcanic rocks, impact-induced hydrothermal sites, or in bodies of standing water. The identification of lacustrine deposits on Mars is of great interest due to their potential for the preservation of organic material, but identifying any given suite of sedimentary rocks as such is difficult when limited to mineralogy and morphology derived from orbital data. Here, the processes and conditions leading to clay mineral formation in lakes and evaporative marine basins on Earth are reviewed, with a focus on the spatial and stratigraphic distribution of clays in these settings. The goal is to provide criteria to determine if certain Martian clay deposits are consistent with such an origin, which in turn will aid in the identification of possible ancient habitable environments on Mars. C1 [Bristow, Thomas F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Milliken, Ralph E.] Univ Notre Dame, Dept Civil Engn & Geol Sci, Notre Dame, IN 46556 USA. RP Bristow, TF (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM thomas.f.bristow@nasa.gov NR 127 TC 25 Z9 25 U1 1 U2 19 PU CLAY MINERALS SOC PI CHANTILLY PA 3635 CONCORDE PKWY, STE 500, CHANTILLY, VA 20151-1125 USA SN 0009-8604 EI 1552-8367 J9 CLAY CLAY MINER JI Clay Clay Min. PD AUG PY 2011 VL 59 IS 4 BP 339 EP 358 DI 10.1346/CCMN.2011.0590401 PG 20 WC Chemistry, Physical; Geosciences, Multidisciplinary; Mineralogy; Soil Science SC Chemistry; Geology; Mineralogy; Agriculture GA 858KB UT WOS:000297794500002 ER PT J AU Sakamoto, JS Schock, H Caillat, T Fleurial, JP Maloney, R Lyle, M Ruckle, T Timm, E Zhang, L AF Sakamoto, Jeff S. Schock, H. Caillat, T. Fleurial, J-P. Maloney, R. Lyle, M. Ruckle, T. Timm, E. Zhang, L. TI Skutterudite-Based Thermoelectric Technology for Waste Heat Recovery: Progress Towards a 1 kW Generator SO SCIENCE OF ADVANCED MATERIALS LA English DT Article DE Thermoelectric Generator; Couple; Skutterudite; Aerogel AB The development of skutterudite-based thermoelectric power generation technology described in this work was supported by the DOE Energy Efficiency and Renewable Energy program over the course of the last 6 years. This paper is focused on the initial steps towards the development of kilowatt scale thermoelectric generators for use in waste heat recovery from internal combustion engines. Specifically, the design, development and testing of skutterudite couples and subassemblies as well as the integration of aerogel-based thermal insulation at the device level are reported. It is believed that the data reported herein are some of the first that demonstrate the ability to generate electrical power from skutterudite couples over multiple thermal cycles with negligible degradation in performance. A thermal gradient from 650 C to 50 C was used to generate nominally 1 watt per couple at an estimated 9% efficiency. While the couples in this work were designed to match the heat and electrical flux of the experimental test bed for this work, the essence of the couple technology is believed to be scalable and adaptable for a wide variety of thermoelectric power applications. C1 [Sakamoto, Jeff S.; Maloney, R.; Zhang, L.] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. [Schock, H.; Lyle, M.; Ruckle, T.; Timm, E.] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA. [Caillat, T.; Fleurial, J-P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Sakamoto, JS (reprint author), Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. RI Maloney, Ryan/G-3834-2012 OI Maloney, Ryan/0000-0002-6158-1537 NR 20 TC 16 Z9 16 U1 1 U2 27 PU AMER SCIENTIFIC PUBLISHERS PI VALENCIA PA 26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA SN 1947-2935 J9 SCI ADV MATER JI Sci. Adv. Mater. PD AUG PY 2011 VL 3 IS 4 SI SI BP 621 EP 632 DI 10.1166/sam.2011.1192 PG 12 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 843LH UT WOS:000296672800013 ER PT J AU Uvarov, CA Abdusalyamova, MN Makhmudov, F Star, K Fleurial, JP Kauzlarich, SM AF Uvarov, Catherine A. Abdusalyamova, M. N. Makhmudov, F. Star, Kurt Fleurial, Jean-Pierre Kauzlarich, Susan M. TI The Effect of Tm Substitution on the Thermoelectric Performance of Yb14MnSb11 SO SCIENCE OF ADVANCED MATERIALS LA English DT Article DE 14-1-11; Antimonide; High Temperature Thermoelectric; High zT; Power Generation; Zintl ID TRANSPORT-PROPERTIES; ZINTL PHASES; EFFICIENCY; YB14MN1-XALXSB11; TRANSITION; CHEMISTRY AB The Zintl phase, Yb14MnSb11, has been recently identified as a potential thermoelectric material because of its high figure of merit (zT) above 1000 K. Tuning the carrier concentration with La3+ provided an improved zT at high temperatures. Rare earth elements provide additional tuning through size, electron donor properties, and effects on bonding. The solubility of the rare earth, Tm, was explored to provide chemical pressure and enhance the Seebeck coefficient of Yb14MnSb11. Crystals were prepared via Sn flux synthesis with the compositional fluxes of Yb14-xTmxMnSb11 (x = 0.3 (1), 0.5 (2), 0.7 (3)). The incorporation of Tm does not significantly alter the unit cell parameters of Yb14MnSb11. The content of Tm was probed with wavelength dispersive microprobe analysis and showed that the maximum amount of Tm is 0.44 with the composition being Yb13.34(6)Tm0.44(1)Mn1.04(2)Sb11.19(6). Single crystal compositions of Yb14-xTmxMnSb11 (x = 0.29 (1), 0.40 (2), and 0.44 (3)) were measured. Samples were hot pressed and thermoelectric properties measured from 300-1200 K. The hot pressed pellets showed very similar Tm composition of approximately x = 0.4. All the samples show enhanced Seebeck coefficients and slightly higher electrical resistivity as compared with Yb14MnSb11, as expected for the addition of Tm3+ in this p-type compound. Total thermal conductivity is approximately the same as Yb14MnSb11 leading to a maximum zT of 0.81 at 1195 K for sample 2 with nominal composition Yb13.35(4)Tm0.44(1)Mn1.027(6)Sb11.18(4). C1 [Uvarov, Catherine A.; Kauzlarich, Susan M.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Abdusalyamova, M. N.; Makhmudov, F.] Tajik Acad Sci, Inst Chem, Dushanbe 734063, Tajikistan. [Star, Kurt] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. [Fleurial, Jean-Pierre] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kauzlarich, SM (reprint author), Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. FU NSF [DMR-0600742]; International Science and Technology Center (ISTC) [T-1597]; NASA FX This research was funded by NSF, DMR-0600742, International Science and Technology Center (ISTC) Project #T-1597, and NASA. The authors gratefully acknowledge Dr. Sarah Roeske and Brian Joy for the microprobe analysis, Bruce Dunn for useful discussion, and the Jet Propulsion Laboratory for hot pressing facilities and the thermoelectric measurements. NR 28 TC 11 Z9 11 U1 1 U2 17 PU AMER SCIENTIFIC PUBLISHERS PI VALENCIA PA 26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA SN 1947-2935 J9 SCI ADV MATER JI Sci. Adv. Mater. PD AUG PY 2011 VL 3 IS 4 SI SI BP 652 EP 658 DI 10.1166/sam.2011.1196 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 843LH UT WOS:000296672800017 ER PT J AU Kedar, S AF Kedar, Sharon TI Source distribution of ocean microseisms and implications for time-dependent noise tomography SO COMPTES RENDUS GEOSCIENCE LA English DT Article DE Ocean microseism; Time-dependent noise tomography; USA ID AMBIENT SEISMIC NOISE; RAYLEIGH-WAVES; ATLANTIC-OCEAN; NORTH-AMERICA; ATTENUATION AB A qualitative analysis of ocean microseism source distribution observed in North America during fall and winter months was carried out. I review the theory of the origin of ocean microseisms and show that it can be used in conjunction with wave-wave interaction maps to quantify the source distribution anisotropy. It is demonstrated that microseisms generation in the North Atlantic and in the North Pacific Oceans are inherently different. North Atlantic microseisms are generated predominantly in the deep ocean, while North Pacific microseisms are dominated by coastal reflections. In spite of these differences both result from repeated ocean wave patterns that give rise to an anisotropic noise pattern, which cannot be randomized by time averaging. Considering time-varying ambient noise imaging, which aims to resolve a fraction of a percent changes in the crust over short distances, the source anisotropy would introduce a relatively significant error that needs to be accounted for. (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kedar, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Sharon.Kedar@jpl.nasa.gov FU National Aeronautics and Space Administration; National Science Foundation [EAR-0838247]; internal Research and Technology Development program FX The work presented here is based in part on work done in collaboration with Dr Michael Longuet-Higgins, Dr Frank Webb, Dr Nicholas Graham, Dr Robert Clayton, and Dr Cathleen Jones. The author wishes to thank Dr Anthony Sibthorpe of the Jet Propulsion Laboratory for his helpful suggestions. The author wishes to also thank the reviewers and editor for their thorough review. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded through the National Science Foundation Geophysics Program, Project # EAR-0838247, and through internal Research and Technology Development program. NR 27 TC 12 Z9 12 U1 0 U2 5 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1631-0713 J9 CR GEOSCI JI C. R. Geosci. PD AUG-SEP PY 2011 VL 343 IS 8-9 BP 548 EP 557 DI 10.1016/j.crte.2011.04.005 PG 10 WC Geosciences, Multidisciplinary SC Geology GA 843JA UT WOS:000296666900007 ER PT J AU Fischer, T Mercer, E Rungta, N AF Fischer, Topher Mercer, Eric Rungta, Neha TI Symbolically Modeling Concurrent MCAPI Executions SO ACM SIGPLAN NOTICES LA English DT Article DE Languages; Verification; MCAPI; Symbolic Analysis; Multicore; SMT AB Improper use of Inter-Process Communication (IPC) within concurrent systems often creates data races which can lead to bugs that are challenging to discover. Techniques that use Satisfiability Modulo Theories (SMT) problems to symbolically model possible executions of concurrent software have recently been proposed for use in the formal verification of software. In this work we describe a new technique for modeling executions of concurrent software that use a message passing API called MCAPI. Our technique uses an execution trace to create an SMT problem that symbolically models all possible concurrent executions and follows the same sequence of conditional branch outcomes as the provided execution trace. We check if there exists a satisfying assignment to the SMT problem with respect to specific safety properties. If such an assignment exists, it provides the conditions that lead to the violation of the property. We show how our method models behaviors of MCAPI applications that are ignored in previously published techniques. C1 [Fischer, Topher; Mercer, Eric] Brigham Young Univ, Provo, UT 84602 USA. [Rungta, Neha] NASA, Ames Res Ctr, Washington, DC USA. RP Fischer, T (reprint author), Brigham Young Univ, Provo, UT 84602 USA. EM javert42@cs.byu.edu; egm@cs.byu.edu; neha.s.rungta@nasa.gov FU NSF [CCF-0903491]; SRC [2009-TJ-1994] FX This work is supported by NSF CCF-0903491 and SRC 2009-TJ-1994. NR 6 TC 0 Z9 0 U1 0 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0362-1340 J9 ACM SIGPLAN NOTICES JI ACM Sigplan Not. PD AUG PY 2011 VL 46 IS 8 BP 307 EP 308 PG 2 WC Computer Science, Software Engineering SC Computer Science GA 838CR UT WOS:000296264900037 ER PT J AU Schubert, G Anderson, J Zhang, KK Kong, D Helled, R AF Schubert, Gerald Anderson, John Zhang, Keke Kong, D. Helled, Ravit TI Shapes and gravitational fields of rotating two-layer Maclaurin ellipsoids: Application to planets and satellites SO PHYSICS OF THE EARTH AND PLANETARY INTERIORS LA English DT Article DE Maclaurin spheroid; Planetary interiors; Planetary shape; Rotational flattening of planets; Theory of figures ID NEPTUNE; URANUS; MODELS AB The exact solution for the shape and gravitational field of a rotating two-layer Maclaurin ellipsoid of revolution is compared with predictions of the theory of figures up to third order in the small rotational parameter of the theory of figures. An explicit formula is derived for the external gravitational coefficient J(2) of the exact solution. A new approach to the evaluation of the theory of figures based on numerical integration of ordinary differential equations is presented. The classical Radau-Darwin formula is found not to be valid for the rotational parameter epsilon(2) = Omega(2)/(2 pi G rho(2)) >= 0.17 since the formula then predicts a surface eccentricity that is smaller than the eccentricity of the core-envelope boundary. Interface eccentricity must be smaller than surface eccentricity. In the formula for epsilon(2), Omega is the angular velocity of the two-layer body, rho(2) is the density of the outer layer, and G is the gravitational constant. For an envelope density of 3000 kg m(-3) the failure of the Radau-Darwin formula corresponds to a rotation period of about 3 h. Application of the exact solution and the theory of figures is made to models of Earth, Mars, Uranus, and Neptune. The two-layer model with constant densities in the layers can provide realistic approximations to terrestrial planets and icy outer planet satellites. The two-layer model needs to be generalized to allow for a continuous envelope (outer layer) radial density profile in order to realistically model a gas or ice giant planet. (C) 2011 Elsevier B.V. All rights reserved. C1 [Schubert, Gerald; Helled, Ravit] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Anderson, John] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, Keke; Kong, D.] Univ Exeter, Coll Engn Math & Phys Sci, Dept Math Sci, Exeter EX4 4QF, Devon, England. RP Schubert, G (reprint author), Univ Calif Los Angeles, Dept Earth & Space Sci, 595 Charles E Young Dr E, Los Angeles, CA 90095 USA. EM schubert@ucla.edu FU NSF [0909206]; UK NERC; Leverhulme Trust FX GS and RH acknowledge support from NSF 0909206. KZ is supported by UK NERC and Leverhulme Trust grants. NR 15 TC 6 Z9 6 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0031-9201 J9 PHYS EARTH PLANET IN JI Phys. Earth Planet. Inter. PD AUG PY 2011 VL 187 IS 3-4 SI SI BP 364 EP 379 DI 10.1016/j.pepi.2011.05.014 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 837MM UT WOS:000296207900025 ER PT J AU Lu, YJ Meyyappan, M Li, J AF Lu, Yijang Meyyappan, M. Li, Jing TI Fabrication of carbon-nanotube-based sensor array and interference study SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID ELECTRONIC NOSE; GAS; SYSTEM AB An array of 32 sensor elements with single-walled carbon nanotubes (SWCNTs) as the sensing medium has been fabricated. The microfabrication approach used allows reduction of the chip size and increases the number of sensor elements in a chip and is amenable for large wafer scale-up. The sensor array chip is designed as an electronic nose for use with the aid of a pattern recognition algorithm. The sensor chips were tested for NO(2) sensing and interfering effects from humidity and a background of chlorine. The results indicate that NO(2) can be detected at low concentration levels of 0.5 ppm in the presence of chlorine at 30 times higher concentrations. The sensor response is affected by humidity, which implies that the training data set for NO(2) detection needs to be generated for multiple humidity levels for interpolation purposes during field use. C1 [Lu, Yijang; Meyyappan, M.; Li, Jing] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Li, J (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM Jing.Li-1@nasa.gov NR 24 TC 4 Z9 4 U1 1 U2 7 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD AUG PY 2011 VL 26 IS 16 BP 2017 EP 2023 DI 10.1557/jmr.2011.225 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 836BO UT WOS:000296082300002 ER PT J AU Thompson, DJ AF Thompson, D. J. CA Fermi Large Area Telescope Collabo TI Fermi Gamma-ray Space Telescope: Highlights of the GeV Sky SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT Neutrino Oscillation Workshop (NOW) CY SEP 05-11, 2010 CL Otranto, ITALY SP Dept Phys, Sect Istituto Nazl Fisica Nucleare (INFN), Universita Ricerca (MIUR), Italian Ministero Istruzione, Univ Bari & Salento ID LARGE-AREA TELESCOPE; EMISSION; CATALOG; PULSARS; LAT; NEBULA; GALAXY AB Because high-energy gamma rays can be produced by processes that also produce neutrinos, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of potential targets for neutrino observations. Gamma-ray bursts, active galactic nuclei, and supernova remnants are all sites where hadronic, neutrino-producing interactions are plausible. Pulsars, pulsar wind nebulae, and binary sources are all phenomena. that reveal leptonic particle acceleration through their gamma-ray emission. While important to gamma-ray astrophysics, such sources are of less interest to neutrino studies. This talk will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft. C1 [Thompson, D. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Thompson, DJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Thompson, David/D-2939-2012 OI Thompson, David/0000-0001-5217-9135 NR 27 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD AUG PY 2011 VL 217 BP 249 EP 254 DI 10.1016/j.nuclphysbps.2011.04.112 PG 6 WC Physics, Particles & Fields SC Physics GA 825QI UT WOS:000295296500059 ER PT J AU Korolev, AV Emery, EF Strapp, JW Cober, SG Isaac, GA Wasey, M Marcotte, D AF Korolev, A. V. Emery, E. F. Strapp, J. W. Cober, S. G. Isaac, G. A. Wasey, M. Marcotte, D. TI Small Ice Particles in Tropospheric Clouds: Fact or Artifact? Airborne Icing Instrumentation Evaluation Experiment SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Editorial Material ID OPTICAL ARRAY PROBES; CRYSTALS; FSSP C1 [Korolev, A. V.; Strapp, J. W.; Cober, S. G.; Isaac, G. A.; Wasey, M.] Environm Canada, Cloud Phys & Severe Weather Res Sect, Toronto, ON M3H 5T4, Canada. [Emery, E. F.] NASA, Glenn Res Ctr, Cleveland, OH USA. [Marcotte, D.] Natl Res Council Canada, Ottawa, ON, Canada. RP Korolev, AV (reprint author), Environm Canada, Cloud Phys & Severe Weather Res Sect, 4905 Dufferin St, Toronto, ON M3H 5T4, Canada. EM Alexei.Korolev@ec.gc.ca NR 17 TC 119 Z9 121 U1 3 U2 18 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD AUG PY 2011 VL 92 IS 8 BP 967 EP 973 DI 10.1175/2010BAMS3141.1 PG 7 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 821CE UT WOS:000294951600002 ER PT J AU Schoch, GC Chao, Y Colas, F Farrara, J McCammon, M Olsson, P Singhal, G AF Schoch, G. Carl Chao, Yi Colas, Francois Farrara, John McCammon, Molly Olsson, Peter Singhal, Gaurav TI AN OCEAN OBSERVING AND PREDICTION EXPERIMENT IN PRINCE WILLIAM SOUND, ALASKA SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID FORECASTING SYSTEM; MODELING SYSTEM; COASTAL CURRENT; VARIABILITY AB Twenty years after the Exxon Valdez oil spill in Alaska a unique field experiment demonstrated an integrated ocean observing system with advanced technologies to enable weather, wave, and ocean circulation forecasting. C1 [Schoch, G. Carl; McCammon, Molly] Alaska Ocean Observing Syst, Anchorage, AK USA. [Chao, Yi] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Chao, Yi; Colas, Francois; Farrara, John] Univ Calif Los Angeles, Los Angeles, CA USA. [Olsson, Peter] Univ Alaska, Alaska Expt Forecast Facil, Anchorage, AK USA. [Singhal, Gaurav] Texas A&M Univ, College Stn, TX USA. [Schoch, G. Carl] Coastwise Serv, Anchorage, AK USA. RP Schoch, GC (reprint author), 1199 Bay Ave, Homer, AK 99603 USA. EM cschoch@alaska.net RI Colas, Francois/B-4920-2012 OI Colas, Francois/0000-0002-5859-6586 FU Alaska Ocean Observing System; Prince William Sound Oil Spill Recovery Institute; National Aeronautics and Space Administration (NASA) Earth Science; Prince William Sound Science Center; Prince William Sound Regional Citizens' Advisory Council FX Funding was provided by the Alaska Ocean Observing System and the Prince William Sound Oil Spill Recovery Institute. Additional funding was provided by the National Aeronautics and Space Administration (NASA) Earth Science. We are especially grateful for the support from NASA Public Health program managers John Haynes and Sue Estes. Support was also provided by the Prince William Sound Science Center and the Prince William Sound Regional Citizens' Advisory Council. The research for Y. Chao was carried out, in part, at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The demonstration project and field experiment investigators include A. Allen, C. Belanger, M. Burdette, R. Campbell, F. Chai, J. Ewald, M. Halverson, E. Howlett, M. Johnson, P. Li, Z. Li, R. McClure, M. Moline, J. C. McWilliams, C. Ohlmann, S. Okkonen, V. Panchang, S. Pegau, and T. Weingartner. We thank the three anonymous reviewers for suggestions that greatly improved an earlier version of this manuscript. NR 17 TC 3 Z9 4 U1 1 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD AUG PY 2011 VL 92 IS 8 BP 997 EP 1007 DI 10.1175/2011BAMS3023.1 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 821CE UT WOS:000294951600005 ER PT J AU Alvarez-Candal, A Pinilla-Alonso, N Licandro, J Cook, J Mason, E Roush, T Cruikshank, D Gourgeot, F Dotto, E Perna, D AF Alvarez-Candal, A. Pinilla-Alonso, N. Licandro, J. Cook, J. Mason, E. Roush, T. Cruikshank, D. Gourgeot, F. Dotto, E. Perna, D. TI The spectrum of (136199) Eris between 350 and 2350 nm: results with X-Shooter SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Kuiper belt objects: individual: (136199) Eris; instrumentation: spectrographs; techniques: spectroscopic ID TRANS-NEPTUNIAN OBJECTS; DWARF PLANET ERIS; VISIBLE SPECTROSCOPY; LIQUID METHANE; KUIPER-BELT; 2003 UB313; N-2 ICE; PLUTO; SURFACE; IRRADIATION AB Context. X-Shooter is the first second-generation instrument for the ESO-Very Large Telescope. It is a spectrograph covering the entire 300-2480 nm spectral range at once with a high resolving power. These properties enticed us to observe the well-known trans-Neptunian object (136199) Eris during the science verification of the instrument. The target has numerous absorption features in the optical and near-infrared domain that have been observed by different authors, showing differences in these features' positions and strengths. Aims. Besides testing the capabilities of X-Shooter to observe minor bodies, we attempt to constrain the existence of super-volatiles, e. g., CH4, CO and N-2, and in particular we try to understand the physical-chemical state of the ices on Eris' surface. Methods. We observed Eris in the 300-2480 nm range and compared the newly obtained spectra with those available in the literature. We identified several absorption features, measured their positions and depth, and compare them with those of the reflectance of pure methane ice obtained from the optical constants of this ice at 30 K to study shifts in these features' positions and find a possible explanation for their origin. Results. We identify several absorption bands in the spectrum that are all consistent with the presence of CH4 ice. We do not identify bands related to N-2 or CO. We measured the central wavelengths of the bands and compared to those measured in the spectrum of pure CH4 at 30 K finding variable spectral shifts. Conclusions. Based on these wavelength shifts, we confirm the presence of a dilution of CH4 in other ice on the surface of Eris and the presence of pure CH4 that is spatially segregated. The comparison of the centers and shapes of these bands with previous works suggests that the surface is heterogeneous. The absence of the 2160 nm band of N-2 can be explained if the surface temperature is below 35.6 K, the transition temperature between the alpha and beta phases of this ice. Our results, including the reanalysis of data published elsewhere, point to a heterogeneous surface on Eris. C1 [Alvarez-Candal, A.; Gourgeot, F.] European So Observ, Santiago 19, Chile. [Pinilla-Alonso, N.; Cook, J.] NASA, Ames Res Ctr, NASA Post Doctoral Program, Moffett Field, CA 94035 USA. [Licandro, J.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Licandro, J.] Univ La Laguna, Dept Astrofis, Tenerife 38205, Spain. [Mason, E.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Dotto, E.] Osserv Astron Roma, Ist Nazl Astrofis INAF, Rome, Italy. [Perna, D.] Osserv Astron Capodimonte, Ist Nazl Astrofis INAF, Naples, Italy. RP Alvarez-Candal, A (reprint author), European So Observ, Alonso Cordova 3107,Casilla 19001, Santiago 19, Chile. EM aalvarez@eso.org RI Alvarez-Candal, Alvaro/M-4834-2013; OI Dotto, Elisabetta/0000-0002-9335-1656; mason, elena/0000-0003-3877-0484 FU NASA; Spanish "Ministerio de Ciencia e Innovacion" [AYA2008-06202-C03-02]; NPP program FX We would like to thank the X-Shooter team, who made these data available for us. N.P.A. acknowledges the support from NASA Postdoctoral Program administered by Oak Ridge Associated Universities through a contract with NASA. J.L. gratefully acknowledges support from the Spanish "Ministerio de Ciencia e Innovacion" project AYA2008-06202-C03-02. J.C. acknowledges support of the NPP program. We also thank C. Dumas and F. Merlin, who kindly made their (reduced) data available to us, and an anonymous referee for the comments that helped to improve the quality of the manuscript. NR 35 TC 13 Z9 13 U1 2 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD AUG PY 2011 VL 532 AR A130 DI 10.1051/0004-6361/201117069 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 807ZS UT WOS:000293942700029 ER PT J AU Leitet, E Bergvall, N Piskunov, N Andersson, BG AF Leitet, E. Bergvall, N. Piskunov, N. Andersson, B. -G. TI Analyzing low signal-to-noise FUSE spectra Confirmation of Lyman continuum escape from Haro 11 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE intergalactic medium; galaxies: starburst; galaxies: fundamental parameters; galaxies: evolution; diffuse radiation; ultraviolet: galaxies ID ULTRAVIOLET-SPECTROSCOPIC-EXPLORER; STAR-FORMING GALAXIES; LY-ALPHA EMITTERS; SPACE-TELESCOPE SEARCH; HIGH-REDSHIFT GALAXIES; BLUE COMPACT GALAXIES; FAR-ULTRAVIOLET; IONIZING-RADIATION; STARBURST GALAXIES; COSMIC REIONIZATION AB Context. Galaxies are believed to be the main providers of Lyman continuum (LyC) photons during the early phases of the cosmic reionization. Little is known however, when it comes to escape fractions and the mechanisms behind the leakage. To learn more, one may look at local objects, but so far only one low-z galaxy has shown any signs of emitting LyC radiation. With data from the Far Ultraviolet Spectroscopic Explorer (FUSE), we previously found an absolute escape fraction of ionizing photons (f(esc)) of 4-10% for the blue compact galaxy Haro 11. However, using a revised version of the reduction pipeline on the same data set, Grimes and collaborators were unable to confirm this and derived an upper limit of f(esc) less than or similar to 2%. Aims. We attempt to determine whether Haro 11 is emitting ionizing radiation to a significant level or not. We also investigate the performance of the reduction pipeline for faint targets such as Haro 11, and introduce a new approach to the background subtraction. Methods. The final version of the reduction pipeline, CalFUSE v3.2, was applied to the same Haro 11 data set as the two previous authors used. At these faint flux levels, both FUSE and CalFUSE are pushed to their limits, and a detailed analysis was undertaken to monitor the performance of the pipeline. We show that non-simultaneous background estimates are insuffient when working with data of low signal-to-noise ratio (S/N), and a new background model was developed based on a direct fit to the detector response. Results. We find that one has to be very careful when using CalFUSE v3.2 on low S/N data, and especially when dealing with sources where signal might originate from off-center regions. Applying the new background fit, a significant signal is detected in the LyC in both detector segments covering these wavelengths. Thus, the leakage is confirmed with a flux density of f(900) = 4.0 x 10(-15) erg s(-1) cm(-2) angstrom(-1) (S/N = 4.6), measured on the airglow free regions in the LyC for the night-only data. This corresponds to an absolute escape fraction of ionizing photons from Haro 11 of f(esc) = 3.3 +/- 0.7%. We confirm these results by investigating the two-dimensional data, the count rates, and the residual flux in CII lambda 1036 angstrom. C1 [Leitet, E.; Bergvall, N.; Piskunov, N.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Andersson, B. -G.] NASA, Ames Res Ctr, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. RP Leitet, E (reprint author), Uppsala Univ, Dept Phys & Astron, Box 515, S-75120 Uppsala, Sweden. EM elisabet.leitet@fysast.uu.se; nils.bergvall@fysast.uu.se; nikolai.piskunov@fysast.uu.se; bgandersson@sofia.usra.edu OI Andersson, B-G/0000-0001-6717-0686 FU Swedish Space Board; Swedish Research Council; NASA [NAS5-26555]; NASA Office of Space Science [NAG5-7584] FX This work was supported by the Swedish Space Board. N.B. also acknowledges support from the Swedish Research Council.; Some of the data presented in this paper were obtained from the Multimission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NAG5-7584 and by other grants and contracts. NR 59 TC 23 Z9 23 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD AUG PY 2011 VL 532 AR A107 DI 10.1051/0004-6361/201015654 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 807ZS UT WOS:000293942700006 ER PT J AU Rosenberg, MJF Berne, O Boersma, C Allamandola, LJ Tielens, AGGM AF Rosenberg, M. J. F. Berne, O. Boersma, C. Allamandola, L. J. Tielens, A. G. G. M. TI Coupled blind signal separation and spectroscopic database fitting of the mid infrared PAH features SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; photon-dominated region (PDR); ISM: lines and bands; infrared: ISM ID POLYCYCLIC AROMATIC-HYDROCARBONS; EMISSION FEATURES; INTERSTELLAR-MEDIUM; PHOTODISSOCIATION REGIONS; MICRON REGION; SMALL GRAINS; FAR-IR; MOLECULES; SPECTRA; BANDS AB Context. The aromatic infrared bands (AIBs) observed in the mid infrared spectrum of galactic and extragalactic sources are attributed to polycyclic aromatic hydrocarbons (PAHs). Recently, two new approaches have been developed to analyze the variations of AIBs in terms of chemical evolution of PAH species: blind signal separation (BSS) and the NASA Ames PAH IR Spectroscopic Database fitting tool. Aims. We aim to study AIBs in a photo-dissociation region (PDR) since in these regions, as the radiation environment changes, the evolution of AIBs are observed. Methods. We observe the NGC 7023-north west (NW) PDR in the mid-infrared (10-19.5 mu m) using the InfraRed Spectrometer (IRS), on board Spitzer, in the high-resolution, short wavelength mode. Clear variations are observed in the spectra, most notably the ratio of the 11.0 to 11.2 mu m bands, the peak position of the 11.2 and 12.0 mu m bands, and the degree of asymmetry of the 11.2 mu m band. The observed variations appear to change as a function of position within the PDR. We aim to explain these variations by a change in the abundances of the emitting components of the PDR. A blind signal separation (BSS) method, i.e. a Non-Negative Matrix Factorization algorithm is applied to separate the observed spectrum into components. Using the NASA Ames PAH IR Spectroscopic Database, these extracted signals are fit. The observed signals alone were also fit using the database and these components are compared to the BSS components. Results. Three component signals were extracted from the observation using BSS. We attribute the three signals to ionized PAHs, neutral PAHs, and very small grains (VSGs). The fit of the BSS extracted spectra with the PAH database further confirms the attribution to PAH(+) and PAH(0) and provides confidence in both methods for producing reliable results. Conclusions. The 11.0 mu m feature is attributed to PAH(+) while the 11.2 mu m band is attributed to PAH(0). The VSG signal shows a characteristically asymmetric broad feature at 11.3 mu m with an extended red wing. By combining the NASA Ames PAH IR Spectroscopic Database fit with the BSS method, the independent results of each method can be confirmed and some limitations of each method are overcome. C1 [Rosenberg, M. J. F.; Berne, O.; Tielens, A. G. G. M.] Leiden Univ, Sterrewacht Leiden, NL-2333 CA Leiden, Netherlands. [Rosenberg, M. J. F.] Int Space Univ, F-67400 Illkirch Graffenstaden, France. [Boersma, C.; Allamandola, L. J.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. RP Rosenberg, MJF (reprint author), Leiden Univ, Sterrewacht Leiden, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands. EM rosenberg@strw.leidenuniv.nl; Christiaan.Boersma@nasa.gov; Louis.J.Allamandola@nasa.gov RI Boersma, Christiaan/L-7696-2014 OI Boersma, Christiaan/0000-0002-4836-217X FU NASA; ISU; National Aeronautics and SPace Administration's Earth Science Technology Office [NCC5-626]; California Institute of Technology; European Research Council [246976] FX This work was conducted by M. Rosenberg in part fulfillment of the M.Sc. Degree in Space Studies at the International Space University (ISU), Strasbourg, France. The author also acknowledges M.Sc. scholarship support from ISU. L. J. Allamandola acknowledges support from NASA's Astrobiology and Laboratory Astrophysics Program. We acknowledge B. Joalland for fruitful discussions on the spectral properties of SiPAH complexes. This research made use of Montage, funded by the National Aeronautics and SPace Administration's Earth Science Technology Office, Computation Technologies Project, under Cooperative Agreement Number NCC5-626 between NASA and the California Institute of Technology. Montage is maintained by the NASA/IPAC Infrared Science Archive. C. Boersma acknowledges support by an appointment to the NASA Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. ERC grant: studies of interstellar PAH at Leiden Observatory are supported through advanced-ERC grant 246976 from the European Research Council. The authors also thank the referee for his/her time, comments, and suggestions. NR 50 TC 23 Z9 23 U1 0 U2 8 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD AUG PY 2011 VL 532 AR A128 DI 10.1051/0004-6361/201016340 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 807ZS UT WOS:000293942700027 ER PT J AU Aihara, H Prieto, CA An, D Anderson, SF Aubourg, E Balbinot, E Beers, TC Berlind, AA Bickerton, SJ Bizyaev, D Blanton, MR Bochanski, JJ Bolton, AS Bovy, J Brandt, WN Brinkmann, J Brown, PJ Brownstein, JR Busca, NG Campbell, H Carr, MA Chen, YM Chiappini, C Comparat, J Connolly, N Cortes, M Croft, RAC Cuesta, AJ da Costa, LN Davenport, JRA Dawson, K Dhital, S Ealet, A Ebelke, GL Edmondson, EM Eisenstein, DJ Escoffier, S Esposito, M Evans, ML Fan, XH Castella, BF Font-Ribera, A Frinchaboy, PM Ge, J Gillespie, BA Gilmore, G Hernandez, JIG Gott, JR Gould, A Grebel, EK Gunn, JE Hamilton, JC Harding, P Harris, DW Hawley, SL Hearty, FR Ho, S Hogg, DW Holtzman, JA Honscheid, K Inada, N Ivans, II Jiang, LH Johnson, JA Jordan, C Jordan, WP Kazin, EA Kirkby, D Klaene, MA Knapp, GR Kneib, JP Kochanek, CS Koesterke, L Kollmeier, JA Kron, RG Lampeitl, H Lang, D Le Goff, JM Lee, YS Lin, YT Long, DC Loomis, CP Lucatello, S Lundgren, B Lupton, RH Ma, ZB MacDonald, N Mahadevan, S Maia, MAG Makler, M Malanushenko, E Malanushenko, V Mandelbaum, R Maraston, C Margala, D Masters, KL McBride, CK McGehee, PM McGreer, ID Menard, B Miralda-Escude, J Morrison, HL Mullally, F Muna, D Munn, JA Murayama, H Myers, AD Naugle, T Neto, AF Nguyen, DC Nichol, RC O'Connell, RW Ogando, RLC Olmstead, MD Oravetz, DJ Padmanabhan, N Palanque-Delabrouille, N Pan, KK Pandey, P Paris, I Percival, WJ Petitjean, P Pfaffenberger, R Pforr, J Phleps, S Pichon, C Pieri, MM Prada, F Price-Whelan, AM Raddick, MJ Ramos, BHF Reyle, C Rich, J Richards, GT Rix, HW Robin, AC Rocha-Pinto, HJ Rockosi, CM Roe, NA Rollinde, E Ross, AJ Ross, NP Rossetto, BM Sanchez, AG Sayres, C Schlegel, DJ Schlesinger, KJ Schmidt, SJ Schneider, DP Sheldon, E Shu, YP Simmerer, J Simmons, AE Sivarani, T Snedden, SA Sobeck, JS Steinmetz, M Strauss, MA Szalay, AS Tanaka, M Thakar, AR Thomas, D Tinker, JL Tofflemire, BM Tojeiro, R Tremonti, CA Vandenberg, J Magana, MV Verde, L Vogt, NP Wake, DA Wang, J Weaver, BA Weinberg, DH White, M White, SDM Yanny, B Yasuda, N Yeche, C Zehavi, I AF Aihara, Hiroaki Allende Prieto, Carlos An, Deokkeun Anderson, Scott F. Aubourg, Eric Balbinot, Eduardo Beers, Timothy C. Berlind, Andreas A. Bickerton, Steven J. Bizyaev, Dmitry Blanton, Michael R. Bochanski, John J. Bolton, Adam S. Bovy, Jo Brandt, W. N. Brinkmann, J. Brown, Peter J. Brownstein, Joel R. Busca, Nicolas G. Campbell, Heather Carr, Michael A. Chen, Yanmei Chiappini, Cristina Comparat, Johan Connolly, Natalia Cortes, Marina Croft, Rupert A. C. Cuesta, Antonio J. da Costa, Luiz N. Davenport, James R. A. Dawson, Kyle Dhital, Saurav Ealet, Anne Ebelke, Garrett L. Edmondson, Edward M. Eisenstein, Daniel J. Escoffier, Stephanie Esposito, Massimiliano Evans, Michael L. Fan, Xiaohui Femenia Castella, Bruno Font-Ribera, Andreu Frinchaboy, Peter M. Ge, Jian Gillespie, Bruce A. Gilmore, G. Gonzalez Hernandez, Jonay I. Gott, J. Richard Gould, Andrew Grebel, Eva K. Gunn, James E. Hamilton, Jean-Christophe Harding, Paul Harris, David W. Hawley, Suzanne L. Hearty, Frederick R. Ho, Shirley Hogg, David W. Holtzman, Jon A. Honscheid, Klaus Inada, Naohisa Ivans, Inese I. Jiang, Linhua Johnson, Jennifer A. Jordan, Cathy Jordan, Wendell P. Kazin, Eyal A. Kirkby, David Klaene, Mark A. Knapp, G. R. Kneib, Jean-Paul Kochanek, C. S. Koesterke, Lars Kollmeier, Juna A. Kron, Richard G. Lampeitl, Hubert Lang, Dustin Le Goff, Jean-Marc Lee, Young Sun Lin, Yen-Ting Long, Daniel C. Loomis, Craig P. Lucatello, Sara Lundgren, Britt Lupton, Robert H. Ma, Zhibo MacDonald, Nicholas Mahadevan, Suvrath Maia, Marcio A. G. Makler, Martin Malanushenko, Elena Malanushenko, Viktor Mandelbaum, Rachel Maraston, Claudia Margala, Daniel Masters, Karen L. McBride, Cameron K. McGehee, Peregrine M. McGreer, Ian D. Menard, Brice Miralda-Escude, Jordi Morrison, Heather L. Mullally, F. Muna, Demitri Munn, Jeffrey A. Murayama, Hitoshi Myers, Adam D. Naugle, Tracy Neto, Angelo Fausti Duy Cuong Nguyen Nichol, Robert C. O'Connell, Robert W. Ogando, Ricardo L. C. Olmstead, Matthew D. Oravetz, Daniel J. Padmanabhan, Nikhil Palanque-Delabrouille, Nathalie Pan, Kaike Pandey, Parul Paris, Isabelle Percival, Will J. Petitjean, Patrick Pfaffenberger, Robert Pforr, Janine Phleps, Stefanie Pichon, Christophe Pieri, Matthew M. Prada, Francisco Price-Whelan, Adrian M. Raddick, M. Jordan Ramos, Beatriz H. F. Reyle, Celine Rich, James Richards, Gordon T. Rix, Hans-Walter Robin, Annie C. Rocha-Pinto, Helio J. Rockosi, Constance M. Roe, Natalie A. Rollinde, Emmanuel Ross, Ashley J. Ross, Nicholas P. Rossetto, Bruno M. Sanchez, Ariel G. Sayres, Conor Schlegel, David J. Schlesinger, Katharine J. Schmidt, Sarah J. Schneider, Donald P. Sheldon, Erin Shu, Yiping Simmerer, Jennifer Simmons, Audrey E. Sivarani, Thirupathi Snedden, Stephanie A. Sobeck, Jennifer S. Steinmetz, Matthias Strauss, Michael A. Szalay, Alexander S. Tanaka, Masayuki Thakar, Aniruddha R. Thomas, Daniel Tinker, Jeremy L. Tofflemire, Benjamin M. Tojeiro, Rita Tremonti, Christy A. Vandenberg, Jan Magana, M. Vargas Verde, Licia Vogt, Nicole P. Wake, David A. Wang, Ji Weaver, Benjamin A. Weinberg, David H. White, Martin White, Simon D. M. Yanny, Brian Yasuda, Naoki Yeche, Christophe Zehavi, Idit TI THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III (vol 193, pg 29, 2011) SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Correction ID CATALOG C1 [Aihara, Hiroaki; Lin, Yen-Ting; Menard, Brice; Murayama, Hitoshi; Tanaka, Masayuki; Yasuda, Naoki] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778583, Japan. [Allende Prieto, Carlos; Esposito, Massimiliano; Femenia Castella, Bruno; Gonzalez Hernandez, Jonay I.] Inst Astrofis Canarias, E-38205 Tenerife, Spain. [Allende Prieto, Carlos; Esposito, Massimiliano; Femenia Castella, Bruno] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [An, Deokkeun] Ewha Womans Univ, Dept Sci Educ, Seoul 120750, South Korea. [Anderson, Scott F.; Davenport, James R. A.; Evans, Michael L.; Hawley, Suzanne L.; MacDonald, Nicholas; Sayres, Conor; Schmidt, Sarah J.; Tofflemire, Benjamin M.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Aubourg, Eric; Busca, Nicolas G.; Hamilton, Jean-Christophe; Magana, M. Vargas] Univ Paris Diderot, Astroparticule & Cosmol APC, F-75205 Paris 13, France. [Aubourg, Eric; Le Goff, Jean-Marc; Palanque-Delabrouille, Nathalie; Rich, James; Yeche, Christophe] CEA, Ctr Saclay, Irfu SPP, F-91191 Gif Sur Yvette, France. [Balbinot, Eduardo; Neto, Angelo Fausti] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. [Balbinot, Eduardo; Chiappini, Cristina; da Costa, Luiz N.; Maia, Marcio A. G.; Makler, Martin; Neto, Angelo Fausti; Ogando, Ricardo L. C.; Ramos, Beatriz H. F.; Rocha-Pinto, Helio J.; Rossetto, Bruno M.] Lab Interinst E Astron LIneA, BR-20921400 Rio De Janeiro, Brazil. [Beers, Timothy C.; Lee, Young Sun] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Beers, Timothy C.; Lee, Young Sun] Michigan State Univ, JINA Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Berlind, Andreas A.; Dhital, Saurav; McBride, Cameron K.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Bickerton, Steven J.; Carr, Michael A.; Gott, J. Richard; Gunn, James E.; Knapp, G. R.; Lang, Dustin; Loomis, Craig P.; Lupton, Robert H.; Mandelbaum, Rachel; Mullally, F.; Strauss, Michael A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Bizyaev, Dmitry; Brinkmann, J.; Ebelke, Garrett L.; Gillespie, Bruce A.; Jordan, Cathy; Jordan, Wendell P.; Klaene, Mark A.; Long, Daniel C.; Malanushenko, Elena; Malanushenko, Viktor; Naugle, Tracy; Oravetz, Daniel J.; Pan, Kaike; Simmons, Audrey E.; Snedden, Stephanie A.] Apache Point Observ, Sunspot, NM 88349 USA. [Blanton, Michael R.; Bovy, Jo; Hogg, David W.; Kazin, Eyal A.; Muna, Demitri; Price-Whelan, Adrian M.; Tinker, Jeremy L.; Weaver, Benjamin A.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Bochanski, John J.; Brandt, W. N.; Mahadevan, Suvrath; Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Bolton, Adam S.; Brown, Peter J.; Brownstein, Joel R.; Dawson, Kyle; Harris, David W.; Ivans, Inese I.; Olmstead, Matthew D.; Pandey, Parul; Shu, Yiping; Simmerer, Jennifer] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Campbell, Heather; Edmondson, Edward M.; Lampeitl, Hubert; Maraston, Claudia; Masters, Karen L.; Nichol, Robert C.; Percival, Will J.; Pforr, Janine; Ross, Ashley J.; Thomas, Daniel; Tojeiro, Rita] Univ Portsmouth, Inst Cosmol & Gravitat ICG, Portsmouth PO1 3FX, Hants, England. [Chen, Yanmei; Tremonti, Christy A.] Univ Wisconsin, Dept Astron, Madison, WI 53703 USA. [Chiappini, Cristina; Steinmetz, Matthias] Astrophys Inst Potsdam, D-14482 Potsdam, Germany. [Chiappini, Cristina] Ist Nazl Astrofis, I-34143 Trieste, Italy. [Comparat, Johan; Kneib, Jean-Paul] Univ Aix Marseille 1, Lab Astrophys Marseille, CNRS, F-13388 Marseille 13, France. [Connolly, Natalia] Hamilton Coll, Dept Phys, Clinton, NY 13323 USA. [Cortes, Marina; Ho, Shirley; Roe, Natalie A.; Ross, Nicholas P.; Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Croft, Rupert A. C.] Carnegie Mellon Univ, Bruce & Astrid McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Cuesta, Antonio J.; Lundgren, Britt; Padmanabhan, Nikhil; Wake, David A.] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Ramos, Beatriz H. F.] Observ Nacl, BR-20921400 Rio De Janeiro, Brazil. [Ealet, Anne; Escoffier, Stephanie] Aix Marseille Univ, Ctr Phys Particules Marseille, CNRS IN2P3, Marseille, France. [Ebelke, Garrett L.; Jordan, Wendell P.; Pfaffenberger, Robert; Vogt, Nicole P.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Eisenstein, Daniel J.; Fan, Xiaohui; Jiang, Linhua; McGreer, Ian D.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Eisenstein, Daniel J.] Harvard Coll Observ, Cambridge, MA 02138 USA. [Font-Ribera, Andreu] Inst Ciencies Espai IEEC CSIC, E-08193 Barcelona, Spain. [Frinchaboy, Peter M.] Texas Christian Univ, Dept Phys & Astron, Ft Worth, TX 76129 USA. [Ge, Jian; Duy Cuong Nguyen; Sivarani, Thirupathi; Wang, Ji] Univ Florida, Dept Astron, Bryant Space Sci Ctr, Gainesville, FL 32611 USA. [Gilmore, G.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Gould, Andrew; Johnson, Jennifer A.; Kochanek, C. S.; Pieri, Matthew M.; Schlesinger, Katharine J.; Weinberg, David H.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Grebel, Eva K.] Univ Heidelberg, Astron Rechen Inst, Zentrum Astron, D-69120 Heidelberg, Germany. [Harding, Paul; Holtzman, Jon A.; Ma, Zhibo; Morrison, Heather L.; Zehavi, Idit] Case Western Reserve Univ, Dept Astron, Cleveland, OH 44106 USA. [Hearty, Frederick R.; O'Connell, Robert W.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Honscheid, Klaus] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Inada, Naohisa] Univ Tokyo, Res Ctr Early Universe, Grad Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan. [Kirkby, David; Margala, Daniel] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Koesterke, Lars] Univ Texas Austin, Texas Adv Comp Ctr, Austin, TX 78758 USA. [Kollmeier, Juna A.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Kron, Richard G.; Yanny, Brian] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Kron, Richard G.; Sobeck, Jennifer S.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Lin, Yen-Ting] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Lucatello, Sara] Osserv Astron Padova, INAF, I-35122 Padua, Italy. [Mahadevan, Suvrath; Schneider, Donald P.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, Davey Lab 525, University Pk, PA 16802 USA. [Makler, Martin] Ctr Brasileiro Pesquisas Fis, ICRA, BR-22290180 Rio De Janeiro, Brazil. [McGehee, Peregrine M.] CALTECH, IPAC, Pasadena, CA 91125 USA. [Menard, Brice] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Menard, Brice; Raddick, M. Jordan; Szalay, Alexander S.; Thakar, Aniruddha R.; Vandenberg, Jan] Johns Hopkins Univ, Ctr Astrophys Sci, Dept Phys & Astron, Baltimore, MD 21218 USA. [Miralda-Escude, Jordi; Verde, Licia] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Miralda-Escude, Jordi; Verde, Licia] Univ Barcelona IEEC, Inst Ciencies Cosmos, Barcelona 08028, Spain. [Mullally, F.] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. [Munn, Jeffrey A.] USN Observ, Flagstaff Stn, Flagstaff, AZ 86001 USA. [Myers, Adam D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Paris, Isabelle; Petitjean, Patrick; Pichon, Christophe; Rollinde, Emmanuel] Univ Paris 06, Inst Astrophys Paris, CNRS, UMR7095, F-75014 Paris, France. [Phleps, Stefanie; Sanchez, Ariel G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Pieri, Matthew M.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Prada, Francisco] Inst Astrofis Andalucia CSIC, E-18008 Granada, Spain. [Reyle, Celine; Robin, Annie C.] Univ Franche Comte, Inst Utinam, Observ Besancon, F-25010 Besancon, France. [Richards, Gordon T.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Rix, Hans-Walter] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Rocha-Pinto, Helio J.; Rossetto, Bruno M.] Univ Fed Rio de Janeiro, Observ Valongo, BR-20080090 Rio De Janeiro, Brazil. [Rockosi, Constance M.] Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Sheldon, Erin] Brookhaven Natl Lab, Upton, NY 11973 USA. [Sivarani, Thirupathi] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [White, Martin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [White, Simon D. M.] Max Planck Inst Astrophys, D-85748 Garching, Germany. RP Aihara, H (reprint author), Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778583, Japan. RI White, Martin/I-3880-2015; Brandt, William/N-2844-2015; Rocha-Pinto, Helio/C-2719-2008; Padmanabhan, Nikhil/A-2094-2012; Yasuda, Naoki/A-4355-2011; Aihara, Hiroaki/F-3854-2010; Murayama, Hitoshi/A-4286-2011; Le Goff, Jean-Marc/E-7629-2013; Tecnologias espaciai, Inct/I-2415-2013; Gonzalez Hernandez, Jonay I./L-3556-2014; Ogando, Ricardo/A-1747-2010; Mandelbaum, Rachel/N-8955-2014; Ho, Shirley/P-3682-2014; Balbinot, Eduardo/E-8019-2015; Kneib, Jean-Paul/A-7919-2015; Pforr, Janine/J-3967-2015 OI White, Martin/0000-0001-9912-5070; Brandt, William/0000-0002-0167-2453; Aihara, Hiroaki/0000-0002-1907-5964; Gonzalez Hernandez, Jonay I./0000-0002-0264-7356; Ogando, Ricardo/0000-0003-2120-1154; Mandelbaum, Rachel/0000-0003-2271-1527; Ho, Shirley/0000-0002-1068-160X; Balbinot, Eduardo/0000-0002-1322-3153; Kneib, Jean-Paul/0000-0002-4616-4989; Pforr, Janine/0000-0002-3414-8391 NR 5 TC 49 Z9 49 U1 0 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD AUG PY 2011 VL 195 IS 2 AR 26 DI 10.1088/0067-0049/195/2/26 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 818RP UT WOS:000294773000015 ER PT J AU Ciufolini, I Paolozzi, A Pavlis, EC Ries, J Koenig, R Matzner, R Sindoni, G Neumayer, H AF Ciufolini, Ignazio Paolozzi, Antonio Pavlis, Erricos C. Ries, John Koenig, Rolf Matzner, Richard Sindoni, Giampiero Neumayer, Hans TI Testing gravitational physics with satellite laser ranging SO EUROPEAN PHYSICAL JOURNAL PLUS LA English DT Article ID EARTH GRAVITY MODELS; GRAVITOMAGNETIC FIELD; GENERAL-RELATIVITY; INERTIAL FRAMES; TIME-DELAY; ARTIFICIAL-SATELLITES; ACCELERATING UNIVERSE; DARK ENERGY; LAGEOS-II; IMPACT AB Laser ranging, both Lunar (LLR) and Satellite Laser Ranging (SLR), is one of the most accurate techniques to test gravitational physics and Einstein's theory of General Relativity. Lunar Laser Ranging has provided very accurate tests of both the strong equivalence principle, at the foundations of General Relativity, and of the weak equivalence principle, at the basis of any metric theory of gravity; it has provided strong limits to the values of the so-called PPN (Parametrized Post-Newtonian) parameters, that are used to test the post-Newtonian limit of General Relativity, strong limits to conceivable deviations to the inverse square law for very weak gravity and accurate measurements of the geodetic precession, an effect predicted by General Relativity. Satellite laser ranging has provided strong limits to deviations to the inverse square gravity law, at a different range with respect to LLR, and in particular has given the first direct test of the gravitomagnetic field by measuring the gravitomagnetic shift of the node of a satellite, a frame-dragging effect also called Lense-Thirring effect. Here, after an introduction to gravitomagnetism and frame-dragging, we describe the latest results in measuring the Lense-Thirring effect using the LAGEOS satellites and the latest gravity field models obtained by the space mission GRACE. Finally, we describe an update of the LARES (LAser RElativity Satellite) mission. LARES is planned for launch in 2011 to further improve the accuracy in the measurement of frame-dragging. C1 [Ciufolini, Ignazio] Univ Salento, Dipartimento Ingn Innovaz, Salento, Italy. [Paolozzi, Antonio; Sindoni, Giampiero] Sapienza Univ Roma, Scuola Ingn Aerospaziale, Rome, Italy. [Pavlis, Erricos C.] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. [Ries, John] Univ Texas Austin, Ctr Space Res, Austin, TX 78712 USA. [Koenig, Rolf; Neumayer, Hans] Geoforschungszentrum Potsdam, D-14473 Potsdam, Germany. [Matzner, Richard] Univ Texas Austin, Ctr Relat, Austin, TX 78712 USA. RP Ciufolini, I (reprint author), Univ Salento, Dipartimento Ingn Innovaz, Salento, Italy. EM ignazio.ciufolini@unisalento.it FU Italian Space Agency [I/043/08/0, I/016/07/0]; NASA [NNX09AU86G, NNG06DA07C] FX The authors acknowledge the International Laser Ranging Service for providing high-quality laser ranging tracking of the two LAGEOS satellites. I. Ciufolini and A. Paolozzi gratefully acknowledge the support of the Italian Space Agency, grants I/043/08/0 and I/016/07/0, E. C. Pavlis the support of NASA grant NNX09AU86G and J.C. Ries the support of NASA Contract NNG06DA07C. We would also like to thank the anonymous referee for useful suggestions and comments to improve the paper. NR 105 TC 29 Z9 29 U1 0 U2 6 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 2190-5444 J9 EUR PHYS J PLUS JI Eur. Phys. J. Plus PD AUG PY 2011 VL 126 IS 8 AR 72 DI 10.1140/epjp/i2011-11072-2 PG 19 WC Physics, Multidisciplinary SC Physics GA 817OU UT WOS:000294684500007 ER PT J AU Savin, S Budaev, V Zelenyi, L Amata, E Sibeck, D Lutsenko, V Borodkova, N Zhang, H Angelopoulos, V Safrankova, J Nemecek, Z Blecki, J Buechner, J Kozak, L Romanov, S Skalsky, A Krasnoselsky, V AF Savin, S. Budaev, V. Zelenyi, L. Amata, E. Sibeck, D. Lutsenko, V. Borodkova, N. Zhang, H. Angelopoulos, V. Safrankova, J. Nemecek, Z. Blecki, J. Buechner, J. Kozak, L. Romanov, S. Skalsky, A. Krasnoselsky, V. TI Anomalous Interaction of a Plasma Flow with the Boundary Layers of a Geomagnetic Trap SO JETP LETTERS LA English DT Article ID EARTHS BOW SHOCK; STATISTICS; TURBULENCE AB Using the data from the Interball-1, GEOTAIL, THEMIS and CLUSTER satellites, we propose a mechanism of anomalous magnetosheath dynamics. This mechanism yields that plasma boundaries can be locally deformed over distances comparable to its thickness. In particular, the magnetospheric boundary, the magnetopause, is deformed over distances up to a few Earth radii (R(E)) under the pressure of supermagnetosonic plasma streams (SPSs), instead of reacting to plasma pressure decreases, as it was previously thought. Supermagnetosonic plasma streams having a kinetic pressure a few times larger than the solar wind pressure and the magnetic pressure behind the magnetopause, can crush the magnetopause and even push it outside the mean bow shock position, as determined through the average pressures balance. Anomalous magnetosheath dynamics is initiated by plasma flow anomalies (FAs), triggered by rotational discontinuities, by jumps in the solar wind pressure and by interplanetary shocks, which all interact with the bow shock. We show that the generation mechanism for SPSs, adjacent to the FA, is connected with the compensation of the FA flow reduction by the SPS enhanced flow, which is produced by polarization electric fields at the FA edges. Statistically, SPSs are extreme events, relayed with intermittency and multifractality inside the boundary layers of the geomagnetic trap. In this way, SPSs provide "long-range" interactions between global and microscales. A similar role may be played by fast concentrated flows in the geomagnetic tail, in fusion devices, in astrophysical plasmas and in hydrodynamics. C1 [Savin, S.; Budaev, V.; Zelenyi, L.; Lutsenko, V.; Borodkova, N.; Romanov, S.; Skalsky, A.] Russian Acad Sci, Space Res Inst, Moscow 117997, Russia. [Budaev, V.] IV Kurchatov Atom Energy Inst, Natl Res Ctr, Moscow 123182, Russia. [Amata, E.] Interplanetary Space Phys Inst, Rome, Italy. [Sibeck, D.; Zhang, H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Angelopoulos, V.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Safrankova, J.; Nemecek, Z.] Charles Univ Prague, Prague, Czech Republic. [Blecki, J.] Polish Acad Sci, Space Res Ctr, PL-01237 Warsaw, Poland. [Buechner, J.] Max Planck Inst Solar Phys, Katlenburg Lindau, Germany. [Kozak, L.] Taras Shevchenko Natl Univ, Dept Astron & Space Phys, Kiev, Ukraine. [Krasnoselsky, V.] Lab Phys Chem Envir, Orleans, France. RP Savin, S (reprint author), Russian Acad Sci, Space Res Inst, Ul Profsoyuznaya 84-32, Moscow 117997, Russia. RI Buechner, Joerg/B-1213-2009; Sibeck, David/D-4424-2012; Budaev, Viacheslav/N-6987-2016 FU Branch of Physical Sciences, Russian Academy of Sciences [15, P-4]; Ministerstwo Nauki i Szkolnictwa Wyzszego [307 101 935]; Russian Foundation for Basic Research [10-02-00135, 11-02-90494] FX This work was supported by the Branch of Physical Sciences, Russian Academy of Sciences (project nos. 15 and P-4), Ministerstwo Nauki i Szkolnictwa Wyzszego (grant no. 307 101 935), and the Russian Foundation for Basic Research (project nos. 10-02-00135 and 11-02-90494). We are grateful to G. Zastenker for plasma flux data (Interball-1) and experimental groups measuring magnetic fields and plasma parameters on the WIND, ACE, GEOTAIL, CLUSTER, and THEMIS satellites for their data obtained through CDAWeb. NR 17 TC 7 Z9 7 U1 0 U2 2 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0021-3640 J9 JETP LETT+ JI Jetp Lett. PD AUG PY 2011 VL 93 IS 12 BP 754 EP 762 DI 10.1134/S0021364011120137 PG 9 WC Physics, Multidisciplinary SC Physics GA 818NM UT WOS:000294759000015 ER PT J AU Unnikrishnan, K Kawamura, S Saito, A Yokoyama, T Fukao, S AF Unnikrishnan, K. Kawamura, S. Saito, A. Yokoyama, T. Fukao, S. TI Multi-instrumental observation of weak magnetic storms occurred during the period, 18-21 March 2002 SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Weak geomagnetic storms; Multi-instrumental analysis; Mid-latitude ionosphere; FLIP-model ID TRAVELING IONOSPHERIC DISTURBANCES; GLOBAL POSITIONING SYSTEM; F-REGION; GPS NETWORK; MU RADAR; ELECTRIC-FIELDS; SPREAD-F; MIDLATITUDE IONOSPHERE; GEOMAGNETIC STORMS; AMERICAN SECTOR AB Multi-instrumental observation of ionospheric responses to two weak magnetic storms occurred during the period, 18-21 March 2002, was conducted using GPS network, MU radar, and ionosondes, over the mid-latitude sector, and compared with the output generated by FLIP model. Latitudinal and temporal variations of GPS-TEC exhibit poleward expansion up to 35 degrees N, during day time hours (around 1000-1300 JST), of 19 and 21 March after the SSCs. It is interesting to note that, although the second storm considered here is very weak, on 20 March after the SSC around mid-night, MU radar observed that neutral wind increases rapidly up to 200 m/s, towards equator and simultaneously, a perturbation component of about 2 TECU is observed by GPS network, around 0100 JST of 21 March, which propagate from north to equator. lonosondes also revealed that, after the second SSC, around 0200 JST on 21 March, F-layer height increases at Wakkanai, and Kokubunji which propagates to Okinawa, exhibiting a latitudinal dispersion feature, showing the influence of equatorward neutral wind/propagating nature of a powerful wind surge. The equivalent neutral wind derived from FLIP model by including vibrationally excited nitrogen, N-2* and without its inclusion are almost identical and in good agreement with the MU radar neutral wind. The interplanetary-magnetosphere scenario of the initial and main phase of the two weak geomagnetic storms considered in the present study are quite different, which is reflected in the ionospheric responses to these events. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Unnikrishnan, K.] NSS Hindu Coll, Dept Phys, Changanacheri 686102, Kerala, India. [Unnikrishnan, K.] Mahatma Gandhi Univ, Sch Pure & Appl Phys, Kottayam 686560, Kerala, India. [Kawamura, S.] Natl Inst Informat & Commun Technol, Okinawa Subtrop Remote Sensing Ctr, Okinawa 9040411, Japan. [Saito, A.] Kyoto Univ, Grad Sch Sci, Dept Geophys, Kyoto 6068502, Japan. [Yokoyama, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Yokoyama, T.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Fukao, S.] Kyoto Univ, Res Inst Sustainable Humanosphere, Kyoto 6110011, Japan. RP Unnikrishnan, K (reprint author), NSS Hindu Coll, Dept Phys, Changanacheri 686102, Kerala, India. EM kaleekkalunni@gmail.com FU JSPS FX K. Unnikrishnan has conducted this work partially at RISH, Kyoto University, by availing JSPS post-doctoral fellowship. The MU radar belongs to and is operated by RISH, Kyoto University, Japan. Authors are thankful to Dr. Phil Richards for providing files related with FLIP model. K.U acknowledges the Geographical Survey Institute, Japan, for providing GEONET data. Authors express sincere thanks to National Institute of Information and Communication Technology (NICT), Japan, for providing ionosonde data. Also, we thank the ACE MAG instrument team and the ACE Science Center for providing the ACE data. Authors express sincere thanks to both Reviewers for giving valuable suggestions during the review process. NR 52 TC 1 Z9 1 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD AUG PY 2011 VL 73 IS 13 BP 1653 EP 1664 DI 10.1016/j.jastp.2011.02.019 PG 12 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 816IL UT WOS:000294591800006 ER PT J AU Kishore, P Ratnam, MV Namboothiri, SP Velicogna, I Basha, G Jiang, JH Igarashi, K Rao, SVB Sivakumar, V AF Kishore, P. Ratnam, M. Venkat Namboothiri, S. P. Velicogna, Isabella Basha, Ghouse Jiang, J. H. Igarashi, K. Rao, S. V. B. Sivakumar, V. TI Global (50 degrees S-50 degrees N) distribution of water vapor observed by COSMIC GPS RO: Comparison with GPS radiosonde, NCEP, ERA-Interim, and JRA-25 reanalysis data sets SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Water vapor; Radiosonde; GPS RO; Reanalysis ID LOWER TROPOSPHERE; TEMPERATURE DATA; TEMPORAL HOMOGENIZATION; OCCULTATION SIGNALS; REFRACTIVITY BIAS; RELATIVE-HUMIDITY; ATMOSPHERE; CLIMATE; TRENDS; VALIDATION AB In this study, global (50 degrees S-50 degrees N) distribution of water vapor is investigated using COSMIC GPS RO measurements. Detailed comparisons have been made between COSMIC and high resolution GPS radiosonde measurements across 13 tropical stations and model outputs (ERA-Interim, NCEP, and JRA-25 reanalyses data sets). In comparison with independent techniques like radiosonde (Vaisala), it is found that COSMIC GPS RO wet profiles are accurate up to 7-8 km (assuming radiosonde as standard technique). In general, comparisons with corresponding seasonal means of model outputs are qualitatively in good agreement, although they differ quantitatively especially over convective regions of South America, Africa, and Indonesia. In tropical latitudes, the COSMIC specific humidity values are higher than the model outputs. Among various model outputs, ERA-Interim data set show near realistic features to that observed by COSMIC GPS RO measurements. Large asymmetry in the specific humidity distribution is observed between northern and southern hemispheres. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Ratnam, M. Venkat; Basha, Ghouse] Govt India, Dept Space, Natl Atmospher Res Lab, Tirupati, Andhra Pradesh, India. [Kishore, P.; Velicogna, Isabella] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Namboothiri, S. P.] SASTRA Univ, Sch Elect & Elect Engn, Tanjavur, India. [Jiang, J. H.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Igarashi, K.] Assoc Radio Ind & Business ARIB, Tokyo, Japan. [Rao, S. V. B.] Sri Venkateswara Univ, Dept Phys, Tirupati 517502, Andhra Pradesh, India. [Sivakumar, V.] CSIR, Natl Laser Ctr, ZA-0001 Pretoria, South Africa. RP Ratnam, MV (reprint author), Govt India, Dept Space, Natl Atmospher Res Lab, Tirupati, Andhra Pradesh, India. EM vratnam@narl.gov.in RI VENKATARAMAN, SIVAKUMAR/B-4570-2009 OI VENKATARAMAN, SIVAKUMAR/0000-0003-2462-681X NR 49 TC 24 Z9 26 U1 1 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD AUG PY 2011 VL 73 IS 13 BP 1849 EP 1860 DI 10.1016/j.jastp.2011.04.017 PG 12 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 816IL UT WOS:000294591800028 ER PT J AU Ikarashi, S Kohno, K Aguirre, JE Aretxaga, I Arumugam, V Austermann, JE Bock, JJ Bradford, CM Cirasuolo, M Earle, L Ezawa, H Furusawa, H Furusawa, J Glenn, J Hatsukade, B Hughes, DH Iono, D Ivison, RJ Johnson, S Kamenetzky, J Kawabe, R Lupu, R Maloney, P Matsuhara, H Mauskopf, PD Motohara, K Murphy, EJ Nakajima, K Nakanishi, K Naylor, BJ Nguyen, HT Perera, TA Scott, KS Shimasaku, K Takagi, T Takata, T Tamura, Y Tanaka, K Tsukagoshi, T Wilner, DJ Wilson, GW Yun, MS Zmuidzinas, J AF Ikarashi, S. Kohno, K. Aguirre, J. E. Aretxaga, I. Arumugam, V. Austermann, J. E. Bock, J. J. Bradford, C. M. Cirasuolo, M. Earle, L. Ezawa, H. Furusawa, H. Furusawa, J. Glenn, J. Hatsukade, B. Hughes, D. H. Iono, D. Ivison, R. J. Johnson, S. Kamenetzky, J. Kawabe, R. Lupu, R. Maloney, P. Matsuhara, H. Mauskopf, P. D. Motohara, K. Murphy, E. J. Nakajima, K. Nakanishi, K. Naylor, B. J. Nguyen, H. T. Perera, T. A. Scott, K. S. Shimasaku, K. Takagi, T. Takata, T. Tamura, Y. Tanaka, K. Tsukagoshi, T. Wilner, D. J. Wilson, G. W. Yun, M. S. Zmuidzinas, J. TI Detection of an ultrabright submillimetre galaxy in the Subaru/XMM-Newton Deep Field using AzTEC/ASTE SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: high-redshift; galaxies: ISM; galaxies: starburst; submillimetre: galaxies ID DEGREE EXTRAGALACTIC SURVEY; CLERK-MAXWELL-TELESCOPE; 1200-MU-M MAMBO SURVEY; STAR-FORMATION HISTORY; HIGH-REDSHIFT GALAXIES; GOODS-N FIELD; NUMBER COUNTS; MOLECULAR GAS; PHOTOMETRIC REDSHIFTS; SOURCE CATALOG AB We report on the detection of an extremely bright (similar to 37 mJy at 1100 mu m and similar to 91 mJy at 880 mu m) submillimetre galaxy (SMG), AzTEC-ASTE-SXDF1100.001 (hereafter referred to as SXDF1100.001 or Orochi), discovered in the 1100 mu m observations of the Subaru/XMM-Newton Deep Field using AzTEC on ASTE. Subsequent CARMA 1300-mu m and SMA 880-mu m observations successfully pinpoint the location of Orochi and suggest that it has two components, one extended [full width at half-maximum (FWHM) of similar to 4 arcsec] and one compact (unresolved). Z-Spec on CSO has also been used to obtain a wide-band spectrum from 190 to 308 GHz, although no significant emission/absorption lines were found. The derived upper limit to the line-to-continuum flux ratio is 0.1-0.3 (2 sigma) across the Z-Spec band. Based on the analysis of the derived spectral energy distribution from optical to radio wavelengths of possible counterparts near the SMA/CARMA peak position, we suggest that Orochi is a lensed, optically dark SMG lying at z similar to 3.4 behind a foreground, optically visible (but red) galaxy at z similar to 1.4. The deduced apparent (i.e., no correction for magnification) infrared luminosity (L-IR) and star formation rate (SFR) are 6 x 10(13) L-circle dot and 11 000 M-circle dot yr(-1), respectively, assuming that the L-IR is dominated by star formation. These values suggest that Orochi will consume its gas reservoir within a short time-scale (3 x 10(7) yr), which is indeed comparable to those in extreme starbursts like the centres of local ultraluminous infrared galaxies (ULIRGs). C1 [Kohno, K.; Shimasaku, K.] Univ Tokyo, Sch Sci, Research Ctr Early Universe, Bunkyo Ku, Tokyo 1130033, Japan. [Aguirre, J. E.; Lupu, R.; Scott, K. S.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Aretxaga, I.; Hughes, D. H.] INAOE, Puebla 72000, Pue, Mexico. [Arumugam, V.; Cirasuolo, M.; Ivison, R. J.; Matsuhara, H.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Austermann, J. E.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Ikarashi, S.; Kohno, K.; Motohara, K.; Tsukagoshi, T.] Univ Tokyo, Inst Astron, Tokyo 1810015, Japan. [Bock, J. J.; Bradford, C. M.; Naylor, B. J.; Nguyen, H. T.; Zmuidzinas, J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bock, J. J.; Bradford, C. M.; Murphy, E. J.; Zmuidzinas, J.] CALTECH, Pasadena, CA 91125 USA. [Cirasuolo, M.; Ivison, R. J.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Earle, L.; Glenn, J.; Kamenetzky, J.; Maloney, P.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Ezawa, H.; Nakanishi, K.] Natl Astron Observ, ALMA Project Off, Mitaka, Tokyo 1818588, Japan. [Furusawa, H.; Furusawa, J.; Takata, T.] Natl Astron Observ, Astron Data Ctr, Mitaka, Tokyo 1818588, Japan. [Hatsukade, B.; Iono, D.; Kawabe, R.; Tamura, Y.] Nobeyama Radio Observ, Minamisa Ku, Minamimaki, Nagano 3841305, Japan. [Johnson, S.; Wilson, G. W.; Yun, M. S.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Takagi, T.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Mauskopf, P. D.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Nakajima, K.; Shimasaku, K.] Univ Tokyo, Dept Astron, Bunkyo Ku, Tokyo 1130033, Japan. [Perera, T. A.] Illinois Wesleyan Univ, Bloomington, IL 61701 USA. [Tanaka, K.] Keio Univ, Fac Sci & Technol, Dept Phys, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan. [Wilner, D. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Ikarashi, S (reprint author), Univ Tokyo, Inst Astron, 2-21-1 Osawa, Tokyo 1810015, Japan. EM ikarashi@ioa.s.u-tokyo.ac.jp RI MOTOHARA, KENTARO/G-4905-2014; Lupu, Roxana/P-9060-2014; Ivison, R./G-4450-2011 OI MOTOHARA, KENTARO/0000-0002-0724-9146; Lupu, Roxana/0000-0003-3444-5908; Ivison, R./0000-0001-5118-1313 FU MEXT; Smithsonian Institution; Academia Sinica; National Science Foundation; CARMA partner universities FX We would like to thank everyone who helped staff and support the AzTEC/ASTE 2008 operations and data calibration, including N. Ukita, M. Tashiro, M. Uehara, S. Doyle, P. Horner, J. Cortes, J. Karakla, and G. Wallace. The ASTE project is driven by the Nobeyama Radio Observatory (NRO), a branch of the National Astronomical Observatory of Japan (NAOJ), in collaboration with the University of Chile and Japanese institutions including the University of Tokyo, Nagoya University, Osaka Prefecture University, Ibaraki University and Hokkaido University. Partial observations with ASTE were carried out remotely from Japan using NTT's GEMnet2 and its partner R&E networks, which are based on the AccessNova collaboration of the University of Chile, NTT Laboratories and the NAOJ. This study was supported in part by the MEXT Grant-in-Aid for Specially Promoted Research (No. 20001003). The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. Support for CARMA construction was derived from the Gordon and Betty Moore Foundation, the Kenneth T. and Eileen L. Norris Foundation, the James S. McDonnell Foundation, the Associates of the California Institute of Technology, the University of Chicago, the states of California, Illinois, and Maryland, and the National Science Foundation. The ongoing CARMA development and operations are supported by the National Science Foundation under a cooperative agreement, and by the CARMA partner universities. NR 107 TC 22 Z9 22 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 4 BP 3081 EP 3096 DI 10.1111/j.1365-2966.2011.18918.x PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811JK UT WOS:000294204900010 ER PT J AU Gressel, O Nelson, RP Turner, NJ AF Gressel, Oliver Nelson, Richard P. Turner, Neal J. TI On the dynamics of planetesimals embedded in turbulent protoplanetary discs with dead zones SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; MHD; methods: numerical; protoplanetary discs ID 3-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS; SHEARING BOX APPROXIMATION; WEAKLY MAGNETIZED DISKS; LOW-MASS PROTOPLANETS; SPIRAL DENSITY WAVES; MRI CHANNEL FLOWS; X-RAY IONIZATION; ACCRETION DISKS; PROTOSTELLAR DISKS; MAGNETOROTATIONAL INSTABILITY AB Accretion in protoplanetary discs is thought to be driven by magnetohydrodynamic (MHD) turbulence via the magnetorotational instability. Recent work has shown that a planetesimal swarm embedded in a fully turbulent disc is subject to strong excitation of the velocity dispersion, leading to collisional destruction of bodies with radii R-p < 100 km. Significant diffusion of planetesimal semimajor axes also arises, leading to large-scale spreading of the planetesimal population throughout the inner regions of the protoplanetary disc, in apparent contradiction of constraints provided by the distribution of asteroids within the asteroid belt. In this paper, we examine the dynamics of planetesimals embedded in vertically stratified turbulent discs, with and without dead zones. Our main aims are to examine the turbulent excitation of the velocity dispersion, and the radial diffusion, of planetesimals in these discs. We employ 3D MHD simulations using the shearing box approximation, along with an equilibrium chemistry model that is used to calculate the ionization fraction of the disc gas as a function of time and position. Ionization is assumed to arise because of stellar X-rays, galactic cosmic rays and radioactive nuclei. In agreement with our previous study, we find that planetesimals in fully turbulent discs develop large random velocities that will lead to collisional destruction/erosion for bodies with sizes below 100 km, and undergo radial diffusion on a scale similar to 2.5 au over a 5 Myr disc lifetime. But planetesimals in a dead zone experience a much reduced excitation of their random velocities, and equilibrium velocity dispersions lie between the disruption thresholds for weak and strong aggregates for sizes R-p <= 100 km. We also find that radial diffusion occurs over a much reduced length-scale similar to 0.25 au over the disc lifetime, this being consistent with Solar system constraints. We conclude that planetesimal growth via mutual collisions between smaller bodies cannot occur in a fully turbulent disc. By contrast, a dead zone may provide a safe haven in which km-sized planetesimals can avoid mutual destruction through collisions. C1 [Gressel, Oliver; Nelson, Richard P.] Univ London, Astron Unit, London E1 4NS, England. [Turner, Neal J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Gressel, O (reprint author), Univ London, Astron Unit, Mile End Rd, London E1 4NS, England. EM o.gressel@qmul.ac.uk; r.p.nelson@qmul.ac.uk; neal.turner@jpl.nasa.gov RI Gressel, Oliver/D-3683-2014; OI Gressel, Oliver/0000-0002-5398-9225; Turner, Neal/0000-0001-8292-1943 FU Jet Propulsion Laboratory, California Institute of Technology; NASA; Alexander von Humboldt Foundation FX This work used the NIRVANA-III code developed by Udo Ziegler at the Astrophysical Institute Potsdam. All computations were performed on the QMUL HPC facility, purchased under the SRIF initiative. RPN and OG acknowledge the hospitality of the Isaac Newton Institute for Mathematical Sciences, where part of the work presented in this paper was completed during the 'Dynamics of Discs and Planets' research programme. NJT was supported by the Jet Propulsion Laboratory, California Institute of Technology, the NASA Origins and Outer Planets programs, and the Alexander von Humboldt Foundation. We thank the referee, Stuart Weidenschilling, for useful comments that led to improvements to this paper. NR 92 TC 29 Z9 29 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 4 BP 3291 EP 3307 DI 10.1111/j.1365-2966.2011.18944.x PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811JK UT WOS:000294204900028 ER PT J AU Cohen, DH Gagne, M Leutenegger, MA MacArthur, JP Wollman, EE Sundqvist, JO Fullerton, AW Owocki, SP AF Cohen, David H. Gagne, Marc Leutenegger, Maurice A. MacArthur, James P. Wollman, Emma E. Sundqvist, Jon O. Fullerton, Alex W. Owocki, Stanley P. TI Chandra X-ray spectroscopy of the very early O supergiant HD 93129A: constraints on wind shocks and the mass-loss rate SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: early-type; stars: individual: HD 93129A; stars: mass-loss; stars: winds, outflows; X-rays: stars ID HOT-STAR WINDS; DRIVEN STELLAR WINDS; EMISSION-LINE PROFILES; ZETA-PUPPIS; QUANTITATIVE-ANALYSIS; COLLIDING WINDS; CARINA; MODELS; SIMULATIONS; INSTABILITY AB We present an analysis of both the resolved X-ray emission-line profiles and the broad-band X-ray spectrum of the O-2 If* star HD 93129A, measured with the Chandra High Energy Transmission Grating Spectrometer ( HETGS). This star is among the earliest and most massive stars in the Galaxy, and provides a test of the embedded wind-shock scenario in a very dense and powerful wind. A major new result is that continuum absorption by the dense wind is the primary cause of the hardness of the observed X-ray spectrum, while intrinsically hard emission from colliding wind shocks contributes less than 10 per cent of the X-ray flux. We find results consistent with the predictions of numerical simulations of the line-driving instability, including line broadening indicating an onset radius of X-ray emission of several tenths of R-*. Helium-like forbidden-to-intercombination line ratios are consistent with this onset radius, and inconsistent with being formed in a wind-collision interface with the star's closest visual companion at a distance of 100 au. The broad-band X-ray spectrum is fitted with a dominant emission temperature of just kT = 0.6 keV along with significant wind absorption. The broad-band wind absorption and the line profiles provide two independent measurements of the wind mass-loss rate:. M = 5.2(-1.5)(+1.8) x 10(-6) and 6.8(-2.2)(+2.8) x 10(-6) M-circle dot yr(-1), respectively. This is the first consistent modelling of the X-ray line-profile shapes and broad-band X-ray spectral energy distribution in a massive star, and represents a reduction of a factor of 3-4 compared to the standard H alpha mass-loss rate that assumes a smooth wind. C1 [Cohen, David H.; MacArthur, James P.; Wollman, Emma E.] Swarthmore Coll, Dept Phys & Astron, Swarthmore, PA 19081 USA. [Gagne, Marc] W Chester Univ, Dept Geol & Astron, W Chester, PA 19383 USA. [Leutenegger, Maurice A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Leutenegger, Maurice A.] CRESST, Baltimore, MD 21250 USA. [Leutenegger, Maurice A.] Univ Maryland, Baltimore, MD 21250 USA. [Wollman, Emma E.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Sundqvist, Jon O.; Owocki, Stanley P.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Fullerton, Alex W.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Cohen, DH (reprint author), Swarthmore Coll, Dept Phys & Astron, Swarthmore, PA 19081 USA. EM cohen@astro.swarthmore.edu RI Gagne, Marc/C-1130-2013; OI Wollman, Emma/0000-0002-5474-3745 FU National Aeronautics and Space Administration [AR7-8002X, GO0-11002B, ATP NNX11AC40G]; Provost's Office at Swarthmore College FX Support for this work was provided by the National Aeronautics and Space Administration through Chandra award numbers AR7-8002X and GO0-11002B to Swarthmore College. EEW was supported by a Lotte Lazarsfeld Bailyn Summer Research Fellowship, and JPM was supported by a Surdna Summer Research Fellowship, both from the Provost's Office at Swarthmore College. MAL is supported by an appointment to the NASA Postdoctoral Programme at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. JOS and SPO acknowledge support from NASA award ATP NNX11AC40G to the University of Delaware. The authors thank Veronique Petit for her careful reading of the manuscript and several useful suggestions. NR 49 TC 25 Z9 25 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 4 BP 3354 EP 3364 DI 10.1111/j.1365-2966.2011.18952.x PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811JK UT WOS:000294204900034 ER PT J AU Valtchanov, I Virdee, J Ivison, RJ Swinyard, B van der Werf, P Rigopoulou, D da Cunha, E Lupu, R Benford, DJ Riechers, D Smail, I Jarvis, M Pearson, C Gomez, H Hopwood, R Altieri, B Birkinshaw, M Coia, D Conversi, L Cooray, A De Zotti, G Dunne, L Frayer, D Leeuw, L Marston, A Negrello, M Portal, MS Scott, D Thompson, MA Vaccari, M Baes, M Clements, D Michalowski, MJ Dannerbauer, H Serjeant, S Auld, R Buttiglione, S Cava, A Dariush, A Dye, S Eales, S Fritz, J Ibar, E Maddox, S Pascale, E Pohlen, M Rigby, E Rodighiero, G Smith, DJB Temi, P Carpenter, J Bolatto, A Gurwell, M Vieira, JD AF Valtchanov, I. Virdee, J. Ivison, R. J. Swinyard, B. van der Werf, P. Rigopoulou, D. da Cunha, E. Lupu, R. Benford, D. J. Riechers, D. Smail, Ian Jarvis, M. Pearson, C. Gomez, H. Hopwood, R. Altieri, B. Birkinshaw, M. Coia, D. Conversi, L. Cooray, A. De Zotti, G. Dunne, L. Frayer, D. Leeuw, L. Marston, A. Negrello, M. Portal, M. Sanchez Scott, D. Thompson, M. A. Vaccari, M. Baes, M. Clements, D. Michalowski, M. J. Dannerbauer, H. Serjeant, S. Auld, R. Buttiglione, S. Cava, A. Dariush, A. Dye, S. Eales, S. Fritz, J. Ibar, E. Maddox, S. Pascale, E. Pohlen, M. Rigby, E. Rodighiero, G. Smith, D. J. B. Temi, P. Carpenter, J. Bolatto, A. Gurwell, M. Vieira, J. D. TI Physical conditions of the interstellar medium of high-redshift, strongly lensed submillimetre galaxies from the Herschel-ATLAS SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: individual: SDP.81: H-ATLAS J090311.6+003906; galaxies: individual: SDP.130: H-ATLAS J091305.0-005343; infrared: galaxies; radio continuum: galaxies; submillimetre: ISM ID FAR-INFRARED/RADIO CORRELATION; C-II LINE; STAR-FORMATION; MU-M; PHOTODISSOCIATION REGIONS; EXTRAGALACTIC SOURCES; PHOTOMETRIC REDSHIFTS; SPIRE INSTRUMENT; EARLY UNIVERSE; MOLECULAR GAS AB We present Herschel-Spectral and Photometric Imaging Receiver (SPIRE) Fourier transform spectrometer (FTS) and radio follow-up observations of two Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS)-detected strongly lensed distant galaxies. In one of the targeted galaxies H-ATLAS J090311.6+003906 (SDP. 81), we detect [O III] 88 mu m and [C II] 158 mu m lines at a signal-to-noise ratio of similar to 5. We do not have any positive line identification in the other fainter target H-ATLAS J091305.0-005343 (SDP. 130). Currently, SDP. 81 is the faintest submillimetre galaxy with positive line detections with the FTS, with continuum flux just below 200 mJy in the 200-600 mu m wavelength range. The derived redshift of SDP. 81 from the two detections is z = 3.043 +/- 0.012, in agreement with ground-based CO measurements. This is the first detection by Herschel of the [O III] 88 mu m line in a galaxy at redshift higher than 0.05. Comparing the observed lines and line ratios with a grid of photodissociation region (PDR) models with different physical conditions, we derive the PDR cloud density n approximate to 2000 cm(-3) and the far-ultraviolet ionizing radiation field G(0) approximate to 200 (in units of the Habing field - the local Galactic interstellar radiation field of 1.6 x 10(-6) W m(-2)). Using the CO-derived molecular mass and the PDR properties, we estimate the effective radius of the emitting region to be 500-700 pc. These characteristics are typical for star-forming, high-redshift galaxies. The radio observations indicate that SDP. 81 deviates significantly from the local far-infrared/radio (FIR/radio) correlation, which hints that some fraction of the radio emission is coming from an active galactic nucleus (AGN). The constraints on the source size from millimetre-wave observations put a very conservative upper limit of the possible AGN contribution to less than 33 per cent. These indications, together with the high [OIII]/FIR ratio and the upper limit of [O I] 63 mu m/[C II] 158 mu m, suggest that some fraction of the ionizing radiation is likely to originate from the AGN. C1 [Valtchanov, I.; Altieri, B.; Coia, D.; Conversi, L.; Marston, A.; Portal, M. Sanchez] ESA, European Space Astron Ctr, Herschel Sci Ctr, Villanueva De La Canada 28691, Spain. [Virdee, J.; Swinyard, B.; Rigopoulou, D.; Pearson, C.] STFC Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England. [Virdee, J.; Rigopoulou, D.] Univ Oxford, Oxford OX1 3RH, England. [Ivison, R. J.; Ibar, E.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ivison, R. J.; van der Werf, P.; Michalowski, M. J.] Univ Edinburgh, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Swinyard, B.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [van der Werf, P.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [da Cunha, E.] Univ Crete, Dept Phys, Iraklion 71003, Greece. [da Cunha, E.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Lupu, R.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Benford, D. J.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab Code 665, Greenbelt, MD 20771 USA. [Riechers, D.; Carpenter, J.; Vieira, J. D.] CALTECH, Pasadena, CA 91125 USA. [Smail, Ian] Univ Durham, Inst Computat Cosmol, Dept Phys, Durham DH1 3LE, England. [Jarvis, M.] Univ Hertfordshire, Sci & Technol Res Ctr, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Gomez, H.; Auld, R.; Dariush, A.; Dye, S.; Eales, S.; Pascale, E.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Hopwood, R.; Clements, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Birkinshaw, M.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [De Zotti, G.] Osserv Astron Padova, INAF, I-35122 Padua, Italy. [De Zotti, G.] Scuola Int Super Studi Avanzati, I-34136 Trieste, Italy. [Dunne, L.; Thompson, M. A.; Maddox, S.; Rigby, E.; Smith, D. J. B.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Frayer, D.] Natl Radio Astron Observ, Green Bank, WV 24944 USA. [Leeuw, L.] Univ Johannesburg, Dept Phys, ZA-2006 Auckland Pk, South Africa. [Leeuw, L.] SETI Inst, Mountain View, CA 94043 USA. [Negrello, M.; Serjeant, S.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Vaccari, M.; Buttiglione, S.; Rodighiero, G.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy. [Baes, M.; Fritz, J.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Dannerbauer, H.] CEA Saclay, DAPNIA Serv Astrophys, F-91191 Gif Sur Yvette, France. [Cava, A.] Univ Complutense Madrid, Fac CC Fis, Dept Astrofis, E-28040 Madrid, Spain. [Dariush, A.] Inst Res Fundamental Sci IPM, Sch Astron, Tehran, Iran. [Temi, P.] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. [Bolatto, A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Gurwell, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Valtchanov, I (reprint author), ESA, European Space Astron Ctr, Herschel Sci Ctr, Villanueva De La Canada 28691, Spain. EM ivaltchanov@sciops.esa.int RI Benford, Dominic/D-4760-2012; Gomez, Haley/C-2800-2009; Baes, Maarten/I-6985-2013; Smail, Ian/M-5161-2013; Lupu, Roxana/P-9060-2014; Ivison, R./G-4450-2011; Vaccari, Mattia/R-3431-2016; Cava, Antonio/C-5274-2017; OI Dye, Simon/0000-0002-1318-8343; Smith, Daniel/0000-0001-9708-253X; Rodighiero, Giulia/0000-0002-9415-2296; da Cunha, Elisabete/0000-0001-9759-4797; Altieri, Bruno/0000-0003-3936-0284; Benford, Dominic/0000-0002-9884-4206; Baes, Maarten/0000-0002-3930-2757; Smail, Ian/0000-0003-3037-257X; Lupu, Roxana/0000-0003-3444-5908; Ivison, R./0000-0001-5118-1313; Vaccari, Mattia/0000-0002-6748-0577; Cava, Antonio/0000-0002-4821-1275; Maddox, Stephen/0000-0001-5549-195X; Scott, Douglas/0000-0002-6878-9840 FU BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany); ASI/INAF (Italy); CICYT/MCYT (Spain); CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA) FX The Herschel-ATLAS is a project with Herschel, which is an ESA space observatory with science instruments provided by Europeanled Principal Investigator consortia and with important participation from NASA. The H-ATLAS website is http://www.h-atlas.org/. PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAF-IFSI/OAA/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain). SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, University of Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); and NASA (USA). NR 77 TC 41 Z9 41 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 4 BP 3473 EP 3484 DI 10.1111/j.1365-2966.2011.18959.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811JK UT WOS:000294204900045 ER PT J AU Balona, LA Guzik, JA Uytterhoeven, K Smith, JC Tenenbaum, P Twicken, JD AF Balona, L. A. Guzik, J. A. Uytterhoeven, K. Smith, J. C. Tenenbaum, P. Twicken, J. D. TI The Kepler view of gamma Doradus stars SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: oscillations; stars: variables: general ID DELTA-SCUTI; MODE; OSCILLATIONS; FREQUENCIES; EXCITATION; PULSATIONS; PULSATORS; MISSION; SCIENCE AB Visual classification of over 10 000 stars in the Kepler data base has revealed a class of stars with almost monoperiodic light variations and characteristic beating. A subset of these stars have a larger light amplitude and asymmetric light curves with larger variation in maximum brightness than in minimum brightness. The beating is mostly a result of two dominant, closely spaced frequencies. A third group of stars shows multiple low frequencies of comparable amplitudes. All three types of star fall in the region of the Hertzsprung-Russell diagram where gamma Dor stars are found and we therefore identify them as gamma Dor variables. However, stars with migrating star-spots also have symmetric light curves with beats, so it is likely that the sample is contaminated by non-pulsating stars of this type. If we assume that the dominant frequency in stars with beats is the rotational frequency, the resulting distribution of equatorial rotational velocities matches that of field stars of similar temperature and luminosity. We therefore conclude that the pulsation periods of these stars must be close to their rotational periods. The third group with multiple frequencies may be slowly rotating gamma Dor stars. This investigation is closely related to the presence of low frequencies in delta Scuti stars which we briefly discuss. C1 [Balona, L. A.] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Guzik, J. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Uytterhoeven, K.] Univ Paris Diderot, CEA DSM CNRS, IRFU SAp, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Uytterhoeven, K.] Kiepenheuer Inst Sonnenphys, D-79104 Freiburg, Germany. [Smith, J. C.; Tenenbaum, P.; Twicken, J. D.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. RP Balona, LA (reprint author), S African Astron Observ, POB 9, ZA-7935 Cape Town, South Africa. EM lab@saao.ac.za FU NASA's Science Mission Directorate; South African Astronomical Observatory; Deutsche Forschungsgemeinschaft (DFG) [UY 52/1-1] FX The authors wish to thank the Kepler team for their generosity in allowing the data to be released to the Kepler Asteroseismic Science Consortium (KASC) ahead of public release and for their outstanding efforts which have made these results possible. Funding for the Kepler mission is provided by NASA's Science Mission Directorate.; LAB wishes to thank the South African Astronomical Observatory for financial support. KU acknowledges financial support by the Deutsche Forschungsgemeinschaft (DFG) in the framework of project UY 52/1-1. NR 30 TC 44 Z9 44 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 4 BP 3531 EP 3538 DI 10.1111/j.1365-2966.2011.18973.x PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811JK UT WOS:000294204900049 ER PT J AU Verner, GA Elsworth, Y Chaplin, WJ Campante, TL Corsaro, E Gaulme, P Hekker, S Huber, D Karoff, C Mathur, S Mosser, B Appourchaux, T Ballot, J Bedding, TR Bonanno, A Broomhall, AM Garcia, RA Handberg, R New, R Stello, D Regulo, C Roxburgh, IW Salabert, D White, TR Caldwell, DA Christiansen, JL Fanelli, MN AF Verner, G. A. Elsworth, Y. Chaplin, W. J. Campante, T. L. Corsaro, E. Gaulme, P. Hekker, S. Huber, D. Karoff, C. Mathur, S. Mosser, B. Appourchaux, T. Ballot, J. Bedding, T. R. Bonanno, A. Broomhall, A. -M. Garcia, R. A. Handberg, R. New, R. Stello, D. Regulo, C. Roxburgh, I. W. Salabert, D. White, T. R. Caldwell, D. A. Christiansen, J. L. Fanelli, M. N. TI Global asteroseismic properties of solar-like oscillations observed by Kepler: a comparison of complementary analysis methods SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: fundamental parameters; stars: interiors; stars: oscillations; stars: solar-type ID STELLAR OSCILLATIONS; LARGE SEPARATIONS; GLOBULAR-CLUSTER; MAIN-SEQUENCE; HR DIAGRAM; RED GIANTS; STARS; PARAMETERS; MISSION; RATIO AB We present the asteroseismic analysis of 1948 F-, G- and K-type main-sequence and subgiant stars observed by the National Aeronautics and Space Administration Kepler mission. We detect and characterize solar-like oscillations in 642 of these stars. This represents the largest cohort of main-sequence and subgiant solar-like oscillators observed to date. The photometric observations are analysed using the methods developed by nine independent research teams. The results are combined to validate the determined global asteroseismic parameters and calculate the relative precision by which the parameters can be obtained. We correlate the relative number of detected solar-like oscillators with stellar parameters from the Kepler Input Catalogue and find a deficiency for stars with effective temperatures in the range 5300 less than or similar to T-eff less than or similar to 5700 K and a drop-off in detected oscillations in stars approaching the red edge of the classical instability strip. We compare the power-law relationships between the frequency of peak power, nu(max), the mean large frequency separation, Delta nu, and the maximum mode amplitude, A(max), and show that there are significant method-dependent differences in the results obtained. This illustrates the need for multiple complementary analysis methods to be used to assess the robustness and reproducibility of results derived from global asteroseismic parameters. C1 [Verner, G. A.; Roxburgh, I. W.] Queen Mary Univ London, Astron Unit, London E1 4NS, England. [Verner, G. A.; Elsworth, Y.; Chaplin, W. J.; Hekker, S.; Broomhall, A. -M.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Campante, T. L.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Campante, T. L.; Karoff, C.; Handberg, R.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Corsaro, E.; Bonanno, A.] INAF Osservatorio Astrofis Catania, I-95123 Cantania, Italy. [Gaulme, P.; Appourchaux, T.] Univ Paris 11, UMR 8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Hekker, S.; Stello, D.] Univ Amsterdam, Astron Inst, NL-1098 XH Amsterdam, Netherlands. [Huber, D.; Bedding, T. R.; White, T. R.] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Mathur, S.] Natl Ctr Atmospher Res, Div Comp Sci, Boulder, CO 80307 USA. [Mathur, S.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Mosser, B.] Univ Paris 06, Univ Denis Diderot, CNRS, Observ Paris,LESIA, F-92195 Meudon, France. [Ballot, J.] CNRS, Inst Rech Astrophys & Planetol, F-31400 Toulouse, France. Univ Toulouse, UPS OMP, IRAP, F-31400 Toulouse, France. [Garcia, R. A.] Orme Merisiers, IRFU SAp, CEA DSM CNRS U, Lab AIM, F-91191 Gif Sur Yvette, France. [New, R.] Sheffield Hallam Univ, Fac Arts Comp Engn & Sci, Sheffield S1 1WB, S Yorkshire, England. [Regulo, C.; Salabert, D.] Inst Astrofis Canarias, Tenerife 38205, Spain. [Regulo, C.; Salabert, D.] Univ La Laguna, Dpto Astrofis, Tenerife 38206, Spain. [Caldwell, D. A.; Christiansen, J. L.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Fanelli, M. N.] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. RP Verner, GA (reprint author), Queen Mary Univ London, Astron Unit, Mile End Rd, London E1 4NS, England. EM g.verner@qmul.ac.uk RI Ballot, Jerome/G-1019-2010; Caldwell, Douglas/L-7911-2014; Karoff, Christoffer/L-1007-2013; OI Caldwell, Douglas/0000-0003-1963-9616; Karoff, Christoffer/0000-0003-2009-7965; Bonanno, Alfio/0000-0003-3175-9776; Bedding, Timothy/0000-0001-5943-1460; Bedding, Tim/0000-0001-5222-4661; Garcia, Rafael/0000-0002-8854-3776 FU UK Science and Technology Facilities Council (STFC); NASA's Science Mission Directorate FX GAV, YE, WJC, SH and IWR acknowledge the support of the UK Science and Technology Facilities Council (STFC). The authors are grateful to IRFU/SAp at CEA-Saclay for providing support for useful meetings in the development of this work. Funding for the Kepler mission is provided by NASA's Science Mission Directorate. The authors wish to thank the entire Kepler team, without whom these results would not be possible. We also thank all funding councils and agencies that have supported the activities of KASC Working Group 1. NR 57 TC 64 Z9 64 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 4 BP 3539 EP 3551 DI 10.1111/j.1365-2966.2011.18968.x PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811JK UT WOS:000294204900050 ER PT J AU Di Mauro, MP Cardini, D Catanzaro, G Ventura, R Barban, C Bedding, TR Christensen-Dalsgaard, J De Ridder, J Hekker, S Huber, D Kallinger, T Miglio, A Montalban, J Mosser, B Stello, D Uytterhoeven, K Kinemuchi, K Kjeldsen, H Mullally, F Still, M AF Di Mauro, M. P. Cardini, D. Catanzaro, G. Ventura, R. Barban, C. Bedding, T. R. Christensen-Dalsgaard, J. De Ridder, J. Hekker, S. Huber, D. Kallinger, T. Miglio, A. Montalban, J. Mosser, B. Stello, D. Uytterhoeven, K. Kinemuchi, K. Kjeldsen, H. Mullally, F. Still, M. TI Solar-like oscillations from the depths of the red-giant star KIC 4351319 observed with Kepler SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: AGB and post-AGB; stars: evolution; stars: fundamental parameters; stars: individual: KIC 4351319; stars: oscillations; stars: solar-type ID ALPHA URSAE MAJORIS; STELLAR OSCILLATIONS; CONVECTIVE CORES; WIRE PHOTOMETRY; POWER SPECTRA; ETA-BOOTIS; XI-HYA; MODES; VELOCITY; GRAVITY AB We present the results of the asteroseismic analysis of the red-giant star KIC 4351319 (TYC 3124-914-1), observed for 30 d in short-cadence mode with the Kepler satellite. The analysis has allowed us to determine the large and small frequency separations, Delta nu(0) = 24.6 +/- 0.2 mu Hz and Delta nu(02) = 2.2 +/- 0.3 mu Hz, respectively, and the frequency of maximum oscillation power, nu(max) = 386.5 +/- 4.0 mu Hz. The high signal-to-noise ratio of the observations allowed us to identify 25 independent pulsation modes whose frequencies range approximately from 300 to 500 mu Hz. The observed oscillation frequencies together with the accurate determination of the atmospheric parameters (effective temperature, gravity and metallicity), provided by additional ground-based spectroscopic observations, enabled us to theoretically interpret the observed oscillation spectrum. KIC 4351319 appears to oscillate with a well-defined solar-type p-mode pattern due to radial acoustic modes and non-radial nearly pure p modes. In addition, several non-radial mixed modes have been identified. Theoretical models well reproduce the observed oscillation frequencies and indicate that this star, located at the base of the ascending red-giant branch, is in the hydrogen-shell-burning phase, with a mass of similar to 1.3 M-circle dot, a radius of similar to 3.4 R-circle dot and an age of similar to 5.6 Gyr. The main parameters of this star have been determined with an unprecedented level of precision for a red-giant star, with uncertainties of 2 per cent for mass, 7 per cent for age, 1 per cent for radius and 4 per cent for luminosity. C1 [Di Mauro, M. P.; Cardini, D.] Ist Astrofis Spaziale & Fis Cosm, INAF, ISAF, I-00133 Rome, Italy. [Catanzaro, G.; Ventura, R.] Osserv Astrofis Catania, INAF, I-95123 Catania, Italy. [Barban, C.; Mosser, B.] Univ Denis, Univ Paris 06, Observ Paris, LESIA,CNRS, F-92195 Meudon, France. [Bedding, T. R.; Huber, D.; Stello, D.] Univ Sydney, Sch Phys, SIfA, Sydney, NSW 2006, Australia. [Christensen-Dalsgaard, J.; Kjeldsen, H.] Aarhus Univ, Inst Fys Astron, DK-8000 Aarhus C, Denmark. [De Ridder, J.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Hekker, S.; Miglio, A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Hekker, S.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 XH Amsterdam, Netherlands. [Kallinger, T.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Kallinger, T.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Miglio, A.; Montalban, J.] Univ Liege, Inst Astron & Geofis, B-4000 Liege, Belgium. [Uytterhoeven, K.] Univ Paris Diderot, CNRS, Lab AIM, CEA DSM,CEA,IRFU,SAp,Ctr Saclay, F-91191 Gif Sur Yvette, France. [Uytterhoeven, K.] Kiepenheuer Inst Sonnenphys, D-79104 Freiburg, Germany. [Kinemuchi, K.; Still, M.] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. [Mullally, F.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. RP Di Mauro, MP (reprint author), Ist Astrofis Spaziale & Fis Cosm, INAF, ISAF, Via Fosso Cavaliere 100, I-00133 Rome, Italy. EM mariapia.dimauro@iasf-roma.inaf.it RI Ventura, Rita/B-7524-2016; OI Ventura, Rita/0000-0002-5152-0482; Kallinger, Thomas/0000-0003-3627-2561; Catanzaro, Giovanni/0000-0003-4337-8612; Bedding, Timothy/0000-0001-5943-1460; Bedding, Tim/0000-0001-5222-4661; Di Mauro, Maria Pia/0000-0001-7801-7484 FU NASA's Science Mission Directorate; UK Science and Technology Facilities Council (STFC); Netherlands Organization for Scientific Research (NWO); Deutsche Forschungsgemeinschaft (DFG) [UY 52/1-1]; Canadian Space Agency; Austrian Science Fund (FWF) [P22691-N16] FX Funding for this mission is provided by NASA's Science Mission Directorate. We thank the entire Kepler team for the development and operations of this outstanding mission.; SH acknowledges financial support from the UK Science and Technology Facilities Council (STFC). SH acknowledges financial support from the Netherlands Organization for Scientific Research (NWO).; KU acknowledges financial support by the Deutsche Forschungsgemeinschaft (DFG) in the framework of project UY 52/1-1.; TK is supported by the Canadian Space Agency and the Austrian Science Fund (FWF P22691-N16). NR 90 TC 31 Z9 31 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 4 BP 3783 EP 3797 DI 10.1111/j.1365-2966.2011.18996.x PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811JK UT WOS:000294204900070 ER PT J AU Baker, DMH Head, JW Fassett, CI Kadish, SJ Smith, DE Zuber, MT Neumann, GA AF Baker, David M. H. Head, James W. Fassett, Caleb I. Kadish, Seth J. Smith, Dave E. Zuber, Maria T. Neumann, Gregory A. TI The transition from complex crater to peak-ring basin on the Moon: New observations from the Lunar Orbiter Laser Altimeter (LOLA) instrument SO ICARUS LA English DT Article DE Moon; Mercury; Cratering; Impact processes ID IMPACT CRATERS; CHICXULUB CRATER; SCHEMATIC MODEL; TOPOGRAPHY; GRAVITY; MERCURY; RECORD; VENUS AB Impact craters on planetary bodies transition with increasing size from simple, to complex, to peak-ring basins and finally to multi-ring basins. Important to understanding the relationship between complex craters with central peaks and multi-ring basins is the analysis of protobasins (exhibiting a rim crest and interior ring plus a central peak) and peak-ring basins (exhibiting a rim crest and an interior ring). New data have permitted improved portrayal and classification of these transitional features on the Moon. We used new 128 pixel/degree gridded topographic data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter, combined with image mosaics, to conduct a survey of craters >50 km in diameter on the Moon and to update the existing catalogs of lunar peak-ring basins and protobasins. Our updated catalog includes 17 peak-ring basins (rim-crest diameters range from 207 km to 582 km, geometric mean = 343 km) and 3 protobasins (137-170 km, geometric mean = 157 km). Several basins inferred to be multi-ring basins in prior studies (Apollo, Moscoviense, Grimaldi, Freundlich-Sharonov, Coulomb-Sarton, and Korolev) are now classified as peak-ring basins due to their similarities with lunar peak-ring basin morphologies and absence of definitive topographic ring structures greater than two in number. We also include in our catalog 23 craters exhibiting small ring-like clusters of peaks (50-205 km, geometric mean = 81 km); one (Humboldt) exhibits a rim-crest diameter and an interior morphology that may be uniquely transitional to the process of forming peak rings. A power-law fit to ring diameters (D-ring) and rim-crest diameters (D-r) of peak-ring basins on the Moon [D-ring = 0.14 +/- 0.10(D-r)(1.21 +/- 0.13)] reveals a trend that is very similar to a power-law fit to peak-ring basin diameters on Mercury [D-ring = 0.25 +/- 0.14(D-rim)(1.13 +/- 0.10)] [Baker, D.M.H. et al. [2011]. Planet. Space Sci., in press]. Plots of ring/rim-crest ratios versus rim-crest diameters for peak-ring basins and protobasins on the Moon also reveal a continuous, nonlinear trend that is similar to trends observed for Mercury and Venus and suggest that protobasins and peak-ring basins are parts of a continuum of basin morphologies. The surface density of peak-ring basins on the Moon (4.5 x 10(-7) per km(2)) is a factor of two less than Mercury (9.9 x 10(-7) per km(2)), which may be a function of their widely different mean impact velocities (19.4 km/s and 42.5 km/s, respectively) and differences in peak-ring basin onset diameters. New calculations of the onset diameter for peak-ring basins on the Moon and the terrestrial planets re-affirm previous analyses that the Moon has the largest onset diameter for peak-ring basins in the inner Solar System. Comparisons of the predictions of models for the formation of peak-ring basins with the characteristics of the new basin catalog for the Moon suggest that formation and modification of an interior melt cavity and nonlinear scaling of impact melt volume with crater diameter provide important controls on the development of peak rings. In particular, a power-law model of growth of an interior melt cavity with increasing crater diameter is consistent with power-law fits to the peak-ring basin data for the Moon and Mercury. We suggest that the relationship between the depth of melting and depth of the transient cavity offers a plausible control on the onet diameter and subsequent development of peak-ring basins and also multi-ring basins, which is consistent with both planetary gravitational acceleration and mean impact velocity being important in determining the onset of basin morphological forms on the terrestrial planets. (C) 2011 Elsevier Inc. All rights reserved. C1 [Baker, David M. H.; Head, James W.; Fassett, Caleb I.; Kadish, Seth J.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Smith, Dave E.; Zuber, Maria T.; Neumann, Gregory A.] NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD USA. [Smith, Dave E.; Zuber, Maria T.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. RP Baker, DMH (reprint author), Brown Univ, Dept Geol Sci, Box 1846, Providence, RI 02912 USA. EM david_baker@brown.edu RI Neumann, Gregory/I-5591-2013; OI Neumann, Gregory/0000-0003-0644-9944; Fassett, Caleb/0000-0001-9155-3804 FU NASA [NNX09AM54G] FX We thank Ian Garrick-Bethell for use of the code to calculate the averaged LOLA topography profiles and Sam Schon for productive discussions on the populations of impact basins on Mercury. We also thank Mark Cintala for helpful discussions on the scaling of impact melting and the LOLA and LROC teams for their efforts in acquiring and processing the data. Reviews by Gordon Osinski and an anonymous reviewer helped to improve the quality of the manuscript. Thanks are extended to the NASA Lunar Reconnaissance Obiter Mission, Lunar Orbiter Laser Altimeter (LOLA) instrument for financial assistance (NNX09AM54G). NR 53 TC 25 Z9 25 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD AUG PY 2011 VL 214 IS 2 BP 377 EP 393 DI 10.1016/j.icarus.2011.05.030 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811HM UT WOS:000294197500003 ER PT J AU Thomson, BJ Bridges, NT Milliken, R Baldridge, A Hook, SJ Crowley, JK Marion, GM de Souza, CR Brown, AJ Weitz, CM AF Thomson, B. J. Bridges, N. T. Milliken, R. Baldridge, A. Hook, S. J. Crowley, J. K. Marion, G. M. de Souza Filho, C. R. Brown, A. J. Weitz, C. M. TI Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data SO ICARUS LA English DT Article DE Mars, Surface; Geological processes; Cratering; Infrared observations ID MEDUSAE FOSSAE FORMATION; MARTIAN GEOLOGIC RECORD; LASER ALTIMETER DATA; ART. NO. 5111; MERIDIANI-PLANUM; PALEOMAGNETIC POLES; POLAR WANDER; DEPOSITS; STRATIGRAPHY; REGION AB Gale Crater contains a 5.2 km-high central mound of layered material that is largely sedimentary in origin and has been considered as a potential landing site for both the MER (Mars Exploration Rover) and MSL (Mars Science Laboratory) missions. We have analyzed recent data from Mars Reconnaissance Orbiter to help unravel the complex geologic history evidenced by these layered deposits and other landforms in the crater. Results from imaging data from the High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) confirm geomorphic evidence for fluvial activity and may indicate an early lacustrine phase. Analysis of spectral data from the CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) instrument shows clay-bearing units interstratified with sulfate-bearing strata in the lower member of the layered mound, again indicative of aqueous activity. The formation age of the layered mound, derived from crater counts and superposition relationships, is similar to 3.6-3.8 Ga and straddles the Noachian-Hesperian time-stratigraphic boundary. Thus Gale provides a unique opportunity to investigate global environmental change on Mars during a period of transition from an environment that favored phyllosilicate deposition to a later one that was dominated by sulfate formation. (C) 2011 Elsevier Inc. All rights reserved. C1 [Thomson, B. J.; Bridges, N. T.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Milliken, R.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Baldridge, A.; Weitz, C. M.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Hook, S. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Marion, G. M.] Desert Res Inst, Reno, NV 89512 USA. [de Souza Filho, C. R.] Univ Estadual Campinas, BR-13083970 Campinas, SP, Brazil. [Brown, A. J.] SETI Inst, Mountain View, CA 94043 USA. RP Thomson, BJ (reprint author), Boston Univ, Ctr Remote Sensing, 725 Commonwealth Ave,Rm 433, Boston, MA 02155 USA. EM bjt@bu.edu RI Bridges, Nathan/D-6341-2016; OI Thomson, Bradley/0000-0001-8635-8932 FU NASA FX This manuscript was improved by thoughtful reviews from Rossman Irwin and an anonymous reviewer. This research was supported in part by a NASA Interdisciplinary Exploration Science grant to Simon J. Hook. NR 70 TC 93 Z9 94 U1 2 U2 37 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD AUG PY 2011 VL 214 IS 2 BP 413 EP 432 DI 10.1016/j.icarus.2011.05.002 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811HM UT WOS:000294197500006 ER PT J AU Sanchez-Lavega, A Orton, GS Hueso, R Perez-Hoyos, S Fletcher, LN Garcia-Melendo, E Gomez-Forrellad, JM de Pater, I Wong, M Hammel, HB Yanamandra-Fisher, P Simon-Miller, A Barrado-Izagirre, N Marchis, F Mousis, O Ortiz, JL Garcia-Rojas, J Cecconi, M Clarke, JT Noll, K Pedraz, S Wesley, A Kalas, P McConnell, N Golisch, W Griep, D Sears, P Volquardsen, E Reddy, V Shara, M Binzel, R Grundy, W Emery, J Rivkin, A Thomas, C Trilling, D Bjorkman, K Burgasser, AJ Campins, H Sato, TM Kasaba, Y Ziffer, J Mirzoyan, R Fitzgerald, M Bouy, H AF Sanchez-Lavega, A. Orton, G. S. Hueso, R. Perez-Hoyos, S. Fletcher, L. N. Garcia-Melendo, E. Gomez-Forrellad, J. M. de Pater, I. Wong, M. Hammel, H. B. Yanamandra-Fisher, P. Simon-Miller, A. Barrado-Izagirre, N. Marchis, F. Mousis, O. Ortiz, J. L. Garcia-Rojas, J. Cecconi, M. Clarke, J. T. Noll, K. Pedraz, S. Wesley, A. Kalas, P. McConnell, N. Golisch, W. Griep, D. Sears, P. Volquardsen, E. Reddy, V. Shara, M. Binzel, R. Grundy, W. Emery, J. Rivkin, A. Thomas, C. Trilling, D. Bjorkman, K. Burgasser, A. J. Campins, H. Sato, T. M. Kasaba, Y. Ziffer, J. Mirzoyan, R. Fitzgerald, M. Bouy, H. CA International Outer Planet Watch T TI Long-term evolution of the aerosol debris cloud produced by the 2009 impact on Jupiter SO ICARUS LA English DT Article DE Atmospheres, Dynamics; Jupiter, Atmosphere; Impact processes ID COMET SHOEMAKER-LEVY-9; HST IMAGES; FEATURES; MODEL; JET; SIMULATIONS; DISTURBANCE; ULTRAVIOLET; TRANSPORT; MOTIONS AB We present a study of the long-term evolution of the cloud of aerosols produced in the atmosphere of Jupiter by the impact of an object on 19 July 2009 (Sanchez-Lavega, A. et al. [2010]. Astrophys. J. 715, L155-L159). The work is based on images obtained during 5 months from the impact to 31 December 2009 taken in visible continuum wavelengths and from 20 July 2009 to 28 May 2010 taken in near-infrared deep hydrogen-methane absorption bands at 2.1-2.3 pm. The impact cloud expanded zonally from similar to 5000 km (July 19) to 225,000 km (29 October, about 180 degrees in longitude), remaining meridionally localized within a latitude band from 53.5 degrees S to 61.5 degrees S planetographic latitude. During the first two months after its formation the site showed heterogeneous structure with 500-1000 km sized embedded spots. Later the reflectivity of the debris field became more homogeneous due to clump mergers. The cloud was mainly dispersed in longitude by the dominant zonal winds and their meridional shear, during the initial stages, localized motions may have been induced by thermal perturbation caused by the impact's energy deposition. The tracking of individual spots within the impact cloud shows that the westward jet at 56.5 degrees S latitude increases its eastward velocity with altitude above the tropopause by 5-10 m s(-1). The corresponding vertical wind shear is low, about 1 m s(-1) per scale height in agreement with previous thermal wind estimations. We found evidence for discrete localized meridional motions with speeds of 1-2 ms(-1). Two numerical models are used to simulate the observed cloud dispersion. One is a pure advection of the aerosols by the winds and their shears. The other uses the EPIC code, a nonlinear calculation of the evolution of the potential vorticity field generated by a heat pulse that simulates the impact. Both models reproduce the observed global structure of the cloud and the dominant zonal dispersion of the aerosols, but not the details of the cloud morphology. The reflectivity of the impact cloud decreased exponentially with a characteristic timescale of 15 days; we can explain this behavior with a radiative transfer model of the cloud optical depth coupled to an advection model of the cloud dispersion by the wind shears. The expected sedimentation time in the stratosphere (altitude levels 5-100 mbar) for the small aerosol particles forming the cloud is 45-200 days, thus aerosols were removed vertically over the long term following their zonal dispersion. No evidence of the cloud was detected 10 months after the impact. (C) 2011 Elsevier Inc. All rights reserved. C1 [Sanchez-Lavega, A.; Hueso, R.; Perez-Hoyos, S.] Univ Basque Country, Dept Fis Aplicada 1, ETS Ingn, Bilbao 48013, Spain. [Orton, G. S.; Yanamandra-Fisher, P.] CALTECH, Jet Prop Lab, MS 169237, Pasadena, CA 91109 USA. [Fletcher, L. N.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Garcia-Melendo, E.; Gomez-Forrellad, J. M.] Fundacio Privada Observ Esteve Duran, Seva 08553, Spain. [de Pater, I.; Wong, M.; Marchis, F.; Kalas, P.; McConnell, N.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Hammel, H. B.] Space Sci Inst, Boulder, CO 80301 USA. [Simon-Miller, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Barrado-Izagirre, N.] Univ Basque Country, Dept Matemat Aplicada, EUITI, E-48080 Bilbao, Spain. [Marchis, F.] Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA. [Mousis, O.] CNRS, UMR 6213, Inst UTINAM, Observ Besancon, F-25010 Besancon, France. [Ortiz, J. L.] CSIC, Inst Astrofis Andalucia, Granada, Spain. [Garcia-Rojas, J.] Inst Astrofis Canarias, San Cristobal la Laguna, Tenerife, Spain. [Garcia-Rojas, J.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Cecconi, M.] Fdn Galileo Galilei, INAF, San Antonio De Brena Baj 738712, La Palma, Spain. [Clarke, J. T.] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Noll, K.] Space Sci Inst, Ridgefield, CT 06877 USA. [Pedraz, S.] Calar Alto Ohs Centro Astron Hispano Aleman, Almeria 04004, Spain. [Wesley, A.] Acquerra Pty Ltd, Murrumbateman, NSW, Australia. [Golisch, W.; Griep, D.; Sears, P.; Volquardsen, E.] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA. [Reddy, V.] Univ N Dakota, Dept Space Studies, Grand Forks, ND 58202 USA. [Shara, M.] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Binzel, R.] MIT, Dept Earth & Planetary Sci, MS 54410, Cambridge, MA 02139 USA. [Grundy, W.] Lowell Observ, Flagstaff, AZ 86001 USA. [Emery, J.] Univ Tennessee, Knoxville, TN 37996 USA. [Rivkin, A.] Johns Hopkins Univ, Appl Phys Lab, NP3 E169, Laurel, MD 20723 USA. [Thomas, C.; Trilling, D.] No Arizona Univ, Dept Phys & Astron, Flagstaff, AZ 86011 USA. [Bjorkman, K.] Univ Toledo, Dept Phys & Astron, MS 111, Toledo, OH 43606 USA. [Burgasser, A. J.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Campins, H.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Sato, T. M.; Kasaba, Y.] Tohoku Univ, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Ziffer, J.] Univ So Maine, Portland, ME 04104 USA. [Mirzoyan, R.] Glendale Community Coll, Glendale, CA 91208 USA. [Fitzgerald, M.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Noll, K.; Fitzgerald, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Fletcher, L. N.; Bouy, H.] Ctr Astrobiol INTA CSIC, Madrid 28691, Spain. RP Sanchez-Lavega, A (reprint author), Univ Basque Country, Dept Fis Aplicada 1, ETS Ingn, Alameda Urquijo S-N, Bilbao 48013, Spain. EM agustin.sanchez@ehu.es RI Rivkin, Andrew/B-7744-2016; Simon, Amy/C-8020-2012; Noll, Keith/C-8447-2012; Fletcher, Leigh/D-6093-2011; Marchis, Franck/H-3971-2012; Clarke, John/C-8644-2013; Bouy, Herve/H-2913-2012; Perez-Hoyos, Santiago/L-7543-2014; Barrado-Izagirre, Naiara/H-2807-2015; Fitzgerald, Michael/C-2642-2009 OI Hueso, Ricardo/0000-0003-0169-123X; Garcia-Rojas, Jorge/0000-0002-6138-1869; Thomas, Cristina/0000-0003-3091-5757; Rivkin, Andrew/0000-0002-9939-9976; Simon, Amy/0000-0003-4641-6186; Fletcher, Leigh/0000-0001-5834-9588; Bouy, Herve/0000-0002-7084-487X; Perez-Hoyos, Santiago/0000-0002-2587-4682; Barrado-Izagirre, Naiara/0000-0001-6319-8577; Sanchez-Lavega, Agustin/0000-0001-7355-1522; Fitzgerald, Michael/0000-0002-0176-8973 FU Spanish MICIIN [AYA2009-10701]; Grupos Gobierno Vasco [IT-464-07]; National Aeronautics and Space Administration; University of Oxford; NASA through Space Telescope Science Institute [GO/DD-12003, GO/DD-12045, GO-11559, NAS 5-26555] FX This work was supported by the Spanish MICIIN Project AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07. This research made use of the computing facilities at CESCA in Barcelona with the help of the Ministerio de Educacion y Ciencia. The research described in this paper that was performed by Orton and Yanamandra-Fisher was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Fletcher was supported by a Glasstone Science Fellowship at the University of Oxford. A.J. Burgasser is a Hellman Fellow. We thank IRTF staff members Schelte ("Bobby") Bus and Tony Denault for their help in creating a command script (macro) that provided minimal interference with the primary programs scheduled on several nights of observation using SpeX. The 1.52 m Carlos Sanchez Telescope is operated on the island of Tenerife by the Instituto de Astrofisica de Canarias in the Spanish Observatorio del Teide. The Hubble Space Telescope data were obtained under GO/DD-12003, GO/DD-12045, and GO-11559 with support provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA Contract NAS 5-26555. NR 48 TC 6 Z9 6 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD AUG PY 2011 VL 214 IS 2 BP 462 EP 476 DI 10.1016/j.icarus.2011.03.015 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811HM UT WOS:000294197500009 ER PT J AU Fletcher, LN Baines, KH Momary, TW Showman, AP Irwin, PGJ Orton, GS Roos-Serote, M Merlet, C AF Fletcher, Leigh N. Baines, Kevin H. Momary, Thomas W. Showman, Adam P. Irwin, Patrick G. J. Orton, Glenn S. Roos-Serote, Maarten Merlet, C. TI Saturn's tropospheric composition and clouds from Cassini/VIMS 4.6-5.1 mu m nightside spectroscopy SO ICARUS LA English DT Article DE Saturn; Atmospheres, Composition; Atmospheres, Structure ID ROTOTRANSLATIONAL ABSORPTION-SPECTRA; HUBBLE-SPACE-TELESCOPE; ISO-SWS OBSERVATIONS; RADIATIVE-TRANSFER; EQUATORIAL REGION; ATMOSPHERIC COMPOSITION; JUPITERS ATMOSPHERE; OUTER PLANETS; GIANT PLANETS; VERTICAL-DISTRIBUTION AB The latitudinal variation of Saturn's tropospheric composition (NH3, PH3 and AsH3) and aerosol properties (cloud altitudes and opacities) are derived from Cassini/VIMS 4.6-5.1 mu m thermal emission spectroscopy on the planet's nightside (April 22, 2006). The gaseous and aerosol distributions are used to trace atmospheric circulation and chemistry within and below Saturn's cloud decks (in the 1- to 4-bar region). Extensive testing of VIMS spectral models is used to assess and minimise the effects of degeneracies between retrieved variables and sensitivity to the choice of aerosol properties. Best fits indicate cloud opacity in two regimes: (a) a compact cloud deck centred in the 2.5-2.8 bar region, symmetric between the northern and southern hemispheres, with small-scale opacity variations responsible for numerous narrow light/dark axisymmetric lanes; and (b) a hemispherically asymmetric population of aerosols at pressures less than 1.4 bar (whose exact altitude and vertical structure is not constrained by nightside spectra) which is 1.5-2.0x more opaque in the summer hemisphere than in the north and shows an equatorial maximum between +/- 10 degrees (planetocentric). Saturn's NH3 spatial variability shows significant enhancement by vertical advection within +/- 5 degrees of the equator and in axisymmetric bands at 23-25 degrees S and 42-47 degrees N. The latter is consistent with extratropical upwelling in a dark band on the poleward side of the prograde jet at 41 degrees N (planetocentric). PH3 dominates the morphology of the VIMS spectrum, and high-altitude PH3 at p < 1.3 bar has an equatorial maximum and a mid-latitude asymmetry (elevated in the summer hemisphere), whereas deep PH3 is latitudinally-uniform with off-equatorial maxima near +/- 10 degrees. The spatial distribution of AsH3 shows similar off-equatorial maxima at +/- 7 degrees with a global abundance of 2-3 ppb. VIMS appears to be sensitive to both (i) an upper tropospheric circulation (sensed by NH3 and upper-tropospheric PH3 and hazes) and (ii) a lower tropospheric circulation (sensed by deep PH3, AsH3 and the lower cloud deck). (C) 2011 Elsevier Inc. All rights reserved. C1 [Fletcher, Leigh N.; Irwin, Patrick G. J.; Merlet, C.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Baines, Kevin H.] Univ Wisconsin, SSEC, Madison, WI 53706 USA. [Momary, Thomas W.; Orton, Glenn S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Showman, Adam P.] Univ Arizona, Dept Planetary Sci, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Roos-Serote, Maarten] Lisbon Astron Observ, P-1349018 Lisbon, Portugal. RP Fletcher, LN (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. EM fletcher@atm.ox.ac.uk RI Fletcher, Leigh/D-6093-2011 OI Fletcher, Leigh/0000-0001-5834-9588 FU University of Oxford; UK Science and Technology Facilities Council; NASA; Cassini Project FX Fletcher was supported during this research by a Glasstone Science Fellowship at the University of Oxford. Irwin acknowledges the support of the UK Science and Technology Facilities Council. Orton carried out part of this research at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, and acknowledges support from the Cassini Project. We thank the members of the VIMS investigation team who have assisted in the design of the imaging sequences, instrument commands and other vital operational tasks, and the Ground Systems Operations for the Cassini Project. This research has made use of the USGS Integrated Software for Imagers and Spectrometers (ISIS). NR 108 TC 29 Z9 29 U1 1 U2 15 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD AUG PY 2011 VL 214 IS 2 BP 510 EP 533 DI 10.1016/j.icarus.2011.06.006 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811HM UT WOS:000294197500012 ER PT J AU Buratti, BJ Faulk, SP Mosher, J Baines, KH Brown, RH Clark, RN Nicholson, PD AF Buratti, B. J. Faulk, S. P. Mosher, J. Baines, K. H. Brown, R. H. Clark, R. N. Nicholson, P. D. TI Search for and limits on plume activity on Mimas, Tethys, and Dione with the Cassini Visual Infrared Mapping Spectrometer (VIMS) SO ICARUS LA English DT Article DE Saturn, Satellites; Satellites, Surfaces; Geological processes ID WATER-VAPOR; SATURNIAN SATELLITES; ISS IMAGES; ENCELADUS; PHOTOMETRY; RHEA; ATMOSPHERE; SYSTEM; JETS; RING AB Cassini Visual Infrared Mapping Spectrometer (VIMS) observations of Mimas, Tethys, and Dione obtained during the nominal and extended missions at large solar phase angles were analyzed to search for plume activity. No forward scattered peaks in the solar phase curves of these satellites were detected. The upper limit on water vapor production for Mimas and Tethys is one order of magnitude less than the production for Enceladus. For Dione, the upper limit is two orders of magnitude less, suggesting this world is as inert as Rhea (Pitman, KM., Buratti, B.J., Mosher, J.A., Bauer, J.M., Momary, T., Brown, R.H., Nicholson, P.O.. Hedman, M.M. [2008]. Astrophys. J. Lett. 680, L65-L68). Although the plumes are best seen at similar to 2.0 mu m, Imaging Science Subsystem (ISS) Narrow Angle Camera images obtained at the same time as the VIMS data were also inspected for these features. None of the Cassini ISS images shows evidence for plumes. The absence of evidence for any Enceladus-like plumes on the medium-sized saturnian satellites cannot absolutely rule out current geologic activity. The activity may below our threshold of detection, or it may be occurring but not captured on the handful of observations at large solar phase angles obtained for each moon. Many VIMS and ISS images of Enceladus at large solar phase angles, for example, do not contain plumes, as the active "tiger stripes" in the south pole region are pointed away from the spacecraft at these times. The 7-year Cassini Solstice Mission is scheduled to gather additional measurements at large solar phase angles that are capable of revealing activity on the saturnian moons. (C) 2011 Elsevier Inc. All rights reserved. C1 [Buratti, B. J.; Mosher, J.; Baines, K. H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Faulk, S. P.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Brown, R. H.] Univ Arizona, Dept Planetary Sci, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Clark, R. N.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Nicholson, P. D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Buratti, BJ (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91001 USA. EM Bonnie.Buratti@jpl.nasa.gov FU National Aeronautics and Space Administration; Cassini project; Cassini Data Analysis Program FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration, and was sponsored by NASA'S Undergraduate Student Research Program, the Cassini project, and the Cassini Data Analysis Program. We thank David Blackburn, Joseph Spitale, and an anonymous reviewer for helpful conversations and reviews. Copyright 2011 all rights reserved. NR 25 TC 5 Z9 6 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD AUG PY 2011 VL 214 IS 2 BP 534 EP 540 DI 10.1016/j.icarus.2011.04.030 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811HM UT WOS:000294197500013 ER PT J AU Ciarniello, M Capaccioni, F Filacchione, G Clark, RN Cruikshank, DP Cerroni, P Coradini, A Brown, RH Buratti, BJ Tosi, F Stephan, K AF Ciarniello, M. Capaccioni, F. Filacchione, G. Clark, R. N. Cruikshank, D. P. Cerroni, P. Coradini, A. Brown, R. H. Buratti, B. J. Tosi, F. Stephan, K. TI Hapke modeling of Rhea surface properties through Cassini-VIMS spectra SO ICARUS LA English DT Article DE Saturn, Satellites; Spectrophotometry; Ices; Radiative transfer; Satellites, Surfaces ID BIDIRECTIONAL REFLECTANCE SPECTROSCOPY; INFRARED MAPPING SPECTROMETER; OPTICAL-CONSTANTS; RADIATIVE-TRANSFER; ICY SATELLITES; MU-M; COHERENT BACKSCATTER; CRYSTALLINE H2O-ICE; GALILEAN SATELLITES; ALBEDO DICHOTOMY AB The surface properties of the icy bodies in the saturnian system have been investigated by means of the Cassini-VIMS (Visual Infrared Mapping Spectrometer) hyperspectral imager which operates in the 0.35-5.1 mu m wavelength range. In particular, we have analyzed 111 full disk hyperspectral images of Rhea ranging in solar phase between 0.08 degrees and 109.8 degrees. These data have been previously analyzed by Filacchione et al. (Filacchione, G. et al. [2007]. Icarus 186, 259-290; Filacchione, G. et al. [2010]. Icarus 206, 507-523) to study, adopting various "spectral indicators" (such as spectral slopes, band depth, and continuum level), the relations among various saturnian satellites. As a further step we proceed in this paper to a quantitative evaluation of the physical parameters determining the spectrophotometric properties of Rhea's surface. To do this we have applied Hapke (Hapke, B. [1993]. Theory of Reflectance and Emittance Spectroscopy, Topics in Remote Sensing: 3. Springer, Berlin) IMSA model (Isotropic Multiple Scattering Approximation) which allow us to model the phase function at VIS-IR (visible-infrared) wavelengths as well as the spectra taking into account various types of mixtures of surface materials. Thanks to this method we have been able to constrain the size of water ice particles covering the surface, the amount of organic contaminants, the large scale surface roughness and the opposition effect surge. From our analysis it appears that wavelength dependent parameters, e.g. opposition surge width (h) and single-particle phase function parameters (b, v), are strongly correlated to the estimated single-scattering albedo of particles. For Rhea the best fit solution is obtained by assuming: (1) an intraparticle mixture of crystalline water ice and a small amount (0.4%) of Triton tholin; (2) a monodisperse grain size distribution having a particle diameter a(m) = 38 mu m; and (3) a surface roughness parameter value of 33 degrees. The study of phase function shows that both shadow hiding and coherent backscattering contribute to the opposition surge. This study represents the first attempt, in the case of Rhea, to join the spectral and the photometric analysis. The surface model we derived gives a good quantitative description of both spectrum and phase curve of the satellite. The same approach and model, with appropriate modifications, shall be applied to VIMS data of the other icy satellites of Saturn, in order to reveal similarities and differences in the surface characteristics to understand how these bodies interact with their environment. (C) 2011 Elsevier Inc. All rights reserved. C1 [Ciarniello, M.; Capaccioni, F.; Filacchione, G.; Cerroni, P.] INAF IASF, I-00133 Rome, Italy. [Clark, R. N.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Cruikshank, D. P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Coradini, A.; Tosi, F.] INAF IFSI, I-00133 Rome, Italy. [Brown, R. H.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Brown, R. H.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Buratti, B. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Stephan, K.] DLR, Inst Planetary Explorat, Berlin, Germany. RP Ciarniello, M (reprint author), INAF IASF, Via Fosso Cavaliere 100, I-00133 Rome, Italy. EM mauro.ciarniello@iasf-roma.inaf.it OI Ciarniello, Mauro/0000-0002-7498-5207; Cerroni, Priscilla/0000-0003-0239-2741; Capaccioni, Fabrizio/0000-0003-1631-4314; Filacchione, Gianrico/0000-0001-9567-0055; Tosi, Federico/0000-0003-4002-2434 FU Italian Space Agency FX The authors M.C., F.C., G.F., P.C., A.C. and F.T. acknowledge support from an Italian Space Agency grant. The authors wish to thank the referees for their constructive comments. NR 64 TC 22 Z9 22 U1 1 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD AUG PY 2011 VL 214 IS 2 BP 541 EP 555 DI 10.1016/j.icarus.2011.05.010 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811HM UT WOS:000294197500014 ER PT J AU Greathouse, TK Richter, M Lacy, J Moses, J Orton, G Encrenaz, T Hammel, HB Jaffe, D AF Greathouse, Thomas K. Richter, Matthew Lacy, John Moses, Julianne Orton, Glenn Encrenaz, Therese Hammel, H. B. Jaffe, Dan TI A spatially resolved high spectral resolution study of Neptune's stratosphere SO ICARUS LA English DT Article DE Neptune; Abundances, atmospheres; Infrared observations; Neptune, atmosphere ID ROTOTRANSLATIONAL ABSORPTION-SPECTRA; MERIDIONAL VARIATIONS; SATURNS STRATOSPHERE; VOYAGER MEASUREMENTS; CIRS/CASSINI LIMB; THERMAL STRUCTURE; GIANT PLANETS; ATMOSPHERE; TEMPERATURE; ETHANE AB Using TEXES, the Texas Echelon cross Echelle Spectrograph, mounted on the Gemini North 8-m telescope we have mapped the spatial variation of H-2, CH4, C2H2 and C2H6 thermal-infrared emission of Neptune. These high-spectral-resolution, spatially resolved, thermal-infrared observations of Neptune offer a unique glimpse into the state of Neptune's stratosphere in October 2007, L-S = 275.4 degrees just past Neptune's southern summer solstice (L-S = 270 degrees). We use observations of the S(1) pure rotational line of molecular hydrogen and a portion of the v(4) band of methane to retrieve detailed information on Neptune's stratospheric vertical and meridional thermal structure. We find global-average temperatures of 163.8 +/- 0.8, 155.0 +/- 0.9, and 123.8 +/- 0.8 K at the 7.0 x 10(-3)-, 0.12-, and 2.1-mbar levels with no meridional variations within the errors. We then use the inferred temperatures to model the emission of C2H2 and C2H6 in order to derive stratospheric volume mixing ratios (hence forth, VMR) as a function of pressure and latitude. There is a subtle meridional variation of the C2H2 VMR at the 0.5-mbar level with the peak abundance found at 28 latitude, falling off to the north and south. However, the observations are consistent within error to a meridionally constant C2H2 VMR of 3.3(-0.9)(+1.2) x 10(-8) at 0.5 mbar. We find that the VMR of C2H6 at 1-mbar peaks at the equator and falls by a factor of 1.6 at -70 degrees latitude. However, a meridionally constant VMR of 9.3(-2.6)(+3.5) x 10(-7) at the 1-mbar level for C2H6 is also statistically consistent with the retrievals. Temperature predictions from a radiative-seasonal climate model of Neptune that assumes the hydrocarbon abundances inferred in this paper are lower than the measured temperatures by 40K at 7 x 10(-3) mbar, 30 K at 0.12 mbar and 25 K at 2.1 mbar. The radiative-seasonal model also predicts meridional temperature variations on the order of 10 K from equator to pole, which are not observed. Assuming higher stratospheric CH4 abundance at the equator relative to the south pole would bring the meridional trends of the inferred temperatures and radiative-seasonal model into closer agreement. We have also retrieved observations of C2H4 emission from Neptune's stratosphere using TEXES on the NASA Infrared Telescope Facility (IRTF) in June 2003, L-S = 266 degrees. Using the observations from the middle of the planet and an average of the middle three latitude temperature profiles from the 2007 observations (9.5 degrees of L-S later, the seasonal equivalent of 9.5 Earth days within Earth's seasonal cycle), we infer a C2H4 VMR of 5.9(-0.8)(+1.0) x 10(-7) at 1.5 x 10(-3) mbar, a value that is 3.25 times that predicted by global-average photochemical models. (C) 2011 Elsevier Inc. All rights reserved. C1 [Greathouse, Thomas K.] SW Res Inst, San Antonio, TX 78228 USA. [Richter, Matthew] Univ Calif Davis, Davis, CA 95616 USA. [Lacy, John; Jaffe, Dan] Univ Texas Austin, Austin, TX 78712 USA. [Moses, Julianne; Hammel, H. B.] Space Sci Inst, Boulder, CO 80301 USA. [Orton, Glenn] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Encrenaz, Therese] Observ Paris, F-92195 Meudon, France. [Hammel, H. B.] AURA, Washington, DC 20005 USA. RP Greathouse, TK (reprint author), SW Res Inst, 6220 Culebra Rd, San Antonio, TX 78228 USA. EM tgreathouse@swri.edu RI Moses, Julianne/I-2151-2013; OI Moses, Julianne/0000-0002-8837-0035; Greathouse, Thomas/0000-0001-6613-5731 FU National Aeronautics and Space Administration, Office of Space Science [NCC 5-538]; NASA [NNX08AW33G, NNX08AL95G, NNX10AF65G]; NSF [AST-0708074]; National Science Foundation (United States); Science and Technology Facilities Council (United Kingdom); National Research Council (Canada); CONICYT (Chile); Australian Research Council (Australia); Ministerio da Ciencia e Tecnologia (Brazil); Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina) FX Greathouse, Encrenaz, Richter and Lacy were visiting astronomers at the Infrared Telescope Facility, which is operated by the University of Hawaii under cooperative agreement NCC 5-538 with the National Aeronautics and Space Administration, Office of Space Science, Planetary Astronomy Program. Greathouse acknowledges funding by NASA PAST grant NNX08AW33G and NASA PATM grant NNX08AL95G. Hammel acknowledges support from NASA grants NNX06AD12G and NNA07CN65A. JM gratefully acknowledges supports from NASA Planetary Atmospheres grant NNX10AF65G. The results presented here are based on observations (GN-2007B-C-8) obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). Richter acknowledges NSF grant AST-0708074 for TEXES support. A portion of this work was performed by Orton at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. We recognize the significant cultural role of Mauna Kea within the indigenous Hawaiian community, and we appreciate the opportunity to conduct observations from this revered site. Special thanks go to Bruno Bezard for supplying us with line parameters for H2. We would also like to thank the reviewers for their insight and suggestions. NR 53 TC 15 Z9 15 U1 0 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD AUG PY 2011 VL 214 IS 2 BP 606 EP 621 DI 10.1016/j.icarus.2011.05.028 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811HM UT WOS:000294197500020 ER PT J AU Lellouch, E Stansberry, J Emery, J Grundy, W Cruikshank, DP AF Lellouch, Emmanuel Stansberry, John Emery, Josh Grundy, Will Cruikshank, Dale P. TI Thermal properties of Pluto's and Charon's surfaces from Spitzer observations SO ICARUS LA English DT Article DE Pluto; Pluto, Surface; Charon; Infrared observations ID MULTIBAND IMAGING PHOTOMETER; NEAR-EARTH ASTEROIDS; MU-M; ABSOLUTE CALIBRATION; SPACE-TELESCOPE; TRITON; MODEL; TEMPERATURES; NITROGEN; INERTIA AB We report on thermal observations of the Pluto-Charon system acquired by the Spitzer observatory in August-September 2004. The observations, which consist of (i) photometric measurements (8 visits) with the Multiband Imaging Photometer (MIPS) at 24, 70 and 160 mu m and (ii) low-resolution spectra (8 visits) over 20-37 mu m with the Infrared Spectrometer (IRS), clearly exhibit the thermal lightcurve of Pluto/Charon at a variety of wavelengths. They further indicate a steady decrease of the system brightness temperature with increasing wavelength. Observations are analyzed by means of a thermophysical model, including the effects of thermal conduction and surface roughness, and using a multi-terrain description of Pluto and Charon surfaces in accordance with visible imaging and lightcurves, and visible and near-infrared spectroscopy. Three units are considered for Pluto, respectively covered by N(2) ice, CH(4) ice, and a tholin/H(2)O mix. Essential model parameters are the thermal inertia of Pluto and Charon surfaces and the spectral and bolometric emissivity of the various units. A new and improved value of Pluto's surface thermal inertia, referring to the CH(4) and tholin/H(2)O areas, is determined to be Gamma(Pl) = 20-30 J m(-2) s(-1/2) K(-1) (MKS). The high-quality 24-mu m lightcurve permits a precise assessment of Charon's thermal emission, indicating a mean surface temperature of 55.4 +/- 2.6 K. Although Charon is on average warmer than Pluto, it is also not in instantaneous equilibrium with solar radiation. Charon's surface thermal inertia is in the range Gamma(Ch) = 10-150 MKS, though most model solutions point to Gamma(Ch) = 10-20 MKS. Pluto and Charon thermal inertias appear much lower than values expected for compact ices, probably resulting from high surface porosity and poor surface consolidation. Comparison between Charon's thermal inertia and even lower values estimated for two other H(2)O-covered Kuiper-Belt objects suggests that a vertical gradient of conductivity exists in the upper surface of these bodies. Finally, the observations indicate that the spectral emissivity of methane ice is close to unity at 24 mu m and decreases with increasing wavelength to similar to 0.6 at 100 mu m. Future observations of thermal lightcurves over 70-500 mu m by Herschel should be very valuable to further constrain the emissivity behavior of the Pluto terrains. (C) 2011 Elsevier Inc. All rights reserved. C1 [Lellouch, Emmanuel] Observ Paris, LESIA, F-92195 Meudon, France. [Stansberry, John] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Emery, Josh] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Grundy, Will] Lowell Observ, Flagstaff, AZ 86001 USA. [Cruikshank, Dale P.] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. RP Lellouch, E (reprint author), Observ Paris, LESIA, 5 Pl Jules Janssen, F-92195 Meudon, France. EM emmanuel.lellouch@obspm.fr NR 71 TC 25 Z9 25 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD AUG PY 2011 VL 214 IS 2 BP 701 EP 716 DI 10.1016/j.icarus.2011.05.035 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811HM UT WOS:000294197500027 ER PT J AU Hodyss, R Howard, HR Johnson, PV Goguen, JD Kanik, I AF Hodyss, Robert Howard, Heather R. Johnson, Paul V. Goguen, Jay D. Kanik, Isik TI Formation of radical species in photolyzed CH4:N-2 ices SO ICARUS LA English DT Article DE Ices; Ices, IR spectroscopy; Ices, UV spectroscopy; Satellites, Surfaces; Pluto, Surface; Photochemistry; Triton ID VACUUM-ULTRAVIOLET PHOTOLYSIS; MATRIX-ISOLATION; SPACE-TELESCOPE; TRITON; SPECTRA; SPECTROSCOPY; METHANE; PLUTO; RELEVANT; PRODUCTS AB We report photochemical studies of thin cryogenic ice films composed of N-2, CH4 and CO in ratios analogous to those on the surfaces of Neptune's largest satellite, Triton, and on Pluto. Experiments were performed using a hydrogen discharge lamp, which provides an intense source of ultraviolet light to simulate the sunlight-induced photochemistry on these icy bodies. Characterization via infrared spectroscopy showed that C2H6 and C2H2, and HCO are formed by the dissociation of CH4 into H, CH2 and CH3 and the subsequent reaction of these radicals within the ice. Other radical species, such as C-2, C-2(-), CN, and CNN, are observed in the visible and ultraviolet regions of the spectrum. These species imply a rich chemistry based on formation of radicals from methane and their subsequent reaction with the N-2 matrix. We discuss the implications of the formation of these radicals for the chemical evolution of Triton and Pluto. Ultimately, this work suggests that C-2(-), CN, HCO, and CNN may be found in significant quantities on the surfaces of Triton and Pluto and that new observations of these objects in the appropriate wavelength regions are warranted. (C) 2011 Elsevier Inc. All rights reserved. C1 [Hodyss, Robert; Howard, Heather R.; Johnson, Paul V.; Goguen, Jay D.; Kanik, Isik] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hodyss, Robert; Johnson, Paul V.; Kanik, Isik] NASA, Astrobiol Inst, Washington, DC 20546 USA. RP Hodyss, R (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Robert.P.Hodyss@jpl.nasa.gov FU National Aeronautics and Space Administration; internal Research and Technology Development program; NASA Astrobiology Institute (Icy Worlds) FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded through the internal Research and Technology Development program. We also acknowledge support from the NASA Astrobiology Institute (Icy Worlds). HRH participated in this work as an intern sponsored by the NASA Undergraduate Student Research Program. NR 42 TC 11 Z9 11 U1 1 U2 14 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD AUG PY 2011 VL 214 IS 2 BP 748 EP 753 DI 10.1016/j.icarus.2011.05.023 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811HM UT WOS:000294197500031 ER PT J AU Metzger, SM Balme, MR Towner, MC Bos, BJ Ringrose, TJ Patel, MR AF Metzger, S. M. Balme, M. R. Towner, M. C. Bos, B. J. Ringrose, T. J. Patel, M. R. TI In situ measurements of particle load and transport in dust devils SO ICARUS LA English DT Article DE Mars; Mars, Atmosphere; Atmospheres, Dynamics; Earth ID MARS PATHFINDER; TERRESTRIAL; AEROSOLS AB In situ (mobile) sampling of 33 natural dust devil vortices reveals very high total suspended particle (TSP) mean values of 296 mg m(-3) and fine dust loadings (PM10) mean values ranging from 15.1 to 43.8 mg m(-3) (milligrams per cubic meter). Concurrent three-dimensional wind profiles show mean tangential rotation of 12.3 m s(-1) and vertical uplift of 2.7 m s(-1) driving mean vertical TSP flux of 1689 mg m(-3) s(-1) and fine particle flux of similar to 1.0 to similar to 50 mg m(-3) s(-1). Peak PM10 dust loading and flux within the dust column are three times greater than mean values, suggesting previous estimates of dust devil flux might be too high. We find that deflation rates caused by dust devil erosion are similar to 2.5-50 mu m per year in dust devil active zones on Earth. Similar values are expected for Mars, and may be more significant there where competing erosional mechanisms are less likely. (C) 2011 Elsevier Inc. All rights reserved. C1 [Metzger, S. M.; Balme, M. R.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Balme, M. R.] Open Univ, Dept Earth Environm Sci, Milton Keynes MK7 6AA, Bucks, England. [Towner, M. C.] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London, England. [Bos, B. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ringrose, T. J.; Patel, M. R.] Open Univ, Planetary & Space Sci Res Inst, Milton Keynes MK7 6AA, Bucks, England. RP Balme, MR (reprint author), Planetary Sci Inst, 1700 E Ft Lowell Rd,Suite 106, Tucson, AZ 85719 USA. EM metzger@psi.edu; balme@psi.edu; m.towner@imperial.ac.uk; brent.j.bos@nasa.gov; t.j.ringro-se@open.ac.uk; m.r.patel@open.ac.uk OI Balme, Matthew/0000-0001-5871-7475 FU NASA [NNX08AP32G] FX We wish to thank the Desert Research Institute, Ron Greeley at Arizona State University, and John Zarnecki at the Open University for material and logistical support. We thank Asmin Pathare at the Planetary Science Institute for helpful discussion. This is PSI contribution number 502. Balme and Metzger were supported in part by NASA Mars Fundamental Research Program grant NNX08AP32G. NR 36 TC 22 Z9 22 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD AUG PY 2011 VL 214 IS 2 BP 766 EP 772 DI 10.1016/j.icarus.2011.03.013 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811HM UT WOS:000294197500033 ER PT J AU Shaw, TA Perlwitz, J Harnik, N Newman, PA Pawson, S AF Shaw, Tiffany A. Perlwitz, Judith Harnik, Nili Newman, Paul A. Pawson, Steven TI The Impact of Stratospheric Ozone Changes on Downward Wave Coupling in the Southern Hemisphere SO JOURNAL OF CLIMATE LA English DT Article ID CLIMATE-CHANGE; INTERANNUAL VARIABILITY; PLANETARY-WAVES; POLAR VORTICES; HIGH-LATITUDES; TROPOSPHERE; TEMPERATURE; PROPAGATION; CIRCULATION AB The impact of stratospheric ozone changes on downward wave coupling between the stratosphere and troposphere in the Southern Hemisphere is investigated using a suite of Goddard Earth Observing System chemistry-climate model (GEOS CCM) simulations. Downward wave coupling occurs when planetary waves reflected in the stratosphere impact the troposphere. In reanalysis data, the climatological coupling occurs from September to December when the stratospheric basic state has a well-defined high-latitude meridional waveguide in the lower stratosphere that is bounded above by a reflecting surface, called a bounded wave geometry. Reanalysis data suggests that downward wave coupling during November-December has increased during the last three decades. The GEOS CCM simulation of the recent past captures the main features of downward wave coupling in the Southern Hemisphere. Consistent with the Modern Era Retrospective-Analysis for Research and Application (MERRA) dataset, wave coupling in the model maximizes during October-November when there is a bounded wave geometry configuration. However, the wave coupling in the model is stronger than in the MERRA dataset, and starts earlier and ends later in the seasonal cycle. The late season bias is caused by a bias in the timing of the stratospheric polar vortex breakup. Temporal changes in stratospheric ozone associated with past depletion and future recovery significantly impact downward wave coupling in the model. During the period of ozone depletion, the spring bounded wave geometry, which is favorable for downward wave coupling, extends into early summer, due to a delay in the vortex breakup date, and leads to increased downward wave coupling during November-December. During the period of ozone recovery, the stratospheric basic state during November-December shifts from a spring configuration back to a summer configuration, where waves are trapped in the troposphere, and leads to a decrease in downward wave coupling. Model simulations with chlorine fixed at 1960 values and increasing greenhouse gases show no significant changes in downward wave coupling and confirm that the changes in downward wave coupling in the model are caused by ozone changes. The results reveal a new mechanism wherein stratospheric ozone changes can affect the tropospheric circulation. C1 [Shaw, Tiffany A.] Columbia Univ, Lamont Doherty Earth Observ, New York, NY USA. [Shaw, Tiffany A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Perlwitz, Judith] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Harnik, Nili] Tel Aviv Univ, Dept Geophys & Planetary Sci, IL-69978 Tel Aviv, Israel. [Pawson, Steven] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Shaw, TA (reprint author), Columbia Univ, Lamont Doherty Earth Observ, POB 1000,61 Route 9W, Palisades, NY 10964 USA. EM tas2163@columbia.edu RI Perlwitz, Judith/B-7201-2008; Newman, Paul/D-6208-2012; Pawson, Steven/I-1865-2014 OI Perlwitz, Judith/0000-0003-4061-2442; Newman, Paul/0000-0003-1139-2508; Pawson, Steven/0000-0003-0200-717X FU NASA; National Sciences and Engineering Research Council of Canada; Israeli Science Foundation [1370/08] FX We thank NASA's Global Modeling and Assimilation Office for providing the MERRA dataset. This work was supported by the NASA Modeling and Analysis Program and used high-end computational resources provided by NASA's Columbia Project. TAS's contribution was supported by the National Sciences and Engineering Research Council of Canada through a Post Doctoral Fellowship. NH's contribution was funded by Grant 1370/08 from the Israeli Science Foundation. The authors are grateful to two anonymous reviewers for their helpful comments. NR 35 TC 11 Z9 11 U1 0 U2 11 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD AUG PY 2011 VL 24 IS 16 BP 4210 EP 4229 DI 10.1175/2011JCLI4170.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 814XN UT WOS:000294490600002 ER PT J AU Wong, S Fetzer, EJ Tian, BJ Lambrigtsen, B Ye, HC AF Wong, Sun Fetzer, Eric J. Tian, Baijun Lambrigtsen, Bjorn Ye, Hengchun TI The Apparent Water Vapor Sinks and Heat Sources Associated with the Intraseasonal Oscillation of the Indian Summer Monsoon SO JOURNAL OF CLIMATE LA English DT Article ID TRMM PR DATA; MOIST THERMODYNAMIC STRUCTURE; TROPICAL CLOUD CLUSTERS; SPECTRAL RETRIEVAL; ENERGY BUDGET; PART II; PROFILES; PRECIPITATION; PERSPECTIVE; ALGORITHM AB The possibility of using remote sensing retrievals to estimate apparent water vapor sinks and heat sources is explored. The apparent water vapor sinks and heat sources are estimated from a combination of remote sensing, specific humidity, and temperature from the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit (AIRS) and wind fields from the National Aeronautics and Space Administration (NASA)'s Goddard Space Flight Center (GSFC)'s Modern Era Retrospective-Analysis for Research and Applications (MERRA). The intraseasonal oscillation (ISO) of the Indian summer monsoon is used as a test bed to evaluate the apparent water vapor sink and heat source. The ISO-related northward movement of the column-integrated apparent water vapor sink matches that of precipitation observed by the Tropical Rainfall Measuring Mission (TRMM) minus the MERRA surface evaporation, although the amplitude of the variation is underestimated by 50%. The diagnosed water vapor and heat budgets associated with convective events during various phases of the ISO agree with the moisture-convection feedback mechanism. The apparent heat source moves northward coherently with the apparent water vapor sink associated with the deep convective activity, which is consistent with the northward migration of the precipitation anomaly. The horizontal advection of water vapor and dynamical warming are strong north of the convective area, causing the northward movement of the convection by the destabilization of the atmosphere. The spatial distribution of the apparent heat source anomalies associated with different phases of the ISO is consistent with that of the diabatic heating anomalies from the trained heating (TRAIN Q1) dataset. Further diagnostics of the TRAIN Q1 heating anomalies indicate that the ISO in the apparent heat source is dominated by a variation in latent heating associated with the precipitation. C1 [Wong, Sun; Fetzer, Eric J.; Tian, Baijun; Lambrigtsen, Bjorn] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ye, Hengchun] Calif State Univ Los Angeles, Dept Geog & Urban Anal, Los Angeles, CA 90032 USA. RP Wong, S (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM sun.wong@jpl.nasa.gov RI Tian, Baijun/A-1141-2007 OI Tian, Baijun/0000-0001-9369-2373 FU National Aeronautics and Space Administration; NASA AIRS validation; NEWS; MEASURES FX We are grateful to William Olson at NASA's Goddard Space Flight Center and Tristan L'Ecuyer at Colorado State University for providing and helping with the usage of the TRAIN dataset. We thank Duane Waliser and Xianan Jiang at JPL, Andrew Dessler and Courtney Shumacher at Texas A&M University, Shoichi Shige at Osaka Prefecture University, and two anonymous reviewers for comments that helped improve the manuscript. The research described in this paper was carried out at the Jet Propulsion Laboratory at the California Institute of Technology under a contract with the National Aeronautics and Space Administration. This work was supported by NASA AIRS validation, NEWS, and MEASURES projects at JPL. NR 40 TC 13 Z9 13 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD AUG PY 2011 VL 24 IS 16 BP 4466 EP 4479 DI 10.1175/2011JCLI4076.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 814XN UT WOS:000294490600016 ER PT J AU Ubelmann, C Fu, LL AF Ubelmann, Clement Fu, Lee-Lueng TI Vorticity Structures in the Tropical Pacific from a Numerical Simulation SO JOURNAL OF PHYSICAL OCEANOGRAPHY LA English DT Article ID EQUATORIAL PACIFIC; INSTABILITY WAVES; LONG WAVES; OCEAN; EDDIES; MODEL; VARIABILITY; DISPERSION; SATELLITE; ATLANTIC AB The small-scale variability of the tropical Pacific is studied with the simulations from a numerical model in terms of vorticity structures. A Lagrangian method based on the Okubo-Weiss parameter is used to identify the structures and track their main characteristics. Between 8 degrees S and 8 degrees N, the structure characteristics are spatially inhomogeneous compared to higher latitudes. They can be grouped into three categories: anticyclonic and cyclonic structures off the equator and the equatorial structures between 2 degrees S and 2 degrees N. They all have a strong annual cycle with maximum presence from September to March, except during strong El Nino years, when the number of structures becomes very low. Off the equator from 2 degrees to 8 degrees, the anticyclonic structures dominate, but with drastically different characteristics north and south of the equator. In the north, large nonlinear vortices develop (known as the tropical instability vortices) in phase with the 30-35-day oscillation related to an unstable first-meridional-mode Rossby waves. In the south, mostly fragmentary linear structures are present, with lower propagation speeds. The equatorial structures are mostly counterclockwise. The larger ones tend to be linear and are clearly associated with Yanai waves. The large majority of the cyclonic structures off the equator are also quite linear and smaller and less numerous than the anticyclonic structures. However, some of them are nonlinear with vorticity values higher than 2 times the Coriolis parameter. C1 [Ubelmann, Clement; Fu, Lee-Lueng] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Ubelmann, C (reprint author), CALTECH, Jet Prop Lab, MS 300-323,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM clement.ubelmann@jpl.nasa.gov FU National Aeronautic and Space Administration; Jason-1; OSTM/Jason-2 FX The authors are indebted to Dimitris Menemenlis and the ECCO-2 group for their help with providing the model simulation products. PO.DAAC is acknowledged for providing high-resolution sea surface temperature observations. The research presented in the paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautic and Space Administration. Support from the Jason-1 and OSTM/Jason-2 projects is acknowledged. The authors would also like to thank Dr. Ted Durland of Oregon State University and an anonymous reviewer for their constructive reviews. NR 25 TC 2 Z9 2 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-3670 J9 J PHYS OCEANOGR JI J. Phys. Oceanogr. PD AUG PY 2011 VL 41 IS 8 BP 1455 EP 1464 DI 10.1175/2011JPO4507.1 PG 10 WC Oceanography SC Oceanography GA 813ZY UT WOS:000294411600002 ER PT J AU Xu, YS Fu, LL Tulloch, R AF Xu, Yongsheng Fu, Lee-Lueng Tulloch, Ross TI The Global Characteristics of the Wavenumber Spectrum of Ocean Surface Wind SO JOURNAL OF PHYSICAL OCEANOGRAPHY LA English DT Article ID ATMOSPHERIC ENERGY-SPECTRUM; STRATIFIED TURBULENCE; 2-DIMENSIONAL TURBULENCE; GEOSTROPHIC TURBULENCE; SIMULATION; DYNAMICS; FEATURES; CASCADE; SCALES; MODEL AB The wavenumber spectra of wind kinetic energy over the ocean from Quick Scatterometer (QuikSCAT) observations have revealed complex spatial variability in the wavelength range of 1000-3000 km, with spectral slopes varying from -1.6 to -2.9. Here the authors performed a spectral analysis of QuikSCAT winds over the global ocean and found that (i) the spectral slopes become steeper toward the Poles in the Pacific and in the South Atlantic, and the slopes exhibit minimal longitudinal dependence in the South Pacific; (ii) the steepest slopes are in the tropical Indian Ocean and the shallowest slopes are in the tropical Pacific and Atlantic; and (iii) the spectra are steeper in winter than summer in most regions of the midlatitude Northern Hemisphere. The new findings reported in the paper provide a test bed for theoretical studies and atmospheric general circulation models. C1 [Xu, Yongsheng; Fu, Lee-Lueng] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tulloch, Ross] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, England. RP Xu, YS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM yongsheng.xu@jpl.nasa.gov FU National Aeronautics and Space Administration FX The research presented in the paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The authors thank Ernesto Rodriguez, Jerome Patoux, Shafer Smith, Peter Bartello, Yuji Kitamura, and Erik Lindborg for their comments. Government sponsorship acknowledged. NR 25 TC 5 Z9 5 U1 0 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-3670 J9 J PHYS OCEANOGR JI J. Phys. Oceanogr. PD AUG PY 2011 VL 41 IS 8 BP 1576 EP 1582 DI 10.1175/JPO-D-11-059.1 PG 7 WC Oceanography SC Oceanography GA 813ZY UT WOS:000294411600009 ER PT J AU Zhang, LN Pejakovic, DA Marschall, J Gasch, M AF Zhang, Luning Pejakovic, Dusan A. Marschall, Jochen Gasch, Matthew TI Thermal and Electrical Transport Properties of Spark Plasma-Sintered HfB2 and ZrB2 Ceramics SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID HIGH-TEMPERATURE CERAMICS; LASER FLASH METHOD; DIFFUSIVITY MEASUREMENTS; ZIRCONIUM DIBORIDE; HAFNIUM DIBORIDE; METAL DIBORIDES; GRAIN-SIZE; TIN OXIDE; CONDUCTIVITY; RESISTANCE AB The thermal and electrical transport properties of various spark plasma-sintered HfB2- and ZrB2-based polycrystalline ceramics were investigated experimentally over the 298-700 K temperature range. Measurements of thermal diffusivity, electrical resistivity, and Hall coefficient are reported, as well as the derived properties of thermal conductivity, charge carrier density, and charge carrier mobility. Hall coefficients were negative confirming electrons as the dominant charge carrier, with carrier densities and mobilities in the 3-5 x 10(21) cm(-3) and 100-250 cm(2). (V. s)(-1) ranges, respectively. Electrical resistivities were lower, and temperature coefficients of resistivity higher, than those typically reported for HfB2 and ZrB2 materials manufactured by the conventional hot pressing. A Wiedemann-Franz analysis confirms the dominance of electronic contributions to heat transport. The thermal conductivity was found to decrease with increasing temperature for all materials. Results are discussed in terms of sample morphology and compared with data previously reported in the scientific literature. C1 [Zhang, Luning; Pejakovic, Dusan A.; Marschall, Jochen] SRI Int, Mol Phys Lab, Menlo Pk, CA 94025 USA. [Gasch, Matthew] NASA, Ames Res Ctr, Thermal Protect Mat & Syst Branch, Moffett Field, CA 94035 USA. RP Marschall, J (reprint author), SRI Int, Mol Phys Lab, Menlo Pk, CA 94025 USA. EM jochen.marschall@sri.com OI Pejakovic, Dusan/0000-0001-6067-6529 FU United States Air Force Office of Scientific Research [FA9550-08-C-0049] FX This work was financially supported by the United States Air Force Office of Scientific Research, under contract FA9550-08-C-0049. NR 45 TC 28 Z9 28 U1 2 U2 25 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD AUG PY 2011 VL 94 IS 8 BP 2562 EP 2570 DI 10.1111/j.1551-2916.2011.04411.x PG 9 WC Materials Science, Ceramics SC Materials Science GA 805AP UT WOS:000293698700054 ER PT J AU Masi, E Bellan, J AF Masi, Enrica Bellan, Josette TI The subgrid-scale scalar variance under supercritical pressure conditions SO PHYSICS OF FLUIDS LA English DT Article ID LARGE-EDDY SIMULATION; TURBULENT REACTING FLOWS; APPROXIMATE DECONVOLUTION MODEL; TRANSITIONAL MIXING LAYERS; FILTERED-DENSITY-FUNCTION; COMPRESSIBLE TURBULENCE; HEAT RELEASE; A-PRIORI; COMBUSTION; JET AB To model the subgrid-scale (SGS) scalar variance under supercritical-pressure conditions, an equation is first derived for it. This equation is considerably more complex than its equivalent for atmospheric-pressure conditions. Using a previously created direct numerical simulation (DNS) database of transitional states obtained for binary-species systems in the context of temporal mixing layers, the activity of terms in this equation is evaluated, and it is found that some of these new terms have magnitude comparable to that of governing terms in the classical equation. Most prominent among these new terms are those expressing the variation of diffusivity with thermodynamic variables and Soret terms having dissipative effects. Since models are not available for these new terms that would enable solving the SGS scalar variance equation, the adopted strategy is to directly model the SGS scalar variance. Two models are investigated for this quantity, both developed in the context of compressible flows. The first one is based on an approximate deconvolution approach and the second one is a gradient-like model which relies on a dynamic procedure using the Leonard term expansion. Both models are successful in reproducing the SGS scalar variance extracted from the filtered DNS database, and moreover, when used in the framework of a probability density function (PDF) approach in conjunction with the beta-PDF, they excellently reproduce a filtered quantity which is a function of the scalar. For the dynamic model, the proportionality coefficient spans a small range of values through the layer cross-stream coordinate, boding well for the stability of large eddy simulations using this model. (C) 2011 American Institute of Physics. [doi:10.1063/1.3609282] C1 [Masi, Enrica; Bellan, Josette] CALTECH, Pasadena, CA 91125 USA. [Bellan, Josette] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Masi, E (reprint author), CALTECH, Pasadena, CA 91125 USA. EM josette.bellan@jpl.nasa.gov FU U.S. Department of Energy; U.S. Air Force Office of Scientific Research FX This study was conducted at the Jet Propulsion Laboratory (JPL) of the California Institute of Technology (Caltech) under sponsorship of the U.S. Department of Energy and of the U.S. Air Force Office of Scientific Research. Computational resources were provided by the supercomputing facility at JPL. NR 48 TC 0 Z9 0 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD AUG PY 2011 VL 23 IS 8 AR 085101 DI 10.1063/1.3609282 PG 22 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 814UU UT WOS:000294483500029 ER PT J AU Arslan, BK Boyd, ES Dolci, WW Dodson, KE Boldt, MS Pilcher, CB AF Arslan, Betuel K. Boyd, Eric S. Dolci, Wendy W. Dodson, K. Estelle Boldt, Marco S. Pilcher, Carl B. TI Workshops without Walls: Broadening Access to Science around the World SO PLOS BIOLOGY LA English DT Editorial Material AB The National Aeronautics and Space Administration (NASA) Astrobiology Institute (NAI) conducted two "Workshops Without Walls" during 2010 that enabled global scientific exchange-with no travel required. The second of these was on the topic "Molecular Paleontology and Resurrection: Rewinding the Tape of Life." Scientists from diverse disciplines and locations around the world were joined through an integrated suite of collaborative technologies to exchange information on the latest developments in this area of origin of life research. Through social media outlets and popular science blogs, participation in the workshop was broadened to include educators, science writers, and members of the general public. In total, over 560 people from 31 US states and 30 other nations were registered. Among the scientific disciplines represented were geochemistry, biochemistry, molecular biology and evolution, and microbial ecology. We present this workshop as a case study in how interdisciplinary collaborative research may be fostered, with substantial public engagement, without sustaining the deleterious environmental and economic impacts of travel. C1 [Arslan, Betuel K.] NASA, Astrobiol Inst, Ctr Ribosomal Origins & Evolut, Georgia Inst Technol, Atlanta, GA 30301 USA. [Arslan, Betuel K.] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA. [Boyd, Eric S.] Montana State Univ, NASA, Astrobiol Inst, Astrobiol Biogeocatalysis Res Ctr, Bozeman, MT 59717 USA. [Boyd, Eric S.] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Dolci, Wendy W.; Dodson, K. Estelle; Boldt, Marco S.; Pilcher, Carl B.] NASA, Astrobiol Inst, Ames Res Ctr, Moffett Field, CA USA. RP Arslan, BK (reprint author), NASA, Astrobiol Inst, Ctr Ribosomal Origins & Evolut, Georgia Inst Technol, Atlanta, GA 30301 USA. EM carl.b.pilcher@nasa.gov NR 15 TC 2 Z9 2 U1 0 U2 5 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1544-9173 J9 PLOS BIOL JI PLoS. Biol. PD AUG PY 2011 VL 9 IS 8 AR e1001118 DI 10.1371/journal.pbio.1001118 PG 5 WC Biochemistry & Molecular Biology; Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA 814UP UT WOS:000294483000002 PM 21829326 ER PT J AU Eimer, JR Bennett, CL Chuss, DT Wollack, EJ AF Eimer, J. R. Bennett, C. L. Chuss, D. T. Wollack, E. J. TI Note: Vector reflectometry in a beam waveguide SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID MEASUREMENT SYSTEM; NETWORK ANALYZER; CALIBRATION; DESIGN AB We present a one-port calibration technique for characterization of beam waveguide components with a vector network analyzer. This technique involves using a set of known delays to separate the responses of the instrument and the device under test. We demonstrate this technique by measuring the reflected performance of a millimeter-wave variable-delay polarization modulator. (C) 2011 American Institute of Physics. [doi:10.1063/1.3622522] C1 [Eimer, J. R.; Chuss, D. T.; Wollack, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Eimer, J. R.; Bennett, C. L.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RP Eimer, JR (reprint author), NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. EM eimer@pha.jhu.edu RI Chuss, David/D-8281-2012; Wollack, Edward/D-4467-2012 OI Wollack, Edward/0000-0002-7567-4451 NR 16 TC 5 Z9 5 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2011 VL 82 IS 8 AR 086101 DI 10.1063/1.3622522 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 814VZ UT WOS:000294486600054 PM 21895279 ER PT J AU Han, JW Kim, B Park, YC Meyyappan, M AF Han, Jin-Woo Kim, Beomseok Park, Yun Chang Meyyappan, M. TI Note: Two-dimensional resistivity mapping method for characterization of thin films and nanomaterials SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ELECTRICAL-IMPEDANCE TOMOGRAPHY; RECONSTRUCTION ALGORITHMS; IMAGE-RECONSTRUCTION; ELECTRODES; TRANSISTORS; ZNO AB A two-dimensional resistivity mapping method is presented as an analysis tool for thin films. The spatial distribution of resistivity in the interior of the film is reconstructed with the data measured on its periphery. A square window with four electrodes on each side is fabricated as the test vehicle. While the current is applied to one electrode, the potentials on the other electrodes are monitored and an iterative method generates the resistivity map. The technique is demonstrated by measurements on a homogeneous organic PEDOT:PSS film and an inhomogeneous ZnO nanoparticle coating. (C) 2011 American Institute of Physics. [doi:10.1063/1.3626797] C1 [Han, Jin-Woo; Kim, Beomseok; Meyyappan, M.] NASA, Ctr Nanotechnol, Ames Res Ctr, Moffett Field, CA 94035 USA. [Park, Yun Chang] Natl Nanofab Ctr, Taejon 305806, South Korea. RP Han, JW (reprint author), NASA, Ctr Nanotechnol, Ames Res Ctr, Moffett Field, CA 94035 USA. EM jin-woo.han@nasa.gov NR 14 TC 0 Z9 0 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2011 VL 82 IS 8 AR 086117 DI 10.1063/1.3626797 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 814VZ UT WOS:000294486600070 PM 21895295 ER PT J AU Qiu, S Clausen, B Padula, SA Noebe, RD Vaidyanathan, R AF Qiu, S. Clausen, B. Padula, S. A., II Noebe, R. D. Vaidyanathan, R. TI On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi SO ACTA MATERIALIA LA English DT Article DE Elastic modulus; Martensite; Shape memory; Anisotropy; Neutron diffraction ID ACQUIRED IN-SITU; DIFFRACTION SPECTRA; RIETVELD REFINEMENT; SUPERELASTIC NITI; TEXTURE; STRAIN; STRESSES AB A combined experimental and computational effort was undertaken to provide insight into the elastic response of B19' martensitic NiTi variants as they exist in bulk, polycrystalline aggregate form during monotonic tensile and compressive loading. The experimental effort centered on using in situ neutron diffraction during loading to measure elastic moduli in several directions along with an average Young's modulus and a Poisson's ratio. The measurements were compared with predictions from a 30,000 variant, self-consistent polycrystalline deformation model that accounted for the elastic intergranular constraint, and also with predictions of single crystal behavior from previously published ab initio studies. Variant conversion and detwinning processes that influenced the intergranular constraint occurred even at stresses where the macroscopic stress strain response appeared linear. Direct evidence of these processes was revealed in changes in texture, which were captured in inverse pole figures constructed from the neutron diffraction measurements. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Qiu, S.; Vaidyanathan, R.] Univ Cent Florida, AMPAC, Mech Mat & Aerosp Engn Dept, Orlando, FL 32816 USA. [Clausen, B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Padula, S. A., II; Noebe, R. D.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Vaidyanathan, R (reprint author), Univ Cent Florida, AMPAC, Mech Mat & Aerosp Engn Dept, Orlando, FL 32816 USA. EM raj@mail.ucf.edu RI Clausen, Bjorn/B-3618-2015 OI Clausen, Bjorn/0000-0003-3906-846X FU NASA [NNX08A-B51A]; Office of Basic Energy Sciences, DOE; Los Alamos National Security LLC under DOE [DE-AC52-06NA25396] FX The authors acknowledge funding from the NASA Fundamental Aeronautics Program, Supersonic Project (NNX08A-B51A), under the guidance of Dale Hopkins, API. The authors also thank D. Brown and T. Sisneros at LANL for experimental assistance. This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Office of Basic Energy Sciences, DOE. LANL is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. NR 26 TC 46 Z9 46 U1 2 U2 51 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD AUG PY 2011 VL 59 IS 13 BP 5055 EP 5066 DI 10.1016/j.actamat.2011.04.018 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 797GX UT WOS:000293113600001 ER PT J AU Manchiraju, S Gaydosh, D Benafan, O Noebe, R Vaidyanathan, R Anderson, PM AF Manchiraju, Sivom Gaydosh, Darrell Benafan, Othmane Noebe, Ronald Vaidyanathan, Raj Anderson, Peter M. TI Thermal cycling and isothermal deformation response of polycrystalline NiTi: Simulations vs. experiment SO ACTA MATERIALIA LA English DT Article DE Shape memory alloys; Thermal cycling; Finite element ID SHAPE-MEMORY ALLOYS; TRANSFORMATION-INDUCED PLASTICITY; SINGLE-CRYSTALS; PART I; BEHAVIOR; MODEL; STRESS; REORIENTATION; DEPENDENCE; TEXTURE AB A recent microstructure-based FEM model that couples crystal-based plasticity, the B2 <-> B19' phase transformation and anisotropic elasticity at the grain scale is calibrated to recent data for polycrystalline NiTi (49.9 at.% Ni). Inputs include anisotropic elastic properties, texture and differential scanning calorimetry data, as well as a subset of recent isothermal deformation and load-biased thermal cycling data. The model is assessed against additional experimental data. Several experimental trends are captured - in particular, the transformation strain during thermal cycling monotonically increases and reaches a peak with increasing bias stress. This is achieved, in part, by modifying the martensite hardening matrix proposed by Patoor et al. [Patoor E, Eberhardt A, Berveiller M. J Phys IV 1996;6:277]. Some experimental trends are underestimated - in particular, the ratcheting of macrostrain during thermal cycling. This may reflect a model limitation that transformation plasticity coupling is captured on a coarse (grain) scale but not on a fine (martensitic plate) scale. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Manchiraju, Sivom; Anderson, Peter M.] Ohio State Univ, Columbus, OH 43210 USA. [Gaydosh, Darrell; Noebe, Ronald] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Benafan, Othmane; Vaidyanathan, Raj] Univ Cent Florida, Orlando, FL 32816 USA. RP Anderson, PM (reprint author), Ohio State Univ, Columbus, OH 43210 USA. EM anderson.1@osu.edu RI Anderson, Peter/J-8315-2014; Manchiraju, Sivom/A-8497-2015 FU NASA [NNX08AB49A, NNX08AB51A]; Department of Energy [DE-SC0001258]; Ohio Supercomputer Center [PAS676]; Florida Center for Advanced Aeropropulsion FX D.G. and R.N. acknowledge support from the NASA Fundamental Aeronautics Program (Dr. Dale Hopkins, API). P.M.A. and S.M. acknowledge Dr. Myoung-Gyu Lee (assistance with texture analysis), Dr. Michael Mills (discussions about austenite plasticity), Dr. Nick Hatcher (elastic constants), the NASA Fundamental Aeronautics Program, Supersonics Project (Grant No. NNX08AB49A), the Department of Energy (Grant No. DE-SC0001258) and the Ohio Supercomputer Center (Grant No. PAS676). R.V. and O.B. acknowledge experimental assistance from Sven Vogel at Los Alamos National Laboratory, the NASA Fundamental Aeronautics Program, Supersonics Project (Grant No. NNX08AB51A) and the Florida Center for Advanced Aeropropulsion. NR 57 TC 22 Z9 22 U1 3 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD AUG PY 2011 VL 59 IS 13 BP 5238 EP 5249 DI 10.1016/j.actamat.2011.04.063 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 797GX UT WOS:000293113600018 ER PT J AU Righter, K Sutton, S Danielson, L Pando, K Schmidt, G Yang, H Berthet, S Newville, M Choi, Y Downs, RT Malavergne, V AF Righter, K. Sutton, S. Danielson, L. Pando, K. Schmidt, G. Yang, H. Berthet, S. Newville, M. Choi, Y. Downs, R. T. Malavergne, V. TI The effect of f(O2) on the partitioning and valence of V and Cr in garnet/melt pairs and the relation to terrestrial mantle V and Cr content SO AMERICAN MINERALOGIST LA English DT Article DE Garnet; silicate melt; mantle; siderophile ID OXYGEN FUGACITY; OXIDATION-STATE; CORE FORMATION; SILICATE MELTS; SIDEROPHILE ELEMENTS; MICROPROBE ANALYSIS; METALLIC LIQUID; SOUTHERN AFRICA; VANADIUM GARNET; BASALTIC MELT AB Chromium and vanadium are stable in multiple valence states in natural systems, and their distribution between garnet and silicate melt is not well understood. Here, the partitioning and valence state of V and Cr in experimental garnet/melt pairs have been studied at 1.8-3.0 GPa, with variable oxygen fugacity between 1W-1.66 and the Ru-RuO2 (1W+9.36) buffer. In addition, the valence state of V and Cr has been measured in several high-pressure (majoritic garnet up to 20 GPa) experimental garnets, some natural megacrystic garnets from the western United States, and a suite of mantle garnets from South Africa. The results show that Cr remains in trivalent in garnet across a wide range of oxygen fugacities. Vanadium, on the other hand, exhibits variable valence state from 2.5 to 3.7 in the garnets and from 3.0 to 4.0 in the glasses. The valence state of V is always greater in the glass than in the garnet. Moreover, the garnet/melt partition coefficient, D(V), is highest when V is trivalent, at the most reduced conditions investigated (1W-1.66 to FMQ). The V-2.50 measured in high P-T experimental garnets is consistent with the reduced nature of those metal-bearing systems. The low V valence state measured in natural megacrystic garnets is consistent with f(O2) close to the 1W buffer, overlapping the range of f(O2) measured independently by Fe2+/Fe3+ techniques on similar samples. However, the valence state of V measured in a suite of mantle garnets from South Africa is constant across a 3 logf(O2) unit range (FMQ-1.8 to FMQ-4.5), suggesting that the valence state of V is controlled by the crystal chemistry of the garnets rather than f(O2) variations. The compatibility of V and Cr in garnets and other deep mantle silicates indicates that the depletion of these elements in the Earth's primitive upper mantle could be due to partitioning into lower mantle phases as well as into metal. C1 [Righter, K.; Danielson, L.; Pando, K.] NASA, Johnson Space Ctr, Houston, TX 77058 USA. [Sutton, S.; Newville, M.; Choi, Y.] Univ Chicago, GSECARS, Chicago, IL 60637 USA. [Sutton, S.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Berthet, S.; Malavergne, V.] Univ Paris Est Marne La Vallee, Lab Geomat, F-77454 Marne La Vallee, France. [Schmidt, G.; Yang, H.; Downs, R. T.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. RP Righter, K (reprint author), NASA, Johnson Space Ctr, Houston, TX 77058 USA. EM kevin.righter-1@nasa.gov FU National Science Foundation; Earth Sciences [EAR-0622171]; Department of Energy, Geosciences [DE-FG02-94ER 14466]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DF-AC02-06CH11357]; RTOP from the NASA FX Portions of this work were performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation, Earth Sciences (EAR-0622171) and Department of Energy, Geosciences (DE-FG02-94ER 14466). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DF-AC02-06CH11357. Research at JSC was supported by a RTOP to K.R. from the NASA Cosmochemistry program. Some travel was supported by the Lanar and Planetary Institute. We thank D. Schulze and D. Canil for guidance in finding literature mantle garnet analyses, and F.J. Essene for discussions relating to site substitutions. A. Peslier, A. Woodland, and M. Lazarov kindly provided a suite of well-characterized natural garnets from South African mantle xenoliths B. Hanson and J.Jones made the Cr glass standards, and A. Martin assisted with the XANES analysis. Helpful reviews by T. Mikouchi, D. Canil, and Associate Editor M.D. Dyar are appreciated and contributed to the clarity of the presentation. NR 104 TC 7 Z9 7 U1 2 U2 22 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD AUG-SEP PY 2011 VL 96 IS 8-9 BP 1278 EP 1290 DI 10.2138/am.2011.3690 PG 13 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 808QM UT WOS:000293993500011 ER PT J AU Hartogh, P Lellouch, E Moreno, R Bockelee-Morvan, D Biver, N Cassidy, T Rengel, M Jarchow, C Cavalie, T Crovisier, J Helmich, FP Kidger, M AF Hartogh, P. Lellouch, E. Moreno, R. Bockelee-Morvan, D. Biver, N. Cassidy, T. Rengel, M. Jarchow, C. Cavalie, T. Crovisier, J. Helmich, F. P. Kidger, M. TI Direct detection of the Enceladus water torus with Herschel SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE planets and satellites: individual: Saturn; planets and satellites: individual: Enceladus; techniques: spectroscopic; submillimetre: planetary system ID SATURNS ATMOSPHERE; CARBON-MONOXIDE; VAPOR; JUPITER; ORIGIN; PLUME; STRATOSPHERE; ASTRONOMY; EMISSION; SYSTEM AB Cryovolcanic activity near the south pole of Saturn's moon Enceladus produces plumes of H2O-dominated gases and ice particles, which escape and populate a torus-shaped cloud. Using submillimeter spectroscopy with Herschel, we report the direct detection of the Enceladus water vapor torus in four rotational lines of water at 557, 987, 1113, and 1670 GHz, and probe its physical conditions and structure. We determine line-of-sight H2O column densities of similar to 4 x 10(13) cm(-2) near the equatorial plane, with a similar to 50 000 km vertical scale height. The water torus appears to be rotationally cold (e.g. an excitation temperature of 16 K is measured for the 1113 GHz line) but dynamically excited, with non-Keplerian dispersion velocities of similar to 2 kms(-1), and appears to be largely shaped by molecular collisions. From estimates of the influx rates of torus material into Saturn and Titan, we infer that Enceladus' activity is likely to be the ultimate source of water in the upper atmosphere of Saturn, but not in Titan's. C1 [Hartogh, P.; Rengel, M.; Jarchow, C.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Lellouch, E.; Moreno, R.; Bockelee-Morvan, D.; Biver, N.; Crovisier, J.] Observ Paris, LESIA, F-92195 Meudon, France. [Cassidy, T.] CALTECH, Jet Prop Lab, Pasadena, CA 91107 USA. [Cavalie, T.] Univ Bordeaux, Observ Aquitain Sci Univers, CNRS, Lab Astrophys Bordeaux,UMR 5804, Bordeaux, France. [Helmich, F. P.] Univ Groningen, SRON, Groningen, Netherlands. [Kidger, M.] European Space Astron Ctr, Herschel Sci Ctr, Madrid, Spain. RP Hartogh, P (reprint author), Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. EM hartogh@mps.mpg.de NR 39 TC 26 Z9 26 U1 0 U2 15 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD AUG PY 2011 VL 532 AR L2 DI 10.1051/0004-6361/201117377 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 799JS UT WOS:000293283600004 ER PT J AU Licandro, J Campins, H Tozzi, GP de Leon, J Pinilla-Alonso, N Boehnhardt, H Hainaut, OR AF Licandro, J. Campins, H. Tozzi, G. P. de Leon, J. Pinilla-Alonso, N. Boehnhardt, H. Hainaut, O. R. TI Testing the comet nature of main belt comets. The spectra of 133P/Elst-Pizarro and 176P/LINEAR SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE minor planets, asteroids: individual: 133P/Elst-Pizarro; minor planets, asteroids: individual: 176P/LINEAR; minor planets, asteroids: general; comets: general; techniques: spectroscopic ID NEAR-EARTH ASTEROIDS; SHORT-PERIOD COMETS; JUPITER-FAMILY COMETS; WILSON-HARRINGTON; THERMAL-PROPERTIES; NUCLEAR-SPECTRA; METEOR-SHOWER; 3200 PHAETHON; SOLAR-SYSTEM; ORIGIN AB Context. Dynamically, 133P/Elst-Pizarro and 176P/LINEAR are main belt asteroids, likely members of the Themis collisional family, and unlikely of cometary origin. They have been observed with cometary-like tails, which may be produced by water-ice sublimation. They are part of a small group of objects called Main Belt Comets (MBCs, Hsieh & Jewitt 2006). Aims. We attempt to determine if these MBCs have spectral properties compatible with those of comet nuclei or with other Themis family asteroids. Methods. We present the visible spectrum of MBCs 133P and 176P, as well as three Themis family asteroids: (62) Erato, (379) Huenna and (383) Janina, obtained in 2007 using three telescopes at "El Roque de los Muchachos" Observatory, in La Palma, Spain, and the 8 m Kueyen (UT2) VLT telescope at Cerro Paranal, Chile. The spectra of the MBCs are compared with those of the Themis family asteroids, comets, likely "dormant" comets and asteroids with past cometary-like activity in the near-Earth (NEA) population. As 133P was observed active, we also look for the prominent CN emission around 0.38 mu m typically observed in comets, to test if the activity is produced by the sublimation of volatiles. Results. The spectra of 133P and 176P resemble best those of B-type asteroid and are very similar to those of Themis family members and another activated asteroid in the near-Earth asteroid population, (3200) Phaethon. On the other hand, these spectra are significantly different from the spectrum of comet 162P/Siding-Spring and most of the observed cometary nuclei. CN gas emission is not detected in the spectrum of 133P. We determine an upper limit for the CN production rate Q(CN) = 1.3 x 10(21) mol/s, three orders of magnitude lower than the Q(CN) of Jupiter family comets observed at similar heliocentric distances. Conclusions. The spectra of 133P/Elst-Pizarro and 176P/LINEAR confirm that they are likely members of the Themis family of asteroids, fragments that probably retained volatiles, and unlikely have a cometary origin in the trans-Neptunian belt or the Oort Cloud. They have similar surface properties to activated asteroids in the NEA population, which supports the hypothesis that these NEAs are scattered MBCs. The low Q(CN) of 133P means that, if water-ice sublimation is the activation mechanism, the gas production rate is very low and/or the parent molecules of CN present in the nuclei of normal comets are much less abundant in this MBC. C1 [Licandro, J.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Licandro, J.] Univ La Laguna, Dept Astrofis, Tenerife 38205, Spain. [Campins, H.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Tozzi, G. P.] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [de Leon, J.] Inst Astrofis Andalucia, E-18080 Granada, Spain. [Pinilla-Alonso, N.] NASA Ames Res Ctr, NASA Postdoctoral Program, Moffett Field, CA USA. [Boehnhardt, H.] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Hainaut, O. R.] ESO, D-85748 Garching, Germany. RP Licandro, J (reprint author), Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38200, Spain. EM jlicandr@iac.es RI de Leon, Julia/H-7569-2015; OI de Leon, Julia/0000-0002-0696-0411; Tozzi, Gian Paolo/0000-0003-4775-5788 FU European Southern Observatory ESO [279.C-5035]; spanish "Ministerio de Ciencia e Innovacion" [AYA2008-06202-C03-02]; NASA; NSF FX This article is based on observations made with the WHT, TNG and NOT telescopes operated on the island of La Palma by the ING, FFG-INAF and NOTSA, respectively, in the Spanish "Observatorio del Roque de los Muchachos", and with the VLT of the European Southern Observatory ESO (program number 279.C-5035). J.L. gratefully acknowledges support from the spanish "Ministerio de Ciencia e Innovacion" project AYA2008-06202-C03-02. N.P.A. acknowledges support from NASA Postdoctoral Program, administered by Oak Ridge Associated Universities through a contract with NASA. H.C. gratefully acknowledges support from NASA and NSF. NR 80 TC 17 Z9 17 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD AUG PY 2011 VL 532 AR A65 DI 10.1051/0004-6361/201117018 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 799JS UT WOS:000293283600076 ER PT J AU Schodel, R Morris, MR Muzic, K Alberdi, A Meyer, L Eckart, A Gezari, DY AF Schoedel, R. Morris, M. R. Muzic, K. Alberdi, A. Meyer, L. Eckart, A. Gezari, D. Y. TI The mean infrared emission of Sagittarius A SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE black hole physics; instrumentation: high angular resolution; instrumentation: adaptive optics; Galaxy: center ID SGR-A-ASTERISK; SUPERMASSIVE BLACK-HOLE; NUCLEAR STAR CLUSTER; X-RAY OBSERVATIONS; GALACTIC-CENTER; FLARE EMISSION; EXTINCTION-LAW; STELLAR ORBITS; MILKY-WAY; MU-M AB Context. The massive black hole at the center of the Milky Way, Sagittarius A* (Sgr A*) is, in relative terms, the weakest accreting black hole accessible to observations. It has inspired the theoretical models of radiatively inefficient accretion. Unfortunately, our knowledge of the mean SED and source structure of Sgr A* is very limited owing to numerous observational difficulties. At the moment, the mean SED of Sgr A* is only known reliably in the radio to mm regimes. Aims. The goal of this paper is to provide constraints on the mean emission from Sgr A* in the near-to-mid infrared. Methods. Sensitive images of the surroundings of Sgr A* at 8.6 mu m, 4.8 mu m, and 3.8 mu m were produced by combining large quantities of imaging data. Images were produced for several observing epochs. Excellent imaging quality was reached in the MIR by using speckle imaging combined with holographic image reconstruction, a novel technique for this kind of data. Results. No counterpart of Sgr A* is detected at 8.6 mu m. At this wavelength, Sgr A* is located atop a dust ridge, which considerably complicates the search for a potential point source. An observed 3 sigma upper limit of similar to 10 mJy is estimated for the emission of Sgr A* at 8.6 mu m, a tighter limit at this wavelength than in previous work. The de-reddened 3 sigma upper limit, including the uncertainty of the extinction correction, is similar to 84 mJy. Based on the available data, it is argued that, with currently available instruments, Sgr A* cannot be detected in the MIR, not even during flares. At 4.8 mu m and 3.8 mu m, on the other hand, Sgr A* is detected at all times, at least when considering timescales of a few up to 13 min. We derive well-defined time-averaged, de-reddened flux densities of 3.8 +/- 1.3 mJy at 4.8 mu m and 5.0 +/- 0.6 mJy at 3.8 mu m. Observations with NIRC2/Keck and NaCo/VLT from the literature provide good evidence that Sgr A* also has a fairly well-defined de-reddened mean flux of 0.5-2.5 mJy at wavelengths of 2.1-2.2 mu m. Conclusions. We present well-constrained anchor points for the SED of Sgr A* on the high-frequency side of the Terahertz peak. The new data are in general agreement with published theoretical SEDs of the mean emission from Sgr A*, but we expect them to have an appreciable impact on the model parameters in future theoretical work. C1 [Schoedel, R.; Alberdi, A.] Inst Astrofis Andalucia CSIC, Granada 18008, Spain. [Morris, M. R.; Meyer, L.] Univ Calif Los Angeles, Div Astron & Astrophys, Los Angeles, CA 90095 USA. [Muzic, K.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Eckart, A.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Gezari, D. Y.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Schodel, R (reprint author), Inst Astrofis Andalucia CSIC, Glorieta Astron S-N, Granada 18008, Spain. EM rainer@iaa.es RI Schoedel, Rainer/D-4751-2014 OI Schoedel, Rainer/0000-0001-5404-797X FU Spanish Ministry of Science and Innovation [AYA2010-17631, AYA2009-13036]; Junta de Andalucia [P08-TIC-4075]; COST Action [MP0905]; PECS [98040] FX R.S. acknowledges support by the Ramon y Cajal programme, by grants AYA2010-17631 and and AYA2009-13036 of the Spanish Ministry of Science and Innovation, and by grant P08-TIC-4075 of the Junta de Andalucia. A.A. acknowledges support by grant AYA2009-13036 of the Spanish Ministry of Science and Innovation and by grant P08-TIC-4075 of the Junta de Andalucia. Part of this work was supported by the COST Action MP0905: Black Holes in a violent Universe and PECS project No. 98040. NR 63 TC 20 Z9 19 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD AUG PY 2011 VL 532 AR A83 DI 10.1051/0004-6361/201116994 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 799JS UT WOS:000293283600094 ER PT J AU Flores, GE Campbell, JH Kirshtein, JD Meneghin, J Podar, M Steinberg, JI Seewald, JS Tivey, MK Voytek, MA Yang, ZK Reysenbach, AL AF Flores, Gilberto E. Campbell, James H. Kirshtein, Julie D. Meneghin, Jennifer Podar, Mircea Steinberg, Joshua I. Seewald, Jeffrey S. Tivey, Margaret Kingston Voytek, Mary A. Yang, Zamin K. Reysenbach, Anna-Louise TI Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID EAST PACIFIC RISE; DEEP-SEA; LUCKY-STRIKE; EPSILON-PROTEOBACTERIA; ULTRAMAFIC ROCKS; PHASE-SEPARATION; PHYLOGENETIC DIVERSITY; RARE BIOSPHERE; SEQUENCE DATA; BLACK SMOKER AB To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37 degrees 17'N, 32 degrees 16.3'W, depth 1600-1750 m) and the ultramafic-hosted Rainbow (36 degrees 13'N, 33 degrees 54.1'W, depth 2270-2330 m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes. C1 [Flores, Gilberto E.; Meneghin, Jennifer; Reysenbach, Anna-Louise] Portland State Univ, Dept Biol, Portland, OR 97201 USA. [Campbell, James H.; Podar, Mircea; Yang, Zamin K.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37830 USA. [Kirshtein, Julie D.; Voytek, Mary A.] US Geol Survey, Reston, VA 20192 USA. [Steinberg, Joshua I.] Oregon Episcopal Sch, Portland, OR 97223 USA. [Seewald, Jeffrey S.; Tivey, Margaret Kingston] Woods Hole Oceanog Inst, Marine Chem & Geochem Dept, Woods Hole, MA 02543 USA. [Voytek, Mary A.] NASA, Washington, DC 20546 USA. RP Reysenbach, AL (reprint author), Portland State Univ, Dept Biol, Portland, OR 97201 USA. EM reysenbacha@pdx.edu OI Podar, Mircea/0000-0003-2776-0205 FU United States National Science Foundation [OCE-0728391, OCE-0937404, OCE-0937392, OCE-0549829]; Water Resources Division, USGS; Oak Ridge National Laboratory (ORNL); US Department of Energy [DE-AC05-00OR22725] FX We thank the crew of the R/V Roger Revelle and the DSROV Jason II for their assistance in obtaining the samples. This research was supported by the United States National Science Foundation (OCE-0728391 and OCE-0937404 to A.-L. R.; OCE-0937392 to M. K. T.; OCE-0549829 to J.S.S.) and the US National Research Program, Water Resources Division, USGS (M. A. V. and J.D.K.). J.H.C., Z.K.Y. and M. P. were sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the US Department of Energy under Contract No. DE-AC05-00OR22725. NR 73 TC 68 Z9 70 U1 5 U2 69 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1462-2912 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD AUG PY 2011 VL 13 IS 8 BP 2158 EP 2171 DI 10.1111/j.1462-2920.2011.02463.x PG 14 WC Microbiology SC Microbiology GA 809RY UT WOS:000294075600018 PM 21418499 ER PT J AU Tripathi, RK AF Tripathi, Ram K. TI Role of Nuclear Physics in Missions to Moon, Mars and beyond SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article DE Nuclear physics; Space missions; Radiation exposure risks ID CROSS-SECTIONS AB Exposure from the hazards of severe space radiation in deep space/long duration human missions to Moon Mars and beyond is a critical design driver and could be a limiting factor. For space radiation protection, a huge amount of essential experimental information of nuclear data for all the ions in space, across the periodic table, for a wide range of energies of several (up to a trillion) orders of magnitude are needed that is simply not available. One is required to know how every element (and all isotopes of each element) in the periodic table interacts and fragments on every other element in the same table as a function of kinetic energy ranging over many decades. To provide input information for radiation transport codes, data are supplemented by nuclear models. As a result, very accurate and reliable analytical models/tools are needed to describe nuclear interactions that are not available so that radiation risks can be assessed and adequate shielding can be designed. Significance of the role of nuclear physics for space missions with a couple of examples is discussed. C1 NASA, Langley Res Ctr, Washington, DC 20546 USA. RP Tripathi, RK (reprint author), NASA, Langley Res Ctr, Washington, DC 20546 USA. EM ram.k.tripathi@nasa.gov NR 6 TC 0 Z9 0 U1 1 U2 3 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD AUG PY 2011 VL 59 IS 2 SI SI BP 1434 EP 1438 DI 10.3938/jkps.59.1434 PN 3 PG 5 WC Physics, Multidisciplinary SC Physics GA 809TV UT WOS:000294080500155 ER PT J AU Abreu, NM Rietmeijer, FJM Nuth, JA AF Abreu, Neyda M. Rietmeijer, Frans J. M. Nuth, Joseph A., III TI Understanding the mechanisms of formation of nanophase compounds from Stardust: Combined experimental and observational approach SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID COMET 81P/WILD 2; INTERPLANETARY DUST; AEROGEL; PARTICLES; TRACKS; SAMPLES; GRAINS; WILD-2; CAPTURE; GLASS AB We have experimentally produced nanophase sulfide compounds and magnetite embedded in Si-rich amorphous materials by flash-cooling of a gas stream. Similar assemblages are ubiquitous, and often dominant components of samples of impact-processed silica aerogel tiles and submicron grains from comet 81P/Wild 2 were retrieved by NASA's Stardust mission. Although the texture and compositions of nanosulfide compounds have been reproduced experimentally, the mechanisms of formation of these minerals and their relationship with the surrounding amorphous materials have not been established. In this study, we present evidence that both of these materials may not only be produced through cooling of a superheated liquid but they may have also been formed simultaneously by flash-cooling and subsequent deposition of a gas dominated by Fe-S-SiO-O-2. In a dust generator at the Goddard Space Flight Center, samples are produced by direct gas-phase condensation from gaseous precursors followed by deposition, which effectively isolates the effects of gas-phase reactions from the effects of melting and condensation. High-resolution transmission electron microscopy images and energy-dispersive spectroscopy analysis show that these experiments replicate key features of materials from type B and type C Stardust tracks, including textures, distribution of inclusions, nanophase size, and compositional diversity. We argue that gas-phase reactions may have played a significant role in the capture environment for nanophase materials. Our results are consistent with a potential progenitor assemblage of micron and submicron-sized sulfides and submicron silica-bearing phases, which are commonly observed in chondritic interplanetary dust particles and in the matrices of the most pristine chondritic meteorites. C1 [Abreu, Neyda M.] Penn State Univ, Earth Sci Program, Du Bois, PA 15801 USA. [Rietmeijer, Frans J. M.] 1 Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Nuth, Joseph A., III] NASA, Goddard Space Flight Ctr, Astrochem Branch, Greenbelt, MD 20771 USA. RP Abreu, NM (reprint author), Penn State Univ, Earth Sci Program, Du Bois Campus, Du Bois, PA 15801 USA. EM abreu@psu.edu RI Nuth, Joseph/E-7085-2012 FU Small Research AAS/NASA; MRSEC; DuBois Educational Foundation; Materials Summer Research Fellowship/Penn State Materials Characterization Lab; NASA [NNX07AM65G, NNX07AI39G, NNX10AK28G]; Cosmochemistry Program FX We are indebted to Dr. Elizabeth Dickey, Dr. Joseph Kulik, Dr. Trevor Clark, and Mr. Joshua Maier for their invaluable and continuous assistance at the TEM facilities. We also thank Dr. H. Leroux, Dr. L.P. Keller, and Dr. M.A. Velbel for the thorough and constructive reviews, which improved the quality of this manuscript, as well as Dr. N. Chabot for her helpful editorial management. NMA was supported by Small Research AAS/NASA, MRSEC, and DuBois Educational Foundation grants and the Materials Summer Research Fellowship/Penn State Materials Characterization Lab. Electron microscopy was carried out at the Material Characterization Lab, Material Research Institute, Penn State University. FJMR was supported by grants NNX07AM65G through the NASA Stardust Analyses Program and NNX07AI39G, and NNX10AK28G from the NASA Cosmochemistry Program. JAN acknowledges support from the Cosmochemistry Program. NR 43 TC 4 Z9 4 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD AUG PY 2011 VL 46 IS 8 BP 1082 EP 1096 DI 10.1111/j.1945-5100.2011.01215.x PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 810ZT UT WOS:000294171100002 ER PT J AU Beck, AW Mittlefehldt, DW McSween, HY Rumble, D Lee, CTA Bodnar, RJ AF Beck, Andrew W. Mittlefehldt, David W. McSween, Harry Y., Jr. Rumble, Douglas, III Lee, Cin-Ty A. Bodnar, Robert J. TI MIL 03443, a dunite from asteroid 4 Vesta: Evidence for its classification and cumulate origin SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID DIOGENITE PARENT BODY; OXYGEN-ISOTOPE RATIOS; ORTHO-PYROXENE; OLIVINE DIOGENITES; ELEMENT CHEMISTRY; MELT INCLUSIONS; SILICATE MELTS; TRACE-ELEMENTS; GEOCHEMISTRY; PETROLOGY AB The absence of dunite (>90 vol% olivine) in the howardite, eucrite, and diogenite (HED) meteorite suite, when viewed with respect to spectroscopic and petrologic evidence for olivine on Vesta, is problematic. Herein, we present petrologic, geochemical, and isotopic evidence confirming that Miller Range (MIL) 03443, containing 91 vol% olivine, should be classified with the HED clan rather than with mesosiderites. Similarities in olivine and pyroxene FeO/MnO ratios, mineral compositions, and unusual mineral inclusions between MIL 03443 and the diogenites support their formation on a common parent body. This hypothesis is bolstered by oxygen isotopic and bulk geochemical data. Beyond evidence for its reclassification, we present observations and interpretations that MIL 03443 is probably a crustal cumulate rock like the diogenites, rather than a sample of the Vestan mantle. C1 [Beck, Andrew W.; McSween, Harry Y., Jr.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Beck, Andrew W.; McSween, Harry Y., Jr.] Univ Tennessee, Planetary Geosci Inst, Knoxville, TN 37996 USA. [Mittlefehldt, David W.] NASA, Lyndon B Johnson Space Ctr, Astromat Res Off, Houston, TX 77058 USA. [Rumble, Douglas, III] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Lee, Cin-Ty A.] Rice Univ, Dept Earth Sci, Houston, TX 77005 USA. [Bodnar, Robert J.] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. RP Beck, AW (reprint author), Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. EM abeck3@utk.edu RI Lee, Cin-Ty/A-5469-2008; Bodnar, Robert/A-1916-2009; Beck, Andrew/J-7215-2015 OI Beck, Andrew/0000-0003-4455-2299 FU NASA [NNG06GG36G] FX The authors thank L. Fedele (Virginia Tech) and P. Luffi (Rice) for their assistance in this project, and A. Yamaguchi, K. Righter, and an anonymous reviewer for thoughtful reviews that significantly improved this manuscript. We also acknowledge C. Satterwhite for providing curation information, the MWG for allocating meteorite samples, and J.A. Barrat for his comments. This work was partially supported by NASA Cosmochemistry Grant NNG06GG36G to H.Y.M. Work done at JSC was funded by the NASA Cosmochemistry Program to D.W.M. NR 107 TC 30 Z9 32 U1 1 U2 8 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD AUG PY 2011 VL 46 IS 8 BP 1133 EP 1151 DI 10.1111/j.1945-5100.2011.01219.x PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 810ZT UT WOS:000294171100005 ER PT J AU Rath, C Banday, AJ Rossmanith, G Modest, H Sutterlin, R Gorski, KM Delabrouille, J Morfill, GE AF Raeth, C. Banday, A. J. Rossmanith, G. Modest, H. Suetterlin, R. Gorski, K. M. Delabrouille, J. Morfill, G. E. TI Scale-dependent non-Gaussianities in the WMAP data as identified by using surrogates and scaling indices SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; cosmic background radiation; cosmology: observations ID MICROWAVE-ANISOTROPY-PROBE; OBSERVATIONS COSMOLOGICAL INTERPRETATION; INFLATIONARY UNIVERSE; SPHERICAL WAVELETS; POWER ASYMMETRY; K-INFLATION; SKY MAPS; FULL SKY; PERTURBATIONS; SIGNATURES AB We present a model-independent investigation of the Wilkinson Microwave Anisotropy Probe (WMAP) data with respect to scale-independent and scale-dependent non-Gaussianities (NGs). To this end, we employ the method of constrained randomization. For generating so-called surrogate maps a well-specified shuffling scheme is applied to the Fourier phases of the original data, which allows us to test for the presence of higher order correlations (HOCs) also and especially on well-defined scales. Using scaling indices as test statistics for the HOCs in the maps we find highly significant signatures for NGs when considering all scales. We test for NGs in four different l-bands Delta l, namely in the bands Delta l = [2, 20], [20, 60], [60, 120] and [120, 300]. We find highly significant signatures for both NGs and ecliptic hemispherical asymmetries for the interval Delta l = [2, 20] covering the large scales. We also obtain highly significant deviations from Gaussianity for the band Delta l = [120, 300]. The result for the full l-range can then easily be interpreted as a superposition of the signatures found in the bands Delta l = [2, 20] and [120, 300]. We find remarkably similar results when analysing different ILC-like maps based on the WMAP 3-, 5- and 7-year data. We perform a set of tests to investigate whether and to what extent the detected anomalies can be explained by systematics. While none of these tests can convincingly rule out the intrinsic nature of the anomalies for the low-l case, the ILC map making procedure and/or residual noise in the maps can also lead to NGs at small scales. Our investigations prove that there are phase correlations in the WMAP data of the cosmic microwave background. In the absence of an explanation in terms of Galactic foregrounds or known systematic artefacts, the signatures at low l must so far be taken to be cosmological at high significance. These findings would strongly disagree with predictions of isotropic cosmologies with single field slow roll inflation. The task is now to elucidate the origin of the phase correlations and to understand the physical processes leading to these scale-dependent NGs - if it turns out that systematics as a cause for them must be ruled out. C1 [Raeth, C.; Rossmanith, G.; Modest, H.; Suetterlin, R.; Morfill, G. E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Banday, A. J.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Banday, A. J.] CNRS, IRAP, F-31028 Toulouse 4, France. [Banday, A. J.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Gorski, K. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Delabrouille, J.] CNRS, Lab APC, F-75205 Paris, France. RP Rath, C (reprint author), Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. EM cwr@mpe.mpg.de FU NASA Office of Space Science FX Many of the results in this paper have been derived using the HEALPIX (Gorski et al. 2005) software and analysis package. We acknowledge use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. NR 51 TC 12 Z9 12 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 3 BP 2205 EP 2214 DI 10.1111/j.1365-2966.2011.18844.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811AO UT WOS:000294173900017 ER PT J AU Rigby, EE Maddox, SJ Dunne, L Negrello, M Smith, DJB Gonzalez-Nuevo, J Herranz, D Lopez-Caniego, M Auld, R Buttiglione, S Baes, M Cava, A Cooray, A Clements, DL Dariush, A De Zotti, G Dye, S Eales, S Frayer, D Fritz, J Hopwood, R Ibar, E Ivison, RJ Jarvis, M Panuzzo, P Pascale, E Pohlen, M Rodighiero, G Serjeant, S Temi, P Thompson, MA AF Rigby, E. E. Maddox, S. J. Dunne, L. Negrello, M. Smith, D. J. B. Gonzalez-Nuevo, J. Herranz, D. Lopez-Caniego, M. Auld, R. Buttiglione, S. Baes, M. Cava, A. Cooray, A. Clements, D. L. Dariush, A. De Zotti, G. Dye, S. Eales, S. Frayer, D. Fritz, J. Hopwood, R. Ibar, E. Ivison, R. J. Jarvis, M. Panuzzo, P. Pascale, E. Pohlen, M. Rodighiero, G. Serjeant, S. Temi, P. Thompson, M. A. TI Herschel-ATLAS: first data release of the Science Demonstration Phase source catalogues SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: data analysis; catalogues; surveys; galaxies: general; submillimetre: galaxies ID MICROWAVE BACKGROUND MAPS; SUBMILLIMETER GALAXIES; POINT SOURCES; DEEP-FIELD; MU-M; REDSHIFT; SPIRE; PACS; FILTERS AB The Herschel Astrophysical Terahertz LargeArea Survey (Herschel-ATLAS) is a survey of 550 deg(2) with the Herschel Space Observatory in five far-infrared and submillimetre bands. The first data for the survey, observations of a field 4 x 4 deg(2) in size, were taken during the Science Demonstration Phase (SDP), and reach a 5s noise level of 33.5 mJy beam(-1) at 250 mu m. This paper describes the source extraction methods used to create the corresponding SDP catalogue, which contains 6876 sources, selected at 250 mu m, within similar to 14 deg(2). Spectral and Photometric Imaging REciever (SPIRE) sources are extracted using a new method specifically developed for Herschel data and Photodetector Array Camera and Spectrometer (PACS) counterparts of these sources are identified using circular apertures placed at the SPIRE positions. Aperture flux densities are measured for sources identified as extended after matching to optical wavelengths. The reliability of this catalogue is also discussed, using full simulated maps at the three SPIRE bands. These show that a significant number of sources at 350 and 500 mu m have undergone flux density enhancements of up to a factor of similar to 2, due mainly to source confusion. Correction factors are determined for these effects. The SDP data set and corresponding catalogue will be available from www.h-atlas.org. C1 [Rigby, E. E.; Maddox, S. J.; Dunne, L.; Smith, D. J. B.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Negrello, M.; Hopwood, R.; Serjeant, S.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Gonzalez-Nuevo, J.; De Zotti, G.] SISSA, I-34136 Trieste, Italy. [Herranz, D.; Lopez-Caniego, M.] Inst Fis Cantabria CSIC UC, Santander 39005, Spain. [Auld, R.; Dariush, A.; Eales, S.; Pascale, E.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Baes, M.; Fritz, J.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Buttiglione, S.; De Zotti, G.; Rodighiero, G.] INAF Osservatorio Astronom Padova, I-35122 Padua, Italy. [Cava, A.] Univ Complutense Madrid, Dept Astrofis, Fac CC Fis, E-28040 Madrid, Spain. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Clements, D. L.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, London SW7 2AZ, England. [Frayer, D.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Ibar, E.; Ivison, R. J.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ivison, R. J.] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Jarvis, M.; Thompson, M. A.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Sci, Hatfield AL10 9AB, Herts, England. [Panuzzo, P.] Ctr CEA Saclay Essonne, F-921191 Gif Sur Yvette, France. [Temi, P.] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. RP Rigby, EE (reprint author), Univ Nottingham, Sch Phys & Astron, Univ Pk, Nottingham NG7 2RD, England. EM emma.rigby@nottingham.ac.uk RI Baes, Maarten/I-6985-2013; Lopez-Caniego, Marcos/M-4695-2013; Herranz, Diego/K-9143-2014; Gonzalez-Nuevo, Joaquin/I-3562-2014; Ivison, R./G-4450-2011; Cava, Antonio/C-5274-2017; OI Smith, Daniel/0000-0001-9708-253X; Rodighiero, Giulia/0000-0002-9415-2296; Baes, Maarten/0000-0002-3930-2757; Herranz, Diego/0000-0003-4540-1417; Lopez-Caniego, Marcos/0000-0003-1016-9283; Dye, Simon/0000-0002-1318-8343; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Ivison, R./0000-0001-5118-1313; Cava, Antonio/0000-0002-4821-1275; Maddox, Stephen/0000-0001-5549-195X FU NASA; ASI/INAF [I/009/10/0] FX The Herschel-ATLAS is a project with Herschel, which is an ESA space observatory with science instruments provided by Europeanled Principal Investigator consortia and with important participation from NASA. The H-ATLAS website is http://www.h-atlas.org/1. The US participants in Herschel-ATLAS acknowledge support provided by NASA through a contract issued from JPL. The Italian group acknowledges partial financial support from ASI/INAF agreement n. I/009/10/0. NR 33 TC 79 Z9 80 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 3 BP 2336 EP 2348 DI 10.1111/j.1365-2966.2011.18864.x PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811AO UT WOS:000294173900028 ER PT J AU Lee, KI Looney, LW Klein, R Wang, SY AF Lee, Katherine I. Looney, Leslie W. Klein, Randolf Wang, Shiya TI Massive star formation around IRAS 05345+3157-I. The dense gas SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE techniques: interferometric; stars: formation; open clusters and associations: individual: IRAS 5345+3157; infrared: ISM; radio continuum: ISM; radio lines: ISM ID YOUNG STELLAR OBJECTS; MOLECULAR LINE; PROTOSTELLAR CANDIDATES; SUBARCSECOND SURVEY; HIGH-RESOLUTION; CORES; COLLAPSE; EMISSION; REGIONS; SEARCH AB We present observations of the intermediate to massive star-forming region I05345+3157 using the molecular line tracer CS(2-1) with the Combined Array for Research in Millimetre-wave Astronomy to reveal the properties of the dense gas cores. Seven gas cores are identified in the integrated intensity map of CS(2-1). Among these, cores 1 and 3 have counterparts in the lambda = 2.7 mm continuum data. We suggest that cores 1 and 3 are star-forming cores that may already or will very soon harbour young massive protostars. The total masses of core 1 estimated from the local thermodynamic equilibrium (LTE) method and dust emission by assuming a gas-to-dust ratio are 5 +/- 1 and 18 +/- 6M(circle dot), and that of core 3 are 15 +/- 7 and 11 +/- 3M(circle dot), respectively. The spectrum of core 3 shows blue-skewed self-absorption, which suggests gas infall - a collapsing core. The observed broad linewidths of the seven gas cores indicate non-thermal motions. These non-thermal motions can be interactions with nearby outflows or due to the initial turbulence; the former is observed, while the role of the initial turbulence is less certain. Finally, the virial masses of the gas cores are larger than the LTE masses, which, for a bound core, implies a requirement on the external pressure of similar to 10(8) K cm(-3). The cores have the potential to further form massive stars. C1 [Lee, Katherine I.; Looney, Leslie W.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Klein, Randolf] NASA, SOFIA USRA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Klein, Randolf] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Wang, Shiya] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. RP Lee, KI (reprint author), Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. EM ijlee9@illinois.edu OI Klein, Randolf/0000-0002-7187-9126 FU Laboratory for Astronomical Imaging at the University of Illinois; National Science Foundation [AST-0540459]; CARMA FX We thank the anonymous referee for the valuable comments. We acknowledge support from the Laboratory for Astronomical Imaging at the University of Illinois. We thank the OVRO/CARMA staff and the CARMA observers for their assistance in obtaining the data. Support for CARMA construction was derived from the states of Illinois, California and Maryland, the Gordon and Betty Moore Foundation, the Eileen and Kenneth Norris Foundation, the Caltech Associates and the National Science Foundation. Ongoing CARMA development and operations are supported by the National Science Foundation under cooperative agreement AST-0540459, and by the CARMA partner universities. NR 42 TC 5 Z9 5 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 3 BP 2790 EP 2797 DI 10.1111/j.1365-2966.2011.18897.x PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811AO UT WOS:000294173900064 ER PT J AU Davidson, JM AF Davidson, John M. TI Utilizing Astrometric Orbits to Obtain Coronagraphic Images of Extrasolar Planets SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID COMPLETENESS AB We present an approach for utilizing astrometric orbit information to improve the yield of planetary images and spectra from a follow-on direct-detection mission. This approach is based on the notion-strictly hypothetical-that if a particular star could be observed continuously, the instrument would in time observe all portions of the habitable zone so that no planet residing therein could be missed. This strategy could not be implemented in any realistic mission scenario. But if an exoplanet's orbit is known from astrometric observation, then it may be possible to plan and schedule a sequence of imaging observations that is the equivalent of continuous observation. A series of images-optimally spaced in time-could be recorded to examine contiguous segments of the orbit. In time, all segments would be examined, leading to the inevitable detection of the planet. In this article, we show how astrometric orbit information can be used to construct such a sequence. We apply this methodology to seven stars taken from the target lists of proposed astrometric and direct-detection missions. In addition, we construct this sequence for the Sun-Earth system as it would appear from a distance of 10 pc. In constructing these sequences, we have assumed that the imaging instrument has an inner working angle (IWA) of 75 mas and that the planets are visible whenever they are separated from their host stars by >= IWA and are in quarter-phase or greater. In addition, we have assumed that the planets orbit at a distance of 1 AU scaled to luminosity and that the inclination of the orbit plane is 60 degrees. For the individual stars in this target pool, we find that the number of observations in this sequence ranges from two to seven, representing the maximum number of observations required to find the planet. The probable number of observations ranges from 1.5 to 3.1. These results suggest that a direct-detection mission using astrometric orbits would find all eight exoplanets in this target pool with a probability of unity and that the maximum number of visits required (i.e., the worst case) is 36 visits. The probable number of visits is considerably smaller, about 18. This is a dramatic improvement in efficiency over previous methods proposed for utilizing astrometric orbits. We examine how the implementation of this approach is complicated and limited by operational constraints and how it is impacted by formal errors. We find that it can be fully implemented for internal coronagraph and visual nuller missions, with a success rate approaching 100%. External occulter missions will also benefit, but to a lesser degree. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Davidson, JM (reprint author), CALTECH, Jet Prop Lab, Mail Stop 321-520, Pasadena, CA 91125 USA. EM johndavidson@charter.net FU National Aeronautics and Space Administration FX The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration ((c) 2010 California Institute of Technology). Government sponsorship is acknowledged. We thank Robert Brown, Joseph Catanzarite, Stephen Edberg, James Marr, David Meier, Dmitry Savransky, Stuart Shaklan, Michael Shao, Wesley Traub, and Stephen Unwin for interesting conversations and constructive comments. We particularly thank the anonymous referee for his/her thoughtful review of the manuscript. NR 14 TC 1 Z9 1 U1 0 U2 0 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD AUG PY 2011 VL 123 IS 906 BP 923 EP 941 DI 10.1086/661725 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811XM UT WOS:000294252100006 ER PT J AU Rauscher, BJ Lindler, DJ Mott, DB Wen, YT Ferruit, P Sirianni, M AF Rauscher, Bernard J. Lindler, Don J. Mott, David B. Wen, Yiting Ferruit, Pierre Sirianni, Marco TI The Dark Current and Hot Pixel Percentage of James Webb Space Telescope 5 mu m Cutoff HgCdTe Detector Arrays as Functions of Temperature SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article AB We measured the median dark current and "hot pixel" percentage of lambda(co) similar to 5 mu m cutoff HgCdTe James Webb Space Telescope (JWST) Near Infrared Spectrograph HAWAII-2RG (H2RG) detector arrays as functions of temperature. Although these measurements were made in the context of JWST, we believe that they will interest others using H2RGs. We found that the median dark current depended only weakly on temperature throughout the 36.5 K <= T <= 45 K temperature range (although there were some exceptions). In contrast, the hot pixel percentage depended strongly on temperature, with the percentage of hot pixels approximately doubling for each 6 K temperature increase. Moreover, the data suggest that this trend becomes stronger at warmer temperatures. These new measurements broadly confirm our previous finding that T similar to 38 K is close to optimal for current-generation lambda(co) similar to 5 mu m cutoff H2RGs, although somewhat warmer (T <= 45 K) temperatures may be used if lower pixel operability is acceptable. C1 [Rauscher, Bernard J.; Lindler, Don J.; Mott, David B.; Wen, Yiting] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ferruit, Pierre; Sirianni, Marco] Estec, Div Astrophys, NL-2200 AG Noordwijk, Netherlands. RP Rauscher, BJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Bernard.J.Rauscher@nasa.gov FU NASA; ESA FX This research was supported by NASA and ESA as part of the James Webb Space Telescope Project. We wish to thank the referee for several helpful comments and for recommending that we include a short description of detector degradation. NR 10 TC 3 Z9 3 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD AUG PY 2011 VL 123 IS 906 BP 953 EP 957 DI 10.1086/661663 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811XM UT WOS:000294252100008 ER PT J AU Zhao, M Monnier, JD Che, X Pedretti, E Thureau, N Schaefer, G ten Brummelaar, T Merand, A Ridgway, ST McAlister, H Turner, N Sturmann, J Sturmann, L Goldfinger, PJ Farrington, C AF Zhao, M. Monnier, J. D. Che, X. Pedretti, E. Thureau, N. Schaefer, G. ten Brummelaar, T. Merand, A. Ridgway, S. T. McAlister, H. Turner, N. Sturmann, J. Sturmann, L. Goldfinger, P. J. Farrington, C. TI Toward Direct Detection of Hot Jupiters with Precision Closure Phase: Calibration Studies and First Results from the CHARA Array SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID EXTRASOLAR GIANT PLANETS; UPSILON ANDROMEDAE B; EXOPLANET HOST STARS; INFRARED FLUX METHOD; ANGULAR DIAMETERS; EMISSION-SPECTRUM; THERMAL EMISSION; HD 189733B; EFFECTIVE TEMPERATURES; THEORETICAL SPECTRA AB Direct detection of thermal emission from nearby hot Jupiters has greatly advanced our knowledge of extrasolar planets in recent years. Since hot Jupiter systems can be regarded as analogs of high-contrast binaries, ground-based infrared long-baseline interferometers have the potential to resolve them and detect their thermal emission with precision closure phase-a method that is immune to the systematic errors induced by the Earth's atmosphere. In this work, we present closure-phase studies toward direct detection of nearby hot Jupiters using the CHARA interferometer array outfitted with the MIRC instrument. We carry out closure-phase simulations and conduct a large number of observations for the best candidate nu And. Our experiments suggest that the method is feasible with highly stable and precise closure phases. However, we also find much larger systematic errors than expected in the observations, most likely caused by dispersion across different wavelengths. We find that using higher spectral resolution modes (e. g., R = 150) can significantly reduce the systematics. By combining all calibrators in an observing run together, we are able to roughly recalibrate the lower spectral resolution data, allowing us to obtain upper limits of the star-planet contrast ratios of nu And b across the H band. The data also allow us to get a refined stellar radius of 1.625 +/- 0.011 R-circle dot. Our best upper limit corresponds to a contrast ratio of 2.1 x 10(3) : 1 with 90% confidence level at 1.52 mu m, suggesting that we are starting to have the capability of constraining atmospheric models of hot Jupiters with interferometry. With recent and upcoming improvements of CHARA/MIRC, the prospect of detecting emission from hot Jupiters with closure phases is promising. C1 [Zhao, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Monnier, J. D.; Che, X.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Pedretti, E.; Thureau, N.] Univ St Andrews, Scottish Univ Phys Alliance, St Andrews KY16 9AJ, Fife, Scotland. [Schaefer, G.; ten Brummelaar, T.; McAlister, H.; Turner, N.; Sturmann, J.; Sturmann, L.; Goldfinger, P. J.; Farrington, C.] Georgia State Univ, CHARA Array, Atlanta, GA 30303 USA. [Ridgway, S. T.] Natl Opt Astron Observ NOAO, Tucson, AZ USA. RP Zhao, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,Mail Stop 169-327, Pasadena, CA 91109 USA. EM ming.zhao@jpl.nasa.gov FU Georgia State University; National Science Foundation [AST-0908253]; W. M. Keck Foundation; NASA Exoplanet Science Institute; National Aeronautics and Space Administration; University of Michigan; NASA at the Jet Propulsion Laboratory; NASA [NNG04GI33G, NNH09AK731]; Michelson Postdoctoral Fellowship; Scottish Universities Physics Association (SUPA); NSF [AST-0352723, AST-0807577] FX The CHARA Array is funded by the Georgia State University, by the National Science Foundation through grant AST-0908253, by the W. M. Keck Foundation, and by the NASA Exoplanet Science Institute. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This research was supported by the former Michelson Graduate Student Fellowship at the University of Michigan and the NASA Postdoctoral Program at the Jet Propulsion Laboratory (M. Z.). J. D. M acknowledges the NSF grants AST-0352723 and AST-0807577 and the NASA grant NNG04GI33G. E. P. was formally supported by the Michelson Postdoctoral Fellowship and is currently supported by a Scottish Universities Physics Association (SUPA) advanced fellowship. S. T. R. acknowledges partial support from NASA grant NNH09AK731. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France; the Exoplanets Encyclopedia, maintained by Jean Schneider at Paris Observatory; and the Exoplanet Orbit Database at exoplanets.org. NR 62 TC 18 Z9 18 U1 0 U2 0 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD AUG PY 2011 VL 123 IS 906 BP 964 EP 975 DI 10.1086/661762 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811XM UT WOS:000294252100010 ER PT J AU Vanderveld, RA Bernstein, GM Stoughton, C Rhodes, J Massey, R Johnston, D Dobke, BM AF Vanderveld, R. Ali Bernstein, Gary M. Stoughton, Chris Rhodes, Jason Massey, Richard Johnston, David Dobke, Benjamin M. TI Lossy Compression of Weak-Lensing Data SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID IMAGE SIMULATION; TELESCOPE; SHEAR; TOMOGRAPHY; SHAPELETS; COSMOS AB Future orbiting observatories will survey large areas of sky in order to constrain the physics of dark matter and dark energy using weak gravitational lensing and other methods. Lossy compression of the resultant data will improve the cost and feasibility of transmitting the images through the space communication network. We evaluate the consequences of the lossy compression algorithm of Bernstein et al. for the high-precision measurement of weak-lensing galaxy ellipticities. This square-root algorithm compresses each pixel independently, and the information discarded is, by construction, less than the Poisson error from photon shot noise. For simulated space-based images (without cosmic rays) digitized to the typical 16 bits pixel(-1), application of the lossy compression followed by imagewise lossless compression yields images with only 2.4 bits pixel(-1), a factor of 6.7 compression. We demonstrate that this compression introduces no bias in the sky background. The compression introduces a small amount of additional digitization noise to the images, and we demonstrate a corresponding small increase in ellipticity measurement noise. The ellipticity measurement method is biased by the addition of noise, so the additional digitization noise is expected to induce a multiplicative bias on the galaxies' measured ellipticities. After correcting for this known noise-induced bias, we find a residual multiplicative ellipticity bias of m approximate to -4 x 10(-4). This bias is small when compared with the many other issues that precision weak-lensing surveys must confront; furthermore, we expect it to be reduced further with better calibration of ellipticity measurement methods. C1 [Vanderveld, R. Ali] Univ Chicago, Enrico Fermi Inst, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Vanderveld, R. Ali; Rhodes, Jason; Dobke, Benjamin M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Vanderveld, R. Ali; Rhodes, Jason; Dobke, Benjamin M.] CALTECH, Pasadena, CA 91125 USA. [Bernstein, Gary M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Stoughton, Chris; Johnston, David] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Massey, Richard] Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. RP Vanderveld, RA (reprint author), Univ Chicago, Enrico Fermi Inst, Kavli Inst Cosmol Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM rav@kicp.uchicago.edu FU Kavli Institute for Cosmological Physics at the University of Chicago [NSF PHY-0114422, NSF PHY-0551142]; NASA; JPL; Fermi Research Alliance, LLC [DE-AC02-07CH11359]; US Department of Energy (DOE); National Science Foundation [AST-0607667]; DOE [DE-FG02-95ER40893]; Science and Technology Facilities Council; European Research Council [MIRG-CT-208994]; Kavli Foundation FX This work was supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through grants NSF PHY-0114422 and NSF PHY-0551142 and an endowment from the Kavli Foundation and its founder Fred Kavli. This work was also carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, and funded by JPL's Research and Technology Development Funds. C. S. and D. J. acknowledge support from the Fermi Research Alliance, LLC, under contract DE-AC02-07CH11359 with the US Department of Energy (DOE). G. M. B. acknowledges support from grant AST-0607667 from the National Science Foundation and DOE grant DE-FG02-95ER40893. R. M. acknowledges support from a Science and Technology Facilities Council Advanced Fellowship and from European Research Council grant MIRG-CT-208994. NR 21 TC 0 Z9 0 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD AUG PY 2011 VL 123 IS 906 BP 996 EP 1003 DI 10.1086/661748 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 811XM UT WOS:000294252100013 ER PT J AU Reale, O Lau, KM da Silva, A AF Reale, Oreste Lau, K. M. da Silva, Arlindo TI Impact of an Interactive Aerosol on the African Easterly Jet in the NASA GEOS-5 Global Forecasting System SO WEATHER AND FORECASTING LA English DT Article ID SAHARAN AIR LAYER; TROPICAL CYCLOGENETIC PROCESSES; DATA ASSIMILATION; SOP-3 NAMMA; ATLANTIC; DUST; REANALYSIS; MAINTENANCE; WAVES; MODEL AB The real-time treatment of interactive, realistically varying aerosols in a global operational forecasting system, as opposed to prescribed (fixed or climatologically varying) aerosols, is a very difficult challenge that has only recently begun to be addressed. Experiment results from a recent version of the NASA's Goddard Earth Observing System (GEOS-5) forecasting system, inclusive of interactive-aerosol direct effects, are presented in this work. Five sets of 30 five-day forecasts are initialized from a high quality set of analyses previously produced and documented, to cover the period from 15 August to 16 September 2006, which corresponds to the NASA African Monsoon Multidisciplinary Analysis (NAMMA) observing campaign. Four forecast sets are at two different horizontal resolutions, with and without interactive-aerosol treatment. A fifth forecast set is performed with climatologically varying aerosols. The net impact of the interactive aerosol, associated with a strong Saharan dust outbreak, is a temperature increase at the dust level, and a decrease in the near-surface levels, in agreement with previous observational and modeling studies. Moreover, forecasts in which interactive aerosols are included depict an African easterly jet (AEJ) at slightly higher elevation, and slightly displaced northward, with respect to the forecasts in which aerosols are not included. The shift in the AEJ position goes in the direction of the observations and agrees with previous results. C1 [Reale, Oreste; Lau, K. M.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [da Silva, Arlindo] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Reale, Oreste] Univ Space Res Assoc, Columbia, MD USA. RP Reale, O (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. EM oreste.reale-1@nasa.gov RI da Silva, Arlindo/D-6301-2012; Lau, William /E-1510-2012 OI da Silva, Arlindo/0000-0002-3381-4030; Lau, William /0000-0002-3587-3691 FU NAMMA grant FX The authors thank Dr. Ramesh Kakar for support through a NAMMA grant and Dr. Tsengdar Lee for allocations on NASA High-End Computing Systems. Thanks are also due to two anonymous reviewers for their constructive and insightful comments. Finally, the authors thank Mr. Ravi Govindaraju for his valuable help with the modeling experiments. NR 39 TC 18 Z9 18 U1 0 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0882-8156 J9 WEATHER FORECAST JI Weather Forecast. PD AUG PY 2011 VL 26 IS 4 BP 504 EP 519 DI 10.1175/WAF-D-10-05025.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 811VL UT WOS:000294244200005 ER PT J AU Harder, B AF Harder, Bryan TI PS-PVD Processing Varies Coating Architecture with Processing Parameters SO ADVANCED MATERIALS & PROCESSES LA English DT Article C1 NASA, Glenn Res Ctr, Durabil & Protect Coatings Branch, Cleveland, OH 44135 USA. RP Harder, B (reprint author), NASA, Glenn Res Ctr, Durabil & Protect Coatings Branch, 21000 Brookpk Rd, Cleveland, OH 44135 USA. EM bryan.harder@nasa.gov NR 5 TC 0 Z9 0 U1 1 U2 6 PU ASM INT PI MATERIALS PARK PA SUBSCRIPTIONS SPECIALIST CUSTOMER SERVICE, MATERIALS PARK, OH 44073-0002 USA SN 0882-7958 J9 ADV MATER PROCESS JI Adv. Mater. Process. PD AUG PY 2011 VL 169 IS 8 BP 49 EP 51 PG 3 WC Materials Science, Multidisciplinary SC Materials Science GA 809DS UT WOS:000294032600008 ER PT J AU Stapleton, SE Waas, AM Bednarcyk, BA AF Stapleton, Scott E. Waas, Anthony M. Bednarcyk, Brett A. TI Modeling Progressive Failure of Bonded Joints Using a Single Joint Finite Element SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference CY APR 12-15, 2010 CL Orlando, FL SP AIAA, AHS, ASME, ASC, ASCE, US Off Naval Res (ONR) ID STRESSES AB Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh-independent finite element analysis. In the present study, an enhanced finite element, referred to as a bonded joint element, that is capable of modeling an array of joint types is developed. The joint field equations are derived using the principle of minimum potential energy, and the resulting solutions for the displacement fields are used to generate shape functions and a stiffness matrix for a single joint finite element. This single finite element thus captures the detailed stress and strain fields within the bonded joint, but it can function within a broader structural finite element model. The costs associated with a fine mesh of the joint can thus be avoided, while still obtaining a detailed solution for the joint. Additionally, the capability to model nonlinear adhesive constitutive behavior has been included within the method, and progressive failure of the adhesive can be modeled by using a strain-based failure criteria and resizing the joint as the adhesive fails. Results of the model compare favorably with available experimental and finite element results. C1 [Stapleton, Scott E.; Waas, Anthony M.] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA. [Bednarcyk, Brett A.] NASA, John H Glenn Res Ctr Lewis Field, Cleveland, OH 44135 USA. RP Stapleton, SE (reprint author), Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA. EM sstaple@umich.edu; dcw@umich.edu; Brett.A.Bednarcyk@NASA.gov NR 20 TC 3 Z9 3 U1 1 U2 10 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD AUG PY 2011 VL 49 IS 8 BP 1740 EP 1749 DI 10.2514/1.J050889 PG 10 WC Engineering, Aerospace SC Engineering GA 804UQ UT WOS:000293679900014 ER PT J AU Cooper, M La Duc, MT Probst, A Vaishampayan, P Stam, C Benardini, JN Piceno, YM Andersen, GL Venkateswaran, K AF Cooper, Moogega La Duc, Myron T. Probst, Alexander Vaishampayan, Parag Stam, Christina Benardini, James N. Piceno, Yvette M. Andersen, Gary L. Venkateswaran, Kasthuri TI Comparison of Innovative Molecular Approaches and Standard Spore Assays for Assessment of Surface Cleanliness SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID RIBOSOMAL-RNA; CLEAN ROOMS; BACTERIA; SPACECRAFT; DIVERSITY; DEEP; DNA; ENVIRONMENTS; RESISTANCE; REVEALS AB A bacterial spore assay and a molecular DNA microarray method were compared for their ability to assess relative cleanliness in the context of bacterial abundance and diversity on spacecraft surfaces. Colony counts derived from the NASA standard spore assay were extremely low for spacecraft surfaces. However, the PhyloChip generation 3 (G3) DNA microarray resolved the genetic signatures of a highly diverse suite of microorganisms in the very same sample set. Samples completely devoid of cultivable spores were shown to harbor the DNA of more than 100 distinct microbial phylotypes. Furthermore, samples with higher numbers of cultivable spores did not necessarily give rise to a greater microbial diversity upon analysis with the DNA microarray. The findings of this study clearly demonstrated that there is not a statistically significant correlation between the cultivable spore counts obtained from a sample and the degree of bacterial diversity present. Based on these results, it can be stated that validated state-of-the-art molecular techniques, such as DNA microarrays, can be utilized in parallel with classical culture-based methods to further describe the cleanliness of spacecraft surfaces. C1 [Venkateswaran, Kasthuri] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Piceno, Yvette M.; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Venkateswaran, K (reprint author), CALTECH, NASA, Jet Prop Lab, Mail Stop 89,Oak Grove Dr, Pasadena, CA 91109 USA. EM kjvenkat@jpl.nasa.gov RI Andersen, Gary/G-2792-2015; Piceno, Yvette/I-6738-2016 OI Andersen, Gary/0000-0002-1618-9827; Piceno, Yvette/0000-0002-7915-4699 FU National Aeronautics and Space Administration; Mars Program Office at JPL; U.S. Department of Energy by the University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX Part of the research described in this paper was carried out by the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research was funded by the Mars Program Office at JPL. We are grateful to K. Buxbaum for funding. The DNA microarray portion of this study was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Berkeley National Laboratory, under contract DE-AC02-05CH11231. NR 36 TC 20 Z9 20 U1 1 U2 4 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD AUG PY 2011 VL 77 IS 15 BP 5438 EP 5444 DI 10.1128/AEM.00192-11 PG 7 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 798PW UT WOS:000293224500042 PM 21652744 ER PT J AU Luzum, B Capitaine, N Fienga, A Folkner, W Fukushima, T Hilton, J Hohenkerk, C Krasinsky, G Petit, G Pitjeva, E Soffel, M Wallace, P AF Luzum, Brian Capitaine, Nicole Fienga, Agnes Folkner, William Fukushima, Toshio Hilton, James Hohenkerk, Catherine Krasinsky, George Petit, Gerard Pitjeva, Elena Soffel, Michael Wallace, Patrick TI The IAU 2009 system of astronomical constants: the report of the IAU working group on numerical standards for Fundamental Astronomy SO CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY LA English DT Article DE Numerical standards; Fundamental Astronomy; Fundamental constants ID CODATA RECOMMENDED VALUES; GRAVITY-FIELD; PHYSICAL CONSTANTS; TRACKING DATA; PRECESSION; EPHEMERIS; MASSES; EARTH; ORIENTATION; SATELLITES AB In the 2006-2009 triennium, the International Astronomical Union (IAU) Working Group on Numerical Standards for Fundamental Astronomy determined a list of Current Best Estimates (CBEs). The IAU 2009 Resolution B2 adopted these CBEs as the IAU (2009) System of Astronomical Constants. Additional work continues to define the process of updating the CBEs and creating a standard electronic document. C1 [Luzum, Brian; Hilton, James] USN Observ, Washington, DC 20392 USA. [Capitaine, Nicole] UPMC, CNRS, SYRTE, Observ Paris, Paris, France. [Fienga, Agnes] Univ Franche Comte, Inst UTINAM, CNRS, UMR 6123, F-25030 Besancon, France. [Folkner, William] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Fukushima, Toshio] Natl Astron Observ, Tokyo 181, Japan. [Hohenkerk, Catherine] HM Naut Almanac Off, Taunton, Somerset, England. [Krasinsky, George; Pitjeva, Elena] RAS, Inst Appl Astron, St Petersburg, Russia. [Petit, Gerard] Bur Int Poids & Mesures, Sevres, France. [Soffel, Michael] Tech Univ Dresden, Dresden, Germany. [Wallace, Patrick] Rutherford Appleton Lab, Chilton, England. RP Luzum, B (reprint author), USN Observ, Washington, DC 20392 USA. EM brian.luzum@usno.navy.mil NR 35 TC 27 Z9 29 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0923-2958 J9 CELEST MECH DYN ASTR JI Celest. Mech. Dyn. Astron. PD AUG PY 2011 VL 110 IS 4 BP 293 EP 304 DI 10.1007/s10569-011-9352-4 PG 12 WC Astronomy & Astrophysics; Mathematics, Interdisciplinary Applications SC Astronomy & Astrophysics; Mathematics GA 801TX UT WOS:000293464600002 ER PT J AU Archinal, BA A'Hearn, MF Conrad, A Consolmagno, GJ Courtin, R Fukushima, T Hestroffer, D Hilton, JL Krasinsky, GA Neumann, G Oberst, J Seidelmann, PK Stooke, P Tholen, DJ Thomas, PC Williams, IP AF Archinal, B. A. A'Hearn, M. F. Conrad, A. Consolmagno, G. J. Courtin, R. Fukushima, T. Hestroffer, D. Hilton, J. L. Krasinsky, G. A. Neumann, G. Oberst, J. Seidelmann, P. K. Stooke, P. Tholen, D. J. Thomas, P. C. Williams, I. P. TI Reports of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2006 & 2009 (vol 98, pg 155, 2007) SO CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY LA English DT Correction AB The primary poles for (243) Ida and (134340) Pluto and its satellite (134340) Pluto : I Charon were redefined in the IAU Working Group on Cartographic Coordinates and Rotational Elements (WGCCRE) 2006 report (Seidelmann et al. in Celest Mech Dyn Astr 98:155, 2007), and 2009 report (Archinal et al. in Celest Mech Dyn Astr 109:101, 2011), respectively, to be consistent with the primary poles of similar Solar System bodies. However, the WGCCRE failed to take into account the effect of the redefinition of the poles on the values of the rotation angle W at J2000.0. The revised relationships in Table 3 of Archinal et al. 2011) are W = 274 degrees.05 + 1864 degrees.6280070 d for (243) Ida, W = 302 degrees.695 + 56 degrees.3625225 d for (134340) Pluto, and W = 122 degrees.695 + 56 degrees.3625225 d for (134340) Pluto : I Charon where d is the time in TDB days from J2000.0 (JD2451545.0). C1 [Archinal, B. A.] US Geol Survey, Flagstaff, AZ 86001 USA. [A'Hearn, M. F.] Univ Maryland, College Pk, MD 20742 USA. [Conrad, A.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Consolmagno, G. J.] Vatican Observ, Vatican City, Vatican. [Courtin, R.] LESIA, Observ Paris, CNRS, Paris, France. [Fukushima, T.] Natl Astron Observ Japan, Tokyo, Japan. [Hestroffer, D.] IMCCE, Observ Paris, CNRS, Paris, France. [Hilton, J. L.] USN Observ, Washington, DC 20392 USA. [Krasinsky, G. A.] Inst Appl Astron, St Petersburg, Russia. [Neumann, G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Oberst, J.] DLR Berlin Aldershof, Berlin, Germany. [Seidelmann, P. K.] Univ Virginia, Charlottesville, VA USA. [Stooke, P.] Univ Western Ontario, London, ON, Canada. [Tholen, D. J.] Univ Hawaii, Honolulu, HI 96822 USA. [Thomas, P. C.] Cornell Univ, Ithaca, NY USA. [Williams, I. P.] Queen Mary Univ London, London, England. RP Archinal, BA (reprint author), US Geol Survey, Flagstaff, AZ 86001 USA. EM barchinal@usgs.gov RI Neumann, Gregory/I-5591-2013 OI Neumann, Gregory/0000-0003-0644-9944 NR 3 TC 3 Z9 3 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0923-2958 J9 CELEST MECH DYN ASTR JI Celest. Mech. Dyn. Astron. PD AUG PY 2011 VL 110 IS 4 BP 401 EP 403 DI 10.1007/s10569-011-9362-2 PG 3 WC Astronomy & Astrophysics; Mathematics, Interdisciplinary Applications SC Astronomy & Astrophysics; Mathematics GA 801TX UT WOS:000293464600008 ER PT J AU Bergengren, JC Waliser, DE Yung, YL AF Bergengren, Jon C. Waliser, Duane E. Yung, Yuk L. TI Ecological sensitivity: a biospheric view of climate change SO CLIMATIC CHANGE LA English DT Article AB Climate change is often characterized in terms of climate sensitivity, the globally averaged temperature rise associated with a doubling of the atmospheric CO(2) (equivalent) concentration. In this study, we develop and apply two new ecological sensitivity metrics, analogs of climate sensitivity, to investigate the potential degree of plant community changes over the next three centuries. We use ten climate simulations from the Intergovernmental Panel on Climate Change Fourth Assessment Report, with climate sensitivities from 2-4A degrees C. The concept of climate sensitivity depends upon the continuous nature of the temperature field across the Earth's surface. For this research, the bridge between climate change and biospheric change predictions is provided by the Equilibrium Vegetation Ecology model (EVE), which simulates a continuous description of the Earth's terrestrial plant communities as a function of climate. The ecosensitivity metrics applied to the results of EVE simulations at the end of the twenty-first century result in 49% of the Earth's land surface area undergoing plant community changes and 37% of the world's terrestrial ecosystems undergoing biome-scale changes. EVE is an equilibrium model, and, although rates of ecological change are not addressed, the resultant ecological sensitivity projections provide an estimate of the degree of species turnover that must occur for ecosystems to be in equilibrium with local climates. Regardless of equilibrium timescales, the new metrics highlight the Earth's degree of ecological sensitivity while identifying ecological "hotspots" in the terrestrial biosphere's response to projected climate changes over the next three centuries. C1 [Bergengren, Jon C.; Yung, Yuk L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Waliser, Duane E.] CALTECH, Jet Prop Lab, Water & Carbon Cycles Grp, Pasadena, CA USA. RP Bergengren, JC (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM globalecologist@gmail.com FU NASA FX The research described in this paper was carried out at the Jet Propulsion Laboratory, Caltech, under a contract with NASA. NR 20 TC 28 Z9 34 U1 4 U2 19 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 J9 CLIMATIC CHANGE JI Clim. Change PD AUG PY 2011 VL 107 IS 3-4 BP 433 EP 457 DI 10.1007/s10584-011-0065-1 PG 25 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 799LO UT WOS:000293288400012 ER PT J AU Kaufman, IK Tindjong, R Luchinsky, DG McClintock, PVE AF Kaufman, I. Kh. Tindjong, R. Luchinsky, D. G. McClintock, P. V. E. TI Effect of charge fluctuations on the ionic escape rate from a single-site ion channel SO EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS LA English DT Meeting Abstract CT 8th EBSA European Biophysics Congress CY AUG 23-27, 2011 CL Budapest, HUNGARY SP Hungarian Biophys Soc, European Biophys Soc Assoc C1 [Kaufman, I. Kh.; Tindjong, R.; Luchinsky, D. G.; McClintock, P. V. E.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Luchinsky, D. G.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RI Luchinsky, Dmitry/N-4177-2014 NR 1 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7571 J9 EUR BIOPHYS J BIOPHY JI Eur. Biophys. J. Biophys. Lett. PD AUG PY 2011 VL 40 SU 1 BP 169 EP 169 PG 1 WC Biophysics SC Biophysics GA 804EO UT WOS:000293637300445 ER PT J AU Lee, SMC Clarke, MSF O'Connor, DP Stroud, L Ellerby, GEC Soller, BR AF Lee, Stuart M. C. Clarke, Mark S. F. O'Connor, Daniel P. Stroud, Leah Ellerby, Gwenn E. C. Soller, Babs R. TI Near infrared spectroscopy-derived interstitial hydrogen ion concentration and tissue oxygen saturation during ambulation SO EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY LA English DT Article DE NIRS; Walking; Running; Hydrogen ion threshold ID LACTATE-PROTON COTRANSPORT; EXERCISE-INDUCED HYPOXEMIA; SKELETAL-MUSCLE; BLOOD-FLOW; LEG MUSCLES; PH; PERFUSION; WALKING; HUMANS; SKIN AB The objective of this study was to determine whether walking and running at different treadmill speeds resulted in different metabolic and cardiovascular responses in the vastus lateralis (VL) and lateral gastrocnemius (LG) by examining metabolite accumulation and tissue oxygen saturation. Ten healthy subjects (6 males, 4 females) completed a submaximal treadmill exercise test, beginning at 3.2 km h(-1) and increasing by 1.6 km h(-1) increments every 3 min until reaching 85% of age-predicted maximal heart rate. Muscle tissue oxygenation (SO(2)), total hemoglobin (HbT) and interstitial hydrogen ion concentration ([H(+)]) were calculated from near infrared spectra collected from VL and LG. The [H(+)] threshold for each muscle was determined using a simultaneous bilinear regression. Muscle and treadmill speed effects were analyzed using a linear mixed model analysis. Paired t-tests were used to test for differences between muscles in the [H(+)] threshold. SO(2) decreased (P = 0.001) during running in the VL and LG, but the SO(2) response across treadmill speeds was different between muscles (P = 0.047). In both muscles, HbT and [H(+)] increased as treadmill speed increased (P < 0.001), but the response to exercise was not different between muscles. The [H(+)] threshold occurred at a lower whole-body VO(2) in the LG (1.22 +/- A 0.63 L min(-1)) than in the VL (1.46 +/- A 0.58 L min(-1), P = 0.01). In conclusion, interstitial [H(+)] and SO(2) are aggregate measures of local metabolite production and the cardiovascular response. Inferred from simultaneous SO(2) and [H(+)] measures in the VL and LG muscles, muscle perfusion is well matched to VL and LG work during walking, but not running. C1 [Lee, Stuart M. C.] NASA, Lyndon B Johnson Space Ctr, Cardiovasc Lab, Wyle Integrated Sci & Engn Grp, Houston, TX 77058 USA. [Clarke, Mark S. F.; O'Connor, Daniel P.] Univ Houston, Lab Integrated Physiol, Dept Hlth & Human Performance, Houston, TX USA. [Stroud, Leah] NASA, Lyndon B Johnson Space Ctr, Exercise Physiol & Countermeasures Project, Wyle Integrated Sci & Engn Grp, Houston, TX 77058 USA. [Ellerby, Gwenn E. C.; Soller, Babs R.] Univ Massachusetts, Sch Med, Dept Anesthesiol, Worcester, MA USA. RP Lee, SMC (reprint author), NASA, Lyndon B Johnson Space Ctr, Cardiovasc Lab, Wyle Integrated Sci & Engn Grp, 1290 Hercules Blvd, Houston, TX 77058 USA. EM stuart.lee-1@nasa.gov FU Pat Phillips; Sherry Grobstein; Luxtec; National Space Biomedical Research Institute [NCC 9-58] FX The authors wish to thank the subjects for their participation in this study; Meghan Everett, Cassie Wilson, and Jason Norcross for their assistance with data collection; Dr. Ye Yang and Peter Scott for their assistance with spectral data analysis; and Meghan Everett, Lesley Lee, and Jackie Reeves for their editorial suggestions. We also are grateful for the support of Pat Phillips, Sherry Grobstein, and Luxtec for their participation in the design, development, and fabrication of the NIRS monitor and fiber optic probe. This work was funded by the National Space Biomedical Research Institute under NASA Cooperative Agreement NCC 9-58. NR 47 TC 4 Z9 4 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1439-6319 J9 EUR J APPL PHYSIOL JI Eur. J. Appl. Physiol. PD AUG PY 2011 VL 111 IS 8 BP 1705 EP 1714 DI 10.1007/s00421-010-1797-8 PG 10 WC Physiology; Sport Sciences SC Physiology; Sport Sciences GA 808LU UT WOS:000293980000017 PM 21212975 ER PT J AU Morgan, PS AF Morgan, Paula S. TI Cassini Spacecraft Post-Launch Malfunction Correction Success SO IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE LA English DT Article AB After the launch of the Cassini "Mission-to-Saturn" Spacecraft, the volume of subsequent mission design modifications was expected to be minimal due to the rigorous testing and verification of the Flight Hardware and Flight Software. For known areas of risk where faults could potentially occur, component redundancy and/or autonomous Fault Protection (FP) routines were implemented to ensure that the integrity of the mission was maintained. the goal of Cassini's FP strategy is to ensure that no credible Single Point Failure (SPF) prevents attainment of mission objectives or results in a significantly degraded mission, with the exception of the class of faults which are exempted due to low probability of occurrence. In the case of Cassini's Propulsion Module Subsystem (PMS) design, a waiver was approved prior to launch for failure of the prime regulator to properly close; a potentially mission catastrophic single point failure. However, one month after Cassini's launch when the fuel and oxidizer tanks were pressurized for the first time, the prime regulator was determined to be leaking at a rate significant enough to require a considerable change in Main Engine (ME) burn strategy for the remainder of the mission. Crucial mission events such as the Saturn Orbit Insertion (SOI) burn task which required a characterization exercise for the PMS system 30 days before the maneuver were now impossible to achieve. This details the steps necessary to support the unexpected malfunction of the prime regulator, the introduction of new failure modes which required new FP design changes consisting of new/modified under-pressure and over-pressure algorithms; all which must be accomplished during the operation phase of the spacecraft, as a result of a presumed low probability waived failure which occurred after launch. [GRAPHICS] . C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Morgan, PS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU National Aeronautics and Space Administration FX This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This author wishes to acknowledge the following individuals who contributed to this research: Todd Barber, Carl Guernsey, Kevin Johnson, Michael Leads, Earl Maize, Shin Huh, and Richard Cowley. NR 9 TC 1 Z9 1 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8985 J9 IEEE AERO EL SYS MAG JI IEEE Aerosp. Electron. Syst. Mag. PD AUG PY 2011 VL 26 IS 8 BP 4 EP 16 DI 10.1109/MAES.2011.5980604 PG 13 WC Engineering, Aerospace; Engineering, Electrical & Electronic SC Engineering GA 807TS UT WOS:000293923400003 ER PT J AU Prieskorn, ZR Hill, JE Kaaret, PE Black, JK Jahoda, K AF Prieskorn, Zachary R. Hill, Joanne E. Kaaret, Phillip E. Black, Joel Kevin Jahoda, Keith TI Gas Gain Measurements From a Negative Ion TPC X-ray Polarimeter SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Negative ion time projection chamber; x-ray detectors; x-ray polarimetry ID LASER ETCHING TECHNIQUE; CRAB-NEBULA; POLARIZATION; MIXTURES AB Gas-based time projection chambers (TPCs) have been shown to be highly sensitive X-ray polarimeters having excellent quantum efficiency while at the same time achieving large modulation factors. To observe polarization of the prompt X-ray emission of a Gamma-ray burst (GRB), a large area detector is needed. Diffusion of the electron cloud in a standard TPC could be prohibitive to measuring good modulation when the drift distance is large. Therefore, we propose using a negative ion TPC (NITPC) with Nitromethane (CH3NO2) as the electron capture agent. The diffusion of negative ions is reduced over that of electrons due to the thermal coupling of the negative ions to the surrounding gas. This allows for larger area detectors as the drift distance can be increased without degrading polarimeter modulation. Negative ions also travel similar to 200 times slower than electrons, allowing the readout electronics to operate slower, resulting in a reduction of instrument power. To optimize the NITPC design, we have measured gas gain with SciEnergy gas electron multipliers (GEMs) in single and double GEM configurations. Each setup was tested with different gas combinations, concentrations and pressures: P10 700 Torr, Ne + CO2 700 Torr at varying concentrations of CO2 and Ne + CO2 + CH3NO2 700 Torr. We report gain as a function of total voltage, measured from top to bottom of the GEM stack and as a function of drift field strength for the gas concentrations listed above. Examples of photoelectron tracks at 5.9 keV are also presented. C1 [Prieskorn, Zachary R.; Kaaret, Phillip E.] Univ Iowa, Iowa City, IA 52240 USA. [Hill, Joanne E.; Jahoda, Keith] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Black, Joel Kevin] Rock Creek Sci, Silver Spring, MD 20910 USA. RP Prieskorn, ZR (reprint author), Univ Iowa, Iowa City, IA 52240 USA. EM zachary-prieskorn@uiowa.edu; joanne.e.hill@nasa.gov; philip-kaaret@uiowa.edu; kevin.black@nasa.gov; keith.ja-hoda@nasa.gov RI Jahoda, Keith/D-5616-2012 FU NASA [NNX08AF46G, NNX07AF21G] FX Manuscript received January 28, 2011; revised April 09, 2011; accepted April 30, 2011. Date of publication June 23, 2011; date of current version August 17, 2011. This work was supported in part by NASA Grants NNX08AF46G and NNX07AF21G. NR 20 TC 2 Z9 2 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD AUG PY 2011 VL 58 IS 4 BP 2055 EP 2059 DI 10.1109/TNS.2011.2155083 PN 2 PG 5 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 808KS UT WOS:000293977200024 ER PT J AU Yonekura, E Hall, TM AF Yonekura, Emmi Hall, Timothy M. TI A Statistical Model of Tropical Cyclone Tracks in the Western North Pacific with ENSO-Dependent Cyclogenesis SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID LARGE-SCALE CIRCULATION; EL-NINO; HURRICANE RISK; EVENTS; LANDFALL; IMPACTS; GENESIS AB A new statistical model for western North Pacific Ocean tropical cyclone genesis and tracks is developed and applied to estimate regionally resolved tropical cyclone landfall rates along the coasts of the Asian mainland, Japan, and the Philippines. The model is constructed on International Best Track Archive for Climate Stewardship (IBTrACS) 1945-2007 historical data for the western North Pacific. The model is evaluated in several ways, including comparing the stochastic spread in simulated landfall rates with historic landfall rates. Although certain biases have been detected, overall the model performs well on the diagnostic tests, for example, reproducing well the geographic distribution of landfall rates. Western North Pacific cyclogenesis is influenced by El Nino-Southern Oscillation (ENSO). This dependence is incorporated in the model's genesis component to project the ENSO-genesis dependence onto landfall rates. There is a pronounced shift southeastward in cyclogenesis and a small but significant reduction in basinwide annual counts with increasing ENSO index value. On almost all regions of coast, landfall rates are significantly higher in a negative ENSO state (La Nina). C1 [Yonekura, Emmi] Columbia Univ, Dept Earth & Environm Sci, New York, NY 10025 USA. [Hall, Timothy M.] NASA Goddard Inst Space Studies, New York, NY USA. RP Yonekura, E (reprint author), Columbia Univ, Dept Earth & Environm Sci, 2880 Broadway, New York, NY 10025 USA. EM eyonekura@giss.nasa.gov FU NASA FX This work was supported in part by a grant from the NASA Applied Sciences program. The authors are grateful to Suzana Camargo and Anthony Del Genio for helpful comments on this work. NR 29 TC 13 Z9 13 U1 1 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD AUG PY 2011 VL 50 IS 8 BP 1725 EP 1739 DI 10.1175/2011JAMC2617.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 807KQ UT WOS:000293896700010 ER PT J AU Yi, YH Kimball, JS Jones, LA Reichle, RH McDonald, KC AF Yi, Yonghong Kimball, John S. Jones, Lucas A. Reichle, Rolf H. McDonald, Kyle C. TI Evaluation of MERRA Land Surface Estimates in Preparation for the Soil Moisture Active Passive Mission SO JOURNAL OF CLIMATE LA English DT Article ID AMSR-E; DATA ASSIMILATION; MODELS; BOREAL; WATER; SIMULATIONS; RESOLUTION; RETRIEVAL; PRODUCTS; CLIMATE AB The authors evaluated several land surface variables from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) product that are important for global ecological and hydrological studies, including daily maximum (T-max) and minimum (T-min) surface air temperatures, atmosphere vapor pressure deficit (VPD), incident solar radiation (SWrad), and surface soil moisture. The MERRA results were evaluated against in situ measurements, similar global products derived from satellite microwave [the Advanced Microwave Scanning Radiometer for Earth Observing System (EOS) (AMSR-E)] remote sensing and earlier generation atmospheric analysis [Goddard Earth Observing System version 4 (GEOS-4)] products. Relative to GEOS-4, MERRA is generally warmer (similar to 0.5 degrees C for T-min and T-max) and drier (similar to 50 Pa for VPD) for low-and middle-latitude regions (< 50 degrees N) associated with reduced cloudiness and increased SWrad. MERRA and AMSR-E temperatures show relatively large differences (> 3 degrees C) in mountainous areas, tropical forest, and desert regions. Surface soil moisture estimates from MERRA (0-2-cm depth) and two AMSR-E products (similar to 0-1-cm depth) are moderately correlated (R similar to 0.4) for middle-latitude regions with low to moderate vegetation biomass. The MERRA derived surface soil moisture also corresponds favorably with in situ observations (R = 0.53 +/- 0.01, p < 0.001) in the midlatitudes, where its accuracy is directly proportional to the quality of MERRA precipitation. In the high latitudes, MERRA shows inconsistent soil moisture seasonal dynamics relative to in situ observations. The study's results suggest that satellite microwave remote sensing may contribute to improved reanalysis accuracy where surface meteorological observations are sparse and in cold land regions subject to seasonal freeze-thaw transitions. The upcoming NASA Soil Moisture Active Passive (SMAP) mission is expected to improve MERRA-type reanalysis accuracy by providing accurate global mapping of freeze-thaw state and surface soil moisture with 2-3-day temporal fidelity and enhanced (<= 9 km) spatial resolution. C1 [Yi, Yonghong; Kimball, John S.; Jones, Lucas A.] Univ Montana, Flathead Lake Biol Stn, Polson, MT 59860 USA. [Yi, Yonghong; Kimball, John S.; Jones, Lucas A.] Univ Montana, Numer Terradynam Simulat Grp, Missoula, MT 59812 USA. [Reichle, Rolf H.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [McDonald, Kyle C.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Yi, YH (reprint author), Univ Montana, Flathead Lake Biol Stn, 32135 Biostn Lane, Polson, MT 59860 USA. EM yonghong.yi@ntsg.umt.edu RI Reichle, Rolf/E-1419-2012; Yi, Yonghong/C-2395-2017 FU National Aeronautics and Space Administration (NASA); SMAP mission; U.S. Department of Energy; National Science Foundation; USDA CREES NRI [2004-35111-15057]; USDA NRI [2008-35101-19076] FX Portions of this work were conducted at the Jet Propulsion Laboratory, California Institute of Technology and the University of Montana under contract to the National Aeronautics and Space Administration (NASA). This work was supported with funding from the NASA Hydrology and Terrestrial Ecology programs and the SMAP mission. The daily surface meteorology data was kindly provided by the National Climatic Data Center. We also thank the GSFC and ISLSCP for the MERRA, GEOS-4, and GEWEX-SRB datasets. The AmeriFlux network was supported by the U.S. Department of Energy and National Science Foundation as well as many local funders for individual sites (e.g., USDA CREES NRI 2004-35111-15057 and USDA NRI 2008-35101-19076). NR 48 TC 37 Z9 37 U1 2 U2 21 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD AUG PY 2011 VL 24 IS 15 BP 3797 EP 3816 DI 10.1175/2011JCLI4034.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 806QE UT WOS:000293823900001 ER PT J AU Geller, MA Zhou, TH Ruedy, R Aleinov, I Nazarenko, L Tausnev, NL Sun, S Kelley, M Cheng, Y AF Geller, Marvin A. Zhou, Tiehan Ruedy, Reto Aleinov, Igor Nazarenko, Larissa Tausnev, Nikolai L. Sun, Shan Kelley, Maxwell Cheng, Ye TI New Gravity Wave Treatments for GISS Climate Models SO JOURNAL OF CLIMATE LA English DT Article ID GENERAL-CIRCULATION MODEL; MIDDLE-ATMOSPHERE; SPECTRAL PARAMETERIZATION; DRAG PARAMETERIZATION; MOMENTUM; PARAMETRIZATION; STRATOSPHERE; CONSERVATION; SENSITIVITY; FORMULATION AB Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested. C1 [Geller, Marvin A.] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. [Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Zhou, Tiehan; Aleinov, Igor; Nazarenko, Larissa; Kelley, Maxwell; Cheng, Ye] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Ruedy, Reto; Tausnev, Nikolai L.] SGT Inc, New York, NY USA. [Sun, Shan] MIT, Cambridge, MA 02139 USA. RP Geller, MA (reprint author), SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. EM marvin.geller@sunysb.edu RI Sun, Shan/H-2318-2015 FU NASA FX Financial support for this work came from NASA's Modeling and Analysis and Atmospheric Composition, Modeling, and Analysis programs. The authors also thank Dr. John Scinocca and an anonymous reviewer for their helpful comments, which led to an improved paper. NR 34 TC 11 Z9 11 U1 1 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD AUG PY 2011 VL 24 IS 15 BP 3989 EP 4002 DI 10.1175/2011JCLI4013.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 806QE UT WOS:000293823900014 ER PT J AU Guimond, SR Bourassa, MA Reasor, PD AF Guimond, Stephen R. Bourassa, Mark A. Reasor, Paul D. TI A Latent Heat Retrieval and Its Effects on the Intensity and Structure Change of Hurricane Guillermo (1997). Part I: The Algorithm and Observations SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID HIGH-RESOLUTION SIMULATION; INNER-CORE; TROPICAL CYCLONES; DOPPLER RADAR; WATER-BUDGET; CUMULUS CONVECTION; VERTICAL MOTION; SQUALL LINE; BONNIE 1998; FIELDS AB Despite the fact that latent heating in cloud systems drives many atmospheric circulations, including tropical cyclones, little is known of its magnitude and structure, largely because of inadequate observations. In this work, a reasonably high-resolution (2 km), four-dimensional airborne Doppler radar retrieval of the latent heat of condensation/evaporation is presented for rapidly intensifying Hurricane Guillermo (1997). Several advancements in the basic retrieval algorithm are shown, including 1) analyzing the scheme within the dynamically consistent framework of a numerical model, 2) identifying algorithm sensitivities through the use of ancillary data sources, and 3) developing a precipitation budget storage term parameterization. The determination of the saturation state is shown to be an important part of the algorithm for updrafts of; similar to 5 m s(-1) or less. The uncertainties in the magnitude of the retrieved heating are dominated by errors in the vertical velocity. Using a combination of error propagation and Monte Carlo uncertainty techniques, biases are found to be small, and randomly distributed errors in the heating magnitude are; similar to 16% for updrafts greater than 5 m s(-1) and; similar to 156% for updrafts of 1 m s(-1). Even though errors in the vertical velocity can lead to large uncertainties in the latent heating field for small updrafts/downdrafts, in an integrated sense the errors are not as drastic. In Part II, the impact of the retrievals is assessed by inserting the heating into realistic numerical simulations at 2-km resolution and comparing the generated wind structure to the Doppler radar observations of Guillermo. C1 [Guimond, Stephen R.; Bourassa, Mark A.] Florida State Univ, Ctr Ocean Atmospher Predict Studies, Tallahassee, FL 32306 USA. [Guimond, Stephen R.; Bourassa, Mark A.] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA. [Reasor, Paul D.] NOAA, Atlantic Oceanog & Meteorol Lab, Hurricane Res Div, Miami, FL 33149 USA. RP Guimond, SR (reprint author), NASA, Goddard Space Flight Ctr, Code 613-1, Greenbelt, MD 20771 USA. EM stephen.guimond@nasa.gov RI Reasor, Paul/B-2932-2014 OI Reasor, Paul/0000-0001-6407-017X FU Los Alamos National Laboratory; NASA; NOAA FX The first author would like to thank Drs. Chris Jeffery and Gerald Heymsfield for providing support for visits to Los Alamos National Laboratory (LANL) and NASA Goddard Space Flight Center (GSFC), respectively as well as excellent feedback on the work. We acknowledge Dr. Robert Black for the particle data and processing in Hurricane Katrina (2005), Dr. Scott Braun for providing numerical model output and discussion, Dr. Robert Hart for extensive feedback, and Dr. Matt Eastin for providing a figure or two. Finally, we thank three anonymous reviewers for providing constructive criticism. This research was supported by the Los Alamos National Laboratory through a project entitled "Flash before the Storm: Predicting Hurricane Intensification Using LANL Lightning Data" with Dr. Chris Jeffery the PI. In addition, financial support was also provided by a NASA ocean vector winds contract and a NOAA grant to Dr. Mark Bourassa. NR 41 TC 7 Z9 7 U1 0 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD AUG PY 2011 VL 68 IS 8 BP 1549 EP 1567 DI 10.1175/2011JAS3700.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 803ZN UT WOS:000293622300001 ER PT J AU Mrowiec, AA Garner, ST Pauluis, OM AF Mrowiec, Agnieszka A. Garner, Stephen T. Pauluis, Olivier M. TI Axisymmetric Hurricane in a Dry Atmosphere: Theoretical Framework and Numerical Experiments SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID ICE-PHASE MICROPHYSICS; TROPICAL CYCLONES; MAXIMUM INTENSITY; MODEL; DYNAMICS; PARAMETERIZATION; SIMULATIONS; CONVECTION; STORMS; CIRCULATION AB This paper discusses the possible existence of hurricanes in an atmosphere without water vapor and analyzes the dynamic and thermodynamic structures of simulated hurricane-like storms in moist and dry environments. It is first shown that the "potential intensity" theory for axisymmetric hurricanes is directly applicable to the maintenance of a balanced vortex sustained by a combination of surface energy and momentum flux, even in the absence of water vapor. This theoretical insight is confirmed by simulations with a high-resolution numerical model. The same model is then used to compare dry and moist hurricanes. While it is found that both types of storms exhibit many similarities and fit well within the theoretical framework, there are several differences, most notably in the storm inflow and in the relationship between hurricane size and intensity. Such differences indicate that while water vapor is not necessary for the maintenance of hurricane-like vortices, moist processes directly affect the structure of these storms. C1 [Mrowiec, Agnieszka A.] Columbia Univ, New York, NY USA. [Garner, Stephen T.] GFDL, Princeton, NJ USA. [Pauluis, Olivier M.] NYU, New York, NY USA. RP Mrowiec, AA (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM asmithmrowiec@giss.nasa.gov FU NSF [ATM-0545047] FX We thank Kerry Emanuel and two anonymous reviewers for comments that helped to improve this manuscript. The simulations were performed on the GFDL High Performance Computing system. AM thanks her current employers, Columbia University and NASA/GISS, for supporting her continuing work on this subject. This work was partially supported by the NSF Grant ATM-0545047. NR 36 TC 12 Z9 12 U1 0 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD AUG PY 2011 VL 68 IS 8 BP 1607 EP 1619 DI 10.1175/2011JAS3639.1 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 803ZN UT WOS:000293622300004 ER PT J AU Stephens, G AF Stephens, Graeme TI ATMOSPHERIC SCIENCE Storminess in a warming world SO NATURE CLIMATE CHANGE LA English DT Editorial Material ID CLIMATE-CHANGE; TRACKS; SIMULATIONS; ENERGY C1 CALTECH, Jet Prop Lab, Ctr Climate Sci, Pasadena, CA 91109 USA. RP Stephens, G (reprint author), CALTECH, Jet Prop Lab, Ctr Climate Sci, M-S 183-505,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Graeme.Stephens@jpl.nasa.gov NR 12 TC 0 Z9 0 U1 0 U2 2 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD AUG PY 2011 VL 1 IS 5 BP 252 EP 253 PG 2 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 806YG UT WOS:000293853300016 ER PT J AU Thompson, WT Davila, JM Cyr, OCS Reginald, NL AF Thompson, W. T. Davila, J. M. Cyr, O. C. St. Reginald, N. L. TI STEREO SECCHI COR1-A/B Intercalibration at 180A degrees Separation SO SOLAR PHYSICS LA English DT Article DE Instrumental effects; Corona AB The twin Solar Terrestrial Relations Observatory (STEREO) spacecraft reached a separation angle of 180A degrees on 6 February 2011. This provided a unique opportunity to test the intercalibration between the Sun-Earth Connection Coronal and Heliospheric Investigation (SECCHI) telescopes on both spacecraft for areas above the limb. So long as the corona is optically thin, at 180A degrees separation each spacecraft sees the same corona from opposite directions. Thus, the data should appear as mirror images of each other. We report here on the results of the comparison of the images taken by the inner coronagraph (COR1) on the STEREO-Ahead and -Behind spacecraft in the hours when the separation was close to 180A degrees. We find that the intensity values seen by the two telescopes agree with each other to a high degree of accuracy. This validates both the radiometric intercalibration between the COR1 telescopes, and the method used to remove instrumental background from the images. The relative error between COR1-A and COR1-B is found to be less than 10(-9) B/B (aS (TM)) over most of the field-of-view, growing to a few x10(-9) B/B (aS (TM)) for the brighter pixels near the edge of the occulter. The primary source of error is the background determination. We also report on the analysis of star observations which show that the absolute radiometric calibration of either COR1 telescope has not changed significantly since launch. C1 [Thompson, W. T.] NASA, Goddard Space Flight Ctr, Adnet Syst Inc, Code 671, Greenbelt, MD 20771 USA. [Reginald, N. L.] Catholic Univ Amer, NASA Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA. RP Thompson, WT (reprint author), NASA, Goddard Space Flight Ctr, Adnet Syst Inc, Code 671, Greenbelt, MD 20771 USA. EM William.T.Thompson@nasa.gov RI Thompson, William/D-7376-2012 NR 10 TC 2 Z9 2 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD AUG PY 2011 VL 272 IS 1 BP 215 EP 225 DI 10.1007/s11207-011-9815-5 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 801UB UT WOS:000293465000012 ER PT J AU Abdo, AA Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Cannon, A Caraveo, PA Carrigan, S Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Charles, E Chekhtman, A Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Cutini, S de Angelis, A de Palma, F Dermer, CD Silva, EDE Drell, PS Dubois, R Dumora, D Escande, L Favuzzi, C Fegan, SJ Finke, J Focke, WB Fortin, P Frailis, M Fuhrmann, L Fukazawa, Y Fukuyama, T Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Georganopoulos, M Germani, S Giebels, B Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Guiriec, S Hadasch, D Hayashida, M Hays, E Horan, D Hughes, RE Johannesson, G Johnson, AS Johnson, WN Kadler, M Kamae, T Katagiri, H Kataoka, J Knodlseder, J Kuss, M Lande, J Latronico, L Lee, SH Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Max-Moerbeck, W Mazziotta, MN McEnery, JE Mehault, J Michelson, PF Mitthumsiri, W Mizuno, T Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Naumann-Godo, M Nishino, S Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pavlidou, V Pearson, TJ Pelassa, V Pepe, M Pesce-Rollins, M Pierbattista, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Readhead, A Reimer, A Reimer, O Reyes, LC Richards, JL Ritz, S Roth, M Sadrozinski, HFW Sanchez, D Sander, A Sgro, C Siskind, EJ Smith, PD Spandre, G Spinelli, P Stawarz, L Stevenson, M Strickman, MS Suson, DJ Takahashi, H Takahashi, T Tanaka, T Thayer, JG Thayer, JB Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Troja, E Usher, TL Vandenbroucke, J Vasileiou, V Vianello, G Vilchez, N Vitale, V Waite, AP Wang, P Wehrle, AE Winer, BL Wood, KS Yang, Z Yatsu, Y Ylinen, T Zensus, JA Ziegler, M Aleksic, J Antonelli, LA Antoranz, P Backes, M Barrio, JA Gonzalez, JB Bednarek, W Berdyugin, A Berger, K Bernardini, E Biland, A Blanch, O Bock, RK Boller, A Bonnoli, G Bordas, P Tridon, DB Bosch-Ramon, V Bose, D Braun, I Bretz, T Camara, M Carmona, E Carosi, A Colin, P Colombo, E Contreras, JL Cortina, J Covino, S Dazzi, F de Angelis, A del Pozo, ED Mendez, CD De Lotto, B De Maria, M De Sabata, F Ortega, AD Doert, M Dominguez, A Prester, DD Dorner, D Doro, M Elsaesser, D Ferenc, D Fonseca, MV Font, L Lopez, RJG Garczarczyk, M Gaug, M Giavitto, G Godinovi, N Hadasch, D Herrero, A Hildebrand, D Hohne-Monch, D Hose, J Hrupec, D Jogler, T Klepser, S Krahenbuhl, T Kranich, D Krause, J La Barbera, A Leonardo, E Lindfors, E Lombardi, S Lopez, M Lorenz, E Majumdar, P Makariev, E Maneva, G Mankuzhiyil, N Mannheim, K Maraschi, L Mariotti, M Martinez, M Mazin, D Meucci, M Miranda, JM Mirzoyan, R Miyamoto, H Moldon, J Moralejo, A Nieto, D Nilsson, K Orito, R Oya, I Paoletti, R Paredes, JM Partini, S Pasanen, M Pauss, F Pegna, RG Perez-Torres, MA Persic, M Peruzzo, J Pochon, J Prada, F Moroni, PGP Prandini, E Puchades, N Puljak, I Reichardt, T Rhode, W Ribo, M Rico, J Rissi, M Rugamer, S Saggion, A Saito, K Saito, TY Salvati, M Sanchez-Conde, M Satalecka, K Scalzotto, V Scapin, V Schultz, C Schweizer, T Shayduk, M Shore, SN Sierpowska-Bartosik, A Sillanpaa, A Sitarek, J Sobczynska, D Spanier, F Spiro, S Stamerra, A Steinke, B Storz, J Strah, N Struebig, JC Suric, T Takalo, LO Tavecchio, F Temnikov, P Terzic, T Tescaro, D Teshima, M Vankov, H Wagner, RM Weitzel, Q Zabalza, V Zandanel, F Zanin, R Villata, M Raiteri, C Aller, HD Aller, MF Chen, WP Jordan, B Koptelova, E Kurtanidze, OM Lahteenmaki, A McBreen, B Larionov, VM Lin, CS Nikolashvili, MG Reinthal, R Angelakis, E Capalbi, M Carraminana, A Carrasco, L Cassaro, P Cesarini, A Falcone, A Gurwell, MA Hovatta, T Kovalev, YA Kovalev, YY Krichbaum, TP Krimm, HA Lister, ML Moody, JW Maccaferri, G Mori, Y Nestoras, I Orlati, A Pace, C Pagani, C Pearson, R Perri, M Piner, BG Ros, E Sadun, AC Sakamoto, T Tammi, J Zook, A AF Abdo, A. A. Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Cannon, A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe. Charles, E. Chekhtman, A. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Cutini, S. de Angelis, A. de Palma, F. Dermer, C. D. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Escande, L. Favuzzi, C. Fegan, S. J. Finke, J. Focke, W. B. Fortin, P. Frailis, M. Fuhrmann, L. Fukazawa, Y. Fukuyama, T. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Georganopoulos, M. Germani, S. Giebels, B. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Guiriec, S. Hadasch, D. Hayashida, M. Hays, E. Horan, D. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, W. N. Kadler, M. Kamae, T. Katagiri, H. Kataoka, J. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Max-Moerbeck, W. Mazziotta, M. N. McEnery, J. E. Mehault, J. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Naumann-Godo, M. Nishino, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pavlidou, V. Pearson, T. J. Pelassa, V. Pepe, M. Pesce-Rollins, M. Pierbattista, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Readhead, A. Reimer, A. Reimer, O. Reyes, L. C. Richards, J. L. Ritz, S. Roth, M. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Sgro, C. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Stawarz, L. Stevenson, M. Strickman, M. S. Suson, D. J. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. G. Thayer, J. B. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Troja, E. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Wehrle, A. E. Winer, B. L. Wood, K. S. Yang, Z. Yatsu, Y. Ylinen, T. Zensus, J. A. Ziegler, M. Aleksic, J. Antonelli, L. A. Antoranz, P. Backes, M. Barrio, J. A. Becerra Gonzalez, J. Bednarek, W. Berdyugin, A. Berger, K. Bernardini, E. Biland, A. Blanch, O. Bock, R. K. Boller, A. Bonnoli, G. Bordas, P. Tridon, D. Borla Bosch-Ramon, V. Bose, D. Braun, I. Bretz, T. Camara, M. Carmona, E. Carosi, A. Colin, P. Colombo, E. Contreras, J. L. Cortina, J. Covino, S. Dazzi, F. de Angelis, A. De Cea del Pozo, E. Delgado Mendez, C. De Lotto, B. De Maria, M. De Sabata, F. Diago Ortega, A. Doert, M. Dominguez, A. Prester, D. Dominis Dorner, D. Doro, M. Elsaesser, D. Ferenc, D. Fonseca, M. V. Font, L. Garcia Lopez, R. J. Garczarczyk, M. Gaug, M. Giavitto, G. Godinovi, N. Hadasch, D. Herrero, A. Hildebrand, D. Hoehne-Moench, D. Hose, J. Hrupec, D. Jogler, T. Klepser, S. Kraehenbuehl, T. Kranich, D. Krause, J. La Barbera, A. Leonardo, E. Lindfors, E. Lombardi, S. Lopez, M. Lorenz, E. Majumdar, P. Makariev, E. Maneva, G. Mankuzhiyil, N. Mannheim, K. Maraschi, L. Mariotti, M. Martinez, M. Mazin, D. Meucci, M. Miranda, J. M. Mirzoyan, R. Miyamoto, H. Moldon, J. Moralejo, A. Nieto, D. Nilsson, K. Orito, R. Oya, I. Paoletti, R. Paredes, J. M. Partini, S. Pasanen, M. Pauss, F. Pegna, R. G. Perez-Torres, M. A. Persic, M. Peruzzo, J. Pochon, J. Prada, F. Moroni, P. G. Prada Prandini, E. Puchades, N. Puljak, I. Reichardt, T. Rhode, W. Ribo, M. Rico, J. Rissi, M. Ruegamer, S. Saggion, A. Saito, K. Saito, T. Y. Salvati, M. Sanchez-Conde, M. Satalecka, K. Scalzotto, V. Scapin, V. Schultz, C. Schweizer, T. Shayduk, M. Shore, S. N. Sierpowska-Bartosik, A. Sillanpaa, A. Sitarek, J. Sobczynska, D. Spanier, F. Spiro, S. Stamerra, A. Steinke, B. Storz, J. Strah, N. Struebig, J. C. Suric, T. Takalo, L. O. Tavecchio, F. Temnikov, P. Terzic, T. Tescaro, D. Teshima, M. Vankov, H. Wagner, R. M. Weitzel, Q. Zabalza, V. Zandanel, F. Zanin, R. Villata, M. Raiteri, C. Aller, H. D. Aller, M. F. Chen, W. P. Jordan, B. Koptelova, E. Kurtanidze, O. M. Lahteenmaki, A. McBreen, B. Larionov, V. M. Lin, C. S. Nikolashvili, M. G. Reinthal, R. Angelakis, E. Capalbi, M. Carraminana, A. Carrasco, L. Cassaro, P. Cesarini, A. Falcone, A. Gurwell, M. A. Hovatta, T. Kovalev, Yu A. Kovalev, Y. Y. Krichbaum, T. P. Krimm, H. A. Lister, M. L. Moody, J. W. Maccaferri, G. Mori, Y. Nestoras, I. Orlati, A. Pace, C. Pagani, C. Pearson, R. Perri, M. Piner, B. G. Ros, E. Sadun, A. C. Sakamoto, T. Tammi, J. Zook, A. CA Fermi-LAT Collaboration MAGIC Collaboration TI FERMI LARGE AREA TELESCOPE OBSERVATIONS OF MARKARIAN 421: THE MISSING PIECE OF ITS SPECTRAL ENERGY DISTRIBUTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; BL Lacertae objects: general; BL Lacertae objects: individual (Mrk 421); galaxies: active; gamma rays: general; radiation mechanisms: non-thermal ID BL-LACERTAE OBJECTS; X-RAY-SPECTRA; ACTIVE GALAXY MARKARIAN-421; TEV BLAZAR MARKARIAN-421; LOG-PARABOLIC SPECTRA; BLACK-HOLE MASSES; MULTIWAVELENGTH OBSERVATIONS; RADIO-SOURCES; CRAB-NEBULA; 3C 454.3 AB We report on the gamma-ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) gamma-ray spectrum above 0.3 GeV can be well described by a power-law function with photon index Gamma = 1.78 +/- 0.02 and average photon flux F(>0.3 GeV) = (7.23 +/- 0.16) x 10(-8) ph cm(-2) s(-1). Over this time period, the Fermi-LAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations in the photon flux (up to a factor similar to 3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in gamma-rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site. C1 [Abdo, A. A.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tramacere, A.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tramacere, A.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Shore, S. N.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.] Univ Paris Diderot, CNRS, Lab AIM, CEA IRFU,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.; De Lotto, B.; De Maria, M.; De Sabata, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.; Doro, M.; Lombardi, S.; Lopez, M.; Mariotti, M.; Peruzzo, J.; Prandini, E.; Saggion, A.; Scalzotto, V.; Schultz, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.; Doro, M.; Lombardi, S.; Lopez, M.; Mariotti, M.; Peruzzo, J.; Prandini, E.; Saggion, A.; Scalzotto, V.; Schultz, C.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Bouvier, A.; Ritz, S.; Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Bouvier, A.; Ritz, S.; Sadrozinski, H. F. -W.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Caliandro, G. A.; Hadasch, D.; Torres, D. F.; De Cea del Pozo, E.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Cannon, A.; Celik, Oe.; Gehrels, N.; Hays, E.; Kadler, M.; McEnery, J. E.; Thompson, D. J.; Troja, E.; Vasileiou, V.; Krimm, H. A.; Sakamoto, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cannon, A.; McBreen, B.] Univ Coll Dublin, Dublin 4, Ireland. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Cutini, S.; Gasparrini, D.; Giommi, P.; Capalbi, M.; Perri, M.] ASI, Sci Data Ctr, I-00044 Rome, Italy. [Celik, Oe.; Kadler, M.; Vasileiou, V.; Krimm, H. A.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Georganopoulos, M.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.; Georganopoulos, M.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Conrad, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.; Frailis, M.; Dazzi, F.; Mankuzhiyil, N.; Persic, M.; Scapin, V.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.; Dazzi, F.; Mankuzhiyil, N.; Persic, M.; Scapin, V.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Dermer, C. D.; Finke, J.; Johnson, W. N.; Lovellette, M. N.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Dumora, D.; Escande, L.; Lott, B.] Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Escande, L.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fuhrmann, L.; Zensus, J. A.; Angelakis, E.; Kovalev, Y. Y.; Krichbaum, T. P.; Nestoras, I.; Ros, E.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.; Nishino, S.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Fukuyama, T.; Okumura, A.; Ozaki, M.; Stawarz, L.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Kanagawa 2525210, Japan. [Funk, S.; Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Funk, S.; Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Kadler, M.] Dr Remeis Sternwarte Bamberg, D-96049 Bamberg, Germany. [Kadler, M.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Kadler, M.; Krimm, H. A.] USRA, Columbia, MD 21044 USA. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Max-Moerbeck, W.; Pavlidou, V.; Pearson, T. J.; Readhead, A.; Richards, J. L.; Stevenson, M.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [McEnery, J. E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Paneque, D.; Bock, R. K.; Tridon, D. Borla; Carmona, E.; Colin, P.; Hose, J.; Jogler, T.; Krause, J.; Lorenz, E.; Mirzoyan, R.; Miyamoto, H.; Orito, R.; Saito, K.; Saito, T. Y.; Schweizer, T.; Shayduk, M.; Sitarek, J.; Steinke, B.; Teshima, M.; Wagner, R. M.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.; Rico, J.] ICREA, Barcelona, Spain. [Tramacere, A.; Vianello, G.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Wehrle, A. E.] Space Sci Inst, Boulder, CO 80301 USA. [Yatsu, Y.; Mori, Y.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. [Aleksic, J.; Blanch, O.; Cortina, J.; Giavitto, G.; Klepser, S.; Martinez, M.; Mazin, D.; Moralejo, A.; Puchades, N.; Reichardt, T.; Rico, J.; Tescaro, D.; Zanin, R.] Univ Autonoma Barcelona, IFAE, E-08193 Bellaterra, Barcelona, Spain. [Antonelli, L. A.; Bonnoli, G.; Carosi, A.; Covino, S.; La Barbera, A.; Salvati, M.; Spiro, S.] INAF Natl Inst Astrophys, I-00136 Rome, Italy. [Antoranz, P.; Leonardo, E.; Meucci, M.; Miranda, J. M.; Paoletti, R.; Partini, S.; Pegna, R. G.; Moroni, P. G. Prada; Stamerra, A.] Univ Siena, I-53100 Siena, Italy. [Antoranz, P.; Leonardo, E.; Meucci, M.; Miranda, J. M.; Paoletti, R.; Partini, S.; Pegna, R. G.; Moroni, P. G. Prada; Stamerra, A.] INFN Pisa, I-53100 Siena, Italy. [Backes, M.; Doert, M.; Rhode, W.; Strah, N.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Barrio, J. A.; Bose, D.; Camara, M.; Contreras, J. L.; Fonseca, M. V.; Nieto, D.; Oya, I.] Univ Complutense, E-28040 Madrid, Spain. [Becerra Gonzalez, J.; Colombo, E.; Delgado Mendez, C.; Diago Ortega, A.; Garcia Lopez, R. J.; Garczarczyk, M.; Gaug, M.; Herrero, A.; Pochon, J.; Sanchez-Conde, M.] Inst Astrofis Canarias, E-38205 San Cristobal la Laguna, Tenerife, Spain. [Becerra Gonzalez, J.; Berger, K.; Diago Ortega, A.; Garcia Lopez, R. J.; Herrero, A.; Sanchez-Conde, M.] Univ La Laguna, Dept Astrofis, E-38205 Tenerife, Spain. [Bednarek, W.; Sierpowska-Bartosik, A.; Sitarek, J.; Sobczynska, D.] Univ Lodz, PL-90236 Lodz, Poland. [Berdyugin, A.; Lindfors, E.; Pasanen, M.; Sillanpaa, A.; Takalo, L. O.; Reinthal, R.] Univ Turku, Tuorla Observ, FI-21500 Piikkio, Finland. [Bernardini, E.; Majumdar, P.; Satalecka, K.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Biland, A.; Boller, A.; Braun, I.; Dorner, D.; Hildebrand, D.; Kraehenbuehl, T.; Kranich, D.; Lorenz, E.; Pauss, F.; Rissi, M.; Weitzel, Q.] ETH, CH-8093 Zurich, Switzerland. [Bordas, P.; Bosch-Ramon, V.; Moldon, J.; Paredes, J. M.; Ribo, M.; Zabalza, V.] Univ Barcelona ICC IEEC, E-08028 Barcelona, Spain. [Bretz, T.; Elsaesser, D.; Hoehne-Moench, D.; Mannheim, K.; Ruegamer, S.; Spanier, F.; Storz, J.; Struebig, J. C.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Delgado Mendez, C.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Dominguez, A.; Perez-Torres, M. A.; Prada, F.; Zandanel, F.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Prester, D. Dominis; Ferenc, D.; Godinovi, N.; Hrupec, D.; Puljak, I.; Suric, T.; Terzic, T.] Univ Rijeka, Inst R Boskovic, Croatian MAGIC Consortium, HR-10000 Zagreb, Croatia. [Prester, D. Dominis; Ferenc, D.; Godinovi, N.; Hrupec, D.; Puljak, I.; Suric, T.; Terzic, T.] Univ Split, HR-10000 Zagreb, Croatia. [Font, L.] Univ Autonoma Barcelona, E-08193 Bellaterra, Spain. [Makariev, E.; Maneva, G.; Temnikov, P.; Vankov, H.] Inst Nucl Energy Res, BG-1784 Sofia, Bulgaria. [Maraschi, L.; Tavecchio, F.] INAF Osservatorio Astron Brera, I-23807 Merate, Italy. [Nilsson, K.] Univ Turku, Finnish Ctr Astron ESO FINCA, FI-21500 Piikiio, Finland. [Persic, M.] INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Shore, S. N.] Univ Pisa, Dipartimento Fis Enrico Fermi, I-56127 Pisa, Italy. [Villata, M.; Raiteri, C.] Osserv Astron Torino, INAF, I-10025 Pino Torinese, TO, Italy. [Aller, H. D.; Aller, M. F.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Chen, W. P.; Koptelova, E.; Lin, C. S.] Natl Cent Univ, Grad Inst Astron, Jhongli 32054, Taiwan. [Jordan, B.] Dublin Inst Adv Studies, Sch Cosm Phys, Dublin 2, Ireland. [Lahteenmaki, A.; Hovatta, T.; Tammi, J.] Abastumani Observ, GE-0301 Abastumani, Rep of Georgia. [Larionov, V. M.] Isaac Newton Inst Chile, St Petersburg Branch, St Petersburg, Russia. [Larionov, V. M.] Pulkovo Observ, St Petersburg 196140, Russia. [Larionov, V. M.] St Petersburg State Univ, Astron Inst, St Petersburg, Russia. [Carraminana, A.; Carrasco, L.] Inst Nacl Astrofis Opt & Electr, Puebla 72840, Mexico. [Cassaro, P.] INAF Ist Radioastron, Sez Noto, I-96017 Noto, SR, Italy. [Cesarini, A.] Natl Univ Ireland Galway, Dept Phys, Galway, Ireland. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gurwell, M. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Kovalev, Yu A.; Kovalev, Y. Y.] Lebedev Phys Inst, Ctr Astro Space, Moscow 117997, Russia. [Lister, M. L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Moody, J. W.; Pace, C.; Pearson, R.] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA. [Maccaferri, G.; Orlati, A.] INAF Ist Radioastron, Stn Radioastron Med, I-40059 Bologna, Italy. [Pagani, C.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Piner, B. G.] Whittier Coll, Dept Phys & Astron, Whittier, CA USA. [Ros, E.] Univ Valencia, Valencia 46010, Spain. [Sadun, A. C.] Univ Colorado, Dept Phys, Denver, CO 80220 USA. [Zook, A.] Pomona Coll, Dept Phys & Astron, Claremont, CA 91711 USA. RP Abdo, AA (reprint author), Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. EM justin.finke@nrl.navy.mil; dpaneque@mppmu.mpg.de; anita.reimer@uibk.ac.at RI Fonseca Gonzalez, Maria Victoria/I-2004-2015; Font, Lluis/L-4197-2014; Moskalenko, Igor/A-1301-2007; Contreras Gonzalez, Jose Luis/K-7255-2014; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Maneva, Galina/L-7120-2016; Backes, Michael/N-5126-2016; Torres, Diego/O-9422-2016; Temnikov, Petar/L-6999-2016; Orlando, E/R-5594-2016; Barrio, Juan/L-3227-2014; Cortina, Juan/C-2783-2017; Tosti, Gino/E-9976-2013; Larionov, Valeri/H-1349-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Lahteenmaki, Anne/L-5987-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Kurtanidze, Omar/J-6237-2014; Rico, Javier/K-8004-2014; Fernandez, Ester/K-9734-2014; Lopez Moya, Marcos/L-2304-2014; GAug, Markus/L-2340-2014; Moralejo Olaizola, Abelardo/M-2916-2014; Ribo, Marc/B-3579-2015; Morselli, Aldo/G-6769-2011; Prada Moroni, Pier Giorgio/G-5565-2011; Braun, Isabel/C-9373-2012; Reimer, Olaf/A-3117-2013; Thompson, David/D-2939-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; Mannheim, Karl/F-6705-2012; lubrano, pasquale/F-7269-2012; Kuss, Michael/H-8959-2012; Doro, Michele/F-9458-2012; giglietto, nicola/I-8951-2012; Kovalev, Yuri/J-5671-2013; Funk, Stefan/B-7629-2015; Pavlidou, Vasiliki/C-2944-2011; Antoranz, Pedro/H-5095-2015; Delgado, Carlos/K-7587-2014; Nieto, Daniel/J-7250-2015; Kovalev, Yuri/N-1053-2015; Pearson, Timothy/N-2376-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Miranda, Jose Miguel/F-2913-2013 OI Becerra Gonzalez, Josefa/0000-0002-6729-9022; Dominguez, Alberto/0000-0002-3433-4610; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Ribo, Marc/0000-0002-9931-4557; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Perri, Matteo/0000-0003-3613-4409; Angelakis, Emmanouil/0000-0001-7327-5441; Cesarini, Andrea/0000-0002-8611-8610; leonardo, elvira/0000-0003-0271-7673; Villata, Massimo/0000-0003-1743-6946; Fonseca Gonzalez, Maria Victoria/0000-0003-2235-0725; Caraveo, Patrizia/0000-0003-2478-8018; De Lotto, Barbara/0000-0003-3624-4480; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Persic, Massimo/0000-0003-1853-4900; Spanier, Felix/0000-0001-6802-4744; Raiteri, Claudia Maria/0000-0003-1784-2784; Ros, Eduardo/0000-0001-9503-4892; Cassaro, Pietro/0000-0001-5139-9662; Orlati, Andrea/0000-0001-8737-255X; Prada Moroni, Pier Giorgio/0000-0001-9712-9916; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Font, Lluis/0000-0003-2109-5961; Moskalenko, Igor/0000-0001-6141-458X; Contreras Gonzalez, Jose Luis/0000-0001-7282-2394; Mazziotta, Mario /0000-0001-9325-4672; Backes, Michael/0000-0002-9326-6400; Torres, Diego/0000-0002-1522-9065; Temnikov, Petar/0000-0002-9559-3384; Barrio, Juan/0000-0002-0965-0259; Cortina, Juan/0000-0003-4576-0452; Larionov, Valeri/0000-0002-4640-4356; Rico, Javier/0000-0003-4137-1134; Lopez Moya, Marcos/0000-0002-8791-7908; GAug, Markus/0000-0001-8442-7877; Moralejo Olaizola, Abelardo/0000-0002-1344-9080; Morselli, Aldo/0000-0002-7704-9553; Braun, Isabel/0000-0002-9389-0502; Reimer, Olaf/0000-0001-6953-1385; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Doro, Michele/0000-0001-9104-3214; giglietto, nicola/0000-0002-9021-2888; Bonnoli, Giacomo/0000-0003-2464-9077; Stamerra, Antonio/0000-0002-9430-5264; Prandini, Elisa/0000-0003-4502-9053; Kadler, Matthias/0000-0001-5606-6154; Covino, Stefano/0000-0001-9078-5507; Bordas, Pol/0000-0002-0266-8536; Cutini, Sara/0000-0002-1271-2924; Paredes, Josep M./0000-0002-1566-9044; Oya, Igor/0000-0002-3881-9324; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Kovalev, Yuri/0000-0001-9303-3263; Funk, Stefan/0000-0002-2012-0080; Pavlidou, Vasiliki/0000-0002-0870-1368; Antoranz, Pedro/0000-0002-3015-3601; Delgado, Carlos/0000-0002-7014-4101; Nieto, Daniel/0000-0003-3343-0755; Pearson, Timothy/0000-0001-5213-6231; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Miranda, Jose Miguel/0000-0002-1472-9690 FU Academy of Finland [212656, 210338]; Russian RFBR foundation [09-02-00092]; RFBR [08-02-00545]; NASA [NNX08AW31G]; NSF [AST-0808050]; Smithsonian Institution; Academia Sinica; Georgian National Science Foundation [GNSF/ST07/4-180] FX We acknowledge the use of public data from the Swift and RXTE data archives. The Metsahovi team acknowledges the support from the Academy of Finland for the observing projects (numbers 212656, 210338, among others). This research has made use of data obtained from the National Radio Astronomy Observatory's Very Long Baseline Array (VLBA), projects BK150, BP143, and BL149 (MOJAVE). The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The St. Petersburg University team acknowledges support from the Russian RFBR foundation via grant 09-02-00092. AZT-24 observations are made within an agreement between Pulkovo, Rome and Teramo observatories. This research is partly based on observations with the 100 m telescope of the MPIfR (Max-Planck-Institut fur Radioastronomie) at Effelsberg, as well as with the Medicina and Noto telescopes operated by INAF-Istituto di Radioastronomia. RATAN-600 observations were supported in part by the RFBR grant 08-02-00545 and the OVRO 40 m program was funded in part by NASA (NNX08AW31G) and the NSF (AST-0808050). The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. M. Villata organized the optical-to-radio observations by GASP-WEBT as the president of the collaboration. The Abastumani Observatory team acknowledges financial support by the Georgian National Science Foundation through grant GNSF/ST07/4-180. NR 102 TC 105 Z9 106 U1 1 U2 28 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 131 DI 10.1088/0004-637X/736/2/131 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400056 ER PT J AU An, D Ramirez, SV Sellgren, K Arendt, RG Boogert, ACA Robitaille, TP Schultheis, M Cotera, AS Smith, HA Stolovy, SR AF An, Deokkeun Ramirez, Solange V. Sellgren, Kris Arendt, Richard G. Boogert, A. C. Adwin Robitaille, Thomas P. Schultheis, Mathias Cotera, Angela S. Smith, Howard A. Stolovy, Susan R. TI MASSIVE YOUNG STELLAR OBJECTS IN THE GALACTIC CENTER. I. SPECTROSCOPIC IDENTIFICATION FROM SPITZER INFRARED SPECTROGRAPH OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Galaxy: nucleus; infrared: ISM; ISM: molecules; stars: formation ID 2-DIMENSIONAL RADIATIVE-TRANSFER; RECOMBINATION LINE OBSERVATIONS; SPECTRAL ENERGY-DISTRIBUTIONS; DIFFUSE INTERSTELLAR-MEDIUM; CENTER MOLECULAR CLOUDS; COMPACT RADIO-SOURCES; MU-M; CARBON-DIOXIDE; STAR-FORMATION; MILKY-WAY AB We present results from our spectroscopic study, using the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope, designed to identify massive young stellar objects (YSOs) in the Galactic center (GC). Our sample of 107 YSO candidates was selected based on Infrared Array Camera (IRAC) colors from the high spatial resolution, high sensitivity Spitzer/IRAC images in the Central Molecular Zone, which spans the central similar to 300 pc region of the Milky Way. We obtained IRS spectra over 5-35 mu m using both high- and low-resolution IRS modules. We spectroscopically identify massive YSOs by the presence of a 15.4 mu m shoulder on the absorption profile of 15 mu m CO2 ice, suggestive of CO2 ice mixed with CH3OH ice on grains. This 15.4 mu m shoulder is clearly observed in 16 sources and possibly observed in an additional 19 sources. We show that nine massive YSOs also reveal molecular gas-phase absorption from CO2, C2H2, and/or HCN, which traces warm and dense gas in YSOs. Our results provide the first spectroscopic census of the massive YSO population in the GC. We fit YSO models to the observed spectral energy distributions and find YSO masses of 8-23 M-circle dot, which generally agree with the masses derived from observed radio continuum emission. We find that about 50% of photometrically identified YSOs are confirmed with our spectroscopic study. This implies a preliminary star formation rate of similar to 0.07 M-circle dot yr(-1) at the GC. C1 [An, Deokkeun] Ewha Womans Univ, Dept Sci Educ, Seoul 120750, South Korea. [Ramirez, Solange V.; Boogert, A. C. Adwin] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Sellgren, Kris] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Arendt, Richard G.] NASA, Goddard Space Flight Ctr, CRESST, UMBC,GSFC, Greenbelt, MD 20771 USA. [Robitaille, Thomas P.; Smith, Howard A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Schultheis, Mathias] Observ Besancon, F-25000 Besancon, France. [Cotera, Angela S.] SETI Inst, Mountain View, CA 94043 USA. [Stolovy, Susan R.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. RP An, D (reprint author), Ewha Womans Univ, Dept Sci Educ, Seoul 120750, South Korea. EM deokkeun@ewha.ac.kr OI Arendt, Richard/0000-0001-8403-8548; Robitaille, Thomas/0000-0002-8642-1329 FU NASA; Ministry of Education, Science, and Technology [2010-0025122] FX We thank the referee for careful and detailed comments. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (No. 2010-0025122). NR 80 TC 21 Z9 21 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 133 DI 10.1088/0004-637X/736/2/133 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400058 ER PT J AU Cotton, WD Ragland, S Danchi, WC AF Cotton, W. D. Ragland, S. Danchi, W. C. TI POLARIZED EMISSION FROM SiO MASERS IN IK Tauri SO ASTROPHYSICAL JOURNAL LA English DT Article DE radio lines: stars; stars: AGB and post-AGB; stars: atmospheres ID GIANT BRANCH STARS; DUST SHELLS; INTERFEROMETER; TELESCOPE; RADIATION AB We present high spatial and frequency resolution images of the SiO masers in Stokes I, Q, U, and V around the asymptotic giant branch star IK Tau and describe and exploit a new technique for making accurate calibration of Stokes V. This technique also resulted in improved images of Stokes I. An evaluation of the results suggests that the circular polarization is neither the result of Zeeman splitting nor an alternate propagation effect. The pattern of circular and linear polarization across the maser lines shows no tendency toward that expected for simple Zeeman splitting. The fractional circular polarization greatly exceeds that expected from the alternate mechanism. The overall shape of the masing ring has changed from the elliptical form repeatedly observed over the last decade and a half. C1 [Cotton, W. D.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Ragland, S.] WM Keck Observ, Kamuela, HI 96743 USA. [Danchi, W. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Cotton, WD (reprint author), Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. EM bcotton@nrao.edu NR 18 TC 5 Z9 5 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 96 DI 10.1088/0004-637X/736/2/96 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400021 ER PT J AU Gal-Yam, A Kasliwal, MM Arcavi, I Green, Y Yaron, O Ben-Ami, S Xu, D Sternberg, A Quimby, RM Kulkarni, SR Ofek, EO Walters, R Nugent, PE Poznanski, D Bloom, JS Cenko, SB Filippenko, AV Li, WD Silverman, JM Walker, ES Sullivan, M Maguire, K Howell, DA Mazzali, PA Frail, DA Bersier, D James, PA Akerlof, CW Yuan, F Law, N Fox, DB Gehrels, N AF Gal-Yam, Avishay Kasliwal, Mansi M. Arcavi, Iair Green, Yoav Yaron, Ofer Ben-Ami, Sagi Xu, Dong Sternberg, Assaf Quimby, Robert M. Kulkarni, Shrinivas R. Ofek, Eran O. Walters, Richard Nugent, Peter E. Poznanski, Dovi Bloom, Joshua S. Cenko, S. Bradley Filippenko, Alexei V. Li, Weidong Silverman, Jeffrey M. Walker, Emma S. Sullivan, Mark Maguire, K. Howell, D. Andrew Mazzali, Paolo A. Frail, Dale A. Bersier, David James, Phil A. Akerlof, C. W. Yuan, Fang Law, Nicholas Fox, Derek B. Gehrels, Neil TI REAL-TIME DETECTION AND RAPID MULTIWAVELENGTH FOLLOW-UP OBSERVATIONS OF A HIGHLY SUBLUMINOUS TYPE II-P SUPERNOVA FROM THE PALOMAR TRANSIENT FACTORY SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: general; supernovae: individual (PTF10vdl) ID GAMMA-RAY BURSTS; SHOCK BREAKOUT; LIGHT CURVES; SN 2005CS; IA SUPERNOVAE; TELESCOPE; EVOLUTION; PHOTOMETRY; COLLAPSE; PLATEAU AB The Palomar Transient Factory (PTF) is an optical wide-field variability survey carried out using a camera with a 7.8 deg(2) field of view mounted on the 48 inch Oschin Schmidt telescope at Palomar Observatory. One of the key goals of this survey is to conduct high-cadence monitoring of the sky in order to detect optical transient sources shortly after they occur. Here, we describe the real-time capabilities of the PTF and our related rapid multiwavelength follow-up programs, extending from the radio to the. gamma-ray bands. We present as a case study observations of the optical transient PTF10vdl (SN 2010id), revealed to be a very young core-collapse (Type II-P) supernova having a remarkably low luminosity. Our results demonstrate that the PTF now provides for optical transients the real-time discovery and rapid-response follow-up capabilities previously reserved only for high-energy transients like gamma-ray bursts. C1 [Gal-Yam, Avishay; Arcavi, Iair; Green, Yoav; Yaron, Ofer; Ben-Ami, Sagi; Xu, Dong; Sternberg, Assaf] Weizmann Inst Sci, Fac Phys, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Kasliwal, Mansi M.; Quimby, Robert M.; Kulkarni, Shrinivas R.; Ofek, Eran O.; Walters, Richard] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Nugent, Peter E.; Poznanski, Dovi] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Bloom, Joshua S.; Cenko, S. Bradley; Filippenko, Alexei V.; Li, Weidong; Silverman, Jeffrey M.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Walker, Emma S.; Mazzali, Paolo A.] Scuola Normale Super Pisa, I-56126 Pisa, Italy. [Sullivan, Mark; Maguire, K.] Univ Oxford, Dept Phys Astrophys, Oxford OX1 3RH, England. [Howell, D. Andrew] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Howell, D. Andrew] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Mazzali, Paolo A.] INAF Osservatorio Astron, I-35122 Padua, Italy. [Mazzali, Paolo A.] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Frail, Dale A.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Bersier, David; James, Phil A.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Akerlof, C. W.] Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. [Yuan, Fang] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Law, Nicholas] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Fox, Derek B.] Penn State Univ, Eberly Coll Sci, University Pk, PA 16802 USA. [Gehrels, Neil] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Gal-Yam, A (reprint author), Weizmann Inst Sci, Fac Phys, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. EM avishay.gal-yam@weizmann.ac.il RI Gehrels, Neil/D-2971-2012; Green, Yoav/L-5874-2015; OI Green, Yoav/0000-0002-0809-6575; Yuan, Fang/0000-0001-8315-4176; Sullivan, Mark/0000-0001-9053-4820; James, Philip/0000-0003-4131-5183; Gal-Yam, Avishay/0000-0002-3653-5598 FU Israeli Science Foundation (ISF); Binational Science Foundation; Weizmann-UK; Weizmann-MINERVA; EU/FP7 Marie Curie IRG Fellowship; US National Science Foundation (NSF) [AST-0908886]; TABASGO Foundation; Gary and Cynthia Bengier; Richard and Rhoda Goldman Fund; MPIA; German Israeli Science Foundation; ISF; Sun Microsystems, Inc.; Hewlett-Packard Company, AutoScope Corporation, Lick Observatory; NSF; University of California; Sylvia & Jim Katzman Foundation; U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy Scientific [DE-FG02-06ER06-04]; W. M. Keck Foundation FX The Palomar Transient Factory project is a scientific collaboration between the California Institute of Technology, Columbia University, Las Cumbres Observatory, the Lawrence Berkeley National Laboratory, the National Energy Research Scientific Computing Center, the University of Oxford, and the Weizmann Institute of Science. Weizmann Institute participation in PTF is supported in part by grants from the Israeli Science Foundation (ISF) to A.G.-Y. Joint Weizmann-Caltech activity is supported by a grant from the Binational Science Foundation to A.G.-Y. and S.R.K. Support for Weizmann-UK collaborative work is provided by a Weizmann-UK "making connections" grant to A.G.-Y. and M.S. Joint activity by A.G.-Y. and P.A.M. is supported by a Weizmann-MINERVA grant. A.G.-Y. further acknowledges support from an EU/FP7 Marie Curie IRG Fellowship. E.O.O. and D.P. are grateful to NASA for Einstein Fellowships. The work of A.V.F.'s group at UC Berkeley is funded by US National Science Foundation (NSF) grant AST-0908886, the TABASGO Foundation, Gary and Cynthia Bengier, and the Richard and Rhoda Goldman Fund.; LAIWO, a wide-angle camera operating on the 1 m telescope at the Wise Observatory, Israel, was built at the Max Planck Institute for Astronomy (MPIA) in Heidelberg, Germany, with financial support from the MPIA, grants from the German Israeli Science Foundation for Research and Development, and the ISF. KAIT and its ongoing operation were made possible by donations from Sun Microsystems, Inc., the Hewlett-Packard Company, AutoScope Corporation, Lick Observatory, the NSF, the University of California, the Sylvia & Jim Katzman Foundation, and the TABASGO Foundation. The National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, provided staff, computational resources, and data storage for this project. P.E.N. acknowledges support from the U.S. Department of Energy Scientific Discovery through Advanced Computing program under contract DE-FG02-06ER06-04.; Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the observatory was made possible by the generous financial support of the W. M. Keck Foundation. We thank the staffs of the many observatories at which data were obtained for their excellent assistance. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 48 TC 38 Z9 38 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 159 DI 10.1088/0004-637X/736/2/159 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400084 ER PT J AU Gavriil, FP Dib, R Kaspi, VM AF Gavriil, Fotis P. Dib, Rim Kaspi, Victoria M. TI THE 2006-2007 ACTIVE PHASE OF ANOMALOUS X-RAY PULSAR 4U 0142+61: RADIATIVE AND TIMING CHANGES, BURSTS, AND BURST SPECTRAL FEATURES SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars: individual (4U 0142+61); stars: neutron; X-rays: bursts; X-rays: stars ID SOFT GAMMA-REPEATERS; MAGNETIZED NEUTRON-STARS; LONG-TERM VARIABILITY; CHANDRA OBSERVATIONS; TRANSIENT MAGNETAR; 1E 1048.1-5937; XTE J1810-197; 2002 OUTBURST; SGR 1900+14; SPIN-DOWN AB After at least six years of quiescence, anomalous X-ray pulsar (AXP) 4U 0142+61 entered an active phase in 2006 March that lasted several months and included six X-ray bursts as well as many changes in the persistent X-ray emission. The bursts, the first seen from this AXP in > 11 yr of Rossi X-Ray Timing Explorer monitoring, all occurred in the interval between 2006 April 6 and 2007 February 7. The burst durations ranged from (0.4-1.8) x 10(3) s. The first five burst spectra are well modeled by blackbodies, with temperatures kT similar to 2-9 keV. However, the sixth burst had a complicated spectrum that is well characterized by a blackbody plus two emission features whose amplitude varied throughout the burst. The most prominent feature was at 14.0 keV. Upon entry into the active phase, the pulsar showed a significant change in pulse morphology and a likely timing glitch. The glitch had a total frequency jump of (1.9 +/- 0.4) x 10(-7) Hz, which recovered with a decay time of 17 +/- 2 days by more than the initial jump, implying a net spin-down of the pulsar. Within the framework of the magnetar model, the net spin-down of the star could be explained by regions of the superfluid that rotate slower than the rest. The bursts, flux enhancements, and pulse morphology changes can be explained as arising from crustal deformations due to stresses imposed by the highly twisted internal magnetic field. However, unlike other AXP outbursts, we cannot account for a major twist being implanted in the magnetosphere. C1 [Gavriil, Fotis P.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Gavriil, Fotis P.] Univ Maryland Baltimore Cty, Ctr Res & Explorat Space Sci & Technol, Baltimore, MD 21250 USA. [Dib, Rim; Kaspi, Victoria M.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. RP Gavriil, FP (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Code 662, Greenbelt, MD 20771 USA. FU NSERC; Canadian Institute for Advanced Research; Le Fonds Quebecois de la Recherche sur la Nature et les Technologies; Canada Research Chairs program; Lorne Trottier Chair in Observational Astrophysics FX We thank P. M. Woods and A. M. Beloborodov for useful discussions. This research has made use of data obtained through the High Energy Astrophysics Science Archive Research Center Online Service, provided by the NASA/Goddard Space Flight Center. This work has been supported by an NSERC Discovery Grant, the Canadian Institute for Advanced Research, and Le Fonds Quebecois de la Recherche sur la Nature et les Technologies, by the Canada Research Chairs program, and by the Lorne Trottier Chair in Observational Astrophysics. NR 55 TC 35 Z9 35 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 138 DI 10.1088/0004-637X/736/2/138 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400063 ER PT J AU Janson, M Bonavita, M Klahr, H Lafreniere, D Jayawardhana, R Zinnecker, H AF Janson, Markus Bonavita, Mariangela Klahr, Hubert Lafreniere, David Jayawardhana, Ray Zinnecker, Hans TI HIGH-CONTRAST IMAGING SEARCH FOR PLANETS AND BROWN DWARFS AROUND THE MOST MASSIVE STARS IN THE SOLAR NEIGHBORHOOD SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; planetary systems; stars: massive ID EXTRASOLAR GIANT PLANETS; HR 8799; GRAVITATIONAL-INSTABILITY; SUBSTELLAR COMPANION; EVOLUTIONARY MODELS; DISK INSTABILITY; EPSILON-ERIDANI; BETA-PICTORIS; BINARY STARS; SYSTEM AB There has been a long-standing discussion in the literature as to whether core accretion or disk instability is the dominant mode of planet formation. Over the last decade, several lines of evidence have been presented showing that core accretion is most likely the dominant mechanism for the close-in population of planets probed by radial velocity and transits. However, this does not by itself prove that core accretion is the dominant mode for the total planet population, since disk instability might conceivably produce and retain large numbers of planets in the far-out regions of the disk. If this is a relevant scenario, then the outer massive disks of B-stars should be among the best places for massive planets and brown dwarfs to form and reside. In this study, we present high-contrast imaging of 18 nearby massive stars of which 15 are in the B2-A0 spectral-type range and provide excellent sensitivity to wide companions. By comparing our sensitivities to model predictions of disk instability based on physical criteria for fragmentation and cooling, and using Monte Carlo simulations for orbital distributions, we find that similar to 85% of such companions should have been detected in our images on average. Given this high degree of completeness, stringent statistical limits can be set from the null-detection result, even with the limited sample size. We find that < 30% of massive stars form and retain disk instability planets, brown dwarfs, and very low mass stars of < 100 M-jup within 300 AU, at 99% confidence. These results, combined with previous findings in the literature, lead to the conclusion that core accretion is likely the dominant mode of planet formation. C1 [Janson, Markus; Bonavita, Mariangela; Jayawardhana, Ray] Univ Toronto, Dept Astron, Toronto, ON, Canada. [Klahr, Hubert] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Lafreniere, David] Univ Montreal, Dept Phys, Montreal, ON, Canada. [Zinnecker, Hans] Astrophys Inst Potsdam, Potsdam, Germany. [Zinnecker, Hans] NASA Ames, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. RP Janson, M (reprint author), Univ Toronto, Dept Astron, Toronto, ON, Canada. EM janson@astro.utoronto.ca OI Lafreniere, David/0000-0002-6780-4252 FU Reinhardt; NSERC FX The authors thank Jonathan Fortney for providing thermal evolution tracks. We thank Ewan Cameron for useful comments on binomial statistics. We also thank the staff at the Gemini, Keck, and Subaru telescopes for their help in performing these observations. The Gemini telescope is operated by the Association of Universities for Research in Astronomy, under a cooperative agreement with the NSF on behalf of the Gemini partnership. The Keck observatory is operated by the California Institute of Technology, the University of California and the National Aeronautics and Space Administration, and was made possible by a generous donation by the W. M. Keck foundation. The Keck time was allocated by NOAO. The Subaru telescope is operated by the National Astronomical Observatory of Japan. We acknowledge the cultural significance that the summit of Mauna Kea has to the indigenous Hawaiian community. M. J. is funded by the Reinhardt fellowship. R. J.' s research is supported by NSERC grants. NR 89 TC 44 Z9 44 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 89 DI 10.1088/0004-637X/736/2/89 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400014 ER PT J AU Kahler, SW Haggerty, DK Richardson, IG AF Kahler, S. W. Haggerty, D. K. Richardson, I. G. TI MAGNETIC FIELD-LINE LENGTHS IN INTERPLANETARY CORONAL MASS EJECTIONS INFERRED FROM ENERGETIC ELECTRON EVENTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; interplanetary medium; Sun: coronal mass ejections (CMEs); Sun: particle emission ID NEAR-RELATIVISTIC ELECTRONS; SOLAR-WIND; RADIO-BURSTS; FLUX ROPES; 13 CME; CLOUDS; WAVE; ACCELERATION; DIMMINGS; FLARES AB About one quarter of the observed interplanetary coronal mass ejections (ICMEs) are characterized by enhanced magnetic fields that smoothly rotate in direction over timescales of about 10-50 hr. These ICMEs have the appearance of magnetic flux ropes and are known as "magnetic clouds" (MCs). The total lengths of MC field lines can be determined using solar energetic particles of known speeds when the solar release times and the 1 AU onset times of the particles are known. A recent examination of about 30 near-relativistic (NR) electron events in and near 8 MCs showed no obvious indication that the field-line lengths were longest near the MC boundaries and shortest at the MC axes or outside the MCs, contrary to the expectations for a flux rope. Here we use the impulsive beamed NR electron events observed with the Electron Proton and Alpha Monitor instrument on the Advanced Composition Explorer spacecraft and type III radio bursts observed on the Wind spacecraft to determine the field-line lengths inside ICMEs included in the catalog of Richardson & Cane. In particular, we extend this technique to ICMEs that are not MCs and compare the field-line lengths inside MCs and non-MC ICMEs with those in the ambient solar wind outside the ICMEs. No significant differences of field-line lengths are found among MCs, ICMEs, and the ambient solar wind. The estimated number of ICME field-line turns is generally smaller than those deduced for flux-rope model fits to MCs. We also find cases in which the electron injections occur in solar active regions (ARs) distant from the source ARs of the ICMEs, supporting CME models that require extensive coronal magnetic reconnection with surrounding fields. The field-line lengths are found to be statistically longer for the NR electron events classified as ramps and interpreted as shock injections somewhat delayed from the type III bursts. The path lengths of the remaining spike and pulse electron events are compared with model calculations of solar wind field-line lengths resulting from turbulence and found to be in good agreement. C1 [Kahler, S. W.] USAF, Res Lab, RVBXS, Hanscom Afb, MA 01731 USA. [Haggerty, D. K.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Richardson, I. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Richardson, I. G.] CRESST, College Pk, MD 20742 USA. [Richardson, I. G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Kahler, SW (reprint author), USAF, Res Lab, RVBXS, 29 Randolph Rd, Hanscom Afb, MA 01731 USA. EM AFRL.RVB.PA@hanscom.af.mil OI Richardson, Ian/0000-0002-3855-3634 NR 74 TC 18 Z9 18 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 106 DI 10.1088/0004-637X/736/2/106 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400031 ER PT J AU Mahmud, NI Crockett, CJ Johns-Krull, CM Prato, L Hartigan, PM Jaffe, DT Beichman, CA AF Mahmud, Naved I. Crockett, Christopher J. Johns-Krull, Christopher M. Prato, L. Hartigan, Patrick M. Jaffe, Daniel T. Beichman, Charles A. TI STARSPOT-INDUCED OPTICAL AND INFRARED RADIAL VELOCITY VARIABILITY IN T TAURI STAR HUBBLE I 4 SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: activity; stars: individual (Hubble I 4); starspots; stars: pre-main sequence; stars: variables:T Tauri, Herbig Ae/Be; techniques: radial velocities ID TIME-SERIES ANALYSIS; LOW-MASS STARS; PLANET SEARCH; COOL STARS; MAGNETOSPHERIC ACCRETION; MAGNETIC ACTIVITY; STELLAR ACTIVITY; 51 PEGASI; PRECISION; JUPITER AB We report optical (similar to 6150 angstrom) and K-band (2.3 mu m) radial velocities obtained over two years for the pre-main-sequence weak-lined T Tauri star Hubble I 4. We detect periodic and near-sinusoidal radial velocity variations at both wavelengths, with a semi-amplitude of 1395 +/- 94 m s(-1) in the optical and 365 +/- 80 m s(-1) in the infrared. The lower velocity amplitude at the longer wavelength, combined with bisector analysis and spot modeling, indicates that there are large, cool spots on the stellar surface that are causing the radial velocity modulation. The radial velocities maintain phase coherence over hundreds of days suggesting that the starspots are long-lived. This is one of the first active stars where the spot-induced velocity modulation has been resolved in the infrared. C1 [Mahmud, Naved I.; Johns-Krull, Christopher M.; Hartigan, Patrick M.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Crockett, Christopher J.; Prato, L.] Lowell Observ, Flagstaff, AZ 86001 USA. [Crockett, Christopher J.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Jaffe, Daniel T.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Beichman, Charles A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Beichman, Charles A.] CALTECH, NASA Exoplanet Sci Inst NExScI, Pasadena, CA 91125 USA. RP Mahmud, NI (reprint author), Rice Univ, Dept Phys & Astron, 6100 Main St,MS 108, Houston, TX 77005 USA. EM naved@rice.edu; crockett@lowell.edu; cmj@rice.edu; lprato@lowell.edu; hartigan@rice.edu; dtj@astro.as.utexas.edu; chas@pop.jpl.nasa.gov FU University of Hawaii [NNX-08AE38A]; National Aeronautics and Space Administration, Science Mission Directorate; NASA [05-SSO05-86, 07-SSO07-86]; SIM Young Planets Key Project FX Visiting Astronomer at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NNX-08AE38A with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program.; This work was partially supported by NASA Origins Grants 05-SSO05-86 and 07-SSO07-86; we also acknowledge the SIM Young Planets Key Project for research support. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and NASA's Astrophysics Data System. The authors wish to thank Wei Chen, Wilson Cauley, and Jennifer Blake-Mahmud for observing assistance at McDonald Observatory. We recognize the significant cultural role that Mauna Kea plays in the Hawaiian community and are grateful for the opportunity to observe there. NR 54 TC 17 Z9 17 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 123 DI 10.1088/0004-637X/736/2/123 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400048 ER PT J AU Mainzer, A Grav, T Masiero, J Bauer, J Wright, E Cutri, RM McMillan, RS Cohen, M Ressler, M Eisenhardt, P AF Mainzer, A. Grav, T. Masiero, J. Bauer, J. Wright, E. Cutri, R. M. McMillan, R. S. Cohen, M. Ressler, M. Eisenhardt, P. TI THERMAL MODEL CALIBRATION FOR MINOR PLANETS OBSERVED WITH WIDE-FIELD INFRARED SURVEY EXPLORER/NEOWISE SO ASTROPHYSICAL JOURNAL LA English DT Article DE catalogs; minor planets, asteroids: general; surveys ID NEAR-EARTH ASTEROIDS; SPECTRAL IRRADIANCE CALIBRATION; PHOTOMETRIC SURVEY; RADAR OBSERVATIONS; OBJECT SURVEY; SATELLITES; ARECIBO; BINARY; IMAGES AB With the Wide-field Infrared Survey Explorer (WISE), we have observed over 157,000 minor planets. Included in these are a number of near-Earth objects, main-belt asteroids, and irregular satellites which have well measured physical properties (via radar studies and in situ imaging) such as diameters. We have used these objects to validate models of thermal emission and reflected sunlight using the WISE measurements, as well as the color corrections derived in Wright et al. for the four WISE bandpasses as a function of effective temperature. We have used 50 objects with diameters measured by radar or in situ imaging to characterize the systematic errors implicit in using the WISE data with a faceted spherical near-Earth asteroid thermal model (NEATM) to compute diameters and albedos. By using the previously measured diameters and H magnitudes with a spherical NEATM model, we compute the predicted fluxes (after applying the color corrections given in Wright et al.) in each of the four WISE bands and compare them to the measured magnitudes. We find minimum systematic flux errors of 5%-10%, and hence minimum relative diameter and albedo errors of similar to 10% and similar to 20%, respectively. Additionally, visible albedos for the objects are computed and compared to the albedos at 3.4 mu m and 4.6 mu m, which contain a combination of reflected sunlight and thermal emission for most minor planets observed by WISE. Finally, we derive a linear relationship between subsolar temperature and effective temperature, which allows the color corrections given in Wright et al. to be used for minor planets by computing only subsolar temperature instead of a faceted thermophysical model. The thermal models derived in this paper are not intended to supplant previous measurements made using radar or spacecraft imaging; rather, we have used them to characterize the errors that should be expected when computing diameters and albedos of minor planets observed by WISE using a spherical NEATM model. C1 [Mainzer, A.; Masiero, J.; Bauer, J.; Ressler, M.; Eisenhardt, P.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Grav, T.] Johns Hopkins Univ, Dept Phys & Astron, Bloomberg Ctr 366, Baltimore, MD 21218 USA. [Bauer, J.; Cutri, R. M.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Wright, E.] UCLA Astron, Los Angeles, CA 90095 USA. [McMillan, R. S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Cohen, M.] Univ Calif Berkeley, Radio Astron Lab, Berkeley, CA 94720 USA. RP Mainzer, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM amainzer@jpl.nasa.gov OI Masiero, Joseph/0000-0003-2638-720X FU National Aeronautics and Space Administration; Planetary Science Division of the National Aeronautics and Space Administration FX We thank L. Benner, M. Busch, and M. Shepard for useful discussions and for providing diameter information on a number of objects in advance of publication. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This publication also makes use of data products from NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology, funded by the Planetary Science Division of the National Aeronautics and Space Administration. We thank our referee, A. W. Harris of Pasadena, California, for constructive comments that materially improved this work. We gratefully acknowledge the extraordinary services specific to NEOWISE contributed by the International Astronomical Union's Minor Planet Center, operated by the Harvard-Smithsonian Center for Astrophysics, and the Central Bureau for Astronomical Telegrams, operated by Harvard University. We also thank the worldwide community of dedicated amateur and professional astronomers devoted to minor planet follow-up observations. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of NASA's Astrophysics Data System. NR 50 TC 43 Z9 43 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 100 DI 10.1088/0004-637X/736/2/100 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400025 ER PT J AU Paolillo, M Puzia, TH Goudfrooij, P Zepf, SE Maccarone, TJ Kundu, A Fabbiano, G Angelini, L AF Paolillo, Maurizio Puzia, Thomas H. Goudfrooij, Paul Zepf, Stephen E. Maccarone, Thomas J. Kundu, Arunav Fabbiano, Giuseppina Angelini, Lorella TI PROBING THE GC-LMXB CONNECTION IN NGC 1399: A WIDE-FIELD STUDY WITH THE HUBBLE SPACE TELESCOPE AND CHANDRA SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: elliptical and lenticular, cD; galaxies: individual (NGC 1399); galaxies: star clusters: general; X-rays: binaries; X-rays: galaxies; X-rays: individual (NGC 1399) ID X-RAY BINARIES; GLOBULAR-CLUSTER SYSTEM; EARLY-TYPE GALAXIES; ELLIPTIC GALAXIES; LUMINOSITY FUNCTION; STAR-CLUSTERS; FORNAX; NGC-1399; CAMERA; SPECTROSCOPY AB We present a wide-field study of the globular cluster (GC)/low-mass X-ray binary (LMXB) connection in the giant elliptical NGC 1399. The large field of view of the Advanced Camera for Surveys/WFC, combined with Hubble Space Telescope and Chandra high resolution, allow us to constrain the LMXB formation scenarios in elliptical galaxies. We confirm that NGC 1399 has the highest LMXB fraction in GCs of all nearby elliptical galaxies studied so far, even though the exact value depends on galactocentric distance due to the interplay of a differential GC versus galaxy light distribution and the GC color dependence. In fact, LMXBs are preferentially hosted by bright, red GCs out to > 5R(eff) of the galaxy light. The finding that GCs hosting LMXBs follow the radial distribution of their parent GC population argues against the hypothesis that the external dynamical influence of the galaxy affects the LMXB formation in GCs. On the other hand, field-LMXBs closely match the host galaxy light, thus indicating that they are originally formed in situ and not inside GCs. We measure GC structural parameters, finding that the LMXB formation likelihood is influenced independently by mass, metallicity, and GC structural parameters. In particular, the GC central density plays a major role in predicting which GCs host accreting binaries. Finally, our analysis shows that LMXBs in GCs are marginally brighter than those in the field, and in particular the only color-confirmed GC with L-X > 10(39) erg s(-1) shows no variability, which may indicate a superposition of multiple LMXBs in these systems. C1 [Paolillo, Maurizio] Univ Naples Federico II, Dept Phys Sci, I-80126 Naples, Italy. [Paolillo, Maurizio] Ist Nazl Fis Nucl, Napoli Unit, Dept Phys Sci, I-80126 Naples, Italy. [Puzia, Thomas H.] Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Puzia, Thomas H.] Pontificia Univ Catolica Chile, Dept Astron & Astrophys, Santiago, Chile. [Goudfrooij, Paul] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Zepf, Stephen E.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Maccarone, Thomas J.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Kundu, Arunav] Eureka Sci, Oakland, CA 94602 USA. [Fabbiano, Giuseppina] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Angelini, Lorella] NASA, High Energy Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Paolillo, M (reprint author), Univ Naples Federico II, Dept Phys Sci, I-80126 Naples, Italy. EM paolillo@na.infn.it RI Paolillo, Maurizio/J-1733-2012 OI Paolillo, Maurizio/0000-0003-4210-7693 FU Herzberg Institute of Astrophysics of the National Research Council of Canada; ASI-INAF [I/009/10/0]; HST [HST-AR-11264]; NASA [NNX08AJ60G, NAS5-26555]; Space Telescope Science Institute [GO-10129] FX We thank E. Flaccomio, A. Zezas for useful suggestions and comments, and T. Richtler for providing access to his ground-based photometric catalogs. T. H. P. acknowledges financial support in form of the Plaskett Research Fellowship at the Herzberg Institute of Astrophysics of the National Research Council of Canada. He is also grateful for the support and warm hospitality at the Federico II University of Naples where parts of this work were conducted. We thank the anonymous referee for many useful suggestions. M. P. acknowledges support from the ASI-INAF contract I/009/10/0.; A. K. acknowledges support from HST archival program HST-AR-11264. S.E.Z. acknowledges support for this work from the NASA ADP grant NNX08AJ60G.; Support for HST Program GO-10129 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. NR 58 TC 28 Z9 28 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 90 DI 10.1088/0004-637X/736/2/90 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400015 ER PT J AU Roy, R Kumar, B Benetti, S Pastorello, A Yuan, F Brown, PJ Immler, S Fatkhullin, TA Moskvitin, AS Maund, J Akerlof, CW Wheeler, JC Sokolov, VV Quimby, RM Bufano, F Kumar, B Misra, K Pandey, SB Elias-Rosa, N Roming, PWA Sagar, R AF Roy, Rupak Kumar, Brijesh Benetti, Stefano Pastorello, Andrea Yuan, Fang Brown, Peter J. Immler, Stefan Fatkhullin, Timur A. Moskvitin, Alexander S. Maund, Justyn Akerlof, Carl W. Wheeler, J. Craig Sokolov, Vladimir V. Quimby, Rorbert M. Bufano, Filomena Kumar, Brajesh Misra, Kuntal Pandey, S. B. Elias-Rosa, Nancy Roming, Peter W. A. Sagar, Ram TI SN 2008in-BRIDGING THE GAP BETWEEN NORMAL AND FAINT SUPERNOVAE OF TYPE IIP SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: general; supernovae: individual (2008in) ID CORE-COLLAPSE SUPERNOVAE; SWIFT ULTRAVIOLET/OPTICAL TELESCOPE; LIGHT CURVES; SHOCK BREAKOUT; X-RAY; PLATEAU SUPERNOVAE; P SUPERNOVAE; PROGENITOR; 2005CS; STARS AB We present optical photometric and low-resolution spectroscopic observations of the Type II plateau supernova (SN) 2008in, which occurred in the outskirts of the nearly face-on spiral galaxy M61. Photometric data in the X-ray, ultraviolet, and near-infrared bands have been used to characterize this event. The SN field was imaged with the ROTSE-IIIb optical telescope about seven days before the explosion. This allowed us to constrain the epoch of the shock breakout to JD = 2454825.6. The duration of the plateau phase, as derived from the photometric monitoring, was similar to 98 days. The spectra of SN 2008in show a striking resemblance to those of the archetypal low-luminosity IIP SNe 1997D and 1999br. A comparison of ejecta kinematics of SN 2008in with the hydrodynamical simulations of Type IIP SNe by Dessart et al. indicates that it is a less energetic event (similar to 5 x 10(50) erg). However, the light curve indicates that the production of radioactive 56Ni is significantly higher than that in the low-luminosity SNe. Adopting an interstellar absorption along the SN direction of AV similar to 0.3 mag and a distance of 13.2Mpc, we estimated a synthesized 56Ni mass of similar to 0.015 M-circle dot. Employing semi-analytical formulae derived by Litvinova and Nadezhin, we derived a pre-SN radius of similar to 126R(circle dot), an explosion energy of similar to 5.4x10(50) erg, and a total ejected mass of similar to 16.7M(circle dot). The latter indicates that the zero-age main-sequence mass of the progenitor did not exceed 20M(circle dot). Considering the above properties of SN 2008in and its occurrence in a region of sub-solar metallicity ([O/H] similar to 8.44 dex), it is unlikely that fall-back of the ejecta onto a newly formed black hole occurred in SN 2008in. We therefore favor a low-energy explosion scenario of a relatively compact, moderate-mass progenitor star that generates a neutron star. C1 [Roy, Rupak; Kumar, Brijesh; Kumar, Brajesh; Pandey, S. B.; Sagar, Ram] Aryabhatta Res Inst Observat Sci ARIES, Naini Tal 263129, India. [Benetti, Stefano; Bufano, Filomena] Astron Observ Padova, Ist Nazl Astrofis, I-35122 Padua, Italy. [Pastorello, Andrea] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Yuan, Fang; Akerlof, Carl W.; Pandey, S. B.] Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. [Yuan, Fang] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Brown, Peter J.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Immler, Stefan] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Immler, Stefan] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Fatkhullin, Timur A.; Moskvitin, Alexander S.; Sokolov, Vladimir V.] Special Astrophys Observ, Nizhnii Arkhyz 369167, Karachaevo Cher, Russia. [Maund, Justyn] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Wheeler, J. Craig] Univ Texas Austin, Dept Astron, Austin, TX USA. [Quimby, Rorbert M.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Kumar, Brajesh] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Misra, Kuntal] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Misra, Kuntal] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Elias-Rosa, Nancy] Inst Ciencies Espai IEEC CSIC, Bellaterra 08193, Spain. [Roming, Peter W. A.] Space Sci & Engn Div, San Antonio, TX 78238 USA. RP Roy, R (reprint author), Aryabhatta Res Inst Observat Sci ARIES, Naini Tal 263129, India. EM roy@aries.res.in RI Elias-Rosa, Nancy/D-3759-2014; OI Elias-Rosa, Nancy/0000-0002-1381-9125; Yuan, Fang/0000-0001-8315-4176; Benetti, Stefano/0000-0002-3256-0016; Maund, Justyn/0000-0003-0733-7215 FU Federal Agency of Education of Russia; President of the Russian Federation [MK-405.2010.2]; European Southern Observatory, Chile [083.D-0970(A)]; PRIN-INAF; NSF [AST-0707669, PHY-0801007]; Texas Advanced Research Program [ASTRO-ARP-0094]; NASA [NNX08AV63G]; Indo-Russian (DST-RFBR) [RUSP-836 (RFBR-08-02:91314)] FX We thank all the observers at the Aryabhatta Research Institute of Observational Sciences (ARIES) who provided their valuable time and support for the observations of this event. We are thankful to the observing staffs of ROTSE, REM, 2m IGO, 3.6m NTT, 6m BTA, and 9.2m HET for their kind cooperation in the observation of SN 2008in. This work was supported by the grant RNP 2.1.1.3483 of the Federal Agency of Education of Russia. Timur A. Fatkhullin and Alexander S. Moskvitin were supported by the grant of the President of the Russian Federation (MK-405.2010.2). This is also partially based on observations collected at the European Southern Observatory, Chile under the program 083.D-0970(A). Stefano Benetti and Filomena Bufano are partially supported by the PRIN-INAF 2009 with the project "Supernovae Variety and Nucleosynthesis Yields." The research of J. Craig Wheeler is supported in part by NSF Grant AST-0707669 and by the Texas Advanced Research Program grant ASTRO-ARP-0094. This research is supported by NASA grant NNX08AV63G and NSF grant PHY-0801007. This work is partially based on observations made with the REM Telescope, INAF Chile. This research has made use of data obtained through the High Energy Astrophysics Science Archive Research Center Online Service, provided by the NASA/Goddard Space Flight Center. We are indebted to the Indo-Russian (DST-RFBR) project No. RUSP-836 (RFBR-08-02:91314) for the completion of this research work. NR 86 TC 27 Z9 27 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 76 DI 10.1088/0004-637X/736/2/76 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400001 ER PT J AU Terzo, S Reale, F Miceli, M Klimchuk, JA Kano, R Tsuneta, S AF Terzo, Sergio Reale, Fabio Miceli, Marco Klimchuk, James A. Kano, Ryouhei Tsuneta, Saku TI WIDESPREAD NANOFLARE VARIABILITY DETECTED WITH HINODE/X-RAY TELESCOPE IN A SOLAR ACTIVE REGION SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: activity; Sun: corona; Sun: X-rays, gamma rays ID HOT PLASMA; LOOPS; CORONA; MODEL; GASDYNAMICS; EMISSION; DYNAMICS; MISSION; CORE; XRT AB It is generally agreed that small impulsive energy bursts called nanoflares are responsible for at least some of the Sun's hot corona, but whether they are the explanation for most of the multimillion-degree plasma has been a matter of ongoing debate. We present here evidence that nanoflares are widespread in an active region observed by the X-Ray Telescope on board the Hinode mission. The distributions of intensity fluctuations have small but important asymmetries, whether taken from individual pixels, multipixel subregions, or the entire active region. Negative fluctuations (corresponding to reduced intensity) are greater in number but weaker in amplitude, so that the median fluctuation is negative compared to a mean of zero. Using Monte Carlo simulations, we show that only part of this asymmetry can be explained by Poisson photon statistics. The remainder is explainable through a tendency for exponentially decreasing intensity, such as would be expected from a cooling plasma produced from a nanoflare. We suggest that nanoflares are a universal heating process within active regions. C1 [Terzo, Sergio; Reale, Fabio; Miceli, Marco] Univ Palermo, Dipartimento Fis, Sez Astron, I-90134 Palermo, Italy. [Klimchuk, James A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kano, Ryouhei; Tsuneta, Saku] Natl Astron Observ, Tokyo 1818588, Japan. [Terzo, Sergio; Reale, Fabio; Miceli, Marco] INAF Osservatorio Astron Palermo GS Vaiana, I-90134 Palermo, Italy. RP Terzo, S (reprint author), Univ Palermo, Dipartimento Fis, Sez Astron, Piazza Parlamento 1, I-90134 Palermo, Italy. EM terzo@astropa.unipa.it RI Klimchuk, James/D-1041-2012; OI Klimchuk, James/0000-0003-2255-0305; Reale, Fabio/0000-0002-1820-4824; Miceli, Marco/0000-0003-0876-8391 FU JAXA; NAOJ (Japan); STFC (UK); NASA; ESA; NSC (Norway); Italian Ministero dell'Universita e Ricerca; Agenzia Spaziale Italiana (ASI) [I/015/07/0, I/023/09/0]; LWS Targeted Research and Technology programs FX We thank the anonymous referee for very useful suggestions. We also thank M. Caramazza and Y. Sakamoto for help with data analysis. Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner and NASA and STFC (UK) as international partners. Scientific operation of the Hinode mission is conducted by the Hinode science team organized at ISAS/JAXA. This team consists mainly of scientists from institutes in the partner countries. Support for the post-launch operation is provided by JAXA and NAOJ (Japan), STFC (UK), NASA, ESA, and NSC (Norway). F. R., S.Te., and M. M. acknowledge support from Italian Ministero dell'Universita e Ricerca and Agenzia Spaziale Italiana (ASI), contracts I/015/07/0 and I/023/09/0. The work of J.A.K. was supported by the NASA Supporting Research and Technology and LWS Targeted Research and Technology programs. NR 27 TC 18 Z9 18 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 111 DI 10.1088/0004-637X/736/2/111 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400036 ER PT J AU Voyer, EN Gardner, JP Teplitz, HI Siana, BD de Mello, DF AF Voyer, Elysse N. Gardner, Jonathan P. Teplitz, Harry I. Siana, Brian D. de Mello, Duilia F. TI FAR-ULTRAVIOLET NUMBER COUNTS OF FIELD GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: evolution; galaxies: statistics; ultraviolet: galaxies ID TELESCOPE IMAGING SPECTROGRAPH; DEEP FIELD; SPACE-TELESCOPE; BACKGROUND-RADIATION; LYMAN CONTINUUM; LOCAL UNIVERSE; LUMINOSITY FUNCTION; STAR-FORMATION; 2000 ANGSTROM; DUST AB The far-ultraviolet (FUV) number counts of galaxies constrain the evolution of the star formation rate density of the universe. We report the FUV number counts computed from FUV imaging of several fields including the Hubble Ultra Deep Field, the Hubble Deep Field North, and small areas within the GOODS-North and South fields. These data were obtained with the Hubble Space Telescope (HST) Solar Blind Channel of the Advance Camera for Surveys. The number counts sample an FUV AB magnitude range from 21 to 29 and cover a total area of 15.9 arcmin(2), similar to 4 times larger than the most recent HST FUV study. Our FUV counts intersect bright FUV Galaxy Evolution Explorer counts at 22.5 mag and they show good agreement with recent semi-analytic models based on dark matter "merger trees" by R. S. Somerville et al. We show that the number counts are similar to 35% lower than in previous HST studies that use smaller areas. The differences between these studies are likely the result of cosmic variance; our new data cover more lines of sight and more area than previous HST FUV studies. The integrated light from field galaxies is found to contribute between 65.9(-8)(+8) and 82.6(-12)(+12) photons s(-1) cm(-2) sr(-1) angstrom(-1) to the FUV extragalactic background. These measurements set a lower limit for the total FUV background light. C1 [Gardner, Jonathan P.; de Mello, Duilia F.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Teplitz, Harry I.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Voyer, Elysse N.; de Mello, Duilia F.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Voyer, EN (reprint author), NASA, Res Program, Greenbelt, MD 20771 USA. EM 48voyer@cardinalmail.cua.edu FU Space Telescope Science Institute [GO-10403, GO-10872]; Association of Universities for Research in Astronomy; NASA [NAS5-26555, NNX08AR95H]; National Aeronautics and Space Administration FX We are grateful to the anonymous referee for their helpful comments that improved this paper. We thank R. S. Somerville and R. C. Gilmore for providing us with their semi-analytic model and for numerous helpful discussions and comments on this paper. We also thank D. Hammer for useful science discussions and sharing number count results, and C. K. Xu for providing us with theoretical number count models. Support for Program numbers GO-10403 and GO-10872 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. E.N.V. was funded by the NASA Graduate Student Research Program grant no. NNX08AR95H.; This research has made use of data obtained from the Chandra Source Catalog, provided by the Chandra X-ray Center (CXC) as part of the Chandra Data Archive.; This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 56 TC 6 Z9 6 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 1 PY 2011 VL 736 IS 2 AR 80 DI 10.1088/0004-637X/736/2/80 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795MD UT WOS:000292977400005 ER PT J AU Currie, T Thalmann, C Matsumura, S Madhusudhan, N Burrows, A Kuchner, M AF Currie, Thayne Thalmann, Christian Matsumura, Soko Madhusudhan, Nikku Burrows, Adam Kuchner, Marc TI A 5 mu m IMAGE OF beta PICTORIS b AT A SUB-JUPITER PROJECTED SEPARATION: EVIDENCE FOR A MISALIGNMENT BETWEEN THE PLANET AND THE INNER, WARPED DISK SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planetary systems; stars: early-type; stars: individual (beta Pictoris) ID ORBITING HR 8799; CORONAGRAPHIC OBSERVATIONS; ADAPTIVE OPTICS; GJ 758; COMPANION; STAR; MASS AB We present and analyze a new M' detection of the young exoplanet beta Pictoris b from 2008 VLT/NaCo data at a separation of approximate to 4 AU and a high signal-to-noise rereduction of L' data taken in 2009 December. Based on our orbital analysis, the planet's orbit is viewed almost perfectly edge-on (i similar to 89 deg) and has a Saturn-like semimajor axis of 9.50 AU(-1.7AU)(+3.93AU). Intriguingly, the planet's orbit is aligned with the major axis of the outer disk (Omega similar to 31 deg) but is probably misaligned with the warp/inclined disk at 80 AU, often cited as a signpost for the planet's existence. Our results motivate new studies to clarify how beta Pic b sculpts debris disk structures and whether a second planet is required to explain the warp/inclined disk. C1 [Currie, Thayne; Kuchner, Marc] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Thalmann, Christian] Univ Amsterdam, Anton Pannekoek Inst, NL-1012 WX Amsterdam, Netherlands. [Matsumura, Soko] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Madhusudhan, Nikku; Burrows, Adam] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. RP Currie, T (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Kuchner, Marc/E-2288-2012 FU NASA [NNX07AG80G]; HST [HST-GO-12181.04-A]; JPL/Spitzer [1417122, 1348668, 1371432]; Astronomy Center for Theory and Computation FX We thank David Ehrenreich, Karl Stapelfeldt, Scott Kenyon, Justin Crepp, and the anonymous referee for suggested improvements to the manuscript and Michael McElwain, Sally Heap, Sarah Maddison, and Aki Roberge for other useful discussions. T.C. is supported by a NASA Postdoctoral Fellowship. A.B. is supported in part under NASA ATP grant NNX07AG80G, HST grant HST-GO-12181.04-A, and JPL/Spitzer Agreements 1417122, 1348668, and 1371432. S.M. is supported by an Astronomy Center for Theory and Computation Prize Fellowship. NR 32 TC 33 Z9 33 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 1 PY 2011 VL 736 IS 2 AR L33 DI 10.1088/2041-8205/736/2/L33 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797OZ UT WOS:000293138500010 ER PT J AU Ostensen, RH Bloemen, S Vuckovic, M Aerts, C Oreiro, R Kinemuchi, K Still, M Koester, D AF Ostensen, R. H. Bloemen, S. Vuckovic, M. Aerts, C. Oreiro, R. Kinemuchi, K. Still, M. Koester, D. TI AT LAST-A V777 HER PULSATOR IN THE KEPLER FIELD SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE stars: individual (GALEX J192904.6+444708); stars: oscillations; stars: variables: general; white dwarfs ID WHITE-DWARF STARS; SUBDWARF-B STARS; WHOLE EARTH TELESCOPE; COMPACT PULSATORS; SURVEY PHASE; DB; ASTEROSEISMOLOGY; EVOLUTIONARY; AMPLITUDE; BINARIES AB We present the discovery of the first-and so far the only-pulsating white dwarf star located in the field of view of the Kepler spacecraft. During our ongoing effort to search for compact pulsator candidates that can benefit from the near-continuous coverage of Kepler, we recently identified a faint DB star from spectroscopy obtained with the William Herschel Telescope. After establishing its physical parameters to be T-eff = 24,950 K and log g = 7.91 dex, placing it right in the middle of the V777 Her instability strip, we immediately submitted the target for follow-up space observations. The Kepler light curve reveals a pulsation spectrum consisting of five modes that follow a sequence roughly equally spaced in period with a mean spacing of 37 s. The three strongest modes show a triplet structure with a mean splitting of 3.3 mu Hz. We conclude that this object is a V777 Her pulsator with a mass of similar to 0.56 M-circle dot, and very similar to the class prototype. C1 [Ostensen, R. H.; Bloemen, S.; Vuckovic, M.; Aerts, C.; Oreiro, R.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Vuckovic, M.] European So Observ, Santiago 19, Chile. [Aerts, C.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Oreiro, R.] Inst Astrofis Andalucia, Granada 18008, Spain. [Kinemuchi, K.; Still, M.] NASA, Ames Res Ctr, Bay Area Environm Res Inst, Moffett Field, CA 94035 USA. [Koester, D.] Univ Kiel, Inst Theoret Phys & Astrophys, D-24098 Kiel, Germany. RP Ostensen, RH (reprint author), Katholieke Univ Leuven, Inst Sterrenkunde, Celestijnenlaan 200D, B-3001 Louvain, Belgium. EM roy@ster.kuleuven.be OI Oreiro Rey, Raquel/0000-0002-4899-6199 FU European Research Council under the European Community [227224]; Research Council of K. U. Leuven [GOA/2008/04] FX The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 227224 (PROSPERITY), as well as from the Research Council of K. U. Leuven grant agreement GOA/2008/04. NR 34 TC 26 Z9 26 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 1 PY 2011 VL 736 IS 2 AR L39 DI 10.1088/2041-8205/736/2/L39 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797OZ UT WOS:000293138500016 ER PT J AU Vercellone, S Striani, E Vittorini, V Donnarumma, I Pacciani, L Pucella, G Tavani, M Raiteri, CM Villata, M Romano, P Fiocchi, M Bazzano, A Bianchin, V Ferrigno, C Maraschi, L Pian, E Turler, M Ubertini, P Bulgarelli, A Chen, AW Giuliani, A Longo, F Barbiellini, G Cardillo, M Cattaneo, PW Del Monte, E Evangelista, Y Feroci, M Ferrari, A Fuschino, F Gianotti, F Giusti, M Lazzarotto, F Pellizzoni, A Piano, G Pilia, M Rapisarda, M Rappoldi, A Sabatini, S Soffitta, P Trifoglio, M Trois, A Giommi, P Lucarelli, F Pittori, C Santolamazza, P Verrecchia, F Agudo, I Aller, HD Aller, MF Arkharov, AA Bach, U Berdyugin, A Borman, GA Chigladze, R Efimov, YS Efimova, NV Gomez, JL Gurwell, MA McHardy, IM Joshi, M Kimeridze, GN Krajci, T Kurtanidze, OM Kurtanidze, SO Larionov, VM Lindfors, E Molina, SN Morozova, DA Nazarov, SV Nikolashvili, MG Nilsson, K Pasanen, M Reinthal, R Ros, JA Sadun, AC Sakamoto, T Sallum, S Sergeev, SG Schwartz, RD Sigua, LA Sillanpaa, A Sokolovsky, KV Strelnitski, V Takalo, L Taylor, B Walker, G AF Vercellone, S. Striani, E. Vittorini, V. Donnarumma, I. Pacciani, L. Pucella, G. Tavani, M. Raiteri, C. M. Villata, M. Romano, P. Fiocchi, M. Bazzano, A. Bianchin, V. Ferrigno, C. Maraschi, L. Pian, E. Tuerler, M. Ubertini, P. Bulgarelli, A. Chen, A. W. Giuliani, A. Longo, F. Barbiellini, G. Cardillo, M. Cattaneo, P. W. Del Monte, E. Evangelista, Y. Feroci, M. Ferrari, A. Fuschino, F. Gianotti, F. Giusti, M. Lazzarotto, F. Pellizzoni, A. Piano, G. Pilia, M. Rapisarda, M. Rappoldi, A. Sabatini, S. Soffitta, P. Trifoglio, M. Trois, A. Giommi, P. Lucarelli, F. Pittori, C. Santolamazza, P. Verrecchia, F. Agudo, I. Aller, H. D. Aller, M. F. Arkharov, A. A. Bach, U. Berdyugin, A. Borman, G. A. Chigladze, R. Efimov, Yu S. Efimova, N. V. Gomez, J. L. Gurwell, M. A. McHardy, I. M. Joshi, M. Kimeridze, G. N. Krajci, T. Kurtanidze, O. M. Kurtanidze, S. O. Larionov, V. M. Lindfors, E. Molina, S. N. Morozova, D. A. Nazarov, S. V. Nikolashvili, M. G. Nilsson, K. Pasanen, M. Reinthal, R. Ros, J. A. Sadun, A. C. Sakamoto, T. Sallum, S. Sergeev, S. G. Schwartz, R. D. Sigua, L. A. Sillanpaa, A. Sokolovsky, K. V. Strelnitski, V. Takalo, L. Taylor, B. Walker, G. TI THE BRIGHTEST GAMMA-RAY FLARING BLAZAR IN THE SKY: AGILE AND MULTI-WAVELENGTH OBSERVATIONS OF 3C 454.3 DURING 2010 NOVEMBER SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: active; galaxies: jets; radiation mechanisms: non-thermal; quasars: general; quasars: individual (3C 454.3) ID CRAZY-DIAMOND; WEBT; OUTBURST; CAMPAIGN; 3C-454.3; TELESCOPE; SPECTRUM; RADIO; PHASE; POWER AB Since 2005, the blazar 3C 454.3 has shown remarkable flaring activity at all frequencies, and during the last four years it has exhibited more than one gamma-ray flare per year, becoming the most active gamma-ray blazar in the sky. We present for the first time the multi-wavelength AGILE, Swift, INTEGRAL, and GASP-WEBT data collected in order to explain the extraordinary gamma-ray flare of 3C 454.3 which occurred in 2010 November. On 2010 November 20 (MJD 55520), 3C 454.3 reached a peak flux (E > 100 MeV) of F(gamma)(p) = (6.8 +/- 1.0) x 10(-5) photons cm(-2) s(-1) on a timescale of about 12 hr, more than a factor of six higher than the flux of the brightest steady gamma-ray source, the Vela pulsar, and more than a factor of three brighter than its previous super-flare on 2009 December 2-3. The multi-wavelength data make possible a thorough study of the present event: the comparison with the previous outbursts indicates a close similarity to the one that occurred in 2009. By comparing the broadband emission before, during, and after the gamma-ray flare, we find that the radio, optical, and X-ray emission varies within a factor of 2-3, whereas the gamma-ray flux by a factor of 10. This remarkable behavior is modeled by an external Compton component driven by a substantial local enhancement of soft seed photons. C1 [Striani, E.; Tavani, M.; Cardillo, M.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Striani, E.; Tavani, M.] INFN Roma Tor Vergata, I-00133 Rome, Italy. [Vittorini, V.; Donnarumma, I.; Pacciani, L.; Tavani, M.; Fiocchi, M.; Bazzano, A.; Ubertini, P.; Cardillo, M.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Giusti, M.; Lazzarotto, F.; Piano, G.; Sabatini, S.; Soffitta, P.] INAF IASF Roma, I-00133 Rome, Italy. [Pucella, G.; Rapisarda, M.] ENEA Frascati, I-00044 Rome, Italy. [Tavani, M.; Ferrari, A.] CIFS Torino, I-10133 Turin, Italy. [Raiteri, C. M.; Villata, M.] Osserv Astron Torino, INAF, I-10025 Pino Torinese, Italy. [Bianchin, V.; Bulgarelli, A.; Fuschino, F.; Gianotti, F.; Trifoglio, M.] INAF IASF Bologna, I-40129 Bologna, Italy. [Ferrigno, C.; Tuerler, M.] Univ Geneva, ISDC, CH-1290 Versoix, Switzerland. [Maraschi, L.] Osserv Astron Brera, INAF, I-23807 Merate, Italy. [Pian, E.] Osserv Astron Trieste, INAF, I-34143 Trieste, Italy. [Pian, E.] Scuola Normale Super Pisa, I-56126 Pisa, Italy. [Pian, E.] ESO, D-85748 Garching, Germany. [Chen, A. W.; Giuliani, A.] INAF IASF Milano, I-20133 Milan, Italy. [Longo, F.; Barbiellini, G.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Longo, F.; Barbiellini, G.] Dipartimento Fis, I-34127 Trieste, Italy. [Cattaneo, P. W.; Rappoldi, A.] Ist Nazl Fis Nucl, I-27100 Pavia, Italy. [Ferrari, A.] Univ Turin, Dipartimento Fis Gen, I-10125 Turin, Italy. [Pellizzoni, A.; Pilia, M.; Trois, A.] Osservatorio Astron Cagliari, INAF, I-09012 Capoterra, Italy. [Pilia, M.] Univ Insubria, Dipartimento Fis, I-22100 Como, Italy. [Giommi, P.; Lucarelli, F.; Pittori, C.; Santolamazza, P.; Verrecchia, F.] ASI ASDC, I-00044 Rome, Italy. [Agudo, I.; Gomez, J. L.; Molina, S. N.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Agudo, I.; Joshi, M.; Taylor, B.] Boston Univ, Inst Astrophys Res, Boston, MA 02215 USA. [Aller, H. D.; Aller, M. F.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Arkharov, A. A.; Efimova, N. V.; Larionov, V. M.] Pulkovo Observ, St Petersburg, Russia. [Bach, U.; Sokolovsky, K. V.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Berdyugin, A.; Lindfors, E.; Pasanen, M.; Reinthal, R.; Sillanpaa, A.; Takalo, L.] Univ Turku, Tuorla Observ, FIN-21500 Piikkio, Finland. [Borman, G. A.; Efimov, Yu S.; Nazarov, S. V.; Sergeev, S. G.] Crimean Astrophys Observ, UA-98049 Nauchnyi, Crimea, Ukraine. [Chigladze, R.; Kimeridze, G. N.; Kurtanidze, O. M.; Kurtanidze, S. O.; Nikolashvili, M. G.; Sigua, L. A.] Abastumani Observ, GE-0301 Mt Kanobili, Abastumani, Rep of Georgia. [Efimova, N. V.; Larionov, V. M.; Morozova, D. A.] St Petersburg State Univ, Astron Inst, St Petersburg, Russia. [Gurwell, M. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [McHardy, I. M.] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England. [Krajci, T.] Astrokolkhoz Observ, Cloudcroft, NM 88317 USA. [Larionov, V. M.] Isaac Newton Inst Chile, St Petersburg Branch, St Petersburg, Russia. [Nilsson, K.] Univ Turku, Finnish Ctr Astron ESO FINCA, FIN-21500 Piikkio, Finland. [Ros, J. A.] Agrupacio Astron Sabadell, Sabadell, Spain. [Sadun, A. C.] Univ Colorado Denver, Dept Phys, Denver, CO 80217 USA. [Sakamoto, T.] NASA, GSFC, Ctr Res & Explorat Space Sci & Technol, Greenbelt, MD 20771 USA. [Sallum, S.; Strelnitski, V.; Walker, G.] Maria Mitchell Observ, Nantucket, MA 02554 USA. [Sallum, S.] MIT, Cambridge, MA 02139 USA. [Schwartz, R. D.] Galaxy View Observ, Sequim, WA 98382 USA. [Taylor, B.] Lowell Observ, Flagstaff, AZ 86001 USA. [Vercellone, S.; Romano, P.] INAF IASF Palermo, I-90146 Palermo, Italy. RP Vercellone, S (reprint author), INAF IASF Palermo, Via Ugo La Malfa 153, I-90146 Palermo, Italy. EM stefano.vercellone@iasf-palermo.inaf.it RI Morozova, Daria/H-1298-2013; Ferrigno, Carlo/H-4139-2012; Pittori, Carlotta/C-7710-2016; Lazzarotto, Francesco/J-4670-2012; Larionov, Valeri/H-1349-2013; Efimova, Natalia/I-2196-2013; Kurtanidze, Omar/J-6237-2014; Sokolovsky, Kirill/D-2246-2015; Trifoglio, Massimo/F-5302-2015; Molina, Sol Natalia/F-9968-2015; Agudo, Ivan/G-1701-2015; OI Morozova, Daria/0000-0002-9407-7804; Pittori, Carlotta/0000-0001-6661-9779; Villata, Massimo/0000-0003-1743-6946; Pellizzoni, Alberto Paolo/0000-0002-4590-0040; Larionov, Valeri/0000-0002-4640-4356; Efimova, Natalia/0000-0002-8071-4753; Sokolovsky, Kirill/0000-0001-5991-6863; Trifoglio, Massimo/0000-0002-2505-3630; Molina, Sol Natalia/0000-0002-4112-2157; Agudo, Ivan/0000-0002-3777-6182; Bulgarelli, Andrea/0000-0001-6347-0649; Pacciani, Luigi/0000-0001-6897-5996; Cardillo, Martina/0000-0001-8877-3996; giommi, paolo/0000-0002-2265-5003; trois, alessio/0000-0002-3180-6002; Feroci, Marco/0000-0002-7617-3421; Soffitta, Paolo/0000-0002-7781-4104; Fuschino, Fabio/0000-0003-2139-3299; Lucarelli, Fabrizio/0000-0002-6311-764X; Pian, Elena/0000-0001-8646-4858; Verrecchia, Francesco/0000-0003-3455-5082; Gianotti, Fulvio/0000-0003-4666-119X; Lazzarotto, Francesco/0000-0003-4871-4072; Donnarumma, Immacolata/0000-0002-4700-4549; Sabatini, Sabina/0000-0003-2076-5767; Vercellone, Stefano/0000-0003-1163-1396; Raiteri, Claudia Maria/0000-0003-1784-2784; Fiocchi, Mariateresa/0000-0001-5697-6019; Tavani, Marco/0000-0003-2893-1459 FU ASI-INAF [I/009/10/0]; RFBR [09-02-00092]; MICIIN [AYA2010-14844]; CEIC [P09-FQM-4784]; NSF [AST-0907893]; NASA [NNX08AV65G, NNX10AU15G]; NSF/REU [AST-0851892]; Nantucket Maria Mitchell Association; ASI [I/089/06/2]; [GNSF/ST08/4-404] FX We thank the referee for useful comments. We thank A. P. Marscher and S. G. Jorstad for Perkins and Liverpool Telescopes optical data. We acknowledge financial contribution from agreement ASI-INAF I/009/10/0, ASI contract I/089/06/2, RFBR Foundation grant 09-02-00092, MICIIN grant AYA2010-14844, CEIC grant P09-FQM-4784, NSF grant AST-0907893, NASA Fermi GI grants NNX08AV65G and NNX10AU15G, NSF/REU grant AST-0851892, the Nantucket Maria Mitchell Association, and grant GNSF/ST08/4-404. NR 36 TC 35 Z9 35 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 1 PY 2011 VL 736 IS 2 AR L38 DI 10.1088/2041-8205/736/2/L38 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797OZ UT WOS:000293138500015 ER PT J AU Daw, MS Lawson, JW Bauschlicher, CW AF Daw, Murray S. Lawson, John W. Bauschlicher, Charles W., Jr. TI Interatomic potentials for Zirconium Diboride and Hafnium Diboride SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Interatomic potential; Tersoff potential; Zirconium Diboride; Hafnium Diboride ID EMBEDDED-ATOM METHOD; MOLECULAR-DYNAMICS; TRANSITION-METALS; SILICON; SYSTEMS; HCP; PSEUDOPOTENTIALS; CONSTANTS; DEFECTS; ENERGY AB We report on the first interatomic potentials for Zirconium Diboride and Hafnium Diboride. The potentials are of the Tersoff form, and are obtained by fitting to a first-principles database of basic properties of elemental Zr, Hf, B, and the compounds ZrB(2) and HfB(2). Two variants of the Zr-B potentials have been obtained, and one for Hf-B. The potentials have been tested against a variety of properties of the compound, with the conclusion that they are stable and provide a reasonable representation of the desired properties of the two diborides. (C) 2011 Elsevier B.V. All rights reserved. C1 [Daw, Murray S.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Bauschlicher, Charles W., Jr.] NASA, Ames Res Ctr, Space Technol Div, Moffett Field, CA 94035 USA. RP Daw, MS (reprint author), Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. EM daw@clemson.edu FU NASA FX MSD was supported under a NASA prime contract to ELORET Corporation. NR 37 TC 5 Z9 5 U1 1 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 J9 COMP MATER SCI JI Comput. Mater. Sci. PD AUG-SEP PY 2011 VL 50 IS 10 BP 2828 EP 2835 DI 10.1016/j.commatsci.2011.04.038 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 802CM UT WOS:000293486900009 ER PT J AU Pavone, M Arsie, A Frazzoli, E Bullo, F AF Pavone, Marco Arsie, Alessandro Frazzoli, Emilio Bullo, Francesco TI Distributed Algorithms for Environment Partitioning in Mobile Robotic Networks SO IEEE TRANSACTIONS ON AUTOMATIC CONTROL LA English DT Article DE Autonomous systems; cooperative control; decentralized control; multirobot systems; sensor networks ID PLANE AB A widely applied strategy for workload sharing is to equalize the workload assigned to each resource. In mobile multiagent systems, this principle directly leads to equitable partitioning policies whereby: 1) the environment is equitably divided into subregions of equal measure; 2) one agent is assigned to each subregion; and 3) each agent is responsible for service requests originating within its own subregion. The current lack of distributed algorithms for the computation of equitable partitions limits the applicability of equitable partitioning policies to limited-size multiagent systems operating in known, static environments. In this paper, first we design provably correct and spatially distributed algorithms that allow a team of agents to compute a convex and equitable partition of a convex environment. Second, we discuss how these algorithms can be extended so that a team of agents can compute, in a spatially distributed fashion, convex and equitable partitions with additional features, e.g., equitable and median Voronoi diagrams. Finally, we discuss two application domains for our algorithms, namely dynamic vehicle routing for mobile robotic networks and wireless ad hoc networks. Through these examples, we show how one can couple the algorithms presented in this paper with equitable partitioning policies to make these amenable to distributed implementation. More in general, we illustrate a systematic approach to devise spatially distributed control policies for a large variety of multiagent coordination problems. Our approach is related to the classic Lloyd algorithm and exploits the unique features of power diagrams. C1 [Pavone, Marco] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Arsie, Alessandro] Univ Toledo, Dept Math, Toledo, OH 43606 USA. [Frazzoli, Emilio] MIT, Lab Informat & Decis Syst, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA. [Bullo, Francesco] Univ Calif Santa Barbara, Ctr Control Engn & Computat, Santa Barbara, CA 93106 USA. RP Pavone, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Marco.Pavone@jpl.nasa.gov; alessandro.arsie@utoledo.edu; frazzoli@mit.edu; bullo@engineering.ucsb.edu RI Bullo, Francesco/B-8146-2013 FU National Science Foundation [0705451, 0705453]; Office of Naval Research [N00014-07-1-0721] FX Manuscript received October 05, 2010; revised December 06, 2010; accepted January 28, 2011. Date of publication February 07, 2011; date of current version August 03, 2011. This work was supported in part by the National Science Foundation under Grants #0705451 and #0705453 and the Office of Naval Research under Grant N00014-07-1-0721. Recommended by Associate Editor M. Egerstedt. NR 22 TC 31 Z9 32 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9286 EI 1558-2523 J9 IEEE T AUTOMAT CONTR JI IEEE Trans. Autom. Control PD AUG PY 2011 VL 56 IS 8 BP 1834 EP 1848 DI 10.1109/TAC.2011.2112410 PG 15 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA 805SZ UT WOS:000293750600007 ER PT J AU Feng, Q Hsu, NC Yang, P Tsay, SC AF Feng, Qian Hsu, N. Christina Yang, Ping Tsay, Si-Chee TI Effect of Thin Cirrus Clouds on Dust Optical Depth Retrievals From MODIS Observations SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Dust aerosols; MODIS; optical depth; thin cirrus ID LIGHT-SCATTERING; TROPOSPHERIC AEROSOLS; RADIATIVE PROPERTIES; MINERAL AEROSOL; PHASE FUNCTIONS; ICE CRYSTALS; OCEANS; PARTICLES; CHANNELS; RATIO AB The effect of thin cirrus clouds in retrieving the dust optical depth from MODIS observations is investigated by using a simplified aerosol retrieval algorithm based on the principles of the Deep Blue aerosol property retrieval method. Specifically, the errors of the retrieved dust optical depth due to thin cirrus contamination are quantified through the comparison of two retrievals by assuming dust-only atmospheres and the counterparts with overlapping mineral dust and thin cirrus clouds. To account for the effect of the polarization state of radiation field on radiance simulation, a vector radiative transfer model is used to generate the lookup tables. In the forward radiative transfer simulations involved in generating the lookup tables, the Rayleigh scattering by atmospheric gaseous molecules and the reflection of the surface assumed to be Lambertian are fully taken into account. Additionally, the spheroid model is utilized to account for the nonsphericity of dust particles in computing their optical properties. For simplicity, the single-scattering albedo, scattering phase matrix, and optical depth are specified a priori for thin cirrus clouds assumed to consist of droxtal ice crystals. The present results indicate that the errors in the retrieved dust optical depths due to the contamination of thin cirrus clouds depend on the scattering angle, underlying surface reflectance, and dust optical depth. Under heavy dusty conditions, the absolute errors are comparable to the predescribed optical depths of thin cirrus clouds. C1 [Feng, Qian; Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77845 USA. [Hsu, N. Christina; Tsay, Si-Chee] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Feng, Q (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77845 USA. EM fengqian@ariel.met.tamu.edu; Christina.Hsu@nasa.gov; pyang@ariel.met.tamu.edu; si-chee.tsay-1@nasa.gov RI Yang, Ping/B-4590-2011; Hsu, N. Christina/H-3420-2013; Tsay, Si-Chee/J-1147-2014 FU National Aeronautics and Space Administration [NNX08AP29G]; National Science Foundation [ATM-0803779] FX The work of P. Yang was supported in part by the National Aeronautics and Space Administration under Grant NNX08AP29G and in part by the National Science Foundation under Grant ATM-0803779. NR 31 TC 1 Z9 1 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD AUG PY 2011 VL 49 IS 8 BP 2819 EP 2827 DI 10.1109/TGRS.2011.2118762 PG 9 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 805EM UT WOS:000293709200001 ER PT J AU Toure, AM Goita, K Royer, A Kim, EJ Durand, M Margulis, SA Lu, HZ AF Toure, Ally M. Goita, Kalifa Royer, Alain Kim, Edward J. Durand, Michael Margulis, Steven A. Lu, Huizhong TI A Case Study of Using a Multilayered Thermodynamical Snow Model for Radiance Assimilation SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Assimilation; melt-refreeze crusts; radiance; snow; snowpack model (SM) ID MICROWAVE EMISSION MODEL; ENSEMBLE KALMAN FILTER; CORRELATION LENGTH; LAYERED SNOWPACKS; WATER EQUIVALENT; GRANULAR MEDIA; SCATTERING; COVER; COLLECTION; RADIATION AB A microwave radiance assimilation (RA) scheme for the retrieval of snow physical state variables requires a snow-pack physical model (SM) coupled to a radiative transfer model. In order to assimilate microwave brightness temperatures (Tbs) at horizontal polarization (h-pol), an SM capable of resolving melt-refreeze crusts is required. To date, it has not been shown whether an RA scheme is tractable with the large number of state variables present in such an SM or whether melt-refreeze crust densities can be estimated. In this paper, an RA scheme is presented using the CROCUS SM which is capable of resolving melt-refreeze crusts. We assimilated both vertical (v) and horizontal (h) Tbs at 18.7 and 36.5 GHz. We found that assimilating Tb at both h-pol and vertical polarization (v-pol) into CROCUS dramatically improved snow depth estimates, with a bias of 1.4 cm compared to -7.3 cm reported by previous studies. Assimilation of both h-pol and v-pol led to more accurate results than assimilation of v-pol alone. The snow water equivalent (SWE) bias of the RA scheme was 0.4 cm, while the bias of the SWE estimated by an empirical retrieval algorithm was -2.9 cm. Characterization of melt-refreeze crusts via an RA scheme is demonstrated here for the first time; the RA scheme correctly identified the location of melt-refreeze crusts observed in situ. C1 [Toure, Ally M.; Kim, Edward J.] NASA, Goddard Space Flight Ctr, Natl Aeronaut & Space Adm, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Goita, Kalifa; Royer, Alain; Lu, Huizhong] Univ Sherbrooke, Sherbrooke, PQ J1K 2R1, Canada. [Durand, Michael] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. [Margulis, Steven A.] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA. RP Toure, AM (reprint author), NASA, Goddard Space Flight Ctr, Natl Aeronaut & Space Adm, Global Modeling & Assimilat Off, Code 610-1, Greenbelt, MD 20771 USA. EM ally.toure@nasa.gov; kalifa.goita@usherbrooke.ca; Alain.Royer@USherbrooke.ca; edward.j.kim@nasa.gov; durand.8@osu.edu; margulis@seas.ucla.edu; huizhong.lu@usherbrooke.ca RI Durand, Michael/D-2885-2013 FU National Science and Engineering Research Council of Canada; National Aeronautics and Space Administration; Environment Canada FX This work was supported in part by the National Science and Engineering Research Council of Canada, by Environment Canada (Cryosphere System in Canada Program), and by the National Aeronautics and Space Administration Terrestrial Hydrology Program. NR 34 TC 21 Z9 21 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD AUG PY 2011 VL 49 IS 8 BP 2828 EP 2837 DI 10.1109/TGRS.2011.2118761 PG 10 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 805EM UT WOS:000293709200002 ER PT J AU Wijesinghe, DB da Cunha, E Hopkins, AM Dunne, L Sharp, R Gunawardhana, M Brough, S Sadler, EM Driver, S Baldry, I Bamford, S Liske, J Loveday, J Norberg, P Peacock, J Popescu, CC Tuffs, R Andrae, E Auld, R Baes, M Bland-Hawthorn, J Buttiglione, S Cava, A Cameron, E Conselice, CJ Cooray, A Croom, S Dariush, A DeZotti, G Dye, S Eales, S Frenk, C Fritz, J Hill, D Hopwood, R Ibar, E Ivison, R Jarvis, M Jones, DH van Kampen, E Kelvin, L Kuijken, K Maddox, SJ Madore, B Michalowski, MJ Nichol, B Parkinson, H Pascale, E Pimbblet, KA Pohlen, M Prescott, M Rhodighiero, G Robotham, ASG Rigby, EE Seibert, M Sergeant, S Smith, DJB Temi, P Sutherland, W Taylor, E Thomas, D van der Werf, P AF Wijesinghe, D. B. da Cunha, E. Hopkins, A. M. Dunne, L. Sharp, R. Gunawardhana, M. Brough, S. Sadler, E. M. Driver, S. Baldry, I. Bamford, S. Liske, J. Loveday, J. Norberg, P. Peacock, J. Popescu, C. C. Tuffs, R. Andrae, E. Auld, R. Baes, M. Bland-Hawthorn, J. Buttiglione, S. Cava, A. Cameron, E. Conselice, C. J. Cooray, A. Croom, S. Dariush, A. DeZotti, G. Dye, S. Eales, S. Frenk, C. Fritz, J. Hill, D. Hopwood, R. Ibar, E. Ivison, R. Jarvis, M. Jones, D. H. van Kampen, E. Kelvin, L. Kuijken, K. Maddox, S. J. Madore, B. Michalowski, M. J. Nichol, B. Parkinson, H. Pascale, E. Pimbblet, K. A. Pohlen, M. Prescott, M. Rhodighiero, G. Robotham, A. S. G. Rigby, E. E. Seibert, M. Sergeant, S. Smith, D. J. B. Temi, P. Sutherland, W. Taylor, E. Thomas, D. van der Werf, P. TI GAMA/H-ATLAS: the ultraviolet spectral slope and obscuration in galaxies SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: formation; galaxies: general ID STAR-FORMATION RATE; INITIAL MASS FUNCTION; DIGITAL SKY SURVEY; UV-CONTINUUM SLOPE; FORMATION RATES; STARBURST GALAXIES; FORMATION HISTORY; DUST OBSCURATION; ASSEMBLY GAMA; ENERGY-DISTRIBUTIONS AB We use multiwavelength data from the Galaxy And Mass Assembly (GAMA) and Herschel-ATLAS (H-ATLAS) surveys to compare the relationship between various dust obscuration measures in galaxies. We explore the connections between the ultraviolet (UV) spectral slope, beta, the Balmer decrement and the far-infrared (FIR) to 150 nm far/ultraviolet (FUV) luminosity ratio. We explore trends with galaxy mass, star formation rate (SFR) and redshift in order to identify possible systematics in these various measures. We reiterate the finding of other authors that there is a large scatter between the Balmer decrement and the beta parameter, and that beta may be poorly constrained when derived from only two broad passbands in the UV. We also emphasize that FUV-derived SFRs, corrected for dust obscuration using beta, will be overestimated unless a modified relation between beta and the attenuation factor is used. Even in the optimum case, the resulting SFRs have a significant scatter, well over an order of magnitude. While there is a stronger correlation between the IR-to-FUV luminosity ratio and beta parameter than with the Balmer decrement, neither of these correlations are particularly tight, and dust corrections based on beta for high-redshift galaxy SFRs must be treated with caution. We conclude with a description of the extent to which the different obscuration measures are consistent with each other as well as the effects of including other galactic properties on these correlations. C1 [Wijesinghe, D. B.; Gunawardhana, M.; Sadler, E. M.; Bland-Hawthorn, J.; Croom, S.; Taylor, E.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [da Cunha, E.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Hopkins, A. M.; Brough, S.; Jones, D. H.] Australian Astron Observ, Epping, NSW 1710, Australia. [Dunne, L.; Conselice, C. J.; Maddox, S. J.; Rigby, E. E.; Smith, D. J. B.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Sharp, R.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Driver, S.; Hill, D.; Kelvin, L.; Robotham, A. S. G.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Baldry, I.; Prescott, M.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Bamford, S.] Univ Nottingham, Ctr Astron & Particle Theory, Nottingham NG7 2RD, England. [Liske, J.; van Kampen, E.] European So Observ, D-85748 Garching, Germany. [Loveday, J.] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Norberg, P.; Peacock, J.; Michalowski, M. J.; Parkinson, H.] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland. [Popescu, C. C.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Tuffs, R.; Andrae, E.] Max Planck Inst Nucl Phys MPIK, D-69117 Heidelberg, Germany. [Auld, R.; Dariush, A.; Dye, S.; Eales, S.; Pascale, E.; Pohlen, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Baes, M.] Univ Ghent, Sterrenkundig Observatorium, B-9000 Ghent, Belgium. [Buttiglione, S.; DeZotti, G.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Cava, A.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Cameron, E.] ETH, Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland. [Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Dariush, A.] Inst Res Fundamental Sci IPM, Sch Astron, Tehran, Iran. [Frenk, C.] Univ Durham, Inst Computat Cosmol, Dept Phys, Durham DH1 3LE, England. [Fritz, J.] Univ Ghent, Sterrenkundig Observ, B-9000 Ghent, Belgium. [Hopwood, R.; Sergeant, S.] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Ibar, E.; Ivison, R.; Thomas, D.] Royal Observ Edinburgh, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Jarvis, M.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys, Hatfield AL10 9AB, Herts, England. [Kuijken, K.; van der Werf, P.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Madore, B.; Seibert, M.] Carnegie Inst Sci, Pasadena, CA 91101 USA. [Nichol, B.] Univ Portsmouth, Inst Cosmol & Gravitat ICG, Portsmouth PO1 3FX, Hants, England. [Pimbblet, K. A.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. [Rhodighiero, G.] Univ Padua, Vicolo Osservatorio, I-35122 Padua, Italy. [Temi, P.] NASA, Astrophys Branch, Ames Res Ctr, Moffett Field, CA 94035 USA. [Sutherland, W.] Queen Mary Univ London, Astron Unit, London E1 4NS, England. RP Wijesinghe, DB (reprint author), Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. EM d.wijesinghe@physics.usyd.edu.au RI Conselice, Christopher/B-4348-2013; Baes, Maarten/I-6985-2013; Robotham, Aaron/H-5733-2014; Driver, Simon/H-9115-2014; Ivison, R./G-4450-2011; Bamford, Steven/E-8702-2010; Cava, Antonio/C-5274-2017; OI Dye, Simon/0000-0002-1318-8343; Smith, Daniel/0000-0001-9708-253X; Liske, Jochen/0000-0001-7542-2927; da Cunha, Elisabete/0000-0001-9759-4797; Baldry, Ivan/0000-0003-0719-9385; Baes, Maarten/0000-0002-3930-2757; Robotham, Aaron/0000-0003-0429-3579; Driver, Simon/0000-0001-9491-7327; Ivison, R./0000-0001-5118-1313; Bamford, Steven/0000-0001-7821-7195; Cava, Antonio/0000-0002-4821-1275; Maddox, Stephen/0000-0001-5549-195X; Conselice, Christopher/0000-0003-1949-7638; Sadler, Elaine/0000-0002-1136-2555 FU School of Physics; STFC (UK); ARC (Australia); AAO FX DBW acknowledges the support provided by the Denison Scholarship from the School of Physics. GAMA is a joint European-Australasian project based around a spectroscopic campaign using the Anglo-Australian Telescope. The GAMA input catalogue is based on data taken from the SDSS and the UKIDSS. Complementary imaging of the GAMA regions is being obtained by a number of independent survey programs including GALEX MIS, VST KIDS, VISTA VIKING, WISE, H-ATLAS, GMRT and ASKAP providing UV to radio coverage. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO and the participating institutions. The GAMA web site is http://www.gama-survey.org/. The H-ATLAS is a project with Herschel, which is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. The H-ATLAS web site is http://www.h-atlas.org/ NR 67 TC 24 Z9 25 U1 1 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 2 BP 1002 EP 1012 DI 10.1111/j.1365-2966.2011.18615.x PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 805VE UT WOS:000293756300002 ER PT J AU Redaelli, M Kepler, SO Costa, JES Winget, DE Handler, G Castanheira, BG Kanaan, A Fraga, L Henrique, P Giovannini, O Provencal, JL Shipman, HL Dalessio, J Thompson, SE Mullally, F Brewer, MM Childers, D Oksala, ME Rosen, R Wood, MA Reed, MD Walter, B Strickland, W Chandler, D Watson, TK Nather, RE Montgomery, MH Bischoff-Kim, A Hansen, CJ Nitta, A Kleinman, SJ Claver, CF Brown, TM Sullivan, DJ Kim, SL Chen, WP Yang, M Shih, CY Zhang, X Jiang, X Fu, JN Seetha, S Ashoka, BN Marar, TMK Baliyan, KS Vats, HO Chernyshev, AV Ibbetson, P Leibowitz, E Hemar, S Sergeev, AV Andreev, MV Janulis, R Meistas, EG Moskalik, P Pajdosz, G Baran, A Winiarski, M Zola, S Ogloza, W Siwak, M Bognar, Z Solheim, JE Sefako, R Buckley, D O'Donoghue, D Nagel, T Silvotti, R Bruni, I Fremy, JR Vauclair, G Chevreton, M Dolez, N Pfeiffer, B Barstow, MA Creevey, OL Kawaler, SD Clemens, JC AF Redaelli, M. Kepler, S. O. Costa, J. E. S. Winget, D. E. Handler, G. Castanheira, B. G. Kanaan, A. Fraga, L. Henrique, P. Giovannini, O. Provencal, J. L. Shipman, H. L. Dalessio, J. Thompson, S. E. Mullally, F. Brewer, M. M. Childers, D. Oksala, M. E. Rosen, R. Wood, M. A. Reed, M. D. Walter, B. Strickland, W. Chandler, D. Watson, T. K. Nather, R. E. Montgomery, M. H. Bischoff-Kim, A. Hansen, C. J. Nitta, A. Kleinman, S. J. Claver, C. F. Brown, T. M. Sullivan, D. J. Kim, S. -L. Chen, W. -P. Yang, M. Shih, C. -Y. Zhang, X. Jiang, X. Fu, J. N. Seetha, S. Ashoka, B. N. Marar, T. M. K. Baliyan, K. S. Vats, H. O. Chernyshev, A. V. Ibbetson, P. Leibowitz, E. Hemar, S. Sergeev, A. V. Andreev, M. V. Janulis, R. Meistas, E. G. Moskalik, P. Pajdosz, G. Baran, A. Winiarski, M. Zola, S. Ogloza, W. Siwak, M. Bognar, Zs. Solheim, J. -E. Sefako, R. Buckley, D. O'Donoghue, D. Nagel, T. Silvotti, R. Bruni, I. Fremy, J. R. Vauclair, G. Chevreton, M. Dolez, N. Pfeiffer, B. Barstow, M. A. Creevey, O. L. Kawaler, S. D. Clemens, J. C. TI The pulsations of PG 1351+489 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: evolution; stars: individual: PG 1351+489; stars: oscillations; white dwarfs ID WHITE-DWARF STARS; WHOLE EARTH TELESCOPE; TIME-SERIES ANALYSIS; PERIOD CHANGE; EVOLUTION; PG-1351+489; GD-358; GD358 AB PG 1351+489 is one of the 20 DBVs - pulsating helium-atmosphere white dwarf stars - known and has the simplest power spectrum for this class of star, making it a good candidate to study cooling rates. We report accurate period determinations for the main peak at 489.334 48 s and two other normal modes using data from the Whole Earth Telescope (WET) observations of 1995 and 2009. In 2009, we detected a new pulsation mode and the main pulsation mode exhibited substantial change in its amplitude compared to all previous observations. We were able to estimate the star's rotation period, of 8.9 h, and discuss a possible determination of the rate of period change of (2.0 +/- 0.9) x 10(-13) s s(-1), the first such estimate for a DBV. C1 [Redaelli, M.; Kepler, S. O.; Costa, J. E. S.; Castanheira, B. G.] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. [Winget, D. E.; Castanheira, B. G.; Nather, R. E.; Montgomery, M. H.; Baran, A.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Winget, D. E.; Castanheira, B. G.; Nather, R. E.; Montgomery, M. H.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Handler, G.; Castanheira, B. G.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Kanaan, A.; Henrique, P.] Univ Fed Santa Catarina, Dept Fis, BR-88040900 Florianopolis, SC, Brazil. [Fraga, L.] So Observ Astrophys Res, La Serena, Chile. [Giovannini, O.] Univ Caxias Sul, Dept Quim & Fis, BR-95070560 Caxias Do Sul, RS, Brazil. [Provencal, J. L.; Shipman, H. L.; Dalessio, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Provencal, J. L.; Thompson, S. E.] Mt Cuba Observ, Delaware Asteroseism Res Ctr, Greenville, DE 19807 USA. [Thompson, S. E.; Mullally, F.] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. [Brewer, M. M.] William Jewell Coll, Liberty, MO 64048 USA. [Childers, D.] Delaware Cty Community Coll, Dept Math & Sci, Media, DE USA. [Oksala, M. E.] Univ Delaware, Bartol Res Inst, Newark, DE USA. [Rosen, R.] Natl Radio Astron Observ, Green Bank, WV 24944 USA. [Wood, M. A.] Florida Inst Technol, Dept Phys & Space Sci, Melbourne, FL 32901 USA. [Reed, M. D.] Missouri State Univ, Springfield, MO 65897 USA. [Reed, M. D.] Baker Observ, Springfield, MO 65897 USA. [Walter, B.; Strickland, W.; Chandler, D.] Meyer Observ, Waco, TX USA. [Walter, B.; Strickland, W.; Chandler, D.] Cent Texas Astron Soc, Waco, TX USA. [Watson, T. K.] Southwestern Univ, Georgetown, TX USA. [Bischoff-Kim, A.] Georgia Coll & State Univ, Dept Chem Phys & Astron, Milledgeville, GA USA. [Hansen, C. J.] Univ Colorado, Joint Inst Lab Astrophys, Boulder, CO 80309 USA. [Nitta, A.; Kleinman, S. J.] Gemini Observ, Hilo, HI 96720 USA. [Claver, C. F.] Kitt Peak Natl Observ, Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Brown, T. M.] Las Cumbres Observ Global Telescope Network Inc, Santa Barbara, CA 93117 USA. [Sullivan, D. J.] Victoria Univ Wellington, Wellington, New Zealand. [Kim, S. -L.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Chen, W. -P.; Yang, M.; Shih, C. -Y.] Natl Cent Univ, Lulin Observ, Taipei, Taiwan. [Zhang, X.; Jiang, X.] Natl Astron Observ, Beijing 100012, Peoples R China. [Fu, J. N.] Beijing Normal Univ, Dept Astron, Beijing, Peoples R China. [Seetha, S.; Ashoka, B. N.; Marar, T. M. K.] Indian Space Res Org, Bangalore 560017, Karnataka, India. [Baliyan, K. S.; Vats, H. O.] Phys Res Lab, Ahmadabad 380009, Gujarat, India. [Chernyshev, A. V.] Astron Inst, Tashkent, Uzbekistan. [Ibbetson, P.; Leibowitz, E.; Hemar, S.] Tel Aviv Univ, Wise Observ, IL-69978 Tel Aviv, Israel. [Leibowitz, E.; Hemar, S.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Sergeev, A. V.; Andreev, M. V.] Natl Acad Sci, Main Astron Observ, UA-02225265 Kiev, Ukraine. [Janulis, R.; Meistas, E. G.] Vilnius Univ, Inst Theoret Phys & Astron, Vilnius, Lithuania. [Moskalik, P.; Pajdosz, G.] Copernicus Astron Ctr, Warsaw, Poland. [Baran, A.; Winiarski, M.; Zola, S.; Ogloza, W.] Cracow Pedag Univ, Mt Suhora Observ, Krakow, Poland. [Zola, S.; Siwak, M.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. [Bognar, Zs.] Konkoly Observ Budapest, H-1525 Budapest, Hungary. [Solheim, J. -E.] Univ Oslo, Inst Theoret Astrophys, NO-0315 Oslo, Norway. [Sefako, R.; Buckley, D.; O'Donoghue, D.] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Nagel, T.] Univ Tubingen, Inst Astron & Astrophys, D-72076 Tubingen, Germany. [Silvotti, R.; Bruni, I.] INAF Osservatorio Astron Torino, I-10025 Pino Torinese, Italy. [Fremy, J. R.; Chevreton, M.] Observ Paris, LESIA, Meudon, France. [Vauclair, G.; Dolez, N.; Pfeiffer, B.] Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, UMR5572, Toulouse, France. [Barstow, M. A.] Univ Leicester, Dept Astron, Leicester LE1 7RH, Leics, England. [Creevey, O. L.] Inst Astrofis Canarias, Tenerife, Spain. [Kawaler, S. D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50211 USA. [Clemens, J. C.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. RP Redaelli, M (reprint author), Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. EM maukeyboard@gmail.com RI Kepler, S. O. /H-5901-2012; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013; Fraga, Luciano/K-9075-2013; Oksala, Mary/G-9902-2014; OI Kepler, S. O. /0000-0002-7470-5703; Silvotti, Roberto/0000-0002-1295-8174; Bruni, Ivan/0000-0002-1560-4590; /0000-0003-0180-8231; Kawaler, Steven/0000-0002-6536-6367 NR 34 TC 8 Z9 8 U1 0 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG PY 2011 VL 415 IS 2 BP 1220 EP 1227 DI 10.1111/j.1365-2966.2011.18743.x PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 805VE UT WOS:000293756300018 ER PT J AU Way, M Nussbaumer, H AF Way, Michael Nussbaumer, Harry TI Lemaitre's Hubble relationship SO PHYSICS TODAY LA English DT Letter C1 [Way, Michael] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Nussbaumer, Harry] ETH, Zurich, Switzerland. RP Way, M (reprint author), NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM michael.j.way@nasa.gov; nussbaumer@astro.phys.ethz.ch RI Way, Michael/D-5254-2012 NR 5 TC 2 Z9 2 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD AUG PY 2011 VL 64 IS 8 BP 8 EP 8 PG 1 WC Physics, Multidisciplinary SC Physics GA 805ZB UT WOS:000293768500001 ER PT J AU Tsai, M Polk, JD AF Tsai, Mitchell Polk, James D. TI The Hidden Cost of Variability SO ANESTHESIA AND ANALGESIA LA English DT Letter ID NURSES C1 [Tsai, Mitchell] Univ Vermont, Coll Med, Fletcher Allen Hlth Care, Burlington, VT 05405 USA. [Polk, James D.] NASA, Lyndon B Johnson Space Ctr, Space Med Div, Houston, TX 77058 USA. RP Tsai, M (reprint author), Univ Vermont, Coll Med, Fletcher Allen Hlth Care, Burlington, VT 05405 USA. EM mitchell.tsai@vtmednet.org NR 9 TC 3 Z9 3 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0003-2999 J9 ANESTH ANALG JI Anesth. Analg. PD AUG PY 2011 VL 113 IS 2 BP 431 EP 431 DI 10.1213/ANE.0b013e318222030c PG 1 WC Anesthesiology SC Anesthesiology GA 796PQ UT WOS:000293064500045 PM 21788332 ER PT J AU Green, C Johnston, JC Ruthruff, E AF Green, Collin Johnston, James C. Ruthruff, Eric TI Attentional Limits in Memory Retrieval-Revisited SO JOURNAL OF EXPERIMENTAL PSYCHOLOGY-HUMAN PERCEPTION AND PERFORMANCE LA English DT Article DE memory; attention; dual task; psychological refractory period; cognitive bottleneck ID PSYCHOLOGICAL REFRACTORY-PERIOD; DUAL-TASK INTERFERENCE; VISUAL WORD RECOGNITION; LONG-TERM-MEMORY; GREATER AUTOMATICITY; CENTRAL BOTTLENECK; DIVIDED ATTENTION; PARALLEL MEMORY; PERFORMANCE; MODEL AB Carrier and Pashler (1995) concluded-based on locus-of-slack dual-task methodology-that memory retrieval was subject to a central bottleneck. However, this conclusion conflicts with evidence from other lines of research suggesting that memory retrieval proceeds autonomously, in parallel with many other mental processes. In the present experiments we explored the possibility that Carrier and Pashler's conclusions were distorted by use of an experimental method unfavorable to parallel memory retrieval. New locus-of-slack experiments were performed that encouraged parallel memory retrieval strategies with instructions and feedback, along with the use of "preferred" stimulus-response modality mappings. Results from two psychological refractory period experiments showed that the effect of Task 2 recognition difficulty was consistently absorbed into cognitive slack, with both word and picture recognition. We conclude that the memory retrieval stage of recognition tasks can proceed in parallel with central operations of another task, at least under favorable conditions. Our new findings bring results from dual-task locus-of-slack methodology into agreement with other evidence that memory retrieval is not subject to severe, generic central resource limitations. C1 [Green, Collin; Johnston, James C.] NASA, Ames Res Ctr, Human Syst Integrat Div, Moffett Field, CA 94035 USA. [Ruthruff, Eric] Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA. RP Green, C (reprint author), NASA, Ames Res Ctr, Human Syst Integrat Div, Mailstop 262-4,Bldg 262,Room 196B,POB 1, Moffett Field, CA 94035 USA. EM collin.b.green@nasa.gov FU National Research Council FX Part of this research was conducted while Collin Green held a National Research Council Research Associate Award at NASA Ames Research Center. Preliminary data from Experiment 1 were presented at the 46th annual meeting of the Psychonomic Society in Toronto, Canada, November 2005. Data from Experiment 2 were presented at the 29th annual meeting of the Cognitive Science Society in Nashville, TN, August 2007. We thank Gordon Logan, Derek Besner, Joel Lachter, Roger Remington, and Shu-Chieh Wu for their insights and comments regarding this work. We thank Jamie Carlson, Naomi Philips, Scott Heckenlively, and Natalya Kurilovich, Shane Sestito, and Eric Landrum for their work in the laboratory and Xander Mathews for his assistance with programming. Thanks to Mark Carrier for providing materials and source code from Carrier and Pashler (1995). NR 66 TC 4 Z9 4 U1 5 U2 10 PU AMER PSYCHOLOGICAL ASSOC PI WASHINGTON PA 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA SN 0096-1523 J9 J EXP PSYCHOL HUMAN JI J. Exp. Psychol.-Hum. Percept. Perform. PD AUG PY 2011 VL 37 IS 4 BP 1083 EP 1098 DI 10.1037/a0023095 PG 16 WC Psychology; Psychology, Experimental SC Psychology GA 800SI UT WOS:000293386700008 PM 21517217 ER PT J AU Stothers, R AF Stothers, Richard TI The Ancient Colour of Saturn SO OBSERVATORY LA English DT Letter C1 NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Stothers, R (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM rstothers@giss.nasa.gov NR 6 TC 3 Z9 3 U1 0 U2 0 PU OBSERVATORY PI OXFORD PA RUTHERFORD APPLETON LAB, CHILTON DIDCOT,, OXFORD OX11 OQX, ENGLAND SN 0029-7704 J9 OBSERVATORY JI Observatory PD AUG PY 2011 VL 131 IS 1223 BP 254 EP 255 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 800MM UT WOS:000293365000004 ER PT J AU Hackney, KJ Cook, SB Ploutz-Snyder, LL AF Hackney, Kyle J. Cook, Summer B. Ploutz-Snyder, Lori L. TI Nutrition and Resistance Exercise During Reconditioning From Unloading SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Article DE disuse; reloading; strength training; countermeasures; hypertrophy ID HUMAN SKELETAL-MUSCLE; ADAPTATIONS AB HACKNEY KJ, COOK SB, PLOUTZ-SNYDER LL. Nutrition and resistance exercise during reconditioning from unloading. Aviat Space Environ Med 2011; 82:805-9. Introduction: The recovery of muscle size and function following musculoskeletal unloading has received little attention in the scientific literature. Nutritional factors such as total energy, protein intake, and the pre- and/or post-exercise consumption of amino acid-carbohydrate (AACHO) have been shown to be important for enhancing training adaptations in recreational exercisers. Purpose: A preliminary study was conducted to explore the interaction between nutrition and resistance exercise during reconditioning from unloading. Methods: Muscle CSA, strength, and endurance were measured during a control period following 30 d of unilateral lower limb suspension (Post-ULLS) and after 18 d of reconditioning (ReCon). Six participants consumed either AACHO (979 kJ, 36 g carbohydrate, 22.5 g protein) or placebo (PLAC) prior to resistance exercise (3 d . wk(-1)) during reconditioning. Total daily energy and macronutrient intake were evaluated from dietary journals. Results: From Post-ULLS to ReCon, muscle endurance increased 1.1 +/- 0.6 min in AACHO and decreased 1.3 +/- 0.7 min in PLAC. Muscle CSA (6 +/- 2 vs. 5 +/- 3 cm(2)) and strength (105 +/- 53 vs. 81 +/- 37 N) increased similarly in AACHO and PLAC, respectively. When groups were pooled there was a significant correlation between daily protein intake and the recovery of muscle CSA (r = 0.81). Discussion: Although our findings are preliminary, timing AACHO intake during reconditioning was beneficial for muscular endurance, while overall protein intake was associated with increased muscle size. A systematic evaluation into the synergistic relationship between nutrition and exercise during muscular recovery from prolonged unloading is warranted. C1 [Hackney, Kyle J.] Syracuse Univ, Dept Exercise Sci, Syracuse, NY USA. NASA, Lyndon B Johnson Space Ctr, Exercise Physiol & Countermeasures Project, Houston, TX 77058 USA. RP Hackney, KJ (reprint author), 820 Comstock Ave,Womens Bldg,Rm 201, Syracuse, NY 13244 USA. EM kjhackne@syr.edu FU NASA [NNX08AW71H, NNX06AG26H, NNX079AP79H, NNX079AP79H2]; Joan Burstyn Endowed Foundation, College of Education, Syracuse University FX The authors would like to thank the research participants for their great committed to this project. This investigation was supported in part by NASA Graduate Student Research Program Training Grants (NNX08AW71H, NNX06AG26H, NNX079AP79H, NNX079AP79H2) and the Joan Burstyn Endowed Foundation Research Award, College of Education, Syracuse University. NR 14 TC 0 Z9 0 U1 0 U2 9 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD AUG PY 2011 VL 82 IS 8 BP 805 EP 809 DI 10.3357/ASEM.2892.2011 PG 5 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA 797TK UT WOS:000293152800007 PM 21853859 ER PT J AU Druyan, LM AF Druyan, Leonard M. TI Studies of 21st-century precipitation trends over West Africa SO INTERNATIONAL JOURNAL OF CLIMATOLOGY LA English DT Review DE West African monsoon; Sahel droughts; climate change ID CLIMATE-CHANGE; 20TH-CENTURY; NORTHERN; SIMULATIONS; MONSOON; DROUGHT; MODELS; SYSTEM AB West Africa includes a semi-arid zone between the Sahara Desert and the humid Gulf of Guinea coast, approximately between 10 degrees N and 20 degrees N, which is irrigated by summer monsoon rains. This article refers to the region as the Sahel. Rain-fed agriculture is the primary sustenance for Sahel populations, and severe droughts (in the 1970s and 1980s), therefore, have devastating negative societal impacts. The future frequency of Sahel droughts and the evolution of its hydrological balance are therefore of great interest. The article reviews 10 recent research studies that attempt to discover how climate changes will affect the hydrology of the Sahel throughout the 21st century. All 10 studies rely on atmosphere-ocean global climate model (AOGCM) simulations based on a range of greenhouse gas emissions scenarios. Many of the simulations are contained in the Intergovernmental Panel on Climate Change archives for Assessment Reports #3 and #4. Two of the studies use AOGCM data to drive regional climate models. Seven studies make projections for the first half of the 21st century and eight studies make projections for the second half. Some studies make projections of wetter conditions and some predict more frequent droughts, and each describes the atmospheric processes associated with its prediction. Only one study projects more frequent droughts before 2050, and that is only for continent-wide degradation in vegetation cover. The challenge to correctly simulate Sahel rainfall decadal trends is particularly daunting because multiple physical mechanisms compete to drive the trend upwards or downwards. A variety of model deficiencies, regarding the simulation of one or more of these physical processes, taints models' climate change projections. Consequently, no consensus emerges regarding the impact of anticipated greenhouse gas forcing on the hydrology of the Sahel in the second half of the 21st century. Copyright (C) 2010 Royal Meteorological Society C1 [Druyan, Leonard M.] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA. [Druyan, Leonard M.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Druyan, LM (reprint author), Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA. EM ldruyan@giss.nasa.gov FU National Science Foundation [ATM-0652518]; National Aeronautics and Space Administration (NAMMA) [NNX07A193G]; National Aeronautics and Space Administration FX This review was supported by National Science Foundation grant ATM-0652518, National Aeronautics and Space Administration (NAMMA) grant NNX07A193G and by the National Aeronautics and Space Administration Climate and Earth Observing System Program. The author acknowledges the significant contributions of two anonymous reviewers who made constructive suggestions that improved the review. NR 22 TC 47 Z9 47 U1 9 U2 45 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0899-8418 J9 INT J CLIMATOL JI Int. J. Climatol. PD AUG PY 2011 VL 31 IS 10 BP 1415 EP 1424 DI 10.1002/joc.2180 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 798YH UT WOS:000293247600001 ER PT J AU Kawamoto, H Uchiyama, M Cooper, BL McKay, DS AF Kawamoto, H. Uchiyama, M. Cooper, B. L. McKay, D. S. TI Mitigation of lunar dust on solar panels and optical elements utilizing electrostatic traveling-wave SO JOURNAL OF ELECTROSTATICS LA English DT Article DE Aerospace Engineering; Lunar dust; Traveling wave; Lunar exploration ID CORONA DISCHARGE SYSTEM; IONIC WIND; TRANSPORT; PARTICLES AB A system for removing lunar dust from the surface of solar panels and optical elements is of great importance for lunar exploration. We have developed a method of removing lunar dust using electrostatic traveling-waves generated by four-phase rectangular voltage applied to a transparent conveyer consisting of parallel ITO (indium tin oxide) electrodes printed on a glass substrate. On the basis of basic investigations, we have demonstrated the removal of actual lunar dust. A numerical investigation predicts that the performance will improve in the low-gravity environment on the Moon. (C) 2011 Elsevier B.V. All rights reserved. C1 [Kawamoto, H.; Uchiyama, M.] Waseda Univ, Dept Appl Mech & Aerosp Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Cooper, B. L.] Oceaneering Space Syst, Houston, TX 77058 USA. [McKay, D. S.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Kawamoto, H (reprint author), Waseda Univ, Dept Appl Mech & Aerosp Engn, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan. EM kawa@waseda.jp FU Japan Society for the Promotion of Science FX The authors would like to express their gratitude to Suhei Yamazaki and Keita Shirai (Waseda University) for their support in carrying out the experiments. The lunar soil simulant FJS-1 was provided by Shimiz Corporation. A part of this study was supported by a Grant-in-Aid for Scientific Research (B) from the Japan Society for the Promotion of Science. NR 27 TC 13 Z9 14 U1 2 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3886 J9 J ELECTROSTAT JI J. Electrost. PD AUG PY 2011 VL 69 IS 4 BP 370 EP 379 DI 10.1016/j.elstat.2011.04.016 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA 799VD UT WOS:000293313300016 ER PT J AU Wasylkiwskyj, W Shiri, S AF Wasylkiwskyj, Wasyl Shiri, Shahram TI Limits on achievable intensity reduction with an optical occulter SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION LA English DT Article ID EARTH-LIKE PLANETS AB Deep shadowing of a normally incident plane wave by an opaque circular disk is partially negated by the formation of a region of strong intensity surrounding the axis passing normally through the disk center. This local intensity enhancement, historically referred to as the Poisson Spot (also known as the Spot of Arago), has been the principal source of difficulties in applications where a significant reduction of the incident intensity is essential. In particular, the NASA Terrestrial Planet Finder's (TPF) mission requires suppression of direct starlight by at least 10 orders of magnitude over the entire visible spectral range. One technique that has been proposed for blocking the direct starlight is to use a rotationally symmetric disk with petallike segments along its boundary. We find that, even though such configurations could, indeed, theoretically provide the desired intensity reduction, they would require unreasonably small radii of curvature at the petals' tips (in the range of micrometers). When the radii of curvature are increased to 3 mm, the intensity reduction drops to a modest 5 to 6 orders of magnitude. Given that for the NASA's TPF mission the proposed occulter radius would be on the order of 25 m, even the 3 mm radius of curvature would be too small for any practical implementation. Further increases of the radius of curvature result in progressively poorer intensity suppression. As an alternative solution we propose an apodized circular disk. We show that with an optimized apodization function, intensity reductions of at least 10 orders of magnitude can be achieved over the entire visible spectral range. Numerical results are presented for parameters appropriate to the NASA TPF mission. (C) 2011 Optical Society of America C1 [Wasylkiwskyj, Wasyl] George Washington Univ, Dept Elect & Comp Engn, Washington, DC 20037 USA. [Shiri, Shahram] NASA, Opt Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Wasylkiwskyj, W (reprint author), George Washington Univ, Dept Elect & Comp Engn, Washington, DC 20037 USA. EM wasylkiw@gwu.edu NR 9 TC 7 Z9 7 U1 0 U2 0 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1084-7529 J9 J OPT SOC AM A JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis. PD AUG PY 2011 VL 28 IS 8 BP 1668 EP 1676 PG 9 WC Optics SC Optics GA 800AJ UT WOS:000293328600016 PM 21811329 ER PT J AU Petro, N AF Petro, Noah TI PLANETARY SCIENCE More surprises from the Moon SO NATURE GEOSCIENCE LA English DT News Item ID LUNAR; VOLCANISM C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Petro, N (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM noah.e.petro@nasa.gov RI Petro, Noah/F-5340-2013 NR 6 TC 0 Z9 0 U1 1 U2 1 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD AUG PY 2011 VL 4 IS 8 BP 499 EP 501 DI 10.1038/ngeo1225 PG 3 WC Geosciences, Multidisciplinary SC Geology GA 799HJ UT WOS:000293277100005 ER PT J AU Jolliff, BL Wiseman, SA Lawrence, SJ Tran, TN Robinson, MS Sato, H Hawke, BR Scholten, F Oberst, J Hiesinger, H van der Bogert, CH Greenhagen, BT Glotch, TD Paige, DA AF Jolliff, Bradley L. Wiseman, Sandra A. Lawrence, Samuel J. Tran, Thanh N. Robinson, Mark S. Sato, Hiroyuki Hawke, B. Ray Scholten, Frank Oberst, Juergen Hiesinger, Harald van der Bogert, Carolyn H. Greenhagen, Benjamin T. Glotch, Timothy D. Paige, David A. TI Non-mare silicic volcanism on the lunar farside at Compton-Belkovich SO NATURE GEOSCIENCE LA English DT Article ID QUARTZ MONZODIORITE; MOON; CRYSTALLIZATION; GRUITHUISEN; RADIOMETER; SURFACE; SUITE; DOMES; CRUST AB Non-basaltic volcanism is rare on the Moon. The best known examples occur on the lunar nearside in the compositionally evolved Procellarum KREEP terrane. However, there is an isolated thorium-rich area-the Compton-Belkovich thorium anomaly-on the lunar farside for which the origin is enigmatic. Here we use images from the Lunar Reconnaissance Orbiter Cameras, digital terrain models and spectral data from the Diviner lunar radiometer to assess the morphology and composition of this region. We identify a central feature, 25 by 35 km across, that is characterized by elevated topography and relatively high reflectance. The topography includes a series of domes that range from less than 1 km to more than 6 km across, some with steeply sloping sides. We interpret these as volcanic domes formed from viscous lava. We also observe arcuate to irregular circular depressions, which we suggest result from collapse associated with volcanism. We find that the volcanic feature is also enriched in silica or alkali-feldspar, indicative of compositionally evolved, rhyolitic volcanic materials. We suggest that the Compton-Belkovich thorium anomaly represents a rare occurrence of non-basaltic volcanism on the lunar farside. We conclude that compositionally evolved volcanism did occur far removed from the Procellarum KREEP terrane. C1 [Jolliff, Bradley L.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Jolliff, Bradley L.] Washington Univ, McDonnell Ctr Space Sci, St Louis, MO 63130 USA. [Wiseman, Sandra A.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Lawrence, Samuel J.; Tran, Thanh N.; Robinson, Mark S.; Sato, Hiroyuki] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Hawke, B. Ray] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Scholten, Frank; Oberst, Juergen] German Aerosp Ctr DLR, Inst Planetary Res, D-12489 Berlin, Germany. [Hiesinger, Harald; van der Bogert, Carolyn H.] Univ Munster, Inst Planetol, D-48149 Munster, Germany. [Greenhagen, Benjamin T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Glotch, Timothy D.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Paige, David A.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. RP Jolliff, BL (reprint author), Washington Univ, Dept Earth & Planetary Sci, 1 Brookings Dr, St Louis, MO 63130 USA. EM blj@wustl.edu RI Greenhagen, Benjamin/C-3760-2016 FU NASA ESMD; SMD FX The authors thank the LRO, LROC, and Diviner operations teams for their work and NASA ESMD and SMD for support of the LRO mission. The authors thank N. Petro for comments, which led to significant improvements in the manuscript. NR 38 TC 37 Z9 39 U1 2 U2 10 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 J9 NAT GEOSCI JI Nat. Geosci. PD AUG PY 2011 VL 4 IS 8 BP 566 EP 571 DI 10.1038/NGEO1212 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 799HJ UT WOS:000293277100022 ER PT J AU Clayton, GC De Marco, O Whitney, BA Babler, B Gallagher, JS Nordhaus, J Speck, AK Wolff, MJ Freeman, WR Camp, KA Lawson, WA Roman-Duval, J Misselt, KA Meade, M Sonneborn, G Matsuura, M Meixner, M AF Clayton, Geoffrey C. De Marco, O. Whitney, B. A. Babler, B. Gallagher, J. S. Nordhaus, J. Speck, A. K. Wolff, M. J. Freeman, W. R. Camp, K. A. Lawson, W. A. Roman-Duval, J. Misselt, K. A. Meade, M. Sonneborn, G. Matsuura, M. Meixner, M. TI THE DUST PROPERTIES OF TWO HOT R CORONAE BOREALIS STARS AND A WOLF-RAYET CENTRAL STAR OF A PLANETARY NEBULA: IN SEARCH OF A POSSIBLE LINK SO ASTRONOMICAL JOURNAL LA English DT Article DE dust, extinction; stars: evolution; stars: mass-loss ID LARGE-MAGELLANIC-CLOUD; HYDROGEN-DEFICIENT CARBON; 2-DIMENSIONAL RADIATIVE-TRANSFER; SPITZER-SPACE-TELESCOPE; WC CENTRAL STARS; T-TAURI STARS; V605 AQUILAE; PROTOSTELLAR ENVELOPES; INFRARED SPECTROGRAPH; HYDROCARBON EMISSION AB We present new Spitzer/IRS spectra of two hot R Coronae Borealis (RCB) stars, one in the Galaxy, V348 Sgr, and one lying in the LargeMagellanic Cloud, HV 2671. These two objects may constitute a link between the RCB stars and the late Wolf-Rayet ([WCL]) class of central stars of planetary nebulae (CSPNe), such as CPD -56 degrees 8032, that has little or no hydrogen in their atmospheres. HV 2671 and V348 Sgr are members of a rare subclass that has significantly higher effective temperatures than most RCB stars, but shares the traits of hydrogen deficiency and dust formation that define the cooler RCB stars. The [WC] CSPN star, CPD -56 degrees 8032, displays evidence of dual-dust chemistry showing both polycyclic aromatic hydrocarbons (PAHs) and crystalline silicates in its mid-IR spectrum. HV 2671 shows strong PAH emission but no sign of having crystalline silicates. The spectrum of V348 Sgr is very different from that of CPD -56 degrees 8032 and HV 2671. The PAH emission seen strongly in the other two stars is not present. Instead, the spectrum is dominated by a broad emission centered at about 8.2 mu m. This feature is not identified with either PAHs or silicates. Several other cool RCB stars, novae, and post-asymptotic giant branch stars show similar features in their IR spectra. The mid-IR spectrum of CPD -56 degrees 8032 shows emission features that may be associated with C-60. The other two stars do not show evidence of C-60. The different nature of the dust around these stars does not help us in establishing further links that may indicate a common origin. HV 2671 has also been detected by Herschel/PACS and SPIRE. V348 Sgr and CPD -56 degrees 8032 have been detected by AKARI/Far-Infrared Surveyor. These data were combined with Spitzer, IRAS, Two Micron All Sky Survey, and other photometry to produce their spectral energy distributions (SEDs) from the visible to the far-IR. Monte Carlo radiative transfer modeling was used to study the circumstellar dust around these stars. HV 2671 and CPD -56 degrees 8032 require both a flared inner disk with warm dust and an extended diffuse envelope with cold dust to fit their SEDs. The SED of V348 Sgr can be fit with a much smaller disk and envelope. The cold dust in the extended diffuse envelopes inferred around HV 2671 and CPD -56 degrees 8032 may consist of interstellar medium swept up during mass-loss episodes. C1 [Clayton, Geoffrey C.; Gallagher, J. S.; Freeman, W. R.; Camp, K. A.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [De Marco, O.] Macquarie Univ, Dept Phys & Astron, Sydney, NSW 2109, Australia. [Whitney, B. A.; Wolff, M. J.] Space Sci Inst, Boulder, CO 80301 USA. [Whitney, B. A.; Babler, B.; Meade, M.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Gallagher, J. S.] Univ Cincinnati, Raymond Walters Coll, Dept Math Phys & Comp Sci, Blue Ash, OH 45236 USA. [Nordhaus, J.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Speck, A. K.] Univ Missouri, Columbia, MO 65211 USA. [Lawson, W. A.] Univ New S Wales, Australian Def Force Acad, Sch PEMS, Canberra, ACT 2610, Australia. [Roman-Duval, J.; Meixner, M.] STScI, Baltimore, MD 21218 USA. [Misselt, K. A.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Sonneborn, G.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab Code 665, Greenbelt, MD 20771 USA. [Matsuura, M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Matsuura, M.] Univ Coll London, MSSL, Dorking RH5 6NT, Surrey, England. RP Clayton, GC (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. EM gclayton@fenway.phys.lsu.edu; orsola@science.mq.edu.au; bwhitney@spacescience.org; brian@astro.wisc.edu; gallagjl@ucmail.uc.edu; nordhaus@astro.princeton.edu; speckan@missouri.edu; mjwolff@spacescience.org; wfreem2@lsu.edu; kcamp5@tigers.lsu.edu; w.lawson@adfa.edu.au; duval@stsci.edu; misselt@as.arizona.edu; meade@astro.wisc.edu; george.sonneborn-1@nasa.gov; mikako.matsuura@ucl.ac.uk; meixner@stsci.edu OI Babler, Brian/0000-0002-6984-5752 FU Spitzer Space Telescope RSA, Caltech/JPL [1287524]; NASA Herschel Science Center, JPL [1381522, 1381650]; National Aeronautics and Space Administration; National Science Foundation; European Space Agency (ESA); PACS team; SPIRE team; Herschel Science Center; NASA Herschel Science Center; PACS/SPIRE instrument control center at CEA-Saclay FX We thank the referee for making suggestions that improved the paper. This work was supported by Spitzer Space Telescope RSA 1287524 issued by Caltech/JPL. We acknowledge financial support from the NASA Herschel Science Center, JPL contract nos. 1381522 and 1381650. We thank Warren Reid and Quentin Parker for providing access to their LMC Ha survey data. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research is based on observations with AKARI, a JAXA project with the participation of ESA. We appreciate the contributions and support from the European Space Agency (ESA), the PACS and SPIRE teams, the Herschel Science Center and the NASA Herschel Science Center (especially A. Barbar and K. Xu), and the PACS/SPIRE instrument control center at CEA-Saclay, which made this work possible. NR 84 TC 17 Z9 17 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD AUG PY 2011 VL 142 IS 2 AR 54 DI 10.1088/0004-6256/142/2/54 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 794IH UT WOS:000292888200021 ER PT J AU Fleming, SW Maxted, PFL Hebb, L Stassun, KG Ge, J Cargile, PA Ghezzi, L De Lee, NM Wisniewski, J Gary, B de Mello, GFP Ferreira, L Zhao, B Anderson, DR Wan, XK Hellier, C Guo, PC West, RG Mahadevan, S Pollacco, D Lee, B Cameron, AC van Eyken, JC Skillen, I Crepp, JR Nguyen, DC Kane, SR Paegert, M da Costa, LN Maia, MAG Santiago, BX AF Fleming, Scott W. Maxted, Pierre F. L. Hebb, Leslie Stassun, Keivan G. Ge, Jian Cargile, Phillip A. Ghezzi, Luan De Lee, Nathan M. Wisniewski, John Gary, Bruce Porto de Mello, G. F. Ferreira, Leticia Zhao, Bo Anderson, David R. Wan, Xiaoke Hellier, Coel Guo, Pengcheng West, Richard G. Mahadevan, Suvrath Pollacco, Don Lee, Brian Cameron, Andrew Collier van Eyken, Julian C. Skillen, Ian Crepp, Justin R. Duy Cuong Nguyen Kane, Stephen R. Paegert, Martin da Costa, Luiz Nicolaci Maia, Marcio A. G. Santiago, Basilio X. TI ECLIPSING BINARY SCIENCE VIA THE MERGING OF TRANSIT AND DOPPLER EXOPLANET SURVEY DATA-A CASE STUDY WITH THE MARVELS PILOT PROJECT AND SuperWASP SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: eclipsing; binaries: spectroscopic ID EXTERNALLY DISPERSED INTERFEROMETER; STELLAR ATMOSPHERE MODELS; LIMB-DARKENING LAW; LOW-MASS STARS; LIGHT CURVES; ECHELLE SPECTROGRAPH; RADIAL-VELOCITIES; SURFACE GRAVITIES; MAGNETIC ACTIVITY; RESONANCE LINES AB Exoplanet transit and Doppler surveys discover many binary stars during their operation that can be used to conduct a variety of ancillary science. Specifically, eclipsing binary stars can be used to study the stellar mass-radius relationship and to test predictions of theoretical stellar evolution models. By cross-referencing 24 binary stars found in the MARVELS Pilot Project with SuperWASP photometry, we find two new eclipsing binaries, TYC 0272-00458-1 and TYC 1422-01328-1, which we use as case studies to develop a general approach to eclipsing binaries in survey data. TYC0272-00458-1 is a single-lined spectroscopic binary for which we calculate amass of the secondary and radii for both components using reasonable constraints on the primary mass through several different techniques. For a primary mass of M-1 = 0.92 +/- 0.1 M-circle dot, we find M-2 = 0.610 +/- 0.036 M-circle dot, R-1 = 0.932 +/- 0.076 R-circle dot, and R-2 = 0.559 +/- 0.102R(circle dot), and find that both stars have masses and radii consistent with model predictions. TYC 1422-01328-1 is a triple-component system for which we can directly measure the masses and radii of the eclipsing pair. We find that the eclipsing pair consists of an evolved primary star (M-1 = 1.163 +/- 0.034 M-circle dot, R-1 = 2.063 +/- 0.058R(circle dot)) and a G-type dwarf secondary (M-2 = 0.905 +/- 0.067 M-circle dot, R-2 = 0.887 +/- 0.037R(circle dot)). We provide the framework necessary to apply this analysis to much larger data sets C1 [Fleming, Scott W.; Ge, Jian; De Lee, Nathan M.; Zhao, Bo; Wan, Xiaoke; Guo, Pengcheng; Lee, Brian; van Eyken, Julian C.; Crepp, Justin R.; Duy Cuong Nguyen; Kane, Stephen R.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Maxted, Pierre F. L.; Anderson, David R.; Hellier, Coel] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Hebb, Leslie; Stassun, Keivan G.; Cargile, Phillip A.; Gary, Bruce; Paegert, Martin] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Stassun, Keivan G.] Fisk Univ, Dept Phys, Nashville, TN 37208 USA. [Ghezzi, Luan; da Costa, Luiz Nicolaci; Maia, Marcio A. G.] Observ Nacl, BR-20921400 Rio De Janeiro, Brazil. [Ghezzi, Luan; Porto de Mello, G. F.; Ferreira, Leticia; da Costa, Luiz Nicolaci; Maia, Marcio A. G.; Santiago, Basilio X.] Lab Interinst & Astron LIneA, BR-20921400 Rio De Janeiro, Brazil. [Wisniewski, John] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Porto de Mello, G. F.; Ferreira, Leticia] Univ Fed Rio de Janeiro, Observ Valongo, BR-20080090 Rio De Janeiro, Brazil. [West, Richard G.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Mahadevan, Suvrath] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Mahadevan, Suvrath] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. [Pollacco, Don] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Cameron, Andrew Collier] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews, Fife, Scotland. [van Eyken, Julian C.; Kane, Stephen R.] NASA, Exoplanet Sci Inst, CALTECH, Pasadena, CA 91125 USA. [Skillen, Ian] Isaac Newton Grp Telescopes, E-38700 Santa Cruz De La Palma, Spain. [Crepp, Justin R.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Santiago, Basilio X.] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. RP Fleming, SW (reprint author), Univ Florida, Dept Astron, Gainesville, FL 32611 USA. EM scfleming@astro.ufl.edu RI Kane, Stephen/B-4798-2013; Tecnologias espaciai, Inct/I-2415-2013; OI Fleming, Scott/0000-0003-0556-027X; Cameron, Andrew/0000-0002-8863-7828 FU PAPDRJ-CAPES/FAPERJ; CAPES; CNPq [476909/2006-6, 474972/2009-7]; FAPERJ [APQ1/26/170.687/2004]; W. M. Keck Foundation; NSF [AST-0705139]; NASA [NNX07AP14G]; University of Florida; Consortium Universities; UK's Science and Technology Facilities Council; Alfred P. Sloan Foundation; U.S. Department of Energy; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; Pennsylvania State University; Eberly College of Science; Pennsylvania Space Grant Consortium FX We thank Roger Cohen for useful discussions on theoretical isochrones. L. G. thanks Dr. Simone Daflon and Dr. Herman Hensberge for the helpful discussions. L. G. acknowledges financial support provided by the PAPDRJ-CAPES/FAPERJ Fellowship. L. Dutra-Ferreira acknowledges financial support provided by CAPES fellowship. G. F. P. M. acknowledges financial support from CNPq grant nos. 476909/2006-6 and 474972/2009-7, plus a FAPERJ grant no. APQ1/26/170.687/2004. Funding for the multi-object Doppler instrument was provided by the W. M. Keck Foundation. The pilot survey was funded by NSF with grant AST-0705139, NASA with grant NNX07AP14G and the University of Florida. The SuperWASP Consortium consists of astronomers primarily from the Queen's University Belfast, St. Andrews, Keele, Leicester, The Open University, Isaac Newton Group La Palma, and Instituto de Astrofisica de Canarias. The SuperWASP Cameras were constructed and operated with funds made available from Consortium Universities and the UK's Science and Technology Facilities Council. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. Based on observations with the SDSS 2.5 m telescope. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. This work is based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. The Center for Exoplanets and Habitable Worlds is supported by the Pennsylvania State University, the Eberly College of Science, and the Pennsylvania Space Grant Consortium. This work was conducted in part using the resources of the Advanced Computing Center for Research and Education at Vanderbilt University, Nashville, TN. NR 70 TC 1 Z9 1 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD AUG PY 2011 VL 142 IS 2 AR 50 DI 10.1088/0004-6256/142/2/50 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 794IH UT WOS:000292888200017 ER PT J AU Gelino, CR Kirkpatrick, JD Cushing, MC Eisenhardt, PR Griffith, RL Mainzer, AK Marsh, KA Skrutskie, MF Wright, EL AF Gelino, Christopher R. Kirkpatrick, J. Davy Cushing, Michael C. Eisenhardt, Peter R. Griffith, Roger L. Mainzer, Amanda K. Marsh, Kenneth A. Skrutskie, Michael F. Wright, Edward L. TI WISE BROWN DWARF BINARIES: THE DISCOVERY OF A T5+T5 AND A T8.5+T9 SYSTEM SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: general; brown dwarfs; stars: fundamental parameters; stars: individual (WISEPA J045853.90+643452.6; WISEPA J075003.78+272544.8; WISEPA J132233.67-234017.0; WISEPA J161441.46+173935.3; WISEPA J161705.75+180714.0; WISEPA J162725.64+325524.1; WISEPA J165311.05+444423.0; WISEPA J174124.27+255319.6; WISEPA J184124.73+700038.0); stars: low-mass ID STAR ADAPTIVE OPTICS; INFRARED SURVEY EXPLORER; T-DWARFS; SPECTRAL CLASSIFICATION; DYNAMICAL MASS; FILTER SET; TRANSITION; TEMPERATURE; ATMOSPHERES; PERFORMANCE AB The multiplicity properties of brown dwarfs are critical empirical constraints for formation theories, while multiples themselves provide unique opportunities to test evolutionary and atmospheric models and examine empirical trends. Studies using high-resolution imaging cannot only uncover faint companions, but they can also be used to determine dynamical masses through long-term monitoring of binary systems. We have begun a search for the coolest brown dwarfs using preliminary processing of data from the Wide-field Infrared Survey Explorer and have confirmed many of the candidates as late-type T dwarfs. In order to search for companions to these objects, we are conducting observations using the Laser Guide Star Adaptive Optics system on Keck II. Here we present the first results of that search, including a T5 binary with nearly equal mass components and a faint companion to a T8.5 dwarf with an estimated spectral type of T9. C1 [Gelino, Christopher R.; Kirkpatrick, J. Davy; Griffith, Roger L.; Marsh, Kenneth A.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Cushing, Michael C.; Eisenhardt, Peter R.; Mainzer, Amanda K.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Skrutskie, Michael F.] Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. [Wright, Edward L.] Univ Calif Los Angeles, Dept Astron, Los Angeles, CA 90095 USA. RP Gelino, CR (reprint author), CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. FU W. M. Keck Foundation; National Aeronautics and Space Administration; NASA FX Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.; The authors acknowledge telescope operators Julie Rivera, Heather Hershley, and Gary Punawai, and instrument specialists Al Conrad, Marc Kassis, and Scott Dahm at Keck, for their assistance during the observations. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This research was supported in part by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. Data presented herein were obtained at the W. M. Keck Observatory from telescope time allocated to the National Aeronautics and Space Administration through the agency's scientific partnership with the California Institute of Technology and the University of California. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 39 TC 26 Z9 26 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD AUG PY 2011 VL 142 IS 2 AR 57 DI 10.1088/0004-6256/142/2/57 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 794IH UT WOS:000292888200024 ER PT J AU Petrov, L Kovalev, YY Fomalont, EB Gordon, D AF Petrov, L. Kovalev, Y. Y. Fomalont, E. B. Gordon, D. TI THE VERY LONG BASELINE ARRAY GALACTIC PLANE SURVEY-VGaPS SO ASTRONOMICAL JOURNAL LA English DT Article DE astrometry; catalogs; surveys ID VLBA CALIBRATOR SURVEY; CELESTIAL REFERENCE FRAME; LARGE-AREA TELESCOPE; INTERFEROMETRY; ASTROMETRY; SPECTRA; PROGRAM; CATALOG; OBJECTS; NUCLEI AB This paper presents accurate absolute positions from a 24 GHz Very Long Baseline Array (VLBA) search for compact extragalactic sources in an area where the density of known calibrators with precise coordinates is low. The goals were to identify additional sources suitable for use as phase calibrators for galactic sources, determine their precise positions, and produce radio images. In order to achieve these goals, we developed a new software package, PIMA, for determining group delays from wide-band data with much lower detection limits. With the use of PIMA, we have detected 327 sources out of 487 targets observed in three 24 hr VLBA experiments. Among the 327 detected objects, 176 are within 10. of the Galactic plane. This VGaPS catalog of source positions, plots of correlated flux density versus projected baseline length, contour plots, as well as weighted CLEAN images, and calibrated visibility data are available on the Web in FITS format. Approximately one-half of objects from the 24 GHz catalog were observed at dual-band 8.6 GHz and 2.3 GHz experiments. Position differences at 24 GHz versus 8.6/2.3 GHz for all but two objects on average are strictly within reported uncertainties. We found that for two objects with complex structures, positions at different frequencies correspond to different components of a source. C1 [Petrov, L.] NASA, Goddard Space Flight Ctr, ADNET Syst Inc, Greenbelt, MD 20771 USA. [Kovalev, Y. Y.] PN Lebedev Phys Inst, Ctr Astro Space, Moscow 117997, Russia. [Kovalev, Y. Y.] Natl Radio Astron Observ, Green Bank, WV 24944 USA. [Fomalont, E. B.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Gordon, D.] NASA, Goddard Space Flight Ctr, NVI Inc, Greenbelt, MD 20771 USA. RP Petrov, L (reprint author), NASA, Goddard Space Flight Ctr, ADNET Syst Inc, Greenbelt, MD 20771 USA. EM Leonid.Petrov@lpetrov.net; yyk@asc.rssi.ru; efomalon@nrao.edu; David.Gordon-1@nasa.gov RI Kovalev, Yuri/J-5671-2013 OI Kovalev, Yuri/0000-0001-9303-3263 FU JSPS [S-09143]; Russian Foundation for Basic Research [08-02-00545, 11-02-00368]; NASA FX We thank Leonid Kogan for fruitful discussions about hidden secrets of correlators. We used the data set MAI6NPANA provided by the NASA/Global Modeling and Assimilation Office (GMAO) in the framework of the MERRA atmospheric reanalysis project. This project was started when Y.Y.K. was working as a Jansky Fellow of the National Radio Astronomy Observatory in Green Bank. Y.Y.K. was supported in part by the JSPS Invitation Fellowship for Research in Japan (S-09143) and Russian Foundation for Basic Research (08-02-00545 and 11-02-00368). The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The authors made use of the database CATS of the Special Astrophysical Observatory (Verkhodanov et al. 2005). This research has made use of the NASA/IPAC Extragalactic Database (NED; Eichhorn et al. 2002) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the NASA. NR 49 TC 28 Z9 28 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD AUG PY 2011 VL 142 IS 2 AR 35 DI 10.1088/0004-6256/142/2/35 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 794IH UT WOS:000292888200002 ER PT J AU van Eyken, JC Ciardi, DR Rebull, LM Stauffer, JR Akeson, RL Beichman, CA Boden, AF von Braun, K Gelino, DM Hoard, DW Howell, SB Kane, SR Plavchan, P Ramirez, SV Bloom, JS Cenko, SB Kasliwal, MM Kulkarni, SR Law, NM Nugent, PE Ofek, EO Poznanski, D Quimby, RM Grillmair, CJ Laher, R Levitan, D Mattingly, S Surace, JA AF van Eyken, Julian C. Ciardi, David R. Rebull, Luisa M. Stauffer, John R. Akeson, Rachel L. Beichman, Charles A. Boden, Andrew F. von Braun, Kaspar Gelino, Dawn M. Hoard, D. W. Howell, Steve B. Kane, Stephen R. Plavchan, Peter Ramirez, Solange V. Bloom, Joshua S. Cenko, S. Bradley Kasliwal, Mansi M. Kulkarni, Shrinivas R. Law, Nicholas M. Nugent, Peter E. Ofek, Eran O. Poznanski, Dovi Quimby, Robert M. Grillmair, Carl J. Laher, Russ Levitan, David Mattingly, Sean Surace, Jason A. TI THE PALOMAR TRANSIENT FACTORY ORION PROJECT: ECLIPSING BINARIES AND YOUNG STELLAR OBJECTS SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: close; binaries: eclipsing; open clusters and associations: individual (25 Ori); planets and satellites: detection; stars: pre-main sequence; techniques: photometric ID ABSOLUTE MAGNITUDE CALIBRATIONS; SPITZER-SPACE-TELESCOPE; MAJORIS TYPE BINARIES; SKY SURVEY 2MASS; LOW-MASS; CONTACT BINARIES; MONITOR PROJECT; ADDITIONAL COMPONENTS; DETACHED BINARIES; ANGULAR-MOMENTUM AB The Palomar Transient Factory (PTF) Orion project is one of the experiments within the broader PTF survey, a systematic automated exploration of the sky for optical transients. Taking advantage of the wide (3 degrees.5 x 2 degrees.3) field of view available using the PTF camera installed at the Palomar 48 inch telescope, 40 nights were dedicated in 2009 December to 2010 January to perform continuous high-cadence differential photometry on a single field containing the young (7-10 Myr) 25 Ori association. Little is known empirically about the formation of planets at these young ages, and the primary motivation for the project is to search for planets around young stars in this region. The unique data set also provides for much ancillary science. In this first paper, we describe the survey and the data reduction pipeline, and present some initial results from an inspection of the most clearly varying stars relating to two of the ancillary science objectives: detection of eclipsing binaries and young stellar objects. We find 82 new eclipsing binary systems, 9 of which are good candidate 25 Ori or Orion OB1a association members. Of these, two are potential young W UMa type systems. We report on the possible low-mass (M-dwarf primary) eclipsing systems in the sample, which include six of the candidate young systems. Forty-five of the binary systems are close (mainly contact) systems, and one of these shows an orbital period among the shortest known for W UMa binaries, at 0.2156509 +/- 0.0000071 days, with flat-bottomed primary eclipses, and a derived distance that appears consistent with membership in the general Orion association. One of the candidate young systems presents an unusual light curve, perhaps representing a semi-detached binary system with an inflated low-mass primary or a star with a warped disk, and may represent an additional young Orion member. Finally, we identify 14 probable new classical T-Tauri stars in our data, along with one previously known (CVSO 35) and one previously reported as a candidate weak-line T-Tauri star (SDSS J052700.12+010136.8). C1 [van Eyken, Julian C.; Ciardi, David R.; Akeson, Rachel L.; Beichman, Charles A.; von Braun, Kaspar; Gelino, Dawn M.; Kane, Stephen R.; Plavchan, Peter; Ramirez, Solange V.] NASA, Exoplanet Sci Inst, CALTECH, Pasadena, CA 91125 USA. [Rebull, Luisa M.; Stauffer, John R.; Hoard, D. W.] Spitzer Sci Ctr Caltech, Pasadena, CA 91125 USA. [Boden, Andrew F.] CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. [Howell, Steve B.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Howell, Steve B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Bloom, Joshua S.; Cenko, S. Bradley; Poznanski, Dovi] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; Ofek, Eran O.; Quimby, Robert M.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Law, Nicholas M.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Nugent, Peter E.; Poznanski, Dovi] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Grillmair, Carl J.; Laher, Russ; Surace, Jason A.] CALTECH, Jet Prop Lab, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Levitan, David] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Mattingly, Sean] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. RP van Eyken, JC (reprint author), NASA, Exoplanet Sci Inst, CALTECH, Pasadena, CA 91125 USA. EM vaneyken@ipac.caltech.edu RI Kane, Stephen/B-4798-2013; OI Rebull, Luisa/0000-0001-6381-515X; Ciardi, David/0000-0002-5741-3047 FU Richard and Rhoda Goldman Fund; National Aeronautics and Space Administration (NASA) [NNX10AI21G, NNX1OA057G]; National Science Foundation (NSF) [AST-0908886]; JPL/Caltech FX The authors thank Cesar Briceno for providing the reference stars for zero-point calibration, and for his advice regarding field selection; and Tim Lister, Rachel Street, Andrej Prsa, David Bradstreet, Ed Guinan, and Adam Krauss, for valuable discussions and input. S. B. C. wishes to acknowledge generous support from Gary and Cynthia Bengier, the Richard and Rhoda Goldman Fund, National Aeronautics and Space Administration (NASA)/Swift grant NNX10AI21G, NASA/Fermi grant NNX1OA057G, and National Science Foundation (NSF) grant AST-0908886. Observations obtained with the Samuel Oschin Telescope at the Palomar Observatory as part of the PTF project, a scientific collaboration between the California Institute of Technology, Columbia University, Las Cumbres Observatory, the Lawrence Berkeley National Laboratory, the National Energy Research Scientific Computing Center, the University of Oxford, and the Weizmann Institute of Science. This publication makes use of data products from the Two Micron All-Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This work is based in part on archival data obtained with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This research has made use of the NASA/IPAC/NExScI Star and Exoplanet Database, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France. Support for this work was provided by an award issued by JPL/Caltech. NR 71 TC 20 Z9 20 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD AUG PY 2011 VL 142 IS 2 AR 60 DI 10.1088/0004-6256/142/2/60 PG 35 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 794IH UT WOS:000292888200027 ER PT J AU Loughner, CP Allen, DJ Pickering, KE Zhang, DL Shou, YX Dickerson, RR AF Loughner, Christopher P. Allen, Dale J. Pickering, Kenneth E. Zhang, Da-Lin Shou, Yi-Xuan Dickerson, Russell R. TI Impact of fair-weather cumulus clouds and the Chesapeake Bay breeze on pollutant transport and transformation SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Community Multiscale Air Quality (CMAQ) model; Horizontal grid resolution; Fair-weather cumulus clouds; Sulfur dioxide; Bay breeze; Ozone ID CMAQ MODELING SYSTEM; NONLOCAL CLOSURE-MODEL; BOUNDARY-LAYER; AIR-POLLUTION; UNITED-STATES; PART I; OZONE; RESOLUTION; SENSITIVITY; METEOROLOGY AB Two fine-scale meteorological processes, fair-weather cumulus cloud development and a bay breeze, are examined along with their impacts on air chemistry. The impact of model resolution on fair-weather cumulus cloud development, transport of pollutants through clouds, sulfur dioxide to sulfate conversion in clouds, and the development of the Chesapeake Bay breeze are examined via 13.5, 4.5, 1.5, and 0.5 km resolution simulations covering the Washington - Baltimore area. Results show that as the resolution increases, more pollutants are transported aloft through fair-weather cumulus clouds causing an increase in the rate of oxidation of sulfur dioxide to sulfate aerosols. The high resolution model runs more nearly match observations of a local pollutant maximum near the top of the boundary layer and produce an increase in boundary layer venting with subsequent pollutant export. The sensitivity of sulfur dioxide to sulfate conversion rates to cloud processing is examined by comparing sulfur dioxide and sulfate concentrations from simulations that use two different methods to diagnose clouds. For this particular event, a diagnostic method produces the most clouds and the most realistic cloud cover, has the highest oxidation rates, and generates sulfur dioxide and sulfate concentrations that agree best with observations. The differences between the simulations show the importance of accurately simulating clouds in sulfate simulations. The fidelity of the model's representation of the bay breeze is examined as a function of resolution. As the model resolution increases, a larger temperature gradient develops along the shoreline of the Chesapeake Bay causing the bay breeze to form sooner, push farther inland, and loft more pollutants upward. This stronger bay breeze results in low-level convergence, a buildup of near surface ozone over land and a decrease in the land-to-sea flux of ozone and ozone precursors as seen in measurements. The resulting 8 h maximum ozone concentration over the Bay is 10 ppbv lower in the 0.5 km simulation than in the 13.5 km simulation. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Loughner, Christopher P.; Allen, Dale J.; Zhang, Da-Lin; Dickerson, Russell R.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Pickering, Kenneth E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Shou, Yi-Xuan] China Meteorol Adm, Natl Satellite Meteorol Ctr, Beijing 100081, Peoples R China. RP Loughner, CP (reprint author), Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. EM loughner@atmos.umd.edu RI Zhang, Da-Lin/F-2634-2010; Pickering, Kenneth/E-6274-2012; Dickerson, Russell/F-2857-2010; Allen, Dale/F-7168-2010; OI Zhang, Da-Lin/0000-0003-1725-283X; Dickerson, Russell/0000-0003-0206-3083; Allen, Dale/0000-0003-3305-9669; Loughner, Christopher/0000-0002-3833-2014 FU NASA [NNG066J046, NNX06AF57H] FX This work was funded by NASA grant NNG066J046 and NASA Earth System Science Fellowship NNX06AF57H. Daewon Byun generously provided profound insight into the workings of CMAQ that helped make this research possible. Contributions from Dr. Jeff Stehr are gratefully acknowledged. Observations were supported by MDE. NR 53 TC 29 Z9 29 U1 0 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD AUG PY 2011 VL 45 IS 24 BP 4060 EP 4072 DI 10.1016/j.atmosenv.2011.04.003 PG 13 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 796IU UT WOS:000293045800017 ER PT J AU Smith, TB Thomassen, HA Freedman, AH Sehgal, RNM Buermann, W Saatchi, S Pollinger, J Mila, B Pires, D Valkiunas, G Wayne, RK AF Smith, Thomas B. Thomassen, Henri A. Freedman, Adam H. Sehgal, Ravinder N. M. Buermann, Wolfgang Saatchi, Sassan Pollinger, John Mila, Borja Pires, Debra Valkiunas, Gediminas Wayne, Robert K. TI Patterns of divergence in the olive sunbird Cyanomitra olivacea (Aves: Nectariniidae) across the African rainforest-savanna ecotone SO BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY LA English DT Article DE allopatry; diversification; ecological speciation; ecotone; parapatry; remote sensing ID GENE FLOW; ECOLOGICAL SPECIATION; PARAPATRIC SPECIATION; POPULATION-STRUCTURE; BIODIVERSITY; EVOLUTION; BIRD; DIVERSIFICATION; DIFFERENTIATION; STATISTICS AB In the debate over modes of vertebrate diversification in tropical rainforests, two competing hypotheses of speciation predominate: those that emphasize the role of geographical isolation during glacial periods and those that stress the role of ecology and diversifying selection across ecotones or environmental gradients. To investigate the relative roles of selection versus isolation in refugia, we contrasted genetic and morphologic divergence of the olive sunbird (Cyanomitra olivacea) at 18 sites (approximately 200 individuals) across the forest-savanna ecotone of Central Africa in a region considered to have harboured three hypothesized refugia during glacial periods. Habitats were characterized using bioclimatic and satellite remote-sensing data. We found relatively high levels of gene flow between ecotone and forest populations and between refugia. Consistent with a pattern of divergence-with-gene-flow, we found morphological characters to be significantly divergent across the gradient [forest versus ecotone (mean +/- SD): wing length 60.47 +/- 1.81 mm versus 62.18 +/- 1.35 mm; tarsus length 15.51 +/- 0.82 mm versus 16.00 +/- 0.57 mm; upper mandible length 21.77 +/- 1.09 mm versus 23.19 +/- 0.98 mm, respectively]. Within-habitat comparisons across forest and ecotone sites showed no significant differences in morphology. The results show that divergence in morphological traits is tied to environmental variables across the gradient and is occurring despite gene flow. The pattern of divergence-with-gene-flow found is similar to that described for other rainforest species across the gradient. These results suggest that neither refugia, nor isolation-by-distance have played a major role in divergence in the olive sunbird, although ecological differences along the forest and savanna ecotone may impose significant selection pressures on the phenotype and potentially be important in diversification. (C) 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103, 821-835. C1 [Smith, Thomas B.; Freedman, Adam H.; Pollinger, John; Mila, Borja; Pires, Debra; Wayne, Robert K.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA. [Smith, Thomas B.; Thomassen, Henri A.; Freedman, Adam H.; Sehgal, Ravinder N. M.; Buermann, Wolfgang; Saatchi, Sassan; Pollinger, John; Mila, Borja; Pires, Debra; Valkiunas, Gediminas; Wayne, Robert K.] Univ Calif Los Angeles, Ctr Trop Res, Inst Environm & Sustainabil, Los Angeles, CA 90095 USA. [Thomassen, Henri A.] Univ Tubingen, Inst Evolut & Ecol, D-72076 Tubingen, Germany. [Sehgal, Ravinder N. M.] San Francisco State Univ, Dept Biol, San Francisco, CA 94132 USA. [Saatchi, Sassan] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Mila, Borja] CSIC, Museo Nacl Ciencias Nat, E-28006 Madrid, Spain. [Valkiunas, Gediminas] Nat Res Ctr, Inst Ecol, LT-08412 Vilnius, Lithuania. RP Smith, TB (reprint author), Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA. EM tbsmith@ucla.edu RI SEHGAL, Ravinder/F-9216-2010; OI Freedman, Adam /0000-0003-4714-3925; SEHGAL, Ravinder/0000-0002-5255-4641; Mila, Borja/0000-0002-6446-0079 FU National Geographic Society; National Environmental Research Council; National Science Foundation [DEB-9726425, IRCEB9977072] FX We thank the governments of the Republic of Cameroon and Equatorial Guinea for permission to conduct the field research. This research was supported by grants from the National Geographic Society, National Environmental Research Council, and the National Science Foundation DEB-9726425 and IRCEB9977072 to T. B. S. T. B. S. conceived the study and collected and took the lead in analyzing the data and writing the manuscript; H. A. T. conducted the GDM analysis; A. M. performed the demographic analysis; R.N.M.S. and G. V. assisted with the field work; J.P., B. M., D. P., and R. K. W. assisted with the molecular genetic analysis; and W. B. and S. S. compiled the remote sensing data. All authors contributed to the writing of the manuscript. NR 70 TC 14 Z9 14 U1 6 U2 41 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0024-4066 J9 BIOL J LINN SOC JI Biol. J. Linnean Soc. PD AUG PY 2011 VL 103 IS 4 BP 821 EP 835 DI 10.1111/j.1095-8312.2011.01674.x PG 15 WC Evolutionary Biology SC Evolutionary Biology GA 794AD UT WOS:000292865000006 ER PT J AU Goossens, S Matsumoto, K Rowlands, DD Lemoine, FG Noda, H Araki, H AF Goossens, S. Matsumoto, K. Rowlands, D. D. Lemoine, F. G. Noda, H. Araki, H. TI Orbit determination of the SELENE satellites using multi-satellite data types and evaluation of SELENE gravity field models SO JOURNAL OF GEODESY LA English DT Article DE Orbit determination; Lunar satellite orbits; Lunar gravity; Laser altimetry crossovers ID LASER-ALTIMETER; DIFFERENTIAL VLBI; LUNAR; MISSION; KAGUYA AB The SELENE mission, consisting of three separate satellites that use different terrestrial-based tracking systems, presents a unique opportunity to evaluate the contribution of these tracking systems to orbit determination precision. The tracking data consist of four-way Doppler between the main orbiter and one of the two sub-satellites while the former is over the far side, and of same-beam differential VLBI tracking between the two sub-satellites. Laser altimeter data are also used for orbit determination. The contribution to orbit precision of these different data types is investigated through orbit overlap analysis. It is shown that using four-way and VLBI data improves orbit consistency for all satellites involved by reducing peak values in orbit overlap differences that exist when only standard two-way Doppler and range data are used. Including laser altimeter data improves the orbit precision of the SELENE main satellite further, resulting in very smooth total orbit errors at an average level of 18 m. The multi-satellite data have also resulted in improved lunar gravity field models, which are assessed through orbit overlap analysis using Lunar Prospector tracking data. Improvements over a pre-SELENE model are shown to be mostly in the along-track and cross-track directions. Orbit overlap differences are at a level between 13 and 21 m with the SELENE models, depending on whether 1-day data overlaps or 1-day predictions are used. C1 [Goossens, S.; Matsumoto, K.; Noda, H.; Araki, H.] Natl Astron Observ Japan, RISE Project, Oshu, Iwate 0230861, Japan. [Rowlands, D. D.; Lemoine, F. G.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. RP Goossens, S (reprint author), Natl Astron Observ Japan, RISE Project, 2-12 Hoshigaoka, Oshu, Iwate 0230861, Japan. EM sander@miz.nao.ac.jp RI Rowlands, David/D-2751-2012; Lemoine, Frank/D-1215-2013; Goossens, Sander/K-2526-2015 OI Goossens, Sander/0000-0002-7707-1128 FU Japan Society for the Promotion of Science [20244073] FX We would like to express our thanks to the entire staff of the SELENE project. This work benefited from a Grant-in-Aid for Scientific Research (A) (No. 20244073) from the Japan Society for the Promotion of Science that was granted to Sho Sasaki of RISE Project, NAOJ. Rune Floberghagen (ESA) and Oliver Montenbruck (DLR) are thanked for the use of the LP Weilheim tracking data. We acknowledge three anonymous reviewers for their constructive comments. All figures were drawn using the free software package GMT (Wessel and Smith 1991). NR 41 TC 15 Z9 19 U1 2 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-7714 J9 J GEODESY JI J. Geodesy PD AUG PY 2011 VL 85 IS 8 BP 487 EP 504 DI 10.1007/s00190-011-0446-2 PG 18 WC Geochemistry & Geophysics; Remote Sensing SC Geochemistry & Geophysics; Remote Sensing GA 795UT UT WOS:000293002100003 ER PT J AU Sibthorpe, A Bertiger, W Desai, SD Haines, B Harvey, N Weiss, JP AF Sibthorpe, Ant Bertiger, Willy Desai, Shailen D. Haines, Bruce Harvey, Nate Weiss, Jan P. TI An evaluation of solar radiation pressure strategies for the GPS constellation SO JOURNAL OF GEODESY LA English DT Article DE Solar radiation pressure (SRP); Satellite orbits; IGS; Final combination; GPS ID GLOBAL-POSITIONING-SYSTEM; GEODETIC APPLICATIONS; LOADING DATA; MODEL; SATELLITES; RESOLUTION; SERVICE AB The subtle effects of different Global Positioning System (GPS) satellite force models are becoming apparent now that mature processing strategies are reaching new levels of accuracy and precision. For this paper, we tested several approaches to solar radiation pressure (SRP) modeling that are commonly used by International GNSS Service (IGS) analysis centers. These include the GPS Solar Pressure Model (GSPM; Bar-Sever and Kuang in The Interplanetary Network Progress Report 42-160, 2005) and variants of the so-called DYB model (Springer et al. in Adv Space Res 23:673-676, 1999). Our results show that currently observed differences between GPS orbit solutions from the various IGS analysis centers are in large part explained by differences between their respective approaches to modeling SRP. DYB-based strategies typically generate orbit solutions that have the smallest differences with respect to the IGS final combined solution, largely because the DYB approach is most commonly used by the contributing analysis centers. However, various internal and external metrics, including ambiguity resolution statistics and satellite laser ranging observations, support continued use of the GSPM-based approach for precise orbit determination of the GPS constellation, at least when using the GIPSY-OASIS software. C1 [Sibthorpe, Ant; Bertiger, Willy; Desai, Shailen D.; Haines, Bruce; Harvey, Nate; Weiss, Jan P.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Sibthorpe, A (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM anthony.j.sibthorpe@jpl.nasa.gov RI Sibthorpe, Ant/C-1940-2012 FU California Institute of Technology; National Aeronautics and Space Administration FX The research was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology ((c) 2010 California Institute of Technology, government sponsorship acknowledged), under a contract with the National Aeronautics and Space Administration. Our thanks go to Gerd Gendt and Tim Springer for providing additional information about the solar radiation pressure modeling and estimation strategies used by GFZ and ESA, respectively. We are grateful to the IGS for making available their final combined orbit products (Dowet al. 2009), Minkang Cheng, Da Kuang, Yoaz Bar-Sever and the four anonymous reviewers who helped to improve this article. NR 39 TC 8 Z9 9 U1 1 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-7714 EI 1432-1394 J9 J GEODESY JI J. Geodesy PD AUG PY 2011 VL 85 IS 8 BP 505 EP 517 DI 10.1007/s00190-011-0450-6 PG 13 WC Geochemistry & Geophysics; Remote Sensing SC Geochemistry & Geophysics; Remote Sensing GA 795UT UT WOS:000293002100004 ER PT J AU Plante, I AF Plante, Ianik TI A Monte-Carlo step-by-step simulation code of the non-homogeneous chemistry of the radiolysis of water and aqueous solutions. Part I: theoretical framework and implementation SO RADIATION AND ENVIRONMENTAL BIOPHYSICS LA English DT Article ID RADIATION-INDUCED SPURS; LIQUID WATER; SMOLUCHOWSKI EQUATION; PERMITTIVITY SOLVENTS; STOCHASTIC SIMULATION; ELECTRON TRACKS; PROTON TRACKS; DIFFUSION; KINETICS; RECOMBINATION AB The importance of the radiolysis of water in irradiation of biological systems has motivated considerable theoretical and experimental work in the radiation chemistry of water and aqueous solutions. In particular, Monte-Carlo simulations of radiation track structure and non-homogeneous chemistry have greatly contributed to the understanding of experimental results in radiation chemistry of heavy ions. Actually, most simulations of the non-homogeneous chemistry are done using the Independent Reaction Time (IRT) method, a very fast technique. The main limitation of the IRT method is that the positions of the radiolytic species are not calculated as a function of time, which is needed to simulate the irradiation of more complex systems. Step-by-step (SBS) methods, which are able to provide such information, have been used only sparsely because these are time consuming in terms of calculation. Recent improvements in computer performance now allow the regular use of the SBS method in radiation chemistry. In the present paper, the first of a series of two, the SBS method is reviewed in detail. To these ends, simulation of diffusion of particles and chemical reactions in aqueous solutions is reviewed, and implementation of the program is discussed. Simulation of model systems is then performed to validate the adequacy of stepwise diffusion and reaction schemes. In the second paper, radiochemical yields of simulated radiation tracks calculated by the SBS program in different conditions of LET, pH, and temperature are compared with results from the IRT program and experimental data. C1 [Plante, Ianik] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Plante, Ianik] Univ Space Res Assoc, Div Space Life Sci, Houston, TX 77058 USA. RP Plante, I (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. EM Ianik.Plante-1@nasa.gov FU National Science and Engineering Research Council of Canada; Canadian Space Agency FX Most of this work was done during the PhD program of the author under the supervision of Prof. Jean-Paul Jay-Gerin at the University of Sherbrooke. The author would like to thank Profs. Luc Devroye and Razi Naqvi, and Dr. Francis A. Cucinotta for useful discussions. The help of the Center for Scientific Computing of the University of Sherbrooke is greatly acknowledged. The author would also like to thank the National Science and Engineering Research Council of Canada and the Canadian Space Agency for granting this work. NR 46 TC 11 Z9 11 U1 0 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0301-634X J9 RADIAT ENVIRON BIOPH JI Radiat. Environ. Biophys. PD AUG PY 2011 VL 50 IS 3 BP 389 EP 403 DI 10.1007/s00411-011-0367-8 PG 15 WC Biology; Biophysics; Environmental Sciences; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Environmental Sciences & Ecology; Radiology, Nuclear Medicine & Medical Imaging GA 794VV UT WOS:000292930300008 PM 21562854 ER PT J AU Plante, I AF Plante, Ianik TI A Monte-Carlo step-by-step simulation code of the non-homogeneous chemistry of the radiolysis of water and aqueous solutions-Part II: calculation of radiolytic yields under different conditions of LET, pH, and temperature SO RADIATION AND ENVIRONMENTAL BIOPHYSICS LA English DT Article ID FERROUS SULFATE DOSIMETER; LET ION RADIOLYSIS; LIQUID WATER; PULSE-RADIOLYSIS; RADIATION-CHEMISTRY; MOLECULAR YIELDS; ELECTRON RADIOLYSIS; HYDRATED ELECTRON; SOLVATED ELECTRON; TRANSIENT YIELDS AB The importance of the radiolysis of water in the initial events following irradiation of biological systems has motivated considerable theoretical and experimental work in the field of radiation chemistry of water and aqueous systems. These studies include Monte-Carlo simulations of the radiation track structure and of the non-homogeneous chemical stage, which have been successfully used to calculate the yields of radiolytic species (H-center dot, (OH)-O-center dot, H-2, H2O2, e (aq) (-) , aEuro broken vertical bar). Most techniques used for the simulation of the non-homogeneous chemical stage such as the independent reaction time (IRT) technique and diffusion kinetics methods do not calculate the time evolution of the positions of the radiolytic species. This is a major limitation to their extension to the simulation of the irradiation of radiobiological systems. Step-by-step (SBS) simulation programs provide such information, but they are very demanding in term of computer power and storage capacity. Recent improvements in computer performance now allow the regular use of the SBS method in radiation chemistry simulations. In the first of a series of two papers, the SBS method has been reviewed in details and the implementation of a SBS code has been discussed. In this second paper, the results of several studies are presented: (1) the time evolution of the radiolytic yields from the formation of the radiation track to 10(-6) s; (2) the effect of pH on yields (pH similar to 0.4-7.0); (3) the effect of proton energy (and LET) on yields (300 MeV-0.1 MeV), and iv) the effect of the ion type (H-1(+), He-4(2+), C-12(6+)) on yields. Nonbiological applications, i.e., the study of the temperature on the yields (about 25-300A degrees C) and the simulation of the time evolution of G(Fe3+) in the Fricke dosimeter are also discussed. C1 [Plante, Ianik] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Plante, Ianik] Univ Space Res Assoc, Div Space Life Sci, Houston, TX 77058 USA. RP Plante, I (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. EM Ianik.Plante-1@nasa.gov FU National Science and Engineering Council of Canada; Canadian Space Agency FX Most of this work was done during the PhD program of the author under the supervision of Prof. Jean-Paul Jay-Gerin at the University of Sherbrooke. The author would like to thank Profs. Luc Devroye and Razi Naqvi, and Dr. Francis A. Cucinotta for useful discussions. The help of the Center for Scientific Computing of the University of Sherbrooke is greatly acknowledged. The author would also like to thank the National Science and Engineering Council of Canada and the Canadian Space Agency for granting this work. NR 77 TC 8 Z9 8 U1 0 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0301-634X J9 RADIAT ENVIRON BIOPH JI Radiat. Environ. Biophys. PD AUG PY 2011 VL 50 IS 3 BP 405 EP 415 DI 10.1007/s00411-011-0368-7 PG 11 WC Biology; Biophysics; Environmental Sciences; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Environmental Sciences & Ecology; Radiology, Nuclear Medicine & Medical Imaging GA 794VV UT WOS:000292930300009 PM 21594646 ER PT J AU Peterson, D AF Peterson, Don TI RED PLANET MARS LIFE SO SCIENTIFIC AMERICAN LA English DT Letter C1 [Peterson, Don] USAF, El Lago, TX USA. [Peterson, Don] NASA, El Lago, TX USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0036-8733 J9 SCI AM JI Sci.Am. PD AUG PY 2011 VL 305 IS 2 BP 10 EP 10 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 794SA UT WOS:000292920400002 ER PT J AU Zaman, K McDonald, M Mahadevan, S Green, L AF Zaman, Kais McDonald, Mark Mahadevan, Sankaran Green, Lawrence TI Robustness-based design optimization under data uncertainty SO STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION LA English DT Article DE Robust design; Data uncertainty; Multi-objective optimization ID DIMENSION-REDUCTION METHOD; MULTIDIMENSIONAL INTEGRATION; STOCHASTIC MECHANICS; CONFIDENCE-INTERVALS; PROBABILITY MOMENTS; FEASIBILITY; CONSTRAINTS; FORMULATION; VARIABLES AB This paper proposes formulations and algorithms for design optimization under both aleatory (i.e., natural or physical variability) and epistemic uncertainty (i.e., imprecise probabilistic information), from the perspective of system robustness. The proposed formulations deal with epistemic uncertainty arising from both sparse and interval data without any assumption about the probability distributions of the random variables. A decoupled approach is proposed in this paper to un-nest the robustness-based design from the analysis of non-design epistemic variables to achieve computational efficiency. The proposed methods are illustrated for the upper stage design problem of a two-stage-to-orbit (TSTO) vehicle, where the information on the random design inputs are only available as sparse point data and/or interval data. As collecting more data reduces uncertainty but increases cost, the effect of sample size on the optimality and robustness of the solution is also studied. A method is developed to determine the optimal sample size for sparse point data that leads to the solutions of the design problem that are least sensitive to variations in the input random variables. C1 [Zaman, Kais; McDonald, Mark; Mahadevan, Sankaran] Vanderbilt Univ, Nashville, TN 37203 USA. [Green, Lawrence] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Mahadevan, S (reprint author), Vanderbilt Univ, Nashville, TN 37203 USA. EM sankaran.mahadevan@vanderbilt.edu FU NASA Langley Research Center [NNX08AF56A1] FX This study was supported by funds from NASA Langley Research Center under Cooperative Agreement No. NNX08AF56A1 (Technical Monitor: Mr. Lawrence Green). The support is gratefully acknowledged. NR 52 TC 13 Z9 13 U1 2 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1615-147X J9 STRUCT MULTIDISCIP O JI Struct. Multidiscip. Optim. PD AUG PY 2011 VL 44 IS 2 BP 183 EP 197 DI 10.1007/s00158-011-0622-2 PG 15 WC Computer Science, Interdisciplinary Applications; Engineering, Multidisciplinary; Mechanics SC Computer Science; Engineering; Mechanics GA 794GT UT WOS:000292884200003 ER PT J AU Svensson, G Holtslag, AAM Kumar, V Mauritsen, T Steeneveld, GJ Angevine, WM Bazile, E Beljaars, A de Bruijn, EIF Cheng, A Conangla, L Cuxart, J Ek, M Falk, MJ Freedman, F Kitagawa, H Larson, VE Lock, A Mailhot, J Masson, V Park, S Pleim, J Soderberg, S Weng, W Zampieri, M AF Svensson, G. Holtslag, A. A. M. Kumar, V. Mauritsen, T. Steeneveld, G. J. Angevine, W. M. Bazile, E. Beljaars, A. de Bruijn, E. I. F. Cheng, A. Conangla, L. Cuxart, J. Ek, M. Falk, M. J. Freedman, F. Kitagawa, H. Larson, V. E. Lock, A. Mailhot, J. Masson, V. Park, S. Pleim, J. Soderberg, S. Weng, W. Zampieri, M. TI Evaluation of the Diurnal Cycle in the Atmospheric Boundary Layer Over Land as Represented by a Variety of Single-Column Models: The Second GABLS Experiment SO BOUNDARY-LAYER METEOROLOGY LA English DT Article DE Diurnal cycle; GABLS; Model intercomparison; Single-column models; Turbulence parametrizations ID TURBULENCE CLOSURE SCHEME; LARGE-EDDY SIMULATIONS; PART I; CONTRASTING NIGHTS; MORNING TRANSITION; PARAMETERIZATION; MESOSCALE; CASES-99; SURFACE; SYSTEM AB We present the main results from the second model intercomparison within the GEWEX (Global Energy and Water cycle EXperiment) Atmospheric Boundary Layer Study (GABLS). The target is to examine the diurnal cycle over land in today's numerical weather prediction and climate models for operational and research purposes. The set-up of the case is based on observations taken during the Cooperative Atmosphere-Surface Exchange Study-1999 (CASES-99), which was held in Kansas, USA in the early autumn with a strong diurnal cycle with no clouds present. The models are forced with a constant geostrophic wind, prescribed surface temperature and large-scale divergence. Results from 30 different model simulations and one large-eddy simulation (LES) are analyzed and compared with observations. Even though the surface temperature is prescribed, the models give variable near-surface air temperatures. This, in turn, gives rise to differences in low-level stability affecting the turbulence and the turbulent heat fluxes. The increase in modelled upward sensible heat flux during the morning transition is typically too weak and the growth of the convective boundary layer before noon is too slow. This is related to weak modelled near-surface winds during the morning hours. The agreement between the models, the LES and observations is the best during the late afternoon. From this intercomparison study, we find that modelling the diurnal cycle is still a big challenge. For the convective part of the diurnal cycle, some of the first-order schemes perform somewhat better while the turbulent kinetic energy (TKE) schemes tend to be slightly better during nighttime conditions. Finer vertical resolution tends to improve results to some extent, but is certainly not the solution to all the deficiencies identified. C1 [Svensson, G.] Stockholm Univ, Dept Meteorol, S-10691 Stockholm, Sweden. [Holtslag, A. A. M.; Steeneveld, G. J.] Wageningen Univ, Meteorol & Air Qual Sect, Wageningen, Netherlands. [Kumar, V.] Johns Hopkins Univ, Dept Geog & Environm Engn, Baltimore, MD 21218 USA. [Mauritsen, T.] Max Planck Inst Meteorol, Hamburg, Germany. [Angevine, W. M.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Angevine, W. M.] NOAA, ESRL, Boulder, CO USA. [Bazile, E.; Masson, V.] Meteo France, GAME, CNRM, CNRS, Toulouse, France. [Beljaars, A.] European Ctr Medium Range Weather Forecast, Reading, Berks, England. [de Bruijn, E. I. F.] Royal Netherlands Meteorol Inst, KNMI, NL-3730 AE De Bilt, Netherlands. [Cheng, A.] Sci Syst & Applicat Inc, Hampton, VA USA. [Cheng, A.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Conangla, L.] Univ Politecn Cataluna, Dept Fis Aplicada, Manresa, Spain. [Cuxart, J.] Univ Illes Balears, Dept Fis, Grp Meteorol, Ciutat De Mallorca, Spain. [Ek, M.] NOAA, Ctr Sci, Natl Ctr Environm Predict, Environm Modeling Ctr, Camp Springs, MD USA. [Falk, M. J.; Larson, V. E.] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA. [Freedman, F.] San Jose State Univ, San Jose, CA 95192 USA. [Kitagawa, H.] Japan Meteorol Agcy, Tokyo, Japan. [Lock, A.] Met Off, Exeter, Devon, England. [Mailhot, J.] Environm Canada, Meteorol Res Div, Dorval, PQ, Canada. [Park, S.] Natl Ctr Atmospher Res, Climate & Global Dynam Div, Boulder, CO 80307 USA. [Pleim, J.] US EPA, Res Triangle Pk, NC 27711 USA. [Soderberg, S.] WeatherTech Scandinavia, Uppsala, Sweden. [Weng, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Zampieri, M.] CNR, ISAC, I-40126 Bologna, Italy. RP Svensson, G (reprint author), Stockholm Univ, Dept Meteorol, S-10691 Stockholm, Sweden. EM gunilla@misu.su.se RI Mauritsen, Thorsten/G-5880-2013; Angevine, Wayne/H-9849-2013; Steeneveld, Gert-Jan/B-2816-2010; Pleim, Jonathan Pleim/C-1331-2017; Holtslag, Albert/B-7842-2010; Manager, CSD Publications/B-2789-2015 OI Mauritsen, Thorsten/0000-0003-1418-4077; Angevine, Wayne/0000-0002-8021-7116; Steeneveld, Gert-Jan/0000-0002-5922-8179; Pleim, Jonathan Pleim/0000-0001-6190-6082; Holtslag, Albert/0000-0003-0995-2481; NR 60 TC 64 Z9 64 U1 3 U2 48 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0006-8314 J9 BOUND-LAY METEOROL JI Bound.-Layer Meteor. PD AUG PY 2011 VL 140 IS 2 BP 177 EP 206 DI 10.1007/s10546-011-9611-7 PG 30 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 789YW UT WOS:000292556600001 ER PT J AU Rietmeijer, FJM Nuth, JA AF Rietmeijer, Frans J. M. Nuth, Joseph A., III TI Deep metastable eutectic nanometer-scale particles in the MgO-Al2O3-SiO2 system SO JOURNAL OF NANOPARTICLE RESEARCH LA English DT Article DE Nanoparticles; Chemical composition; Vapor phase condensation; Laboratory experiments; Deep metastable eutectics; Cordierite; Aerosols; Nanocomposite synthesis ID SOLID CONDENSATION; GAS; MAGNESIOSILICA; ENVIRONMENTS; OSUMILITE; SILICATE; SMOKES; VAPOR AB Laboratory vapor phase condensation experiments systematically yield amorphous, homogeneous, nanoparticles with unique deep metastable eutectic compositions. They formed during the nucleation stage in rapidly cooling vapor systems. These nanoparticles evidence the complexity of the nucleation stage. Similar complex behavior may occur during the nucleation stage in quenched-melt laboratory experiments. Because of the bulk size of the quenched system many of such deep metastable eutectic nanodomains will anneal and adjust to local equilibrium but some will persist metastably depending on the time-temperature regime and melt/glass transformation. C1 [Rietmeijer, Frans J. M.] 1 Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Nuth, Joseph A., III] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Astrochem Lab, Greenbelt, MD 20771 USA. RP Rietmeijer, FJM (reprint author), 1 Univ New Mexico, Dept Earth & Planetary Sci, MSC 03-2040, Albuquerque, NM 87131 USA. EM fransjmr@unm.edu RI Nuth, Joseph/E-7085-2012 FU NASA [NNX10AK28G]; NASA Headquarter FX This study was supported by grant NNX10AK28G from the NASA Cosmochemistry Program (FJMR). JAN is grateful for the support received from the Cosmochemistry Program at NASA Headquarters. NR 33 TC 3 Z9 3 U1 1 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-0764 J9 J NANOPART RES JI J. Nanopart. Res. PD AUG PY 2011 VL 13 IS 8 BP 3149 EP 3156 DI 10.1007/s11051-010-0210-1 PG 8 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 792MG UT WOS:000292749100008 ER PT J AU Yang, P Wendisch, M Bi, L Kattawar, G Mishchenko, M Hu, YX AF Yang, Ping Wendisch, Manfred Bi, Lei Kattawar, George Mishchenko, Michael Hu, Yongxiang TI Dependence of extinction cross-section on incident polarization state and particle orientation SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Extinction; Polarization; Ice crystal; Orientation ID OPTICAL THEOREM; LIGHT-SCATTERING; CIRRUS CLOUDS; ICE CRYSTALS; GRAINS AB This note reports on the effects of the polarization state of an incident quasi-monochromatic parallel beam of radiation and the orientation of a hexagonal ice particle with respect to the incident direction on the extinction process. When the incident beam is aligned with the six-fold rotational symmetry axis, the extinction is independent of the polarization state of the incident light. For other orientations, the extinction cross-section for linearly polarized light can be either larger or smaller than its counterpart for an unpolarized incident beam. Therefore, the attenuation of a quasi-monochromatic radiation beam by an ice cloud depends on the polarization state of the beam if ice crystals within the cloud are not randomly oriented. Furthermore, a case study of the extinction of light by a quartz particle is also presented to illustrate the dependence of the extinction cross-section on the polarization state of the incident light. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Wendisch, Manfred] Univ Leipzig, Leipzig Inst Meteorol, D-04103 Leipzig, Germany. [Bi, Lei; Kattawar, George] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Mishchenko, Michael] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Hu, Yongxiang] NASA, Langley Res Ctr, Climate Sci Branch, Hampton, VA 23665 USA. RP Yang, P (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. EM pyang@tamu.edu RI Yang, Ping/B-4590-2011; Hu, Yongxiang/K-4426-2012; Wendisch, Manfred/E-4175-2013; Mishchenko, Michael/D-4426-2012; Bi, Lei/B-9242-2011 OI Wendisch, Manfred/0000-0002-4652-5561; FU NASA [SMD-09-1413, NNX08A194G, NNX08AF68G]; National Science Foundation (NSF) [ATM-0803779]; Office of Naval Research [N00014-06-1-0069] FX The authors thank M.A. Yurkin and A.G. Hoekstra for their ADDA code. A major portion of numerical computation was conducted by using the NASA High-End Computing (HEC) resources under award SMD-09-1413. Ping Yang acknowledges support from NASA Grants NNX08A194G and NNX08AF68G and the National Science Foundation (NSF) Grant ATM-0803779. George Kattawar acknowledges support by the Office of Naval Research under Contract N00014-06-1-0069. NR 24 TC 10 Z9 11 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD AUG PY 2011 VL 112 IS 12 BP 2035 EP 2039 DI 10.1016/j.jqsrt.2011.04.012 PG 5 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 791JK UT WOS:000292661300011 ER PT J AU Wilson, EL Neveu, M Riris, H Georgieva, EM Heaps, WS AF Wilson, Emily L. Neveu, Marc Riris, Haris Georgieva, Elena M. Heaps, William S. TI A hollow-waveguide gas correlation radiometer for ultra-precise column measurements of formaldehyde on Mars SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE hollow waveguide; hollow optical fiber; gas correlation radiometer; passive; remote sensing; Mars; methane; formaldehyde; water vapor; isotopic ratios ID METHANE; SUBSURFACE; ATMOSPHERE; CH4 AB We present preliminary results in the development of a miniaturized gas correlation radiometer that implements a hollow-core optical fiber (hollow-waveguide) gas correlation cell. The substantial reduction in mass and volume of the gas correlation cell makes this technology appropriate for an orbital mission-capable of pinpointing sources of trace gases in the Martian atmosphere. Here, we demonstrate a formaldehyde (H2CO) sensor and report a detection limit equivalent to similar to 30 ppb in the Martian atmosphere. The relative simplicity of the technique allows it to be expanded to measure a range of atmospheric trace gases of interest on Mars such as methane (CH4), water vapor (H2O), deuterated water vapor (HDO), and methanol (CH3OH). Performance of a formaldehyde instrument in a Mars orbit has been simulated assuming a 3 m long, 1000 mu m inner diameter hollow-core fiber gas correlation cell, a 92.8 degrees sun-synchronous orbit from 400 km with a horizontal sampling scale of 10 km x 10 km. Initial results indicate that for 1 s of averaging, a detection limit of 1 ppb is possible. C1 [Wilson, Emily L.; Riris, Haris; Heaps, William S.] NASA, Goddard Space Flight Ctr, Laser & Electroopt Branch, Greenbelt, MD 20771 USA. [Neveu, Marc] NASA Acad, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Neveu, Marc] Inst Super Aeronaut & Espace, Toulouse, France. [Georgieva, Elena M.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. RP Wilson, EL (reprint author), NASA, Goddard Space Flight Ctr, Laser & Electroopt Branch, Greenbelt, MD 20771 USA. EM Emily.L.Wilson@nasa.gov RI Wilson, Emily/C-9158-2012; Riris, Haris/D-1004-2013 OI Wilson, Emily/0000-0001-5634-3713; FU NASA; NASA Goddard Space Flight Center FX This research was supported by the NASA Planetary Instrument Definition and Development Program and the NASA Goddard Space Flight Center Internal Research and Development program. NR 17 TC 1 Z9 1 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD AUG PY 2011 VL 22 IS 8 AR 085902 DI 10.1088/0957-0233/22/8/085902 PG 6 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 792UD UT WOS:000292775000037 ER PT J AU Leckey, CAC Hinders, MK AF Leckey, Cara A. C. Hinders, Mark K. TI NEWTONIAN VISCOUS EFFECTS IN ULTRASONIC EMBOLI REMOVAL FROM BLOOD SO ULTRASOUND IN MEDICINE AND BIOLOGY LA English DT Article DE Microemboli; Cardiopulmonary bypass; Acoustic radiation force ID FREQUENCY POWER-LAW; ACOUSTIC RADIATION PRESSURE; COMPUTATIONAL FLUID-DYNAMICS; CARDIOPULMONARY BYPASS; DOPPLER ULTRASOUND; BULK VISCOSITY; WAVE-EQUATION; SHEAR RATE; MEDIA; MICROEMBOLI AB We have modeled the removal of emboli from cardiopulmonary bypass circuits via acoustic radiation force. Unless removed, emboli can result in cognitive deficit for those undergoing heart surgery with the use of extracorporeal circuits. There are a variety of mathematical formulations in the literature describing acoustic radiation force, but a lingering question that remains is how important viscosity of the blood and/or embolus is to the process. We implemented both inviscid and viscous models for acoustic radiation force on a sphere immersed in a fluid. We found that for this specific application, the inviscid model seems to be sufficient for predicting acoustic force upon emboli when compared with the chosen viscous model. Thus, the much simpler inviscid model could be used to optimize experimental techniques for ultrasonic emboli removal. (E-mail: cara.ac.leckey@nasa.gov) Published by Elsevier Inc. on behalf of World Federation for Ultrasound in Medicine & Biology. C1 [Leckey, Cara A. C.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Hinders, Mark K.] Coll William & Mary, Dept Appl Sci, Williamsburg, VA USA. RP Leckey, CAC (reprint author), NASA, Langley Res Ctr, MS 231, Hampton, VA 23681 USA. EM cara.ac.leckey@nasa.gov FU Virginia Space Grant Consortium FX The authors thank Dr. Ted Lynch for helpful discussions, Tom Crockett for assistance using the Sciclone computing cluster at the College of William and Mary, and the Virginia Space Grant Consortium for partial funding. NR 62 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0301-5629 J9 ULTRASOUND MED BIOL JI Ultrasound Med. Biol. PD AUG PY 2011 VL 37 IS 8 BP 1340 EP 1349 DI 10.1016/j.ultrasmedbio.2011.05.009 PG 10 WC Acoustics; Radiology, Nuclear Medicine & Medical Imaging SC Acoustics; Radiology, Nuclear Medicine & Medical Imaging GA 786CT UT WOS:000292281600017 PM 21684063 ER PT J AU Ren, WJ Cebon, D Arnold, SM AF Ren, Weiju Cebon, David Arnold, Steven M. TI Effective Materials Property Information Management for the 21st Century SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article AB This paper discusses key principles for the development of material property information management software systems. The growing need for automated material information management is fueled, in part, by the demand for higher efficiency in material testing, product design, and engineering analysis. But equally important, organizations are being driven by the need for consistency, quality, and traceability of data, as well as control of access to proprietary or sensitive information. Further, the use of increasingly sophisticated nonlinear, anisotropic, and multiscale engineering analyses requires both processing of large volumes of test data for the development of constitutive models and complex material data input for computer-aided engineering software. Finally, the globalization of economy often generates great needs for sharing a single "gold source" of material information between members of global engineering teams in extended supply chains. Fortunately, material property management systems have kept pace with the growing user demands and have evolved into versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export, and analysis capabilities; (iii) data "pedigree" traceability mechanisms; (iv) data searching, reporting, and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper, the important requirements for advanced material data management systems, future challenges, and opportunities, such as automated error checking, data quality characterization, identification of gaps in data sets, as well as functionalities and business models to fuel database growth and maintenance are discussed. [DOI: 10.1115/1.4002925] C1 [Ren, Weiju] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Cebon, David] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England. [Arnold, Steven M.] NASA, Struct & Mat Div, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Ren, WJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, MS-6155,Bldg 4500-S, Oak Ridge, TN 37831 USA. EM renw@ornl.gov; dc@eng.cam.ac.uk; steven.m.arnold@nasa.gov FU U.S. Department of Energy, Office of Nuclear Energy Science and Technology [DE-AC05-00OR22725] FX W.R. thanks the U.S. Department of Energy, Office of Nuclear Energy Science and Technology under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed by UT-Battelle, LLC. All authors are grateful to their colleagues in the MDMC for many useful discussions on all the key issues addressed in this paper. NR 4 TC 0 Z9 0 U1 2 U2 9 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD AUG PY 2011 VL 133 IS 4 AR 044002 DI 10.1115/1.4002925 PG 8 WC Engineering, Mechanical SC Engineering GA 774RK UT WOS:000291403600016 ER PT J AU Butz, A Guerlet, S Hasekamp, O Schepers, D Galli, A Aben, I Frankenberg, C Hartmann, JM Tran, H Kuze, A Keppel-Aleks, G Toon, G Wunch, D Wennberg, P Deutscher, N Griffith, D Macatangay, R Messerschmidt, J Notholt, J Warneke, T AF Butz, A. Guerlet, S. Hasekamp, O. Schepers, D. Galli, A. Aben, I. Frankenberg, C. Hartmann, J. -M. Tran, H. Kuze, A. Keppel-Aleks, G. Toon, G. Wunch, D. Wennberg, P. Deutscher, N. Griffith, D. Macatangay, R. Messerschmidt, J. Notholt, J. Warneke, T. TI Toward accurate CO2 and CH4 observations from GOSAT SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GASES OBSERVING SATELLITE; CARBON-DIOXIDE; METHANE EMISSIONS; INFRARED-SPECTRA; CALIBRATION; DATABASE; NETWORK AB The column-average dry air mole fractions of atmospheric carbon dioxide and methane (X-CO2 and X-CH4) are inferred from observations of backscattered sunlight conducted by the Greenhouse gases Observing SATellite (GOSAT). Comparing the first year of GOSAT retrievals over land with colocated ground-based observations of the Total Carbon Column Observing Network (TCCON), we find an average difference (bias) of -0.05% and -0.30% for X-CO2 and X-CH4 with a station-to-station variability (standard deviation of the bias) of 0.37% and 0.26% among the 6 considered TCCON sites. The root-mean square deviation of the bias-corrected satellite retrievals from colocated TCCON observations amounts to 2.8 ppm for X-CO2 and 0.015 ppm for X-CH4. Without any data averaging, the GOSAT records reproduce general source/sink patterns such as the seasonal cycle of X-CO2 suggesting the use of the satellite retrievals for constraining surface fluxes. Citation: Butz, A., et al. (2011), Toward accurate CO2 and CH4 observations from GOSAT, Geophys. Res. Lett., 38, L14812, doi:10.1029/2011GL047888. C1 [Butz, A.] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, D-76344 Leopoldshafen, Germany. [Butz, A.; Guerlet, S.; Hasekamp, O.; Schepers, D.; Galli, A.; Aben, I.] Netherlands Inst Space Res, Utrecht, Netherlands. [Deutscher, N.; Griffith, D.; Macatangay, R.] Univ Wollongong, Ctr Atmospher Chem, Wollongong, NSW 2522, Australia. [Frankenberg, C.; Toon, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hartmann, J. -M.; Tran, H.] Univ Paris Diderot, Inst Pierre Simon Laplace, Univ Paris Est Creteil, Lab Interuniv Syst Atmospher,UMR 7583,CNRS, F-94010 Creteil, France. [Keppel-Aleks, G.; Wunch, D.; Wennberg, P.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [Kuze, A.] Japan Aerosp Explorat Agcy, Satellite Applicat & Promot Ctr, Tsukuba, Ibaraki 3058505, Japan. [Deutscher, N.; Messerschmidt, J.; Notholt, J.; Warneke, T.] Univ Bremen, Inst Environm Phys, D-28359 Bremen, Germany. RP Butz, A (reprint author), Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Campus Nord,H v Helmholtz Pl 1, D-76344 Leopoldshafen, Germany. EM andre.butz@kit.edu RI Wennberg, Paul/A-5460-2012; Butz, Andre/A-7024-2013; Keppel-Aleks, Gretchen/A-3239-2013; Tran, Ha/I-5076-2013; Deutscher, Nicholas/E-3683-2015; KUZE, AKIHIKO/J-2074-2016; Frankenberg, Christian/A-2944-2013; Notholt, Justus/P-4520-2016 OI Butz, Andre/0000-0003-0593-1608; Deutscher, Nicholas/0000-0002-2906-2577; KUZE, AKIHIKO/0000-0001-5415-3377; Frankenberg, Christian/0000-0002-0546-5857; Notholt, Justus/0000-0002-3324-885X FU Dutch User Support Program [GO-2005/064, GO-AO/21]; ESA's CCI on GHGs; European Commission [218793]; DFGBU2599/1-1; NASA [NNX08A186G]; Orbiting Carbon Observatory Program [NAS7-03001]; DOE/ARM; European Commission FX Access to GOSAT data was granted through the 2nd GOSAT research announcement jointly issued by JAXA, NIES, and MOE. Funding of this research came from the Dutch User Support Program under project GO-2005/064 and GO-AO/21 (DS), from ESA's CCI on GHGs and the European Commission's 7th framework program under grant agreement 218793 (SG), from DFG's Emmy-Noether program under project RemoteC BU2599/1-1 (AB). ECMWF ERA Interim analyses are provided through http://data-portal.ecmwf.int/data/d/interim_daily/. GTOPO30 is available from the U.S. Geological Survey through the Earth Resources Observation and Science (EROS) Center (http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30_in fo). CarbonTracker data are provided by NOAA ESRL, Boulder, Colorado, USA from the Web site at http://carbontracker.noaa.gov. TM4 fields have been made available through Jan-Fokke Meirink, Royal Netherlands Meteorological Institute (KNMI). US funding for TCCON comes from NASA's Terrestrial Ecology Program (NNX08A186G), the Orbiting Carbon Observatory Program (NAS7-03001), the DOE/ARM Program and the Atmospheric CO2 Observations from Space Program. Some of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the NASA. We acknowledge the support of the European Commission within the 6th Framework Program through the Integrated Infrastructure Initiative IMECC and the Integrated Project GEOmon. We thank AeroMeteo Service, (Bialystok, Poland) and the RAMCES team at LSCE (Gif-sur-Yvette, France) for maintaining the Bialystok and Orleans FTS sites and providing station logistics. NR 22 TC 132 Z9 133 U1 4 U2 47 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 30 PY 2011 VL 38 AR L14812 DI 10.1029/2011GL047888 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 800SK UT WOS:000293386900001 ER PT J AU Milillo, A Orsini, S Hsieh, KC Baragiola, R Fama, M Johnson, R Mura, A Plainaki, C Sarantos, M Cassidy, TA De Angelis, E Desai, M Goldstein, R Ip, WH Killen, R Livi, S AF Milillo, A. Orsini, S. Hsieh, K. C. Baragiola, R. Fama, M. Johnson, R. Mura, A. Plainaki, C. Sarantos, M. Cassidy, T. A. De Angelis, E. Desai, M. Goldstein, R. Ip, W. -H. Killen, R. Livi, S. TI Observing planets and small bodies in sputtered high-energy atom fluxes SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ION MASS-SPECTROMETRY; MERCURYS EXOSPHERE; SOLAR-WIND; WATER ICE; SURFACE-COMPOSITION; MAGNETIC-FIELD; LUNAR-SURFACE; MAGNETOSPHERE; MODEL; ATMOSPHERES AB The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the solar system is caused by various processes, induced by photons, energetic ions, and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA and suggests the need for quantitative results from laboratory simulations and molecular physic modeling in order to understand SHEA data from planetary missions. In Appendix A, referenced computer simulations using existing sputtering data are reviewed. C1 [Milillo, A.; Orsini, S.; Mura, A.; Plainaki, C.; De Angelis, E.] INAF IFSI, I-00133 Rome, Italy. [Baragiola, R.; Fama, M.; Johnson, R.] Univ Virginia, Charlottesville, VA 22904 USA. [Cassidy, T. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Desai, M.; Goldstein, R.; Livi, S.] SW Res Inst, San Antonio, TX 78228 USA. [Hsieh, K. C.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Ip, W. -H.] Natl Cent Univ, Dept Astron, Jhongli 32001, Taiwan. [Killen, R.] NASA GSFC, Planetary Magnetospheres Div, Greenbelt, MD 20771 USA. [Sarantos, M.] NASA GSFC, Heliophys Div, Greenbelt, MD 20771 USA. RP Milillo, A (reprint author), INAF IFSI, Via Fosso del Cavaliere, I-00133 Rome, Italy. EM anna.milillo@ifsi-roma.inaf.it RI Killen, Rosemary/E-7127-2012; Sarantos, Menelaos/H-8136-2013; OI Plainaki, Christina /0000-0003-1483-5052; ORSINI, STEFANO/0000-0002-5588-1920; Milillo, Anna/0000-0002-0266-2556; De Angelis, Elisabetta/0000-0003-0537-6376; Fama, Marcelo/0000-0003-3476-4669; Mura, Alessandro/0000-0002-4552-4292 FU Italian Space Agency [I-081-09-0] FX This paper is supported by the Italian Space Agency I-081-09-0 agreement for the BepiColombo/SERENA scientific activity. The comprehensiveness and quality of this paper are made possible by the critical reading and advice of G. Ho, M. Hilchenbach, and S. Selci. NR 96 TC 4 Z9 5 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 30 PY 2011 VL 116 AR A07229 DI 10.1029/2011JA016530 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 800PW UT WOS:000293376400003 ER PT J AU Hilker, T Coops, NC Hall, FG Nichol, CJ Lyapustin, A Black, TA Wulder, MA Leuning, R Barr, A Hollinger, DY Munger, B Tucker, CJ AF Hilker, Thomas Coops, Nicholas C. Hall, Forrest G. Nichol, Caroline J. Lyapustin, Alexei Black, T. Andrew Wulder, Michael A. Leuning, Ray Barr, Alan Hollinger, David Y. Munger, Bill Tucker, Compton J. TI Inferring terrestrial photosynthetic light use efficiency of temperate ecosystems from space SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID PHOTOCHEMICAL REFLECTANCE INDEX; CARBON-DIOXIDE FLUXES; GROSS PRIMARY PRODUCTION; BOREAL FOREST STANDS; DOUGLAS-FIR FOREST; LEAF-AREA INDEX; WATER-VAPOR; MODIS; SATELLITE; MODELS AB Terrestrial ecosystems absorb about 2.8 Gt C yr(-1), which is estimated to be about a quarter of the carbon emitted from fossil fuel combustion. However, the uncertainties of this sink are large, on the order of +/- 40%, with spatial and temporal variations largely unknown. One of the largest factors contributing to the uncertainty is photosynthesis, the process by which plants absorb carbon from the atmosphere. Currently, photosynthesis, or gross ecosystem productivity (GEP), can only be inferred from flux towers by measuring the exchange of CO(2) in the surrounding air column. Consequently, carbon models suffer from a lack of spatial coverage of accurate GEP observations. Here, we show that photosynthetic light use efficiency (epsilon), hence photosynthesis, can be directly inferred from spaceborne measurements of reflectance. We demonstrate that the differential between reflectance measurements in bands associated with the vegetation xanthophyll cycle and estimates of canopy shading obtained from multiangular satellite observations (using the CHRIS/PROBA sensor) permits us to infer plant photosynthetic efficiency, independently of vegetation type and structure (r(2) = 0.68, compared to flux measurements). This is a significant advance over previous approaches seeking to model global-scale photosynthesis indirectly from a combination of growth limiting factors, most notably pressure deficit and temperature. When combined with modeled global-scale photosynthesis, satellite-inferred epsilon can improve model estimates through data assimilation. We anticipate that our findings will guide the development of new spaceborne approaches to observe vegetation carbon uptake and improve current predictions of global CO(2) budgets and future climate scenarios by providing regularly timed calibration points for modeling plant photosynthesis consistently at a global scale. C1 [Hilker, Thomas; Coops, Nicholas C.] Univ British Columbia, Fac Forest Resources Management, Vancouver, BC V6T 1Z4, Canada. [Hilker, Thomas] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Hall, Forrest G.; Lyapustin, Alexei] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Nichol, Caroline J.] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3JN, Midlothian, Scotland. [Wulder, Michael A.] Canadian Forest Serv, Victoria, BC V8Z 1M5, Canada. [Leuning, Ray] CSIRO Marine & Atmospher Res, Canberra, ACT 2601, Australia. [Barr, Alan] Environm Canada, Climate Res Branch, Saskatoon, SK 27N 3H5, Canada. [Hollinger, David Y.] US Forest Serv, NE Res Stn, Durham, NH 03824 USA. [Munger, Bill] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. RP Hilker, T (reprint author), Univ British Columbia, Fac Forest Resources Management, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada. EM thomas.hilker@nasa.gov RI Leuning, Ray/A-2793-2008; Hollinger, David/G-7185-2012; Coops, Nicholas/J-1543-2012; Lyapustin, Alexei/H-9924-2014; Barr, Alan/H-9939-2014; Wulder, Michael/J-5597-2016 OI Coops, Nicholas/0000-0002-0151-9037; Lyapustin, Alexei/0000-0003-1105-5739; Wulder, Michael/0000-0002-6942-1896 FU Canadian Carbon Program; Natural Sciences and Engineering Research Council of Canada (NSERC); BIOCAP; NSERC FX The ESA CHRIS/PROBA images were provided by David G. Goodenough, Ray Merton, and Mathias Kneubuhler, all principal investigators of the Evaluation and Validation of CHRIS (EVC) Project. This research is partially funded by the Canadian Carbon Program, the Natural Sciences and Engineering Research Council of Canada (NSERC) and BIOCAP, and an NSERC-Accelerator grant to N.C.C. NR 62 TC 25 Z9 26 U1 3 U2 33 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD JUL 29 PY 2011 VL 116 AR G03014 DI 10.1029/2011JG001692 PG 11 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 800PR UT WOS:000293375900003 ER PT J AU Abbasi, R Abdou, Y Abu-Zayyad, T Adams, J Aguilar, JA Ahlers, M Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Bay, R Alba, JLB Beattie, K Beatty, JJ Bechet, S Becker, JK Becker, KH Benabderrahmane, ML BenZvi, S Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Bose, D Boser, S Botner, O Braun, J Brown, AM Buitink, S Carson, M Chirkin, D Christy, B Clem, J Clevermann, F Cohen, S Colnard, C Cowen, DF D'Agostino, MV Danninger, M Daughhetee, J Davis, JC De Clercq, C Demirors, L Denger, T Depaepe, O Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dierckxsens, M Dreyer, J Dumm, JP Ehrlich, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feusels, T Filimonov, K Finley, C Fischer-Wasels, T Foerster, MM Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Geisler, M Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Goodman, JA Grant, D Griesel, T Gross, A Grullon, S Gurtner, M Ha, C Hallgren, A Halzen, F Han, K Hanson, K Heinen, D Helbing, K Herquet, P Hickford, S Hill, GC Hoffman, KD Homeier, A Hoshina, K Hubert, D Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Joseph, JM Kampert, KH Kappes, A Karg, T Karle, A Kelley, JL Kenny, P Kiryluk, J Kislat, F Klein, SR Kohne, JH Kohnen, G Kolanoski, H Kopke, L Kopper, S Koskinen, DJ Kowalski, M Kowarik, T Krasberg, M Krings, T Kroll, G Kuehn, K Kuwabara, T Labare, M Lafebre, S Laihem, K Landsman, H Larson, MJ Lauer, R Lunemann, J Madsen, J Majumdar, P Marotta, A Maruyama, R Mase, K Matis, HS Meagher, K Merck, M Meszaros, P Meures, T Middell, E Milke, N Miller, J Montaruli, T Morse, R Movit, SM Nahnhauer, R Nam, JW Naumann, U Niessen, P Nygren, DR Odrowski, S Olivas, A Olivo, M O'Murchadha, A Ono, M Panknin, S Paul, L de los Heros, CP Petrovic, J Piegsa, A Pieloth, D Porrata, R Posselt, J Price, PB Prikockis, M Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Rizzo, A Rodrigues, JP Roth, P Rothmaier, F Rott, C Ruhe, T Rutledge, D Ruzybayev, B Ryckbosch, D Sander, HG Santander, M Sarkar, S Schatto, K Schmidt, T Schoenwald, A Schukraft, A Schultes, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Slipak, A Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stephens, G Stezelberger, T Stokstad, RG Stoyanov, S Strahler, EA Straszheim, T Stur, M Sullivan, GW Swillens, Q Taavola, H Taboada, I Tamburro, A Tarasova, O Tepe, A Ter-Antonyan, S Tilav, S Toale, PA Toscano, S Tosi, D Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A van Santen, J Vehring, M Voge, M Voigt, B Walck, C Waldenmaier, T Wallraff, M Walter, M Weaver, C Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Williams, DR Wischnewski, R Wissing, H Wolf, M Woschnagg, K Xu, C Xu, XW Yodh, G Yoshida, S Zarzhitsky, P AF Abbasi, R. Abdou, Y. Abu-Zayyad, T. Adams, J. Aguilar, J. A. Ahlers, M. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Beatty, J. J. Bechet, S. Becker, J. K. Becker, K. -H. Benabderrahmane, M. L. BenZvi, S. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Bose, D. Boeser, S. Botner, O. Braun, J. Brown, A. M. Buitink, S. Carson, M. Chirkin, D. Christy, B. Clem, J. Clevermann, F. Cohen, S. Colnard, C. Cowen, D. F. D'Agostino, M. V. Danninger, M. Daughhetee, J. Davis, J. C. De Clercq, C. Demiroers, L. Denger, T. Depaepe, O. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dierckxsens, M. Dreyer, J. Dumm, J. P. Ehrlich, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feusels, T. Filimonov, K. Finley, C. Fischer-Wasels, T. Foerster, M. M. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Geisler, M. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Goodman, J. A. Grant, D. Griesel, T. Gross, A. Grullon, S. Gurtner, M. Ha, C. Hallgren, A. Halzen, F. Han, K. Hanson, K. Heinen, D. Helbing, K. Herquet, P. Hickford, S. Hill, G. C. Hoffman, K. D. Homeier, A. Hoshina, K. Hubert, D. Huelsnitz, W. Huelss, J. -P. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Joseph, J. M. Kampert, K. -H. Kappes, A. Karg, T. Karle, A. Kelley, J. L. Kenny, P. Kiryluk, J. Kislat, F. Klein, S. R. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koepke, L. Kopper, S. Koskinen, D. J. Kowalski, M. Kowarik, T. Krasberg, M. Krings, T. Kroll, G. Kuehn, K. Kuwabara, T. Labare, M. Lafebre, S. Laihem, K. Landsman, H. Larson, M. J. Lauer, R. Luenemann, J. Madsen, J. Majumdar, P. Marotta, A. Maruyama, R. Mase, K. Matis, H. S. Meagher, K. Merck, M. Meszaros, P. Meures, T. Middell, E. Milke, N. Miller, J. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Nam, J. W. Naumann, U. Niessen, P. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. O'Murchadha, A. Ono, M. Panknin, S. Paul, L. de los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Porrata, R. Posselt, J. Price, P. B. Prikockis, M. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Rodrigues, J. P. Roth, P. Rothmaier, F. Rott, C. Ruhe, T. Rutledge, D. Ruzybayev, B. Ryckbosch, D. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Schmidt, T. Schoenwald, A. Schukraft, A. Schultes, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Slipak, A. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stephens, G. Stezelberger, T. Stokstad, R. G. Stoyanov, S. Strahler, E. A. Straszheim, T. Stuer, M. Sullivan, G. W. Swillens, Q. Taavola, H. Taboada, I. Tamburro, A. Tarasova, O. Tepe, A. Ter-Antonyan, S. Tilav, S. Toale, P. A. Toscano, S. Tosi, D. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. van Santen, J. Vehring, M. Voge, M. Voigt, B. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Weaver, Ch. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Williams, D. R. Wischnewski, R. Wissing, H. Wolf, M. Woschnagg, K. Xu, C. Xu, X. W. Yodh, G. Yoshida, S. Zarzhitsky, P. CA IceCube Collaboration TI Search for dark matter from the Galactic halo with the IceCube Neutrino Telescope SO PHYSICAL REVIEW D LA English DT Article ID DWARF SPHEROIDAL GALAXIES; GAMMA-RAY EMISSION; COSMIC-RAYS; CONSTRAINTS; SUBSTRUCTURE; ANISOTROPY; PARTICLES; ELECTRONS; ENERGIES; DETECTOR AB Self-annihilating or decaying dark matter in the Galactic halo might produce high energy neutrinos detectable with neutrino telescopes. We have conducted a search for such a signal using 276 days of data from the IceCube 22-string configuration detector acquired during 2007 and 2008. The effect of halo model choice in the extracted limit is reduced by performing a search that considers the outer halo region and not the Galactic Center. We constrain any large-scale neutrino anisotropy and are able to set a limit on the dark matter self-annihilation cross section of h similar or equal to 10(-22) cm(3) s(-1) for weakly interacting massive particle masses above 1 TeV, assuming a monochromatic neutrino line spectrum. C1 [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bissok, M.; Blumenthal, J.; Boersma, D. J.; Euler, S.; Geisler, M.; Gluesenkamp, T.; Heinen, D.; Huelss, J. -P.; Krings, T.; Laihem, K.; Meures, T.; Paul, L.; Schukraft, A.; Schunck, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Williams, D. R.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Fadiran, O.; Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Daughhetee, J.; Taboada, I.; Tepe, A.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Daughhetee, J.; Taboada, I.; Tepe, A.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beattie, K.; Buitink, S.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Kappes, A.; Kolanoski, H.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Becker, J. K.; Dreyer, J.; Fedynitch, A.; Olivo, M.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Boeser, S.; Denger, T.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.; Stuer, M.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Seunarine, S.] Univ W Indies, Dept Phys, BB-11000 Bridgetown, Barbados. [Bechet, S.; Bertrand, D.; Dierckxsens, M.; Hanson, K.; Marotta, A.; Petrovic, J.; Swillens, Q.] Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium. [Bose, D.; De Clercq, C.; Depaepe, O.; Hubert, D.; Labare, M.; Rizzo, A.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Ishihara, A.; Mase, K.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Brown, A. M.; Gross, A.; Han, K.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; Sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Clevermann, F.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Grant, D.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Abdou, Y.; Carson, M.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Colnard, C.; Gross, A.; Odrowski, S.; Resconi, E.; Schulz, O.; Sestayo, Y.; Wolf, M.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. [Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Cohen, S.; Demiroers, L.; Ribordy, M.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; BenZvi, S.; Berghaus, P.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; O'Murchadha, A.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Griesel, T.; Koepke, L.; Kowarik, T.; Kroll, G.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Abu-Zayyad, T.; Madsen, J.; Spiczak, G. M.; Tamburro, A.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Ha, C.; Koskinen, D. J.; Lafebre, S.; Larson, M. J.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Slipak, A.; Stephens, G.; Toale, P. A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Botner, O.; Engdegard, O.; Hallgren, A.; Miller, J.; Olivo, M.; de los Heros, C. Perez; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Auffenberg, J.; Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Kopper, S.; Naumann, U.; Posselt, J.; Schultes, A.; Semburg, B.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Franke, R.; Kislat, F.; Lauer, R.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Tarasova, O.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany. [Montaruli, T.] Univ Bari, I-70126 Bari, Italy. [Montaruli, T.] Sezione Ist Nazl Fis Nucl, Dipartimento Fis, I-70126 Bari, Italy. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Rott, C (reprint author), Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. EM carott@mps.ohio-state.edu RI Taavola, Henric/B-4497-2011; Beatty, James/D-9310-2011; Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Tamburro, Alessio/A-5703-2013; Botner, Olga/A-9110-2013; Hallgren, Allan/A-8963-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011 OI Taavola, Henric/0000-0002-2604-2810; Buitink, Stijn/0000-0002-6177-497X; Carson, Michael/0000-0003-0400-7819; Hubert, Daan/0000-0002-4365-865X; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Beatty, James/0000-0003-0481-4952; Perez de los Heros, Carlos/0000-0002-2084-5866; Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Sarkar, Subir/0000-0002-3542-858X FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI); National Science and Engineering Research Council of Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; EU; Capes Foundation, Ministry of Education of Brazil FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council of Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; A. Gross acknowledges support by the EU Marie Curie OIF Program; J. P. Rodrigues acknowledges support by the Capes Foundation, Ministry of Education of Brazil. NR 62 TC 67 Z9 67 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 29 PY 2011 VL 84 IS 2 AR 022004 DI 10.1103/PhysRevD.84.022004 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 800BK UT WOS:000293331900001 ER PT J AU Cummer, SA Lu, GP Briggs, MS Connaughton, V Xiong, SL Fishman, GJ Dwyer, JR AF Cummer, Steven A. Lu, Gaopeng Briggs, Michael S. Connaughton, Valerie Xiong, Shaolin Fishman, Gerald J. Dwyer, Joseph R. TI The lightning-TGF relationship on microsecond timescales SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GAMMA-RAY FLASHES; AIR BREAKDOWN; DISCHARGES AB We analyze the count rates of two terrestrial gamma-ray flashes (TGFs) detected by the Fermi Gamma-ray Burst Monitor (GBM) with the broadband magnetic fields (1 to 300 kHz) produced by the simultaneous lightning processes. The microsecond-scale absolute time accuracy for these data, combined with independent geolocations of the source lightning, enable this analysis with higher accuracy than previously possible. In both events, fast discharge-like processes occur within several tens of microseconds of the gamma-ray generation, although not with a consistent relationship. The magnetic field data also show a slower signal component produced by a source current that in both events mirrors the gamma-ray count rate closely in shape and time. This indicates electromagnetic radiation directly associated with the gamma-ray generation process and thus provides a new means for probing the internal physics of this enigmatic phenomenon. Citation: Cummer, S. A., G. Lu, M. S. Briggs, V. Connaughton, S. Xiong, G. J. Fishman, and J. R. Dwyer (2011), The lightning-TGF relationship on microsecond timescales, Geophys. Res. Lett., 38, L14810, doi: 10.1029/2011GL048099. C1 [Cummer, Steven A.; Lu, Gaopeng] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA. [Briggs, Michael S.; Connaughton, Valerie; Xiong, Shaolin] Univ Alabama, CSPAR, Huntsville, AL 35805 USA. [Dwyer, Joseph R.] Florida Inst Technol, Melbourne, FL 32901 USA. [Fishman, Gerald J.] NASA, Space Sci Off, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Cummer, SA (reprint author), Duke Univ, Dept Elect & Comp Engn, Box 90291, Durham, NC 27708 USA. EM cummer@ee.duke.edu; michael.briggs@nasa.gov; jerry.fishman@nasa.gov; jdwyer@fit.edu RI Lu, Gaopeng/D-9011-2012; Cummer, Steven/A-6118-2008 OI Cummer, Steven/0000-0002-0002-0613 FU DARPA; NSF; Fermi Guest Investigation Program FX This work was supported by the DARPA NIMBUS program, the NSF Physical and Dynamic Meteorology program, and the Fermi Guest Investigation Program. We thank the GBM Operations and TGF Search Teams for their support. NR 26 TC 43 Z9 43 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 28 PY 2011 VL 38 AR L14810 DI 10.1029/2011GL048099 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 800SE UT WOS:000293385900005 ER PT J AU Worden, HM Bowman, KW Kulawik, SS Aghedo, AM AF Worden, H. M. Bowman, K. W. Kulawik, S. S. Aghedo, A. M. TI Sensitivity of outgoing longwave radiative flux to the global vertical distribution of ozone characterized by instantaneous radiative kernels from Aura-TES SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TROPOSPHERIC EMISSION SPECTROMETER; NADIR RETRIEVALS; SATELLITE; CLIMATE; MISSION AB We calculate the sensitivity of outgoing longwave radiation (OLR) to the global vertical distribution of tropospheric ozone using ozone profile estimates from Aura Tropospheric Emission Spectrometer (Aura-TES) along with the partial derivatives of spectral radiance with respect to ozone from the Aura-TES operational retrieval algorithm. Accounting for anisotropy, we calculate top of atmosphere instantaneous radiative kernels (IRKs), in W/m(2)/ppb, for infrared ozone absorption from 985 to 1080 cm(-1). Zonal mean distributions for August 2006 show significant variations in the IRK between clear and cloudy sky, ocean and land, and day and night over land. For all sky (clear and cloudy conditions), OLR is significantly less sensitive to ozone in the middle and lower troposphere due to clouds, especially in the tropics. We also compute the longwave radiative effect (LWRE), i.e., the reduction in OLR due to absorption by tropospheric ozone, and find a global average LWRE of 0.33 +/- 0.02(-0.007)(+0.018) W/m(2) (with uncertainty and bias) for tropospheric ozone with significant variability (sigma = 0.23W/m(2)) under all sky conditions for August 2006. For clear sky, tropical conditions we examine the effect of water vapor in reducing the LWRE from tropospheric ozone. C1 [Worden, H. M.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80301 USA. [Bowman, K. W.; Kulawik, S. S.; Aghedo, A. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Worden, HM (reprint author), Natl Ctr Atmospher Res, Div Atmospher Chem, 3450 Mitchell Ln, Boulder, CO 80301 USA. EM hmw@ucar.edu FU NASA ROSES; National Science Foundation FX This work would not be possible without the contributions of the TES team at the Jet Propulsion Laboratory. We also thank A. Conley and J. F. Lamarque at NCAR as well as Xianglei Huang at University of Michigan for their helpful suggestions. The research described in this paper was funded under a NASA ROSES contract received by K.W.B. and H.M.W. and partially carried out at the Jet Propulsion Laboratory, California Institute of Technology. The National Center for Atmospheric Research (NCAR) is sponsored by the National Science Foundation. NR 47 TC 15 Z9 15 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 28 PY 2011 VL 116 AR D14115 DI 10.1029/2010JD015101 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 800HQ UT WOS:000293350800001 ER PT J AU Tan, LC Shao, X Sharma, AS Fung, SF AF Tan, Lun C. Shao, X. Sharma, A. S. Fung, Shing F. TI Relativistic electron acceleration by compressional-mode ULF waves: Evidence from correlated Cluster, Los Alamos National Laboratory spacecraft, and ground-based magnetometer measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SOLAR-WIND; GEOMAGNETIC-FIELD; IONOSPHERE; PULSATIONS; MAGNETOSPHERE; INSTRUMENT; RESONANCES; PARTICLES; DENSITY; ARRAY AB Simultaneous observations by Cluster and Los Alamos National Laboratory (LANL) spacecraft and Canadian Array for Real-Time Investigations of Magnetic Activity and International Monitor for Auroral Geomagnetic Effects magnetometer arrays during a sudden storm commencement on 25 September 2001 show evidence of relativistic electron acceleration by compressional-mode ULF waves. The waves are driven by the quasiperiodic solar wind dynamical pressure fluctuations that continuously buffet the magnetosphere for similar to 3 h. The compressional-mode ULF waves are identified by comparing the power of magnetic field magnitude fluctuations with the total magnetic field power. The radial distribution and azimuthal propagation of both toroidal and poloidal-mode ULF waves are derived from ground-based magnetometer data. The energetic electron fluxes measured by LANL show modulation of low-energy electrons and acceleration of high-energy electrons by the compressional poloidal-mode electric field oscillations. The energy threshold of accelerated electrons at the geosynchronous orbit is similar to 0.4 MeV, which is roughly consistent with drift-resonant interaction of magnetospheric electrons with compressional-mode ULF waves. C1 [Tan, Lun C.; Shao, X.; Sharma, A. S.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Fung, Shing F.] NASA, Goddard Space Flight Ctr, Geospace Phys Lab, Greenbelt, MD 20771 USA. RP Tan, LC (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM xshaoup@yahoo.com RI Fung, Shing/F-5647-2012 FU NASA [NNX06AE88G, NNX07AF42G]; ONR MURI grant [N000140710789]; NSF [ATM-0741841] FX We acknowledge the use of data provided by the NASA/Space Physics Data Facility (SPDF) CDAWeb, Cluster, LANL, and IMAGE data centers. The authors thank I. R. Mann, D. K. Milling, and the rest of the CARISMA team for data. CARISMA is operated by the University of Alberta, funded by the Canadian Space Agency. We thank K. Papadopoulos (University of Maryland), I. Rae (University of Alberta), D. Vassiliadis (University of West Virginia), and M. K. Hudson (Dartmouth College) for fruitful discussions. We thank helpful comments from two referees. This work is partially supported by NASA grants NNX06AE88G and NNX07AF42G, ONR MURI grant N000140710789, and NSF grant ATM-0741841. NR 42 TC 16 Z9 16 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 28 PY 2011 VL 116 AR A07226 DI 10.1029/2010JA016226 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 800EL UT WOS:000293342500004 ER PT J AU Gull, TR AF Gull, Theodore R. TI ASTRONOMY A census of the Carina complex SO NATURE LA English DT Editorial Material ID OB STARS; PROJECT; NEBULA C1 NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Gull, TR (reprint author), NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM ted.gull@nasa.gov NR 5 TC 0 Z9 0 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUL 28 PY 2011 VL 475 IS 7357 BP 460 EP 461 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 797ZA UT WOS:000293167900030 PM 21796200 ER PT J AU Halekas, JS Delory, GT Farrell, WM Angelopoulos, V McFadden, JP Bonnell, JW Fillingim, MO Plaschke, F AF Halekas, J. S. Delory, G. T. Farrell, W. M. Angelopoulos, V. McFadden, J. P. Bonnell, J. W. Fillingim, M. O. Plaschke, F. TI First remote measurements of lunar surface charging from ARTEMIS: Evidence for nonmonotonic sheath potentials above the dayside surface SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PLASMA; THEMIS; INSTRUMENT; SPACE; LAYER AB During an early lunar encounter, ARTEMIS-P2 passed earthward from the Moon in the terrestrial magnetotail. Fortuitously, though more than 8000 km away, magnetic field lines connected the spacecraft to the dayside lunar surface during several time periods in both the lobe and plasma sheet. During these intervals, ARTEMIS made the first accurate and quantitative remote measurements of lunar surface charging from an observation point almost 100 times more distant than previous remote measurements of surface potentials. ARTEMIS also measured incident plasma, including hot tenuous electrons from a source deeper in the tail, portions of that population mirrored near the Earth, and cold ions from the terrestrial ionosphere. The spatial and temporal variation of these sources, combined with shadowing by the lunar obstacle and motion and curvature of magnetotail field lines, leads to highly variable charging currents to the surface. ARTEMIS measurements provide evidence for negative dayside surface potentials, likely indicative of nonmonotonic sheath potentials above the sunlit surface, in the plasma sheet and, for the first time, in the tail lobe. These nonmonotonic potentials, and the resulting accelerated outward going beams of lunar photoelectrons, may help maintain quasi-neutrality along magnetic field lines connected to the Moon. C1 [Halekas, J. S.; Delory, G. T.; McFadden, J. P.; Bonnell, J. W.; Fillingim, M. O.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Farrell, W. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Plaschke, F.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. [Angelopoulos, V.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Halekas, J. S.; Delory, G. T.; Farrell, W. M.] NASA, Ames Res Ctr, Lunar Sci Inst, Moffett Field, CA 94035 USA. RP Halekas, JS (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. EM jazzman@ssl.berkeley.edu RI Farrell, William/I-4865-2013; OI Halekas, Jasper/0000-0001-5258-6128 FU NASA Lunar Science Institute; NASA [NAS5-02099]; DLR [50 OC 0302]; FGM Lead Investigator Team at the Technical University of Braunschweig by the German Ministerium fur Wirtschaft und Technologie; Deutsches Zentrum fur Luft- und Raumfahrt [50OC1001] FX We thank the NASA Lunar Science Institute for supporting this work and acknowledge NASA contract NAS5-02099. FGM was supported by DLR contract 50 OC 0302. Financial support for the work of the FGM Lead Investigator Team at the Technical University of Braunschweig by the German Ministerium fur Wirtschaft und Technologie and the Deutsches Zentrum fur Luft- und Raumfahrt under grant 50OC1001 is acknowledged. NR 22 TC 9 Z9 9 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 27 PY 2011 VL 116 AR A07103 DI 10.1029/2011JA016542 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 800EJ UT WOS:000293342300001 ER PT J AU Korotova, GI Sibeck, DG Weatherwax, A Angelopoulos, V Styazhkin, V AF Korotova, G. I. Sibeck, D. G. Weatherwax, A. Angelopoulos, V. Styazhkin, V. TI THEMIS observations of a transient event at the magnetopause SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID FLUX-TRANSFER EVENTS; WIND DYNAMIC PRESSURE; MAGNETIC-FIELD SIGNATURES; SOLAR-WIND; MAGNETOSPHERIC BOUNDARY; GEOSYNCHRONOUS ORBIT; DAYSIDE MAGNETOSPHERE; EARTHS MAGNETOPAUSE; PLASMA TRANSPORT; HIGH-LATITUDES AB This study focuses on Time History of Events and Macroscale Interactions During Substorms (THEMIS) observations of a long-duration transient event in the vicinity of the dayside magnetopause at similar to 15: 34 UT on 18 July 2008 that was characterized by features typical of a magnetospheric flux transfer event (FTE): a bipolar negative-positive 5-7 nT signature in the Bn component, a positive monopolar variation in the Bl and Bm components, a similar to 5-7 nT enhancement in the total magnetic field strength, and a transient density and flow enhancement. The interplanetary magnetic field (IMF) was mostly radial and disturbed during the intervals studied; that is, it was favorable for the repeated formation, disappearance and reformation of the foreshock just upstream from the subsolar bow shock. We show that varying IMF directions and solar wind pressures created significant effects that caused the compressions of the magnetosphere and the bow shock and magnetopause motions and triggered the transient event. Global signatures of magnetic impulse events (MIEs) in ground magnetograms during the period suggest a widespread pressure pulse instead of a localized FTE as the cause of the event in the magnetosphere. The directions of propagation and the flow patterns associated with the event also suggest an interpretation in terms of pressure pulses. C1 [Korotova, G. I.; Styazhkin, V.] IZMIRAN, Troitsk 142190, Moscow Region, Russia. [Angelopoulos, V.] Univ Calif Los Angeles, IGPP, ESS, Los Angeles, CA 90095 USA. [Sibeck, D. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Korotova, G. I.] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20740 USA. [Weatherwax, A.] Siena Coll, Dept Phys & Astron, Loudonville, NY 12211 USA. RP Korotova, GI (reprint author), IZMIRAN, Troitsk 142190, Moscow Region, Russia. EM gkorotov@umd.edu RI Sibeck, David/D-4424-2012 FU NASA [NAS5-02099, GSFC NNX09AV52G]; NSF [ANT638587, ANT0840158] FX We express our gratitude to J. McFadden for useful discussions. THEMIS is supported by NASA NAS5-02099. We are grateful to the ESA, FGM, and SST teams for supplying the THEMIS software and data, which we obtained in part from NASA's CDA Web service. We thank the Technical University of Denmark for providing the Greenland magnetomer data. Work at GSFC was supported by the THEMIS project, while work by G. I. K. at the University of Maryland was supported by a grant from NASA GSFC NNX09AV52G. Siena College gratefully acknowledges support from NSF grants ANT638587 and ANT0840158. NR 66 TC 6 Z9 6 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 26 PY 2011 VL 116 AR A07224 DI 10.1029/2011JA016606 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 800EF UT WOS:000293341900001 ER PT J AU Quinn, RC Chittenden, JD Kounaves, SP Hecht, MH AF Quinn, Richard C. Chittenden, Julie D. Kounaves, Samuel P. Hecht, Michael H. TI The oxidation-reduction potential of aqueous soil solutions at the Mars Phoenix landing site SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MARTIAN SOIL AB Results from the Mars Phoenix mission Wet Chemistry Laboratory (WCL) are used to determine the oxidation-reduction potential (E(h)) of the Phoenix WCL Rosy Red sample soil solution. The measured E(h) of the Rosy Red sample in the WCL aqueous test solution was 253 +/- 6 mV at a pH of 7.7 +/- 0.1. Measured solution E(h) changes correspond to changes in solution H(+) activity, which is controlled mainly by changes in headspace P(CO2) and solution CO(3)(2-), HCO(3)(-), and CO(2) concentrations. If measured at a P(CO2) of 8 mbar in water, rather than in WCL test solution, the E(h) of the Rosy Red soil solution would be similar to 300 mV. The results of laboratory experiments using analog salt mixtures are compatible with the possible presence of low levels (ppm) of metal peroxides or other oxidants and indicate that levels of readily soluble ferrous iron in the soil are below 1 ppm. Citation: Quinn, R. C., J. D. Chittenden, S. P. Kounaves, and M. H. Hecht (2011), The oxidation-reduction potential of aqueous soil solutions at the Mars Phoenix landing site, Geophys. Res. Lett., 38, L14202, doi: 10.1029/2011GL047671. C1 [Quinn, Richard C.] NASA, Ames Res Ctr, Carl Sagan Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Kounaves, Samuel P.] Tufts Univ, Dept Chem, Medford, MA 02155 USA. [Hecht, Michael H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Quinn, RC (reprint author), NASA, Ames Res Ctr, Carl Sagan Ctr, SETI Inst, Moffett Field, CA 94035 USA. EM richard.c.quinn@nasa.gov OI Kounaves, Samuel/0000-0002-2629-4831 NR 10 TC 9 Z9 9 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 23 PY 2011 VL 38 AR L14202 DI 10.1029/2011GL047671 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 797ML UT WOS:000293131900001 ER PT J AU Angal, A Chander, G Xiong, XX Choi, T Wu, AS AF Angal, Amit Chander, Gyanesh Xiong, Xiaoxiong Choi, Taeyoung Wu, Aisheng TI Characterization of the Sonoran desert as a radiometric calibration target for Earth observing sensors SO JOURNAL OF APPLIED REMOTE SENSING LA English DT Article DE Sonoran; calibration; bidirectional reflectance distribution function; ETM; Libya4; Hyperion; characterization; moderate resolution imaging spectroradiometer ID CHANNELS AB To provide highly accurate quantitative measurements of the Earth's surface, a comprehensive calibration and validation of the satellite sensors is required. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) Characterization Support Team, in collaboration with United States Geological Survey, Earth Resources Observation and Science Center, has previously demonstrated the use of African desert sites to monitor the long-term calibration stability of Terra MODIS and Landsat 7 (L7) Enhanced Thematic Mapper plus (ETM+). The current study focuses on evaluating the suitability of the Sonoran Desert test site for post-launch long-term radiometric calibration as well as cross-calibration purposes. Due to the lack of historical and on-going in situ ground measurements, the Sonoran Desert is not usually used for absolute calibration. An in-depth evaluation (spatial, temporal, and spectral stability) of this site using well calibrated L7 ETM+ measurements and local climatology data has been performed. The Sonoran Desert site produced spatial variability of about 3 to 5% in the reflective solar regions, and the temporal variations of the site after correction for view-geometry impacts were generally around 3%. The results demonstrate that, barring the impacts due to occasional precipitation, the Sonoran Desert site can be effectively used for cross-calibration and longterm stability monitoring of satellite sensors, thus, providing a good test site in the western hemisphere. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3613963] C1 [Angal, Amit] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Chander, Gyanesh] SGT Inc, US Geol Survey, Earth Resources Observat & Sci Ctr, Sioux Falls, SD 57198 USA. [Xiong, Xiaoxiong] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. [Choi, Taeyoung; Wu, Aisheng] Sigma Space Corp, Lanham, MD 20706 USA. RP Angal, A (reprint author), Sci Syst & Applicat Inc, 10210 Greenbelt Rd, Lanham, MD 20706 USA. EM amit.angal@ssaihq.com RI Choi, Taeyoung/E-4437-2016 OI Choi, Taeyoung/0000-0002-4596-989X FU U.S. Geological Survey [G10PC00044] FX The authors thank Thomas Adamson (SGT) and Brian Wenny (MCST) for providing helpful comments in the technical review of this manuscript. Work at SGT, Inc. performed under U.S. Geological Survey contract G10PC00044. NR 11 TC 6 Z9 8 U1 2 U2 7 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1931-3195 J9 J APPL REMOTE SENS JI J. Appl. Remote Sens. PD JUL 22 PY 2011 VL 5 AR 059502 DI 10.1117/1.3613963 PG 6 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 807GE UT WOS:000293883500001 ER PT J AU Liu, YM Ecke, RE AF Liu, Yuanming Ecke, Robert E. TI Local temperature measurements in turbulent rotating Rayleigh-Benard convection SO PHYSICAL REVIEW E LA English DT Article ID ASPECT-RATIO DEPENDENCE; HEAT-TRANSFER; SCALING LAWS; GEOMETRY; REGIMES; SOLIDS; MOTION; NUMBER; FLUIDS; LAYER AB We present local temperature measurements of turbulent Rayleigh-Benard convection with rotation about a vertical axis. The fluid, water with Prandtl number about 6, was confined in a cell with a square cross section of 7.3 x 7.3 cm(2) and a height of 9.4 cm. Temperature fluctuations and boundary-layer profiles were measured for Rayleigh numbers 1 x 10(7) < Ra < 5 x 10(8) and Taylor numbers 0 < Ta < 5 x 10(9). We present statistics of the temperature field measured by a single thermistor located along the vertical centerline of the cell or by an array of thermistors distributed laterally from that centerline. The statistics include the mean temperature, standard deviation, skewness, and the probability distribution functions at various locations in the cell, especially near and inside the thermal boundary layer. The effects of rotation on these quantities are discussed including the presence of a rotation-dependent mean vertical temperature gradient, the negative skewness of temperature fluctuations in the boundary layer, and the horizontal homogenization of temperature. C1 [Liu, Yuanming; Ecke, Robert E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Liu, Yuanming; Ecke, Robert E.] Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, Los Alamos, NM 87545 USA. RP Liu, YM (reprint author), CALTECH, Jet Prop Lab, Low Temp Sci & Engn Grp, 4800 Oak Grove Dr,MS 79-24, Pasadena, CA 91109 USA. OI Ecke, Robert/0000-0001-7772-5876 FU US Department of Energy [W-7405-ENG-36, DE-AC52-06NA25396]; National Science Foundation [NSF PHY05-51164] FX We thank Joe Werne, Keith Julien, Peter Vorobieff, Phil Marcus, Detlef Lohse, and Richard Stevens for helpful discussions. This work was supported by the US Department of Energy under Contract Nos. W-7405-ENG-36 and DE-AC52-06NA25396. One of us (R.E.E.) acknowledges support by the National Science Foundation under Grant No. NSF PHY05-51164 associated with the Kavli Institute for Theoretical Physics Program "Nature of Turbulence." NR 41 TC 8 Z9 8 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL 22 PY 2011 VL 84 IS 1 AR 016311 DI 10.1103/PhysRevE.84.016311 PN 2 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 801OV UT WOS:000293450700003 PM 21867308 ER PT J AU Grimald, S El-Lemdani-Mazouz, F Foullon, C Decreau, PME Boardsen, SA Vallieres, X AF Grimald, S. El-Lemdani-Mazouz, F. Foullon, C. Decreau, P. M. E. Boardsen, Scott A. Vallieres, Xavier TI Study of nonthermal continuum patches: Wave propagation and plasmapause study SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID INTERPLANETARY MAGNETIC-FIELD; CLUSTER OBSERVATIONS; DENSITY STRUCTURES; WHISTLER EVIDENCE; ELECTRIC-FIELD; RADIATION; TERRESTRIAL; PLASMASPHERE; EMISSIONS; EARTH AB Nonthermal continuum (NTC) radiation is believed to be emitted at the plasmapause and near the magnetic equator. We present a particular type of NTC radiation, referred to as NTC patch, which appears over a wide frequency range and within a relatively short time interval. NTC patches are observed in all magnetospheric plasma environments of the Cluster 2 orbit and are shown to represent a quarter of the NTC events observed in 2003. A statistical analysis of the frequency pattern performed on the 2003 Cluster 2 Waves of High frequency and Sounder for Probing of Electron Density by Relaxation data indicates that the NTC patches can be divided into two classes: Those with banded emission in frequency are only observed close to the source region and are thus termed "plasmaspheric," while the others, nonbanded, are termed "outer magnetospheric." In an event on 26 September 2003, we localize the sources positions and study the expected propagation of each NTC frequency beam of a plasmaspheric patch. From the observations, we show that the sources are located very close to the satellite and to each other at positions projected on the XY GSE plane. Using a ray tracing code, we demonstrate that, close to the source regions, the satellite observes all frequency rays at the same time which overlap in the spectrogram making up the plasmaspheric patch. After the satellite crossing, the rays follow diverging paths and cannot therefore be observed further out by the same satellite simultaneously. Plasmaspheric patches are thus specific signatures of close and distorted source regions. C1 [Grimald, S.] Univ Toulouse 3, CNRS, Ctr Etud Spatiale Rayonnements, F-31000 Toulouse, France. [El-Lemdani-Mazouz, F.] CNRS, Lab Atmosphere Milieux Observat Spatiales, F-78280 Guyancourt, France. [Foullon, C.] Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England. [Decreau, P. M. E.; Vallieres, Xavier] CNRS, Lab Phys & Chim Environm & Espace, F-45071 Orleans 02, France. [Boardsen, Scott A.] NASA, Heliophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD USA. [Boardsen, Scott A.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Catonsville, MD 21228 USA. RP Grimald, S (reprint author), Univ Toulouse 3, Inst Rech Astrophys & Planetol, CNRS, F-31000 Toulouse, France. EM grimald@cesr.fr RI Foullon, Claire/A-3539-2009 OI Foullon, Claire/0000-0002-2532-9684 FU Centre National des Etudes Spatiales (CNES); UK Science and Technology Facilities Council (STFC); STFC FX S.G. and F. E. acknowledge financial support from the Centre National des Etudes Spatiales (CNES). C.F. acknowledges financial support from the UK Science and Technology Facilities Council (STFC) on the CFSA Rolling Grant. We would like to thank the WEC, JSOC, and ESOC teams for continuous support of Cluster operations. S.G., F.E., and C.F. thank P. Decreau, J. G. Trotignon and the WHISPER team, E. Lucek and the FGM team. Data analysis was done with the QSAS science analysis system provided by the UK Cluster Science Centre (Imperial College London and Queen Mary, University of London) supported by STFC. NR 50 TC 4 Z9 4 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 21 PY 2011 VL 116 AR A07219 DI 10.1029/2011JA016476 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 796ZE UT WOS:000293091200008 ER PT J AU Taori, A Dashora, N Raghunath, K Russell, JM Mlynczak, MG AF Taori, A. Dashora, N. Raghunath, K. Russell, J. M., III Mlynczak, Martin G. TI Simultaneous mesosphere-thermosphere-ionosphere parameter measurements over Gadanki (13.5 degrees N, 79.2 degrees E): First results SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EQUATORIAL SPREAD-F; GRAVITY-WAVES; PLASMA DEPLETIONS; LOW-LATITUDE; AIRGLOW; REGION; INITIATION; CAMPAIGN; BUBBLES; LIDAR AB We report first simultaneous airglow, lidar, and total electron content measurements in the mesosphere-thermosphere-ionosphere system behavior from Gadanki (13.5 degrees N, 79.2 degrees E). The observed variability in mesospheric temperatures and 630 nm thermospheric emission intensity shows large variations from one night to another with clear upward propagating waves at mesospheric altitudes. The deduced mesospheric temperatures compare well with Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER)-derived temperatures, while the variability agrees well with lidar temperatures (on the night of simultaneous observations). The 630.0 nm thermospheric emission intensity and GPS-total electron content data exhibit occurrence of plasma depletions on the nights of 22-23 October and 22-23 May 2009, while no depletions are noted on the nearby nights of 23-24 October and 21-22 May 2009. These first simultaneous data reveal strong gravity-wave growth at upper mesospheric altitudes on the nights when plasma depletions were noted. C1 [Taori, A.; Dashora, N.; Raghunath, K.] Natl Atmospher Res Lab, Gadanki 517112, India. [Russell, J. M., III] Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23668 USA. [Mlynczak, Martin G.] NASA, Sci Mission Directorate, Langley Res Ctr, Hampton, VA 23681 USA. RP Taori, A (reprint author), Natl Atmospher Res Lab, Gadanki 517112, India. EM alok.taori@gmail.com RI Mlynczak, Martin/K-3396-2012 FU Department of Space, Government of India FX This work is supported by the Department of Space, Government of India. A. Taori thanks the director of NARL for his support toward airglow research. The present work is carried out under the umbrella of SAFAR and CAWSES India Phase II, Team 3. Assistance of ISA Impex, Bangalore, India, with fabrication and installation of MLTP is duly acknowledged. NR 33 TC 11 Z9 11 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 21 PY 2011 VL 116 AR A07308 DI 10.1029/2010JA016154 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 796ZE UT WOS:000293091200001 ER PT J AU Boul, PJ Nikolaev, P Sosa, E Arepalli, S AF Boul, Peter J. Nikolaev, Pavel Sosa, Edward Arepalli, Sivaram TI Potentially Scalable Conductive-Type Nanotube Enrichment Through Covalent Chemistry SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID WALLED CARBON NANOTUBES; DENSITY DIFFERENTIATION; SEPARATION; DIAZONIUM; CATALYST; SAMPLES AB Metallic single-wall carbon nanotubes, synthesized through a pulsed-laser vaporization process, were selectively reacted with dodecyl-oxybenzene-diazonium tetrafluoroborate to yield tetrahydrofuran (THF) suspensions of nanotubes enriched in metallic content. The nanotube material that did not suspend in THE displayed a lower DIG ratio in Raman spectroscopy indicating less covalent functionalization and corresponds to an increase in semiconducting nanotube population. After the THF suspendable nanotubes were extracted from the unsuspendable nanotube material, the two separate nanotube populations were stripped of the dodecyloxybenzene functional groups through an annealing process. In this way, the functionalization process was made to be reversible whereby the nanotubes from both semiconducting and metallically enriched populations could have their original band gap properties restored. C1 [Boul, Peter J.; Sosa, Edward] NASA, Lyndon B Johnson Space Ctr, ERC Inc, Houston, TX 77058 USA. [Nikolaev, Pavel; Arepalli, Sivaram] Sungkyunkwan Univ, Dept Energy Sci, Suwon 440746, South Korea. RP Boul, PJ (reprint author), NASA, Lyndon B Johnson Space Ctr, ERC Inc, POB 58561, Houston, TX 77058 USA. EM peter.boul@gmail.com RI Nikolaev, Pavel/B-9960-2009 FU NASA [NNJ05HI05C]; NRF of Korea [R31-2008-10029] FX This research was supported by NASA under Contract No. NNJ05HI05C and by WCU program through the NRF of Korea, R31-2008-10029. NR 36 TC 2 Z9 3 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 21 PY 2011 VL 115 IS 28 BP 13592 EP 13596 DI 10.1021/jp202251r PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 794JQ UT WOS:000292892600008 ER PT J AU Richardson, IG Cane, HV AF Richardson, I. G. Cane, H. V. TI Geoeffectiveness (Dst and Kp) of interplanetary coronal mass ejections during 1995-2009 and implications for storm forecasting SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID MAJOR GEOMAGNETIC STORMS; COSMIC-RAY DECREASES; WIND MAGNETIC CLOUDS; SOLAR-WIND; SEMIANNUAL VARIATION; PARAMETERS; MAXIMUM; SOLAR-CYCLE-23; DISTURBANCES; SIGNATURES AB We summarize the geoeffectiveness (based on the Dst and Kp indices) of the more than 300 interplanetary coronal mass ejections (ICMEs) that passed the Earth during 1996-2009, encompassing solar cycle 23. We subsequently estimate the probability that an ICME will generate geomagnetic activity that exceeds certain thresholds of Dst or Kp, including the NOAA "G" storm scale, based on maximum values of the southward magnetic field component (B-s), the solar wind speed (V), and the y component (E-y) of the solar wind convective electric field E = -V x B, in the ICME or sheath ahead of the ICME. Consistent with previous studies, the geoeffectiveness of an ICME is correlated with B-s or E-y approximate to VBs in the ICME or sheath, indicating that observations from a solar wind monitor upstream of the Earth are likely to provide the most reliable forecasts of the activity associated with an approaching ICME. There is also a general increase in geoeffectiveness with ICME speed, though the overall event-to-event correlation is weaker than for B-s and E-y. Nevertheless, using these results, we suggest that the speed of an ICME approaching the Earth inferred, for example, from routine remote sensing by coronagraphs on spacecraft well separated from the Earth or by all-sky imagers, could be used to estimate the likely geoeffectiveness of the ICME (our "comprehensive" ICME database provides a proxy for ICMEs identified in this way) with a longer lead time than may be possible using an upstream monitor. C1 [Richardson, I. G.; Cane, H. V.] NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Richardson, I. G.] Univ Maryland, CRESST, College Pk, MD 20742 USA. [Richardson, I. G.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Cane, H. V.] Univ Tasmania, Sch Math & Phys, Hobart, Tas, Australia. RP Richardson, IG (reprint author), NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Code 661, Greenbelt, MD 20771 USA. EM ian.g.richardson@nasa.gov; hilary.cane@utas.edu.au OI Richardson, Ian/0000-0002-3855-3634 NR 55 TC 16 Z9 16 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD JUL 21 PY 2011 VL 9 AR S07005 DI 10.1029/2011SW000670 PG 9 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 796YX UT WOS:000293090500002 ER PT J AU Hoffman, J Berendzen, R AF Hoffman, Jascha Berendzen, Richard TI Q&A Richard Berendzen The sci-fi adviser SO NATURE LA English DT Editorial Material C1 [Berendzen, Richard] NASA, Space Grant Consortium, Washington, DC 20546 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUL 21 PY 2011 VL 475 IS 7356 BP 295 EP 295 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 794PA UT WOS:000292911200018 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bonamente, E Borgland, AW Bregeon, J Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Camilo, F Caraveo, PA Cecchi, C Charles, E Chaty, S Chekhtman, A Chernyakova, M Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Corbel, S Cutini, S D'Ammando, F de Angelis, A den Hartog, PR de Palma, F Dermer, CD Digel, SW Silva, EDE Dormody, M Drell, PS Drlica-Wagner, A Dubois, R Dubus, G Dumora, D Enoto, T Espinoza, CM Favuzzi, C Fegan, SJ Ferrara, EC Focke, WB Fortin, P Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Grundstrom, E Guiriec, S Gwon, C Hadasch, D Harding, AK Hayashida, M Hays, E Johannesson, G Johnson, AS Johnson, TJ Johnston, S Kamae, T Katagiri, H Kataoka, J Keith, M Kerr, M Knodlseder, J Kramer, M Kuss, M Lande, J Lee, SH Lemoine-Goumard, M Longo, F Loparco, F Lovellette, MN Lubrano, P Manchester, RN Marelli, M Mazziotta, MN Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Naumann-Godo, M Neronov, A Nolan, PL Norris, JP Noutsos, A Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Paneque, D Parent, D Pesce-Rollins, M Pierbattista, M Piron, F Porter, TA Possenti, A Raino, S Rando, R Ray, PS Razzano, M Razzaque, S Reimer, A Reimer, O Reposeur, T Ritz, S Sadrozinski, HFW Scargle, JD Sgro, C Shannon, R Siskind, EJ Smith, PD Spandre, G Spinelli, P Strickman, MS Suson, DJ Takahashi, H Tanaka, T Thayer, JG Thayer, JB Thompson, DJ Thorsett, SE Tibaldo, L Tibolla, O Torres, DF Tosti, G Troja, E Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vianello, G Vitale, V Waite, AP Wang, P Winer, BL Wolff, MT Wood, DL Wood, KS Yang, Z Ziegler, M Zimmer, S AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Camilo, F. Caraveo, P. A. Cecchi, C. Charles, E. Chaty, S. Chekhtman, A. Chernyakova, M. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Corbel, S. Cutini, S. D'Ammando, F. de Angelis, A. den Hartog, P. R. de Palma, F. Dermer, C. D. Digel, S. W. do Couto e Silva, E. Dormody, M. Drell, P. S. Drlica-Wagner, A. Dubois, R. Dubus, G. Dumora, D. Enoto, T. Espinoza, C. M. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Focke, W. B. Fortin, P. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Grundstrom, E. Guiriec, S. Gwon, C. Hadasch, D. Harding, A. K. Hayashida, M. Hays, E. Johannesson, G. Johnson, A. S. Johnson, T. J. Johnston, S. Kamae, T. Katagiri, H. Kataoka, J. Keith, M. Kerr, M. Knodlseder, J. Kramer, M. Kuss, M. Lande, J. Lee, S. -H. Lemoine-Goumard, M. Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Manchester, R. N. Marelli, M. Mazziotta, M. N. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Naumann-Godo, M. Neronov, A. Nolan, P. L. Norris, J. P. Noutsos, A. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Paneque, D. Parent, D. Pesce-Rollins, M. Pierbattista, M. Piron, F. Porter, T. A. Possenti, A. Raino, S. Rando, R. Ray, P. S. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Sadrozinski, H. F. -W. Scargle, J. D. Sgro, C. Shannon, R. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Takahashi, H. Tanaka, T. Thayer, J. G. Thayer, J. B. Thompson, D. J. Thorsett, S. E. Tibaldo, L. Tibolla, O. Torres, D. F. Tosti, G. Troja, E. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wolff, M. T. Wood, D. L. Wood, K. S. Yang, Z. Ziegler, M. Zimmer, S. TI DISCOVERY OF HIGH-ENERGY GAMMA-RAY EMISSION FROM THE BINARY SYSTEM PSR B1259-63/LS 2883 AROUND PERIASTRON WITH FERMI SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: eclipsing; gamma rays: stars; pulsars: individual (PSR B1259-63); X-rays: binaries ID PULSAR; RADIO; TELESCOPE; PASSAGE; PSR-B1259-63/SS2883; PSR-1259-63; RADIATION; CATALOG; WIND AB We report on the discovery of >= 100 MeV gamma-rays from the binary system PSR B1259-63/LS 2883 using the Large Area Telescope (LAT) on board Fermi. The system comprises a radio pulsar in orbit around a Be star. We report on LAT observations from near apastron to similar to 128 days after the time of periastron, t(p), on 2010 December 15. No gamma-ray emission was detected from this source when it was far from periastron. Faint gamma-ray emission appeared as the pulsar approached periastron. At similar to t(p) + 30 days, the >= 100 MeV gamma-ray flux increased over a period of a few days to a peak flux 20-30 times that seen during the pre-periastron period, but with a softer spectrum. For the following month, it was seen to be variable on daily timescales, but remained at similar to(1-4) x 10(-6) cm(-2) s(-1) before starting to fade at similar to t(p) + 57 days. The total gamma-ray luminosity observed during this period is comparable to the spin-down power of the pulsar. Simultaneous radio and X-ray observations of the source showed no corresponding dramatic changes in radio and X-ray flux between the pre-periastron and post-periastron flares. We discuss possible explanations for the observed gamma-ray-only flaring of the source. C1 [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; den Hartog, P. R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Enoto, T.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Kerr, M.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Orlando, E.; Paneque, D.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; den Hartog, P. R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Enoto, T.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johnson, A. S.; Kamae, T.; Kerr, M.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Orlando, E.; Paneque, D.; Porter, T. A.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Ballet, J.; Chaty, S.; Corbel, S.; Focke, W. B.; Grenier, I. A.; Naumann-Godo, M.; Pierbattista, M.; Tibaldo, L.] Univ Paris Diderot, CEA Saclay, Lab AIM, CEA,IRFU,CNRS,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bellazzini, R.; Bregeon, J.; Kuss, M.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Hadasch, D.; Torres, D. F.] CSIC, IEEC, Inst Ciencias Espai, Barcelona 08193, Spain. [Camilo, F.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Caraveo, P. A.; Marelli, M.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Chekhtman, A.] Artep Inc, Ellicott City, MD 21042 USA. [Chernyakova, M.] Dublin Inst Adv Studies, Sch Cosm Phys, Dublin 2, Ireland. [Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Cohen-Tanugi, J.; Nuss, E.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, CNRS, IN2P3, Lab Univers & Particules Montpellier, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Corbel, S.] Inst Univ France, F-75005 Paris, France. [Cutini, S.; Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Rome, Italy. [D'Ammando, F.] IASF Palermo, I-90146 Palermo, Italy. [D'Ammando, F.] INAF Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Abdo, A. A.; Dermer, C. D.; Grove, J. E.; Gwon, C.; Lovellette, M. N.; Ray, P. S.; Strickman, M. S.; Wolff, M. T.; Wood, D. L.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Dormody, M.; Ritz, S.; Sadrozinski, H. F. -W.; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Dormody, M.; Ritz, S.; Sadrozinski, H. F. -W.; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Dubus, G.] Univ Grenoble 1, Inst Planetol & Astrophys Grenoble, CNRS, INSU,UMR 5274, F-38041 Grenoble, France. [Dumora, D.; Lemoine-Goumard, M.; Reposeur, T.] Univ Bordeaux 1, Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, F-33175 Gradignan, France. [Espinoza, C. M.; Kramer, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. J.; Moiseev, A. A.; Thompson, D. J.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Grondin, M. -H.] Univ Tubingen, Inst Astron & Astrophys, D-72076 Tubingen, Germany. [Grundstrom, E.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37240 USA. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Abdo, A. A.; Parent, D.; Razzaque, S.] George Mason Univ, Coll Sci, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Johnson, T. J.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Johnson, T. J.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Johnston, S.; Keith, M.; Manchester, R. N.; Shannon, R.] CSIRO Astron & Space Sci, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Knodlseder, J.] IRAP, CNRS, F-31028 Toulouse 4, France. [Knodlseder, J.] Univ Toulouse, UPS OMP, IRAP, GAHEC, Toulouse, France. [Kramer, M.; Noutsos, A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Moiseev, A. A.] CRESST, Greenbelt, MD 20771 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Neronov, A.] ISDC Data Ctr Astrophys, CH-1290 Versoix, Switzerland. [Norris, J. P.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Okumura, A.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Kanagawa 2525210, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Possenti, A.] INAF Cagliari Astron Observ, I-09012 Capoterra, CA, Italy. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tibolla, O.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Torres, D. F.] ICREA, Barcelona, Spain. [Vianello, G.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Yang, Z.; Zimmer, S.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Yang, Z.; Zimmer, S.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM aous.abdo@nrl.navy.mil; Simon.Johnston@atnf.csiro.au; Andrii.Neronov@unige.ch; dmnparent@gmail.com; kent.wood@nrl.navy.mil RI Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Morselli, Aldo/G-6769-2011; Thompson, David/D-2939-2012; Gehrels, Neil/D-2971-2012; Harding, Alice/D-3160-2012; lubrano, pasquale/F-7269-2012; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Funk, Stefan/B-7629-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015 OI Gasparrini, Dario/0000-0002-5064-9495; Ray, Paul/0000-0002-5297-5278; Marelli, Martino/0000-0002-8017-0338; Sgro', Carmelo/0000-0001-5676-6214; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Chaty, Sylvain/0000-0002-5769-8601; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Cutini, Sara/0000-0002-1271-2924; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Grundstrom, Erika/0000-0002-5130-0260; Giordano, Francesco/0000-0002-8651-2394; Thorsett, Stephen/0000-0002-2025-9613; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Shannon, Ryan/0000-0002-7285-6348; Caraveo, Patrizia/0000-0003-2478-8018; Morselli, Aldo/0000-0002-7704-9553; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036 FU European Community [ERC-StG-200911]; International Doctorate on Astroparticle Physics (IDAPP) program; NASA, United States; DOE, United States; CEA/Irfu, France; IN2P3/CNRS, France; ASI, Italy; INFN, Italy; MEXT, Japan; KEK, Japan; JAXA, Japan; K. A. Wallenberg Foundation; Swedish Research Council; National Space Board in Sweden; Commonwealth Government; NASA FX Funded by contract ERC-StG-200911 from the European Community.; Partially supported by the International Doctorate on Astroparticle Physics (IDAPP) program.; The Fermi-LAT Collaboration acknowledges support from a number of agencies and institutes for both the development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council, and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged. The Parkes radio telescope is part of the Australia Telescope which is funded by the Commonwealth Government for operation as a National Facility managed by CSIRO. We thank our colleagues for their assistance with the radio timing observations. This work was supported in part by a NASA Fermi Guest Investigator Program. NR 28 TC 57 Z9 58 U1 2 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 20 PY 2011 VL 736 IS 1 AR L11 DI 10.1088/2041-8205/736/1/L11 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797OX UT WOS:000293138300011 ER PT J AU Gopalswamy, N Yashiro, S AF Gopalswamy, Nat Yashiro, Seiji TI THE STRENGTH AND RADIAL PROFILE OF THE CORONAL MAGNETIC FIELD FROM THE STANDOFF DISTANCE OF A CORONAL MASS EJECTION-DRIVEN SHOCK SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE shock waves; solar wind; Sun: corona; Sun: coronal mass ejections; Sun: heliosphere ID FARADAY-ROTATION MEASUREMENTS; SOLAR CORONA; ELECTRON-DENSITY; LARGE-ANGLE; NEAR-SUN; LASCO; WAVES AB We determine the coronal magnetic field strength in the heliocentric distance range 6-23 solar radii (Rs) by measuring the shock standoff distance and the radius of curvature of the flux rope during the 2008 March 25 coronal mass ejection imaged by white-light coronagraphs. Assuming the adiabatic index, we determine the Alfven Mach number, and hence the Alfven speed in the ambient medium using the measured shock speed. By measuring the upstream plasma density using polarization brightness images, we finally get the magnetic field strength upstream of the shock. The estimated magnetic field decreases from similar to 48 mG around 6 Rs to 8 mG at 23 Rs. The radial profile of the magnetic field can be described by a power law in agreement with other estimates at similar heliocentric distances. C1 [Gopalswamy, Nat] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Yashiro, Seiji] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Gopalswamy, N (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Gopalswamy, Nat/D-3659-2012 FU NASA FX We thank P. Makela and H. Xie for verifying the height-time measurements. This work was supported by NASA's LWS TR&T program. We thank the SOHO and STEREO teams for making the data available online. We thank the referee for helpful comments. NR 26 TC 47 Z9 47 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 20 PY 2011 VL 736 IS 1 AR L17 DI 10.1088/2041-8205/736/1/L17 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797OX UT WOS:000293138300017 ER PT J AU Griffith, RL Tsai, CW Stern, D Blain, A Eisenhardt, PRM Harrison, F Jarrett, TH Madsen, K Stanford, SA Wright, EL Wu, JW Wu, Y Yan, L AF Griffith, Roger L. Tsai, Chao-Wei Stern, Daniel Blain, Andrew Eisenhardt, Peter R. M. Harrison, Fiona Jarrett, Thomas H. Madsen, Kristin Stanford, Spencer A. Wright, Edward L. Wu, Jingwen Wu, Yanling Yan, Lin TI WISE DISCOVERY OF LOW-METALLICITY BLUE COMPACT DWARF GALAXIES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: abundances; galaxies: dwarf; galaxies: individual (WISEP J080103.93+264053.9, WISEP J170233.53+180306.4); galaxies: starburst ID INFRARED SURVEY EXPLORER; DIGITAL SKY SURVEY; EMISSION-LINE GALAXIES; METAL-POOR GALAXIES; SBS 0335-052; STAR-FORMATION; PRIMORDIAL HELIUM; DUST; ABUNDANCE; SPITZER AB We report two new low-metallicity blue compact dwarf galaxies (BCDs), WISEP J080103.93+264053.9 (hereafter W0801+26) and WISEP J170233.53+180306.4 (hereafter W1702+18), discovered using the Wide-field Infrared Survey Explorer (WISE). We identified these two BCDs from their extremely red colors at mid-infrared wavelengths and obtained follow-up optical spectroscopy using the Low Resolution Imaging Spectrometer on Keck I. The mid-infrared properties of these two sources are similar to the well-studied, extremely low metallicity galaxy SBS 0335-052E. We determine metallicities of 12+log (O/H) = 7.75 and 7.63 for W0801+26 and W1702+18, respectively, placing them among a very small group of very metal deficient galaxies (Z <= 1/10Z(circle dot)). Their >300 angstrom H beta equivalent widths, similar to SBS 0335-052E, imply the existence of young (<5Myr) star-forming regions. We measure star formation rates of 2.6 and 10.9M(circle dot) yr(-1) for W0801+26 and W1702+18, respectively. These BCDs, showing recent star formation activity in extremely low metallicity environments, provide new laboratories for studying star formation in extreme conditions and are low-redshift analogs of the first generation of galaxies to form in the universe. Using the all-sky WISE survey, we discuss a new method to identify similar star-forming, low-metallicity BCDs. C1 [Griffith, Roger L.; Tsai, Chao-Wei; Jarrett, Thomas H.; Wu, Yanling; Yan, Lin] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Stern, Daniel; Eisenhardt, Peter R. M.; Wu, Jingwen] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Blain, Andrew] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Harrison, Fiona; Madsen, Kristin] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. [Stanford, Spencer A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Wright, Edward L.] Univ Calif Los Angeles, Dept Astron, Los Angeles, CA 90095 USA. RP Griffith, RL (reprint author), CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. OI Madsen, Kristin/0000-0003-1252-4891 FU National Aeronautics and Space Administration; W. M. Keck Foundation FX The authors thank the anonymous referee for timely and beneficial comments that have improved the manuscript. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory, California Institute of Technology, funded by the National Aeronautics and Space Administration. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors also recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community; we are most fortunate to have the opportunity to conduct observations from this mountain. NR 38 TC 16 Z9 16 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 20 PY 2011 VL 736 IS 1 AR L22 DI 10.1088/2041-8205/736/1/L22 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797OX UT WOS:000293138300022 ER PT J AU Liu, W Title, AM Zhao, JW Ofman, L Schrijver, CJ Aschwanden, MJ De Pontieu, B Tarbell, TD AF Liu, Wei Title, Alan M. Zhao, Junwei Ofman, Leon Schrijver, Carolus J. Aschwanden, Markus J. De Pontieu, Bart Tarbell, Theodore D. TI DIRECT IMAGING OF QUASI-PERIODIC FAST PROPAGATING WAVES OF similar to 2000 km s(-1) IN THE LOW SOLAR CORONA BY THE SOLAR DYNAMICS OBSERVATORY ATMOSPHERIC IMAGING ASSEMBLY SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Sun: activity; Sun: corona; Sun: coronal mass ejections; Sun: flares; Sun: oscillations; waves ID TRANSITION-REGION; MAGNETOACOUSTIC WAVE; LOOP OSCILLATIONS; ALFVEN WAVES; TRANSVERSE-WAVES; MASS EJECTION; FLARE; RECONNECTION; PULSATIONS; CHROMOSPHERE AB Quasi-periodic propagating fast mode magnetosonic waves in the solar corona were difficult to observe in the past due to relatively low instrument cadences. We report here evidence of such waves directly imaged in EUV by the new Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory. In the 2010 August 1 C3.2 flare/coronal mass ejection event, we find arc-shaped wave trains of 1%-5% intensity variations (lifetime similar to 200 s) that emanate near the flare kernel and propagate outward up to similar to 400 Mm along a funnel of coronal loops. Sinusoidal fits to a typical wave train indicate a phase velocity of 2200 +/- 130 km s(-1). Similar waves propagating in opposite directions are observed in closed loops between two flare ribbons. In the k-omega diagram of the Fourier wave power, we find a bright ridge that represents the dispersion relation and can be well fitted with a straight line passing through the origin. This k-omega ridge shows a broad frequency distribution with power peaks at 5.5, 14.5, and 25.1 mHz. The strongest signal at 5.5 mHz (period 181 s) temporally coincides with quasi-periodic pulsations of the flare, suggesting a common origin. The instantaneous wave energy flux of (0.1-2.6) x 10(7) erg cm(-2) s(-1) estimated at the coronal base is comparable to the steady-state heating requirement of active region loops. C1 [Liu, Wei; Title, Alan M.; Schrijver, Carolus J.; Aschwanden, Markus J.; De Pontieu, Bart; Tarbell, Theodore D.] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA 94304 USA. [Liu, Wei; Zhao, Junwei] Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ofman, Leon] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ofman, Leon] Catholic Univ Amer, Greenbelt, MD 20771 USA. RP Liu, W (reprint author), Lockheed Martin Solar & Astrophys Lab, Bldg 252,3251 Hanover St, Palo Alto, CA 94304 USA. RI Zhao, Junwei/A-1177-2007 FU NASA [NWX08AV88G, NNX09AG10G]; AIA [NNG04EA00C] FX L.O. was supported by NASA grants NWX08AV88G and NNX09AG10G. Wavelet software, available at http://atoc.colorado.edu/research/wavelets, was provided by C. Torrence and G. Compo. We thank Nariaki Nitta for helpful discussions. This work was supported by AIA contract NNG04EA00C. NR 46 TC 57 Z9 57 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 20 PY 2011 VL 736 IS 1 AR L13 DI 10.1088/2041-8205/736/1/L13 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797OX UT WOS:000293138300013 ER PT J AU Rinehart, SA Benford, DJ Cataldo, G Dwek, E Henry, R Kinzer, RE Nuth, J Silverberg, R Wheeler, C Wollack, E AF Rinehart, Stephen A. Benford, Dominic J. Cataldo, Giuseppe Dwek, Eliahu Henry, Ross Kinzer, Raymond E., Jr. Nuth, Joseph Silverberg, Robert Wheeler, Caleb Wollack, Edward TI Measuring the optical properties of astrophysical dust analogues: instrumentation and methods SO APPLIED OPTICS LA English DT Article ID TEMPERATURE-DEPENDENCE; SILICATE GRAINS; STARS; ABSORPTION; PARTICLES; EMISSION AB Dust is found throughout the universe and plays an important role for a wide range of astrophysical phenomena. In recent years, new IR facilities have provided powerful new data for understanding these phenomena. However, interpretation of these data is often complicated by a lack of complementary information about the optical properties of astronomically relevant materials. The Optical Properties of Astronomical Silicates with Infrared Techniques (OPASI-T) program at NASA's Goddard Space Flight Center is designed to provide new high-quality laboratory data from which we can derive the optical properties of astrophysical dust analogues. This program makes use of multiple instruments, including new equipment designed and built specifically for this purpose. The suite of instruments allows us to derive optical properties over a wide wavelength range, from the near-IR through the millimeter, also providing the capability for exploring how these properties depend upon the temperature of the sample. In this paper, we discuss the overall structure of the research program, describe the new instruments that have been developed to meet the science goals, and demonstrate the efficacy of these tools. (c) 2011 Optical Society of America C1 [Rinehart, Stephen A.; Benford, Dominic J.; Cataldo, Giuseppe; Dwek, Eliahu; Henry, Ross; Kinzer, Raymond E., Jr.; Nuth, Joseph; Silverberg, Robert; Wollack, Edward] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wheeler, Caleb] Arizona State Univ, Tempe, AZ 85287 USA. RP Rinehart, SA (reprint author), NASA, Goddard Space Flight Ctr, Code 665, Greenbelt, MD 20771 USA. EM Stephen.A.Rinehart@nasa.gov RI Dwek, Eli/C-3995-2012; Benford, Dominic/D-4760-2012; Nuth, Joseph/E-7085-2012; Wollack, Edward/D-4467-2012 OI Benford, Dominic/0000-0002-9884-4206; Wollack, Edward/0000-0002-7567-4451 FU NASA Science Mission Directorate; NASA through the NASA Herschel Science Center Laboratory; NASA FX The material presented in this paper is based upon work supported by NASA Science Mission Directorate through the ROSES/APRA program. Additional support for this work was provided by NASA through the NASA Herschel Science Center Laboratory Astrophysics Program. Samples were prepared under support provided to J. Nuth by NASA's cosmochemistry program. R. Kinzer is supported by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center (GSFC), administered by the Oak Ridge Associated Universities under contract with NASA. Contributions to this project were also made by several students funded through NASA's Undergraduate Student Research Program (USRP): N. Lourie, J. Wheeler, N. Mihalko, and T. Chisholm. Laboratory support was also provided by Manuel Quijada in the Optics Branch at GSFC. NR 23 TC 4 Z9 4 U1 0 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JUL 20 PY 2011 VL 50 IS 21 BP 4115 EP 4123 DI 10.1364/AO.50.004115 PG 9 WC Optics SC Optics GA 795JN UT WOS:000292970600047 PM 21772399 ER PT J AU Hamden, ET Greer, F Hoenk, ME Blacksberg, J Dickie, MR Nikzad, S Martin, DC Schiminovich, D AF Hamden, Erika T. Greer, Frank Hoenk, Michael E. Blacksberg, Jordana Dickie, Matthew R. Nikzad, Shouleh Martin, D. Christopher Schiminovich, David TI Ultraviolet antireflection coatings for use in silicon detector design SO APPLIED OPTICS LA English DT Article ID OPTICAL-CONSTANTS; THIN-FILMS; EXPLORER; MISSION; OZONE; AL2O3; LAYER AB We report on the development of coatings for a charged-coupled device (CCD) detector optimized for use in a fixed dispersion UV spectrograph. Because of the rapidly changing index of refraction of Si, single layer broadband antireflection (AR) coatings are not suitable to increase quantum efficiency at all wavelengths of interest. Instead, we describe a creative solution that provides excellent performance over UV wavelengths. We describe progress in the development of a coated CCD detector with theoretical quantum efficiencies (QEs) of greater than 60% at wavelengths from 120 to 300nm. This high efficiency may be reached by coating a backside-illuminated, thinned, delta-doped CCD with a series of thin film AR coatings. The materials tested include MgF2 (optimized for highest performance from 120-150 nm), SiO2 (150-180 nm), Al2O3 (180-240 nm), MgO (200-250 nm), and HfO2 (240-300 nm). A variety of deposition techniques were tested and a selection of coatings that minimized reflectance on a Si test wafer were applied to functional devices. We also discuss future uses and improvements, including graded and multilayer coatings. (C) 2011 Optical Society of America C1 [Hamden, Erika T.; Schiminovich, David] Columbia Univ, Dept Astron, New York, NY 10025 USA. [Greer, Frank; Hoenk, Michael E.; Blacksberg, Jordana; Dickie, Matthew R.; Nikzad, Shouleh] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Martin, D. Christopher] CALTECH, Dept Astron, Pasadena, CA 91125 USA. RP Hamden, ET (reprint author), Columbia Univ, Dept Astron, 550 W 120th St, New York, NY 10025 USA. EM hamden@astro.columbia.edu FU National Aeronautics and Space Administration (NASA); Columbia University FX The research described here was funded in part by a National Aeronautics and Space Administration (NASA) Space Grant. The research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, and was supported in part by internal funding from Columbia University. The authors wish to thank Blake Jacquot, Todd Jones, and Patrick Morrissey for their help and advice in the writing of this paper. NR 31 TC 14 Z9 14 U1 1 U2 18 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JUL 20 PY 2011 VL 50 IS 21 BP 4180 EP 4188 DI 10.1364/AO.50.004180 PG 9 WC Optics SC Optics GA 795JN UT WOS:000292970600054 PM 21772406 ER PT J AU Katz, A Wissink, AM Sankaran, V Meakin, RL Chan, WM AF Katz, Aaron Wissink, Andrew M. Sankaran, Venkateswaran Meakin, Robert L. Chan, William M. TI Application of strand meshes to complex aerodynamic flow fields SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Computational fluid dynamics; Aerodynamics; High-order methods; Adaptive mesh refinement; Mesh generation ID CIRCULAR-CYLINDER; GRID GENERATION AB We explore a new approach for viscous computational fluid dynamics calculations for external aerodynamics around geometrically complex bodies that incorporates nearly automatic mesh generation and efficient flow solution methods. A prismatic-like grid using "strands" is grown a short distance from the body surface to capture the viscous boundary layer, and adaptive Cartesian grids are used throughout the rest of the domain. The approach presents several advantages over established methods: nearly automatic grid generation from triangular or quadrilateral surface tessellations, very low memory overhead, automatic mesh adaptivity for time-dependent problems, and fast and efficient solvers from structured data in both the strand and Cartesian grids. The approach is evaluated for complex geometries and flow fields. We investigate the effects of strand length and strand vector smoothing to understand the effects on computed solutions. Results of three applications using the strand-adaptive Cartesian approach are given, including a NACA wing, isolated V-22 (TRAM) rotor in hover, and the DLR-F6 wing-body transport. The results from these cases show that the strand approach can successfully resolve near-body and off-body features as well as or better than established methods. (C) 2011 Elsevier Inc. All rights reserved. C1 [Katz, Aaron; Chan, William M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Katz, Aaron; Wissink, Andrew M.; Sankaran, Venkateswaran] USA, Aeroflightdynam Directorate AMRDEC, Moffett Field, CA 94035 USA. [Meakin, Robert L.] Univ Alabama, Dept Mech Engn, Birmingham, AL 35294 USA. RP Katz, A (reprint author), NASA, Ames Res Ctr, M-S 215-1, Moffett Field, CA 94035 USA. EM akatz@merlin.arc.nasa.gov RI Katz, Aaron/I-8244-2015 OI Katz, Aaron/0000-0003-2739-9384 FU Department of Defense High Performance Computing Modernization Office (HPCMO); HPCMO FX Development was performed at the HPC Institute for Advanced Rotorcraft Modeling and Simulation (HIARMS) located at the US Army Aeroflightdynamics Directorate at Moffett Field, CA, which is supported by the Department of Defense High Performance Computing Modernization Office (HPCMO). Material presented in this paper is a product of the CREATE-AV Element of the Computational Research and Engineering for Acquisition Tools and Environments (CREATE) Program sponsored by the HPCMO. NR 33 TC 9 Z9 9 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 20 PY 2011 VL 230 IS 17 BP 6512 EP 6530 DI 10.1016/j.jcp.2011.04.036 PG 19 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 796EO UT WOS:000293034800008 ER PT J AU Baylor, RN Cassak, PA Christe, S Hannah, IG Krucker, S Mullan, DJ Shay, MA Hudson, HS Lin, RP AF Baylor, R. N. Cassak, P. A. Christe, S. Hannah, I. G. Krucker, Saem Mullan, D. J. Shay, M. A. Hudson, H. S. Lin, R. P. TI ESTIMATES OF DENSITIES AND FILLING FACTORS FROM A COOLING TIME ANALYSIS OF SOLAR MICROFLARES OBSERVED WITH RHESSI SO ASTROPHYSICAL JOURNAL LA English DT Article DE conduction; radiative transfer; Sun: activity; Sun: corona; Sun: flares ID X-RAY FLARE; ACTIVE-REGION LOOPS; WHITE-LIGHT FLARES; TRANSITION-REGION; STELLAR FLARES; FREQUENCY-DISTRIBUTIONS; SPECTROSCOPIC-IMAGER; CORONAL-EXPLORER; EMISSION MEASURE; IMPULSIVE PHASE AB We usemore than 4500 microflares from the RHESSI microflare data set to estimate electron densities and volumetric filling factors of microflare loops using a cooling time analysis. We show that if the filling factor is assumed to be unity, the calculated conductive cooling times are much shorter than the observed flare decay times, which in turn are much shorter than the calculated radiative cooling times. This is likely unphysical, but the contradiction can be resolved by assuming that the radiative and conductive cooling times are comparable, which is valid when the flare loop temperature is a maximum and when external heating can be ignored. We find that resultant radiative and conductive cooling times are comparable to observed decay times, which has been used as an assumption in some previous studies. The inferred electron densities have a mean value of 10(11.6) cm(-3) and filling factors have a mean of 10(-3.7). The filling factors are lower and densities are higher than previous estimates for large flares, but are similar to those found for two microflares by Moore et al. C1 [Baylor, R. N.; Cassak, P. A.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. [Christe, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hannah, I. G.; Hudson, H. S.] Univ Glasgow, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Krucker, Saem; Hudson, H. S.; Lin, R. P.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Krucker, Saem] Univ Appl Sci N Western Switzerland, Sch Engn, Inst Technol 4D, CH-5210 Windisch, Switzerland. [Mullan, D. J.; Shay, M. A.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Mullan, D. J.; Shay, M. A.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Lin, R. P.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lin, R. P.] Kyung Hee Univ, Sch Space Res, Seoul, South Korea. RP Baylor, RN (reprint author), W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. EM rbaylor@mix.wvu.edu RI Hannah, Iain/F-1972-2011; Christe, Steven/D-4648-2012; Shay, Michael/G-5476-2013; OI Hannah, Iain/0000-0003-1193-8603; Christe, Steven/0000-0001-6127-795X FU NSF [PHY-0902479]; NASA [NAS 5-98033]; West Virginia University Faculty Senate Research; Delaware Space Grant; European Commission through the SOLAIRE Network [MTRN-CT-2006-035484]; Korean Ministry of Education, Science and Technology [R31-10016] FX The authors thank G. Holman and B. Dennis for helpful conversations. R.N.B. and P.A.C. gratefully acknowledge support by NSF grant PHY-0902479, NASA's EPSCoR Research Infrastructure Development Program, and the West Virginia University Faculty Senate Research Grant program. D.J.M. is supported in part by the Delaware Space Grant. I.G.H. is supported by an STFC rolling grant and by the European Commission through the SOLAIRE Network (MTRN-CT-2006-035484). R.P.L. is supported in part by the WCU grant (No. R31-10016) funded by the Korean Ministry of Education, Science and Technology. H.S.H., R.P.L., and S.K. are supported through NASA contract NAS 5-98033 for RHESSI. NR 69 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 75 DI 10.1088/0004-637X/736/1/75 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600075 ER PT J AU Borucki, WJ Koch, DG Basri, G Batalha, N Brown, TM Bryson, ST Caldwell, D Christensen-Dalsgaard, J Cochran, WD DeVore, E Dunham, EW Gautier, TN Geary, JC Gilliland, R Gould, A Howell, SB Jenkins, JM Latham, DW Lissauer, JJ Marcy, GW Rowe, J Sasselov, D Boss, A Charbonneau, D Ciardi, D Doyle, L Dupree, AK Ford, EB Fortney, J Holman, MJ Seager, S Steffen, JH Tarter, J Welsh, WF Allen, C Buchhave, LA Christiansen, JL Clarke, BD Das, S Desert, JM Endl, M Fabrycky, D Fressin, F Haas, M Horch, E Howard, A Isaacson, H Kjeldsen, H Kolodziejczak, J Kulesa, C Li, J Lucas, PW Machalek, P McCarthy, D MacQueen, P Meibom, S Miquel, T Prsa, A Quinn, SN Quintana, EV Ragozzine, D Sherry, W Shporer, A Tenenbaum, P Torres, G Twicken, JD Van Cleve, J Walkowicz, L Witteborn, FC Still, M AF Borucki, William J. Koch, David G. Basri, Gibor Batalha, Natalie Brown, Timothy M. Bryson, Stephen T. Caldwell, Douglas Christensen-Dalsgaard, Jorgen Cochran, William D. DeVore, Edna Dunham, Edward W. Gautier, Thomas N., III Geary, John C. Gilliland, Ronald Gould, Alan Howell, Steve B. Jenkins, Jon M. Latham, David W. Lissauer, Jack J. Marcy, Geoffrey W. Rowe, Jason Sasselov, Dimitar Boss, Alan Charbonneau, David Ciardi, David Doyle, Laurance Dupree, Andrea K. Ford, Eric B. Fortney, Jonathan Holman, Matthew J. Seager, Sara Steffen, Jason H. Tarter, Jill Welsh, William F. Allen, Christopher Buchhave, Lars A. Christiansen, Jessie L. Clarke, Bruce D. Das, Santanu Desert, Jean-Michel Endl, Michael Fabrycky, Daniel Fressin, Francois Haas, Michael Horch, Elliott Howard, Andrew Isaacson, Howard Kjeldsen, Hans Kolodziejczak, Jeffery Kulesa, Craig Li, Jie Lucas, Philip W. Machalek, Pavel McCarthy, Donald MacQueen, Phillip Meibom, Soren Miquel, Thibaut Prsa, Andrej Quinn, Samuel N. Quintana, Elisa V. Ragozzine, Darin Sherry, William Shporer, Avi Tenenbaum, Peter Torres, Guillermo Twicken, Joseph D. Van Cleve, Jeffrey Walkowicz, Lucianne Witteborn, Fred C. Still, Martin TI CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY KEPLER. II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; stars: statistics; planets and satellites: detection; surveys ID TERRESTRIAL PLANETS; INITIAL CHARACTERISTICS; TRANSITING PLANET; TARGET STARS; CADENCE DATA; DWARF STARS; LOW-DENSITY; HABITABILITY; SYSTEM; FIELD AB On 2011 February 1 the Kepler mission released data for 156,453 stars observed from the beginning of the science observations on 2009 May 2 through September 16. There are 1235 planetary candidates with transit-like signatures detected in this period. These are associated with 997 host stars. Distributions of the characteristics of the planetary candidates are separated into five class sizes: 68 candidates of approximately Earth-size (R-p < 1.25 R-circle plus), 288 super-Earth-size (1.25 R-circle plus <= R-p < 2 R-circle plus), 662 Neptune-size (2 R-circle plus <= R-p < 6 R-circle plus), 165 Jupiter-size (6 R-circle plus <= R-p < 15 R-circle plus), and 19 up to twice the size of Jupiter (15 R-circle plus <= R-p < 22 R-circle plus). In the temperature range appropriate for the habitable zone, 54 candidates are found with sizes ranging from Earth-size to larger than that of Jupiter. Six are less than twice the size of the Earth. Over 74% of the planetary candidates are smaller than Neptune. The observed number versus size distribution of planetary candidates increases to a peak at two to three times the Earth-size and then declines inversely proportional to the area of the candidate. Our current best estimates of the intrinsic frequencies of planetary candidates, after correcting for geometric and sensitivity biases, are 5% for Earth-size candidates, 8% for super-Earth-size candidates, 18% for Neptune-size candidates, 2% for Jupiter-size candidates, and 0.1% for very large candidates; a total of 0.34 candidates per star. Multi-candidate, transiting systems are frequent; 17% of the host stars have multi-candidate systems, and 34% of all the candidates are part of multi-candidate systems. C1 [Borucki, William J.; Koch, David G.; Bryson, Stephen T.; Lissauer, Jack J.; Rowe, Jason; Haas, Michael] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Basri, Gibor; Marcy, Geoffrey W.; Howard, Andrew; Isaacson, Howard; Walkowicz, Lucianne] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Batalha, Natalie] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. [Brown, Timothy M.; Shporer, Avi] Las Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Caldwell, Douglas; DeVore, Edna; Jenkins, Jon M.; Doyle, Laurance; Tarter, Jill; Christiansen, Jessie L.; Clarke, Bruce D.; Li, Jie; Machalek, Pavel; Quintana, Elisa V.; Tenenbaum, Peter; Twicken, Joseph D.; Van Cleve, Jeffrey; Still, Martin] SETI Inst, Mountain View, CA 94043 USA. [Christensen-Dalsgaard, Jorgen; Kjeldsen, Hans] Aarhus Univ, Danish Asteroseismol Ctr, Aarhus, Denmark. [Cochran, William D.; Endl, Michael; MacQueen, Phillip] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Dunham, Edward W.] Lowell Observ, Flagstaff, AZ 86001 USA. [Gautier, Thomas N., III] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Geary, John C.; Latham, David W.; Sasselov, Dimitar; Charbonneau, David; Dupree, Andrea K.; Holman, Matthew J.; Buchhave, Lars A.; Desert, Jean-Michel; Fressin, Francois; Meibom, Soren; Quinn, Samuel N.; Ragozzine, Darin; Torres, Guillermo] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Gilliland, Ronald] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Gould, Alan] Lawrence Hall Sci, Berkeley, CA 94720 USA. [Howell, Steve B.; Sherry, William] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Boss, Alan] Carnegie Inst Washington, Washington, DC 20015 USA. [Ciardi, David] CALTECH, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Ford, Eric B.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Fortney, Jonathan; Fabrycky, Daniel] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Seager, Sara] MIT, Cambridge, MA 02139 USA. [Steffen, Jason H.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Welsh, William F.] San Diego State Univ, Dept Astron, San Diego, CA 92182 USA. [Allen, Christopher; Witteborn, Fred C.] Orbital Sci Corp, Mountain View, CA 94043 USA. [Das, Santanu] Univ Calif Santa Cruz, Univ Affiliated Res Ctr, Santa Cruz, CA 95064 USA. [Horch, Elliott] So Connecticut State Univ, New Haven, CT 06515 USA. [Kolodziejczak, Jeffery] MSFC, Huntsville, AL 35805 USA. [Kulesa, Craig; McCarthy, Donald] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Kulesa, Craig; McCarthy, Donald] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Lucas, Philip W.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Miquel, Thibaut] French Space Agcy, CNES, Toulouse, France. [Prsa, Andrej] Villanova Univ, Dept Astron, Villanova, PA 19085 USA. RP Borucki, WJ (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM William.J.Borucki@nasa.gov; Fred.C.Witteborn@nasa.gov; Martin.Still@nasa.gov RI Ragozzine, Darin/C-4926-2013; Caldwell, Douglas/L-7911-2014; Howard, Andrew/D-4148-2015; OI Caldwell, Douglas/0000-0003-1963-9616; Howard, Andrew/0000-0001-8638-0320; Fortney, Jonathan/0000-0002-9843-4354; Buchhave, Lars A./0000-0003-1605-5666; Ciardi, David/0000-0002-5741-3047; /0000-0001-6545-639X; Fabrycky, Daniel/0000-0003-3750-0183 FU NASA's Science Mission Directorate; W. M. Keck Foundation FX Kepler was competitively selected as the tenth Discovery mission. Funding for this mission is provided by NASA's Science Mission Directorate. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Keck Observatory was made possible by the generous financial support of the W. M. Keck Foundation. We sincerely thank Andrew Gould for his timely, thorough, and very helpful review of this paper. The authors thank many people who gave so generously of their time to make this mission a success. NR 46 TC 528 Z9 528 U1 25 U2 106 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 19 DI 10.1088/0004-637X/736/1/19 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600019 ER PT J AU Cucchiara, A Levan, AJ Fox, DB Tanvir, NR Ukwatta, TN Berger, E Kruhler, T Yoldas, AK Wu, XF Toma, K Greiner, J Olivares, F Rowlinson, A Amati, L Sakamoto, T Roth, K Stephens, A Fritz, A Fynbo, JPU Hjorth, J Malesani, D Jakobsson, P Wiersema, K O'Brien, PT Soderberg, AM Foley, RJ Fruchter, AS Rhoads, J Rutledge, RE Schmidt, BP Dopita, MA Podsiadlowski, P Willingale, R Wolf, C Kulkarni, SR D'Avanzo, P AF Cucchiara, A. Levan, A. J. Fox, D. B. Tanvir, N. R. Ukwatta, T. N. Berger, E. Kruehler, T. Yoldas, A. Kuepcue Wu, X. F. Toma, K. Greiner, J. Olivares E, F. Rowlinson, A. Amati, L. Sakamoto, T. Roth, K. Stephens, A. Fritz, Alexander Fynbo, J. P. U. Hjorth, J. Malesani, D. Jakobsson, P. Wiersema, K. O'Brien, P. T. Soderberg, A. M. Foley, R. J. Fruchter, A. S. Rhoads, J. Rutledge, R. E. Schmidt, B. P. Dopita, M. A. Podsiadlowski, P. Willingale, R. Wolf, C. Kulkarni, S. R. D'Avanzo, P. TI A PHOTOMETRIC REDSHIFT OF z similar to 9.4 FOR GRB 090429B SO ASTROPHYSICAL JOURNAL LA English DT Article DE early universe; galaxies: high-redshift; gamma-ray burst: individual (GRB 090429R); techniques: photometric ID GAMMA-RAY BURSTS; GALAXY LUMINOSITY FUNCTION; CORE-COLLAPSE SUPERNOVAE; DIGITAL SKY SURVEY; SWIFT-ERA; HOST GALAXIES; LIGHT CURVES; DUST; AFTERGLOW; TELESCOPE AB Gamma-ray bursts (GRBs) serve as powerful probes of the early universe, with their luminous afterglows revealing the locations and physical properties of star-forming galaxies at the highest redshifts, and potentially locating first-generation (Population III) stars. Since GRB afterglows have intrinsically very simple spectra, they allow robust redshifts from low signal-to-noise spectroscopy, or photometry. Here we present a photometric redshift of z similar to 9.4 for the Swift detected GRB 090429B based on deep observations with Gemini-North, the Very Large Telescope, and the GRB Optical and Near-infrared Detector. Assuming a Small Magellanic Cloud dust law (which has been found in a majority of GRB sight lines), the 90% likelihood range for the redshift is 9.06 < z < 9.52, although there is a low-probability tail toward somewhat lower redshifts. Adopting Milky Way or Large Magellanic Cloud dust laws leads to very similar conclusions, while a Maiolino law does allow somewhat lower redshift solutions, though in all cases the most likely redshift is found to be z > 7. The non-detection of the host galaxy to deep limits (Y (AB) similar to 28, which would correspond roughly to 0.001L* at z = 1) in our late-time optical and infrared observations with the Hubble Space Telescope strongly supports the extreme-redshift origin of GRB 090429B, since we would expect to have detected any low-z galaxy, even if it were highly dusty. Finally, the energetics of GRB 090429B are comparable to those of other GRBs and suggest that its progenitor is not greatly different from those of lower redshift bursts. C1 [Cucchiara, A.; Fox, D. B.; Wu, X. F.; Toma, K.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Cucchiara, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Cucchiara, A.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Levan, A. J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Tanvir, N. R.; Rowlinson, A.; Wiersema, K.; O'Brien, P. T.; Willingale, R.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Ukwatta, T. N.] George Washington Univ, Dept Phys, Washington, DC 20052 USA. [Ukwatta, T. N.; Sakamoto, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Berger, E.; Soderberg, A. M.; Foley, R. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Kruehler, T.; Greiner, J.; Olivares E, F.] Max Planck Inst Extraterr Phys, D-85740 Garching, Germany. [Kruehler, T.] Tech Univ Munich, D-85748 Garching, Germany. [Yoldas, A. Kuepcue] European So Observ, D-85748 Garching, Germany. [Yoldas, A. Kuepcue] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Wu, X. F.] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Amati, L.] INAF IASF Bologna, I-40129 Bologna, Italy. [Roth, K.; Stephens, A.; Fritz, Alexander] Gemini Observ, Hilo, HI 96720 USA. [Fynbo, J. P. U.; Hjorth, J.; Malesani, D.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark. [Jakobsson, P.] Univ Iceland, Inst Sci, Ctr Astrophys & Cosmol, IS-107 Reykjavik, Iceland. [Fruchter, A. S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Rhoads, J.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Rutledge, R. E.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Schmidt, B. P.; Dopita, M. A.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Podsiadlowski, P.; Wolf, C.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Kulkarni, S. R.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [D'Avanzo, P.] INAF Osservatorio Astron Brera, I-23807 Merate, Italy. RP Cucchiara, A (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. EM acucchiara@lbl.gov RI Fynbo, Johan/L-8496-2014; Hjorth, Jens/M-5787-2014; Dopita, Michael/P-5413-2014; Jakobsson, Pall/L-9950-2015; Amati, Lorenzo/N-5586-2015; Wu, Xuefeng/G-5316-2015; OI Fynbo, Johan/0000-0002-8149-8298; Hjorth, Jens/0000-0002-4571-2306; Dopita, Michael/0000-0003-0922-4986; Jakobsson, Pall/0000-0002-9404-5650; Amati, Lorenzo/0000-0001-5355-7388; Wu, Xuefeng/0000-0002-6299-1263; Kruehler, Thomas/0000-0002-8682-2384 FU NSF [GN-2009A-Q-26]; NASA [NAS 5-26555]; DFG [HA 1850/28-1]; Science and Technology Funding Council; Danish National Research Foundation; Deutscher Akademischer Austausch-Dienst (DAAD) FX The Gemini data, acquired under the program ID GN-2009A-Q-26, are based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Institute. STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555. Data presented in this paper is associated with programme GO-11189. Part of the funding for GROND (both hardware as well as personnel) was generously granted by the Leibniz-Prize to Prof. G. Hasinger (DFG grant HA 1850/28-1). T. K. acknowledges support by the DFG cluster of excellence "Origin and Structure of the Universe." A. R. acknowledges funding from the Science and Technology Funding Council. The Dark Cosmology Centre is funded by the Danish National Research Foundation. F.O.E. acknowledges funding of his Ph.D. through the Deutscher Akademischer Austausch-Dienst (DAAD). NR 70 TC 175 Z9 176 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 7 DI 10.1088/0004-637X/736/1/7 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600007 ER PT J AU Hand, N Appel, JW Battaglia, N Bond, JR Das, S Devlin, MJ Dunkley, J Dunner, R Essinger-Hileman, T Fowler, JW Hajian, A Halpern, M Hasselfield, M Hilton, M Hincks, AD Hlozek, R Hughes, JP Irwin, KD Klein, J Kosowsky, A Lin, YT Marriage, TA Marsden, D McLaren, M Menanteau, F Moodley, K Niemack, MD Nolta, MR Page, LA Parker, L Partridge, B Plimpton, R Reese, ED Rojas, F Sehgal, N Sherwin, BD Sievers, JL Spergel, DN Staggs, ST Swetz, DS Switzer, ER Thornton, R Trac, H Visnjic, K Wollack, E AF Hand, Nick Appel, John W. Battaglia, Nick Bond, J. Richard Das, Sudeep Devlin, Mark J. Dunkley, Joanna Duenner, Rolando Essinger-Hileman, Thomas Fowler, Joseph W. Hajian, Amir Halpern, Mark Hasselfield, Matthew Hilton, Matt Hincks, Adam D. Hlozek, Renee Hughes, John P. Irwin, Kent D. Klein, Jeff Kosowsky, Arthur Lin, Yen-Ting Marriage, Tobias A. Marsden, Danica McLaren, Mike Menanteau, Felipe Moodley, Kavilan Niemack, Michael D. Nolta, Michael R. Page, Lyman A. Parker, Lucas Partridge, Bruce Plimpton, Reed Reese, Erik D. Rojas, Felipe Sehgal, Neelima Sherwin, Blake D. Sievers, Jonathan L. Spergel, David N. Staggs, Suzanne T. Swetz, Daniel S. Switzer, Eric R. Thornton, Robert Trac, Hy Visnjic, Katerina Wollack, Ed TI THE ATACAMA COSMOLOGY TELESCOPE: DETECTION OF SUNYAEV-ZEL'DOVICH DECREMENT IN GROUPS AND CLUSTERS ASSOCIATED WITH LUMINOUS RED GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; galaxies: clusters: general ID DIGITAL SKY SURVEY; SPECTROSCOPIC TARGET SELECTION; SOUTH-POLE TELESCOPE; BACKGROUND POWER SPECTRUM; DATA RELEASE; SCALING RELATIONS; HOT-MODEL; 148 GHZ; SAMPLE; CONSTRAINTS AB We present a detection of the Sunyaev-Zel'dovich (SZ) decrement associated with the luminous red galaxy (LRG) sample of the Sloan Digital Sky Survey. The SZ data come from 148 GHz maps of the equatorial region made by the Atacama Cosmology Telescope. The LRG sample is divided by luminosity into four bins, and estimates for the central SZ temperature decrement are calculated through a stacking process. We detect and account for a bias of the SZ signal due to weak radio sources. We use numerical simulations to relate the observed decrement to Y-200 and clustering properties to relate the galaxy luminosity to halo mass. We also use a relation between brightest cluster galaxy luminosity and cluster mass based on stacked gravitational lensing measurements to estimate the characteristic halo masses. The masses are found to be around 10(14) M-circle dot. C1 [Appel, John W.; Das, Sudeep; Dunkley, Joanna; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hajian, Amir; Hincks, Adam D.; Niemack, Michael D.; Page, Lyman A.; Parker, Lucas; Sherwin, Blake D.; Staggs, Suzanne T.; Switzer, Eric R.; Visnjic, Katerina] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Battaglia, Nick; Bond, J. Richard; Hajian, Amir; Nolta, Michael R.; Sievers, Jonathan L.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Hand, Nick; Dunkley, Joanna; Hajian, Amir; Marriage, Tobias A.; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Das, Sudeep] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, LBL, Berkeley, CA 94720 USA. [Das, Sudeep] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Devlin, Mark J.; Klein, Jeff; Marsden, Danica; McLaren, Mike; Plimpton, Reed; Reese, Erik D.; Swetz, Daniel S.; Thornton, Robert] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Dunkley, Joanna; Hlozek, Renee] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Duenner, Rolando; Lin, Yen-Ting; Rojas, Felipe] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Fowler, Joseph W.; Irwin, Kent D.; Niemack, Michael D.; Swetz, Daniel S.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Halpern, Mark; Hasselfield, Matthew] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Hilton, Matt; Moodley, Kavilan] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Sci, ZA-4041 Durban, South Africa. [Hilton, Matt] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Lin, Yen-Ting] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778568, Japan. [Lin, Yen-Ting] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Sehgal, Neelima] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Switzer, Eric R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Thornton, Robert] W Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA. [Trac, Hy] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Wollack, Ed] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hand, N (reprint author), Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. RI Trac, Hy/N-8838-2014; Klein, Jeffrey/E-3295-2013; Wollack, Edward/D-4467-2012; Spergel, David/A-4410-2011; Hilton, Matthew James/N-5860-2013 OI Trac, Hy/0000-0001-6778-3861; Wollack, Edward/0000-0002-7567-4451; Menanteau, Felipe/0000-0002-1372-2534; Sievers, Jonathan/0000-0001-6903-5074; McLaren, Michael/0000-0003-1575-473X; FU Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT); U.S. National Science Foundation [AST-0408698, PHY-0355328, AST-0707731, PIRE-0507768]; Princeton University; University of Pennsylvania; RCUK; Canada Foundation for Innovation under Compute Canada; Government of Ontario; Ontario Research Fund-Research Excellence; University of Toronto; NASA [NNX08AH30G]; Natural Science and Engineering Research Council of Canada (NSERC); NSF [AST-0546035, AST-0606975]; NSF Physics Frontier Center [PHY-0114422]; U.S. Department of Energy [DE-AC3-76SF00515]; Berkeley Center for Cosmological Physics FX This paper is part of a senior thesis supervised by D. Spergel. ACT operates in the Parque Astronomico Atacama in northern Chile under the auspices of Programa de Astronomia, a program of the Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT). We thank Masao Uehara for coordinating ACT's operations in Chile and Paula Aguirre, Bill Page, David Sanchez, and Omean Stryzak for assistance in operating the telescope. We also thank Eyal Kazin, Will Percival, Beth Reid, and Reina Reyes for useful discussions during the development of this work.; This work was supported by the U.S. National Science Foundation through awards AST-0408698 for the ACT project, and PHY-0355328, AST-0707731 and PIRE-0507768. Funding was also provided by Princeton University and the University of Pennsylvania. J.D. acknowledges support from a RCUK Fellowship. Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada, the Government of Ontario, Ontario Research Fund-Research Excellence, and the University of Toronto. S. D., A. H., and T. M. were supported through NASA grant NNX08AH30G. A. D. H. received additional support from a Natural Science and Engineering Research Council of Canada (NSERC) PGSD scholarship. A. K. was partially supported through NSF AST-0546035 and AST-0606975 for work on ACT. E. S. acknowledges support by NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics. N.S. is supported by the U.S. Department of Energy contract to SLAC no. DE-AC3-76SF00515. S. D. acknowledges support from the Berkeley Center for Cosmological Physics. NR 73 TC 33 Z9 33 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 39 DI 10.1088/0004-637X/736/1/39 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600039 ER PT J AU Harrison, TE McNamara, BJ Bornak, J Gelino, DM Wachter, S Rupen, MP Gelino, CR AF Harrison, Thomas E. McNamara, Bernard J. Bornak, Jillian Gelino, Dawn M. Wachter, Stefanie Rupen, Michael P. Gelino, Christopher R. TI SPITZER OBSERVATIONS OF GX17+2: CONFIRMATION OF A PERIODIC SYNCHROTRON SOURCE SO ASTROPHYSICAL JOURNAL LA English DT Article DE infrared: stars; stars: individual (GX17+2); stars: neutron; X-rays: binaries ID X-RAY BINARIES; NEUTRON-STAR; CIRCINUS X-1; CYGNUS X-2; GX 17+2; SCORPIUS X-1; CIR X-1; Z-TRACK; MASS; JETS AB GX17+2 is a low-mass X-ray binary (LMXB) that is also a member of a small family of LMXBs known as "Z-sources" that are believed to have persistent X-ray luminosities that are very close to the Eddington limit. GX17+2 is highly variable at both radio and X-ray frequencies, a feature common to Z-sources. What sets GX17+2 apart is its dramatic variability in the near-infrared, where it changes by Delta K similar to 3 mag. Previous investigations have shown that these brightenings are periodic, recurring every 3.01 days. Given its high extinction (A(V) >= 9 mag), it has not been possible to ascertain the nature of these events with ground-based observations. We report mid-infrared Spitzer observations of GX17+2 which indicate a synchrotron spectrum for the infrared brightenings. In addition, GX17+2 is highly variable in the mid-infrared during these events. The combination of the large-scale outbursts, the presence of a synchrotron spectrum, and the dramatic variability in the mid-infrared suggest that the infrared brightening events are due to the periodic transit of a synchrotron jet across our line of sight. An analysis of both new, and archival, infrared observations has led us to revise the period for these events to 3.0367 days. We also present new Rossi X-Ray Timing Explorer (RXTE) data for GX17+2 obtained during two predicted infrared brightening events. Analysis of these new data, and data from the RXTE archive, indicates that there is no correlation between the X-ray behavior of this source and the observed infrared brightenings. We examine various scenarios that might produce periodic jet emission. C1 [Harrison, Thomas E.; McNamara, Bernard J.; Bornak, Jillian] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Gelino, Dawn M.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Wachter, Stefanie] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Rupen, Michael P.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Gelino, Christopher R.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. RP Harrison, TE (reprint author), New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. EM tharriso@nmsu.edu; bmcnamar@nmsu.edu; jbornak@nmsu.edu; dawn@ipac.caltech.edu; wachter@ipac.caltech.edu; mrupen@aoc.nrao.edu; cgelino@ipac.caltech.edu NR 57 TC 2 Z9 2 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 54 DI 10.1088/0004-637X/736/1/54 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600054 ER PT J AU Huang, XC Lee, TJ AF Huang, Xinchuan Lee, Timothy J. TI SPECTROSCOPIC CONSTANTS FOR C-13 AND DEUTERIUM ISOTOPOLOGUES OF CYCLIC AND LINEAR C3H3+ SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; circumstellar matter; ISM: molecules; molecular data; molecular processes ID QUARTIC FORCE-FIELD; VIBRATIONAL FREQUENCIES; BASIS-SETS; CYCLOPROPENYLIDENE; IDENTIFICATION; PROPADIENYLIDENE; IRC+10216; MOLECULES; ENERGIES; SPECTRA AB Recently, we reported ab initio quartic force fields (QFFs) for the cyclic and linear forms of the C3H3+ molecular cation, referred to as c-C3H3+ and l-C3H3+. These were computed using high levels of theory. Specifically the singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations, CCSD(T), was used in conjunction with extrapolation to the one-particle basis set limit, and corrections for scalar relativity and core correlation were included. In the present study, we use these QFFs to compute highly accurate fundamental vibrational frequencies and other spectroscopic constants for the c-(CC2H3+)-C-13, c-C3H2D+, c-(CC2H2D+)-C-13 isotoplogues of c-C3H3+, and the H2CCCD+, HDCCCH+, (H2CCCH+)-C-13, (H2CCCH+)-C-13, and (H2CCCH+)-C-13 isotopologues of l-C3H3+. Improvements in ab intitio methods have now made it possible to identify small molecules in an astronomical observation without the aid of high-resolution experimental data. We also report dipole moment values and show that the above-mentioned cyclic isotopologues have values of 0.094, 0.225, and 0.312 D, respectively, while the l-C3H3+ isotopologues have values that range between 0.325 and 0.811 D. Thus, it is hoped that the highly accurate spectroscopic constants and data provided herein for the C-13 and deuterium isotopologues of the cyclic and linear forms of C3H3+ will enable their identification in astronomical observations from the Herschel Space Observatory, the Stratospheric Observatory for Infrared Astronomy, the Atacama Large Millimeter Array, and in the future, the James Webb Space Telescope. C1 [Lee, Timothy J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Huang, Xinchuan] SETI Inst, Mountain View, CA 94043 USA. RP Lee, TJ (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM Xinchuan.Huang-1@nasa.gov; Timothy.J.Lee@nasa.gov RI HUANG, XINCHUAN/A-3266-2013; Lee, Timothy/K-2838-2012 FU NASA [08-APRA08-0050]; NASA/SETI Institute [NNX09AI49A]; [Cycle 0 TR/LA PID 1022] FX The authors gratefully acknowledge support from the NASA Herschel GO Program, Cycle 0 TR/LA PID 1022, and the NASA grant 08-APRA08-0050. X. H. acknowledges the financial support by NASA/SETI Institute Cooperative Agreement NNX09AI49A. NR 30 TC 14 Z9 14 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 33 DI 10.1088/0004-637X/736/1/33 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600033 ER PT J AU Kennea, JA Romano, P Mangano, V Beardmore, AP Evans, PA Curran, PA Krimm, HA Markwardt, CB Yamaoka, K AF Kennea, J. A. Romano, P. Mangano, V. Beardmore, A. P. Evans, P. A. Curran, P. A. Krimm, H. A. Markwardt, C. B. Yamaoka, K. TI SWIFT OBSERVATIONS OF MAXI J1659-152: A COMPACT BINARY WITH A BLACK HOLE ACCRETOR SO ASTROPHYSICAL JOURNAL LA English DT Article DE X-rays: binaries; X-rays: individual (MAXI J1659-152) ID X-RAY BINARIES; MULTIWAVELENGTH OBSERVATIONS; OPTICAL OBSERVATIONS; LIGHT CURVES; SPACED DATA; MASS; OUTBURST; STATE; TELESCOPE; CANDIDATE AB We report on the detection and follow-up high-cadence monitoring observations of MAXI J1659-152, a bright Galactic X-ray binary transient with a likely black hole accretor, by Swift over a 27 day period after its initial outburst detection. MAXI J1659-152 was discovered almost simultaneously by Swift and the Monitor of All-sky X-ray Image on 2010 September 25, and was monitored intensively from the early stages of the outburst through the rise to a brightness of similar to 0.5 Crab by the Swift X-ray, UV/Optical, and the hard X-ray Burst Alert Telescopes. We present temporal and spectral analysis of the Swift observations. The broadband light curves show variability characteristic of black hole candidate transients. We present the evolution of thermal and non-thermal components of the 0.5-150 keV combined X-ray spectra during the outburst. MAXI J1659-152 displays accretion state changes typically associated with black hole binaries, transitioning from its initial detection in the hard state, to the steep power-law state, followed by a slow evolution toward the thermal state, signified by an increasingly dominant thermal component associated with the accretion disk, although this state change did not complete before Swift observations ended. We observe an anti-correlation between the increasing temperature and decreasing radius of the inner edge of the accretion disk, suggesting that the inner edge of the accretion disk infalls toward the black hole as the disk temperature increases. We observed significant evolution in the absorption column during the initial rise of the outburst, with the absorption almost doubling, suggestive of the presence of an evolving wind from the accretion disk. We detect quasi-periodic oscillations that evolve with the outburst, as well as irregular shaped dips that recur with a period of 2.42 +/- 0.09 hr, strongly suggesting an orbital period that would make MAXI J1659-152 the shortest period black hole binary yet known. C1 [Kennea, J. A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Romano, P.; Mangano, V.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-90146 Palermo, Italy. [Beardmore, A. P.; Evans, P. A.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Curran, P. A.] Ctr Saclay, Irfu SAP, CEA DSM CNRS, AIM, FR-91191 Gif Sur Yvette, France. [Krimm, H. A.] NASA, CRESST, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Markwardt, C. B.] NASA, Astroparticle Phys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Yamaoka, K.] Aoyama Gakuin Univ, Dept Math & Phys, Kanagawa 2525258, Japan. [Krimm, H. A.] Univ Space Res Assoc, Columbia, MD 21044 USA. RP Kennea, JA (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. EM kennea@swift.psu.edu RI Curran, Peter/B-5293-2013 OI Curran, Peter/0000-0003-3003-4626 FU NASA [NNX10AK40G]; UK Space Agency; [ASI-INAF I/009/10/0] FX This work is supported by NASA grant NNX10AK40G, through the Swift Guest Investigator Program. P. R. and V. M. acknowledge financial contribution from the agreement ASI-INAF I/009/10/0. A. P. B. and P. A. E. acknowledge the support of the UK Space Agency. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. We acknowledge the use of public data from the Swift data archive. NR 59 TC 20 Z9 20 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 22 DI 10.1088/0004-637X/736/1/22 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600022 ER PT J AU Lee, KS Moon, YJ Kim, S Choe, GS Cho, KS Imada, S AF Lee, K. -S. Moon, Y. -J. Kim, Sujin Choe, G. S. Cho, Kyung-Suk Imada, S. TI TWO TYPES OF EXTREME-ULTRAVIOLET BRIGHTENINGS IN AR 10926 OBSERVED BY HINODE/EIS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: activity; Sun: UV radiation; techniques: spectroscopic ID EUV IMAGING SPECTROMETER; SOLAR TRANSITION REGION; CORONAL DIAGNOSTIC SPECTROMETER; FLUX CANCELLATION SITES; X-RAY TELESCOPE; ACTIVE-REGION; QUIET-SUN; EXPLOSIVE EVENTS; MAGNETIC-FIELD; TRANSIENT BRIGHTENINGS AB We have investigated seven extreme-ultraviolet (EUV) brightenings in the active region AR 10926 on 2006 December 2 observed by the EUV Imaging Spectrometer on board the Hinode spacecraft. We have determined their Doppler velocities and non-thermal velocities from 15 EUV spectral lines (log T = 4.7-6.4) by fitting each line profile to a Gaussian function. The Doppler velocity maps for different temperatures are presented to show the height dependence of the Doppler shifts. It is found that the active region brightenings show two distinct Doppler shift patterns. The type 1 brightening shows a systematic increase of Doppler velocity from -68 km s(-1) (strong blueshift) at log T = 4.7 to -2 km s(-1) (weak blueshift) at log T = 6.4, while the type 2 brightenings have Doppler velocities in the range from -20 km s(-1) to 20 km s(-1). The type 1 brightening point is considered to sit in an upward reconnection outflow whose speed decreases with height. In both types of brightenings, the non-thermal velocity is found to be significantly enhanced at log T = 5.8 compared to the background region. We have also determined electron densities from line ratios and derived temperatures from emission measure loci using the CHIANTI atomic database. The electron densities of all brightenings are comparable to typical values in active regions (log N-e = 9.9-10.4). The emission measure loci plots indicate that these brightenings should be multi-thermal whereas the background is isothermal. The differential emission measure as a function of temperature shows multiple peaks in the EUV brightening regions, while it has only a single peak (log T = 6.0) in the background region. Using Michelson Doppler Imager magnetograms, we have found that the type 1 brightening is associated with a canceling magnetic feature with a flux canceling rate of 2.4 x 10(18) Mx hr(-1). We also found the canceling magnetic feature and chromospheric brightenings in the type 1 brightening from the Hinode SOT and Transition Region and Coronal Explorer data. This observation corroborates our argument that brightening is caused by magnetic reconnection in a low atmosphere. C1 [Lee, K. -S.] Kyung Hee Univ, Dept Astron & Space Sci, Yongin 446701, South Korea. [Moon, Y. -J.; Choe, G. S.] Kyung Hee Univ, Sch Space Res, Yongin 446701, South Korea. [Moon, Y. -J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kim, Sujin; Cho, Kyung-Suk] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Kim, Sujin] Natl Inst Nat Sci, Natl Astron Observ Japan, Nobeyama Solar Radio Observ, Minamisa Ku, Minamimaki, Nagano 3841305, Japan. [Imada, S.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. RP Lee, KS (reprint author), Kyung Hee Univ, Dept Astron & Space Sci, Yongin 446701, South Korea. EM lksun@khu.ac.kr RI Moon, Yong-Jae/E-1711-2013; Choe, Gwangson/E-2366-2013 FU Kyung Hee University [KHU-20101183]; Ministry of Education, Science and Technology [R31-10016]; Korean Government (MOEHRD) [KRF-2008-314-C00158, 20090071744, 20100014501]; NASA [NNX10AL50A] FX We greatly appreciate the referee's constructive comments. The authors extend their thanks to Professor Jongchul Chae and K. Ichimoto for their helpful suggestions. This research was also supported by the Kyung Hee University Research Fund (KHU-20101183) in 2010. This work has been supported by the WCU Program (No. R31-10016) though the National Research Foundation of the Republic of Korea funded by the Ministry of Education, Science and Technology and by the Korea Research Foundation Grant (KRF-2008-314-C00158, 20090071744, and 20100014501) funded by the Korean Government (MOEHRD, Basic Research Promotion Fund). Y.-J.M. is partially supported by NASA (NNX10AL50A). Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in cooperation with ESA and NSC (Norway). CHIANTI is a collaborative project involving researchers at NRL (USA), RAL (UK), and the Universities of Cambridge (UK), George Mason (USA), and Florence (Italy). We also acknowledge the use of solar data from the SOHO/MDI and TRACE. NR 62 TC 5 Z9 5 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 15 DI 10.1088/0004-637X/736/1/15 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600015 ER PT J AU Mennesson, B Serabyn, E Hanot, C Martin, SR Liewer, K Mawet, D AF Mennesson, B. Serabyn, E. Hanot, C. Martin, S. R. Liewer, K. Mawet, D. TI NEW CONSTRAINTS ON COMPANIONS AND DUST WITHIN A FEW AU OF VEGA SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; instrumentation: high angular resolution; stars: individual (Vega) ID INFRARED INTERFEROMETRIC SURVEY; RAPIDLY ROTATING STAR; DEBRIS DISK; EXTRASOLAR PLANETS; EPSILON-ERIDANI; NEARBY STARS; AB-AURIGAE; HOT DUST; CHARA/FLUOR; EMISSION AB We report on high contrast near-infrared (similar to 2.2 mu m) observations of Vega obtained with the Palomar Fiber Nuller, a dual sub-aperture rotating coronagraph installed at the Palomar Hale telescope. The data show consistent astrophysical null depth measurements at the similar or equal to 10(-3) level or below for three different baseline orientations spanning 60 deg in azimuth, with individual 1 sigma uncertainties <= 7 x 10(-4). These high cancellation and accuracy levels translate into a dynamic range greater than 1000: 1 inside the diffraction limit of the 5 m telescope beam. Such high contrast performance is unprecedented in the near-infrared and provides improved constraints on Vega's immediate (similar or equal to 20 to 250 mas, or similar or equal to 0.15 to 2 AU) environment. In particular, our measurements rule out any potential companion in the [0.25-1 AU] region contributing more than 1% of the overall near-infrared stellar flux, with limits as low as 0.2% near 0.6 AU. These are the best upper limits established so far by direct detection for a companion to Vega in this inner region. We also conclude that any dust population contributing a significant (>= 1%) near-infrared thermal excess can arise only within 0.2 AU of the star, and that it must consist of much smaller grains than in the solar zodiacal cloud. Dust emission from farther than similar or equal to 2 AU is also not ruled out by our observations, but would have to originate in strong scattering, pointing again to very small grains. C1 [Mennesson, B.; Serabyn, E.; Martin, S. R.; Liewer, K.; Mawet, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hanot, C.] Univ Liege, AEOS, B-4000 Liege, Belgium. RP Mennesson, B (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM bertrand.mennesson@jpl.nasa.gov FU NASA FX This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The data presented are based on observations obtained at the Hale Telescope, Palomar Observatory, as part of a continuing collaboration between Caltech, NASA/JPL, and Cornell University. We thank the Palomar Observatory staff for their assistance in mounting the PFN and conducting the observations at the Hale telescope. NR 43 TC 11 Z9 11 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 14 DI 10.1088/0004-637X/736/1/14 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600014 ER PT J AU Pascucci, I Sterzik, M Alexander, RD Alencar, SHP Gorti, U Hollenbach, D Owen, J Ercolano, B Edwards, S AF Pascucci, I. Sterzik, M. Alexander, R. D. Alencar, S. H. P. Gorti, U. Hollenbach, D. Owen, J. Ercolano, B. Edwards, S. TI THE PHOTOEVAPORATIVE WIND FROM THE DISK OF TW Hya SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; infrared: stars; protoplanetary disks; stars: individual (TW Hya) ID X-RAY-RADIATION; NE-II EMISSION; CIRCUMSTELLAR DISKS; TAURI STAR; PROTOPLANETARY DISCS; EXTREME-ULTRAVIOLET; TRANSITIONAL DISKS; PLANET FORMATION; FAR-ULTRAVIOLET; LINE EMISSION AB Photoevaporation driven by the central star is expected to be a ubiquitous and important mechanism for dispersing the circumstellar dust and gas from which planets form. Here, we present a detailed study of the circumstellar disk surrounding the nearby star TW Hya and provide observational constraints to its photoevaporative wind. Our new high-resolution (R similar to 30,000) mid-infrared spectroscopy in the [Ne II] 12.81 mu m line confirms that this gas diagnostic traces the unbound wind component within 10 AU of the star. From the blueshift and asymmetry in the line profile, we estimate that most (> 80%) of the [Ne II] emission arises from disk radii where the midplane is optically thick to the redshifted outflowing gas, meaning beyond the 1 or 4 AU dust rim inferred from other observations. We re-analyze high-resolution (R similar to 48,000) archival optical spectra searching for additional transitions that may trace the photoevaporative flow. Unlike the [Ne II] line, optical forbidden lines from O I, S II, and Mg I are centered at stellar velocity and have symmetric profiles. The only way these lines can trace the photoevaporative flow is if they arise from a disk region physically distinct from that traced by the [Ne II] line, specifically from within the optically thin dust gap. However, the small (similar to 10 km s(-1)) FWHM of these lines suggests that most of the emitting gas traced at optical wavelengths is bound to the system rather than unbound. We discuss the implications of our results for a planet-induced gap versus a photoevaporation-induced gap. C1 [Pascucci, I.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Sterzik, M.] European So Observ, Santiago 19, Chile. [Alexander, R. D.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Alencar, S. H. P.] Univ Fed Minas Gerais, ICEx, Dept Fis, BR-30270901 Belo Horizonte, MG, Brazil. [Gorti, U.; Hollenbach, D.] SETI Inst, Mountain View, CA 94043 USA. [Owen, J.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Ercolano, B.] Univ Observ Munich, Fac Phys, D-81679 Munich, Germany. [Edwards, S.] Smith Coll, Dept Astron, Northampton, MA 01063 USA. [Pascucci, I.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Gorti, U.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Pascucci, I (reprint author), Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. EM pascucci@lpl.arizona.edu RI Alencar, Silvia/C-2803-2013; 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013 FU National Science Foundation (NSF) [AST0908479]; Science & Technology Facilities Council (STFC) [ST/G00711X/1]; Fapemig; CAPES; BIS FX I.P. is pleased to acknowledge support from the National Science Foundation (NSF) through an Astronomy & Astrophysics research grant (AST0908479). I. P. thanks E. Flaccomio for making the VISIR spectra of Titan and K. Pontoppidan available for valuable discussions. R. D. A. acknowledges support from the Science & Technology Facilities Council (STFC) through an Advanced Fellowship (ST/G00711X/1). S.H.P.A. acknowledges support from Fapemig and CAPES, Brazilian research agencies. This research used the ALICE High Performance Computing Facility at the University of Leicester. Some resources on ALICE form part of the DiRAC Facility jointly funded by STFC and the Large Facilities Capital Fund of BIS. NR 78 TC 36 Z9 36 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 13 DI 10.1088/0004-637X/736/1/13 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600013 ER PT J AU Rahoui, F Lee, JC Heinz, S Hines, DC Pottschmidt, K Wilms, J Grinberg, V AF Rahoui, Farid Lee, Julia C. Heinz, Sebastian Hines, Dean C. Pottschmidt, Katja Wilms, Joern Grinberg, Victoria TI A MULTIWAVELENGTH STUDY OF CYGNUS X-1: THE FIRST MID-INFRARED SPECTROSCOPIC DETECTION OF COMPACT JETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; dust, extinction; infrared: stars; stars: individual (Cygnus X-1); X-rays: binaries ID LONG-TERM VARIABILITY; RAY-TIMING-EXPLORER; EARLY-TYPE STARS; SPITZER-SPACE-TELESCOPE; ACCRETING BLACK-HOLES; X-RAY; LOW/HARD STATE; MASS-LOSS; GX 339-4; SYNCHROTRON EMISSION AB We report on a Spitzer/InfraRed Spectrograph (mid-infrared), RXTE/PCA+HEXTE (X-ray), and Ryle (radio) simultaneous multiwavelength study of the microquasar Cygnus X-1, which aimed at an investigation of the origin of its mid-infrared emission. Compact jets were present in two out of three observations, and we show that they strongly contribute to the mid-infrared continuum. During the first observation, we detect the spectral break-where the transition from the optically thick to the optically thin regime takes place-at about 2.9x10(13) Hz. We then show that the jet's optically thin synchrotron emission accounts for Cygnus X-1's emission beyond 400 keV, although it cannot alone explain its 3-200 keV continuum. A compact jet was also present during the second observation, but we do not detect the break, since it has likely shifted to higher frequencies. In contrast, the compact jet was absent during the last observation, and we show that the 5-30 mu m mid-infrared continuum of Cygnus X-1 stems from the blue supergiant companion star HD 226868. Indeed, the emission can then be understood as the combination of the photospheric Rayleigh-Jeans tail and the bremsstrahlung from the expanding stellar wind. Moreover, the stellar wind is found to be clumpy, with a filling factor f(infinity) approximate to 0.09-0.10. Its bremsstrahlung emission is likely anti-correlated to the soft X-ray emission, suggesting an anti-correlation between the mass-loss and mass-accretion rates. Nevertheless, we do not detect any mid-infrared spectroscopic evidence of interaction between the jets and Cygnus X-1's environment and/or the companion star's stellar wind. C1 [Rahoui, Farid; Lee, Julia C.] Harvard Univ, Dept Astron, Cambridge, MA 02138 USA. [Rahoui, Farid; Lee, Julia C.] Harvard Univ, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Heinz, Sebastian] Univ Wisconsin Madison, Dept Astron, Madison, WI 53706 USA. [Hines, Dean C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Pottschmidt, Katja] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Pottschmidt, Katja] UMBC, CRESST, Greenbelt, MD 20771 USA. [Wilms, Joern; Grinberg, Victoria] Univ Erlangen Nurnberg, Dr Karl Remeis Observ, D-96049 Bamberg, Germany. [Wilms, Joern; Grinberg, Victoria] Univ Erlangen Nurnberg, ECAP, D-96049 Bamberg, Germany. RP Rahoui, F (reprint author), Harvard Univ, Dept Astron, 60 Garden St, Cambridge, MA 02138 USA. EM frahoui@cfa.harvard.edu; jclee@cfa.harvard.edu; heinzs@astro.wisc.edu; hines@stsci.edu; katja@milkyway.gsfc.nasa.gov; joern.wilms@sternwarte.uni-erlangen.de; victoria.grinberg@sternwarte.uni-erlangen.de RI Wilms, Joern/C-8116-2013; Lee, Julia/G-2381-2015; OI Wilms, Joern/0000-0003-2065-5410; Lee, Julia/0000-0002-7336-3588; Heinz, Sebastian/0000-0002-8433-8652 FU Harvard Faculty of Arts and Sciences and the Harvard College Observatory; JPL-NASA [1292543]; Bundesministerium fur Wirtschaft und Technologie through Deutsches Zentrum fur Luft- und Raumfahrt [50 OR 1007]; European Commission [ITN 215212] FX We thank the anonymous referee for his/her useful comments. F.R. thanks J. Rodriguez for providing the INTEGRAL/IBIS data. J.C.L. thanks the Harvard Faculty of Arts and Sciences and the Harvard College Observatory. S.H. acknowledges support from JPL-NASA contract no. 1292543. This work was partially funded by the Bundesministerium fur Wirtschaft und Technologie through Deutsches Zentrum fur Luft- und Raumfahrt grant 50 OR 1007 and by the European Commission through contract ITN 215212 "Black Hole Universe." This research has made use of NASA's Astrophysics Data System, of the SIMBAD, and VizieR databases operated at CDS, Strasbourg, France. NR 60 TC 29 Z9 29 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 63 DI 10.1088/0004-637X/736/1/63 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600063 ER PT J AU Shirokoff, E Reichardt, CL Shaw, L Millea, M Ade, PAR Aird, KA Benson, BA Bleem, LE Carlstrom, JE Chang, CL Cho, HM Crawford, TM Crites, AT de Haan, T Dobbs, MA Dudley, J George, EM Halverson, NW Holder, GP Holzapfel, WL Hrubes, JD Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Lueker, M Luong-Van, D McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Padin, S Plagge, T Pryke, C Ruhl, JE Schaffer, KK Spieler, HG Staniszewski, Z Stark, AA Story, K Vanderlinde, K Vieira, JD Williamson, R Zahn, O AF Shirokoff, E. Reichardt, C. L. Shaw, L. Millea, M. Ade, P. A. R. Aird, K. A. Benson, B. A. Bleem, L. E. Carlstrom, J. E. Chang, C. L. Cho, H. M. Crawford, T. M. Crites, A. T. de Haan, T. Dobbs, M. A. Dudley, J. George, E. M. Halverson, N. W. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Lueker, M. Luong-Van, D. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Padin, S. Plagge, T. Pryke, C. Ruhl, J. E. Schaffer, K. K. Spieler, H. G. Staniszewski, Z. Stark, A. A. Story, K. Vanderlinde, K. Vieira, J. D. Williamson, R. Zahn, O. TI IMPROVED CONSTRAINTS ON COSMIC MICROWAVE BACKGROUND SECONDARY ANISOTROPIES FROM THE COMPLETE 2008 SOUTH POLE TELESCOPE DATA SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; large-scale structure of universe ID ZELDOVICH POWER SPECTRUM; ATACAMA COSMOLOGY TELESCOPE; STAR-FORMING GALAXIES; INTRACLUSTER MEDIUM; DUST EMISSION; EXTRAGALACTIC SOURCES; GAS MOTIONS; CLUSTERS; PROBE; SIMULATIONS AB We report measurements of the cosmic microwave background (CMB) power spectrum from the complete 2008 South Pole Telescope (SPT) data set. We analyze twice as much data as the first SPT power spectrum analysis, using an improved cosmological parameter estimator which fits multi-frequency models to the SPT 150 and 220 GHz bandpowers. We find an excellent fit to the measured bandpowers with a model that includes lensed primary CMB anisotropy, secondary thermal (tSZ) and kinetic (kSZ) Sunyaev-Zel'dovich anisotropies, unclustered synchrotron point sources, and clustered dusty point sources. In addition to measuring the power spectrum of dusty galaxies at high signal-to-noise, the data primarily constrain a linear combination of the kSZ and tSZ anisotropy contributions at 150 GHz and l = 3000: D-3000(tSZ) + 0.5 D-3000(kSZ) = 4.5 +/- 1.0 mu K-2. The 95% confidence upper limits on secondary anisotropy power are D-3000(tSZ) < 5.3 mu K-2 and D-3000(kSZ) < 6.5 mu K-2. We also consider the potential correlation of dusty and tSZ sources and find it incapable of relaxing the tSZ upper limit. These results increase the significance of the lower than expected tSZ amplitude previously determined from SPT power spectrum measurements. We find that models including non-thermal pressure support in groups and clusters predict tSZ power in better agreement with the SPT data. Combining the tSZ power measurement with primary CMB data halves the statistical uncertainty on sigma(8). However, the preferred value of sigma(8) varies significantly between tSZ models. Improved constraints on cosmological parameters from tSZ power spectrum measurements require continued progress in the modeling of the tSZ power. C1 [Shirokoff, E.; Reichardt, C. L.; Benson, B. A.; George, E. M.; Holzapfel, W. L.; Lee, A. T.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Millea, M.; Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Ade, P. A. R.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Keisler, R.; Leitch, E. M.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Padin, S.; Plagge, T.; Pryke, C.; Schaffer, K. K.; Story, K.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; McMahon, J. J.; Meyer, S. S.; Pryke, C.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Story, K.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Leitch, E. M.; Meyer, S. S.; Padin, S.; Plagge, T.; Pryke, C.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Cho, H. M.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [de Haan, T.; Dobbs, M. A.; Dudley, J.; Holder, G. P.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Joy, M.] NASA, Marshall Space Flight Ctr, Dept Space Sci, Huntsville, AL 35812 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Lueker, M.; Padin, S.; Vieira, J. D.] CALTECH, Pasadena, CA 91125 USA. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Mohr, J. J.] Excellence Cluster Universe, D-85748 Garching, Germany. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA. [Schaffer, K. K.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA. [Stark, A. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Zahn, O.] Lawrence Berkeley Natl Labs, Berkeley, CA 94720 USA. RP Shirokoff, E (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM shiro@berkeley.edu RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Williamson, Ross/0000-0002-6945-2975; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Stark, Antony/0000-0002-2718-9996 FU National Science Foundation [ANT-0638937, ANT-0130612, 0709498]; NSF Physics Frontier Center [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; National Sciences and Engineering Research Council of Canada; Canada Research Chairs program; Canadian Institute for Advanced Research; Alfred P. Sloan Research Fellowship; Yale University; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; NASA Office of Space Science FX The South Pole Telescope is supported by the National Science Foundation through grants ANT-0638937 and ANT-0130612. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation and the Gordon and Betty Moore Foundation. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, Canada Research Chairs program, and the Canadian Institute for Advanced Research. M. Dobbs acknowledges support from an Alfred P. Sloan Research Fellowship. L. Shaw acknowledges the support of Yale University and NSF grant AST-1009811. M. Millea and L. Knox acknowledge the support of NSF grant 0709498. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Some of the results in this paper have been derived using the HEALPix (Gorski et al. 2005) package. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. NR 54 TC 73 Z9 74 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 61 DI 10.1088/0004-637X/736/1/61 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600061 ER PT J AU Stecker, FW Venters, TM AF Stecker, Floyd W. Venters, Tonia M. TI COMPONENTS OF THE EXTRAGALACTIC GAMMA-RAY BACKGROUND SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: general; gamma rays: diffuse background; gamma rays: galaxies ID LARGE-AREA TELESCOPE; DARK-MATTER ANNIHILATION; ACTIVE GALACTIC NUCLEI; STAR-FORMATION HISTORY; LOCAL GROUP GALAXIES; NEUTRAL-PION DECAY; RADIO-LOUD AGN; LUMINOSITY FUNCTION; FERMI-LAT; SPACE-TELESCOPE AB We present new theoretical estimates of the relative contributions of unresolved blazars and star-forming galaxies to the extragalactic gamma-ray background (EGB) and discuss constraints on the contributions from alternative mechanisms such as dark matter annihilation and truly diffuse gamma-ray production. We find that the Fermi source count data do not rule out a scenario in which the EGB is dominated by emission from unresolved blazars, though unresolved star-forming galaxies may also contribute significantly to the background, within order-of-magnitude uncertainties. In addition, we find that the spectrum of the unresolved star-forming galaxy contribution cannot explain the EGB spectrum found by EGRET at energies between 50 and 200 MeV, whereas the spectrum of unresolved flat spectrum radio quasars, when accounting for the energy-dependent effects of source confusion, could be consistent with the combined spectrum of the low-energy EGRET EGB measurements and the Fermi-Large Area Telescope EGB measurements. C1 [Stecker, Floyd W.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Stecker, FW (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. EM floyd.w.stecker@nasa.gov RI Stecker, Floyd/D-3169-2012; Venters, Tonia/D-2936-2012 FU NASA FX We thank David Thompson, Stan Hunter, and Olaf Reimer for discussions of the EGRET detector characteristics and EGRET data. We thank Marco Ajello for sending the results of his Monte Carlo simulations of the Fermi-LAT efficiency versus source flux. We also thank Dawn Erb for comments regarding the infrared surveys of star-forming galaxies at high redshifts and Matt Malkan, Vasiliki Pavlidou, Jane Rigby, and the anonymous referee for helpful discussions. T. M. V. acknowledges support by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. NR 119 TC 58 Z9 58 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 40 DI 10.1088/0004-637X/736/1/40 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600040 ER PT J AU Velli, M Lionello, R Linker, JA Mikic, Z AF Velli, Marco Lionello, Roberto Linker, Jon A. Mikic, Zoran TI CORONAL PLUMES IN THE FAST SOLAR WIND SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: corona; Sun: heliosphere; solar wind ID HELIOSPHERIC MAGNETIC-FIELD; ULYSSES OBSERVATIONS; POLAR PLUMES; WHITE-LIGHT; HOLES; ORIGIN; WAVES; SIMULATIONS; INVERSIONS; VELOCITY AB The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfven waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of the study. Time dependence due to plume ignition and disappearance is also discussed. Velocity differences of the order of similar to 50 km s(-1), such as those found in microstreams in the high-speed solar wind, may be easily explained by slightly different heat deposition profiles in different plumes. Statistical pressure balance in the fast wind data may be masked by the large variety of body and surface waves which the higher density filaments may carry, so the absence of pressure balance in the microstreams should not rule out their interpretation as the extension of coronal plumes into interplanetary space. Mixing of plume-interplume material via the Kelvin-Helmholtz instability seems to be possible within the parameter ranges of the models defined here, only at large distances from the Sun, beyond 0.2-0.3 AU. Plasma and composition measurements in the inner heliosphere, such as those which will become available with Solar Orbiter and Solar Probe Plus, should therefore definitely be able to identify plume remnants in the solar wind. C1 [Velli, Marco] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lionello, Roberto; Linker, Jon A.; Mikic, Zoran] Predict Sci Inc, San Diego, CA 92121 USA. RP Velli, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM mvelli@mail.jpl.nasa.gov; lionel@predsci.com; linkerj@predsci.com; mikicz@predsci.com FU NASA; AFOSR; NSF through Center for Integrated Space Weather Modeling FX This work was supported by NASA SHP, HTP, and LWS contracts, by AFOSR and by NSF through the Center for Integrated Space Weather Modeling. We thank S. Suess for many stimulating discussions. NR 38 TC 8 Z9 8 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 32 DI 10.1088/0004-637X/736/1/32 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600032 ER PT J AU Vieregg, AG Palladino, K Allison, P Baughman, BM Beatty, JJ Belov, K Besson, DZ Bevan, S Binns, WR Chen, C Chen, P Clem, JM Connolly, A Detrixhe, M De Marco, D Dowkontt, PF DuVernois, M Gorham, PW Grashorn, EW Hill, B Hoover, S Huang, M Israel, MH Javaid, A Liewer, KM Matsuno, S Mercurio, BC Miki, C Mottram, M Nam, J Nichol, RJ Romero-Wolf, A Ruckman, L Saltzberg, D Seckel, D Varner, GS Wang, Y AF Vieregg, A. G. Palladino, K. Allison, P. Baughman, B. M. Beatty, J. J. Belov, K. Besson, D. Z. Bevan, S. Binns, W. R. Chen, C. Chen, P. Clem, J. M. Connolly, A. Detrixhe, M. De Marco, D. Dowkontt, P. F. DuVernois, M. Gorham, P. W. Grashorn, E. W. Hill, B. Hoover, S. Huang, M. Israel, M. H. Javaid, A. Liewer, K. M. Matsuno, S. Mercurio, B. C. Miki, C. Mottram, M. Nam, J. Nichol, R. J. Romero-Wolf, A. Ruckman, L. Saltzberg, D. Seckel, D. Varner, G. S. Wang, Y. TI THE FIRST LIMITS ON THE ULTRA-HIGH ENERGY NEUTRINO FLUENCE FROM GAMMA-RAY BURSTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: general; neutrinos ID COSMIC-RAYS; AFTERGLOW; FIREBALLS AB We set the first limits on the ultra-high energy (UHE) neutrino fluence at energies greater than 10(9) GeV from gamma-ray bursts (GRBs) based on data from the second flight of the Antarctic Impulsive Transient Antenna (ANITA). During the 31 day flight of ANITA-II, 26 GRBs were recorded by Swift or Fermi. Of these, we analyzed the 12 GRBs which occurred during quiet periods when the payload was away from anthropogenic activity. In a blind analysis, we observe 0 events on a total background of 0.0044 events in the combined prompt window for all 12 low-background bursts. We also observe 0 events from the remaining 14 bursts. We place a 90% confidence level limit on the E-4 prompt neutrino fluence between 10(8) GeV < E < 10(12) GeV of E-4 Phi = 2.5 x 10(17) GeV3 cm(-2) from GRB090107A. This is the first reported limit on the UHE neutrino fluence from GRBs above 10(9) GeV, and the strongest limit above 10(8) GeV. C1 [Palladino, K.; Allison, P.; Baughman, B. M.; Beatty, J. J.; Connolly, A.; Grashorn, E. W.; Mercurio, B. C.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Besson, D. Z.; Detrixhe, M.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Bevan, S.; Mottram, M.; Nichol, R. J.] UCL, Dept Phys & Astron, London, England. [Binns, W. R.; Dowkontt, P. F.; Israel, M. H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Chen, C.; Chen, P.; Huang, M.; Nam, J.; Wang, Y.] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan. [Clem, J. M.; De Marco, D.; Javaid, A.; Seckel, D.] Univ Delaware, Dept Phys, Newark, DE 19716 USA. [DuVernois, M.; Gorham, P. W.; Hill, B.; Matsuno, S.; Miki, C.; Romero-Wolf, A.; Ruckman, L.; Varner, G. S.] Univ Hawaii Manoa, Dept Phys & Astron, Honolulu, HI 96822 USA. [Liewer, K. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Vieregg, A. G.; Belov, K.; Hoover, S.; Saltzberg, D.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RP Vieregg, AG (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM avieregg@cfa.harvard.edu RI Vieregg, Abigail/D-2287-2012; Belov, Konstantin/D-2520-2013; Connolly, Amy/J-3958-2013; Beatty, James/D-9310-2011 OI Beatty, James/0000-0003-0481-4952 NR 22 TC 11 Z9 11 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2011 VL 736 IS 1 AR 50 DI 10.1088/0004-637X/736/1/50 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 791EB UT WOS:000292645600050 ER PT J AU Strekalov, DV Thompson, RJ Baumgartel, LM Grudinin, IS Yu, N AF Strekalov, D. V. Thompson, R. J. Baumgartel, L. M. Grudinin, I. S. Yu, N. TI Temperature measurement and stabilization in a birefringent whispering gallery mode resonator SO OPTICS EXPRESS LA English DT Article ID OPTICAL RESONATORS; LASER; MICROCAVITIES; CAVITY AB Temperature measurement with nano-Kelvin resolution is demonstrated at room temperature, based on the thermal dependence of an optical crystal anisotropy in a high quality whispering gallery mode resonator. As the resonator's TE and TM modes frequencies have different temperature coefficients, their differential shift provides a sensitive measurement of the temperature variation, which is used for active stabilization of the temperature. (C) 2011 Optical Society of America C1 [Strekalov, D. V.; Thompson, R. J.; Baumgartel, L. M.; Grudinin, I. S.; Yu, N.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Strekalov, DV (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM dmitry.v.strekalov@jpl.nasa.gov FU Jet Propulsion Laboratory, California Institute of Technology, under NASA FX The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the NASA. NR 15 TC 39 Z9 40 U1 1 U2 18 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 18 PY 2011 VL 19 IS 15 BP 14495 EP 14501 DI 10.1364/OE.19.014495 PG 7 WC Optics SC Optics GA 794EF UT WOS:000292877600081 PM 21934812 ER PT J AU Cook, BI Seager, R Miller, RL AF Cook, B. I. Seager, R. Miller, R. L. TI The impact of devegetated dune fields on North American climate during the late Medieval Climate Anomaly SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID DUST BOWL DROUGHT; TROPICAL PACIFIC; FEEDBACK MECHANISM; SOIL-MOISTURE; GREAT-PLAINS; MEGADROUGHTS; SSTS AB During the Medieval Climate Anomaly, North America experienced severe droughts and widespread mobilization of dune fields that persisted for decades. We use an atmosphere general circulation model, forced by a tropical Pacific sea surface temperature reconstruction and changes in the land surface consistent with estimates of dune mobilization (conceptualized as partial devegetation), to investigate whether the devegetation could have exacerbated the medieval droughts. Presence of devegetated dunes in the model significantly increases surface temperatures, but has little impact on precipitation or drought severity, as defined by either the Palmer Drought Severity Index or the ratio of precipitation to potential evapotranspiration. Results are similar to recent studies of the 1930s Dust Bowl drought, suggesting bare soil associated with the dunes, in and of itself, is not sufficient to amplify droughts over North America. Citation: Cook, B. I., R. Seager, and R. L. Miller (2011), The impact of devegetated dune fields on North American climate during the late Medieval Climate Anomaly, Geophys. Res. Lett., 38, L14704, doi:10.1029/2011GL047566. C1 [Cook, B. I.; Miller, R. L.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Cook, B. I.; Seager, R.] Lamont Doherty Earth Observ, Palisades, NY 10964 USA. RP Cook, BI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM bc9z@ldeo.columbia.edu RI Miller, Ron/E-1902-2012; Cook, Benjamin/H-2265-2012 FU NSF [ATMO9-02716, ATM-06-20066]; NOAA [NA100AR-4310137]; National Aeronautics and Space Administration FX The authors thank Joe Mason and two anonymous reviewers for their helpful comments and acknowledge the support of NSF grant ATMO9-02716, NOAA grant NA100AR-4310137, NSF grant ATM-06-20066, as well as the National Aeronautics and Space Administration Atmospheric Composition Program. Special thanks to R. Burgman for providing information on the coral SST reconstruction. LDEO Contribution No. 7469. NR 21 TC 6 Z9 7 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 16 PY 2011 VL 38 AR L14704 DI 10.1029/2011GL047566 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 793PH UT WOS:000292835100003 ER PT J AU Gong, J Wu, DL AF Gong, Jie Wu, Dong L. TI View-angle dependent AIRS cloud radiances: Implications for tropical anvil structures SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MOMENTUM TRANSPORT; CIRRUS; PRECIPITATION; CONVECTION; HEAT AB Tropical anvil clouds play important roles in redistributing energy, water in the troposphere. Interacting with dynamics at a wide range of spatial and temporal scales, they can become organized internally and form structured cells, transporting momentum vertically and laterally. To quantify small-scale structures inside cirrus and anvils, we study view-dependence of the cloud-induced radiance from Atmospheric Infrared Sounder (AIRS) using channels near CO2 absorption line. The analysis of tropical eight-year (30 degrees S-30 degrees N, 2003-2010) data suggests that AIRS east-views observe 10% more anvil clouds than west-views during day (13:30 LST), whereas east-views and west-views observe equally amount of clouds at midnight (1:30 LST). For entire tropical averages, AIRS oblique views observe more anvils than the nadir views, while the opposite is true for deep convective clouds. The dominance of cloudiness in the east-view cannot be explained by AIRS sampling and cloud microphysical differences. Tilted and banded anvil structures from convective scale to mesoscale are likely the cause of the observed view-dependent cloudiness, and gravity wave-cloud interaction is a plausible explanation for the observed structures. Effects of the tilted and banded cloud features need to be further evaluated and taken into account potentially in large-scale model parameterizations because of the vertical momentum transport through cloud wave breaking. Citation: Gong, J., and D. L. Wu (2011), View-angle dependent AIRS cloud radiances: Implications for tropical anvil structures, Geophys. Res. Lett., 38, L14802, doi:10.1029/2011GL047910. C1 [Gong, Jie; Wu, Dong L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Gong, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Jie.Gong@jpl.nasa.gov RI Gong, Jie/H-2436-2011; Wu, Dong/D-5375-2012 NR 24 TC 4 Z9 4 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 16 PY 2011 VL 38 AR L14802 DI 10.1029/2011GL047910 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 793PH UT WOS:000292835100006 ER PT J AU Cheng, AN Xu, KM AF Cheng, Anning Xu, Kuan-Man TI Improved low-cloud simulation from a multiscale modeling framework with a third-order turbulence closure in its cloud-resolving model component SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID BOUNDARY-LAYER CLOUDS; CONVECTION PARAMETERIZATION CRCP; COMMUNITY ATMOSPHERE MODEL; PDF-BASED MODEL; VERSION 3 CAM3; CLIMATE SIMULATIONS; MOIST CONVECTION; PART I; CUMULUS; VARIABILITY AB In the original multiscale modeling framework (MMF), the Community Atmosphere Model (CAM3.5) is used as the host general circulation model (GCM), and the System for Atmospheric Modeling model with a first-order turbulence closure is used as the cloud resolving model (CRM) for representing cloud physical processes in each grid column of the GCM. This study introduces an upgrade of the MMF in which the first-order turbulence closure scheme is replaced by an advanced third-order turbulence closure in its CRM component. The results are compared between the upgraded and original MMFs, CAM3.5, and observations. The global distributions of low-level cloud amounts in the subtropics in the upgraded MMF show substantial improvement relative to the original MMF when both are compared with observations. The improved simulation of low-level clouds is attributed not only to the representation of subgrid-scale condensation in the embedded CRM but also is closely related to the increased surface sensible and latent heat fluxes, the increased lower tropospheric stability (LTS), and stronger longwave radiative cooling. Both MMF simulations show close agreement in the vertical structures of cloud amount and liquid water content of midlatitude storm-track clouds and subtropical low-level clouds, compared with observations, with the upgraded MMF being better at simulating the low-level cumulus regime. Since the upgraded MMF produces more subtropical low-level clouds and does not produce an excessive amount of optically thick high-level clouds in either the tropics or midlatitudes as the original MMF does, the global mean albedo decreases. The positive bias in albedo and longwave cloud radiative forcing (CRF) and negative bias in shortwave CRF are reduced in the tropical convective regions. C1 [Cheng, Anning] SSAI, Hampton, VA 23666 USA. [Xu, Kuan-Man] NASA, Climate Sci Branch, Langley Res Ctr, Hampton, VA 23681 USA. RP Cheng, AN (reprint author), SSAI, 1 Enterprise Pkwy,Ste 200, Hampton, VA 23666 USA. EM anning.cheng@nasa.gov RI Xu, Kuan-Man/B-7557-2013 OI Xu, Kuan-Man/0000-0001-7851-2629 FU NSF Science and Technology Center for Multiscale Modeling of Atmospheric Processes (CMMAP) [ATM-0425247]; NASA FX This work has been supported by the NSF Science and Technology Center for Multiscale Modeling of Atmospheric Processes (CMMAP), managed by Colorado State University under cooperative agreement ATM-0425247. This work was also partially supported by NASA Modeling, Analysis and Prediction program managed by David Considine. The computation resources from NCAR BlueGene supercomputer were provided by the Teragrid organization. Special thanks go to Marat Khairoutdinov of Stony Brook University for providing SPCAM, Seiji Kato for providing the C3M data set, and Kirk Ayers and Zachary Eitzen of SSAI for reading drafts of this paper. Helpful discussions with David Randall of Colorado State University are appreciated. The editor and three anonymous reviewers are thanked for their constructive comments and suggestions. NR 50 TC 21 Z9 22 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 16 PY 2011 VL 116 AR D14101 DI 10.1029/2010JD015362 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 793RK UT WOS:000292840600002 ER PT J AU Vay, SA Choi, Y Vadrevu, KP Blake, DR Tyler, SC Wisthaler, A Hecobian, A Kondo, Y Diskin, GS Sachse, GW Woo, JH Weinheimer, AJ Burkhart, JF Stohl, A Wennberg, PO AF Vay, S. A. Choi, Y. Vadrevu, K. P. Blake, D. R. Tyler, S. C. Wisthaler, A. Hecobian, A. Kondo, Y. Diskin, G. S. Sachse, G. W. Woo, J. -H. Weinheimer, A. J. Burkhart, J. F. Stohl, A. Wennberg, P. O. TI Patterns of CO2 and radiocarbon across high northern latitudes during International Polar Year 2008 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID FOSSIL-FUEL CO2; ARCTIC AIR-POLLUTION; PEM-WEST-B; CARBON-MONOXIDE; BOREAL FOREST; ISOTOPIC COMPOSITION; BIOMASS FIRES; ATMOSPHERIC CHEMISTRY; AIRBORNE MEASUREMENTS; ANTHROPOGENIC CO2 AB High-resolution in situ CO2 measurements were conducted aboard the NASA DC-8 aircraft during the ARCTAS/POLARCAT field campaign, a component of the wider 2007-2008 International Polar Year activities. Data were recorded during large-scale surveys spanning the North American sub-Arctic to the North Pole from 0.04 to 12 km altitude in spring and summer of 2008. Influences on the observed CO2 concentrations were investigated using coincident CO, black carbon, CH3CN, HCN, O-3, C2Cl4, and Delta(CO2)-C-14 data, and the FLEXPART model. In spring, the CO2 spatial distribution from 55 degrees N to 90 degrees N was largely determined by the long-range transport of air masses laden with Asian anthropogenic pollution intermingled with Eurasian fire emissions evidenced by the greater variability in the mid-to-upper troposphere. At the receptor site, the enhancement ratios of CO2 to CO in pollution plumes ranged from 27 to 80 ppmv ppmv(-1) with the highest anthropogenic content registered in plumes sampled poleward of 80 degrees N. In summer, the CO2 signal largely reflected emissions from lightning-ignited wildfires within the boreal forests of northern Saskatchewan juxtaposed with uptake by the terrestrial biosphere. Measurements within fresh fire plumes yielded CO2 to CO emission ratios of 4 to 16 ppmv ppmv(-1) and a mean CO2 emission factor of 1698 +/- 280 g kg(-1) dry matter. From the C-14 in CO2 content of 48 whole air samples, mean spring (46.6 +/- 4.4%) and summer (51.5 +/- 5%) Delta(CO2)-C-14 values indicate a 5% seasonal difference. Although the northern midlatitudes were identified as the emissions source regions for the majority of the spring samples, depleted Delta(CO2)-C-14 values were observed in <1% of the data set. Rather, ARCTAS Delta(CO2)-C-14 observations (54%) revealed predominately a pattern of positive disequilibrium (1-7%) with respect to background regardless of season owing to both heterotrophic respiration and fire-induced combustion of biomass. Anomalously enriched Delta(CO2)-C-14 values (101-262%) measured in emissions from Lake Athabasca and Eurasian fires speak to biomass burning as an increasingly important contributor to the mass excess in Delta(CO2)-C-14 observations in a warming Arctic, representing an additional source of uncertainty in the quantification of fossil fuel CO2. C1 [Vay, S. A.; Diskin, G. S.] NASA, Langley Res Ctr, Chem & Dynam Branch, Hampton, VA 23681 USA. [Choi, Y.; Sachse, G. W.] Natl Inst Aerosp, Hampton, VA 23666 USA. [Vadrevu, K. P.] Univ Maryland, Dept Geog, College Pk, MD 20740 USA. [Blake, D. R.; Tyler, S. C.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Tyler, S. C.] Norco Coll, Chem Program, Norco, CA 92860 USA. [Wisthaler, A.] Univ Innsbruck, Inst Ion Phys & Appl Phys, A-6020 Innsbruck, Austria. [Hecobian, A.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Kondo, Y.] Univ Tokyo, Dept Earth & Planetary Sci, Tokyo 1130033, Japan. [Woo, J. -H.] Konkuk Univ, Dept Adv Technol Fus, Seoul 143701, South Korea. [Weinheimer, A. J.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Burkhart, J. F.; Stohl, A.] Norwegian Inst Air Res, N-2027 Kjeller, Norway. [Wennberg, P. O.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Vay, SA (reprint author), NASA, Langley Res Ctr, Chem & Dynam Branch, Hampton, VA 23681 USA. EM Stephanie.A.Vay@nasa.gov RI Stohl, Andreas/A-7535-2008; Wennberg, Paul/A-5460-2012; Hecobian, Arsineh/A-9743-2012; Kondo, Yutaka/D-1459-2012; Burkhart, John/B-7095-2008; OI Stohl, Andreas/0000-0002-2524-5755; Hecobian, Arsineh/0000-0001-9511-4868; Burkhart, John/0000-0002-5587-1693; Vadrevu, Krishna/0000-0003-4407-5605 FU NASA; Austrian Research Promotion Agency (FFG-ALR); Tiroler Zukunftstiftung FX The authors wish to thank Xiaomei Xu, Scott Lehman, and Ingeborg Levin for use of the Point Barrow, Niwot Ridge, and Jungfraujoch Delta14CO2 data, respectively. We also appreciate the CO2 data provided by Doug Worthy of Environment Canada and NOAA ESRL, as well as contributions from Melissa Yang. We are most grateful to Jimmy Geiger, Jim Plant, and the DC-8 crew whose valuable contributions ensured a successful and safe mission. This research was funded by NASA's Global Tropospheric Chemistry and Radiation Sciences Programs. CH3CN measurements were supported by the Austrian Research Promotion Agency (FFG-ALR) and the Tiroler Zukunftstiftung, and carried out with the help/support of T. Mikoviny, M. Graus, A. Hansel, and T. D. Maerk. NR 97 TC 17 Z9 17 U1 1 U2 26 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 16 PY 2011 VL 116 AR D14301 DI 10.1029/2011JD015643 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 793RM UT WOS:000292840800001 ER PT J AU Actis, P Rogers, A Nivala, J Vilozny, B Seger, RA Jejelowo, O Pourmand, N AF Actis, Paolo Rogers, Adam Nivala, Jeff Vilozny, Boaz Seger, R. Adam Jejelowo, Olufisayo Pourmand, Nader TI Reversible thrombin detection by aptamer functionalized STING sensors SO BIOSENSORS & BIOELECTRONICS LA English DT Article DE Nanopipette; Label-free; Nanopore; Aptamer; Thrombin; STING ID CURRENT RECTIFICATION; NANOPIPETTE; MOLECULES; NANOPORES; SELECTION; LIGANDS; BIND AB Signal Transduction by Ion NanoGating (STING) is a label-free technology based on functionalized quartz nanopipettes. The nanopipette pore can be decorated with a variety of recognition elements and the molecular interaction is transduced via a simple electrochemical system. A STING sensor can be easily and reproducibly fabricated and tailored at the bench starting from inexpensive quartz capillaries. The analytical application of this new biosensing platform, however, was limited due to the difficult correlation between the measured ionic current and the analyte concentration in solution. Here we show that STING sensors functionalized with aptamers allow the quantitative detection of thrombin. The binding of thrombin generates a signal that can be directly correlated to its concentration in the bulk solution. (C) 2011 Elsevier B.V. All rights reserved. C1 [Actis, Paolo; Rogers, Adam; Nivala, Jeff; Vilozny, Boaz; Seger, R. Adam; Pourmand, Nader] Univ Calif Santa Cruz, Dept Biomol Engn, Santa Cruz, CA 95064 USA. [Actis, Paolo; Jejelowo, Olufisayo] Texas So Univ, Dept Biol, Houston, TX 77004 USA. [Actis, Paolo; Vilozny, Boaz; Seger, R. Adam; Pourmand, Nader] UC Santa Cruz, Adv Studies Labs, Moffett Field, CA 94035 USA. [Actis, Paolo; Vilozny, Boaz; Seger, R. Adam; Pourmand, Nader] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Pourmand, N (reprint author), Univ Calif Santa Cruz, Dept Biomol Engn, 1156 High St, Santa Cruz, CA 95064 USA. EM pourmand@soe.ucsc.edu RI Actis, Paolo/A-7694-2012 FU National Aeronautics and Space Administration [NNX08BA47A, NNX10AQ16A]; National Institutes of Health [P01-HG000205] FX This work was supported in part by grants from the National Aeronautics and Space Administration Cooperative Agreements [NNX08BA47A and NNX10AQ16A], and the National Institutes of Health [P01-HG000205]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Aeronautics and Space Administration or the National Institutes of Health. The authors want to acknowledge Robert Hoelle for technical assistance with the SEM imaging. NR 30 TC 19 Z9 20 U1 7 U2 45 PU ELSEVIER ADVANCED TECHNOLOGY PI OXFORD PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0956-5663 J9 BIOSENS BIOELECTRON JI Biosens. Bioelectron. PD JUL 15 PY 2011 VL 26 IS 11 BP 4503 EP 4507 DI 10.1016/j.bios.2011.05.010 PG 5 WC Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical; Electrochemistry; Nanoscience & Nanotechnology SC Biophysics; Biotechnology & Applied Microbiology; Chemistry; Electrochemistry; Science & Technology - Other Topics GA 797DG UT WOS:000293104100039 PM 21636261 ER PT J AU Thiruppathiraja, C Kamatchiammal, S Adaikkappan, P Alagar, M AF Thiruppathiraja, Chinnasamy Kamatchiammal, Senthilkumar Adaikkappan, Periyakaruppan Alagar, Muthukaruppan TI An advanced dual labeled gold nanoparticles probe to detect Cryptosporidium parvum using rapid immuno-dot blot assay SO BIOSENSORS & BIOELECTRONICS LA English DT Article DE Gold nanoparticles; Cryptosporidium parvum; Drinking water; Antibody; Alkaline phosphatase; Immuno-dot blot assay ID GIARDIA-LAMBLIA; IMMUNOCHROMATOGRAPHIC ASSAY; COLLOIDAL GOLD; OOCYSTS; WATER; ANTIBODIES; PCR; IDENTIFICATION; AMPLIFICATION; BIOSENSOR AB The zoonotic protozoan parasite Cryptosporidium parvum poses a significant risk to public health. Due to the low infectious dose of C. parvum, remarkably sensitive detection methods are required for water and food industries analysis. However PCR affirmed sensing method of the causative nucleic acid has numerous advantages, still criterion demands for simple techniques and expertise understanding to extinguish its routine use. In contrast, protein based immuno detecting techniques are simpler to perform by a commoner, but lack of sensitivity due to inadequate signal amplification. In this paper, we focused on the development of a mere sensitive immuno detection method by coupling anti-cyst antibody and alkaline phosphatase on gold nanoparticle for C. parvum is described. Outcome of the sensitivity in an immuno-dot blot assay detection is enhanced by 500 fold (using conventional method) and visually be able to detect up to 10 oocysts/mL with minimal processing period. Techniques reported in this paper substantiate the convenience of immuno-dot blot assay for the routine screening of C. parvum in water/environmental examines and most importantly, demonstrates the potential of a prototype development of simple and inexpensive diagnostic technique. (C) 2011 Elsevier B.V. All rights reserved. C1 [Thiruppathiraja, Chinnasamy; Alagar, Muthukaruppan] Anna Univ, Dept Chem Engn, Nanocomposites Res Grp, Madras 600025, Tamil Nadu, India. [Kamatchiammal, Senthilkumar] Natl Environm Engn Res Inst, Chennai Zonal Lab, Madras 600113, Tamil Nadu, India. [Adaikkappan, Periyakaruppan] NASA, Ctr Nanosci & Nanotechnol, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Alagar, M (reprint author), Anna Univ, Dept Chem Engn, Nanocomposites Res Grp, Madras 600025, Tamil Nadu, India. EM mkalagar@yahoo.com RI Periyakaruppan, Adaikkappan/B-7398-2013 OI Periyakaruppan, Adaikkappan/0000-0002-0395-6564 FU Council of Scientific and Industrial Research, New Delhi, India FX Authors thank to Supra Institutional Project, Council of Scientific and Industrial Research, New Delhi, India for funding to execute this study successfully. NR 37 TC 6 Z9 7 U1 3 U2 23 PU ELSEVIER ADVANCED TECHNOLOGY PI OXFORD PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0956-5663 EI 1873-4235 J9 BIOSENS BIOELECTRON JI Biosens. Bioelectron. PD JUL 15 PY 2011 VL 26 IS 11 BP 4624 EP 4627 DI 10.1016/j.bios.2011.05.006 PG 4 WC Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical; Electrochemistry; Nanoscience & Nanotechnology SC Biophysics; Biotechnology & Applied Microbiology; Chemistry; Electrochemistry; Science & Technology - Other Topics GA 797DG UT WOS:000293104100060 PM 21641786 ER PT J AU van Acken, D Brandon, AD Humayun, M AF van Acken, David Brandon, Alan D. Humayun, Munir TI High-precision osmium isotopes in enstatite and Rumuruti chondrites SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID EARLY SOLAR-SYSTEM; SILICON-CARBIDE GRAINS; PLATINUM-GROUP ELEMENTS; R-PROCESS COMPONENTS; GIANT BRANCH STARS; S-PROCESS; CARBONACEOUS CHONDRITES; PRIMITIVE CHONDRITES; MURCHISON METEORITE; NEUTRON-CAPTURE AB Isotopic heterogeneity within the solar nebula has been a long-standing issue. Studies on primitive chondrites and chondrite components for Ba, Sm, Nd, Mo, Ru, Hf, Ti, and Os yielded conflicting results, with some studies suggesting large-scale heterogeneity. Low-grade enstatite and Rumuruti chondrites represent the most extreme ends of the chondrite meteorites in terms of oxidation state, and might thus also present extremes if there is significant isotopic heterogeneity across the region of chondrite formation. Osmium is an ideal tracer because of its multiple isotopes generated by a combination of p-, r-, and s-process and, as a refractory element; it records the earliest stages of condensation. Some grade 3-4 enstatite and Rumuruti chondrites show similar deficits of s-process components as revealed by high-precision Os isotope studies in some low-grade carbonaceous and ordinary chondrites. Enstatite chondrites of grades 5-6 have Os isotopic composition identical within error to terrestrial and solar composition. This supports the view of digestion-resistant presolar grains, most likely SiC, as the major carrier of these anomalies. Destruction of presolar grains during parent body processing, which all high-grade enstatite chondrites, but also some low-grade chondrites seemingly underwent, makes the isotopically anomalous Os accessible for analysis. The magnitude of the anomalies is consistent with the presence of a few ppm of presolar SiC with a highly unusual isotopic composition, produced in a different stellar environment like asymptotic giant branch stars (AGB) and injected into the solar nebula. The presence of similar Os isotopic anomalies throughout all major chondrite groups implies that carriers of Os isotopic anomalies were homogeneously distributed in the solar nebula, at least across the formation region of chondrites. (C) 2011 Elsevier Ltd. All rights reserved. C1 [van Acken, David; Brandon, Alan D.] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77204 USA. [van Acken, David] NASA, Lyndon B Johnson Space Ctr, MS KR, Houston, TX 77058 USA. [Humayun, Munir] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Humayun, Munir] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32310 USA. RP van Acken, D (reprint author), Univ Alberta, Dept Earth & Atmospher Sci, 1-26 Earth Sci Bldg, Edmonton, AB T6G